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1. INTRODUCTION

There are several ways of approaching an optimal control problem

by means of the Calculus of Variations. Perhaps the most well, known

technique, described in a paper by Berkovitz (1), involves adjoining

additional variables to the system, commonly called slack variables,

in order to transform inequality constraints into differential equation

constraints. In the new problem all variables are unrestricted; hence,

the classical theory can be applied. Necessary conditions for the

Bolza problem are then translated into necessary conditions for optimal

control. These conditions include the maximpm principle of Pontryagin

(20) which is seen to be a consequence of the Euler Lagrange equations

and the Weierstrass necessary condition. In a paper (12) and in his

book (13), Hestenes used a similar method to st4dy optimal control

problems. This method of slack variables has been widely used by a

number of authors for some time. In fact, as early as 1937, F. A.

Valentine (26) applied it to Lagrange problems with differential

inequalities as added side conditions.

Later Berkovitz (2) applied this technique to problems with

bounded state variables. He obtains essentially the results of

Gamkrelidze in Chapter VI of (20) for the nonlinear problem with

inequality constraints involving only state variables. Hestenes'

results were extended by Russak (21) and Guinn (10) to include the

bounded state case.

Another approach, described by Kalman (15), uses the Hamiltonian

theory of the Calculus of Variations as it was developed by



Caratheodory (5). Sagan also utilizes this method in his book (23)

where the maximum principle is shown to follow from Caratheodory's

lemma in a rather simple way. However, as is pointed out by the author,

the usefulness of this technique is quite limited due to the fact that

unnecessary assumptions must be made regarding the differentiability of

Hamilton's characteristic function and the existence of an admissible

set of inception.

In this thesis a technique described by Park in (18) and (19) and

applied to a simple problem by this author in (11) is to be utilized to

study properties of solutions to various general problems in Optimal

Control Theory, in particular those with bounded state variables. By

means of an appropriate transformation of variables, optimal control

problems are converted into Lagrange problems of the Calculus of

Variations. This is accomplished by using mappings satisfying certain

properties which take some euclidean space onto closed control and

state regions.

Of course, the fundamental question must be considered as to

under what conditions is the transformed problem equivalent to the

original one. That is, one must know that solutions to the new problem

lead to solutions of the old one and vice versa. This equivalence

question is discussed in great generality by Park in (18); in this paper

it will only be considered in relation to the particular problems

investigated.

In chapter 2, the general problem and the method used are rigor-

ously stated. The concept of equivalence is defined and a simple
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equivalence criterion is stated and proven. The particular transfor-

mation to be used herein is exhibited and its use is justified. 'Also

included is a survey of the literature concerning bounded state

problems.

The non-linear control problems with the unit m-cube as control

region and the unit n-cube as state region are considered in Chapter

3. ,Results similar to those of Berkovitz (2) are obtained as conse-

quences of the well known necessary conditions for the problem of

Lagrange. The translate to the optimal control setting of the

hypothesis regarding the rank of the matrix of partials of the

constraining equations with respect to the derivatives of the variables

involved is obtained, and a new second order necessary condition

analogous to the Clebsch condition is developed. In addition, the

question of the singularity of optimal subarcs along boundaries of the

state region is investigated, as is the behavior of solutions at

boundary points where the optimal trajectory either enters or leaves

the state boundary.

In Chapter 4 the results of Chapter 3 are applied to a simple

example for which solutions are completely characterized. The problem

is that of finding a solution to the differential equation R = u from

some fixed starting point to the origin in minimal time under the

restriction that hid < 1 and including lx1 < 1 and Ikl < 1 as state

constraints. This chapter also serves as a preview to Chapter 5 in

which the general liriear time optimal control problem is considered both

in the usual setting where the optimal trajectory is interior to the
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state region and in the state constrained setting. In the unconstrained

(in the state sense) case a generalization of the "bang - bang"

principle is obtained, and analogous results are found for the state

constrained case. This also leads to a new necessary condition, for

the bounded state problem. This condition is always satisfied in the

unconstrained case.

Finally, Chapter 6 summarizes the results obtained and offers

some recommendations for possible extensions and generalizations.
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2. BOUNDED STATE PROBLEMS AND THE QUESTION OF EQUIVALENCE

In this chapter a general optimal control problem with bounded

state variables is defined and transformed into an equivalent Lagrange

Problem by means of suitably chosen mappings defined on the state and

control regions. Precise conditions for this equivalence will be

formulated and specific mappings exhibited for particular state and

control regions satisfying these conditions.

2.1 The Problem

Let Q be a subset of Rm, euclidean m-space, and r a subset of Rn.

The sets C2 and r will be referred to as the control region and state

region respectively. Let x
o 
and x1 be points in r; x

o 
will be referred

to as the initial point and xl the terminal point. The results herein

may be easily generalized to the case where one has initial and terminal

manifolds rather than single points. These, usually defined by systems

of finite equations, Are disjoint, closed subsets of P.

We now consider a differential system whose state at time t is

characterized by a vector x(t) = (xl(t),...,xn(t)) in r and whose value

is determined or controlled at that time by a vector

u(t) = (u1(t),...,um(t)) in o, the 'so-called control vector. Let the

system be defined by the differential equations k = f(t,x,u) where f is

assumed to be a continuously differentiable vector-valued function

defined onRxrxQwhereRis the real line. This is a non-autonomous

system of n non-linear first order differential equations in the n + m

unknowns x and u. Let an initial time to be given and designate the
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final time, which is variable, by tl.

In addition, let fo(t,x,u) be a continuously differentiable real

valued function defined onRxrx0. We will refer to f
o 

as the cost

function and itS integral over the interval [to,t1] as the cost

functional.

The problem to be considered is the following:

Problem I.

Find a sectionally continuous control u(t) defined on [to,t1] for some

t1 > t
o 
so that there exists x(t), sectionally smooth, defined on

[to,t1] such that

(1) x(t) = f(t,x(t),u(t)) for all t e [to,t1] for which x(t) is

defined,

(2) x(t) e r and u(t) E S2 for all t e [to,t1],

(3) x(t0) = x0 and x(t1) = xl,

(4) Itlfo(t,x(t),u(t))dt is minimized.t
o

This is an example of an optimal control problem with restricted state

variables. Such a control u(t) satisfying (1), (2), and (3) is called

an admissible control. A control for which (1), (2), (3), and (4) is

satisfied is called an optimal control, and its corresponding x(t) is

called an optimal trajectory.

2.2 Review of Literature

this type of problem has been considered by a number of people.

The papers by Berkovitz (2), Guinn (10) and Russak (21) have already

been discussed in Chapter 1. They both use the method of slack
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variables to translate necessary conditions for the Bolza problem into

necessary conditions for the above problem.

Other approaches have been more direct and do not utilize the

Calculus of Variations. Gamkrelidze (20) adjoined the total time deriv-

ative of the state constraint to the cost functional and treated the

resulting problem in the same fashion as he and Pontryagin did for the

unconstrained problem. His "regularity" assumption, which also arises

in this thesis but for different reasons, is made in order to insure

that the control explicitly appears in the derivative of the constraint

so that it directly influences his new cost functional.

In conjunction with numerical applications, Bryson et al. (4)

developed techniques for avoiding this assumption in some cases by

using higher order derivatives of the constraint. Results related to

this are also demonstrated in a paper by Speyer and Bryson (24).

Dreyfus in (8) and (9) uses the method of dynamic programming to

obtain results similar to those of Berkovitz. In fact, Berkovitz and

Dreyfus compared their previous results in a joint paper (3) in 1965.

The penalty function approach is entirely different from all of the

above. This method, first described by Chang in (6) and (7), involves

the following. Instead of attempting a direct solution, an uncon-

strained problem is considered wherein the original cost functional is

augmented by a non-negative penalty function which sharply increases

the cost associated with trajectories which violate the state

constraints. By using sequences of cost functionals involving more and

more severe penalties it is to be expected in many cases that the
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desired solution to the original problem will be obtained as the limit

of the solution of the approximate problem. This technique has been

subsequently refined and further results obtained by Russell (22) and

Jacobson et al. (14).

In (16) Khrustalev discusses the very difficult question of suffi-

ciency for constrained state problems, and finally McIntire and

Paiewonsky, in an expository paper written in 1964, survey the

techniques known at that time.

2.3 Transformation into a Lagrange Problem

We shall now state the method to be used herein to treat problems

of the type described in 2.1 as Lagrange problems in the Calculus of

Variations.

Consider the functions IP and (I) defined so that t1): R
k 

--> Q and

(15: R
k 

4- r where k and 2, are natural numbers. Assume that both IP and (P,

are onto and continuously differentiable. Then if we let x = (1)(y) and

u = 1P(i) and restate our original problem in terms of the new variables

y = (y1,...,57k) and = (i1,...,k) we obtain the following:

Problem II.

Find a sectionally continuous Z(t) defined on [t
o
,t

1
] for some t

1 
> t

o

so that there exists y(t), sectionally smooth, defined on [to,t1] such

that

ath(1)' (y(t)) y(t) = f(t,(1)(y(t)), tpa(t))) for all t e [to,t1]9y

for which y(t) is defined,

(2)1 y(t) E Rk and Z(t) e Rk for all t e [to,t1],

(3)' gY(t0)) = x° and gY(t1)) = xl,
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t,

(4)' j Ifo(t,q)(y(t)), IP(z(t)))dt is minimized.
t
o

In (1)' is used to denote the n x t matrix of partial deriv-
3y

atives of the components of (f) with respect to the components of the

vector y. Notice also that this new problem is unconstrained in the

sense that the new variables y and z are allowed to take on any values

in K and R
k
 respectively.

