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ABSTRACT

Discrete ordihate theory is used to calculate the reflected and trans-

mitted radiance of photons which have interacted with plane-parallel mari-

time haze layers. The results are presented for three solar zenith angles,

three values of the surface albedo, and a range of optical thicknesses

from very thin to very thick. The diffuse flux at the lower boundary and

the cloud albedo are tabulated. The forward peak and other features in the

single scattered phase function cause the radiance in many cases to be very

different from that for Rayleigh scattering. In particular the variation

of the radiance with both the zenith or nadir angle and the azimuthal angle

is more marked and the relative limb darkening under very thick layers is

greater for haze M than for Rayleigh scattering. The downward diffuse flux

at the lower boundary for A = 0 is always greater and the cloud albedo is

always less for haze M than for Rayleigh layers.
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1. Introduction

Discrete ordinate theory is an entirely rigorous method for the solu-

tion of the equations for radiative transfer. The general theory has been

presented by Preisendorfer (1965), while important contributions to the

theory have been made by Twomey et al (1966) and more recently by Grant and

Hunt (1969). Plass, Kattawar and Catchings (1972) (referred to hereafter

as I) in the first paper in this series have presented the theory in a

particularly simple and improved form designed for physical applications.

The theory given in our papers has the following important advantages:

1. calculations can readily be made for large optical depths and with highly

anisotropic phase functions; 2. all orders of multiple scattering are
t

calculated at once with a corresponding reduction in computer time over

methods involving iterations; 3. layers of any thickness may be combined,

so that a realistic model of the atmosphere may be developed from any ar-

bitrary number of layers (the thickness of each layer as well as its optical

properties may be chosen without regard to the properties of the other

layers); 4. results are obtained for any desired value of the surface

albedo (including the value unity) as well as for any polar angle which

corresponds to one of the set given by the Lobatto integration scheme for

the number of integration points chosen (the polar angle 6=0° is always

included in the set); 5. all fundamental equations can be interpreted

immediately in terms of the physical interactions appropriate to the problem.

In this paper we present the results of calculations of the upward

and downward radiance for scattering from maritime hazes of various optical

thicknesses and with various ground albedos. The haze M model proposed

by Deirmendjian (1969) is used. The number of particles with a given
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radius is proportional to r exp(-8.944 r ), where r is the particle radius.

The mode radius or size of maximum frequency in the distribution is 0.05 y.

The single scattering phase function is calculated assuming a wavelength

of 0.75 y and a real index of refraction of 1.34 from Mie theory by the

method described by Kattawar and Plass (1967). A Lambert surface is

assumed in these discrete ordinate calculations with a surface albedo A.

The single scattering albedo of the haze droplets is taken as unity.

Results for a maritime haze previously reported in the literature

include: Kattawar and Plass (1968), upward and downward radiance calcu-

lated by a Monte Carlo method for y_ » 0.1 and 1, A = 0 and 1, T = 0.01,

1, and 10; Hansen (1969), upward radiance only calculated by the doubling
!

method for all values of u , A = 0, T = 0.5 to 32; Dave and Gazdag (1970),
0

upward and downward radiance calculated by the successive scattering itera-

tive method for y = 0.5, A = 0, T = 0.1 to 1, where y is the cosine of theo o

angle between the vertical and the direction of the incident radiation.



2. Computational Aspects

The phase function for the haze m model was evaluated at every 2° in-

terval starting at 0°. This function was then decomposed into a Fourier ex-

pansion, i.e., -

N
p(cos 0) - I p (y,yf) cosA(<|>- <(.') (1)

a=o £

where the limit of the summation N is a function of y and y1 for a desired

degree of accuracy. The reason for this functional dependence follows from

the expression

cos 0 = y y1 + /1-ŷ  /1-y'2 cos ($-*'); (2)

different portions of the phase function curve are covered as cos ($-<)>')

varies between ±1 for different values of y and y1. This dependence was

first investigated by Dave and Gazdag (1970).

