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ABSTRACT
 

A fundamental study of viscoseals having a rarefied gas as the
 

sealant has been conducted. Both experimental and analytical
 

investigations are reported. Three different analytical models have
 

been formulated and are described in detail. An experimental
 

investigation has been conducted on multiple grooved two-inch diameter
 

viscoseals over a wide range of gas densities and shaft speeds up to
 

30,000 rpm. Comparisons'are presented between actual viscoseal
 

performance and the theoretical predictions for both sealing coefficient
 

and net leakage parameters as functions of the degree of gas rarefication.
 

Recommendations are presented for the use of the analytical models.
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NOMENCLATURE
 

a Groove aspect ratio, br/h
 

a' Hypothetical groove aspect ratio
 

A Groove cross sectional area
 

A' Rotor induced flow coefficient
 

A Annulus flow coefficient
C 

AL Dimensionless annulus flow coefficient
 

ALC Continuum limit of AL
 

A Manometer cross section area
 m 

A Groove pressure flow coefficient
p
 

A u Rotor induced flow coefficient 

b Groove axial width
 

b' Groove normal width, b cos a,
 

B Groove flow coefficient
 

c Radial seal clearance
 

c Mean radial clearance. 

D Shaft diameter
 

G Slip coefficient constant of proportionality
 

h Groove depth
 

H Manometer total deflection
 

H1, H2 Manometer ,deflectons
 

K, k Boltzmann constant
 

K' Seal radius ratio, I - 2c/d 

) Flow passage length coordinate
 

2' Tube length coordinate
 

P Groove length coordinate
 g
 



L 
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9L Land length coordinate
 

zt Total groovelength on seal
 

Seal axial length
 

m Sealantmass per molecule
 

m Sealant mass flow rate
 

M Sealant molecular weight
 

n Molecular density, N/V
 

nk Numberof thread lands in seal section
 

N Number of molecules,
 

N, n Sealant'molecular flow rate'
 

N Seal speed, rpm
 

NK Knudsen number, X/c
 

NKg Groove Knudsen number, A/b'
 

NKh Knudsen number based on groove depth, A/h
 

N Number of groove starts
 
/ 

Nt Total turns of spiral on seal
 

P Absolute pressure
 

P Average seal pressure, (P1 + P2
)/2
 

P Atmospheric pressure,
 
o 

PT' P2 Upstream seal pressure
 

Pb' P1 Downstream seal pressure 

Ap Differential pressure across seal, PT - Pb 

Q Sealant volumetric flow rate 

Q1 Volume flow rate at unit pressure, V'P 

Qg, Volume flow rate at unit pressure,in groove
 

Q t Volume flow rate at unit pressure over land
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QY Net volume flow rate at unit pressure 

q Rotor induced volume flow rate at unit pressure 

r1 Inner radius of annulus (shaft) 

r2 Outer radius of annulus (housing) 

rp Seal pressure ratio, PT/Pb or P2/P1 
R Distance ratio, r/b' 

RR Distance ratio, rr/b' 

R 0 Universal gas constant 

t Tangent of helix angle a 

At Flow measurement time increment 

T Absolute temperature 

u,v,w Velocity components in , T z coordinates 

u Average rotor induced velocity 

U Surface velocity 

u' Dimensionless, groove flow velocity 

Ue Effective rotor velocity 

v' Groove flow velocity 

vR Rotor induced flow velocity 

vyR Rotor induced flow velocity in hypothetical groove 

V Volume 

V Mean molecular speed 

V' Volume flow rate 

Vg Total groove volume flow rate 

VT Volume flow rate in a single groove 

V' Continuum limitof VT 
gc g 

VL Land leakage volume flow rate 
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V Calibrated volume
 0 

VT Total volume flow rate in seal 

w Land axial width 

wt Land normal width, w cos a 

W Manometer fluid specific weight
-lns(b' +.w')

- ]
1 [
Seal helix angle, sin
 a 

a Eigenvalue
U 

S Seal geometric parameter, (h + c)/c 

5' Tube flow coefficient 

y Seal geometric parameter, b/(a + b) 

y' Tube flow coefficient 

Coefficient of slip
 

X Mean free.path
 

A Sealing coefficient
 

P Absolut6 viscosity
 

"Hg Pressure unit, micron of mercury 

p Density 

a Ratio of.molecular collisions 

T Elemental volume 

Rarefied viscoseal parameter
 

W Solid angle •
 

0Angular velocity
 

Special Subscripts
 

r Refers to land
 

g Refers to groove
 

r Refers to direction in region of land
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r 

g 

pg 

y 

Rerers to rjdirection in region of land 

Refers to C direction in region of groove 

Refers to p direction in region of groove 

Refers to axial component 
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1. INTRODUCTION
 

An investigation of rarefied, internal gas dynamics with emphasis
 

on shaft sealing applications was initiated on May 1, 1966 at the
 

University of Tennessee in the Department of Mechanical and Aerospace
 

Engineering. The investigation was conducted for the National.Aeronautics
 

and Space Administration under Research Grant 43-001-023. This report is
 

the final report of this investigation with major emphasis on the
 

rarefied-gas viscoseal.
 

The initial efforts were directed at a numberof basic problems.
 

The results of these investigations have previously been documented
 

and only the references will be repeated here. These investigations
 

concerned rarefied flow through short tubes (1,2). annuli (3,4), long
 

square tubes (5), and other basic geometries (6-8). From these
 

investigations a more complete understanding of rarefied flow has
 

provided the basis for analysis of more complex applications.
 

The major effort~of this study has been directed to developing
 

analytical models which can be used to predict the performance of
 

viscoseals operating with a rarefied gas as the,sealant. Since no
 

experimental data were available which were adequate for establishing
 

the validity of analytical models a significant portion of this effort
 

has been devoted to the development of such data This report details
 

the analytical models which were developed and also the experimental
 

procedures and results, Conclusions are presented based on the
 

comparison of results from analytical models with experimental results.­

2. ANALYTICAL MODELS
 

Three different analytical models have been developed in this
 

investigation and will be presented in detail. The first is based on
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Hodgson's (9) work and is called the modified Hodgson Model. The next
 

model is based on the work of Boon and Tal (10) and is called the Slip
 

Modified Boon and Tal Model. The third model is based on a super­

position of the groove and annulus flow components and is called the
 

Annulus-Groove Model.
 

2.1 Modified Hodgson Model
 

In Hodgson's (9) investigation only seals with a single thread
 

start were considered. The development presented follows closely that
 

of Hodgson but the analysis has been generalized to include multiple
 

thread start seals and also a technique is presented for solving the
 

specific molecular flow rate equation for a sealed condition.
 

Hodgson chose to analyze the particular configuration where a
 

smooth shaft rotates within a grooved housing. It willbe shown later
 

that-the analysis for the grooved shaft and smooth housing is identical
 

to this configuration. This being the case, Hodgson!s model is not as
 

restricted in this respect as it might'appear.
 

Hodgson considers the flow in the viscoseal to be composed of
 

three basic components: (1) the pressure induced flow along the groove,
 

(2) the pressure induced flow over the lands, and (3) the rotor induced
 

flow in the groove. This treatment of the flow is quite common and is
 

exactly the way King (11) chose'to divide the flow for analytical
 

considerations. Figure 1 shows a representation of the flow components,
 

QL, Q, and Q' represent the pressure induced land flow, the rotor 

induced groove flow and the pressure induced groove flow, respectively. 

Hodgson also restricts his- considerations to a.seal with a single thread 

start.
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In his development of the two pressure induced flow components,
 

he takes the semi-empirical approach of Knudsen (12) in describing the
 

flow throughout the entire regime from continuum to free-molecule flow.
 

In his long tube work Knudsen found that his experimental data,could
 

be described by an equation of the form
 

,I + CP dP
 
Q jy'P + 811 + VP3 dP(1
 

In the continuum limit Knudsen reduced Equation (1) to Q' = y'P d' 

and by equating this to the known continuumsolution, he was able to
 

determine y'. In a similar manner as the free-molecule limit was
 

approached he reduced Equation (1) to Q' = ,and b qaigti
= ,dP by equating this 

to the known free-molecule solution .he determined 8'. By considering 

the slip flow regime, Knudsen was able to determine the ratio V/c' 

by noting that Equation (1) becomes Q' = (yP+s and equating thisP)A, 


to the known continuum with slip solution. Next Knudsen determined
 

the difference C'-V from a consideration-of nearly free molecule flow
 

and thus was able to determine both ' and V. He then applied experi­

mentally determined corrections to ' and V so that the experimentally 

observed minimum in the Q'/AP versus P curve would be correctly predicted. 

Knudsen.applied the analysis above to a long circular tube. In his
 

analysis Hodgson applies the identical procedure to his treatment of
 

the pressure induced flow in the groove (a long rectangular duct) and
 

the pressure induced flow over the lands which he takes to be a narrow
 

slit.
 

2.11 Pressure Induced Flow in the Seal Groove Hodgson assumes
0 


that the pressure varies continuously along the axis of the seal groove
 

from a value of P2 at the high pressure end to P1 at the other
 

end. In order to determine the pressure gradient
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gradient along the ,groove axis, it is necessary to relate the length
 

of the groove, kg, to the seal length, L. A development of a viscoseal
 

is shown inFigure 2. Hodgson only considered seals with a single
 

thread. The development that follows is generalized to any number of
 

thread starts, ns .
 

In Figure 2 line AB is drawn perpendicular to the grooves. The
 

number of turns of spiral that AB crosses is equal to the total number,
 

Nt, of complete turns on the seal which can be expressed as
 

Nt IL cos aN w' + b'" 

The length of groove per turn of spiral is ID/cosC. The total groove
 

length on the seal is
 

= 

=T D L cos a L1TD
 

cosc w' + b' w' + b'
 

The length of each groove is then
 

9=T LAD 
g Ns Ns (w' + b')
 

It follows that
 

dP dP N (w' + b') dP
 

di L7TD +'D dL 
0 

Hodgson indicates that the groove pressure gradient in a single threaded
 

seal is
 

dP = w' + b' dP 
TT = TD dL 

g
 

from which it follows that the flow in a groove of a multi-threaded
 

seal is N times the flow in the groove of a single threaded seal of
 

the same groove width, land width and diameter. Since there are N. of
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these grooves, the total groove flow in the multi-threaded seal is N
2
 

s 

time the flow in ,acomparable single threaded seal. The total groove
 

flow is then
 

2 1 + C 1P" dP 
= Ns2 [(BP + C l*C dY (2)Qg i1+C 1P d41 

2 

where the bracketed term is the single threaded groove flow developed 

by Hodgson. The constants B, C, Cl, and C2 depend on the geometry of 

the seal and the properties of the sealant and are given in Appendix A. 

Appendix A also contains a discussion of the flow models used by 

Hodgson to obtain these constants0 

2.12 Pressure Induced Flow Over the Lands, Based on the assumption
 

that the pressure varies continuously along the helical groove, Hodgson
 

shows that the effective pressure gradient for the land flow is
 

dP w' + b' dP
 
dr L wI CoO
 

This pressure gradient applies ,equally well to both the single and multi­

threaded seal The land leakage flow for a seal of any number of threads
 

is then
 

1 + C3P dF 
QL [D'P+ E 1 +-- 4P dL (3) 

where the constants D', E, C3 and C4 also depend on the seal geometry
 

and the properties of the sealant and are givenin Appendix A along
 

with a discussion of their origin.
 

2.13 Rotor Induced Flow. Hodgson takes a simplified approach to
 

the prediction of the rotor induced flow. In Figure 3 a groove cross
 

section is shown with ,the rotor ,moving over the top of the groove.
 

Hodgson develops the rotor induced flow on a molecular basis, but as he
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points out a continuum approach yields the same result. It is assumed
 

that the rotor induced flow is the same as the flow obtained in a long
 

rectangular duct of width b' and height h in which the upper-wall moves
 

with velocity U cos a (the component of the circumferential velocity of
 

the rotor along the axis of the groove). Rather than solve the describing
 

differential equation for parallel flow, Hodgson chooses to compute
 

the volume flow ,based on an area-weighted average velocity. This average
 

velocity is
 

-- (U cos a)b' + (2h + bC)(O) Ub.
 
2(b' + h) 2(b' + h) COS a.
 

The total rotor induced flow is thus
 

Q? Ub2h
Ns [ (R + h) cos a] P = NsA'P 	 (4) 

where is generalized to a multi-threaded seal.
 

2.14 Total Seal Flow. The flow rates given by Equations'(2, 3,
 

and 4) are superimposed to give the total flow in the seal which can
 

be expressed as
 

2 	 + C P I + C3P dP 
P ]  =N [BP + C 1 P + E y + 3[D'P NSA'P (5) 

where flow ,in the direction of decreasing pressure is considered positive.
 

2.15 Solution of the Modified-Hodgson Equation, Unlike Hodgson's
 

basic equation. Equation (5) is applicable to a seal with arny number of
 

threads. There are three solutions to Equation (5) which are of
 

particular interest. These three ,cases are:. () the flow rate through,
 

a non-rotating seal, (2) the flow rate through a rotating seal; and
 

(3) the pressuredifference across a rotating seal when the net flow
 

is zero.
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Flow Rate in a Static Seal
 

The volume flow rate at unit pressure, Q' = V'P, is related to
 

the molecular flow rate, n, by
 

kQ'
S 

=
For the case of a non-rotating seal (QR 0), Equation (5) can be
 

integrated to obtain the specific molecular flow rate
 

n = 1- {N 2B+D')P-N 2 C-'+
 
AT T s s 02 C4
 

2 r + 1 in r(I + 2C2P) + 1+N C2 -C I 


+ 2 2 F rp +
 
r + 2C2 + 12 

+E4 - C3 r + 1 r (I + 2C4) + 1 (6) 

20 r p r + 2CP + 1 
4 p 4 

Flow Rate in a Rotating Seal
 

Assuming a constant pressure gradient along the groove, the total
 

rotor induced flow on a,molecule basis is
 

NsA'T NsA' r + 1
= n s = (7)
(7) 

p 

The net flow through a rotating seal is found by combining the rotor
 

induced flow of.Equati6n (7) with the flow in the static seal, Equation
 

(6). The netspecific molecular leakage is
 

- N2C C + C3
 

A? 
 50sC2 C4
 

r +l 0 -C + 2C P)+l 
*1[p2 2 1 in( ~ 2 

2r-l(s 02 P r 

c Pr + 2CP+1 
4 p 4 
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Pressure Difference at Zero Net-Leakage
 

Since a rarefied visposeal, in the ideal case of a true space
 

environment, will normally operate with P1 = 0, it would be impossible
 

to maintain a zero net flow. However, the condition of zero net,flow
 

is of interest as far as experimentation and comparison to continuum
 

performance are concerned, and in non-space applications where P1 9 0.
 