The variable z which takes the place of the control u is intro-

duced as a derivative so that the new problem will satisfy the

hypotheses for the necessary conditions to the Lagrange problem which

require that solutions, in this case y(t) and z(t), be sectionally

smooth. That is, a sectionally smooth solution of problem II, y(t)

and'z(t), will lead to a sectionally continuous control u(t) = 11)(i(t))

and a sectionally smooth trajectory x(t) = (1)(y(t)) as its counterpart

in problem I.

We may now view problem II as a Lagrange problem with unknowns y

and z, constraining differential equations given in (1)', boundary

conditions (3)' and with (4)' giving the functional to be minimized.

Hence all the well known classical theory associated with this problem

may be applied in order to find solutions. A full discussion of this

theory is contained in Chapter 6 of (23).

However, before we proceed farther along these lines, we must

establish under what conditions is problem II actually equivalent to

problem I, in the sense that a solution to problem II leads to a

solution of problem I and vice versa. That is, we must be able to

translate necessary and sufficient conditions for y(t) and z(t) in
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problem II into necessary and sufficient conditions for u(t) = 1P(i(t))

and x(t) = gy(t)) as optimal controls and optimal trajectories in

problem I. The next two theorems provide an answer to this question.

Definition 2.1. The mappings IP and (1) shall be called an acceptable 

pair of transformations provided the following are true:

(1) Rk Q, (P: R r for some k and k and both are onto and

continuously differentiab le;

(2) for any sectionally smooth x(t) defined on some interval

[to,t1] such that x(t) e r for all t, there exists a

sectionally smooth y(t) defined on [to,t1] such that y(t) e E

and gy(t)) = x(t) for all t [to,t1];

(3) for any sectionally continuous u(t) defined on some interval

[to,t1] such that u(t) c S-2 for all t, there exists a

sectionally continuous i(t)'defined on [to,t1] such that

gi(t)) = u(t) for all t [t
0 
't 

1
].

Theorem 2.1. If IP and (I) are an acceptable pair of transformations and

y(t) defined on [to,t1] yield a solution to problem II then

u(t) = W(t)) and x(t) = gy(t)) yield a solution to problem I.

Proof: We shall verify that x(t) and u(t) satisfy (1), (2), (3) and

(4) of problem I. Since x(t) = (y(t))y(t) = f(t,gy(t))0P(i(t))) =

f(t,x(t),u(t)) we see that (1) is satisfied. Clearly (2) follows from

(1) of definition 2.1, and x(to) = gy(t0))= x0, x(t1) = gy(t1)) = xl,

so (3) is satisfied. Now suppose (4) were not true, then there would

exist x(t), u(t) andT
1 
satisfying (1), (2) and (3) such that

ft ti
1
f 
0 
(t:(t):(t))dt < I 'f 

0
(t,x(t),u(t))dt.

o o
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Now applying (2) and (3) of definition 2.1 there exists 37(t) and z(t)

such that x(t) = (I)(i(t)) and13(t) = 11)(t(t)) for all t e [to:ti].

Then we have (I) 
Y
(y(t)) y(t) = x(t) = f(t,x(t),u(t)) = f(t,(1)(y(t)),IP(z(t)))

for all t and moreover x0 = ;(t0) = (1)(3(t0)), xl =Tc(t1) = $(i(t1)).

However,

• 
7

o(t,(1)(y(t)),q)(z(t)))dt = lf (t,x(t),u(t))dt <
f:if t

o

ftlf(t,x(t),u(t))dt = ftif 
0(t,(1)(y(t))01)(i(t)))dt

0 0

which contradicts the fact that y(t) and i(t) yield a solution for

problem II. Thus (4) must be true and hence x(t) and u(t) yield a

solution to problem I.

The next theorem is the converse of theorem 2.1.

Theorem 2.2. If IP and (1) are an acceptable pair of transformations and

u(t), x(t) defined on [to,t1] yield a solution to problem I then any

sectionally smooth y(t) and z(t) such that x(t) = gy(t)) and

u(t) = 11)(i(t)) for t e [to,t1] yield a solution to problem II.

Proof: We know that at least one such y(t) and i(t) exist by (2) and

(3) of definition 2.1. We must therefore show that such a y(t) and

i(t) satisfy (1)', (2)', (3)' and (4)' of problem II. Notice that

(y(t))37(t) = x(t) = f(t,x(t),u(t)) = f(t,gy(t))01)(i(t))); thus we

have that (1)' is true. Moreover (2)' is trivially satisfied and since

(1)(y(t
o
)) = x(t

o
) = x

o 
and gy(t1 )) = x(t1 

) = xl, (3)' is also. Now if

y(t) and z(t) defined on [t
o 1

] satisfies (1)', (2)', (3)' and

fo(t,(1)(57(0 

ti
),q)(z(t)))dt < I fo(t,S(Y(0),4)(i(t)))dt

to to
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then it is easily seen that x- (t) = gy(t)) and u- (t) = 11)(z(t)) will

contradict the optimality of x(t) and u(t). Thus y(t) and (t) must

yield a solution to problem II.

The following corollary follows immediately from theorems 2.1

and 2.2.

Corollary 2.1. If 11, and (I) are an acceptable pair of transformations

then any necessary or sufficient condition for y(t) and i(t) to be a

solution of problem II yields a necessary or sufficient condition

for x(t) and u(t) to be a solution of problem I when the condition

is restated in terms of x(t) = (15(y(t)) and u(t) = IP(i(t)).

A much more general discussion of the equivalence of minimization

problems is contained in (18), particularly in regard to unconstrained

problems.

2.4 The Control and State Regions as Right Parallelepipeds

Consider problem I with

= {u e R
m
: a.

1 
< u.

1 
< b = 1,...,m} and

—  —

r ix E R
n
: c

i 
< x. < d.

, 
i = 1,...,n}

— 1 1 

wherea1„b1 1 1 1 
„c.muld.arerealnumberssuchulata.<1)

1 
. and c.

1 

< d
i

' 
for each i. Then Q and r defined in this way constitute right

parallelepipeds. Now define IP: Rm ÷ Q by IP = (4)1,...01)m) where

u.
1 
=Ipi(z) = - ((bi 1 

- a.) sin zi 
1 1 

+ (b. + a.))

for i = 1,...,m. Also let cl): Rn r be given by (f) = 01,...,(Pn) where
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xi = (y) = 
1 
— ((d.

1 
- c

i 
) sin y + (d + c ))

2 

for i = 1,...,n.

Theorem 2.3. For this choice of o, r, lp and 0, the mappings and

constitute an acceptable pair of transformations.

Proof: Since -1 < sin
1 

< 1 for all real numbers i
i' 

we have

(a. - b
i 
) (b

i 
- a.) (b

i 
- a.)

2 2
sin i

i 2 
< , and therefore

(ai - bi ) (b + a
i
) (b - a

i
) (b

i 
+ a )

a 
2 2 2 2

sin i + = (z)

(b
i 

a
i
) (b + a

i
)
= b

i2 2

for i = 1,...,n.

Thus we see that 0(1) e 0 for all i e Rm. Similarly we can show that

0(y) e r for all y e R. Moreover 0 and 0 are clearly continuously

differentiable. Now let u(t) be a sectionally continuous function

defined on [to,t1] such that u(t) c n for all t E [to,t1]. Define

i(t) by

—1 2u
i
(t) (b

i 
+ a

i
)1

(t) = sin
(b - a

i
)

We first notice that each (0 is well defined for all t [t
0,t1].

This is true since u(t) e n means that a
i 

< ui(t) < b for i

and hence it follows that a
i 

b
i 
= 2a

1 
(b + a ) < 2u

i 
(t)

(bi + ai) 2bi (bi + ai) = bi ai.

1,41.1.1,M
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Dividingthisinequalitybybi -a.
1 
we obtain

2u.(t) - (b. + a
i 
)

-1 < 1 
1  

< 1.
(b
i 
- a

i
) —

Hence the sin
1 

of the middle term in the above inequality is well

defined. Note that this argument yields that IP is onto since u(t)

may in general be any point of Q and clearly if is defined in the

above fashion for any u e 52 we have ip(i) = u. Moreover,'since sin
-1

is a sectionally continuous function, we see that the i(t) which we

have defined will be sectionally continuous also. Therefore 11)

satisfies condition (3) of definition 2.1. If x(t) is a sectionally

smooth function defined on [to,t1] such that x(t) e r for all

t E [to,t1], we can satisfy condition (2) of definition 2.1 by

defining

-1 2xi(t) - (di + ci)
y = sin

(d
i 
- c

i
) 

 + 2ff j(i,t)

for i = 1,...,n and t [to,t1] where j(i,t) is a integer chosen for

each i and t to insure that yi(t) is not just sectionally continuous

but also sectionally smooth. Since sin (2Trj) = 0 for all integers j,

this term does not affect the relationship gy(t)) = x(t). Thus the

theorem is proved and we have shown that ip and 4) are an acceptable

pair of transformations.

