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1. INTRODUCTION

There are several ways of approaching an optimal control problem
by means of the Calculus of Variatioﬁs. Perhaps the most well known
technique, described in a paper by Berkovitz (1), involves adjoining
additional variables to the system, commonly called slack variables,
in order to transform inequality constraints'into differential eqﬁation
constraints. In the new problem all variaples are unrestricted; hence,
the classical theory can be applied. Necessary cohditions for the
Bolza problem are then translated into necessary conditidns for optimal
control. These conditions include the maximpm princip1e of Pontryagin
(20) which is seen to be a consequence éf the Euler Lagrange equations
and the Weierstrass necessary condition, In a papér (12) and in his‘
book (13), Hesténes used a similar method tg s tudy obtimal'control
problems. This method of slack variables hasvbeeg widely used by a
number of authors for some time. 1In féct, as early as 1937, F. A,
Valentine (26) applied it to Lagrange problems with differential
inequalities as added side conditions,

Later Berkovitz (2) applied this tecﬁnique to problems with
bounded state variables., He obtains essentially the results of
Gamkrelidze in Chapter VI of (20) for the nonlinear problem with
inequality constraints involving only state variables., Hestenes'
results were extended by Russak (21) and Guinn (10) to include the
bounded state case.

Another approach, described by Kalman (15), uses the Hamiltonian

theory of the Calculus of Variations as it was developed by

¥



Caratheodory (5). Sagan also utilizes this method in his book (23)
where the maximum principle is shown to follow from Caratheodory's
lgmma in a rather s}mple way. However, as is pointed out by the author,
the usefulness of this technique is quite limifed due to the fact that
unnecessary assumptions must be made regarding the differentiability of
Hamilton's characteristic function and the existence of an admissible
set of inception.

In this thesis a technique described by Park in (18) and (19) and
applied to a simple problem by this author in (11) is to be utilized to
study properties of solutions to various general problems in Optimal
- Control Theory, in particular those with bounded state variables. By
means of an appropriate transformation of variables, ¢ptimal control
problems are converted into Lagrange problems of the Calculus of
Variations. This is accomplished by using mappings satisfying certain
properties which take some euclidean space onto closed control and
state regions.

Of course, the fundamental question must be considered as to
under what conditions is the transformed problem equivaient to the
original one, That is, one must know that solutions to the new problem
lead to solutions of the old one and vice versa. This equivalence
question is discussed in great generality by Park in (18); in this paper
it will only be considered in relation to the particuiar probiems‘
investigated.

In chapter 2, the general problem and the method used are rigor~

ously stated. The concept of equivalence is defined and a simple



equivalence criterion is stated and proven. The particular transfor-
mation to be used herein is exhibited and its use is justified.l"Also
included is a survey of the literature concerning bounded state
problems,

The non-linear control problems with the unit m-=cube as control
region and the unit n-cube as state region are considéred in Chapter
3f . Results similar to those of Berkovitz (2) are obtained as conse-
qﬁenées of the well known necessary conditions for the problem of
Lagrange. The translate to the optimal control éetting of the
hypothesis regarding the rank of the matrix of partials of the
constraining equations with respect to the derivatives of the variables
inQolved is obtained, and a new second order necessary condition .
analogous to the Clebsch condition is developed. In addition, the
question of the singularity of optimal subarcs along boundaries of the
state region is investigated, as is the behavior of solutions at
boundary points where the optimal trajectory either enters or leaves
the state bounda;ry°

In Chapter 4 the results of Chapter 3 are applied to a simple
example for which solutions are completely characterized. The problem
is that of finding a solution to the differential equation ¥ = u from
some fixed starting point to the origin in minimal time under the
restriction that |u| < 1 and including |x| < 1 and |%| < 1 as state
constraints. This chapter also serves as a preview to Chapter 5 in
which the general linear tiﬁe optimal control problem is considered both

in the usual setting where the optimal trajectory is interior to the
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state region and in the state constrained setting. In the unconstrained
(in the state sense) case a generalization of the 'bang - bang"
principle is obtained, and analogous results are found for the state
constrained case. This also leads to a new necessary condition, for
the bounded state problem, This condition is always satisfied in the
unconstrained case.,

Finally, Chapter 6 summarizes the results obtained and offers

some recommendations for possible extensions and generalizations.



2. BOUNDED STATE PROBLEMS AND THE QUESTION OF EQUIVALENCE

In this chapter a general optimal control problem with bounded
state-variables is defined and transformgd into an equivalent Lagrange
Problem by means of suitably chosen mappings defined on the state and
control regions. Precise conditions for this equivalence will be
formulated and specific mappings exhibited for particular state and

control regions satisfying these conditions.

2.1 The Problem
. Let £ be a subset of Rm, euclidean m-space, and I' a subset of R".
The sets @ and T will be referred to as the control region and state
region respectively. Let x° and x! be points in T x° will be referred

! the terminal point. The results herein

to as the initial point and x
may be easily generalized to the case where one has initial and terminai
mdnifolds rather than single points. These, usually defined by systems
qf finife equations, are disjoint, closed subsets of T,

We now consider a differential system whose state at time t is
characterized by a vector x(t) = (xl(t),...,xn(t)) in ' and whose value
is determined or controlled at that time by a vector *

u(t) = (ul(t),...,um(t)) in , the so-called control vector. Let the
system be defined by the differential equations % = f(t,x,u) where f is
assumed to be a continuously differeﬂtiable vector-valued funétion
defined on R x I' x Q where R is the real line. This is é non-autonomous

system of n non-linear first order differential equations in the n + m

unknowns x and u. Let an initial time t, be given and designate the



final time, which is variable, by tl'

In addition, iet fo(t,x,u) be a continuously differentiable real
valued function defined on R XIF x ., We will refer to fo as the cost
function and its integral over the interval'[to,tl]"as the cost-
functional.

The problem to be considered is the following:

Problem I.

Fin& a sectionally continuous control u(t) defined on [to,tl] for some
t) > t, so that there exists x(t), sectionally smooth, defined on
[to’tl] such that

(1) %(t) = £(t,x(t),u(t)) for all t ¢ [to’tl] for wﬁich x(t) is

defined,

(2) x(t) € T and u(t) ¢ Q for all t ¢ [to,t 1,

1

(3) x(to) = x° and x(tl) = xl,

t
(4) f 1fo(t,x(t),u(t))dt is minimized.
t

0
This is an example of an optimal contyol problem with restricted state
variables. Such a control u(t) satisfying (1), (2), and (3) is called
an admissible control. A control for which (1), (2), (3), and (4) is

satisfied is called an optimal control, and its corresponding x(t) is

called an optimal trajectory.

2.2 Review of Literature
“This type of problem has been considered by a nutber of people.
The papers by Berkovitz (2), Guinn (10) and Russak (21) have already

been discussed in Chapter 1. 'They both use the method of slack



variables to translate necessary conditions for the Bolza problem into
necessary conditions for the above problem.

Other approaches have been more direct and do not utilize the
Calculus of Variations. Gamkrelidze (20) adjoined the total time deriv-
ative of the state constraint to the cost functional and treated the‘
resulting problem in the same fashion as he and Pontryagin did for the
unconstrained problem. His 'regularity'" assumption, which also arises
in this thesis but for different reasons, is made in order to insure
that the control explicitly appears in the derivative of the constraint
so that it directly influences his new cost functional.

In conjunction with numerical applications, Bryson et al. (4)
developed techniques for avoiding this assumption in some cases by
using higher order derivatives of the constraint. Results related to
this are also demonstrated in a paper by Speyer and Bryson (24).

Dreyfus in (8) and (9) uses the method of dynamic programming to
obtain results similar to those of Berkovitz. In fact, Berkovitz and
Dreyfus compared their previous results in a joint paper (3) in 1965.

The penalty function approach is entirely different from all of the
above. This method, first described by Chang in (6) and (7), involves
the following. Instead of attempting a direct solution, an uncon-
strained problem is considered wherein the original cost functional is
augmented by a non-negative penalty function which sharply increases
the cost associated with trajectories which violate the state
constraints. By using sequences of cost functionals involving more and

more severe penalties it is to be expected in many cases that the



desired solution to the original problem will be obtained as the limit
of the solution of the approximate prqblem. This technique has been
subsequently refined and further results obtained by Russell (22) and
Jacobson et al. (14).

In (16) Khrustalev discusses the very difficult question of suffi-
ciency for constrained state problems, and finally McIntire and
Paiewonsky, in an expository paper written in 1964, survey thg

techniques known at that time.

2.3 Transformation into a Lagrange Problem
We shall now state the method to be used herein to treat problems
of the type described in 2.1 as Lagrange problems in the Calculus of
Variations.
Consider the functions ¥ and ¢ defined so that y: Rk -+ O and
d: R2 -+ T where k and 2 are natural numbers. Assume that both ¢ and ¢

are onto and continuously differentiable., Then if we let x = ¢(y) and

u = P(2) and restate our original problem in terms of the new variables

y (yl,...,yl) and 2 = (él,...,ék) we obtain the following:
Problem II.
Find a sectionally continuous z(t) defined on [to,tl] for some t, > t,
so that there exists y(t), sectionally smooth, defined on [to,tl] such
that |

(D' 32 (0) F(&) = £(r,0(5(0)), V(&) for all t e [t ,t,]

for which y(t) is defined,
(2)' y(t) ¢ R and 5(t) ¢ RS for all t & [t_,t ],

(3)" ¢(y(t)) = x° and s(y(t))) = x!,



t
4" J Y (t,0(y(8)), ¥(2(£)))dt is minimized.

t
0]

In (1) %ﬁ- is used to denote the n x % matrix of partial deriv-
atiQesAof the components of ¢ with respect to the components of the
vector y. Notice also that thié new problem is unconstrained in the
sense that the new variables.y and 2 are allowed to take on any values
inh ﬁg and Rk respectively.