The maximum pressure difference under which a seal can maintain 

a zero net flow is found by solving the modified-Hodgson model equation 

subject to the condition that Q = Oo Integrating Equation (5) subject 

to this-condition one obtains 

22 (CI_ )E C3
 

22ANC+E 2t++ (2 AP) N0+ l) 2 C(P+PE% 

s]<2 ___2_ _(2_ s C _d4_+AP 

22- A+ 2+C 2 (2P- AP) 2 + C4 (2P - AP) 

= ,exp [ksA'L - (N2B +D')APJ. (9) 

In general Equation (9) cannot be solved explicitly for AP. For the
 

special case of continuum flow 2? > > AP,the continuum AP can be
 

obtained from Equation (9) as
 

N A'L
 
AP = 
 2 (10)
n2B + D
 

s 

At the other extreme, free-molecule flow, Equation (5) canbe reduced
 

to its free-molecule limit,
 

= - (N2' + E)dP A'Po (10a) 

Since in the free-molecule limit P is very small, the last term in
 

Equation (10a) could presumably bevery small; but since efficient seal
 

performance requires that the rotor induced flow be of the same order
 

of magnitude.as the pressure induced flow, this term is retained.
 

1 

http:magnitude.as
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Solving Equation (10a) subject to the condition that QN ='0, the free­

molecule pressure ratio becomes
 

r exp[NsA'L/(N 2C + E)]o (11)
 

The AP across the-seal can be expressed as
 

r - I 
AP = 2 +-­ _ (12) 

p 

Combining Equations,(l1) and (12), the AP in the free-molecule regime 

is 

exp [NsA'L/(N2C + E)]
AP = 2 - 1 (13)exp[NsAL/(NC + E)] + 1 

Since no explicit solution to Equation (9) can in general be
 

obtained, some approximate solution technique must be employed. Since
 

Newton's method of approximating roots is generally a-rapidly converging
 

iterative method, it is employed in solving Equation (9). Newton's
 

method requires that the given relationship be~differentiableo
 

Equation (9) can certainly-be~differentiated, Another very important
 

requirement is the ability to~make a close initial approximation to the
 

solution. This requirement is particularly important with a complicated
 

relationship such asLEquation (9).
 

In order to make a close approximation ,to the roots of Equation-(9),
 

one needs.to know as-much as possible before hand about the.character
 

of the solution At this point two characteristics are known: (1) the
 

continuum limit, Equation (10), and (2) the free-molecule limiti
 

Equation (13). The solution-of Equation (9) will simply define the
 

behavior over the entire range of average pressures and approach the
 

continuum and free-molecule limits at the two extremes. In order to
 

http:needs.to
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make a close approximation to the value of AP which satisfies Equation
 

(9) for a givenP, a high average pressure, Pi, is chosen initially such
 

that the continuum solution from Equation (10) is a good approximation
 

to the root of Equation (9). Using this initial approximation for AP,
 

Newton's method is employed to solve Equation (9) for the AP at Pl.
 

An incremental decrease, A, in the average pressure is then taken
 

and the Al obtained from the previous iteration at FP is used as the
 

initial estimate of the solution for AP at P2 and the,iteration process
 

is repeated to obtain AP. The entire process is repeated to obtain
 

AP at P3) P4, etc.
 

Essentially the above process could be continued until the entire' 

spectrum of pressures had been traversed, but the process encounters 

difficulties near the intersection of the continuum and free-molecule 

asymptotes. In the near continuum region, the AP versus P solution 

of Equation (9) is fairly flat, thus -making the solution at P a1 

good approximation to the root at F In the intersection region,

nI 

however, the rate of change is 'so large that the-method used above 

for the initial estimation 'of the solution is not sufficiently accurate. 

Two simple modifications to the above method can help toensure a 

close approximation of the root at P An obvious modification would n 

be to reduce,the step size, A?. Since all previous points P1 through
 

V have been determined, these points can be used to extrapolate

n-i 

to an initial approximation at F Essentially an extrapolation of
 
n
 

order n - 2 could be made, but experience has shown that a linear
 

extrapolation combined with successive reductions in A? is sufficient
 

to ensure convergence at P n
n 
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After passing through the critical region in.the vicinity of the
 

intersection of the asymptotes, the curve essentially assumes the
 

straight line predicted by Equation (13). The solution is thus complete.
 

The Fortran programs for the solution of Equation (5) for the
 

three cases outlined above are presented in Reference 13. The flow rate
 

in a static seal is simply a special case (Q = 0) of the rotating
 

solution. Consequently only one program is needed for the-flow rate
 

solutions.
 

The modified-Hodgson model provides a convenient means of predicting
 

the performance of a given viscoseal. The limiting conditions of
 

Equations (10) and (13) can conveniently be used to predict optimum
 

seal geometries in the purely continuum and purely free-molecule
 

regimes, respectively0 In the transition regime, however, Equation (9)
 

would be very difficult to use in an optimization study because of the
 

time consuming solution method.
 

2.2 	 Slip Modified Boon and Tal Model
 

In 1959 Boon and Tal published (10) a significant analysis of the
 

viscoseal in the laminar continuum.regime for a constant density fluid.
 

The viscoseal geometry was ,approximated by two flat plates, one of which
 

was grooved,moving parallel to each other. The flow field was developed
 

from a superposition .of Couette flows along and acrossthe grooves.
 

The resulting velocity distributions were integrated to obtain the
 

volumetric flow rate, and the pressure generation,for zero net leakage
 

conditions was developed. Subsequent investigations by Stair (14)
 

using liquids as the sealant showed very good agreement with the analysis
 

of Boon and Tal. The data of Hodgson and Milligan (15) using air as the
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sealant also substantiated this -analysis for laminar continuum operation,
 

with gases.
 

The Slip Modified Boon and Tal Model has been developed by formulating
 

"rarefied" corrections to the laminar continuum equations,,developed by
 

Boon and Tal. This approach is similar to that used in previous
 

investigations (3, 4, 16, 17) of internal rarefied flow that have
 

indicated that a~single model for gas flow through tubes and annuli,
 

applicable to the flow regime extending from continuum to free molecular
 

flow can be derived by the inclusion ,of rarefied effects on the continuum
 

model.
 

Consider a screw formed on a-shaft located concentrically within.a
 

cylindricalhousing with a radial clearance c, The annular space is
 

filled with a gas and the shaft is moving relative to thehousing with
 

an angular velocity, 2. Figure 4 shows a developed view of the
 

viscoseal geometry. The (x, y) axes are along and-normal to the
 

direction of relative motion and the (C, TI)axes are parallel and
 

normal to the grooves. The (x, y) and .(, ') coordinates -systems are
 

related by:
 

= x cos a + y sin a 

Ti= y cos a - x sin a. 

Previous investigators (10, 18) have reduced the describing partial 

differential momentum equations to the Reynolds lubrication equations. 

These-analyses were based on theflat plate model of Figure 2 and 

assumed steady, isothermal, two-dimensional, laminar flow. Further, 

these.analyses-.assumed inertia forces to be negligible in comparison to 

viscousforces and neglected body forces and end effects. The 

describing mathematical model is taken as: 
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d2 
 1 aP 
 (14)
dz2 pJ 9 

d2v 13P (15) 

dz2 w 9n 

Integration of (14) and (15) gives:
 

1 aP 2
 u= z + Z + C
2 (16)
 

121 ar z 
2
2N+ C zz + C
 + G(7
DP 
 . (17)
 

The integration constants are determined by the boundary conditions, To
 

account for the non-continuum effects, slip boundary conditions are
 

introduced as derived by Kennard (19). For a monatomic gas, flowing within
 

two parallel boundaries, the slip boundary condition can be written
 

in the following, general form:
 

ugastz = 0 wall + G(t)lz = 0 

+ IA 1 0 (18)=__+ °(X2), 

where u is the velocity in ,the tangential x direction, z is the,direction
 

normal to the motion, and G is a proportionality constant. If the
 

temperatures of the surfaces are assumed constant and equal to the gas
 

temperature then the ,slip boundary condition reduces ingeneral form to
 

;u = 
UUgas uwallwl + G (-)z = 0. (19) 

For the particular geometry under study, the slip boundary conditions
 

are:
 

Along the lands:
 
du 

0 r1Z~~0 + GX IU U cos =urdi"uzl 
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du
 

~r'z zh="h
 
r r 

Along the groove:
 

du
 
uz =U cos a + G TS I o 

g z= d z=O0 

dii
Ugl = -ox-----f = 
gz=h 
 dz z= h 
 4
g g 

Across the lands:
 

dv
Vr~' 0= -U sin a + GXdT rl--

VrIz 0 ic O z Z= 0 V1
 

dv
 
VrIz h=h = ' h - v2a 

r r
 

Across the groove:
 
dv
 

1
VgIz = 0 =-U sin a+ GX dz = 0 - v3 

dv
 
Vg z =-h =
G Iz = h 4"g g 

Using the 'above boundary conditions the following velocity components 

are determined: 

Along the lands: 

Ur ( _2hrZ) + (----- u+ I (20) 

r 

Along the grooves:
 

1 P (u4 - u3
 
( - hz)+ h )z + u 3 . (21) 

Across the lands:
 

IVp211 (z2 -h z)+ h-r arl +v()2+ z+r.(2 (22) 
r 

Across the grooves:
 

=(z - h z) + (V )z + V (23)g 2P 9n. 3(2')
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The slip velocities at the walls can now be determined, and the following
 

velocity distribution, equations obtained:
 

1 aP/ +_-z2_hZ -U Cosa 
z
Ur = - r) 1 + 2G/h- ­

r r 

1 + GA/h 1 @P 2 GX
 
+ U cos a (yr 2G/h - -h 2_ (24) 

= 3P 
( z 2 -U cos a z g 11 9 - hg i + 2G/h h
 

g g
 

(-l- GX/h.. ) --T11 @p h2 GX (25)+ U+ u Cosa1os + -2-X-'h 1 73- g h-(5 
g g 

1 P 2 U sin a.
~(z hr
-v . h z) +( 2 0  
r r r
 

i 1+ GX/h 1 aP h2 GX (26)

1-i++sin ­2 Gx-7) r h 

r r 

=1 @P (z2 h ) + U sin a Z g 2113 SZ1-h (+ 2GX/hg ) hg 
I + GX/h i1 P h2 GX 

-iU sin a(1 + GX/h 2 g T-. (27) 

g g 

Noting that the axial velocity components are: 

u = u~sin a (28) 

Vy = v cos a (29) 

the axial flow rate components QW Qg %r and Q g may bedetermined. 

The width of the flow path for the E land flow component is (1 - y)TrD 

and the path width for the E groove flow is yiD. The.ratio of the groove 

width to the groove plus land width is defined as y. The axial 

component of the coordinate land flow is: 

h h 
Qr = (1 - y)7rD fr U dz = (1 - y)rD ft Ur.sin a dz. (30)

0 ry0
 

Substituting Equation (24) into Equation (30) and integrating gives
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a (1 ht(- gG - ) + U cos Uc- ]. (31) 

In a similar manner: 

=~g 
QfglD
D 

si 
sin 

[a P 3 "-_hg 1 
+ U cos a -

h 
] (32)(tt)g ­

g
 

Q = (-y)D co I 1 - U sin h r (33)
r = cosU[2-(af)r hr( h - asn332 

r
 
h


1 9P 3 GX 1 

QYg = yD cos ct[25 (t)gh (-7 t -usina-& - (34) 

The pressure gradients in Equations (31) through (34) may be replaced
 

by the more convenient axial gradients by noting that
 

ar a
-5-= - sin a, (35) 

and
 

9P) + P aP
(1 - at' r y. (36) 

From the continuity of mass, the flow across the groove in the n 

direction must equal the flow across 'the land,in this direction, Thus 

it can be shown that 

hr
21 hr3 (-GX 1 Usi ­T,)r a2"%P 

6 ) (37)

[2t )g h3 (-9 U sin a 2 ]. 


g
 

The total flow is given by
 

Q = Qr + Qg + %r + %h (38)
 

Using Equations (31) through (38), the expression for the axial flow
 

is:
 

_ + t 2) c 'acl+,)¥ z12111 3P3y c3nD 2 6GX 6G"( 3 2 1,
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6G0X 
B3( + - .C) 

UcTrD2 t(1 - Y)(+ - 1) 
1], 

(c(39) 

C 

where 

= h+c 
C 

'Y 
b

=w+b 

1 +1_-0­

1 + -.-Sc 

t =tan a 

The Knudsen number for the viscoseal is defined as 

N = ? (40) 

K C' 

where seal radial clearance, c, has been selected as the characteristic
 

system dimension because of the manner of its appearance in Equation
 

(39) in relation to the mean free path X.
 

Equation (40) can be rewritten in terms of molecular flow rate
 

rather than volumetric flow rate as
 

-P apcTD 2 60X 60X 3D
n 12PKTP y 2 [t2(I - y)(1 +- ) + (l + )( 3)
(1 + t2) c

3(1 + ..2+z)]Uc D t(I-Y)( - 1) [ 3~( 6 OX 
2
t. + (l1)6GX - 1], (41)

i ~ + t2+ 

Further consideration now needs to be given to the slip coefficient
 

constant of proportionality "". Various investigators have developed
 

expressions for this proportionality constant ranging from 2/3 (20)
 

to (2 - f)/f (19) where f is the fraction of their tangential momentum
 

which molecules give up upon striking a solid boundary. Published
 

values of f by Kennard (19) range from 0.79 for air flowing over fresh
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shellac to 1.00 for air or C02 over machined brass. A value of f
 

equal to one,is taken to be realistic for the flow of gases over
 

machined surfaces. Thus the value of the slip coefficient G was
 

taken to be unity.
 

Knudsen number as defined in Equation (40) indicates the degree
 

of rarefication since-it becomes large as the'mean free path, X,
 

becomes large. When the Knudsen value becomes-small and approaches zero,
 

corresponding to continuum conditions, then Equation (30) reduces to
 

the continuum, no slip, solution shown by Stair (18).
 

For isothermal flow the mean free path, X, is a function of the
 

pressure and gas properties. The Chapman relationship (19) can be
 

used to express this dependence.
 

1/2
p(21kT)
 
(42)


= M,2p
 

This relationship-will be ,used to express the right hand side of
 

Equation (41) in terms of pressure.
 