We now have that for this particular choice of Q, r, 1p and cl) that

theorems 2.1 and 2.2 apply, and hence, in this case, problem I is

equivalent to problem II.
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In the case that some of the components of u or x are to be

unrestricted, while the remainder are constrained between maximum

andminimumvaluesaspreviously,onesimplydefinesor

yy) = xi for those particular ones and defines the rest of the

components of IP and cP as is done previously with the sine function.

Clearly, in this case, the results of theorem 2.3 also follow. For

numerical applications the previous formulation is more desirable

as in effect it covers both cases. When a component of u or x is to

be unrestricted, one simply inputs to the system maximum and minimum

values of the variable which are exceedingly large and exceedingly

small respectively, thus effectively eliminating the constraint.

For simplicity sake, in the remainder of this text we shall let

Q be the unit m-cube and r be the unit n-cube. That is, we will set

a. = -1, bi = 1 for i = 1,...,m and ci = -1, di = 1 for i = 1,...,n.

Then ty and (!) reduce to:11)(i)= u = sifi = (sin ii,...,sifi ) and

gy) = x = sin y (sin yl,...,sin yn).

Examples of acceptable choices of IP and (I) corresponding to more

general control and state regions are contained in (18).
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3. NECESSARY CONDITIONS FOR THE NONLINEAR BOUNDED STATE PROBLEM

Let us first introduce for notational convenience an operation

on pairs of vectors which we shall designate by "*". If a = (ai)7.1

and b = (b.)
i=1 

are n-vectors, then define a*b E Rn to be the n-vector

(a.b.)
i=1. 

Clearly "*" is commutative, associative and distributive

with respect to addition. That is, if a,b,c e Rn then a*(b + c) =

a*b + a*c. We shall use a.b to designate the ordinary dot product of

the vectors a and b.

In addition, for a E R
n 
we introduce the notation "diag (a)" and

define diag (a) to be the n x n diagonal matrix whose diagonal elements

are precisely the components of a. Notice that for a,b e Rn we have

diag (a)b = a*b.

Now consider problem I in section 2.1 with

0 .-.{Lielel:111.1< 1, i = 1,...,m}, the unit m-cube, and

r = {x e Rn: Ix
i

1 < 1, i = 1,...,n},'the unit n-cube.

Then if we define (I) and tp by

gy) = x = sin y and

4)(i) = u = sin

then theorems 2.1, 2.2, and 2.3 insure that for this case problem I is

equivalent to problem II in section 2.3. Note that we now have that

Dy Dy
= diag (cos y) so that St = cos y*S7. Hence the constraining

differential equations for problem II become



17

cos y*S7 = f(t,sin y,sin i).

The boundary conditions are

sin (y(t0)) = x0, and sin (y(t1)) = xl,

and the cost functional is

ft 
1
fo(t,sin y(t),sin i(t))dt.

t
o

Define the functions 0
o
,0,T

o 
and TI taking values in R by

00(t,y,i) = fo(t1,sin y,sin i),

(D(t,y,ST,Z) = cos y*S7 - f(t,sin y,sin i),

To(y) = sin y - x° and

T1 (y) = sin y - xl.

Then, if we restate problem II of section 2.3 for the particular

problem considered in this chapter using the above functions, we

obtain:

Problem II'

Find piecewise smooth vector functions y(t) and z(t) defined on

[t
o
,t

1 
where t

o 
is fixed and t

1 
is variable which satisfy the

constraining differential equations 0(t,y,S7,Z) = 0, the initial

conditions T
o
(y(t

o
)) = 0, the terminal conditions T

1 
(y(t

1 
)) = 0 and

is such that f 
1

o
(t,y(t),z(t))dt is minimized.

t

The following theorem summarizes the results found in chapter 6
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of Sagan's book (23) concerning properties of solutions to the above

problem.

Theorem 3.1. If y(t) and z(t) defined on [to,t1] constitute a solution

to problem II' and if the following conditions are satisfied

(1) (I) 
o 
,1?,T

o 
and Ti are continuously differentiabl ,

(2) along7y(t) and z(t) we have rank(aum ) - n for all

t e [to,t1] where 9(
9(D
m) is the n x (n + m) matrix of

partials of the components of (I) with respect to the compo-

nents of ST and Z;
DT 9T1

(3) rank e57
o
 (y(t0))) = n = rank (Ty -(y(t1))),

then there exists a vector function A(t) = (A 1(t),...,An(t)) defined

on [to,t1] which is continuous except possibly at the points where

y(t) and/or z(t) are not smooth and a constant A LO with

n
(0) (0,0,...,0) for all t E [toy such that the

following statements are true:

(1) Euler Lagrange Equations 

define h(t,y,Sr,Z,A) = -A0 4)0(t,y,Z) + A.4)(t,y,S7,i), then the

differential equations

h (t,y,ST,Z,A) - —
d 
dt 

h.
y
(t,y,ST,Z,A) = 0 and

dt 
h=

are satisfied along every smooth arc of y(t) and z(t) where

h
Y Y

and h. denote the vectors of partials of the function

h with respect to the vectors y,S7 and Z respectively;
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(2) Corner Conditions 

across every corner of y(t) and z(t) we must have that each

component of

h.(t,y(t),S7(t),Z(t),À(t)),

yt,y(t),S7(t),Z(t),A(0), and

h(t9y(0,37(t),Z(t),X(0)-ST(t).h.
Y
(t,y(t),S7(t),Z(t),X(t)) -

- Z(t).yt,y(t),ST(t),Z(t),X(t))

are continuous;

(3) Transversality Conditions 

there exists a constant vector v = (v 1,...,v
n
) such that

( o'
v
1'

v
n
) (0,...,0) and

0 = - o(I)
o y 
- h..S7 - 

_z 
h..Z

vT = h. and
oy y

0 = h.
z

where the above relations are evaluated at t 
o 
,y(t 

o
),Y(t

o
),Z(t

o
)

and X(t ), and there exists a constant vector p = (p ...,p
n
)

such that (a0,111,...,Pn) (0,...,0) and

(21=-"--"-o y

pTly y = h. and

= h.
z

evaluated at tl,y(t1),S7(t1),Z(t1) and

(4) Clebsch Condition 

for each t [t
o
,t

1
] and for all vectors a e R

n
, p E R

m

which are solutions to the linear systems

(1),(t,y(t),)r(t),Z(0)a = 0 and
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(5)

(1).(t,y(t),Sr(t),“tflo = 0

we must have that

(3-11..a + + + > 0
yy zy yz zz

evaluated at tor(t),S7(t),'i(t) and X(t) provided the

functions fo and f are twice continuously differentiable

(see Hestenes (13));

Weierstrass Condition 

• •
for all (t,y(t)09,Z) satisfying the constraining equations,

t e [to,t1], we have

where

E(t,y(t),ST(t),(t),9,Z,A(t))

E(t,y,37,,2,X) = h(t,y0ý,2,A)

- h(t,y,Sr,i,X) + () §).11s7(t,y,,,X)

+ (i -

Using these necessary conditions we shall now determine what

they mean in terms of our particular problem. Notice that since

f
o 

and f were assumed to be continuously differentiable we have that

(I)
o'

(I) 111
o 

and T
1 
are by definition continuously differentiable! Hence

assumption (1) of theorem 3.1 is satisfied for our particulfir

prob lem.

Now let x(t) and u(t) defined on [to,t1] yield a solution to

problem I of section 2,.1.with our particular control region n and

state region r. Then by theorem 2.3 there exists y(t) and z(t) such
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that sin (y(t)) = x(t) and sin (i(t)) = u(t) for all t E [to,t 1], and

moreover, theorem 2.2 tells us that y(t) and z(t) yield a solution to

problem IT'. We assume that hypotheses (2) and (3) of theorem 3.1

are satisfied. Therefore theorem 3.1 may be applied to y(t) and z(t)

thereby establishing corresponding conditions on u(t) and x(t). How-

ever, before proceeding further, some results should be exhibited

describing under which circumstances assumptions (2) and (3) of theorem

3.1 will be met. The next four theorems will accomplish this.

Let M(t) be the n x m matrix f
u 

diag (cos evaluated at

(t,y(t),37(t),Z(t)). Suppose at time t there are precisely k state

constraints in effect; that is, Z components of the vector x(t) have

absolute value one. Definelq(t) to be the 2, x m submatrix of M(t)

consisting only of the rows of M(t) corresponding to components of

x(t) with absolute value one.

Theorem 3.2. For all t [to,t1], M(t) has rank Z.

Proof: This theorem follows from assumption (2) of theorem 3.1.

Since = cos y*y f, we see that

34) 
(diag (cos y(t)), M(t)).

If lx.(011thensincex.(t) = sin (y.(t)) we have that cos y (t) 0

and thus the rows of the above matrix ,corresponding to the n - Z

components of x(t) with absolute value less than one are linearly

independent. However, for the k coordinates where lxi(01 = 1 we have

D(I)
that cos yi(t) = 0 and therefore

(377,i) 
will have maximum rank if and

only if the rows of M(t) corresponding to these components are
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linearly independent. In other words this means that M(t) must have

rank Z.

We can see from the above proof that this theorem gives a

necessary and sufficient condition for assumption (2) of theorem 3.1

to be satisfied. Moreover, it can be easily seen that all trajectories

which never meet the state constraint boundary automatically satisfy

hypothesis (2).