The variable Zz which takes the place of the control u is intro-
duced as a derivative so that the new problem will satisfy the
hypothéses for the necessary conditions to the Lagrange problem which
require that solutions, in this case y(t) and z(t), be sectionally
smooth. That is, a sectionally smooth solution of problem II, y(t)
and 'z(t), will lead to a sectionally continuous control u(t) = $(z(t))
and .a sectionally smooth trajectory x(t) = ¢(y(t)) as its countérpart
in problem I.

We may now view problem II as a Lagrange problem with unknowns y
and 'z, constraining differential equations given in (1)', boundary
conaitions (3)' and with (4)' giving the functional to be minimized.
Hence all the well known classical theory associated with this problem
ﬁay be applied in order to find solutions. A full discussion of this
theory is contéined in Chapter 6 of (23).

However, Before we proceed farther along these lines, we must
establish under what conditions is problem II actually equivalent to
prqblem I, in the sense that a solution to problem II leads to a
solution of problem I and vice versa. That is, we must be able to

translate necessary and sufficient conditions for y(t) and z(t) in
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problem II into necessary and sufficient conditions for u(t) = Y(2(t))
and x(t) = ¢(y(t)) as optimal controls and optimal trajectories in
problem I. The next two theorems provide an answer to this question.

Definition 2.1, The mappings ¥ and ¢ shall be called an acceptable

pair of transformations provided the following are true:

(1) v: RS Q, ¢ RY > T for some k and % and both are onto and

continuously differentiable;

(2) for any sectionally smooth x(t) defined on some interval
[to,tl] such that x(t) € T for all t, there exists a
sectionally smooth y(t) defined on [to’tll such that y(t) € El
and ¢(y(t)) = x(t) for all t ¢ [to,tl];

(3) for any sectionally continuous u(t) defined on some interval
[to,tl] such that u(t) ¢ @ for all t, there exists a
sectionally continudus é(t)'defined on [to’t1] such.that
v(2(t)) = u(t) for all t ¢ [to,tl];

Theorem 2,1. If Y and ¢ are an acceptable pair of transformations and
z(t), y(t) defined on [to,tl] yield a solution to problem II then

u(t) = P(2(t)) and x(t) = ¢(y(t)) yield a solution to problem I.
Proof: We shall verify that x(t) and u(t) satisfy (1), (2), (3) and
(4) of problem I. Since x(t) = ¢y(y(t))>‘r(t) = £(t,6(y(t)),v(2(t))) =
f(t,x(t),u(t)) we see that (1) is satisfied. Clearly (2) follows from
(1) of definition 2.1, and x(to) = ¢(y(to))= xo, X(tl) = ¢(y(tl)) = x!,
so (3) is satisfied. Now suppose (4) were not true, then there would

exist x(t), u(t) and?1 satisfying (1), (2) and (3) such that

t - = Y
J fo(t,x(t),u(t))dt < J fo(t,x(t),u(t))dt.

t t
o] o
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Now applying (2) and (3) of definition 2.1 there exists y(t) and z(t)

such that ®(t) = ¢(y(t)) and u(t) = ¥(z(t)) for all t ¢ £, T, 1

1
£(e,x(),ult)) = £(£,6(3(£)),¥(z(£)))

Then we have ¢y(;(t)).;(t) =.§(t)

O —
for all t and moreover x = x(to)

1]

o(y(e)), x! = x(e)) = ¢(y(e))).

However,

t . t .
f (e, 0G(8),¥(z(e)))de [ £ (e, x(0),u(t))de <

t t
0. 0

t, t
f 1f(t,_x(t),u(t))dt = f 1fo(t,¢(y(t)),w(é(t)))dt
t t

o 0
which contradicts the fact that y(t) and 2z(t) yield a solution for
problem II, Thus (4) must be true and hence x(t) and u(t) yield a
solution to problem I,

The next theorem is the converse of theorem 2.1,
Theorem 2,2. If ¥ and ¢ are an acceptable pair of transformations and
u(t), x(t) defined on [to,tl] yield a solution to problem I then any
sectionally smooth y(t) and z(t) such that x(t) = ¢(y(t)) and
u(t) = P(z(t)) for t e [to,tI] yield a solution to problem II.
Proof: We know that at least one such y(t) and z(t) exist by (2) and
(3) qf definition 2.1, We must therefore show that such a y(t) and
z(t) satisfy (1)', (2)', (3)' and (4)' of problem II. Notice that
¢Y(Y(t))9(t) = %(t) = £(t,x(t),u(t)) = £(t,¢(y(t)),¥(2(t))); thus we
have that (1)' is true. Moreover (2)' is trivially satisfied and since
d(y(t)) = x(¢) = x and ¢(y(t))) = x(t)) = x!, (3)' 1s also. Now if

0
y(t) and'é(t) defined on [to,?&] satisfies (1)', (2)', (3)'" and

t K
| j ' (£,0G(0),9(z(0))dt < J
t

t
YE (e,6(y (), 0((e)))ae
t

o] o]



then i£ is easily seen that x(t) = ¢(§(t)) and u(t) = w(;(t)) will
contradict the optimality of x(t) and u(t). Thus y(t) and z(t) must
yield a solution to problem II.

The following corollary follows immediately from theorems 2.1

and 2.2.

Corollary 2.1. If Y and ¢ are an acceptable pair of transformations

then any necessary or sufficient condition for y(t) and 2(t) to be a
solution of problem II yields a necessary or sufficient condition
for x(t) and u(t) to be a solution of problem I when the condition

is restated in terms of x(t) = ¢(y(t)) and u(t) = P(2(t)).

12

A much more general discussion of the equivalence of minimization

problems is contained in (18), particularly in regard to unconstrained

problems.

2.4 The Control and State Regions as Right Parallelepipeds

Consider problem I with

D
It

{u e R™: a; Su b, 1= l,...,m} and

1,...,n}

3
i

{x e R cg Sx <d;, 1

where a,,b,,c, and d, are real numbers such that a, < b, and c, < d
i*7i% 71 i i i L1 i

for each i. Then & and T defined in this way constitute right

parallelepipeds. Now define y: R" > @ by ¢ = (wl,...,wm) where

u; = wi(é) =% ((bi - ai) sin éi + (bi + ai))

for i = 1,...,m. Also let ¢: Rp -+ I be given by ¢ = (¢1,...,¢n) where
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x, = ¢.(y) = %‘((di - ci) sin y, + (di + ci))

for i =1,...,n.
Theorem 2.3. For this choice of @, T', y and ¢, the mappings ¥ and ¢

constitute an acceptable pair of transformations.

Proof: Since -1 < sin éi < 1 for all real numbers éi’ we have
(a, -~ b,) (b, - a,) (b, - a,)
i i i . i i
5 = 3 sin z, < 5 , and therefore
a, = (ai _ bi) + (bi * ai) < (bi _ ai) sin 2, + fgi—t—iil =y (2)
i 2 2 - 2 i 2 i
) (bi - ai) . (bi + ai) o
- 2 2 i

fori=1,...,n,

Thus we see that Y(2) €  for all 2 e R", Similarly we can show that
6(y) ¢ T for all y ¢ R". Moreover ¢ and ¢ are clearly continuously
differentiable. Now let u(t) be a sectionally continuous function
defined on [to’tll such that u(t) € Q for all t ¢ [to’tI]‘ Define

z(t) by

2ui(t) - (bi + ai)
(bi - ai)

~1

éi(t) = gin

We first notice that each éi(t) is well defined for all t ¢ [to,tl].

This is true since u(t) ¢ @ means that a, < u (t) <b, fordi=1,...,n

i

and hence it follows that a, - bi = Zai - (bi + ai) g_Zui(t) -

(b, +a) <2, = (b, +a)=b ~a.
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Dividing this inequality by bi - a, we obtain
2ui(t) - (bi + ai)
L= ®, -ay =L
i~ %

Hence the sin-l of the middle term in the above inequality is well
defined. Note that this argument yields that ¥ is onto since u(t)
may in general be any point of 9 and clearly if % is defined in the
above fashion for any u € 9 we have Y(2) = u. Moreover,°since sin~t
is a sectionally continuous function, we see that the Z(t) which we
have defined will be sectionally continuous also. Therefore V
satisfies condition (3) of definition 2.1, If x(t) is a sectionally
smooth function defined on [to’tll such that x(t) € T for all

t e [to,tl], we can satisfy condition (2) of definition 2.1 by
defining

2xi(t) - (di + c,)

(di - Ci)

i

y; () = sin + 21 j(i,t)

for i =1,...,n and t ¢ [to’tl] where j(i,t) is a integer chosen for
each i and t to insure that yi(t) is not just sectionally continuous
but also sectionally smooth. Since sin (27mj) = 0 for all integers j,
this term does not affect the relationship ¢(y(t)) = x(t)., Thus the
theorem is proved and we have shown that Y and ¢ are an acceptable
pair of transformations.