For the discrete ordinate representation the values for y and y' are

obtained from the abscissa of a Lobatto integration, which fits a phase func-

tion of 81st degree exactly. The maximum value of N used in Eq. (1) was

89 for y = y' = 0.0378. The criterion used to truncate the series was that

the number of terms p,,(y. ,y.) (see Eq. (28) of I) used in Eq. (1) should be

sufficient to fit the original phase function to at least 1% for 4>-<j>' '«• 0°,

30°, 60°, 90°, 120°, 150° and 180°.

It was found that the error vector namely

e = .1 (p (y ,y )C.)-(2ir)~1, j = 1, 2, , , , , m,
J ca J
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where for this particular case n = 42 and m = 21 was only a few hundredths of

a percent of the normalization constant. From this correction vector e a small
"WV

symmetric correction matrix was generated which was added to the p (y.,y )
. i ° J

to insure normalization to full machine accuracy. The modified single scatter-

ing phase function is shown in Fig. 1. This is the actual phase function used

in the calculation. It was generated by using Eq. (1) for the renormalized ;

p (u.,v.). It agrees with the original haze M phase function to within 1%

for all values of cos 0 presented.

Once the PpCv., »lO were obtained, the infinitesimal generators of the

star semigroup were calculated (see Eq. (24) of I). Further details of the
i

discrete ordinate method are given in I.

The stability of the doubling equations was tested by calculating the

total flux for a conservative scattering atmosphere for various optical depths

up to T = 4,096. The flux was conserved in all instances to 1 part in 10 .

It is particularly noteworthy that the entire calculation which includes the

computation of the reflected and transmitted radiance for optical depths

up to 4,096, 21 angles of incidence, and Lambert ground albedos of 0, 0.2, and

1.0 took only 4 minutes, on a CDC 7600.



3. Upward Radiance for Haze M Model

The results of calculations for the upward radiance of photons interacting

with a haze M layer are presented in this section and compared with the re-

sults for Rayleigh scattering given in I. The incoming solar flux is normal-

ized to unity in all cases. The upward radiance at the top of the haze layer

is given in Figs. 2a, 2b, and 3a for y (cosine of solar zenith angle) = 1,

A (surface albedo) = 0, 0.2, and 1. When the optical depth is small and

A = 0, the upward radiance is proportional to the single scattering function

for the angle of scattering divided by y, the cosine of the zenith angle; the

radiance has a minimum for intermediate values of y. As T increases through

the value 1, the maximum value of the radiance moves from the horizon to larger

y values, until for large values of T the maximum is at the zenith with a

horizon darkening. In all of the curves for upward radiance, the last plotted

points for the largest T value in each figure define the limiting curve for

large T; the points for larger T values do not deviate from this limiting curve

by more than the width of the symbols.

When A = 0.2 (Fig. 2b), the upward radiance is independent of y for

small T. As T increases, the radiance first decreases at the horizon and then

increases. When A = 1 (Fig. 3a) the upward radiance at the horizon decreases

as T ihcreases, while the value at the zenith increases.

The particular value y =0. 5379 was chosen in order to give an example
o

of the radiance variations at another solar zenith angle. The upward radiance

is given in Fig. 4 when A = 0 and <j> = 0° and 180°. The azimuthal angle (f> is

measured from the Incident plane which contains the incident ray and the zenith
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direction; the antisolar point occurs when <f» = 180°. Thus as y varies from

the left to the right in Fig. 4, we obtain the radiance values from the solar

horizon to the nadir and then back through the antisolar point to the anti-

solar horizon. The radiance for T « 1 increases much more near the solar

horizon as y approaches 0 than for Rayleigh scattering; it shows an increase

at the antisolar point (corresponding to the increase in the phase function

as the scattering angle approaches 180°).

The limiting curve for large r is asymmetric with larger radiance values

near the solar horizon. The corresponding radiance curves for <|> = 90° are

shown in Fig. 3b; for large T there is horizon darkening in this plane which

is at right angles to the incident plane.

As an example of the case when the sun is near the horizon, the value

y = 0.1882 was chosen. The upward radiance is shown in Fig. 5 when A = 0

and <|> = 0° and 180°. When T « 1, the radiance decreases almost four orders

of magnitude from the solar horizon to the nadir and reaches a minimum value

on the other side of the nadir (<}> = 180°); there is a slight increase in the

radiance at the antisolar point.. The limiting curve for large T is markedly

asymmetric falling more than an order of magnitude from the solar horizon to

the nadir while showing relatively little variation from the nadir to the

antisolar horizon. There is much less variation with y in the limiting curve

for Rayleigh scattering (Fig. 5 of I).