Theorem 3.3. If x(t) is in the interior of r for all t E [tu,t1],

then hypothesis (2) of theorem 3.1 is satisfied.

Proof: Inthiscaselx.
1
(t) < 1 for all i = 1,...,n and t E [to,t1]

and so cos (yi(t)) 0 for all i = 1,...,n and t c [t
o
,t

1
]. Therefore

rank (diag (cos y(t))) = n and hence,

rank 
D(I)

= rank (diag (cos y(t)),M(t)) = n.

The next theorem tells us something about when a system is over-

constrained. It simply says that at any time; there cannot be more

constraints in effect, both state and control, than there are control

variables. Suppose that at time t there are k components of u(t) such

that lu.(01 = 1; that is, there are k control constraints in effect.

Theorem 3.4. k'+ Z < m at every time t e [tu,t1).

Proof: According to theorem 3.2, the Z x m matrix M(t) must have rank

Z. Now M(t) = fu diag (cos “t)) and consequently each element of

column i of M(t) is multiplied by cos i.(t) for i = 1,,..,m. More-

over, each element of column i of M(t) is multiplied by cos
i
(0 also.

For each component of u(t) with absolute value one we have that
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cosZ.(t)=Osinceu.(t) = sin i(0). Hence at least k columns

of E(t) have all zero elements. Thus the rank of 171(t) is at most

m - k, and so

rank (M(0) =k<m-kor equivalentlyk+i< m.

The next theorem gives a necessary and sufficient condition for

hypothesis (3) of theorem 3.1 to be satisfied.

Theorem 3.5. The vectors x(t
o
) and x(t1 ) are interior to r.

Proof: Recall that T
o 
= sin (y) - x and T1 = sin (y) - xl. Thus we

9T1
have TT- 

y
- diag (cos y) - --- and this matrix will have rank n if

and only if cos yi 0 for i = 1,...,n, or equivalently, Ixi l < 1

for i = 1,...,n. But this is the same as requiring that x be interior

to F. Therefore x(t) will satisfy hypothesis (3) of theorem 3.1 if

and only if both x(t0) and x(t1 ) are interior to r.

We shall now proceed to determine the consequences of conclusions

(1) through (5) of theorem 3.1 for x(t) and u(t).

Let the function H, called the Hamiltonian, be defined by

H(t,x,u,A) = Aofo(t,x,u) + A.f(t,x,u).

Theorem 3.6. There exists a vector function A(t) = 01(t),...,An(t))

defined on [to,t1] which is continuous except possibly at the points

where u(t) is not continuous and a constant A < 0 with
o —

(A
o, 1

.
"n

(0) 0 for all t [t
0, 

t
1 
] such that for i = 1,...,n

either

lx.
1
(01 = 1 or 5(t) + H

x. 
(t,x(t),u(t),A(t)) = 0
1
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and for j = 1,...,m either

u.(01 = 1 or H
u.
(t,x(t),u(t),A(0) = 0

on every smooth arc of x(t).

Proof: First notice that

h = X.(37*cos y) - H(t,sin y,sin Z,X)

and thus h. = A*cos y, so

— h. = X*cos y - A*sin y*ST, and
dt y

h = - A*S7*sin y - H
x
(t,sin y,sin Z,X)*cos y.

Hence conclusion (1) of theorem 3.1 becomes

h
y dt y 
- — h. = - X*S7*sin y - H

x
(t,sin y,sin Z,X)*cos y

That is,

- A*cos y + X*sin y*S7 = 0

(A + H
x
(t,sin y,sin Z,X))*cos y = 0

from which the first part of the theorem follows. For the second

part we have

h. = H (t,sin y,sin i,X)*cos
z u

and so from the Euler Lagrange equations H
u
*cos Z must be constant

on each smooth subarc of x(t). In addition, the corner conditions
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tell us that this quantity is continuous, and hence Hu*cos Z must

be constant for all t 6 [to,t1]. Moreover, looking at the trans-

versality conditions we see that h. = H
u
*cos Z = 0 for t = t

o 
and

t = t1 . Thus, along the solution

H
u
(t,sin y,sin Z,X)*cos z=

from which the second part of the theorem follows.

Corollary 3.1. If x(t) is in the interior of r for all t E [to,t1],

then

5k(t) + Hx(t,x(t),u(t),X(t)) = 0

on every smooth subarc of x(t).

Corollary 3.2. If u(t) is in the interior of SZ for all t c [to,t1],

then

H
u
(t,x(t),u(t),X(t)) = 0

on every smooth subarc of x(t).

Definition 3.1. Let i be an integer such that 1 < i Ln; then the

point x(t*) for t* e (to,t1) is called an i-boundary corner of x(t)

provided either x(t) is not differentiable at t = t* or t* is a point

of discontinuity of u(t), and Ixi(t*)1 = 1.

Theorem 3.7. For each i = 1,...,n,Xi(t) is continuous except possibly

at i-boundary corners of x(t). The function H(t,x(t),u(t),X(t)) is

continuous for all t c [to,t1].
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Proof:Frmthecornerconditions,sinceh.=X*cos y we must have

that the product
i
(0 cos yi(t) is continuous across each corner

of (y(t),z(t)). Let t* be a corner of (y(t),z(t)). Then either

x(t) is not differentiable at t = t* or t* is a point of discon-

tinuity of u(t). Suppose t* is not an i-boundary corner. Then

Ixi(01 < 1 and consequently cos (yi(t*)) O. Thus since cos (yi(t))

is a continuous function which is non-zero for t = t* and

X.(t) cos y.(t) is continuous at t = t*, we must have that X.(t) is

continuous at t = t*. Since we already know that Xi(t) is continuous

at all points where (y(t),z(t)) is smooth, the first part of the

theorem follows. In addition the corner conditions yield that

h - - i.hi must be continuous across corners. But it was seen

intheproofoftheorem3.6thatalongthesolutionhi =0 and

H = A.(STIccosy)-h=ST.h.-h. Therefore H(t,x(t),u(t),X(t)) is

continuous across all corners of x(t), and hence it is continuous

for all t e [to,t1].

Corollary 3.3. If x(t) is in the interior of F for all t e [to,t1],

then X(t) is continuous on the interval [to,t1].

Theorem 3.8. The Hamiltonian function evaluated at the Lnitial and

terminal points of a solution is zero. That is,

H(t,x(t),u(t),X(t)) = 0

f or t - t
o 

and t = tl.

Proof: We shall apply the transversality conditions of theorem 3.1.

Notice that .1)
o 
= f

o
, and recall from the proof of theorem 3.6 that

0 along a solution. We alga have that h.
Y 
= X*cos y, and sb



h..ST = (Xcos y).S7.= X.(9*Eos y) = X.f-along a solution. Mils

the transversality conditiOns, yield that X0f0 + X.f = H = 0 for

= t
o 
and t = t

The next.theorem follows from theorem 3.6.

Theorem 3.9. If the function u(t) is differentiable except at its

points of discontinuity then H(t,x(t),u(t),X(t)) is differentiable

except at these points and

dt 
H(t,x(t),u(t),X(t)) = Ht(t,x(t),u(t),X(t)).

Proof: Since H = f which is equal to k along our solution,

dt 
H = H

t 
+ H

x
.k + H

u
• 
 
+ H

•

= H
t 
+ (X + H

x
).k + H

u

From theorem 3.6, on every smooth arc either lxi l E 1, in which case

•
k.E1), or X.

1 
+H

x 
E0fori= 1,...,n, and also either lu.1 = 1,

1

inwhichcase'6.=0, or H
u. 

= 0 for j = 1,...,m. Therefore, using

these facts, we see that the last two terms on the right hand side of

the above equation are zero and hence, along each smooth arc of our

d
solution Tt- H = Ht.

Corollary 3.4. In the case of an autonomous problem, that is, if the

functions f
o 

and f are independent of t, then

H(t,x(t),u(t),X(t)) = 0

for all t E [to,t1].

27
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Proof: This follows from theorems 3.7,3.8,and

Theorem 3.10. Let t E [to,t1] and y e Rm. Decompose y into two

subvectors y consisting of those components of y corresponding to

coordinatesofu(OforwhichluJt) = 1, and V consisting of those

coorclinateso"WforwhichluJt) < 1. Decompose the vector u

similarly. Then for all y and for all V satisfying the equations

f-V =

7. (Huimijn - V.H.-V 0 at time t.
uu —

Proof: We shall apply the Clebsch condition of theorem 3.1. The

matrices 
zy hyy 

..,h
z
.. and h

y
.. are all 0. Thus the Clebsch condition

reducesto:p.11..
zz
p>oforallpERIII.suchthatcy= 0. Now by

differentiation and appropriate substitution we obtain

(1). - f
u 
diag(cos Z) and h.. = diag(H *u) - diag(cos Z)H diag(cos i).,

uzz uu

Therefore,

10.11..
zz

p = Podiag(H
u
*u)P - P.(diag(cos i)H

uu 
diag(cos i)P)

= p.(H
u
*u*p) - (p*cos Z).11 

uu
(p*cos i), and

1).() = - f (p*cos Z).
z u

Let y e Rm such that y satisfies f_i? = 0. Set T- = 7 and let 15 have

Y1(
components p,

K COS z 
=  • • This is possible since cos Z

k 
0 for

k
each k such that u

k 
a. Then clearly y= f3iccos 2. For each k such

that uk E a we have luk l < 1, and consequently by theorem 3.6,

Huk(t,x(t),u(t),X(0) = 0. Thus, p.(Hu*u*p) = 75.(Heroci-5) =7.(11,11JaMT)

because the other terms involving components of (5- are all zero.