We now have that for this particular choice of Q, T, ¥ and ¢ that
theorems 2.1 and 2.2 apply, and hence, in this case, problem I is

equivalent to problem II.



In the case that some of the components of u or x are to be
unrestricted, while the remainder are constrained between maximum
and minimum values as previously, one simply defines wi(é) = u, or
¢i(y) = % for those particular ones and defines the rest of the
components of ¢ and ¢ as is done p;eviously with the sine functionm.
Clearly, in this case, the results of theorem 2,3 also follow. For
numerical applications the previous formulation is more desirable
as in effect it covers both cases. When a component of u or x is to
be unrestricted, one simply inputs to the system maximum and minimum
values of the variable which are exceedingly large and exceedingly
small respectively, thus effectively eliminating the constraint.

For simplicity sake, in the remainder of this text we shall let
2 be the unit m~cube and T be the unit n-cube. That is, we will set

a, = -1, bi =1 fori=1,...,m and ¢, = -1, di =1 fori=1,...,n.

Then ¢ and ¢ reduce to ¥(2)= u = sin 2 (sin él,...,siﬁ ém) and

o (y) x = sin y = (sin yl,...,sin-yn).
Examples of acceptable choices of ¥ and ¢ corresponding to more

general control and state regions are contained in (18),

15
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3. NECESSARY CONDITIONS FOR THE NONLINEAR BOUNDED STATE PROBLEM

Let us first introduce for notational convenience an operation
on pairs of vectors which we shall designate by "#", If a = (ai)2=l
and b = (bi)ril=1 are n-vectors, then define awb ¢ R" to be the n-vector
(aibi)?=l° Clearly "*" is commutative, associative and distributive
with respect to addition. That is, if a,b,c € R then ax(b + c¢) =
axb + axc. We shall use a‘b to designate the ordinary dot product of
the vectors a and b.

In addition, for a € R" we introduce the notation "diag (a)" and
define diag (a) to be the n x n diagonal matrix whose diagonal elements
are precisely the components of a, Notice that for a,b ¢ R" we have
diag (a)b = a#*b,

Now consider problem I in section 2.1 with

D
1]

]

{ue R™: |ui| <1,1i=1,...,m}, the unit m-cube, and

{x e R": |x = 1,...,n}, the unit n-cube.

=1
¥
A
=
-
-
|

=

Then if we define ¢ and Y by

¢ (y)

I
"
il

sin y and

il
(=
n

sin 2,

v(z)

then theorems 2.1, 2.2, and 2.3 insure that for this case problem I is
equivalent to problem II in section 2.3, Note that we now have that
%$-= diag (cos y) so that %5-? = cos yxy. Hence the constraining

differential equations for problem II become
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cos yxy = f(t,sin y,sin 2).

The boundary conditions are

sin (y(to)) = xo, and sin (y(t)) = xl,

and the cost functional is

t
J 1fo(t,sin y(t),sin 2z(t))dt.

t
o]

Define the functions ¢0,¢,WO and Wl taking values in R? by

0,(t,y,8) = E(t),sin y,sin 2,
o(t,y,v,2) = cos yxy - f(t,sin y,sin 2),

¥ (y) = siny - x° and

¥, (y) sin y - xl.

Then, if we restate problem II of section 2.3 for the particular
problem considered in this chapter using the above functions, we
obtain: |
Problem II'

Find piecewise smooth vector functions y(t) and z(t) defined om

[to’tI] where t, is fixed and t. is variable which satisfy the

1

constraining differential equations ¢(t,y,v,2) = 0, the initial

conditions Wo(y(to)) = 0, the terminal conditions Wl(y(tl)) = 0 and

t
1
is such that f @O(t,y(t),z(t))dt is minimized.

t
0]

The following theorem summarizes the results found in chapter 6
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of Sagan's book (23) concerning properties of solutions to the above
problem,
Theorem 3.1. If y(t) and z(t) defined on [to’tl] constitute a solution
to problem II' and if the following conditions are satisfied
@D @O,Q,Wb and Wl are continuously differentiable,
(2) along w(t) and z(t) we have rank(a( ) ) = n for all
ad . .
t e [to’tl] where 53,5 is the n x (n + m) matrix of
partials of the components of ¢ with respect to the compo-
nents of ¥y and 2;
BWO 8?1
(3) rank (33;— (y(t))) = n = rank (5-};— (y(t D)),
then there exists a vector function A(t) = (Al(t),...,Xn(t)) defined
on [to’tl] which is continuous except possibly at the points where
y(t) and/or z(t) are not smooth and a constant Ao < 0 with
(gsh (8)5uees) (£)) + (0,0,...,0) for all t ¢ [t,,t,] such that the
following statements are true:

(1) Euler Lagrange Equations

define h(t,y,}",é,k) = —AO @o(t’y:,é) + K'@(F,Y',f?,é)s then the

differential equations

d o .
h (t,y,9,2,2) —Eh (t,y,9,2,0) =0 and
7‘11? h, (t,,¥,2,0) =

are satisfied along every smooth arc of y(t) and z(t) where
hy’h§’ and h.z denote the vectors of partials of the funection

h with respect to the vectors y,y and 2z respectively;
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(2) Corner Conditions

across every corner of y(t) and z(t) we must have that each
component of

h§(t,y(t),9(t),é(t),h(t)),

h, (£,y (8,5 (), 2(c) ,A (1)), and
h(t,y(t),y(t),2(t) ,A(t)) - &(t)-hﬁ(t,y(t),9(t),é(t),x(t)) -
= 2(t) b, (t,y (), (1) ,2(t) ,A ()
are continuous;

(3) Transversality Conditions

there exists a constant vector v = (vl,oc.,vn) such that

(Ao,vl,.ao,vn) + (0,...,0) and

0=-=219% =h,y - h,2
00 v - 2
vy = h, and
oy y
0 = h,
Z

where the above relations are evaluated at to,y(to),ﬁ(to),i(to)
and A(to), and there exists a constant vector u = (ul,...,un)

such that (Ao,ul,.,,,un) + (0,...,0) and

0==- 210 ~h.,:y - h.,+2
o 0 v z
uy = h, and
ly y
0 = h,
z

evaluated at tl,y(tl),i(tl),é(tl) and A(tl);

(4) Clebsch Condition

for each t ¢ [to’tl] and for all vectors ¢ € Rp, p € R"
which are solutions to the linear systems

®y(t,y(t),§(t),§(t))o =0 and



20

Qz(t9Y(t)9§(t)sé(t))p =0
we must have that

0'1’1..0 + O'h. gel + G'hol + .h > O
yy zy yzp P P =

22
evaluated at t,y(t),y(t),2(t) and A(t) provided the
functions fO and f are twice continuously differentiable

(see Hestenes (13));

(5) Weierstrass Condition

for all (t,y(t),é,é) satisfying the constraining equations,

t e [to,tl], we have
E(t,y(£),5(6),2(t),5,2,A(t)) > 0

where

. .
Py

E(t,y,7,2,5,2,A) = h(t,y,¥,2,A)
=~ h(t,y,¥y,2,A) + (y = ?)'h9(t’y’9sé’x)

+ (é - é)'hé(t,y’§!é’A)‘

Using these necessary conditions we shall now determine what
they mean in terms of our particular problem, Notice that since
f0 and f were assumed to be continuously differentiable we have that
¢0,®,Wo and Wlare by definition continuously differentiabler Hence
assumption (1) of theorem 3.1 is satisfied for our particular
problem,

Now let x(t) and u(t) defined on [to’tl] yield a solution to
problem I of section 2.1.with our particular control region £ and

state region I', Then by theorem 2.3 there exists y(t) and z(t) such
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that sin (y(t)) = x(t) and sin (2(t)) = u(t) for all t ¢ [to,t ], and

1

moreover, theorem 2.2 tells us that y(t) and z(t) yield a solution to

problem II'. We assume that hypotheses (2) and (3) of theorem 3.1

are satisfied. Therefore theorem 3.1 may be applied to y(t) and z(t)

thereby establishing corresponding conditions on u(t) and x(t). How-
ever, before proceeding further, some results should be exhibited
describing under which circumstances assumptioné (2) and (3) of theorem
3.1 will be met. The next four theorems will accomplish this.

Let M(t) be the n x m matrix fu diag (cos Z) evaluated at
(t,y(t),y(t),z(t)). Suppose at time t there are precisely % state
constraints in effect; that is, & components of the vector x(t) have
absolute value one. Define'ﬁ(t) to be the 2 x m submatrix of M(t)
consisting only of the rows of M(t) corresponding to components of
x(t) with absolute value one.

Theorem 3.2. For all t ¢ [to’tl]’ M(t) has rank 2.
Proof: This theorem follows from assumption (2) of theorem 3.1,

Since ¢ = cos y%y - f, we see that

Sy = (diag (cos y(£)), M()).

If lxi(t)|‘< 1 then since xi(t) = gin (yi(t)) we have that cos yi(t) + 0
and thus the rows of the above matrix corresponding to the n - £
components of x(t) with absolute value less than one are linearly
independent. However, for the % coordinates where |Xi(t)l = 1 we have
that cos yi(t) = 0 and therefore ——EE%T-will have maximum rank if and

90(¥,z

only if the rows of M(t) corresponding to these components are
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linearly independent. In other words this means that ﬁ(t) must have
rank £.