The radiance varies much more with <|> for haze M than for Rayleigh scatter-

ing. The radiance in the plane <J> = 60° and 120° is shown in Fig. 6 and for

<f> = 90° in Fig. 7a. The radiance near the solar horizon for a given value of

T decreases more than an order of magnitude from the point with <|> = 0° to

$ = 90°. In the curves of Figs. 6 and 7a, horizon brightening changes to
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horizon darkening as T increases. The limiting curve for large T has a slight

maximum above the solar horizon.

The next set of curves is for A = 0.2. The upward radiance for y = 0.5379,

A = 0.2, and <J> = 90° is shown in Fig. 7b. When T « 1, the radiance is inde-

pendent of y since all of the photons have been reflected from the assumed

Lambert surface. As T increases a maximum develops in the radiance curve at

an intermediate value of y. The limiting curve for large values of T is the

same as that in Fig. 3b, since the surface albedo does not influence the re-

flected radiance when T is sufficiently large.

The upward radiance when y = 0.5379, A = 0.2, and <f> = 0° and 180° is

given in Fig. 8. As T increases, the radiance becomes very asymmetric about

the nadir. The same curves for $ = 60° and 120° are given in Fig. 9 to

illustrate how these curves vary with <j>. In this plane horizon darkening soon

develops as T increases.

The upward radiance for y = = 0.5379, A = 0.2, arid <j> = 0° and 180° is given

in Fig. 9. The maximum radiance for a given value of T is near the solar

horizon when T is small, but moves away from the horizon as T increases. These

curves are much less asymmetrical about the nadir than those in the plane with

$ = 0° and 180°. The curves have to become completely symmetrical about the

nadir in the plane with <|> = 90°.

The upward radiance when y = 0.1882, A = 0.2, and <j> = 0° and 180° is shown

in Fig. 10. The radiance has a pronounced maximum near the solar horizon in

this plane. Even when T = 0.001953 the radiance increases appreciably toward

the solar horizon from its otherwise constant value. The radiance near the

nadir decreases at first as T increases from a very small initial value. At
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first this behavior may seem paradoxical, but of course the radiance is in-

creasing with T at other angles so that the upward flux always increases

with T. Near the nadir there are very few single scattered photons from

haze M, since the probability of single scattering through angles near 90°

is very small (see Fig. 1). Thus, near the nadir the haze layer, as it

becomes thicker, at first removes more photons scattered into this direction

from the Lambert planetary surface (A = 0.2) than are added by scattering

from the haze.

The radiance for the same parameters, but in the plane with <|> = 90°

is shown in Fig. lla. The radiance still decreases at first with increasing

T near the nadir. The limiting curve for large T shows relatively little

variation with y. These curves have quite a different functional dependence

than those for Rayleigh scattering (Figs. 7 and 8a of I). The Rayleigh

curves in the principal plane are nearly symmetric and the limiting curve for

large values of T in the plane with <(> = 90° has a maximum at the last com-

puted point near the solar horizon.

The next set of curves is for the case A = 1. The radiance when y = 0.5379o

and <J> = 90° is given in Fig. lib. The radiance decreases at all angles as T

increases and approaches a limiting curve for large T around T = 4. There is

horizon darkening. The variation with y of the radiance in the principal

plane is qualitatively similar to that given in Fig. 12 and is not shown here.

The radiance when y = 0.1882, A = 1, and <{> = 0° and 180° is given in

Fig. 12 and for <(> = 90° in Fig. 13a. The radiance develops a strong maximum

near the solar horizon in the principal plane with a minimum near the nadir;

there is little variation with y from the nadir to the anti-solar horizon.