Also, since "`? = 15*cos Z, f-(P*cos 2) = 0 and since cos Z
k 
= 0 for

allksildithalkSZ,Weobtair"e= - fu
(P*cos Z)

= - fia(A*cos 2) = O. Moreover, for the same reasons

(P*cos i).11 
uu 
(P*cos Z) = Y•HuuY. Therefore, by the Clebsch condition

we obtain

P.h..
zz

P = P.(Hu*u*p) — (P*cos Z).11 uu(p*cos Z)

= (Hriictr*7) — it > 0,uu —

29

and the theorem is proved.

The next corollary is perhaps a more usable form of theorem 3.10.

C-)rollary 3.5. Let t [tot]) and tr,ii,7 and .S(' be defined as in

theorem 3.10. Then each component of the vector H *Tr is non-negative,

andf0rall'i''sudlthatf-= 0, 17.11Lill
—'1 < 0.

—

Proof : Successively apply theorem 3.10 with ';'(' = 0 and each component

of 77 equal to zero except for the k-th component which is set equal

to one. Then .)7.11--ii = 0 and the result of theorem 3.10 reduces to
uu

H uk .10. Doing this for all k such that uk 6 n we obtain that each
uk

component of Heffis non-negative. Now apply theorem 3.10 with

7.0 aricianyvectorsuchulat fuY = 0. Then theorem 3.10 implies

that 341...-")% < O.
uu —

No t i ce that since corollary 3.5 clearly implies theorem 3.10,

the condition in corollary 3.5 is actually equivalent to the condition

in theorem 3.10.

Theorem 3.11. Let t [to,t1]. Then for all v e Rm such that Ivi l < 1

for i = 1, ..,m and T(t,x(t),v) = 0 where T consists of all coordinates
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of f corresponding to components of x(t) for which lxk(t)1 = 1, the

following is satisfied:

H(t,x(t),u(t),A(t)) > H(t,x(t),v,X(t)).

Proof: The Weierstrass condition in theorem 3.1 shall be applied.

Suppose v E Rm such that lv.
1

1 < 1 for i = 1,...,m and -T(t,x(t),v) = 0.
—

-1 
f
k
(t,x(t),v)

Let i = sin (v) and 4
k cos (yk(t)) 
- for all k such that

lxk(01 < 1 with 4k chosen arbitrarily for all k such that ixk(01 =

Then y*cos y(t) = f(t,x(t),v) = f(t,sin y(t),sin is) since

cos 
yk
(t) = 0 for all k such that ix

k 
= 1, and hence (t,y(t),4,i)

satisfies the constraining equations. Now as was seen in the proof

of theorem 3.7, along the solution x(t),u(t) we have hi = 0 and

h - ST.h. = - H. Moreover, using the fact that h. = X*cos y,

• • •
h(t,y,4,Z,X) - 4.11s7(t,y,M,X)

= h(t,y,S7',2,A) - (y*cos y).X

= - H(t,x,v,X).

Therefore,

1.

• •
E(t,y,ST,Z 29,2,X) = H(t,x,u,X) - H(t,x,v,X) and so the Weierstrass

condition yields that

H(t,x,u,X) > H(t,x,v, .

This theorem is a generalization for the bounded state problem

of the well known maximum principle of Pontryagin.
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Definition 3.2. (y(t),i(t)) is called a singular extremal provided

y z 

Mr)i,A) y = y(t)
= Z(t)

is a singular matrix on some open interval contained in [to,t1].

Theorem 3.12. If x(t) is on the boundary of r for some finite time

in [to,t1], then (y(t),i(t)) is a singular extremal.

Proof: Differentiating we obtain

and

Therefore,

a(h
y 
.,h.

z 
,0)

h..
yy ' yz zy

= 0 = O. h.. = h.. = 0,

hso, = diag(cos y) = (Dsr,

h. = - f
u. 
diag(cos i) = 0..

0

0

0 diag(cos y)

h..
zz 

- f
u 

diag(cos i)

\diag(cos y) - f
u 

diag(cos i) 0

which is clearly singular if cos (yk(t)) = 0 on some open interval

in [to,t1], that is, provided x(t) is on the boundary of r for

some finite time. Hence (y(t),i(t)) is a singular extremal.

This theorem shows that a solution to problem 1I' is singular

provided its corresponding solution to problem I contains a state

boundary subarc. The definition of singularity given above is
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equivalent to the usual definition found in the literature. The

relationships between various concepts of a singular extremal is

investigated by Straeter in (25).
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4. EXAMPLE OF A LINEAR PROBLEM WITH BOUNDED STATE VARIABLES

The problem to be considered, a linear time-optimal control

problem with bounded state variables, is the following.

Consider the differential equation iE = u where the control u

is restricted by the condition lul < 1, and the state variables x

and k are restricted by Ixl < 1 and lid < 1. To be found is a

sectionally continuous function u(t) which yields a solution to the

above differential equation, subject to the given constraints, such

that one arrives at the origin from a given initial state in the

shortest possible time. That is, u(t) is defined on some interval

[0,t1] such that x(0) = xl
o
, k(0) = *20 and x(t1) = 0, ic(t

1 
) = 0

and t1 is 
minimal.

If we let xl = x and x2 = x, then clearly this is a special

case of problem I of section 2.1 with t
o 
= 0, n = 2, m = 1,

r = [-1,1] x [-1,1], S2 = [-1,11,

f 
(x2 )

x
o

= 
 
=

u
x2 

o
1x = and f

o 
= 1.

In this chapter we shall characterize solutions to this problem by

using the conditions developed in chapter 3.

First notice that in order to satisfy hypothesis (2) of theorem

3.1, we must have Ix1(01 < 1 for all t according to theorem 3.2.

Since fl is independent of u, the row in M(t) corresponding to xl

will always be zero. Thus, if xl(t)I = 1, M(t) would not have
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maximum rank. Moreover by theorem 3.4, the number of constraints in

effect at any time cannot exceed m, which is 1 in this case, and so

we can never have 111(01 = 1 and lx
2
WI = 1 simultaneously. In

fact, if Ix1 = 1 on some interval, then on that interval x1 = 0,

in which case, by the state equations, x2 = 0 on that interval, a

contradiction.

Let us now investigate subarcs interior to the state region,

that is, where lx2(01 < 1. We have H=-A
o
+

1 
x
2 
+ X

2
u and hence

according to theorem 3.6, 
1 
= 0 and

2 
= - a l. Moreover, by theorem

3.11, we have 2u(t) > 2
v for all v of absolute value less than or

equal to one. Therefore, u(t) = 1 provided X2(t) > 0 and u(t) = - 1

when
2
(0 < O. From the above differential equations we see that

1 is constant and 2 
is linear with slope - X l. Notice that

2

is not identically zero since in this case
1 
= -

2 
would be zero

also, which would mean by corollary 3.4 that X0 = O. This would

violate the condition that (X0,X 1,X2) O. Moreover, interior to

the subarc, we cannot have 2 
= 0 even at an isolated point since

irl this case u would have to be discontinuous at such a point,

switching from -1 to +1 or vice versa. Hence, on such a subarc,

u(t) E +1 or u(t) E -1. Since by theorem 3.5 1x2(0)1 < 1, the first

subarc of a solution must be of this kind.

Type 1 (u = 1)

If we integrate the state equations we obtain

xl = -2- t
2 
+ c

2
t + c

l

x
2 
= t + c

2
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and elimination of t from the above yields

1 
x22 

1 2 1 2
xl =  -I- (c1 - c2 ) = -2- x2 + c.

In the state plane this defines a one parameter family of parabolas

with the x1 
-axis as their axis of symmetry and all opening to the

right. Moreover, since x2 = u = 1, the movement along these

parabolas is from bottom to top as t increases. Of course, for

this problem we are only concerned with their portions lying in F.

By applying the boundary conditions to the above we see that

c
1 
= x

1
o 
 

and c2 = x2
o

2,
and that it is possible to reach the origin

without switching only if one starts on the parabola x = — x
1 2 

x22

with x
2
 O.

Type 2 (u = - 1)

Here we obtain

x = - 2 t
2
 d

2
t + d

1

x
2 
= t d

2

and again eliminating t yields

1 2 2 1 2 4. d
xl = 2 x2 + (d1 d2 ) = -2- x2 •

In the state plane this defines a one parameter family of parabolas

with the x 
1
-axis as their axis of symmetry and all opening to the

left. Moreover, since x2 = u = - 1, the phase point moves from top

to bottom along one of these parabolas as t increases. Again the

boundary conditions yield that d1 = xl
o 

and d2 = x2
o
, and it is
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possible to reach the origin without switching only if one starts on

the parabola xl 2 
1 

x2
2
 with x2 > O.