We can see from the above proof that this theorem gives a
necessary and sufficient condition for assumption (g) of theorem 3.1
to be satisfied. Moreover, it can be easily seen that all trajectories
which never meet the state constraint boundary automatically satisfy
hypothesis (2).
Theorem 3,3, If x(t) is in the interior of T for all t € [to9t1]’
then hypothesis (2) of theorem 3.1 is satisfied.
‘Proof: 1In this case |Xi(t)| <1 foralli=1,...,n and t € [to’tI]
and so cos (yi(t)):+ 0 for all i = 1,...,n and t ¢ [to’tl]° Therefore

rank (diag (cos y(t))) = n and hence,
rank 3?%%57 = rank (diag (cos y(t)),M(t)) = n.

The next theorem tells us something about when a system is over-
constrained. It simply says that at any time, there cannot be more
constraints in effect, both state and control, than there are control
variables. Suppose that at time t there are k components of u(t) such

that lui(t)| = 1; that is, there are k control constraints in effect.

Theorem 3.4. kK + & < m at every time t ¢ [to,tl].

Proof: According to theorem 3.2, the & x m matrix M(t) must have rank
2. Now M(t) = fu diag (cos z(t)) and consequently each element of
column i of M(t) is multiplied by cos éi(t) for i =1,...,m. More-

over, each element of column i of M(t) is multiplied by cos éi(t) also.

For each component of u(t) with absolute value one we have that
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cos éi(t) = 0 since ui(t) = sin (2i(t)). Hence at least k columms
of M(t) have all zero elements. Thus the rank of'ﬁ(t) is at most
m - k, and so
rank (M(t)) = & < m - k or equivalently k + & < m,
The next theorem gives a necessary and sufficient condition for
hypothesis (3) of theorem 3.1 to be satisfied.
Theorem 3.5. The vectors x(to) and X(tl) are interior to T,
1

Proof: Recall that Wo = gin (y) - x° and ¥, = sin {(y) - x!. Thus we

- oY oY
have —= = diag (cos y) = — and this matrix will have rank n if

dy 3y
and only if cos Y + 0 for i = 1,...,n, or equivalently, Ixil <1
for i = 1,...,n., But this is the same as requiring that x be interior
to I'. Therefore x(t) will satisfy hypothesis (3) of theorem 3.1 if
and only if poth x(to) and x(t;) are interior to I,

We shall now proceed to determine the consequences of conclusions

(1) through (5) of theorem 3,1 for x(t) and u(t).

Let the function H, called the Hamiltonian, be defined by
H(t,x,u,A) = Aofo(t,x,u) + Aef(t,x,u).

Theorem 3.6. There exists a vector function A(t) = (Al(t),...,kn(t))
defined on [to,tl] which is continuous except possibly at the points
where u(t) is not continuous and a constant AO < 0 with
(AO,Al(t),.,,,An(t)) + 0 for all t ¢ [to’tl] such that for i = 1,...,n
either

x (0] =1 or_ii(t) + Hxi(t,x(t),u(t),A(t)) =0



24
and for j = l,...,m either
luj<t>| = 1 or H_(t,x(t),u(t),A(t)) =0

J

on every smooth arc of x(t).

Proof: First notice that
h = A« (y%cos y) - H(t,sin y,sin z,})

and thus h§ = AxCcos y, SO

d N . .
it hﬁ = Axcos y =~ Axsin y*y, and
hy = - Azxyxsin y - Hx(t,sin y,sin 2,A)xcos y.

Hence conclusion (1) of theorem 3.1 becomes

d . . . . s
hy - 3T h§ = - Axysxsin y Hx(t,51n y,sin Z,\)#cos y

- A% cos y + Axsin yxy = 0
That is,

_(i + Hx(t,sin y,sin 2,A))%xcos y = 0

from which the first part of the theorem follows. For the second

part we have

h, = Hu(t,sin»y,sin Z,A) xcos Z

z
and so from the Euler Lagrange equations Hu*cos z must be constant

on each smooth subarc of x(t). In addition, the corner conditions



tell us that this quantity is continuous, and hence Hu*cos Z must
be constant for all t € [to’t1]° Moreover, looking at the trans-
versality conditions we see that hé = Hu*cos z=20 for t = t, and

t=t Thus, along the solution

1-

Hu(t,sin y,sin Z,A)%xcos 2 = 0

from which the second part of the theorem follows.

Corollary 3.1. If x(t) is in the interior of T for all t ¢ [to,tl],

then

A(e) + H_(t,x(t),u(t),A(£)) = 0

on every smooth subarc of x(t).

Corollary 3.2. If u(t) is in the interior of  for all t ¢ [to,tl],

then

Hu(t,x(t) ,u(t) ,A(t)) =0

on every smooth subarc of x(t).

Definition 3.1. Let i be an integer such that 1 < i < n; then the

point x(t*) for t* € (to,tl) is called an i-boundary corner of x(t)

provided either x(t) is not differentiable at t = t* or t* is a point

of discontinuity of u(t), and Ixi(t*)l = 1.

25

Theorem 3.7. For each i = l,...,n,Ai(t) is continuous except possibly

at i-boundary corners of x(t). The function H(t,x(t),u(t),A(t)) is

continuous for all t ¢ [to,tl].
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Proof: From the corner conditions, since h? = Axcos y we must have
that the product Ai(t) cos yi(t) is continuous across each corner
of (y(t),z(t)). Let t* be a corner of (y(t),z(t)). Then either
x(t) is not differentiable at t = t* or t* is a point of discon-
tinuity of u(t). Suppose t* is not an i-boundary corner. Then
lxi(t)l < 1 and consequently cos (yi(t*)) 4 0. Thus since cos (yi(t))
is a continuous function which is non-zero for t = t* and "
Ai(t) cos yi(t) is continuous at t = t*, we must have that Ai(t) is
continuous at t = t*., Since we already know that Ai(t) is continuous
at all points where (y(t),z(t)) is smooth, the first part of the
theorem follows. In addition the corner conditions yield that
h - 9-h§ - 'z-hé must be continuous across corners. But it was seen
" in the proof of theorem 3.6 that along the sdlution hé = 0 and
H = Ae(J%cos y) - h = &-h§ - h. Therefore H(t,x(t),u(t),r(t)) is
continuous across all corners of x(t), and hence it is continuous
for all t ¢ [to,tl].

Corollary 3.3. If x(t) is in the interior of T for all t ¢ [to,tl],

then A(t) is continuous on the interval [to’tl]'
Theorem 3.8. The Hamiltonian function evaluated at the initial and
terminal points of a solution is zero. That is,
H(t,x(t) ,u(t) ,A(t)) =0
for £t =t and t = t..
0o 1
Proof: We shall apply the transversality conditions of theorem 3.1.

Notice that @O = fo’ and recall from the proof of theorem 3.6 that

hé = 0 along a solution. We also have that Hi = Axcos y, and so



h§-§ = (A%cos y).y:= A+ (yxtos y) = A.f-along a solution. .Thus
the transversality conditions yield that A £+ A.f =H =0 for
t=t and t = t_.
L0 1
The next theorem follows from theorem 3.6.
Theorem 3.9, If the function u(t) is differentiable except at its

points of discontinuity then H(t,x(t),u(t),A(t)) is differentiable

except ét these points and
L H(E,x(0),u(0) ,A(D) = H_(£,x(t) ,u(e) ,A(1),

Proof: Since HA = f which is equal to X along our solution,

4 U -H +H x+H--0+H 1
t X u A

5\ a. o.
Ht + (A + HX) X + Hu u

From theorem 3.6, on every smooth arc either Ixil 1, in which case

0, or_ii + Hx =0 fori=1,...,n, and also either Iujl =1,
i

X,
i

in which case 4, = 0, or Hu =0 for j=1,...,m. Therefore, using
) j
these facts, we see that the last two terms on the right hand side of

the above equation are zero and hence, along each smooth arc of our

, d _
solution ar H = Ht'

Corollary 3.4. 1In the case of an autonomous problem, that is, if the

functions f0 and f are independent of t, then
H(t,x(t),u(t) ,A(t)) =0

for all t ¢ [to,tl].

27
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Proof: This follows from theorems 3.7,3.8,.and 3.9.

Theorem 3,10. Let t € [to,tl] and Y € Rm. Decompose Y into two

subvectors ;-consistiﬁg of those components of Yy corresponding to
coordinates of u(t) for which luj(t)l =1, and ¥ consisting of those
coordinates of u(t) for which luj(t)| < 1. Decompose the vector u
similarly. Then for all Y and for all ¥ satisfying the equations
fﬁY = 0,

¥ (H_#G#Y) - ¥:H..Y > 0 at time t.
u uu

Proof: We shall apply the Clebsch condition of theorem 3.1. The

matrices h?ﬁ,h and 1'1}.7.z are all 0, Thus the Clebsch condition

2y

reduces to: p*h 5P >0 for all p ¢ R" such that ¢ép = 0. Now by

z
differentiation and appropriate substitution we obtain

Qé = - fu diag(cos z) and héé = dlag(Hu*u) ~ diag(cos z)Huu,dlag(cos zZ)..