2.21 Variable Mean Free Path Solution. In order to solve
 

Equation (41) for the flow rate in terms of the seal length and the AP
 

across the seal a numerical scheme must be employed. Before integrating
 

the equation is rearranged.- Let P be the pressure at which
 

2= C/6G., Then
 

6G kT,1/2
 
- Gl 6G mk,.-)
 

0 C C 2
 

Now Equation,(41) may be written in terms of pressure
 

p2p'c37D, P
 
3P20 D .!'( - y?1 1 + (1 + A ~ + ' 

12lkT(l + ,t2 ) dy
 
+O P'rfDt(l - y)(8 - 1) c B3(1 1
 

+_01] 
t 2
2kT(1 + 1 (43)(43) 

) TP(l+fT) 
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where
 

Pt 
+ P/P 0 

and 
 (U +1 -v) 
= (i - Y)13 + y
 

1+ 1 )
 

Nonr-imensionalizing the length coordinate, y, by using the seal
 

length, L, i.e., y' =-y/L and dy = Ldy' we can write 

n = f(P') dPv (')(4 

dy 

where 

p2 c3,rD2 

f(P,) = 2 (l-Y)(P' + 1)o Ut 

12pkT (1 + t )L
 

+ 1 2+ (p 3 (yt +1)] 

cUP0Dt(l - y)(S 1) (P' + 1/) - Pt] 

2kT (1+ ) (1+ /P') 

Simplifying Equation (44) by defining a new flow rate parameter 7 n.we 

obtain 

= dP' (45)n dy + Afg 

where
 

6VUL
Af = 2p
 

0 

f f(P',8,,t) 1 2t2) (1- y)(P' + 1) + (P' + 
(1++ t 2 

3 2 1
 

g(P',6,y,t) = t(l - Y20 - ) p1] 

(1 + t) (i + pr) 
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Separating variables in Equation (45) and integrating over the
 

seal length gives
 

1= 2 N(P') dP' (46)
 
PIi - Af g(P') 

For a given physical condition,, i.e., P', Pyyyt, Af, the problem
 

reduces to solving Equation (46) for n. Newton's method was used by
 

letting
 

(47)
F = - f 2 f(P') dP' =0 

Newton's method predicts successive approximations to the solution of
 

Equation (45) through the following relationship:
 

nn + 1 = n FF 

where
 

F' =f =2f P') dPt 
(n- -(P'))du PT A 

Since the most useful situation for the viscoseal as a sealing device
 

would be to have the net flow rate equal to zerp a similar technique
 

was used to solve Equation (41)f for the AP which results ,for ;,= 0.
 

A widely used parameter in sealing work is defined for no net flow
 

in the form of sealing coefficient, A.
 

A 6Un2 (48) 

Results for the variable mean free path will be presented for both net
 

leakage and for no net leakage (sealing coefficieng) values.
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2.22 Mean-Value Solution. If the mean value of seal pressure is
 

used in Equation (42) to calculate a mean value of mean free pathb
 

then Equation (39) can be approximated by replacing the local mean
 

free path by an average value. This permits the simple integration of
 

Equation (39) to give
 

1 AP c3TD Ue Df 

Q1 AP t 2 )  2 f1(NK) + 2 f2 CNK)( (49)
121 QL ( + ) 2(1 + t 2 ) 

where
 
f NK
t(l6GN K 3 2 1
 

fI(NK) t 2 (1 - y)(l + 6GNK) + (1 +- M)(8 )cyt2 + ),
 

and
 
3(i + 6GNK)
 

f 2(NK) =t(l- Y)( - i)[.1- ]
8(1 + 6GNK) 

For no net flow the sealing coefficient can be written as.
 

A = 6vUL fl(NK)
Ape (50)
 

Results will be presented using this mean-value type solution.
 

2.23 Particle Slip Correction. In the previous section where the
 

slip-modified Reynolds solution was derived, slip boundary conditions
 

were applied to account for the decreased intermolecular momentum
 

transport at the walls. The analysis attributed a slip velocity -relative
 

to the walls .for all the molecules adjacent to these surfaces. For
 

the case of stationary walls, this implies that every molecule, on the
 

average, will possess additional flow velocity due to the slip flow
 

contribution The preponderance of evidence presented by Weber (16),
 

Kennard (19), Present (20), and Fryer (21), indicate that molecules
 

whose last collision was at the :wall can have no slip velocity since such
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molecules are diffusely reflected from the walls. Thus only those
 

molecules coming from collisions with other molecules can possess a
 

slip velocity. A correction will now be developed to account for those
 

molecules which do not experience slip boundary conditions due to their
 

collisions with the walls. The correction .will be established by
 

determining the ratio ofthe molecule-to-molecule collisions to the
 

total number of collisions, or the sum of the molecule-to-wall plus the
 

molecule-to-molecule collisions. This ratio, a, represents the
 

fraction of molecules present which experience the slip boundary condition.
 

The number of molecules ,strikingthe wall per unit time and unit
 
nV 

area is (20) --where V is the mean molecular speed. Ifone considers
 

the unwrapped viscoseal geometry of Figure 4, the seal surface area is
 

approximated by 

LCos w­27DL + 2h TD a 

where the right hand term is the surface area contributed by the groove
 

side walls. Thus the number of molecule-to-wall collisions in unit
 

time is
 

nVDL[1 + h 
T- Cos a + b)]
 

The total number of molecule-to-molecule collisions per unit time 

and unit volume is (20) n- The volume of the viscoseal is the 

volume of the ,annular space plus the volume of the grooves. Thus the 

total numberof molecule-to-molecule collisions per unit time is 

nV 2 2 + DL-h ob 
--- [(L(r- rl) w + b) ] 

Since
 
2 2,
 

(r 2 r) (r2 + rl)(r 2 - rl)
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and, due to the small clearance of the normal viscoseal geometry,
 

r1 + r2 ' D and r 2 - = c,r1 

then the expression simplifies to 

r DL [c + h + b 

Hence, the proportion of the molecules which experience slip is
 

lINK [1 + YO' - 1)]

l/N-- + ( -l)+~[ h (51) 
I/NK [1 + Y( - 1)]+ 21[l + cos a(w + b) ] 

with
 

B=h + c X = b _ 
e w+ b
 

NK - - and h= ( - 1).K c c
 

In the solution of the slip-modified Reynolds equation, it will be
 

recalled that boundary conditions were not permitted on the groove side
 

walls., Thus it is more in keeping with the manner of this analysis to
 

omit the molecule-to-wall collisions ,which occur on these surfaces
 

and contribute the h/cos c(a + b) term in the denominator of Equation
 

(51). With this restriction, the equation becomes
 

+N K/2[l+ (8 - l)y] (52) 

In the analysis of slip flow through long tubes by Weber (16),
 

Fryer (21), and Milligan (17), the resulting flow equation could be
 

manipulated into two separate terms. One of these terms is the,continuum
 

Poiseuille flow term while the second term is the slip flow contribution
 

which results from application of the slip boundary conditions,
 

Equivalent type terms were obtained by Milligan, Cowling, and
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Wilkerson (4) in the analysis of rarefied flow in a long,concentric
 

annulus. For both of these geometries, the correction for the particles
 

which do not experience slip was made by multiplying the slip flow
 

contribution by a, since it is this uncorrected term which implies that.
 

all the molecules possess the additional slip velocity. Thus when.o is
 

applied in this manner the resulting slip contribution term has been.
 

corrected for the particles ,whichexperience wall collisions and thus
 

possess no slip velocity. When this correction is made to Equation (49)
 

the following equation is obtained:
 

Q i A_P cf3D(NK ) + UcD f4(N (53) 
11 L (i + t2) K 2(1 + t2) N94
 

where
 

f3(N&)K Hfl(NK) + C5(1 - a), 

and
 

f 4 (NK) H af 2((NK) + C6 (1 - a), 

5 Ytt2 (1-¥)(3 _-l) 2 + 3(1 + J )
23(1 7Y) + y 

yt(l -y)(3 _ 1)8 -i)
3(1 - y) + y 

In a similar manner to that'of'Equation (50 ), the sealing
 

coefficient for the mean-value ,slip-modified Reynolds solution with
 

corrections for particles which do not experience slip is
 

A = 6pUL' = f3(NK) (54) 
Ape2 f4 (NK) 
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Often it is more desirable to express results in terms of molecular
 

flow rates rather than volumetric flow rates. Equation (49) for the
 

Mean-Value Slip Modified Boon and Tal solution with no correction due
 

to particles which do not experience slip is
 

= . .. i/2 c2-TD
 
A - 2KT' N t2)L fl(NK)
S(l+ty
 

r +1
 K
+Or _i cT232(N) (55)
 

p 4KT (I + t2)
 

where the relationship that 

r-1 

A = 2P (, (56) 

p 

has been written in,terms of the pressure ratio, rp, across the seal in 

the right hand- term., Similarly, the specific leakage flow rate with 

the correction for the particles that do not experience slip is 

n = ( 1/2 c2rD
TT _ -T) (2 " f3(NK)
A? 2mKT ~N (I1+t2)L 

r + 1
 
+ (rgi 2-1-


p 4KT(l + t2)
 

It should be noted that for a fixed-seal geometryand a.given gas
 

at a specified temperature, the specific molecular,flowrates of
 

Equatipns (55) and (57) are -functions only of Knudsen number, the 'speed
 

U, and the viscoseal pressure,ratio, r . As-the pressure ratio becomes
 p 

high, then (rp + l)/(rp - 1) approaches unity and the specific flow 

rate is a function of the speed and the-Knudsen number only. 

This same technique can be used to evaluate the particle slip 

correction for the variable mean-free path solution by correcting 

Equation (43) before using a numerical scheme to solve the,equationo 
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2.24 Self-Diffusion. The term diffusion, as used here, refers to
 

the molecular transfer which occurs due to a concentration ;gradient.
 

If the gas is a pure unmixed gas, then the diffusion is one of self­

diffusion. In their work concerning low density flow of gases in a
 

capillary, Pollard and Present (22) suggested that at.low pressures the
 

total transport can be described by the superposition of the diffusive 

transport and a drift component. In his study of flow through long 

tubes, Weber (16) applied the idea of the superposition of a diffusive
 

component, a slip contribution, and the viscous component. Weber
 

demonstrated that his solution has the correct limiting values for
 

continuum and free molecule flows and adequately describes Knudsen's
 

data for long tubes (23). Milligan experimentally verified, with
 

excellent agreement, the analysis technique of Weber for rarefied flow
 

in-long tubes (17). Lund and Berman .(24) developed empirical relations
 

for the flow and self-diffusion of gases in both long and short
 

capillaries by the superposition of the diffusive and drift components.
 

They developed an algebraic expression which permits the direct
 

computation of the Weber diffusion coefficient at any pressure and thus
 

avoided the numerical integration inherent in the Pollard and Present
 

treatment of self-diffusion. Lund and Berman demonstrated the adequacy
 

of their model for describing self-diffusion and flow in capillaries
 

in addition to the flow between flat plates. Milligan, Cowling, and
 

Wilkerson (14) extended the superposition analysis technique of Weber
 

to long annuli with continuing success.
 

In this section, the self diffusion flow in both the grooves and
 

annular space of the viscoseal will be discussed and evaluated using
 

the Pollard and Present treatment as applied by Weber.
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Annular Space Self-Diffusion
 

The self-diffusion flow in the clearance space of the rarefied­

gas viscoseal was obtained by considering this flow to be that of a
 

concentric annulus. The molecular transfer was determined by evaluating
 

the net number of molecules crossing a plane normal to the annulus.
 

The evaluation was done by considering separately the molecules which
 

come from the outer and the inner walls with the grooved inner wall
 

taken as being smooth and of diameter D as shown in Figure 1. The
 

details of this derivation are presented in Reference (3) and the
 

procedure used was essentially that given by Weber (16). The following
 

equations were numerically integrated to obtain the diffusion
 

contribution in the annular space:
 

N =-2 dn - rL 2 0 f (R)
2 R
net outer wall -V dn ( r1 0 0(R
 

sin 9 cos2 0(i ee,-R/NK dR' do dO (58) 
R TT/2 

N2V dn-( 2- 2 fR2 fI f (') 

r2net innerwall =-VAT rl) / f (R') 

sin 9' cos 2 9'(1 - eR/NK), dR' do dO'. (59)
 

The total self-diffusion flow in the annular space is the sum of
 

Equations (58 and 59) and may be arranged into specific molecular
 

flow rate form using
 

dn d P 1 dP u 1 P 
dy dy- () T KT dy YT L 

and 

r.2KTI/2 
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to obtain
 
rl)3

2 1/2 (r2 -
N 

- --- ) L NK [SUM (0o.W.) +-SUM (t.W')], (60) 

where SUM (0.W.) and SUM (I.W.) designates the numerical integration
 

of-the integrals of.Equations (58 and 59), respectively
 

Groove Self-Diffusion
 

The self-diffusion flow in the grooves of the shaft was obtained
 

in a similar ,manner to that of the diffusive flow in the annular space.
 

The flow in the groove was determined by considering this transport to
 

be that of a longgroove of rectangular cross section. This neglects,
 

any curvature effects of the helical groove and becomes increasingly
 

in error as the groove dimensions become of the order of magnitude of
 

the seal diameter. The development work of the numerical scheme is
 

presented in complete detail in Reference (25).
 

The'groove diffusion flow involves the'numerical solution of the
 

following type of equation:
 

2r d f ff (b -)b' ( - eR/NKg)5
 
0 0 r
0 0 


+ fb (1 - e-RR/NKg)} E2 dz' (dfdzd ), (61)
 
rr
 

where
 

xNKg b
 

is the Knudsen number of the groove flow with the groove width, b',
 

being taken as the characteristic dimension. Again
 

V =/2 2_2KT 


arm
 

and 
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dn d P 1 dP I AP
TE = t- ) T t-t-T P 

where k is now the groove length. The relation between the length of
 

one groove and the axial seal length is 

LITD L = L 

NS cos a (w + b) sin a 

where NS is the number of grooves. For a multiple grooved shaft the
 

total groove diffusion flow is NS times the flow of asingle groove.
 

Thus the total specific molecular flow due to the diffusion is
 

NS sin a 2 1/2
S 2L [SUM (Walls)], (62)1---2-I 

where SUM (Walls).designates the numerical integration of the integral
 

terms of Equation (61) to include the total walls of the grooves.
 

2.25 Composite Solution. The total specific molecular flow for
 

the composite solution is obtained by adding the continuum solution
 

plus the slip flow contribution after correction for the molecules
 

which do not experience.slip plus the self-diffusion flows in the
 

annular space and the grooves. Thus for the mean-value solution
 

(63)
(--)composite = Eq. (57) + Eq. (60) + Eq. (62) 

It should-be noted in sumtuating the flows that the contributions of each
 

equation must be evaluated at thesame physical gaseous state. In­

the development of the groove self-diffusion the Knudsen number, NKg,
 

was based on the groove'width, b', rather than theseal radial clearance,
 

C. Thus the corresponding value of groove Knudsen number for a given
 

clearance Knudsen number is 

NKg = NK(fN % ). * (64) 
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This same technique can be used to formulate the composite
 

solution for the variable mean free path analysis and other models
 

such as the annulus-groove model0
 

2.3 Annulus-Groove Model, In this section a simpler model than.
 

the Modified-Hodgson Model will be developed which will lend itself to
 

a less arduous solution in the transition regime and will also
 

correctly predict the continuum performance. The model also predicts
 

the rotor induced flow in a more rigorous manner.
 

The 	basic model will be essentially the same as the one used by 

Hodgson and which is basically the same as the simplified screw extruder
 

theory presented by Carley, et al. (26). The assumptions inherent in
 

these models are:
 

(1) 	the total flow in the seal can be treated asthe super­

position of the leakage flow in the grooves,, the leakage
 

flow over the lands and the rotor induced flow in,the
 

grooves,
 

(2) the pressure varies continuously along the groove and
 

is-constant over the cross section of a particular groove,
 

(3) the groove depth is small compared to the diameter of
 

the seal, thus allowing curvature effects to be neglected
 

in the groove ,flow,development,
 

and
 

(4) the flow in a seal with a grooved housing is identical to
 

the flow in a seal with a grooved shaft (13).
 