Let us now consider the possibility of subarcs on which

1x2(01 = 1. In this case we must have that x2 = u = 0, according

to theorem 3.6, since 1u(t)1 < 1, X2(t) = 0 along such a subarc, and

X 1 = Q as before. Integrating the state equations we see that either

x
2 
= 1 and xl = t + e or x2 = - 1 and x1 = - t + f where e and f are

constants. In the first case we move along the x2-boundary of r from

left to right as t increases. In the second case we move from right

to left.-

By theorem 3.7, X
1 
must be continuous at each corner, and since

it is constant on each possible type of subarc, we must have that

1
(t) = X

1 
for all t 6 [t ,

t1
]. Also, by corollary 3.4, H = 0

along the optimum trajectory. In particular this means that H is

continuous across corners. Therefore, the term X2u must be continuous

across corners because the other two terms in H, namely X
o 
+ A x

1 2'

are continuous everywhere. However, we have seen that at each corner

u is discontinuous switching between its possible values of +1, -1

mad O. Therefore X
2 

must be continuous at such corners with value O.

Let us now collect this information obtained from the necessary

conditions in order to develop an optimum strategy starting at an

arbitrary point for which lx10 1 < 1 and Ix2
o 

1 < 1. Observe that we

can have at most three subarcs. We must, as was shown previously,

begin on a subarc of type 1 or type 2 on which X2 is linear with

slope -
1. 

The function X
2 

must go to 0 as we approach a switching
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point. If we switch to a subarc of type 1 or type 2 again, then X2

can never again be 0 since on this subarc it will be linear with

the same slope as previously. Thus we can never switch again. If

the x
2 

boundary is encountered, that is, if the absolute value of

x2 becomes 1, then we switch to u = 0 and 2 
is 0 along such a

subarc. In order to get to the origin we must switch from this

boundary subarc to one to type 1 or type 2 in which case by the

above argument
2 

can never become 0 again. Hence no further

switching is possible.

Therefore, to get to the origin from an initial point not

lying on a parabola which leads to the origin we must do the

following. Through (x
1
o 
'
x
2

o 
) there passes exactly one member of

each type 1 and type 2. However, only one of these parabolas leads

(in the direction of increasing 0 to a parabola which leads to the

origin or to a boundary of F where Ix
2

1 = 1 which leads to a

parabola which leads to the origin. So one must travel along that

parabola with u = -1 or u = +1 (whichever is appropriate) and switch

the value of u to the negative of its previous value when the parabola

leading to the origin is encountered. If the boundary of r is met,

we switch to u = 0 and move along the boundary until arriving at the

parabola leading to the origin where u is switched again to either

+1 or -1.
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To summarize, if

1. -1 < x2 0 and

-1 < xl

7 x
2

2

 
<

1 2
— 
2 

x
2

<

x
1

<

1 2
— x
2 2

< 1

x
1 

< 1

2. 0 < x
2

< 1 and

-1 < x 1
1 2

— 2 x2

-1 < x1 < - 
1
2

3. x
2
= 1 and

1x1 = - 7

2 
< x1 < 1

4. x = and
2 1

x, = —
± 2

use u = +1

use u = -1

use u = -1

use u = +1

use u = 0

use u = -1

use u = 0

use u = +1

1
However, if x2

o 
LO and xl

o 7 + (x2
o 
)
2
 > 1 the subarc of type

2 which must be taken first leads to the xl = 1 boundary which

contradicts our first observation that Ix1 
< 1 at all points

0 
9o 1 o

along a solution. Similarly, if x2 < 0 and xl - (x2 )-

then the subarc of type 1 which must be used leads to the xl = -1

boundary. Hence there can be no solution to the problem for the

initial point in these regions.

So we see that from each point in the interior of F, excluding

these two regions, there emanates a unique trajectory satisfying all

the necessary conditions of chapter 3 which leads to the origin.

Only these trajectories can be optimal (solutions to our problem).
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Thus, if a solution exists from a given initial point then it must

necessarily be the above unique trajectory passing through the initial

point and going to the origin. To determine if these trajectories

are indeed optimal, they must be examined in the light of sufficiency

criteria. Unfortunately, very little has been done in the way of

developing sufficient conditions for solutions to bounded state

problems. The question of sufficiency for this example with an

unbounded state region is investigated in (11).
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5. THE LINEAR TIME OPTIMAL CONTROL PROBLEM
WITH BOUNDED STATE VARIABLES

In chapter 4 an example of a linear time optimal control problem

with bounded state variables was considered. We shall take up the

general problem in this chapter. That is, consider problem I in

section 2.1 with

= Rm:

r = {x E Rn:

< 1 for j =

< 1 for i = 1,2,...,n},

f
o
(t,x,u) = 1 and f(t,x,u) = Ax + Bu

where A is an n x n matrix and B is an n x m matrix. Here the state

equations are 3c = Ax + Bu which are linear in both the state variables

and the control variables. The cost function in this case is

ft1
dt = t

1 
- t

o
,

t

the total time duration of a trajectory. Therefore we seek a solution

to the state equation x(t) and u(t) going from some initial state x
o

to some final state xl in minimal time.

By way of notation, we shall use NL(A) to designate the left

null space of a matrix. That is, NL(A) consists of all vectors x

such that XA = O.

5.1 Subarcs Interior to the State Region

As usual ue assume that x(t) and u(t) defitled on [to,t1] yield

a solution to the problem. Consider a subarc of x(t) from time ti
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totimetu suchthatlx.(t) 1 < 1 for all t E (tt ,t") and for

i = 1,...,n. That is, the subarc is contained in the interior of P.

Assume that on this subarc there are k components of u(t) such that

1 u.(t)1 = 1. Let1:W be the subvector of u consisting of all its

componentswherelu.(t) 1 = 1, and u(t) consist of those components

for which 1u.(t) 1 < 1. Then u will be a k-vector and u an

(m k)-vector. Let Ti consist of those columns of B corresponding

to components of u that are in u, and let B contain the columns of

B corresponding to elements of u that are in u. Then B will be an

n x k matrix and B an n x (m - k) matrix.

In chapter 2 we observed that the necessary conditions for

solutions in the interior of r are the same as those for the problem

with an unrestricted state region. Therefore, all results stated

here hold also for the same problem with r = Rn since all results

in this section follow from those necessary conditions. One of

these is the well known bang - bang principle.

We shall consider X to be a row vector so that multiplication

of X by a matrix will occur on the right. As before, x and u will

be thought of as column vectors and will be multiplied on the left

by matrices.

Theorem 5.1. On each such subarc X(t) satisfies the equations

+ XA = 0 and = O.

Proof: For this problem H(t,x,u) = X0 + X.(Ax + Bu) and by definition

Bu = Br+ Bu. Applying theorem 3.6, we obtain that along each subarc
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ofasolutionX+Hx =OandHu. =Oforalljsuchthatluj< 1

J

or,inotherwords,Hia=0.i. Therefore,

+ = 0 and Xi = O.

Theorem 5.2. For all t (t°,t"), X(t) 0 and

n-1
(t) e n N (A B).

i=0

Proof: From theorem. 5.1 we have that X(t) satisfies X = - XA and

Xfi = O. Differentiating we obtain Xi = 0 and substituting for X

yields that Xi = - XAt = 0 along the subarc. Continuing this process

we obtain -XAt = XA2i = 0 along the subarc, and in general XAii = 0

for i = 0,1,...,n - 1. Therefore,

n-1
X (t) E n NL

i=0

If X(t) = 0 for some t, then since by corollary 3.4 H = 0 along a

solution, we would have at that time 0 = H = X0 + X.(Ax + Bu) = 10.

So (X0,X(0) = 0 which contradicts the result of theorem 3.6 that

(X
0,

X(t)) 0 for all t. Therefore, X(t) 0 for all t E (ti ,t").

Corollary 5.1. The rank of the n x n(m - k) matrix [tait,...,An-lt]

is less than n.

Proof: By theorem 5.2, X A B) on the subarc. That is,
i=0

aA1B = 0 for i = 0,1,...,n - 1 or equivalently X[B,AB,...,A
n-1 

B] = O.

But since X 0 this means that the rank of the above matrix must be

less than n.

By using this corollary we can determine which combinations of
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components of u can possibly have absolute value one on a subarc.

If, for a given choice of B, the rank of the above matrix is n, then

we can never have a solution to the problem with such a u and u on

any subarc.

Definition 5.1. The matrices A and B satisfy the general position 

condition of orders. where 1 < q < m provided whenever Q is an n x q

matrix consisting of q columns of the matrix B, then the n x nq matrix

[Q,AQ,A2Q,...,An-1Q] has rank n. If A and B satisfy the general

position condition of order 1, then we simply say that ,they satisfy

the general position condition.

Theorem 5.3. A and B satisfy the general position condition of order

q if and only if for all matrices Q consisting of q columns of B, we

have

n-1
(-) NL(AlQ) = {0}
i=0

n-1
Proof: Suppose a e n N

L
(AiQ) for some Q. Then aAiQ = 0 for

i=0

i = 0,...,n - 1, and hence

a[Q,AQ,...,An-1Q] = 0

which implies that a = 0 by the general position condition of order q.

n-1
Therefore r, N

L
(A
i
Q) = {0}. If the general position condition of

i=0

order q is not satisfied, then there exists a 0 such that for some Q,

a[Q,AQ,...,A
n-1

Q] = 0 which implies that aA1Q = 0 for i = 0,...,n - 1.
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n-1

,
But this means that a e n N

L
( 

i 
Q) = {0}, a contradiction. Hence

i=0

the general position condition of order q is satisfied.