Therefore,

p-héép = p-dlag(Hu*u)p - p+(diag(cos z)Huu diag(cos 2)p)
= ps(H *uxp) - (p*cos 2).H (pxcos %), and
u uu
é,0 = - £ (p*cos 2).
z u

Let v € Rm such that ¥ satisfies fﬁ? = (0, Set P =Y and let § have

Y
A k N . . . [3
components p, = ESE—;; . This is possible since cos 2 + 0 for
each k such that uy € G, Then clearly ¥ = f#cos Z. For each k such

that v € i we have |uk| <1, and consequently by theorem 3.6,
Huk(t,x(t),u(t),k(t)) = 0, Thus, p‘(Hu*u*p) = 53(Hu*ﬁ*6) =‘7-(Hﬁ*ﬁ§7)

because the other terms involving components of § are all zero.
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Also, since Y = 0O%cos z, fa(ﬁ*cos 5) = 0 and since cos ék = 0 for

all k such that z € é; we obtain Qéo = - fu(D*cos z) =

k

0. Moreover, for the same reasons

= ~ f_(P*cos %)
u

(Pxcos é)-Huu(p*cos z) = Y-Hﬁﬁv. Therefore, by the Clebsch condition

we obtain

peh,.p = p+(H #u%xp) - (Pxcos z)-H (pkcos %)
u uu

2z

= V- (H_%TU%Y) - Y+-H..¥ > 0
u uu

and the theorem is proved.

The next corollary is perhaps a more usable form of theorem 3.10.

Corollary 3.5. Let t € [to’tl] and T,4,Y and ¥ be defined as in

theorem 3.10., Then each component of the vector HE*U is non-negative,
and for all ¥ such that f.y¥ = 0, Y-H..¥ < 0.
u uu
Proof: Successively apply theorem 3.10 with ¥ = 0 and each component
of ¥ equal to zero except for the k—th component which is set equal
to one. Then V-HGGY = 0 and the result of theorem 3,10 reduces to
H W > 0., Doing this for all k such that w € 1 we obtain that each
W
component of Hﬁ*ﬁ'is non-negative, Now apply theorem 3,10 with
Y = 0 and ¥ any vector such that fﬁY = 0. Then theorem 3.10 implies
hat YH..Y < O.
that YHuuY <0
Notice that since corollary 3.5 clearly implies theorem 3.10,
the condition in corollary 3.5 is actually equivalent to the condition

in theorem 3.10.

Theorem 3.11. Let t € [to’tl]' Then for all v ¢ Rm such that |vi| <1

for i =1, ..,m and f(t,x(t),v) = O where f consists of all coordinates
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of f corresponding to components of x(t) for which |x (£)] = 1, the
"

following is satisfied:
H(t,x(t) ,u(t),A(t)) > H(t,x(t),v,A(t)).

Proof: The Weierstrass condition in theorem 3.1 shall be applied.
Suppose v € R™ such that 'Vil <1 fori=1,...,m and f(t,x(t),v) = 0.

£, (t,x(t),v)

2 _ . -1 2
Let Z = sin ~(v) and Yk = “os (yk(t)) for all k such that

|Xk(t)| <1 with.}'”rk chosen arbitrarily for all k such that lxk(t)' = 1.
Then ?*cos y(t) = £(t,x(t),v) = £(t,sin y(t),sin %) since

cos yk(t) = 0 for all k such that |xk(t)| = 1, and hence (t,y(t),?,é)
satisfies the constraining equations. Now as was seen in the proof

of theorem 3.7, along the solution x(t),u(t) we have hé = 0 and

h - 9-h§ = — H, Moreover, using the fact that hﬁ = Axcos y,

h(t,y,ff,z,)\) = 9'h}',(t9Y9§79.z_s)‘)

-
~

h(t,y,}/;,z’)\) - (;’*COS y)')\

- H(t,x,v,\).

Therefore,
E(t,y,¥,2,¥,2,A) = H(t,x,u,A) - H(t,x,v,A) and so the Weierstrass

condition yields that
H(t,X,u,)\) z H(t,x,v,A).

This theorem is a generalization for the bounded state problem

of the well known maximum principle of Pontryagin.



Definition 3.2. (y(t),2(t)) is called a singular extremal provided

a(h.,hé,Q)

35,2, ;= 9(8)

z = 2(t)

is a singular matrix on some open interval contained in [to,tl].

Theorem 3,12, If x(t) is on the boundary of T for some finite time

in [to’tl]’ then (y(t),z2(t)) is a singular extremal.

Proof: Differentiating we obtain

hyo = & =0, hyy = hy =0,
h&x = diag(cos y) = ¢§,
and
= - i 2 =¢.o
héA fuvdlag(cos z) s
Therefore,
0 0 diag(cos y)
B(h.,hé,Q)
5L, = 0 héé - fu diag(cos z)
diag(cos y) - fu diag(cos %) 0

which is clearly singular if cos (yk(t)) = 0 on some open interval
in [to,tl], that is, provided x(t) is on the boundary of ' for
some finite time. Hence (y(t),2(t)) is a singular extremal.

This theorem shows that a solution to problem II' is singﬁlar
provided its corresponding solution to problem I contains a state

boundary subarc. The definition of singularity given above is

31



equivalent to the usual definition found in the literature. The
relationships between various concepts of a singular extremal is

investigated by Straeter in (25).
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4., EXAMPLE OF A LINEAR PROBLEM WITH BOUNDED STATE VARIABLES

The problem to be considered, a linear time-optimal control
problem with bounded state variables, is the following.

Consider the differential equation ¥ = u where the control u
is restricted by the condition |u| <1, and the state variables x
and X are restricted by ,xl <1 and Ik| < 1. To be found is a
sectionally continuous function u(t) which yields a solution to the
above differential equation, subject to the given constraints, such

that one arrives at the origin from a given initial state in the

shortest possible time. That is, u(t) is defined on some interval

[0,£,] such that x(0) = x,°, %(0) = %,° and x(t;) = 0, k(¢ ) =0
and t, is minimal.
If we let x; = x and X, = X, then clearly this is a special

case of problem I of section 2.1 with t, = O, n=2, m= 1,

r={-1,1] x {-1,11, @ = [-1,1],

h
1
"
u
w
i
o
B
a.
Hh
o
I
—

In this chapter we shall characterize solutions to this prcblem by
using the conditions developed in chapter 3.

First notice that in order to satisfy hypothesis (2) of theorem
3.1, we must have ,xl(t)l < 1 for all t according to theorem 3.2,
Since f1 is independent of u, the row in M(t) corresponding to X,

will always be zero. Thus, if |x1(t)| = 1, M(t) would not have
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maximum rank. Moreover by theorem 3.4, the number of constraints in
effect at any time cannot exceed m, which is 1 in this case, and so
we can never have lu(t)| = 1 and lxz(t)| = 1 simultaneously. In
fact, if |x1(t)l = 1 on some interval, then on that interval il =0,
in which case, by the state equations, X, = 0 on that interval, a
contradiction.

Let us now investigate subarcs interior to the state regiom,
that is, where |x2(£)| < 1l. We have H = - AO + Alxz + Azu and hence
according to theorem 3.6, il =0 and A\, = - Al' Moreover, by theorem
3.11, we have Azu(t) i_sz for all v of absolute value less than or
equal to one. Therefore, u(t) = 1 provided_%z(t) >0 and u(t) = -1
when Az(t) < 0, From the above differential equations we see that
-A, is constant and_A2 is linear with slope - Al. Notice that Az
is ﬁot identically zero since in this case Al = - iz would be zero
also, which.would mean by corollary 3.4 that Ao = 0., This would
violate the condition that'(Ao’AL’Az) + 0. Moreover, interior to
the subarc, we cannot have Az = 0 even at an isolated point since
id this case u would have to be discontinuous at such a point,
switching from -1 to +1 or vice versa. Hence, on such a subarc,
u(t) = +1 or u(t) = -1, Since by theorem 3.5 |x2(0)| < 1, the first
subarc of a solution must be of this kind.

Type 1 (u = 1)

If we integrate the state equations we obtain

1 -
x1 =3 te + c2t + c1
= +
x2 t 02
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and elimination of t from the above yields

L2 L2y _1 2
X, =35 % + (c1 5 €y ) = 5 %, + c.

In the state plane this defines a one parameter family of parabolas

with the .x,—-axis as their axis of symmetry and all opening to. the

1

right, Moreover, since iz = u = 1, the movement along these

parabolas is from bottom to top as t increases. Of course, for
this problem we are only concerned with their portions lying in T.
By applying the boundary conditions to the above we see that

o . . . . .
c, = xlO and c, = X, »,and that it is possible to reach the origin

2

without switching only if one starts on the parabola X, = %-xz

with X, < 0.