Assumption 1 obviously neglects 'the convective coupling of the flow
 

components. The solution without this assumption is extremely compliT
 

cated for even purely continuum flow (27). Its exclusion would
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certainly lead to an even more complex analysis when non-continuum
 

boundary conditions are applied. Since the objective is the development
 

of a simplified theory, the inclusion of assumption 1 is a necessity.
 

One important assumption that is usually made which is not made here is
 

that the groove sidewall effects are negligible. This assumption is
 

one of the prime distinctions between this analysis and the Slip-


Modified Boon and Tal Model in which this assumption is made,
 

The assumptions governing the development of the component
 

flows are:
 

(1) 	the flow is steady, constant viscosity, fully developed,
 

isothermal and Newtonian with negligible body forces,
 

(2) 	the Navier-Stokes equations with non-continuum boundary
 

conditions are applicable,
 

and
 

(3) 	the non-continuum boundary conditions can be expressed as (19)
 

V~al Iwall 
* 

In the development of the flow components, flow models which have been
 

experimentally verified will be used and reference made to their
 

verification.
 

2.31 	Flow inuthe Groove
 

Although most previous investigators have initially treated the
 

groove flow in two parts, this analysis will initially treat the groove
 

flow as a single flow from which the two previously mentioned groove
 

flows are eventually obtained.
 

Based on the assumptions stated above, the Navier-Stokes equations
 

reduce to the single z-momentum equation
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2v + 2-v - dP 
 (65) 
-x2 -2 pdz 

The applicable slip boundary conditions shown in Figure 5 are: 

(0 ,) = 0 (66a) 

ax
 

v(b'/2,y) = - GX v (b'/2,7) (66b)
9x
 

v(j, 0) = 2v (,x, 0) (66c) 

and 

v(x, h) = - U cos a - GX-_(x, h) (66d) 
y 

where advantage has been taken of the symmetry about the y-axisj The
 

slip coefficient, G, is' usually taken as unity as will be done here.
 

It is convenient at this point to non-dimensionalize the velocity
 

and the coordinates and introduce an index of rarefication. The non­

dimensionalized variables are taken as
 

x = x/(b'/2) y = y/h and u= v 
U Cos a'
 

A common index of rarefication, the Knudsen number is taken as
 

NKh = X/h.
 

Introducing these new variable into Equations (65) and (66) one
 

obtains
 

u+ a22 D u (b') 2 dP R' 
x2 VP ay2 4U cos a dz - (67) 

where
 

dP
RYE (b')2 

4wcos a dz
 

and the ,boundary conditions are 

7u (0, y) = 0 (68a) 
ux 2-Kh u (19 y) (68b) 

al)a - ax
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u(x, 0) = NKh a (x, 0) (68c) 

and 

u(x, 1) = - 1 - hu (x, 1). (68d) 

Many techniques have been used to solve non-homogeneous problems
 

of the type presented above. The least arduous is a modified form of
 

the method of variation of parameters (28). This method has been
 

employed successfully by Ebert and Sparrow (29) to solve Equation (65)
 

with" four homogeneous boundary conditions. In -the case considered
 

here Equation .(68d) presents a non-homogeneous boundary condition,-but
 

the method used by Ebert and Sparrow still leads to a solution.,
 

The method of variation ,of parameters is a generalization of the
 

method of separation of variables, and as,such, experience gained from
 

employing the latter is helpful when applying the former method. In
 

the method of separation of variables, the sign of the separation
 

constant is taken so that the trigonometric solution is obtained for
 

the homogeneous direction, In the method of variation of parameters
 

the same reasoning is used in the assumption that the solution has the
 

form
 

u 0 (, anx + C7 sin .nx)
y) =n(Y)(Cos (69)
 
n=l n n 

where the x-direction is thehomogeneous direction determined by ,an 

inspection of Equations (68). The function 0n (y) is a yet unknown 

function of y. One now proceeds to determine On ,y and C7. 

Substituting Equation (69) into the boundary condition of Equation 

(68a) one obtains 
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E &n(Ey)[C7a cos (0) - an sin (o)] 0 
n= 1 n 7 n 

which implies .that,C7 = 0 and that 

co 

u(x, y) =- Y) Cos a X, (70)

1
 

n= 


Substituting Equation (70) into Equation (68b) gives
 

2NKhan 
nn(y)[ cos %- a sin aJ = 0 

n= I1 n a-

from which it follows that for a non-trivial ,solution
 

2N Kh 
cosa - - sinct =0 n a n 

or 

a tan M = a (71)
Sn NKh" 

The eigenvalues, an of the eigenfunctions, cos anx, are the roots of
 

the transcendental relationship of Equation (71).
 

The problem now reduces to determining n(y).' Substituting
 

Equation (70) into Equation (67) yields,
 

M2 0 (y) cos a x + (a) . 0"(Y) cos aE n n 2 n C nn n 
 n nnn,
n 

R' cos, ax (72) 
n 1 

where 0n satisfies the -Fourier series
 

1= nn cos anX. (73)
= 
n I 

The Fourier cosine series coefficient, Cn must be 

2 sin, a sina n[. , 2K ](74) 

n, a + sin a cosa a sinZ a 
n n- n' n [1+n
 

a
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where the last step comes from Equation (71).
 

In order for 0n(y) to satisfy Equation (72), it must be that
 

4R'QOf2an 2
'n'(y) - 0_n(y) = n(75)a nUa
 

The determination ,of 0 thus reduces to the solution of a non­

homogeneous second-order ordinary differential equation. The boundary 

conditions on 0n(y) are obtained from Equations (68c) and (68d).


From Equation (68c), one boundary condition is
 

-0 (0) = Nm0'(O)o (76a) 

Substituting Equation ,(73) for the unity term in Equation (68d) 

leads to the second boundary condition, 

On(1) = - 2n - Nmh0'(1). (76b) 

The solution of Equation (75) subject to the boundary conditions
 

in Equations (76) is
 

-eny -enY R' n2 

0n(y) =-(Clnp + Clnu)e n + (2np + C2nu)e ny (77) 
n 
n 

where 
2a 

en = an
 

R'Q2 (1- NKh n)e- n - (1+ NeKhn)
___=-[ Kh -] 

Clnp Ua2 (1 - n- N h )2e o - (I+ Nh9 ) 2eOn 

n Kh n Kb n 

(1 + NKhe) 
2 O nClnu (1 - NKh n)2 -n ( + NKh Gn)2e 

(1 - NhGen)- (I + NIh%)e n R, , 
o = I 8 2-_ 2

(1 -Nien)2ee)' - (l + .Nh) eno Uc 
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Cn (1 - NKhe) 
e n 2n u =_ (1 - NKhen)2e - - (1 + NKhen)2eOn 

By substituting Equation (77) back into Equation (70) the
 

dimensionless velocity distribution becomes, after considerable
 

simplification,
 

) 2sina
 

2(b') dP [ , ].
dzn 11 + 2 NKh.sin2 U 

- n 
2cty a 

cosh - tanh -R sinh 2Uny 
Cos a x a a 

1 + 2N1f& tanh a
 
n a
 

a 

sina cos a x

2 n ]n
 

n 1 1 + 2NKh sin 2 a J n n 
a 

2cty 2N a~ 2czy
 

sinh n + 2h cosh --­
a a a
 

(2NKh 2an" 4n'hmn" 2c2 (78)
 
[1+ 2]sinh + cosh ­a a a a 

The volume flow rate in the groove is obtained by integrating the 

velocity distribution over the area of the groove. The volume flow 

rate thus obtained is 

2sin tanh a
2 a /a 

6


V,= (b') 3 hdP n a, rh n [ n 
g 211 dz a5 2N 2Nh a a
nlt Kh .2 Ka
 n +-r sin 1 + tanh 

a n, a a
 

2 asin tanh a /a
 a 


Ub'h-cos -a nH n -]. (79)
 

a n a a 

The first summation term represents the pressure induced flow in the
 

groove whereas the second term represents the rotor induced flow.
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The linearity of Equation (65) has been demonstrated in the,
 

analysis above since the-solution of Equation (79) can be shown to be
 

the sum of two solutions. .The first term is in agreement with the
 

expression obtained by Ebert and Sparrow (29) for slip flow in a
 

rectangular-duct with stationary walls. Milligan and Patterson ,(5)
 

have experimentally verified the solution of Ebert and Sparrow The
 

last termuis the solution of V2v = 0 with the boundary conditionsgiven
 

in Equation (66). It is thus demonstrated that itis permissible to
 

obtain the two solutions mentioned above-independently and then to
 

add them together to arrive at the same result as Equation (79).
 

At this point it is interesting ,to determine V' when the Knudsen
 
g
 

number approaches ,zero, the continuum flow regime. The solution for 

the eigenvalues becomes 

cos a = 0n 

or
 

n 2
 

With these eigenvalues and with N 0, V' becomes
 
Cg-

V' = 16(b') 3h zdP a [tanh na n" 
gc 51 n t anh
 

8Ub'h cos a S -a tanh-2-n( (80) 
i 3 3n 2a
 

n = l, 3, 5, 7 .
 

2.32. Correctionto Rotor Induced Flow. In the analysis above 

it was assumed that the rotor velocity, U cos a, acted at the 

top of the groove (y = h). No attempt was made to account for 

the fact that the rotor is notlocated at y = h but rather at 

y = h + c. Since an exact analysis of the region ,above the 
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groove, h < y < h + c, has been shown to be very complex ,even for 

continuum flow '(27), some sort of approximation must'be ,made to obtain 

a simple solution. The following assumptions are made: (1) the flow 

induced by the rotor in ,the region h < y < h + c does not contribute 

to the seal discharge and, (2) an effective inducing vel6city less than 

U cos a acts at y = h as a result of the clearance region h < y <,h + c. 

This effective inducing ,velocitytUe, will be determined by calculating 

the average velocity in the plane y h of a,hypothetical groove of. 

depth h + c,and width b with the upper boundary moving at U cos a and 

with slip boundary conditions on all surfaces. The hypothetical 

groove and associated boundary ,conditions are shown in Figure 6. The 

brackets in Figure 6 indicate the portion of the boundary over which 

each boundary condition is, applied
 

From Equation (78) the velocity distribution ,induced by the rotor is
 

W 2 sin a cosa
 
vR = U Cos a E 2 n n 1.
 

n0S= 2N
 n + - -- sin2 a 
a n
 

2a y + 2Ni&n 2a y

sinh -	 cosh 

a. 	 a a 
2a12N a 2 4Nan (81) 

[1 + ( - ) ]sinh - + . cosh n 
a 	 a a a 

If Equation (81) is applied to a'groove of depth h + c, the resulting
 

distribution is
 

Mo 2 sinct cos a xi 2NW 2 ]V =-U cos a L n n 1.
 
n n sin2n
 

sinh 2a y 2N a cosh 2ayt
 

a2a 4NKhna2
2NNKh'%a 2 2 4N 2a
 
]
[i+ a' snh- + --- - cosh ­
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where
 

a
by
at 
 h + c t+c/h 

NKh

Kh'N +x c 1 + c/h 

y'
 
= h+c
 

The eigenvalues of Equation (71) are still the same because
 

a a'
 
2N Kh 2NKh, 

h 

The average velocity at the plane y 	

i
 
= h or y' = h is
 

1
 
Ue= f vi(x,h/(h + c))dx.
 

Carrying through the integration, U becomes 

W 1 sin2 a 

U =2U cosct E ­e 1 	2 2NKh
 
n 1 +- sin a
 

a n 
2a 2NiIan 2a
 

sinh --2 + cosh n
 
a a a 

2Nca 2a 4N a (82) 
a cosh -n


[l1+ Kha )2] sinh 	- + 


or 

Ue = [U cos a] Xe (83) 

where the Se is equal to twice the summation in Equation ,(82). The,
 

corrected groove flow is now obtained by replacing U cos a in Equation
 

(79) with [U cos a]EeO The total groove flow now becomes
 

V 	 (b') 3h dEP - U b'h cos a[ES (84) 

g 2p dz p c u 

where
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sin 2a tanh n
 
= a fl a - n (85a) 

p a5 2NKh 2 [ - 2NKhan, a_tn9 aa 
n 1 +- sin a I +-tanh 

a n a a 

sin2a tanh a.
 

Z~= E .a-- a
 
[
U3 2 a a (85b)
 

n I n 1 + - 2sin 0. 1 Khana n 1 + tanh n­
a a 

and
 

n10 .b 2
 

n +­
a n 

2a 2N a 2a.
 

sinh + - cosh n
 a a a 
2 an2 2a 4Nhan 2a (85e) 

[) 2] sinh - + cosh n, 
a a a a 

In terms of the viscoseal geometry
 

dP dP N (b' + w) dP dP
 
" 
=_ s I dP si a-,. (86) 

dz rg dL-d-Ir dL
 

and since the pressure gradient in the viscoseal is assumed to be 

constant, 

d - sin aAP (87) 

dz L
 

The total groove flow isobtained by multiplying Equation (84) by N .
 

Noting that N. = (MD) sin a/(b' + w) the total groove flow becomes
 

V' = D(b')3AP sin2 a - lDb'h cosa S12 S (88)Vg = Ns g' 2= b ) 
E 
ZY (8 

s g 21L (b'+w) p (b' + w) u c 

2.3 Land Leakage Flow 

The land leakage flow is taken'as flow through a long annulus.
 

Milligan et al. (4) have developed an expression for slip flow in an
 

annulus and have obtained excellent experimental confirmation of the'
 

expression.. The expression derived by Milligan is
 



'uD	 dP
vL= 8
4 
d- AL (89)
 

where
 
2 )2 ] 

2NK(1 - K'2)
 
K'4) 	+ (1 K


-AL =[(l 
 n K ]+[K inK' - NK(l - K'2) 

2 	 2 - K' + 1) (1i K'2)2 
[2K'(K' - 1),- 2K'(in K')(K'

2 in 	K'
 

+ 2(1 - K'2)(Il- K') 2NK ] (90),
 

dP
 

and is the effective land pressure gradient For a single-threaded
 

seal, Hodgson (9) showed based onassumption (2) at the beinning of
 

this 	chapter that
 

dP w' + b' 

---L 	= w- COSB 

dP 
L (91) 

As .was shown in Reference (13), Equation ,(91) remains valid 'for a
 

multi-threaded seal.
 