Theorem 5.4. If A and B satisfy the general position condition of

order q, then A and B satisfy the general position condition of

order q' for all q' such that q < q' < m.

Proof: Let Q' be an n x matrix consisting of q' columns of B.

Then since q < q', let Q be the n x q matrix consisting of the first

q columns of Q'. By the hypothesis the matrix [Q,AQ,...,A
n-1

Q] has

rank n. Therefore, [Q',AQ',...,A
n-1

Cr] has rank n also since the

previous matrix consists of a subset of the columns of this matrix.

Hence A and B satisfy the general position condition of order q'.

Theorem 5.5. Suppose A and B satisfy the general position condition

of order q. Then along any subarc of a solution interior to r, at

least m - q + 1 controls have absolute value one. That is,

k > m - q + 1.

Proof: We shall argue by contradiction. Suppose k < m - q, then

q < m - k, in which case by theorem 5.4, we have that A and B satisfy

the general position condition of order m - k. But t consists of

exactly m - k columns of B, which means by corollary 5.1 that

rank ([B,AB,...,A
n-l-

B]) < n,

a contradiction to the fact that A and B satisfy the general position

condition of order m - k. Therefore, k > m - q + 1.
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Corollary 5.2. (bang - bang principle) If A and B satisfy the general

position condition, then along any subarc of a solution interior to

r wehavethatluJ= 1 for j = 1,...,m.

Proof: By theorem 5.5, using q = 1, we obtain k > m - 1 + 1 = m,

and since k can be at most m, we thus have k = m. Therefore, all

components of the control vector have absolute value one.

Corollary 5.3. If A and B satisfy the general position condition of

order q where 1 < q < m, then the controls along any subarc interior

to r always lie on the boundary of Q.

Proof: By theorem 5.5,k>m-q+ 1 >m-m+ 1 = 1. Therefore at

least one component of u has absolute value one. Hence u lies on

the boundary of Q.

(Note: if q = m, then the hypothesis of corollary 5.3 is the so-called

controllability condition.)

Corollary 5.4. If there is a subarc of the optimal trajectory on

which the control in interior to n, then A and B do not satisfy the

general position condition of any order.

We shall now develop a method for determining which components

of u must have absolute value one on every subarc of x(t) which is

interior to r.

Designate the columns of B by b l ,b2,...,bm and define

Mj = [b ,Ab ,A2b 
'
.. A

n-1
b]

for j = 1,...,m. Clearly each Mj is an n x n matrix.
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Notice that:

(a) A and B satisfy the general position condition if and only if

each M. has rank n.
J

(b) A and B satisfy the general position condition of order q if

and only if each n x nq matrix consisting of precisely q of

theM:shasrankn.Thisfollowsbecauseif(1=[b.,...,b. ],
J J 1 J 

q

then NoNo,...„An-10 is just [m. ,...,m. ] with its columns
J 1 J

q

rearranged. Therefore both matrices have the same rank.

Theorem5.6.SupposeM.has rank n for some j where 1 < j < m, then

lu.1 = 1 on any optimal subarc which is interior to r.

Proof:Supposelui< 1 on some subarc interior to r. Then on that

subarc from theorem 5.1 we have

n-1
X En NL(Aii)

i=o

whereicontainscolumn b.sinoeltil<1.SinceM.has rank n, it

n-l-
adludsthat[BaLB,_,AB]hasranknbeoauseM.00nsists of a

subset of the columns of this matrix. This was shown in (b) above.

Therefore
i=0

a contradiction. Thus we must have that lu 1 = 1.

corollary5.5.1flu.l< 1 on some subarc interior to r, then M.

(A B) = { which means that X = 0 on this subarc,

has rank less than n.
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Theorem 5.7. On each subarc of x(t) interior to r,

-1 provided abj< 0

+1 provided Xb. > 0
J

for j = 1,...,m.

Proof: According to theorem 5.1, X13. = 0 for all j such that u is

in U. Thus, we need only investigate the u. that are in u, that is,

the ones that have absolute value one. According to corollary 3.5,

each component of Her must be non-negative. But lin = Ali; therefore

this condition requires that Xb.u. > 0 for each u in u. Hence
J J

whenXb.>0,u.=-1-1,andwhenXb.<0,u.=-1.

5.2 Subarcs Along the Boundary of the State Region

We shall now consider a subarc of x(t) from time t' to time t"

suchthatlx.
1
(t) I = 1 for some i such that 1 < i < n and for all

t E (C,t"). That is, the subarc is contained in the boundary of P.

Assume that along this subarc there are St components of x such that

lx.I x, = 1. Let  be the subvector of x consisting of all x. such
1 1

that lx.
1

1 = 1, and x contain all x
i 

such that lx
i

I < 1 on the subarc.

Then x is an 2.-vector and k an (n - 0-vector. Define u and U as

in section 5.1.

Now let A consist of all columns of A corresponding to components

of x in x, and A contain all columns of A corresponding to components

of x in R. Subdivide A into A
1 
and A3, A1 consisting of all of its

rows corresponding to the xi
 
in;i and A3 containing all rows



corresponding to the xi in it. Similarly, subdivide A into A2 and A4.

Then: A is an n x k matrix;

A is an n x (n - 9,) matrix;

A1 is an Z x Z matrix;

A2 is an 2., x (n - 0 matrix;

A2

is an (n - x Q matrix;

14s an (n - t) x (n - 0 matrix.

Define B and B as in section 5.1, and subdivide IT into B1 and

B3, Let B
1 
consist of all rows of B - corresponding to components of

x inx,- andB3 containallrowscorrespondingtothex.in x.

Subdivide i into B2 and B4 similarly.

Then: B matrix;is an n x k

is an n x (m - k) matrix;

B
1 

is an Q x k matrix;

B2 is an k x (m k) matrix;

B3 is an (n - ) x-k matrix;

t
4 is an (n - x (m - k) matrix.
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Theorem 5.8. On any subarc along the boundary of r, B2 has rank Q.

Proof: By theorem 3.2, along this subarc M(t) must have rank Q.

Recall that M(t) consists of the rows of f
u 
diag (cos I) corresponding

to xi for which lx
i 

= 1. Therefore M(t) = fu diag (cos i). For

allu.inu,cosi.=0.Thusrank(14(0).rank(fa cliag (cos M

sincediej-thcohnninTu ismultipliedbycosi„Also, for all
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uag (cos i) by

theappropriatecosi.+0, we obtain

rank (i1(t)) = rank (f_ diag (cos i)) = rank (f).

Now f = Ax + Bu = Ax + Ta + ia, so f- = B. Eliminating all rows

corresponding to x. in x, we obtain 7-
u 
= B2 . Therefore,

= rank (M(t)) = rank (B2).

Theorem 5.9. On each subarc lying on the boundary of r, x(t),u(t) and

X(t) satisfy the equations

7132 + 5:134 = 0

TA2 + XA4 = 0,

A1 x + + B1 u - + B2a = o,

A
3
x - + A4 + B3u - + B4a = x,

o • 
X(A

3
x + A4 + B3u + B4a) = O.

The last equation holds if u is differentiable on the subarc.

Proof: For this problem

H = ao + • (Ax + Bu)

= a + • (A.7 + AR + BLi +

= + TA + 3• tA + +
o 1 3 2 4
+ aB 1u

 
+• 5k- B 371 + TB2 + 5;134 .

Hence, applying theorem 3.6,

H
u
= TB2 + XB4 = 0 and

A + 
x
= + Ta2 +• iA4 = O.•
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So'thefirsttwoe"ationsarepr"ed.Foreacilxi ii"

since xi is constant along the subarc. Thus, 7 = 0 along the

subarc. But

f = Ax + Bu = Ax + AR + B u+ B

and hence 1- = A1 77+A2R + B 1 + B2u = 0. For the other components

R =f= A
3
x +A

4
R+B

3
u+B

4
uare the state equations. If u is

differentiable on the subarc, then we can apply corollary 3.4 to

obtain H = 0 along the subarc. Now by subtracting from the expansion

of H above the terms in the third equation, we obtain

H = ao + XA 
3
7c + a

t+ 
+

3
u + XB

=
o 
+ X (A 

3
Tc + A

4 
+ B 
;

.; + B 
4
a) = 0.

Theorem 5.10. Let X' = X(t'), then for all t e (C,t"),X(t) # 0 and

x(t) x, e (134B2KA2 - A4)(t -

T(t) = - X(t)B4BK,

X(t) e NL(B4 - 13413KB2),

where K = (B2 2 
B )

-1
.

t')

Proof: Since B
2 
has rank k, B

2 2 
B
T 
is an invertible x matrix.

Thus, K is well defined. By theorem 5.8, 7132 = -X134 and so

2 2
BT - XB

4 2 
BT which implies that T. - XB

4 2 
BK. Also, by theorem

5.8, X = TA2 - XA4. Therefore, substituting for 7, we obtain

A = A(B
4
B
2
KA
2 
- A

4
) which has the unique solution
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x, e (B4H2KA2 - A4)(t - t')

on the subarc. Also, if â(t) = 0 for some t E (C,t"), then by the

second equation of the theorem, 7(t) = O. Moreover, by viewing the

fifth equation of theorem 5.8, we see that X0 = O. Hence (a0,X) = 0

which violates the conclusion of theorem 3.6 that (A ,X) 0 for all

t [to,t1]. Thus 5;(t) 0 for all t c (t',t"). Finally if we take

- ..134B2K and substitute it into 713
2 
+ .X13

4 
= 0, we obtain

X(B4 - B4BKB2) = O.