Type 2 (u=-1)

Here we obtain

>
1]

‘ 1l 2
] 5 tc + d2t -+ d1

+
t d2

ks
fl

and again eliminating t yields

2 I,2y__1_ 2
+(d, +5 4% 5 x, %+ d.

- -1y
X 2 %2 2 2

1

In the state plane this defines a one parameter family of parabolas
with the xl-axis as their axis of symmetry and all opening to the
left. Moreover, since iz = u = - 1, the phase point moves from top
to bottom along one of these parabolas as t increases. Again the

P . ' 0 o
boundary conditions yield that d1 = % and d2 =X, and it is
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possible to reach the origin without switching only if one starts on
I S S
the parabola x; = - 5 X with x, > O.
Let us now consider the possibility of subarcs on which

|x2(t)l = 1, In this case we must have that iz = u = 0, according

to theorem 3.6, since Iu(t)l <1, Az(t) = 0 along such a subarc, and

>
I

0 as before. Integrating the state equations we see that either

1 and X; =t 4+ e or x, = -1 and X, =-t + f where e and f are

L) 2

constants., In the first case we move along the xz—boundary of T from
left to right as t increases: In the second case we move from right

to left.-

By theorem 3.7, Al must be continuous at each corner, and since
it is constant on each possible type of subarc, we must have that
_Al(t) =_Alo for all t € [to,ﬁl]. Also, by corollary 3.4, H =20
along the optimum trajectory. 1In particular this means that H is
continuous across corners. Therefore, the term qu must be continuous
across corners because the other two terms  in H, namely_)\O + Alxz,
are continuous everywhere. However, we have seen that at each corner
u is discontinuous switching between its possible values of +1, -1
and 0. Therefore Az must be continuous at such corners with value O,

Let us now collect this information obtained from the necessary
conditions in order to develop an optimum strategy starting at an

<1 and/lx °| < 1. Observe that we

. , . o
arbitrary point for which |x » |

L
can have at most three subarcs. We must, as was shown previously,

begin on a subarc of type 1 or type 2 on which Az is linear with

slope - Al. The function Az must go to 0 as we approach a switching
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point. If we switch to a subarc of type 1 or type 2 again, then Az
can never again be 0 since on this subarc it will be linear with
the same slope as previously. Thus we can never switch again., If
the X, boundary is encountered, that is, if the absolute value of
X, becomes 1, then we switch to u = 0 and Az is 0 along such a
subarc. In order to get to the origin we must switch from this
boundary subarc to one to type 1 or type 2 in which case by the
above argument Az can never become 0 again. Hence no further
switching is possible,

Therefore, to get to the origin from an initial point not
lyirg on a parabola which leads to the origin we must do the
following. Through (xlo,xzo) there passes exactly one member of
each type 1 and type 2. However, only one of these parabolas leads
(in the direction of increasing t) to a parabola which leads to the
origin or to a boundary of T where |x2| = 1 which leads to a
parabola which leads to the origin. So one must travel along that
parabola with u = -1 or u = +1 (whichever is appropriate) and switch
the value of u to the negative of its previous value when the parabola
leading to the origin is encountered. If the boundary of T is met,
we switch to u = 0 and move along the boundary until arriving at the
parabola leading to the origin where u is switched again to either

+1 or ~1.
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To summarize, if

{
1. 2 =
-1 < %, 5_2 X, use u = +1
1. -1<x <0 and ¢
%‘Xzz <x <1 use u = -1
\
( 1
-3 xzz‘i X, <1 use u = -1
2. 0 2x, < 1 and <
k -1 < X, < —-% x22 use u = +1
( 1
-1 < x; < -3 use u =0
3. x, =1 and {
2 1
Xy = - > use u = =1
\
(1
§-< X, <1 use u = 0
2 1
\ X) =5 use u = +1

° >0 and x °

However, if x 1

X +-% (x20)2 > 1 the subarc of type

2 which must be taken first leads to the x; = 1 boundary which
contradicts our first observation that |x1(t)l < 1 at all points
o 1 0,2
- — < -
5 (x,7)° < -1

along a solution, Similarly, if x ° < 0 and x

2 1

then the subarc of type 1 which must be used leads to the x, =-1
boundary. Hence there can be no solution to the problem for the
initial point in these regions.

So we see that from each point in the interior of ', excluding
these two regions, there emanates a unique trajectory satisfying all

the necessary conditions of chapter 3 which leads to the origin.

Only these trajectories can be optimal (solutions to our problem).
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Thus, if a solution exists from a given initial point then it must
necessarily be the above unique trajectory passing through the initial
point and going to the origin, To determine if these trajectories
are indeed optimal, they must be examined in the light of sufficiency
criteria. Unfortunately, very little has been done in the way of
developing sufficient conditions for solutions to bounded state
problems., The question of sufficiency for this example with an

unbounded state region is investigated in (11).
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5. THE LINEAR TIME OPTIMAL CONTROL PROBLEM
WITH BOUNDED STATE VARIABLES
In chapter 4 an example of a linear time optimal control problem
with bounded state variables was considered. We shall take up the
general problem in this chapter. That is, consider problem I in

section 2,1 with

()

Q= {uerR™: |uj| 1 for j = 1,2,...,m},

1
I

{x ¢ R": |Xi| <1 fori=1,2,...,n},

Hh

o(t,x,u) = 1 and f(t,x,u) = Ax + Bu

where A js an n x n matrix and B is an n x m matrix. Here the state
equations are X = Ax + Bu which are linear in both the state variables
and the control variables. The cost function in this case is

tl
J dt = t, - t
t

o
the total time duration of a trajectory. Therefore we seek a solution
to the state equation x(t) and u(t) going from some initial state x°
to some final state x! in minimal time.

By way of notation, we shall use NL(A) to designate the left

null space of a matrix., That is, NL(A) consists of all vectors )

such that AA = 0,

5,1 Subarcs Interior to the State Region
As usual we assume that x(t) and u(t) defiqed on [to,t1] yield

a solution to the problem. Consider a subarc of x(t) from time t°*
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to time t" such that |xi(t)| <1 for all t e (t',t") and for
i=1,...,n, That is, the subarc is contained in the interior of T.
Assume that on this subarc there are k components of u(t) such that
|uj(t)| = 1., Let u(t) be the subvector of u consisting of all its
- components where |uj(t)| = 1, and U(t) consist of those components
for which luj(t)| < 1, Then u will be a k-vector and { an
(m - k)-vector. Let B consist of those columms of B corresponding
to components of u that are in'E, and let B contain the columns of
B corresponding to elements of u that are in G. Then B will be an
n x k matrix and B an n x (m - k) matrix.

In chapter 2 we observed that the necessary conditions for
solutions in the interior of T are the same as those for the problem
with an unrestricted state region. Therefore, all results stated
Here hold also for the same problem with I' = R" since all results
in this section follow from those necessary conditions. One of
these is the well known bang -~ bang principle.

We shall consider A to be a row vector so that multiplication
of A by a matrix will occur on the right. As before, x and u will
be thought of as column vectors and will be multiplied on the left
by matrices.

Theorem 5.1. On each such subarc A(t) satisfies the equations
A+2=0 and A\B = 0.

Proof: For this problem H(t,x,u) = AO + Xe(Ax + Bu) and by definition

Bu = BT + Bii. Applying theorem 3.6, we obtain that along each subarc



of a solution A + H =0 and H =0 for all j such that Iujl <1
3
or, in other words, HG = 0., Now Hx = AA and Hﬁ = AB. Therefore,

A+ A =0 and AB = 0.
Theorem 5.2. For all t e (t',t"), A(t) 4+ 0 and
n-=1 i~
A(t) € N. (A"B).
, L
i=0
Proof: From theorem 5.1 we have that A(t) satisfies i = - )AA and

AB = 0. Differentiating we obtain AB = 0 and substituting for A

yields that AB = - MAB = 0 along the subarc. Continuing this process

AAZB = 0 along the subarc, and in general A'B = 0

we obtain -AAB
fori = 0,1,...,n = 1. Therefore,

A € éiii'NL(Aiﬁ).
If A(t) = 0 for some t, then since by corollary 3.4 H = 0 along a
solution, we would have at that time O = H =»Xo + A*(Ax + Bu) = AO.
So (AO,A(t)) = 0 which contradicts the result of theorem 3.6 that
(AO,A(t)) + 0 for all t. Therefore, A(t) + 0 for all t  (t',t").

Corollary 5.1. The rank of the n x n(m - k) matrix [ﬁ,Aﬁ,...,An-lﬁ]

is less than n.

Proof: By theorem 5.2, A s‘ .NL(Alﬁ) on the subarc. That is,
i=0

AAY8 = 0 for 1 = 0,1,...,n - 1 or equivalently A[B,AB,...,A" 18] = 0.
But since A + O this means that the rank of the above matrix must be

less than n.

By using this corollary we can determine which combinations of

42
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components of u can possibly have absolute value one on a subarc.
If, for a given choice of ﬁ, the rank of the above matrix is n, then
we can never have a solution to the problem with such au and U on

any subarc,

Definition 5.1. The matrices A and B satisfy the general position

condition of order g where 1 < q < m provided whenever Q is an n x q

matrix consisting of q columns of the matrix B, then the n x nq matrix

[Q,AQ,AZQ,...,An_lQ] has rank n. If A and B satisfy the general

position condition of order 1, then we simply say that:they satisfy

the general position condition.

Theorem 5.3. A and B satisfy the general position condition of order

q if and only if for all matrices Q consisting of q columns of B, we

have
n-1 5
()N (4" = {0}
i=0
=l g i
Proof: Suppose o € (’N\ NL(A Q) for some Q. Then cA™Q = 0 for
i=0

i=0,...,m - 1, and hence

0[Q,AQ,...,A% g1 = 0

which implies that o = 0 by the general position condition of order q.

n-1 .
Therefore NL(AlQ) = {0}. If the general position condition of
i=0
order q is not satisfied, then there exists a + 0 such that for some Q,

a[Q,AQ,...,A" Q] = 0 which implies that oalQ = 0 for i = 0,...,n - 1.