Combining Equations (89) and (91) the land leakage flow becomes
 

128w ) c P = D4(w'+ b') Cos a AL AB (92)L = 128 w' 	 dL 1281 w'L 

2.3 	Total Seal Flow and Sealing Coefficient
 

The total seal flow ,isobtained by combining Equations (88) and
 

(92). The'result is
 

V 	 AP [Ap Z+ Aa - 6 U [AuZE (93)VT 	 PL pP u,c u
C 

where
 

A 	 r7fD(b') 3h sin
2 a
 

p 2(w' + b')
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+ w') cos a
A = D4(b'

c 128 w' 

and 

AU = fDb'hc2 cos a sin a 
6(w'--+ b') 

The specific molecular flow rate is 

n, VT T 
r P)
 

or
 

a -+ 1. 
- 1 (AuE[cEu (94)TT =LkT[AZ +AAL] 

cUp
 

where Equation (12) is 'used to eliminate AP.
 

A common-dimensionless viscoseal performance index is called the
 

sealing coefficient and is defined by
 

AR611UL
 
eJAP (95) 

where AP is the pressure difference at zero flow. By equating VT to 

zero in Equation (93), the sealing coefficient is obtained as 

AZ + AcAL 

A AEE (96) 
u C U
 

A digital computer was used to compute the specific-molecular
 

flow rate from Equation (94) and the sealing coefficient from Equation
 

(96). In order to evaluate the summations, Ep, c, and Zu, it is
 

necessary to determine the eigenvalues which satisfy Equation (71).
 

Newtons method of approximating roots was employed to solve Equation
 

(71) for these eigenvalues at egch Knudsen number.
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3. 	EXPERIMENTAL INVESTIGATION
 

Since no reliable performance data were available for viscoseals
 

having a rarefied gas as the sealant it was necessary to conduct an
 

experimental investigation. The object was to obtain performance data
 

which could be used to evaluate the theoretical models. These
 

investigations were conducted on multiple groove two-inch diameter
 

viscoseals operating over a wide range of shaft speeds and gas densities.
 

Data were obtained with no leakage through the seal which permitted the
 

evaluation of sealing coefficients. In addition data were obtained for
 

a wide range of net leakage conditions. All rarefied data were obtained
 

using argon as the sealant. Continuum sealing coefficient data were
 

obtained using air as the sealant.
 

3.1 	Viscoseal Test Section
 

The experimental apparatus was designed to investigate viscoseal
 

performance in the gas flow regime between continuum and free molecule flow.
 

The viscoseal test section, Figure 7, consists of an outer housing
 

with its, associated vacuum pumping system surrounding a rotating grooved
 

shaft, The shaft is a hollow eight-inch cantilever extension of a high
 

speed spindle shaft which is belt-driven through an intermediate spindle
 

by a direct currenE motor The drive system is capable of seal shaft
 

speeds from zero to 35,000 rpm. The speed control for the motor is
 

self-regulating and maintains a selected speed within + 0.1 percent,
 

Since the entire test section operates under vacuum, a rubbing contact
 

graphite ring seal is provided where the rotating shaft penetrates the
 

housing. The ring seal is a series B-103032, Type E, manufactured by
 

the Cleveland Graphite Bronze Division of the Clevite Corporation.
 

Cooling water and air are supplied at the ring seal end of the spindle
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to minimize thermal growth,due to the rubbing seal friction :under
 

dynamic conditions. A Conflat vacuum flange is provided between the
 

housing and its support for purposes of sealing and two provide minor
 

adjustment capabilities 'for housing-shaft alignment. Other vacuum
 

seals are obtained by the use of "0" rings in addition to vacuum
 

sealants for threaded connections. The maintenance of'a high quality
 

vacuum system with essentially no atmospheric leakage, except at the
 

shaft seal, was assured by the frequent use of a helium leak detector
 

throughoutthe experimental program0
 

Experimental data were obtained for two different viscoseal
 

geometries consisting of a grooved shaft inside a smooth housing.
 

Pertinent~specifications of the rarefied viscoseals are contained in
 

Table I.
 

Table I. 	Dimensional Specifications of Viscoseals (All Dimensions dire in
 
Inches)
 

Parameter Seal No. 1 Seal No. 2
 

Housing diameter (+,0.0003) 2.0088 2.0088
 

Shaft diameter (+ 0.0001) 2.0005 2.0005
 

"Cold" radial clearance
 
(+ 0.0002) 0.00418 0.00418 

Axial length (+ 0.005) 4.530 4.530 

Groove axial width 0.03111 + 0.0003 0.1691 + 0.012 

Land axial width 0.03235 + 0.0003 0.2016 + 0.012 

Groove depth 0.03065 + 0.0003 0.0144 + 0.0005 

Groove helix angle 9,300 . 19.4740 

Aspect ratio,(b cos c)/h 1.002 11.071 
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A schematic diagram of the overall experimental test apparatus
 

is shown in Figure 8.
 

3.2 Vacuum Bumping System
 

It was necessary to develop a vacuum pumping system capable of
 

providing the desired low pressures and gas flow rates. This task was
 

accomplished by connecting two independent vacuum pumping systems in
 

parallel to a commonreservoir, Figure 8. One of these pumping systems
 

consisted of a single stage rotary oil-sealed mechanical pump mated with
 

a three-stage high vacuum oil diffusion pump. This part of the pumping
 

system was connected to the reservoir with a large diameter open-or-close
 

vacuum valve. The second pumping system was composed of another single
 

stage rotary oil-sealed mechanical pump mated with a positive displacement
 

roots blower type vacuum pump0 This portion of the pumping system was
 

connected to the reservoirthrougha throttlable high vacuum valve.
 

Through manipulation of the two connecting valves it was possible to
 

regulate the pumping speed over a suitable range of downstream test section
 

pressures. The complete vacuum pumping system was-capable of attaining
 

-
pressures to 10 5 millimeters of mercury with a blanked-off system
 

3.3 Instrumentation
 

The radial alignment of the shaft within the housing was determined
 

by the use of five proximity detectors manufactured by the Bentley-


Nevada Corporation. These probes were located near either end of
 

the viscoseal section. When viewed from the shaft drive end of the
 

test section, the probes of the first set were located at 12, 3,
 

and 6 o'clock positions, and the probes of the second set were
 

located at 12 and 3 o'clock positions. The arrangement ofthe
 

probes permitted the shaft to be aligned within the housing to a
 

value of eccentricity ratio (shaft centerline deviation/eanradial
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clearance) on the order of 0.05. Theprobes were also used to determine
 

the thermal growth of the shaft caused,by the graphite ring seal
 

friction when the shaft was rotating. In addition,, the probes
 

permitted the measurement of-all vibrational movements of the-shaft.
 

The output gains of the detector amplifiers were individually adjusted
 

and calibrated to ensure a linear output voltage of the probes as a 

function of the clearance gap.
 

Pressure measurements upstream and downstream of the viscoseal
 

were obtained using both McLeod gauges and absolute aneroid type
 

gauges. The McLeod gauge is normally considered to be a primary'standard
 

(30), but-after previous attempts (31) to use thermocouple gauges,
 

ionization gauges and cold cathode gauges, it was apparent that McLeod
 

gauges were the only instruments capable of giving the desired accuracy
 

and reproducibility. The McLeod gauges utilized were the,GM-100A
 

gauge manufactured by theConsolidated Vacuum Corporation and are
 

described in detail in 'Reference (31).
 

Temperature measurements of the argon entering the high pressure, 

end of the viscoseal test sectionwere made early in the experimental 

program using a thermocouple. A comparison of the measured gas 

temperature with the ambient (room) temperature revealed that the error 

involved in using room temperature instead of the actual gas temperature 

was -less than one percent. Therefore the gas temperature was taken to 

be 297 0K in all data calculations. 

Speed measurements of the viscoseal shaft were made using a 

magnetic-pickup located near the attachment nut for the drive belt 

pulley on the high speed spindle. The pulses from the pickup were 

registered using an electronic counter to obtain shaft rpm. The speed 
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measurements wereindependently verified using a calibrated hand held
 

tachometer in the low rpm range and a calibrated strobotac over the
 

entire speed range of 0 to 35,000 rpm.
 

The molecular flow rate through the viscoseal test section was
 

determined using a variation of a constant pressure method developed
 

by J. R. Downing (30) for the measurement of pumping speeds of vacuum
 

pumps. The technique consists of applying the perfect gas equation
 

of state to known gas volumes-at two differenttime periods0 In brief,
 

the flow measurement is,obtained by adjusting the indexed valve of
 

Figure 8 to a ,desired setting and waiting for steady state to be
 

achieved in the test section .as indication by pressure and proximity
 

probe measurements. The shut-off valve leading from the constant
 

pressure gas reservoir is then closed and the rate of rise of manometer
 

fluid in the right hand side of the manometer is observed. With
 

knowledge of the manometer cross'sectional area, the rate of fluid
 

rise, the value of the calibrated volume, the initial and final pressures
 

in the calibrated volume, and the gas temperature, the molecular flow
 

rate is calculated in the following manner0
 

Consider the flow measurement diagram of Figure 9. Let
 

V = calibrated volume including tank and manometer down to
o 

the zero deflection line, "0" 

Po = atmospheric pressure 

H, = initial manometer deflection.
 

H2 = final manometer deflection
 

Am = cross section area of manometer tube
 

W = specific weight ofmanometer fluid
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From fluid statics.
 

B1 = Po 2W12WE 1
P + 


P2 = P - 2WH2V
 

The corresponding gas volumes are:
 

V v + H1A
° m 

V2 =V ° - H2AmO 

Applying the perfect gas equation of-state, 

PV = NKT, (97) 

on a molecular basis to determine the number of molecules within the 

systgm at time '(l) and time (2), then, 

ByV P2V 

AN = N - N2 111 2 2 (98)'
1 2, XtT XT 

Assuming isothermal conditions and substituting for the pressures and 

volumes, Equation (98) simplifies to, 

H1 -4H2AN = HI {A[P + 2W(H1 -1H)] + 2WV (99) 

The flow measurement system was operated experimentally such thati
 

H1 = H2 

Letting 

H = H1 + H2 

and At.be the time period for the total deflection MH, then the molecular 

flow rate is 
=N H [A P + 2WV (100) 

At AtKT m 0 2 

The basic premise for themeasurement system rests inthe fact 

that while the pressure in,the calibrated volume~does change slightly, 

less tian + 1%, it still remains very close to atmospheric pressure. 
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Thus, the change in flow rate through the valve is negligibly affected
 

by the slight decrease in the pressure within the calibrated volume
 

during the course of a measurement.
 

3.4 Experimental Procedure
 

Experimental data of two different types were obtained for the
 

operation of the viscoseals in the rarefied regime. These may be
 

described as net flow leakage data and sealing coefficient data. The
 

operational procedure utilized in gathering the data differed only in
 

respect to shutting off the argon gas supply when obtaining sealing
 

coefficient data.
 

All data were acquired by the coordinated adjustment of the gas
 

supply rate, the vacuum pumping speed, and the seal shaft drive speed
 

followed by a time period sufficient to obtain a steady-state condition.
 

Following achievement of steady state, final readings of the gas flow
 

rate, pressures upstream and downstream of the viscoseal, and the
 

proximity probes were made. The proximity probes were used to record
 

the seal clearance which decreases slightly with increasing shaft
 

speed due to the friction of the graphite ring vacuum seal
 

3.5 Data Treatment
 

The viscoseal performance data for both the net flow leakage tests
 

and the sealing coefficient tests were correlated versus an index of the
 

flow rarefication, Knudsen number. The mean radial clearance, c, was
 

selected as the viscoseal characteristic dimension Thus using the
 

Chapman relationship for the mean free path, the experimental values
 

for Knudsen number were determined using the following equation.
 

R 
Ii(2 - T)l/2


NK = = (101) 
c 2P c
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The mean free path was based on the average seal section pressure
 

T b 

(102)
2
 

The molecular flow rates for the net flow leakage data were
 

calculated using Equation (100). These data were revised to specific
 

molecular flow rates,by dividing by the pressure drop, AP, across the
 

viscoseal, or
 

H[AmPo + 2WV o ] 
(103)
AP = (PT - Pb)AtKT 


The sealing coefficient data were calculated from the zero net 

leakage tests using 

A = 611UL = 61UL -(104) 

AEC? (PT - Pb)c 

3.6 Experimental Uncertainty. A detailed analysis was performed
 

to estimate the propagated uncertainty in the final performance parameters
 

based on the individual uncertainties of all measured variables. The
 

analysis was performed using standard statistical techniques after 

postulating a normal distribution in the uncertainty of each variable.-

This method of analysis assumes all errors are random in nature. 

Considerable effort was expended during the experimental investigation.
 

to minimize 'any error of a systematic nature.
 

The propagated uncertainties, in general, are not constant and vary 

with the,degree of rarefication., The uncertainty in the specific 

molecular flow rate, N/AP, of Equation,(103) is + 5.1-percent at an 

Inverse Knudsen Number of 27 where the calibrated volume, Vo, 

contribution is 84 percent of the total0 The uncertainty in the. 

specific molecular flow rate increases to + 8.9 percent at an Inverse 



'51-


Knudsen Number of 0.50 where the uncertainty in the differential 

pressure, AP, contributes.72 percent of the total. The ability to 

determine the Inverse Knudsen Number of Equation (101) is estimated 

at + 4.8 percent for I/N equal to 27 and increases to + 5.7 percent for 
'K
 

lINK equal to 0.50. The propagated uncertainty estimate in the sealing
 

coefficient, A, of Equation (104) is insensitive to the degree of
 

rarefication and remains at essentially ± 9.6 percent. The uncertainty
 

in the radial clerance., c, contributes-approximately 99-percentof
 

the propagated uncertainty estimate for A. It should be noted that
 

the clearance uncertainty is controlled by the ability to establish
 

the diameters of the seal shaft and housing and not by any limitations
 

of the proximity probe system.
 

All uncertainties are stated to a confidence level of 95 percent.
 

3.7 Investigations Conducted
 

Sealing coefficient performance data and net leakage performance
 

data were obtained for each of the two geometries. Sealing coefficient
 

data were obtained over a wide range of sealant gas rarefication for
 

shaft speeds of zero, 50000 10,000, and 30,000 rpm. Net leakage data
 

were also obtained over comparable ranges of rarefication and shaft
 

speeds. These data are presented and discussed in Section 4 and the
 

reduced data are tabulated in Appendix'B.
 

4. RESULTS
 

Two types of results will be presented for each of the three 

analytical models, Net leakage and sealing coefficients will be given 

as a function of the degree of rarefication. The inverse Knudsen 

number is used as the parameter indicating the degree of rarefication., 

http:contributes.72
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4.1 Net Leakage
 

-The net leakage Slow occurs from the high pressure end to the
 

low pressure end of the viscoseal when the viscous pumping
 

action is insufficient.to overcome the pressure-induced flow in the
 

grooves and through the annular clearance space. The net leakage,data
 

are shownlIn-Figures 10 through 15. These data are presented in the
 

form of specific leakage rate .(units of molecules per sec-lHg) versus
 

Inverse Knudsen Number. The experimental datafor viscoseal Seal No, 1
 

are shown'in Figures 10, 11, and 12o The theoretical specific leakage
 

values as predicted by the Modified Hodgson Model are shown in
 

Figure 10. These theoretical values were obtained by using Equation (6)
 

for the zero rpm case and Equation (8) for the 5000; 10,000; and 30,000
 

rpm cases. The Slip Modified Boon and Tal Model was used to determine
 

the theoretical,values shown on Figure 11. Two solutions for this model
 

are presented. The mean-value values were calcualted using Equation
 

(55). The variable-mean-free-path values were obtained by solving
 

Equation (46). In Figure 12 theoretical values for the Annulus-Groove
 

Model are presented. Equation (94) was-used to-determine the theoretical
 

values shown in Figure 12.
 