It thus follows that X e N
L 
(B

4 
- B

4 2 
BKB

2 ).

Corollary 5.6. If k + 1t = m, then X(t) e N_
L
(B

4 
- B

4 2 
B
T
KB 
2
) is always

satisfied.

Proof: B2 is an 2, x (m - k) matrix. Therefore, if t m - k, B2

is a square k x 2, matrix, and since it has rank 2,, it is invertible

and so is B2. Hence, K = 
(B2B2T 

)
-1 

= 
(B2T 
)
-1 

B2
-1 
. Thus

B KB
2 2 2 
= B

T 
(B

T 
)
-1 

B
2
-1 

B
2 

k = I, the k x identity matrix. It therefore
2 

follows that

B
4 
- B 

4 2 
B
T
KB
2 
= B

4 
- B

4 
= 0,

the (n x t zero matrix, and so

â(t) c NL(0) = Rn-t

is automatically satisfied for all t E (C,t").
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Notice that in case k + R, < m, the above condition is not

necessarily trivial. In this case k < m - k which implies that B2
KB
2

has rank less than m - k since B2 
has rank Q. Hence B KB2 cannot2 

be the (m - k) (m - k) identity matrix.

Corollary 5.7. The rank of B4 - B4B2KB2 is less than n - Q.

Proof: This follows from the two results of theorem 5.9 that a(t) 0

and X(t) e NL(B4 - B44KB2).

Theorem 5.11. Let C = AB4BIK, an n x k matrix, and form the n x n

matrix D in the following way. For each i such that 1 if

Ixi 1 = 1 and x. is the j-th component of x, then let the i-th column

of D be the j-th column of C. If lxi l < 1 and xi is the j-th

component of 5E, then let the i-th column of D be the j-th column of

-A. Then along this subarc, A(t) satisfies

I = AD and Afi = O.

Proof: By definition 7)32 + X)34 . xi, so the second equation is

satisfied by theorem 5.9. Moreover, if we differentiate TB2 + A134 = 0,

we obtain

TB
2 
= - AB4 = (TA2 + 4 4 )B4 since = - 2 -• 4.• • 

• 
Therefore, A = (AA2 + AA4 

)B4 2 B
T
K which is equal to AAR4B2

T
K by the

definition of A2 and A4. So we have 7 = AC and a= A(-A), and putting

these together accore7ing to the definition of D in the hypothesis, it

•
follaws that a = AD.
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We have now put the equations for a on a subarc along the

boundary of the state region into the form of theorem 5.1, which

gives the equation for a on a subarc interior to the state region.

Thus, the same type of logic used in theorem 5.2 may now be applied

to obtain similar results in this case.
n-1

Theorem 5.12. For all t e (tv,t"), X(t) e (-)NL(D B).
i=0

Proof: By theorem 5.10, X(t) satisfies the equations A = AD and At = 0

on this subarc. Thus, by differentiating we obtain AB = 0 and since

= XI), this implies that XDB = 0. Continuing this process, we

obtain 1Dt = XD2t = 0 along the subarc and in general XI) B = 0

for i = 0,1,..„n-1. Therefore,

X(t)

Corollary 5.8. The rank of the n x n(m - k) matrix [B,DB,...,D
n-1 

B]

is less than n.

Proof: This follows from the facts thtt A(t) e N (D B), and
i=0

X(t) 0.

Notice that there is a one-to-one correspondence between

possible boundary configurations and decompositions of A and B into

A1,A2,A3,A4,B 1,B2,B3, and B4. By possible boundary configurations

we mean the possible combinations of each component of u and x

either having absolute value equal to one or less than one. The

theory of this section was developed with the thought in mind of

enabling one to narrow the list of possible boundary configurations

somewhat.
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First one applies the condition that k + Q< m to eliminate all

cases where the total number of constraints in effect exceeds the

number of control variables. One might observe that this is the

same as saying that the total number of constraints not in effect

must be greater than or equal to the number of state variables.

This is true because if k + < m then -k - k > -m, and if we add

n + m to both sides of this inequality we obtain (m - k) + (n - > n.

Secondly, one can apply corollary 5.7 to rule out some or all

of the combinations where k + k< m. This is a consistency

condition which must be satisfied if there is to be a non-trivial

solution to the equation for a in theorem 5.8.

Finally, one can reduce the possibilities further by applying

corollary 5.7.

Theorem 5.13. For all t e [C,e] and for all v e Q such that

A
1 
X(t) + A2

ii(t) + B1 + B2
'V = 0, we have

X(t)(B3u(t) + B4i1(0) > X(t)(B3v + 134ii).

Proof: From the proof of theorem 5.9, we have that if

A
1 
x(t) + A 

2 
5I(t) + B

1 
v + B

2 
= 0,

then

H(x(t),v,X(t)) = A0 + 5(t)(A3x(t) + Ajc(t) + B3v + B4-0.

Thus, applying theorem 3.11, it follows that



A + (t)(A3x(t) + A4ii(t) + B3
u(t) + B

4
ii(t)) >

ao + X(t)(A
3
Y(t) + A

4
R(t) + B3v + B:0,

and therefore, by subtracting out the common terms on each side of

the inequality, we obtain

(t)(Bpt) + B411(0) > 5:(t)(B37; + B4-1"7).

theorem 5.14. On each subarc of x(t) along the boundary of r,

u. =

-1 provided X1) < 0

provided ?kb. > 0

forj=1,...,mwhereb.is in the j-th column of the matrix B.

Proof: According to theorem 5.11, Xi) = 0 for all j such that uj

isina.Mus,weneedonlyinvestigatetheu.that are in u, that

is, the ones that have absolute value one. According to corollary

3.5, each component of H—*u must be non-negative. But H— = AT and

thereforethisconditionrequiresthatA.b.
J
u.>Oforeachu.in a.

Hence, when kb. > 0 then u. = +1 and when XI). < 0, u. = -1.

So we see that the results of theorem 5.7 hold even in the case

where x(t) lies on the boundary of F.
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6. SUMMARY AND CONCLUSIONS

In this thesis a method has been described whereby an optimal

control problem with bounded state variables may be transformed into

an equivalent Lagrange problem. This was accomplished by means of

differentiable mappings which take some Euclidean space onto the

closee: and bounded control and state regions. Whereas all such

mappings lead to a Lagrange problem, it has been shown that only

those which were defined as acceptable pairs of transformations are

suitable in the sense that solutions to the Lagrange problem lead

to solutions to the bounded state problem and vice versa. In

particular, an acceptable pair of transformations was exhibited for

the case when the control and state regions are right parallelepipeds.

the necessary conditions of the Calculus of Variations were

then applied to the transform of the non-linear, non-autonomous

optimal control problem with the unit n-cube and unit m-cube as

state and control regions respectively. These conditions are the

Euler Lagrange equations, corner conditions, transversality conditions,

the Clebsch condition and the Weierstrass condition. In each case

adalogous conditions were developed which solutions of the bounded

state problem must satisfy. In addition, the hypothesis for applying

these conditions led to theorems which state that the initial and

terminal points must be interior to the state region, and that a

certain submatrix of the matrix of partials of the constraining
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differential equations with respect to the control variables must

have maximum row rank.

These results were than applied to a simple example of a

linear time optimal control problem with bounded state variables

for which solutions were completely characterized. The general

linear time optimal problem was then considered and various

necessary conditions developed for it in terms of the coefficient

matrices.

First, the properties of subarcs of a solution interior to the

state region were developed. It was observed that these must also

hold for the non-state constrained problem. Among them is the well

known bang - bang principle. Then subarcs which lie along the

boundary of the state region were investigated with several new

necessary conditions developed.

There are a number of areas in which the author feels that the

research of this thesis may be extended to yield further results.

If acceptable pairs of transformations can be exhibited for more

general state and control regions, perhaps convex polyhedra or even

compact convex sets, then the same analysis can be applied to obtain

necessary conditions. Of particular interest would be state regions

described by a system of inequality constraints of the form g(x) < 0.

The question of sufficiency has been totally ignored in this

thesis. Although there are a number of very difficult problems

associated with the development of sufficient conditions for the

bounded state problem, the author feels that some results may be
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obtained by using this transformation method to apply the sufficient

conditions of the Calculus of Variations to the bounded state

problem. The question of existence of solutions may possibly be

studied by applying the theory of generalized curves to the trans-

formed problem.

It was shown in chapter 3 that state boundary subarcs are

singular subarcs of the transformed Lagrange problem. Therefore,

an investigation of the known properties of singular subarcs may

lead to new necessary conditions for the bounded state problem.

It was observed that a number of the results of chapter 3 are

similar to those obtained by other authors. Further studies should

be made to determine the exact relationship between the results

contained herein and those of others, notably Berkovitz and

Gamkrelidze.

In this formulation, sectionally continuous controls and

sectionally smooth trajectories were considered. The same theory

could have been developed using bounded measurable controls and

absolutely continuous trajectories. Also, other types of problems

could be investigated. Perhaps the best place to start would be to

consider the linear problem with different cost functions, for

example, a quadratic cost function.

Finally, some experimentation should be made, possibly on a

computer, in the utilization of the conditions developed to obtain

solutions to particular problems.
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