This is quite different from the Rayleigh curve (Fig. 9 of I) which is
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nearly symmetric about the nadir. The radiance for haze M shows an inter-

esting variation as T increases (Fig. 13a) with the limiting curve develop-

ing a maximum at an intermediate value of y. Again this is very different

from the Rayleigh curve (Fig. 8b).
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4. Downward Radiance for Haze M Model

In this section the results are presented for the downward radiance at

the bottom of the haze layer as calculated by the discrete ordinate method.

The results are given for three values of the surface albedo, A = 0, 0.2,

and 1. The downward radiance for these three values of the albedo is given

in Figs. 13b, 14a, and 14b respectively for y =1. When T«! the radiance

has maxima at both the zenith and nadir with a minimum at an intermediate

value of y. The radiance increases some as A increases, the increase being

greater at the horizon than at the zenith. The large value for the radiance

at the zenith is due to the large probability of small angle scattering events

with this phase function; there is no increase in the radiance at the zenith

for Rayleigh scattering (Figs. lOa, lOb, lla of I).

The maximum value of the diffuse flux (not including the direct beam)

occurs for all values of A when• T-l. When x»l the radiance depends critically

on the value of A. When A = 0 the radiance curve approaches a limiting

functional form with limb darkening, but shifts downward as T increases. The

curves are qualitatively the same when A = 0.2, but all radiance values are

greater because of the photons reflected from the Lambert surface. When

T»! and A = 1, the downward radiance is a constant independent of v; since

there is no absorption the radiation becomes isotropic at great depths in

this case.

The amount of limb darkening for large values of T depends only on the

nature of the medium, but not on the solar zenith angle, since the photon

loses all memory of its initial direction through multiple collisions. Van

de Hulst (1968) has given an asymptotic form for the transmitted radiance

at the lower boundary of a medium and has shown that it is proportional to
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(T + C) , where C is a constant for a given medium. The radiance values for

large T obtained from our calculation vary as (T + 7.874) to a good approx-

imation for any value of y and y .. The ratio of the downward radiance at

the zenith to the value near the horizon (last computed point y = 0.03785

or 6 - 87.83°) for large values of T is 3.346, 2.416, and 1.000 when A = 0,

0.2, and 1 respectively. The same value to four significant figures is

obtained for this ratio for any value of v and for any value of T such

that T > 64. For Rayleigh scattering the corresponding values of the ratio

are 2.713, 2.115, and 1.000 for A = 0, 0.2, and 1. Thus there is considerably

more limb darkening under a thick cloud with haze M scattering than for one

with Rayleigh scattering. It is possible to determine some of the scattering

properties of the cloud layer even when it is very thick from a measurement

of the horizon darkening.

The downward radiance for y » 0.5379, A = 0, and <|» = 0° and 180° is

shown in Fig. 15. When T<1, there is a strong .peak in the diffuse radiance

around the solar direction, which disappears for large value of T. There is

also a strong minimum in the radiance curve when T<! in the plane with

(J> = 180°. The curve for T • 4 is transitional, while the asymptotic form is

closely approached for T > 16. For a given value of T the downward radiance

is greater for haze M than for Rayleigh scattering; more photons are sent

downward in the haze M model because of the greater probability of small

angle scattering. In the plane for <j> - 60° and 120° (Fig 16) the radiance

values are more nearly symmetric around the aenith than in Fig. 15. In the

plane for <f> « 90° (Fig. 17a) horizon brightening changes to horizon darkening

around T ~ 1.

The downward radiance for yQ » 0.1882, A » 0, and $ = 0° and 180° is



14.

given in Fig. 18. As T increases the peak in the diffuse flux near the

solar direction slowly moves toward the zenith. When r > 16, the limiting

distribution has essentially been reached and the maximum radiance is at

the zenith. It is interesting to compare these values with those for

Rayleigh scattering (Fig. 13 of I). The haze M values for T « 1 are an

order of magnitude greater near the solar horizon and an order of magnitude

less near the zenith. In Fig. 17b the radiance is given in the plane for

$ = 90°; especially Interesting is the change from limb brightening to limb

darkening as T increases as well as the change in the y value for the maximum

radiance on each curve. The maximum radiance near the 'zenith occurs when

T - 1 for Rayleigh scattering (Fig. lib of I), and for T ~ 4 for haze M

scattering. In the latter case more optical depth is required to build

up the diffuse radiance because of the smaller probability of scattering

angles near 90°.