The experimental data for Viscoseal No. 2 are presented in,Figures
 

13, 14, and 15, These.figures contain data for one,additional speed,
 

2500 rpm. The theoretical specific leakage values shownon these
 

figures were determined,in the same manner as described above for 

Viscoseal No. 1. 

In Section 2.25 a composite type solution was discussed for the 

Slip Modified Boon and Tal Model, This type of composite solution,is 

http:insufficient.to
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obtained by the superposition of the corrected continuum-slip flow
 

contribution with the self-diffusion flowsin the annularspace and
 

the grooves. The corrected continuum-slip flow is determined by
 

taking into account the fact that all the molecules cannot,experience
 

the slip boundary condition. This procedure is explained in detail
 

in Section 2.23. A detailed procedure for calculating the self-diffusion
 

flows is given in Section 2.24. Tables II through VII present composite
 

solution results and the uncorrected continuum-slip results. In each
 

table the first column on the left is Inverse Knudsen Number Moving
 

to the right in the tables the second column is the uncorrected
 

continuum-slip solution. The third column is theparticle-slip
 

corrected solution. The fourth column is the self-diffusion through the
 

annular clearance space, the fifth column is the self-diffusion through
 

the.grooves, and the last column is the composite solution.
 

Table II shows specific leakage results from the Slip-Modified
 

Boon and Tal Model for Seal No, 1 at zero rpm. Table III -is,the same
 

except that these results are for 5000 rpm. Tables IV and V contain
 

specific leakage as predicted by the Boon and Tal Model for Seal No. 2
 

at zero and 2500 rpm, respectively. Tables VI and VII contain results
 

for the Annulus-Groove Model. Table VI is for Seal No, 2 at zero rpm
 

and Table VII is for the same seal at 2500 rpm. These are typical
 

composite solution results. The particular results shown in Tables II
 

through VII were chosen because they were the cases Vhich gave thei
 

largest,deviations between the composite solution and the simpler non­

corrected continuum-slip solution.,
 



Table.II° Slip Modified Boon ard Tal Model
 

-
Net Leakage Solutions x 10 14 for Seal No. latZero rpm
 

S/AP N/AP Composite Solution - Eq. (63)
 
I/NK Cont, + slip Cont. + slip Annulus Groove Composite Flow
No. Part, Corr. Part. Corr. Diffusion Diffusion 1 + 2 + 3
 

1 x 10 ­ 2 2.22 0.198 1.92 0.48 2.60 

3 x 10- 2 2.24 0.514 1.,69 0.42 2.62 

7 x 10-2 2.30 0.951 1,41 0.34 2,70 

1 x io-1 1 2.33 1.18 1.30 0.30 2.78 

3 x 10-1 2.58 1.99 0.87 0.17 3,03 

7 x 10-1 3.08 2.78 0.57 0.086 3.44 

1 x 100 3.45 3.23 0,45 0.053 3.73 

3 x 100 5.92 5.84 0,19 0.022 6.05 

7 x 10 0 10.8 10.8 0.090 o.oo96 10,9 

1 x 10 14.5 14,5 0.064 0.0068 14.6 

3 x 10 39.2 39.2 0.022 0.0023 39.2 

7 x 10 88.4 88.4 0,0094 0.0010 88.4 

1 x.102 125.0 125.0 0.0065 0.0007 125,0 

http:Table.II


Table III. Slip Modified Boon and Tal Model
 

-14 
Net-Leakage Solutions x 10 for Seal No. 1 at 5000 rpm
 

i/AP P/AP Composite Solution - Equation (63)
 
1I/N No. Part. Corr Part Corr. Annulus Groove Diffusion Composite Flow
 

K 1 Diff. 2 3 1 + 2 + 3
 

1 x 10-2 -8.36 '10.36 1.55 0.48 -8.33 

3 x 1o- 2 -8.35 -10.04 1.45 0.42 -8.17 

7 x 10 - 2 -8.31 - 9.60 1.22 0.34 -8.04 
-
1 x 10 11 -8.28 - 9.37 1.11 0.29 -7.97­

3 x 10-1 -8.07 - 8.61 0.76 0.16 -7.69
 
-
7 x 10 -7.61 - 7.§7 0.49 0.08 -7.30 I 

1 x l0 -7.26 - 7.44 0.39 0.059 -6.99 

2 x 1 00 -6.04 - 6.14 0.22 0.031 -5089 

3 x 100 -4.81 - 4.87 0.16 0.020 -4.69 

4 x 100 -3.57 - 3.62 0.12 0.015 -3.49 

5 x 10 -2.33 - 2.37 0.10 0.012 -2.26 

6 x 10 -1.08 - 1.11 0,086 0.010 -1.01 

7 x 10 +0.16 + 0.13 0,075 0.009 +0.21 

1 x 101 3.90 3.88 0.054 0.0063 3094 

3 x 101 28.84 28.83 0.019 0.0021 28.85 

7 x 101 78.73 78.72 0.0082 0°00092 78.73 

1 x 102 116.10 '116.10 0.0056 0.00065 116.11 



Table IV. Slip Modified Boon and Tal Model
 

-
Net Leakage Solutions x 10 14 for Seal No. 2 at Zero rpm
 

N/AP N/AP Composite.Solution -
Cont. + slip, Cont, + Slip Annulus Groove 

I/NK No. Part. Corr. Part. Corr. Diffusion Diffusion 
1 2 3 

x 10- 2 2.09 0.110 1.92 0.72-

3 x 10- 2 2.11 0.303 1.69 0.49 

7 x 10- 2 2.14 0.609 1.41 "0.31 

1 x 10- 1 2.17 0.790 1.30 0.24 

3 x 10- 1 2.33 1.518 0.87 0.11 

7 x 10 1 2.66 2.21 0.57 0.05 

1 x 100 2.91 2.57 0.45 0.035 

3 x 1 00 4.54 4.41 0.19' 0.012 

7 x 100 7.78 7.72 0.09 0.005 

1 x 101 10.21 10.17 0.064 0.0036 

3 x 101 26.41 26..39 0.022 0.0012 

7 x 101 58.80 58.80 0.0094 0.0005 

1 x 102 83.10 83.09 0.0065 0.00036 

Equation (63)
 
Composite
 

Flow
 
1+2+-3
 

2.75
 

2.48
 

2.33
 

2.33
 

2.49
 

2.83
 

3.05
 

4.61
 

7.82
 

10.24
 

26.41
 

58.81'
 

83.10
 



Table V. Slip Modified Boon and Tal Model
 

Net-Leakage Solutions x 10-14 for Seal No. 2 at 2500 rpm
 

N/AP N/AP Composite Solution - Equation (63)
 
Cont.+Slip 


1I/N K No. Part; Corr. 


0- 2
1 -2.26 

-2
3 x 10 -2.25 


2
7 x 10 - -2.22 


-1
i x io -2.20 

I
3 x 10- -2.07 


-
7 x 10 -1.80 


1 x 100 -1.58 


2 x i00 -0.829 


3 x 100 -0.056 


4 x 100 +0.726 


5 x 100 1.51 


6 x 100 2.30 


7 x 100 3.09 


1 x,10- 5.48 


3 x i01 21,40 


7 x 101 53.28 


1 x 102 77.20 


Cont. + Slip 

Part. Corr. 


1 


-4.36 


-4.15 


-3.82 


-3.64 


-2.69 


-2.25 


-1.91 


-1.00 


-0.175 


+0,.636 


1.44 


2.24 


3.04 


5.44 


21.39 


53.28 


77.20 


Annulus: 

Diffusion 


2 


1.75 


1.52 


1.28 


1.16 


0.79 


0.51 


0.41 


0.23 


0o17 


0.13 


0.11 


0.092 


0.080 


0.057 


0.020 


0.0085 


0.0060 


Groove
 
Diffusion 


3 


0.71 


0.47 


0.29 


0.23 


0.10 


0.047 


0.033 


0.016 


ao11 


0.0072 


0.0066 


0,0056 


0.0048 


0.0033 


0.0011 


0.00048 


0.00033 


Composite Flow
 
1+2+3
 

-1.90
 

-2.16
 

-2.25
 

-2.25
 

-1.80
 

-1.69
 

-1.47
 

-0.75
 

+0.006
 

0.773
 

1.56
 

2.34
 

3.18
 

5.50
 

21.41
 

53.29
 

77.21
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Table VI., Annulus-Groove Model
 

-
Net-Leakage Solution x 10 14 for Seal No. 2 at Zero rpm
 

N/LP N/AP Composite Solutions' 
I/N

K 
No. Part.

Corr, 
Part. Corr. Afinulus

Diffusion 
Groove
Diffusion 

1, 2 3 

1 x 10-2 1.81 0.06 1.92 0.72 

3 x 10- 2 1.82 0.16 1.69 0.49 

7 x,10-2  1.84 0.34 1.41 0.31 

1 x 10- 1 1.86 0.48 1.30 0.24 

3 x 10"I  1.96 0.95 0.87 0.11 

7 x 10- 1 2.16- 1.50 0.57 0.05 

1 x 100 2.30 1.79 0.45 0.035 

3 x 100 3°28 3.06 0.19 0.012 

7 x 100 5,22 5.12 0.09 0.005 

1 x 101 6.68 6.60 0.064 0.0036 

3 x 101 16.39 16.36 0.022 0.0012 

7 x 101 35.81 35.80 0.0094 0.0005 

1 x 102 50.37 50.36 0.0065 0.00036 

Composite Flow
 

1+2+3
 

2.70
 

2.34
 

2.06
 

2.02­

1.93 1
 
2.12
 

2.28
 

3.26
 

5.22
 

6.67
 

16.38
 

35.81
 

50.37
 



Table VII, Annulus Groove Model
 

-
Net Leakage Solutions x 10 14 for Seal No.'2 at 2500 rpm
 

NAr Ni/AP Composite Solution, 
1I/N

K 
No Part. Corr. Parto.Corr.1 Annulus Diffusion2 Groove Diffusion3 Composite Flow

1 + 2 + 3 

1 x lo- 2 -0.26 -3.06 1.75 0.71 -0.60 

3 x 10 -0.32 -2.84 1.52 0.47 -0.85 

7 x 10 ­ 2 -0.41 -2.52 1.28 0.29 -0.95 

1 x 10-1 -0.47 -2.36 1.16 0.23 -0.97 

3 x 10-1 -0.67 -1.82 0.79 0.10 -0.93 

7 x 10-1 -0.74 -1.41 0.51 0.047 -0.85 

1 x 100 -0.70 -1.,21 0.41 0.033 -0.77 

2 x 100 -0.38 -0.66 0.23 0.016 -0.41 

3 x 10 +0.04 -0.16 0.17 0.011 +0.02 

4 x,1O 0 0.48 +0.32 0.13 0.0072 0.46 

5 x 100 0.94 0.81 0.11 0.0066 0.93 

6 x 100 1.40 1.30 0.092 0.0056 1.40 

7 x 100 1.86 1.77 0.080 0.0048 1.85 

1 X,101, 3.27 3.21 0.057 0.0033 3.27 

3 x 101 12.76 12.73 0.020 0.0011 12.75 

7 x 101 31.78 31.77 0.0085 0.00048 31.78 

1 x 102 46.04 46.05 0.0060 0.00033 46.06 
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4.2 Sealing Coefficient
 

The sealing coefficient as defined in Equation (95) is a common 

dimensionless viscoseal performance index. The relationship which 

exists betwentthe net leakage flow and the sealing cdefficient can 

best be shown by reference to Figure 16. A family of-nat leakage 

curves as a function of the seal pressure ratio for a fixed shaft speed 

are shown. The curves progress to the left for increasing values of 

pressure ratio until the (rp + 1)/(rp - 1) factor approaches unity. 

When the family of net leakage flow curves are extended to the zero 

net flow condition, a corresponding sealing coefficient condition may 

be indicated for each of the pressure ratio curves. Operating the 

rarefied viscoseal at "negative" net-leakage is simply another way of 

saying that the viscoseal has now become a positive flow pump0
 

In Figures 17 through 22 sealing coefficient data and theoretical 

values are presented. Figures 17, 18, and 19 show results for 

Viscoseal No. 1 at 5000; 10,000; and 30,000 rpm. Figure 17 presents a 

comparison of experimental data and theoretical values as predicted
 

by the Modified Hodgson Model. Figure 18 shows the same type of
 

comparison for the Slip Modified Boon and.Tal Model. Theoretical,
 

values are shown for both the mean-value and variable mean free path
 

solutions.' Figure 19 is a similar comparison for the Annulus-Groove
 

Model 0. 

Figures 20 through 22 show experimental and theoretical values for
 

Viscoseal No. 2. Again data and analytical values are shown for each
 

of the three models at-speeds of 5000; 10,000; and 30,000 rpm.
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5. CONCLUSIONS
 

Examination of Figures 10, 11, and 12,; for Seal Nb. -I, indicates
 

that the Annulus-Groove Model gives the best agreement with the
 

experimental data. The Slip Modified Boon and Tal Model gives the
 

poorest agreement. All three models predict the general characteristic,
 

for this low aspect (groove width.to groove depth ratio) ratio, 1.002,
 

seal. It is concluded that none of the theoretical models are completely
 

adequate for predicting the leakage through low aspect ratio viscosealso
 

The Annulus-Groove Model is recommended for low aspect ratio viscoseals
 

and Inverse Knudsen Numbers greater than 5.
 

For Seal No. 2, the results shown in Figures -13, 14, and 15
 

indicate that the Slip Modified Boon and Tal Model gives a better
 

correlation with experimental data than either of the other two models.
 