But this means that o € ?;i NL(AiQ) = {0}, a contradiction. Hence
i=0

the general position condition of order q is satisfied.

Theorem 5.4. If A and B satisfy the general position condition of

order q, then A and B satisfy the general position condition of

order q' for all q' such that q < q' < m.

Proof: Let Q' be an n x q' matrix comsisting of q' columns of B.

Then since q < q', let Q be the n x ¢ matrix consisting of the first

q columns of Q'. By the hypothesis the matrix [Q,AQ,...,An—lQ] has

rank n. Therefore, [Q',AQ',...,An_lQ'] has rank n also since the

previous matrix consists of a subset of the columns of this matrix.

Hence A and B satisfy the general position condition of order q'.

Theorem 5.5. Suppose A and B satisfy the general position condition

of order q. Then along any subarc of a solution interior to I', at

least m - q¢ + 1 controls have absolute value one. That is,

k>m=-q+ 1.

Proof: We shall argue by contradiction. Suppose k < m - q, then

q <m - k, in which case by theorem 5.4, we have that A and B satisfy

the general position condition of order m - k., But B consists of

exactly m - k columns of B, which means by corollary 5.1 that

rank ([é,Aﬁ,...,An—lﬁ]) < n,

a contradiction to the fact that A and B satisfy the general position

condition of order m ~ k. Therefore, k >m - q + 1.

44



45

Corollary 5.2. (bang - bang principle) If A and B satisfy the general

position condition, then along any subarc of a solution interior to
I' we have that |uj| =1 for j = 1,ci0.,m.

Proof: By theorem 5.5, using q = 1, we obtaink >m -1+ 1=m,
and since k can be at most m, we thus have k = m. Therefore, all
components of the control vector have absolute value one.

Corollary 5.3, If A and B satisfy the general position condition of

order q where 1 < q < m, then the controls along any subarc interior
to I' always lie on the boundary of .

Proof: By theorem 5.5, k >m=-q+1>m=~m+1=1, Therefore at
least one component of u has absolute value one., Hence u lies on

the boundary éf .

(Note: if q = m, then the hypothesis of corollary 5.3 is the so-called
controllability condition.)

Corollary 5.4. If there is a subarc of the optimal trajectory on

which the control in interior to 2, then A and B do not satisfy the
general position condition of any order.

We shall now develop a method for determining which components
of u must have absolute value one on every subarc of x(t) which is
interior to T,

Designate the columns of B by bl’bz""’bm and define

-1
M. = [b,,Ab.,A%b,,...,AY b,
J [j’ JS i J]

j,

for j = 1,...,m. Clearly each M, is an n x n matrix.

3
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Notice that:
(a) A and B satisfy the general position condition if and only if
each Mj has rank n.
(b) A and B satisfy the gerieral position condition of order q if
and only if each n x nq matrix consisting of precisely q of

the Mj's has rank n. This follows because if Q = [bj “""bj 1,

1 q
then [Q,AQ,...,Ap_lQ] is just [Mj ,...,Mj ] with its c¢colunmns

1 q
rearranged. Therefore both matrices have the same rank,

Theorem 5.6. Suppose Mj has rank n for some j where 1 < j < m, then
’uj| = 1 on any optimal subarc which is interior to T.
Proof: Suppose Iujl < 1 on some subarc interior to I'. Then on that
subarc from theorem 5.1 we have

' n-1 i~

A e(iDONL(AB)

where B contains column bj since |uj| < 1. Since Mj has rank n, it
follows that [ﬁ,Aﬁ,...,An_lﬁ] has rank n because P% consists of a
subset of the columns of this matrix. This was shown in (b) above.

-1 . ‘
Therefore fL\\ NL(AlB) = {0:, which means that A = 0 on this subarc,
i=0

a contradiction, Thus we must have that |uj| = 1.

Corollary 5.5. 1If |uj| < 1 on some subarc interior to I', then Mj

has rank less than n.
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Theorem 5.7. On each subarc of x(t) interior to T,

-1 provided ij< 0

+1 provid.edlkbj >0

for j=1,...,m.
Proof: According to theorem 5°1"Abj = 0 for all j such that uj is
in u. Thus, we need only investigate the uj that are inlc, that is,

the ones that have absolute value one. According to corollary 3.5,

each component of Hﬁiﬁ'must be non-negative, But Hu =.X§; therefore

'

this condition requires that-Abjuj > 0 for each u in u, . Hence

B
when b, > 0, u, = +1, and when Ab, < 0, u, = -1,
' J J J ]

5.2 Subarcs Along the Boundary of the State Region

We shall now consider a subarc of x(t) from time t' to time t"
such that |xi(t)| = 1 for some i such that 1 <i <n énd for all
t e (¢',t"). That is, the subarc is contained in the boundary of T.
Assume that along this subarc there are £ components of x such that
Ixil = 1. Let x be the subvector of x consisting of all X, such
that Ixil = 1, and X contain all X, such that |xi| < 1 on the subarc.
Then x is an %-vector and % an (n - &)-vector. Define u and U as
in section 5.1.

'Now let A comsist of all columns of A corresponding to components
of x in';, and A contain all columns of A corresponding to components

of x in %. Subdivide A into A, and Aj, A consisting of all of its

1

rows corresponding to the X, in x and A3 containing all rows



48

corresponding to the x; in %X, Similarly, subdivide A into A2 and Au-

Then: A is an n x % matrix:
A  is an n x (n - %) matrix;
A1 is an L x L matrix;
A, 1is an 2 x (n - &) matrix;

X
)

43 is an (n - %) matrixs

X

(n - 2) matrix,

A, 1s an (n - %)

" Define B and B as in section 5.1, and subdivide B into B1 and

B Let B1 consist of all rows of B corresponding to components of
i

b4 in-g, and B3 contain all rows corresponding to the X in X.

30

Subdivide B into B2 and B,_+ similarly.

Then: E' is an n Xk matrix;
B is an n X (m - k) matrix;
B1 is an L xk matrix;
B, is an 2 x (m - k) matrix;
Bs is an (n = 2) Xk matrix;

B is an (n - %) *x (m - k) matrix,

Theorem 5.8. On any subarc along the boundary of T, B2 has rank %.
Proof: By theorem 3.2, along this subarc M(t) must have rank 2.
Recall that M(t) consists of the rows of fu diag (cos 2) corresponding
to x; for which !xil = 1. Therefore M(t) = ?; diag (cos %). For

all uj iniz, cos éj = 0, Thus rank (M(t)) = rank (fﬁ diag (cos %))

since the j=th column in ?; is multiplied by cos éj' Also, for zll
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uj in u, cos éj + 0, so by dividing each column of ?ﬁ diag (cos é) by

the appropriate cos éj 4+ 0, we obtain

rank (M(t)) = rank (Eﬁ diag (cos é)) = rank (fﬁ).

~

Now £ = Ax + Bu = Ax + BU + ﬁﬁ, S0 ff1 = B, Eliminating all rows
corresponding to X, in';, we obtain ?ﬁ = B2. Therefore,

2 = rank (M(t)) = rank (Bz)'

Theorem 5.9. On each subarc lying on the boundary of T, x(t),u(t) and

- A(t) satisfy the equations

2B, + XB, = 0
By XA, + A4, =0,
A + A% + Bu+ Bl = 0,
Ax+ A+ Bu+ B =k,

S T4 a s - o
A + MAx A X+ But B G) = 0.

The last equation holds if u is differentiable on the subare.

Proof: For this problem

==
]

A, A (Ax Bu)

A+ A« (AX + A% + BU + B)

A 3 - 3 - re -~ Iy ~
A +_AA1x + AA3x + AAzx + AA“x

+ ABlu +_AB3u +{AB2u +.ABuu.

Hence, applying theorem 3.6,
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So, the first two equations are proved. For each X, in';, ii =0

since X is constant along the subarc. Thus, f=0 along the

subarc. But

~

f = Ax + Bu = Ax + A% + Bu + Bu,

and hence f = A12'+“A2i +‘Blu +.Bzﬁ = 0, For the other components

%=*f= Ag; + Aui + B;E + Bqﬁ are the state equations. If u is
differentiable on the subarc, then we can apply corollary 3.4 to
obtain H = 0 along the subarc, Now by subtracting from the expansion

of H above the terms in the third equation, we obtain

Theorem 5.10. Let A' = X(t'), then for all t ¢ (t',t"),X(t) # 0 and

T ]
e (BquKAz - Au)(t - t").

i(t) =. A s
2(t) = - i(t)B BK
‘ o2
~ T
Ca(t) € NL(Bl+ - B“BzKBz),

' T,-1
where K = (B2B2) .
Proof: Since 82 has rank £, BZBE is an invertible & x £ matrix.

Thus, K is well defined. By theorem 5.8,vXB2 =>-5'\BL+ and so

_KE Bg = - XB“BE which implies that X == XBQBEK. Also, by theorem

2
5.8, A = —-XAZ - XAQ. Therefore, substituting for A, we obtain

A= X(BHBEKA2 - Ah) which has the unique solution
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on the subarc. Also, if.i(t) = 0 for some t € (t',t"), then by the
second equation of the theorem, A(t) = 0, Moreover, by viewing the
fifth equation of theorem 5.8, we see that Ao = (0, Hence (Ao,k) =0
which violates the conclusion of theorem 3.6 that_(AO,A) 10 for all
t e [to’tll' Thus A(t) 10 for all t € (t',t"). Finally if we take

A= - XBABEK and substitute it into sz +AXB4 = 0, we obtain

> T

k(BL+ - BquKBz) = 0,
It thus follows that A ¢ N_ (B, - B BTKB )
L4 Lr27 2”0t

Corollary 5.6. If k + £ = m, then A(t) ¢ NL(BM - BHBEKBZ) is always

satisfied.