Two examples are given here when A « 0.2, both in the <j> - 90° plane:

y0 » 0.5379 (Fig. 19a) and yQ - 0.1882 (Fig. 19b). A moderate change in the

surface albedo causes only small variations in the downward radiance. The

largest change with surface albedo occurs near the horizon with much smaller

changes near the zenith.

The downward radiance when pQ - 0.5379, A - 1, and <f> = 0° and 180° is

given in Fig. 20. The radiance values for T « 1 are greater than when A = 0

(Fig. 15), most noticeably from the zenith to the horizon when 4> = 180°.

When T > 16 the downward radiance approaches a constant limiting value since

no absorption has been assumed in the system. The radiance for <f> « 90° is

given in Fig. 21a. When T < 1 there is limb brightening.

The downward radiance is shown in Fig. 22 for yo> 0.1882, A » 1,
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and <J> » 0° and 180°. The curves for small values of T have qualitatively

the same form as those for A B 0 (Fig. 18), but approach a constant value

independent of y, when T » 1. It is instructive to compare these results

for haze M scattering with those for Rayleigh scattering (Fig. 17 of I).

The haze M values compared to the Rayleigh values for T < 1 are an order of

magnitude larger near the solar horizon with a peak in the solar direction,

are an order of magnitude smaller near the zenith, and are considerably

smaller from the zenith to the antisolar horizon.

The downward radiance for yQ » 0.1882, A = 1, <|> = 60° and 120° is given
£>

in Fig. 23 and for <j> = 90° in Fig. 21b. When T < 1 there is horizon brighten-

ing. For Rayleigh scattering in the plane with <f> = 90° the radiance at the

horizon increases with increasing T, reaches a maximum for T ~ 0.1, and then

decreases to the limiting value for large T. This effect is not nearly as

marked for haze M scattering, because of the strong forward scattering and

relatively small number of single scattering collisions that are made at

angles near 90°.
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5. Flux

The diffuse flux at the lower boundary for A = 0 is presented in Table I

for three values of the solar zenith angle and for various optical thicknesses

of the scattering layer. The values for Raylelgh and haze M scattering are

given in the third and fourth columns respectively. The diffuse flux at the

lower boundary is always greater for haze M than for Rayleigh scattering, since

more photons are sent deep into the scattering medium by the numerous small

angle scattering events with haze M compared to Rayleigh scattering.

The cloud albedo defined as the upward flux leaving the scattering

layer per unit Incident flux when A » 0 is given in columns five and six of

Table I for Rayleigh and haze M scattering respectively. The single scat-

tering function is considerably larger in the backward direction for Rayleigh

compared to haze M scattering; thus the cloud albedo is always larger for a

layer of given optical thickness scattering according to the Rayleigh than

for haze M phase function.

The present exact results can be used to evaluate the accuracy of the

Monte Carlo method. Kattawar and Plass (1968) have reported the flux for

Rayleigh and haze M scattering for yo ° 1 and T « 1. The Monte Carlo results

for the diffuse flux at the lower boundary for Rayleigh and haze M scattering

with the discrete ordinate results in parenthesis are 0.289 (0.292) and 0.569

(0.569) respectively. The corresponding results for the cloud albedo are

0.343 (0.3405) and 0.0628 (0.0628). This comparison agrees with our previous

statements that the Monte Carlo flux values are accurate within 1 to 2% except

in unusual circumstances. Unfortunately this is the only case where the p

and T values are the same In the two calculations.
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6. Conclusions

The radiance and flux for both the reflected and transmitted photons

has been calculated for a haze M layer by the discrete ordinate method over a

range of optical thicknesses from very thin to very thick. The results are

presented for three solar zenith angles and for three values of the surface

albedo. A comparison of these results with the corresponding results for

Rayleigh scattering shows a number of interesting features. The variation

of the radiance with both y and <f> is more marked for scattering from a haze M

than from a Rayleigh layer. The horizon darkening relative to the radiance

at the zenith is greater for very thick haze M than for Rayleigh layers.
i

The downward diffuse flux at the lower boundary for A <= 0 is always greater

for haze M than for Rayleigh layers of the same optical thickness, whereas

the cloud albedo is always less for haze M.