The only exception is for static (zero rpm), conditions having Knudsen
 

Numbers greater than 0.5 where the Modified Hodgson Model shows better
 

agreement. The aspect ratio of this geometry was 11.071 as compared to
 

1.002 for Seal No. -o As-anticipated the Slip Modified Boon and Tal
 

Model is much better for the higher aspect geometry than for low aspect
 

ratio geometries, The variable mean free path solution is-only slightly
 

better than the mean-value solution to the Slip Modified Boon and Tal
 

Model. In view of the added-complexity of the variable mean free path
 

solution, it isrecommended that the mean-value Slip Modified Boon
 

and Tal Model be used to predict viscoseal leakage for high
 

aspect ratio geometries provided the Inverse Knudsen Numbers are
 

greater than 5. It is of.interest to note that the 2500 rpm data for
 

Viscoseal No. 2 seem to approach a constant specific leakage value with
 

increasing Knudsen number.
 

http:width.to
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In Tables II through VII a comparison between the continuum-slip
 

and composite type-solutions are shown for the Slip Modified Boon and
 

Tal Model and the Annulus-Groove Model. These particular cases were
 

chosen for presentationsince they are the ones which gave maximum
 

deviation between the two solution techniques. Examination of Table II
 

shows that the diffusion flow contributions in both the annular space
 

and the sixteen grooves are only one percent of 'the total composite
 

flow at an Inverse Knudsen Number of 7.0 and decrease rapidly with
 

decreased rarefication At an Inverse,Knudsen Number of 0.01 it, can ,be
 

observed that the diffusion contributes 92 percent of,the total composite
 

solution and thus the transport is essentially free molecular. This
 

same trend is'evident for Ehe other two static cases as shown in
 

Tables IV and VI. In Tables III,, V, and VII-the negative values ,of
 

specific leakage simply indicate that the viscoseal is acting as a
 

pump, i.e., the viscous pumping flowdue to the grooves is ,greater than
 

leakage flow.,
 

For the 'Slip Modified Boon and Tal Model the maximum deviation 

between the composite solution and the.continuum solution is less than
 

three percent for Inverse Knudsen Numbers greater than 5.0. The deviation
 

increases with,rarefication and has a maximum value of approximately
 

twenty-five percent. This maximum occurs at 1I/N K = 0.01 and zero rpm
 

for Seal No. 2.
 

For the Annulus-Groove Model the maximum deviation is less ,than,
 

two percent for Inverse Knudsen Numbers greater than five. The maximum
 

deviation was.approximately sixty percene at 1IN 0.01 and 2500 rpm

K
 

for Seal No. 2.
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The good agreement between the rather complex composite solutions
 

and the continuum-slip solutions for Inverse Knudsen Number greater than
 

five is~apparent. It is concluded that the complex composite solutions
 

cannot be justified for Inverse Knudsen Numbers greater than 5.0.
 

Consideration of the results shown in Figures 17 through 22
 

reveals several important aspects of the three analyticalmodels. Only
 

the Modified Hodgson Model and ,the.variable mean free path solution-to
 

the Slip Modified Boon and Tal Model predict the general sealing
 

characteristics which are evidenced by the experimental data. In
 

general the models predict better sealing performance (smaller sealing
 

coefficients) than what actually existed. It may-be observed that the
 

experimental data indicate that the sealing coefficient parameter
 

becomes speed sensitive as the sealant gas becomes rarefied. This
 

sensitivity to.shaft speed for the rarefied-gas viscoseal is unique
 

from the -operation in the laminar continuum regime where the sealing 

coefficient is independent of shaft'speed (14, 15). This continuum, 

characteristic may be seen by noting the asymptotic behavior of the 

experimental data for 5000 and 10,000 rpm as the continuum (1/N >
K
 

100) regime is approached. These data may be compared since the mean
 

radial cleajance is essentially the same for both speeds.
 

Examination ofFigures 18 and 21 reveals that the mean-value
 

solution to the Slip Modified Boon and Tal Model can predict a seal
 

pressure.differential, AP, which may exceed the magnitude of the upstream
 

pressure. This solution would imply a ,negative absolute value for the
 

downstream pressure, a condition which cannot occur in reality., A
 

limiting criteria to be applied to this theoretical solution to avoid
 

this condition is predictable by considering the variables involved.
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As stated previously, the Knudsen number
 

R
 

o 1/2

1127rjr T)
 

K 2Pc
 

is based on the average pressure in the seal
 

+=PT Pb 2P T - AP 

2 2 

As the downstream pressure approaches zero, then. AP approaches the 

upstream pressure and for this limiting condition 

AP
 
2°
 

Thus, the Inverse Knudsen Number variable may be writtenas
 

APe
(11N
(lINK) = Arc
 
K(27R T)1/2
 

The Sealing Coefficient variable is defined as
 

6cUL
A = 2 ° Ap 


Solving for AP in the Inyerse Knudsen Number relationship and
 

substituting this into the above equation gives the limiting functional
 

relationship
 

limit =e( o ')1/2 (1NK 
c(2Jrw- T!) 

For a given seal geometry, gas, temperature, and operating speed, the 

limiting seal coefficient function varies,inversely with theInverse 

Knudsen Number, I/NK . on a logarithmic plot such as Figure 17, this 

relation will ,plot as a straight line with a slope of minus unity. 
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Points which fall above and to the right of this line are possible while
 

those which fall below and to the left are not possible in that a
 

negative absolute pressure downstream is implied. The limiting
 

relation of Equation (105) is speed sensitive and thus the limit
 

condition can be established for each selected shaft speed. Limit curves
 

for speeds of 5000, 10,000, and 30,000 rpm from Equation (105) are
 

shown on Figures 18, 19, 21,, and 22. The experimental,sealing
 

coefficient data agree well with these limit curves and all points
 

fall within the "possible" regions. In addition, the speed sensitivity
 

of the experimental data agrees with that indicated by Equation (105).
 

It should be noted that the limiting function of Equation (105)
 

results from a limit condition of the variables involved and applies
 

to any and all viscoseal analyses using these variables,
 

The limiting relationship just established is shown on Figures 18
 

and 21 to indicate that the mean-value solution to the Slip Modified
 

Boon and Tal Model when used in conjunction with Equation (105) is a
 

useful technique for predicting sealing coefficientperformance. This
 

limiting relationship can also be used with the Annulus-Groove Model.
 

The devaiation of predicted performance from experimental results
 

is approximately the,same for each of the three analytical models
 

when the limiting relationship is used on the mean-value Slip Modified
 

Boon and Tal Model and the Annulus-Groove Model. Theoretical values
 

are not presented for the composite type solutions since there.is
 

negligible difference between the composite solutions for sealing
 

coefficient and the continuum-slip solutions.
 

Since most practical seal geometries will result in a high
 

aspect ratio, near 10, it is concluded that the simplicity of the mean­

http:there.is
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value solution to the Slip Modified Boon and Tal Model in conjunction
 

with the limiting relationship justifies its use. For low aspect ratio
 

geometries the Annulus-Groove Model in conjunction with the limiting
 

relationship is recommended. The complexity of the variable mean free
 

path solution (Slip Modified Boon and Tal Model) cannot be justified
 

in view of the small improvement in pred-icted ,value. The composite
 

solutions are not practical for thesame reasons.
 

6. RECOMMENDATIONS
 

In general it is recommended that-the mean-value solution to the'
 

Slip Modified Boon and Tal Model, Equation (55)) be used to predict
 

viscoseal leakage for rarefied conditions resulting in Inverse Knudsen
 

Numbers greater than 5. No satisfactory analytical model has been
 

developed in this study to predict leakage for Inverse Knudsen Numbers
 

less than,5. 

To predict sealing performance it is recommended, in general, 

that the mean-value solution to the Slip Modified Boon and Tal Model, 

Equation (50), in ,conjunctionwith the limiting relationship, 

Equation (105), be used. 

It should be noted that the variable-mean-free-path solution to
 

the Slip Modified Boon and Tal Model is more accurate for all conditions.
 

If use is made of a high speed digital computer its complexity becomes
 

less important and thus its use may be justified.
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Figure 2. Viscoseal Development
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APPENDIX A. CONSTANTS FOR HODGSON'S MODEL
 

The following expressions for the coefficients in Hodgson's
 

Model are taken from reference (9).
 

A =NITdb 
2h
 

120(b + h) ...
 

bh3 (b + w)K3
 
B= _12d 

8Kl(bh)2(b + w) kT 1/2
 

o = 3ld(b + h) 21m
 

+
D' = Wde3(b w) 

3w
 

K2(b + h) 2
 

3w3
 
8K 5" kT ,1/2 [.... ( +h81 IE2-m)l/[2KIb - K3 (b +'h)] 

2Klb
 
C2 K3(b + h) I
 

cC= 
811K(2K2 -1) kT1/2 

o=211m0 
C4 
 2K2C3 

3(1 + a) 2 1/2 2 1 + (i + a2")1/2 

K1a2 a aIn (a + (1+ a) )+ a lnl a(14a)
 

3 )3/2
S 1(1+a +a
 

K3 = I - 0.63 h tanh Trb 
3 b 2h
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Values of K2
 

w16 0.1 0.2 0.4 0.8 1 2 3 4 5 10 

K2 0.036 0.068 0o13 0.22 0'26 0.40 0.52 0.60 0.67 0.94 

3 
When w/e > 10, K2 = in C, 

The groove fl6w coefficients, B, C, Cl, and C2 are obtained
 

from a consideration ,of flow in a long rectangular tube. The dontinuum
 

grooveflow coefficient, B, is obtained,from the continuum,solution.for
 

Poiseuille flow in a longrectangular tube. From a consideration of
 

purely molecular flow, the free-molecule flow coefficient, C, can be
 

derived. The basic-free-molecule flow equation used by Hodgson is
 

given in Reference (32) and is written as
 

Q -K3 Sd16 K kT 1/2 02 dP .' (106)
 
3 n(Nf g---

Equation (106) is attributed to Knudsen (32, p. 35), but the constant
 

Kn, which is equal to K2, is obtained by Clausing (32, p. 40). 0 and
 

S are the groove cross sectional area and perimeter, respectively.
 

The two remaining groove flow constants, C1 and C2, are obtained in
 

the same way Knudsen determined N and E in Equation (1). As was
 

pointed out in Section 2.1, the determination of the ratio v/E requires
 

knowledge of the continuum with slip solution. Hodgson does not take'
 

an exact approach at this-point since he determines CI/C2 from the
 

continuum with slip solution for flow between infinite parallel flat
 

plates rather than flow in a long rectangular tube.
 

Hodgson obtains the land leakage flow coefficients, D, E, C 

and C4P from a consideration of flow in a thin slit-like tube. In this 



-94­

case the continuum coefficient, D, is obtained from the continuum
 

solution for Poiseuille flow between parallel ,flat,plates. The same
 

basic model, Equation (106), for free-molecule flow is used to determine
 

the free-molecule flow coefficient, E. Kn now becomes KI' which is
 

also attributed to Clausing. 0 and S now represent the cross sectional
 

area of the land leakage passageway-and its perimet&r, respectively.
 

The constants C and C are also determined using the same approach

3 4 

Knudsen used to determine V and E in Equation (1). For the continuum 

with slip solution, Hodgson once again uses the continuum with slip 

solution for flow between infinite parallel flat plates which in this 

case is the proper solution to use. 
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APPENDIX B. TABULATED EXPERIMENTAL REDUCED DATA
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Net Leakage Reduced Data for Seal No. 1, Zero rpm - Argon Gas
 

Data Point No. 


1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 


PT 


11hg 

16,800 

19,150 

21,400 

22,600 

17,000 

12,150 

9,370 

8,100 

6,850 

5,450 

4,180 

4,200 

2,950 

1,870 


13,800 

1,740 

1,700 

1,720 


752 

428 

318 

251 

216 


4,000 

2,320 

1,460 

1,025 


600 

475 


Pb 


lJhg 

7230 

7705 

8155 

8430 

7465 

565 

538 

522 

512 

500 

495 

490 

487 

482 


1250 

255 

260 

275 

227 

132 

129 

131' 

131 

131 

172 

166 

168 

172 

131 


I/NK N/Ap1
 

x 1014
 

24.68 18.16
 
27.57 20.30
 
30.32 21.60
 
31.87 22.08
 
25.09 17.45
 
13.05 10.60
 
10.15 9.06
 
8.84 8.24
 
7.54 7.28
 
6.10 6.34
 
4.79 5.50
 
4.80 5.46
 
3.52 4.65
 
2.41 3.81
 

15.40 11.31
 
2.10 3.47
 
2.01 3.60
 
2.05 3.59
 
1.00 3.23
 
0.57 3.02
 
0.46 2.83
 
0.39 2.40
 
0.36 2.48
 
4.23 5.26
 
2.55 4.15
 
1.66 3.46
 
1.22 3.30
 
0.77 2.77
 
0.62 3.20
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Net Leakage Reduced Data for Seal No. 1, Dynamic Speeds - Argon Gas
 

Data PT Pb 1I/N N/AP c 
Point, 10-14 3 
No. phg .hg x 1nf 110 

10,000 rpm, a x 10 3.87 in., r = 146.4P 

1 9,380 335 8.83 0.558 3.81
 
2 6,410 60 6.03 0.117 3.80
 
3 13,200 86 12.9 1.50 3.90
 
4 16,700 93 15.9 2.74 3.87
 
5 28,700 150 27.5 7.80 3.87
 
6 32,500 166 30.9 9.80 3.87
 
7 8,050 64 7.78 0.237 3.91
 
10 31,000 233 30.7 10.15 4.01
 

5,000 rpmr x 103 = 3.85 in., rp = 176.6 

11 16,800 63 16.6 7°29 4.01 
12 11,200 42 10.6 4.14 3.84 
13 7,900 33 7.18 2.61 3.69 
14 6,150 30 5.88 1.88 3.88 
15 3,700 27 3.51 0.953 3.84 
16 1,950 26 2.03 0.540 3.76 
17 1,250 29 1.32 0.290 3.94 

30,000 rpm, c x 103 = 3.29 in., r = 807
 

18 44,000 53 36.0 0.451 3.33
 
19 49,900 64 40.9 1.,36 3.33
 
20 39,800 49 31.4 0.038 3.20
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Rarefied Sealing Coefficient Reduced Data for Seal No, 1 - Argon Gas 

Data Point PT P 1/NK A Re a 
No. vhg phg in. x 103 

10,000 rpm, a x 0= 3.98 in. 

SPI 7,160 267 7.47 40.2 1.01 4.18
 
SP2 9,860 1220 lidi 31..8 1.49 4.15
 
SP3 5,200 275 5.01 68.3 0.67 3.80
 
SP9 14,200 3495 16.9 28.3 2.28 3.98
 
SPI0 17,200 6605 22.6 29.3 3.02 3,94
 
SP13 19,200 7755 25.5 27.1 3.42 3.94
 
SP14 8,700 44 8.29 36.4 1.10 3.91
 
SP19 7,350 44 6°96 43.1 0.93 3.91
 

5000 rpm, a x - 103 ='3.99 in. 

SP4 2,600 166 2.69 60.8 0.18 4.04
 
SP5 11,000 4730 15.6 22.5 1.03 4.11
 
SP6 3,880 176 3.94 39.9 0.26 4.04
 
SP7 3,160 407 3.47 53.7 0.23 4.04
 
SP15 2D850 50 2.72 56.7 0.18 3.90
 
SP16 13,300 8245 20.6 30.2 1.39 3.98
 
SP17 3,920 146 3.69 46.5 0.25 3.73
 
SP18 4,400 382 4.65 36.6 0.31 4.04
 
SP20* 4,200 559 4.47 43.6 0.30 3.90
 
SP21* 7,000 1835 8.44 29.6 0.57 3.97
 
SP22* 7,550 1710 8.94 25.5 0.60 4.01
 
SP23* 13,100 8145 20.7 29.8 1.39 4.04
 

*Argon blanket on graphite ring seal.
 