Proof: B, is an 2 x (m - k) matrix. Therefore, if & = m - k, B2
is a square & x & matrix, and since it has rank %, it is invertible

and so is Bg. Hence, K = (132135)'l = (Bg)-lB "1 Thus

2
T T, T.-1_ -1 . : .
BZKB2 = B2(B2) B2 ~B2 = I, the £ x & identity matrix. It therefore

follows that

T
-B = - =
B, ,B,KB, = B B 0,

the (n - ) x & zero matrix, and so

X(®) e N (0) = roH

is automatically satisfied for all t ¢ (t',t").

51



52
Notice that in case k + & < m, the above condition is not
necessarily trivial. In this case & < m - k which implies that BEKB2
has rank less than m - k since B2 has rank &, Hence B'ZIKB2 cannot
be the (m - k) * (m - k) identity matrix.

Corollary 5.7. The rank of B, - B4B§K32 is less than n - %,

Proof: This follows from the two results of theorem 5.9 that A(t) # 0
o~ T ’
and A(t) € NL(Bq - BuBzKBZ)'

Theorem 5.11. Let C = ABQBEK, an n X £ matrix, and form the n X n

matrix D in the following way. For each i such that 1 < i <n, if
|Xi| = 1 and X, is the j-th component of'z, then let the i~th column
of D be the j-th column of C. If |xi| < 1 and Xy is the j-th
component of %, then let the i~th column of D be the j~th column of

~A. Then along this subarc, A(t) satisfies
A = AD and AB = 0.

Proof: By definition.X-B2 + XBQ =‘Aﬁ, so the second equation is
satisfied by theorem 5,9, Moreover, if we differentiatek-X-B2 + XBl+ =0,

we Ob tai n
}\B = =- )'\ = A + )\ . = - - -

~ L3 T o T
'(AAZ + AAH)BuBzK which is equal to AABHBZK by the

Therefore, X

definition of A, and A,. So we have X'=_AC and A

‘ A(-A), and putting

these together accoréing to the definition of D in the hypothesis, it

i
3

follows that A = AD.:
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We have now put the equations for A on a subarc along the
boundary of the state region into the form of theorem 5.1, which
gives the equation for A on a subarc interior to the state region.
Thus, the same type of logic used in theorem 5.2 may now be applied
fo obtain similar resulté in this case.

n-1
Theorem 5.12. For all t e (t',t"), A(t) € [ \\NL(DiB).
1=0

Proof: By theorem 5.10, A(t) satisfies the equations A = AD and AB=0

* ~

on this subarc. Thus, by differentiating we obtain AB = 0 and since
A ?:AD, this implies that ADB = O, Continuing this process, we
obtain ADB = AD?B = 0 along the subarc, and in general AD'E = 0

for i = 0,1,..,,n-1. Therefore,

CA(t) € NL(Diﬁ).
1=0

n-1x

Corollary 5.8. The rank of the n X n{m - k) matrix [ﬁ,Dﬁ,...,D B]

is less than n.
Proof: This follows from the facts that A(t) ¢ = NL(Diﬁ), and
A(t) # 0. =0

Notice that there is a one-to-one correspondence between
possible boundary configurations and decompositions of A and B into
Al’Az’A3’Aq’B1’B2’B3’ and Bu. By possible boundary configurations
we mean the possible combinations of each component of u.and x
either having absolute value equal to one or less than one, The
theory of this section was developed with the thought in mind of

enabling one to narrow the list of possible boundary configurations

somewhat.
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First one applies the condition that k + £ < m to eliminate all
cases where the total number of constraints in effect exceeds the
number of control variables. One might observe that this is the
same as saying that the total number of constraints not in effect
must be greater than or equal to the number of state variables.
This is true because if k + £ < m then -k - £ > -m, and if we add
n + m to both sides of this inequality we obtain (m - k) + (n - &) > n.
Secondly, one can apply corollary 5.7 to rule out some or all
of the combinations where k + £ < m, This is a consistency
condition which must be satisfied if there is to be a non-trivial
solution to the equation for A in theorem 5.8.
Finally, one can reduce the possibilities further by applying
¢orollary 5.7.

Theorem 5.13. For all t e [t',t"] and for all v ¢ 2 such that

Ai;(t) + Azi(t) + B1$'+ Bzﬁ = 0, we have
M) (Bu(t) + Bu()) > A(E) B,V + B9,
Proof: From the proof of theorem 5.9, we have thdt if
Al§(t) + Azsc(c) + BIV +B,7 = 0,
then
H(x(£),v,A(t)) = A+ i(t)(A3§£(t) + A x(t) + B3'\7 + B, V).

Thus, applying theorem 3.11, it follows that
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Ay AR (Agx(E) + AK(E) + Bgu(e) + B, i(t)) >

Ay AR (A () + AK(L) + Bgv + B V),

and therefore, by subtracting out the common terms on each side of

the inequality, we obtain
CR(E) (B,u(t) + B E(r)) 2 A(t) (B,v + B,3).

Theorem 5.14. On each subarc of x(t) along the boundary of T,

Proof: According to theorem 5.11, Ab

~1 provided ij <0
‘+1 provided Abj >0

for j = 1,...,m where bj is in the j=th column of the matrix B,
i = 0 for all j such that uj
is in ﬁ. Thus, we neeé only investigate the uj that are in.;, that
is, thé ones that have absolute value one. According to corollary
3.5, each component of HE¥E must be non-negative., But HE = AB and
therefore this condition requires that )\bjuj > 0 for each uy in 4.
Hence, when Abj > 0 then uj = +1 and when Abj < 0, uj = -1,

So we see that the results of theorem 5.7 hold even in the case

where x(t) lies on the boundary of T.
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6. SUMMARY AND CONCLUSIONS

In this thesis a method has been described whereby an optimal
control problem with bounded state variables may be transformed into
an equivalent Lagrange problem. This was accomplished by means of
differentiable mappings which take some Euclidean space onto the
closec’ 'and bounded control and state regions. Whereas all such
mappidgs lead to a Lagrange problem, it has been shown that only
those.which were defined as acceétable pairs of transformations are
suitable in the sense that solutions to the Lagrange problem lead
to solutions to the bounded state problem and vice versa. In
particular, an acceptable pair of fransformations was exhibited for
the cése when the confrol and state regions are right parallelepipeds.

The necessary conditions of the Calculus of Variations were
then épplied to the transform of the non-linear, non-autonomous
optimal control problem with the unit n-cube and unit m—cube as
state and control regions respectively. These conditions are the
Euler Lagrange equatiéns, corner conditions, transversality conditions,
the Clebsch condition and the Weierstrass condition. In each case
arlalogous conditions were developed which solutions of the bounded

state problem must sdtisfy. In addition, the hyﬁothesis for applying

)
1

these conditions led to theorems which state that the initial and
termindal points must be interior to the state region, and that a

certain submatrix of the matrix of partials of the constraining



differential equations with respect to the control variables must
have maximum row rank.

These results were than applied to a simple example of a
linear time optimal control problem with bounded state variables
for which solutions were completely characterized. The general
linear time optimal problem was then considered and various
necessary conditions developed for it in terms of the coefficient
matrices,

First, the properties of subarcs of a solution interior to the
state region were developed. It was observed that these must also
hold for the non-state constrained problem., Among them is the well
known bang - bang principle. Then subarcs which lie along the
boundary of the state region were investigated with several new
necessary conditions developed.

There are a number of areas in which the author feels that the
research of this thesis may be extended to yield further results,
If acceptable pairs of transformations can be exhibited for more
general state and control regions, perhaps convex polyhedra or even
compact convex sets, then the same analysis can be applied to obtain

necessary conditions. Of particular interest would be state regions

described by a system of inequality constraints of the form g(x) < 0,

The question of sufficiency has been totally ignored in this
thesis, Although there are a number of very difficult problems
associated with the development of sufficient conditions for the

bounded state problem, the author feels that some results may be
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obtained by using this transformation method to apply the sufficient
conditions of the Calculus of Variations to the bounded state
problem, The question of existence of solutions may possibly be
studied by applying the theory of generalized curves to the trans-
formed problem,

It was shown in chapter 3 that state boundary subarcs are
singular subarcs of the transformed bhagrange problem, Therefore,
an investigation of the known properties of singular subarcs may
lead to new necessary conditions for the bounded state problem.

It was observed that a number of the results of chapter 3 are
similar to those obtained by other authors. Further studies should
be made to determine the exact relationship between the results
contained hereir. and those of others, notably Berkovitz and
Gamkrelidze.

In this formulation, sectionally continuous controls and
sectionally smooth trajectories were considered. The same theory
could have been developed using bounded measurable controls and
absolutely continuous trajectories. Also, other types of problems
could be investigated. Perhaps the best place to start would be to
consider the linear problem with different cost functions, for
example, a quadratic cost function,

Finally, some experimentation should be made, possibly on a
computer, in the utilization of the conditions developed to obtain

solutions to particular problems,
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