This work was supported by Grant No. NCR 44-001-117 from the National

Aeronautics and Space Administration.
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Legend for Figures

Fig. 1. Single scattering phase function for haze M as a function of the

cosine of the scattering angle y. The upper right inset shows the phase

function for scattering angles near 180°.

Fig. 2. Upward radiance at top of the atmosphere for haze M scattering for

yo = 1 as a function of the cosine of the nadir angle y• Each curve is for

a particular value of the optical thickness T (see legend on Fig. 3). The

left hand figure is for A « 0 (Fig. 2a) and the right hand figure is for

A = 0.2 (Fig. 2b). The limiting curve for large T is the same as the last

plotted curve within the width of the symbols. All curves are normalized

to unit incident flux.

Fig. 3a. Upward radiance for y0 » 1 and A - 1; Fig. 3b. yo - 0.5379, A =0,

and <|> « 90°. See legend to Fig. 2.

Fig. 4. Upward radiance for yQ = 0.5379, A - 0, and 4 = 0° and 180°. See

legend to Fig. 2.

Fig. 5. Upward radiance for yQ = 0.1883, A - 0, and $ « 0° and 180°. See

legend to Fig. 2.
-.j

Fig. 6. Upward radiance for yo •* 0.1882, A = 0, and $ = 60° and 120°. See

legend to Fig. 2.

Fig. 7a. Upward radiance for yQ - 0.1882, A = 0, and $ = 90°; Fig. 7b. yQ =

0.5379, A - 0.2, and <J> - 90°. See legend to Fig. 2.

Fig. 8. Upward radiance for yQ « 0.5379, A - 0.2, and <b = O
8 and 180°. See

legend to Fig. 2.

Fig. 9. Upward radiance for yo = 0.5379, A « 0.2, and $ = 60° and 120°. See

legend to Fig. 2.
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Fig. 10. Upward radiance for y - 0.1882, A = 0.2, and <|> = 0° and 180°.

See legend to Fig. 2.

Fig. lla. Upward radiance for y = 0.1882, A = 0.2, and $ = 90°; Fig. 22b.

M = 0.5379, A = 1, 4> = 90°. See legend to Fig. 2.

Fig. 12. Upward radiance for yQ = 0.1882, A = 1, and <|> = 0° and 180°. See

legend to Fig. 2.

Fig. 13a. Upward radiance for y = 0.1882, A = 1, and <f> = 90°; Fig. 13b. .

downward radiance for y - 1 and A = 0. See legend to Fig. 2.

Fig. 14a. Downward radiance for y = 1 and A =• 0.2; Fig. 14b. y = 1

and A = 1. See legend to Fig. 2.

Fig. 15. Downward radiance for y = 0.5379, A = 0, and <f> = 0° and 180°.

See legend to Fig. 2.

Fig. 16. Downward radiance for y = 0.5379, A =* 0, and <J> = 60° and 120°.

See legend to Fig.2.

Fig. 17a. Downward radiance for y = 0.5379, A = 0, and <J> = 90°; Fig. 17b.

y = 0.1882, A = 0, and <|> = 90°. See legend to Fig. 2.

Fig. 18. Downward radiance for y0 = 0.1882, A = 0, and <|> = 0° and 180°. See

legend to Fig. 2.

Fig. 19a. Downward radiance for y = 0.5379, A = 0.2, and <j> = 90°; Fig. 19b.

y = 0.1882, A = 0.2, and <f> = 90°. See legend to Fig. 2.

Fig. 20. Downward radiance for y = 0.5379, A = 1, and <j) = 0° and 180°.

See legend to Fig. 2.

Fig. 21a. Downward radiance for y = 0.5379, A = 1, <f> = 90°; Fig. 21b.

y = 0.1882, A = 1, <j> = 90°. See legend to Fig. 2.

Fig. 22. Downward radiance for y = 0.1882, A = 1, <j> = 0° and 180°. See

legend to Fig. 2.

Fig.23 Downward radiance for y = 0.1882, A = 1, and $ = 60° and 120°.

See legend to Fig. 2.
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