3
 
30,000 rpm, c x 10 3.41 in.
 

SpI 35,200 104 29.3 3407 11.8 3.44
 
SP12 38,100 68 30.9 33.5 12.5 3.37
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Continuum Sealing Coefficient Tabulation Viscoseal No. 1, Gas-Air
 

Data 
Point Speed 
No. rpm 

2 4,905 
3 8,080 
4 11,500 
5 13,200 
6 19,600 
7 23,400 
8 25,400 
9 29,600 
10 31,800 
11 34,600 
12 21,600 
13 9,700 
15 4,800 
16 6,400 
17 7,900 
18 9,700 
19. l1;600 
20 13,150 

22 1,272 
23 3,219 
24 4,644 
25 6,399 
26 7.869 
27 9,582 
28 11,562 
29 13,269 
30 7,392 
31 1,278 

AP A 

in.-H20 


Test Date.6-25-69
 

2.45 

3.74 

5.15 

5.74 

8.49 


10.38 

11.45 

14.27 

16.50 

19,58 

9.45 

4.45 

2.40 

3.19 

3.69 

4.40 

5.12 

5.74 


23.7 

25.6 

26.5 

27.2 

27.4 

26.6 

26.2 

24.5 

22.8 

20.9 

27.0 

25.8 

23.7 

24.5 

25.4 

26.0 

26.8 

27.1 


Test Date 7-2-69
 

0.73 

1.69 

2.34 

3.08 

3.68 

4.35 

5.13 

5.83 

3.51 

0.74 


20.6 

22.6 

23.5 

25.0 

25.2 

26,0 

26.7 

27.0 

24.9 

20.4 


R c 
e in. x 10 

88.1 4.18 
145.4 
207.3 
238.1 
354.7 
424.4 
461.3 
539.5 
581.2 
634.9 
391.4 
174.6 
87.1 

116.2 
143.5 
176o4 
211.1 
239.5 

23.1 4.18 
58.5 
84.5 

116.5 
143o4 
174.7 
211.0 
242.5 
134.6 
23.2 
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Continuum Sealing Coefficient Tabulation Viscoseal No. 1, Gas-Air
 

Data 
Point Speed 
No. rpm 

32 1,566 
33 3,540 
34 5,130 
35 6,690 
36 7,980 
37 9,750 
38 9,990 
39 13,800 
41 14,100 
42 19,230 
43 21,180 
44 23,400 
45 5,040 
46 1,278 
47 3,540 
48 5,010 
49 6,570 
50 7,740 
51 9,720 
52 11,490 
53 13,830 
54 2,580 
55 510 

AP A 

in,-H20 


Test Date 9-2-69­

0.87 

1.80 

2.57 

3.17 

3.70 

4.40 

4.50 

6.01 

6.21 

8.66 

9.34 


10.41 

2.50 

f0.71 

1.81 

2.46 

3.12 

3.60 

4.35 

5.04 

5.99 

1.34 

0.28 


21o5 

23.3 

23.6 

25.0 

25.5 

26.3 

26.3 

27.2 

26.9 

26.3 

26,8 

26.6 

23.9 

21,3 

25.2 

24.1 

25.0 

25.5 

26.4 

27.0 

27.4 

22.8 

21.6 


R c 
c in x 103 

28.1 4.18 
63.7 
92.4 

120.6 
144.0 
176.0 
180.4 
249.7 
255.2 
349.1 
384.8 
425.7 
90.8 
23.0 
63.7 
90.2 

118.4 
139.6 
175.5 
207.6 
250.2 
46.4 
9.2 
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Continuum Sealing Coefficient Tabulation Viscoseal No. 1, Gas-Air
 

Data 

Point. 

No. 


66 

67 

68 

69 

70 

71 

72 

73 

74 

75 

76 

77 

78 

79 

80 

81 

82 

83 

84 

85 

86 

87 

88 

89 

90 

91 

92 

93 

94 

95 

96 


Speed 

rpm 


507 

2,460 

3,600 

5,010 

6,360 

7,470 


699 

1,194 

1,338 

1,530 

1,710 

1,950 

2,190 


270 

627 

867 

762 


1,374 

1,647 

2,229 

2,970 

3,960 

4,980 

5,760 

7,140 

8,280 

9,090 


10,410 

11,640 

12,720 

13,530 


AP A 

in. H20 


. 

Test Date 9-17-69
 

0.2,8 21.5 

1.29 22.6 

1.84 23.2 

2.46 24.1 

3.04 24.8 

3.39 26.1 

0.39 21.2 

0.66 21.4 

0074 21.4 

0.85 21.3 

0.94 21.5 

1.05 22.0 

1.17 22.1 

0.15 21.3 

0.35 21.2 

0.48 21;4 

0.42 21.5 

0.75 21.7 

0.90 21.7 

1.19 22.2 

1.54 22.8 

2.00 23.5 

2,45 24.1 

2.78 24.6 

3.35 25.2 

3.80 25.8 

4.12 26.2 

4.63 26.6 

5.12 26.9 

5.57 27.1 

5.95 27.0 


R 3 
ec in. x 10 

9.2 4.18 
44.6 
65.3 
90.9 

115.5 
135.8 
12.7­
21.6 
24.2 
27.7 
31.0 
35.3 
40.0 
4.9 

11.4 
15.7 
13.8 
24,9 
29.8 
40.4 
53.9 
71.8 
90.4 

104.6 
129.8 
150.6 
165.4 
189.5 
212.0 
231.8 
246.7 
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Net Leakage Reduced Data for Seal No. 2, Zero rpm, Argon Gas
 

Data PointNo. 


1 


2 


3 


4 


5 


6 


7 


8 


9 


10 


11 


12 


13 


14 


15 


16 


17 


P T 


l1hg 

17,000 


14,300 


10,200 


8,080 


3,550 


1,500 


770 


2,460 


5,800 


440 


145 


251 


680 


65,500 


40,500 


28,900 


64 


425 


403 


385 


382 


375 


363 


360 


355 


355 


3.0 


1.8 


2.2 


4.0 


920 


420 


265 


1.6 


1INK /Ap 

- 14
 x 10


18.00 17.50
 

15.10 15.40
 

10.90 11.80
 

8.68 9.87
 

4.02 6.12
 

1.91 4.43
 

1.16 4.05
 

2.89 5.26
 

6.31 8.13
 

0.45 3.81
 

0.15 3.68
 

0.26 3.81
 

0.70 3.92
 

68.10 6.76
 

42.00 3.97
 

29.90 2.93
 

0.067 3.58
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Net Leakage Reduced Data for Seal No.-2, Dynamic Speeds, Argon Gas
 

Data 
Point
No. 

PT
phg 

Pb
lhg 

I/NK N/Ap
X'10­ 14  

e
in. x 103 

' 2500 rpm, c x l0 39 W 7a' 

1 21,200 140 20.70 13.90 3.95 
2 15,700 101 15.20 10.00 3:91 

3 11,000 83 10.40 6.88 3.83 

4 9,000 77 8.62 4.81 3.87 

5 6,200 70 5.95 3.10 3.87 
6 4,670 68 4.68 2.35 4.03 

7 3,240 66 3.27 1.55 4.03 

8 1,850 65 1.89 0.888 4.03 

9 29,200 235 28.50 21.10 3,95 

10 42,900 395 42.40 33,90 3.99 
11 73,000 978 72.40 63.70 3.99 
12 1,180 2.1 1.11 1.14 3.83 
13 222 0.6 0.20 1.,02 3.71. 
14 97 0.45 0.093 1.017 3.90 
15 59 0.40 0.055 1,014 3.79 
16 12,450 53 12.10 7.63 3.95 
17 2,840 6.0 2;67 1.77 3.83 
18 1,410 2.4 1.33 1.15 3.83. 
19 952 1.7 0.92 1.09 3.95 

20 505 1.0 0,48 1.01 3.83 

30,000 rpm, a x 103 = 3.51 in., rp = 246.8 

21 132,500 1050 120.5 35.7 3.68 
22 103,700 530 94.1 16.1 3.68 
23 74,000 150 62.6 1.73 3.44 
24 88,500 515 70.3 5.19 3.22 
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Net Leakage Reduced Data for Seal No. 2, Dynamic Speeds, Argon Gas
 

Data 
Point 
No. 

PT 
hg 

Pb 
phg 

1I/NK 
x 

N/AP 
10 - 1 4  in. 

C 
x 10 3 

5000 rpm, : x 103 = 3.92 in., r' = 891.9 

25 29,800 zoo 29.40 15.6 3.-99 
26 44,500 360 43.50 28°2 3.95 
27 78,800 1000 77.30 59.0 3.95 
28 4,100 2°9 3.61 0.509 3.59 
29 2,850 1.5 2.59 0.352 3.71 
30 6,660 8.5 6.20 1.25 3.79 
31 1,670 0.75 1.45 0.199 3.54 
32 525 0.25 0.41 0.111 3.19, 
33 760 0.30 0.65 0.199 3.47 
34 388 0.20 0.34 0.157 3.59 
35 355 0.20 0.31 0.163 3.54 
36 25,100 137 24.70 11.7 3.99 
37 15,800 81 15.70 5.96 4.03 
38 9,500 59 9.26 2.00 3.95 
39 19,100 106 18.10 8.174 3.97 
40 12,000 80 11.40 3.64 3.77 
41 6,330 69 6.30 0.791 3.77 
42 5,200 75 4.97 0.561 3.75 

10,000 rpm, c x 103 = 3.85 in., r = 1879.2 

43 17,100 70 16.3 1.11 3.87 
44 27,800 109 26.8 5°72 3.91 
45 33,500 135 31.9 '8.55 3.86 
46 23,100 115 21.8 3.23 3.83 
47 7,150 0°6 6.61 0.0251 3.77 
48 14,600 5.5 12.40 0.331 3.46 
49 16,500, 11.0 14.20 0.648 3.51 
50 10,900 2.2 9.71 0o147 3.63 
51 88,100 1000 87.10 52.7 3.99 
52 44,400 265 42.80 16.5 3.91 
53 36,100 180 34.80 10.7 3.91 
54 66,000 550 64.50 33.0 3.95 
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Rarefied Sealing Coefficient Reduced Data for Seal No. 2; Argon Gas
 

Data 
Point 
No. 

PT 
Phb 

Pb 
hg 

I/NK A R 
c, in. 

C 
x 10 3 

5000 rpm, :-x 10- 3.92-in, 

SPI 4,600 90 4.41 35.0 0.296 3.91 

SP2 35,000 28,000 59.80 22.2 4.006 3.94 

SP3 33,000 25,800 55.77 21.6 3.739 3.94 

SP4 12,000 4,400 15.70 20.0 1.053 3.98 

SP5 24,000 16,600 38.90 20.6 2.608 3.98 

SP6 8,950 2,330 10.80 23.0 7.245 3.98 

SP7 8,250 1,670 9.24 24.4 6.195 3.87 

SP8 3,180 50 2.95 53.7 0.-198 3.79 
SP14 42,000 34,800 73.80 21.0 4.945 3.99 

SP15 56,200 49,000 102.80 20.3 6.893 4.06 

SP18 2,610 66 2.36 70.7 0.158 3.66 

SP19 520 3.8 0.45 364 0.030 3.58 

10,000 rpm, c x 103 = 3.86 in, 

SP9 39,000 23,000 58.20 19.7 7.804 3.90 

SPIO 14,000 695 13.54 24.6 1.'817 3.83 

Spi1 
SP12 

10,700 
19,000 

51 
3,380 

9.91 
20.80 

30.8 
20.7 

1.329 
2.788 

3.83 
3.86 

SP13 24,900 8,160 31.00 18.9 4.162 3.90 

SP16 54,000 36,200 87.30 16.8 11.704 4.02 

SP22 4,450 3 3.87 83.1 0.519 3.61 

30,000 rpm, a x 10 = 3.23 in. 

SP20 111,200 42,200 123.00 18.8 49.463 3.33 

SP21 50,200 1.1 36.10 32.1 14.534 2.99 
SP17 63,000 205 51.1 20.3 20.564 3.36 
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Continuum Sealing Coefficient Tabulation Viscoseal No. 2, Gas-Air
 

Data 
Point Speed AP A R c 
No. rpm in. H20c in. x 10 

1 543 0.48 13.43 9.73 4.18 
2 1,148 0.99 13.77 20.6 4.18 
3 4,140 3.50 14.31 73.7 4.14 
4 3,480 2.98 14,13 61.9 4.14 
5 2,850 2.48 13.91 50.7 4.14 
6 2,310 2.00 13.98 41.4 4.14 
7 1,710 1.50 13.80 30.4 4.14 
8 1,110 0.99 13.57 19.7 4.14 
9 570 0.52 13.27 10.11 4.14 
10 4,800 4.01 14.49 85.5 4.14 
11 5,430 4.49 14.70 96.6 4.13 
12 6,090 5.00 14.88 108.1 4.12 
13 6,690 5.46 15.04 1186 4.11 
14 7,380 6.01 15;15 130.6 4.10 
15 8,040 6.51 15.31 1420 4.09 
16 8,700 7.02 15.51 153.0 4.07 
17 9,300 7.47 15.90 162.,0 4.03 
18 10,020 8.01 16.21 173.4 4.00 
19 10,590 8.48 16.51- 181.5 3.96 
20 11,250 9.01 16.52 193.0 3.96 
21 11,790 9.46 16.48 202.4 3.96 
22 12,510 1005 16.46 214.9 3.96 
23 13,110 10.54 16,45 225.3 3.96 
24 14,520 11.74 15.80 254.3 4.03 
25 13,680 11.07 15.78 239°4 4.03 
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Continuum Sealing Coefficient,Tabulation Vfscoseal No. 2, GasrAir.
 

Data 
Point Speed AP A R c 
No.- rpm in.-H 20 ee in. x 103 

Test DatE&9-2-70 

26 4,950 4.11 14.30 89.1 4.18 
27 10,200 8.00 15,28 183.6 4.16 
28 14,850 11.83 15.19 267.2 4.14 
29 16,440 13.31 14.95 296.4 4.14 
30 18,180 15.01 14.66 328.5 4.14 
31 19,590 16.54 14.33 354.6 4.14 
32 21,210 18.34 14.00 384.8 4.14 
33 22,650 20.14 13.61 411.9 4.14 
34 23,700 21.67 13.24- 431.7 4.14 
35 24,930 23.26 12.97 455.0 4.14 
36 25,920 24.79 12.65 474.0 4.14 
37 27,000 26.55 12.'1 494.8 4.14 
38 27,900 28.08 12.02 512.3 4.14 
39 28,890 29.94 11.66 531;7 4.14 
40 29,760 31.81 11.32 549.0 4.14 
41 30,510 33.41 11.05 563.9 4.14 
42 31,410 35.58 10.67 582.1 4.14 
43 32,130 37.32 10.41 596.7 4.14 
44 32,940 39.i3 10.12, 613.2 4.14 
45 34,110 42.43 9.72 637.3 4.14 


