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TECHNICAL MEMORANDUM X- 64646

PASSIVE STABILITY OF A SPINNING SKYLAB

INTRODUCTION

In 1970 NASA's Marshall Space Flight Center initiated a study to deter-
mine the feasibility of spinning the Skylab (the first U.S. manned orbiting space
station). The purpose of the spin would be to provide artificial gravity so that
its effects might be assessed. One facet of this study is presented in this paper.

In spinning the Skylab, it would be necessary to point the solar panels
toward the sun. This would require the vehicle to spin about a principal axis
of intermediate moment of inertia, which cannot be done stably. That axis can
be made the axis of maximum moment of inertia by deploying masses on the
tips of extendable booms in a direction perpendicular to the spin axis. A sim-
plified model of the modified spinning Skylab is described, and analyses of the
stability of motion and the rotational dynamics are presented.

MODEL DEFINITION AND EQUATIONS OF MOTION

The geometrically complex Skylab Q.](Fig. l) is simplified to make it
analytically tractable. The vehicle is modeled (Fig. 2) as a single rigid core
body with principal moments of inertia I* (throughout this paper, subscript i

ranges from 1 through 3 and refers to the 1, 2, 3 body-fixed axes) with
;fc ?k sk

I^ <I3 <I2 . Attached to the core body are two flexible massless booms, each of
length T (measured along the 2-axis in steady state) and each having a tip mass
m. In the steady state, the principal moments of inertia of the entire vehicle
coincide with the body-fixed axes and are designated I. with I1<I2<I3. The vehi-

cle is assumed to have a steady-state spin velocity fi about the 3-axis, and the
angular velocity vector is written in body-fixed coordinates as o> = (wlf w2, fi
+ w3), where w. represents small perturbations about the steady state, i.e.,1 k
|w.|«l. Displacements u. (k = 1,2) of the tip masses from the spinning

steady state are assumed to be small. Nonrotating boom stiffness is charac-
terized by stiffness coefficients k.. Structural damping is assumed proportional



SKYLAB

SERVICE —
MODULE

r TAGS ENGINE POD

INSTRUMENT UNIT

AIRLOCK MODULE

MULTIPLE DOCKING ADAPTER

COMMAND MODULE

WORKSHOP SOLAR
ARRAY

BOOM

Figure 1. Skylab.

Figure 2. Simplified model.



to elastic deformation velocities and is denoted by coefficients d.. Rotational

dynamics of the vehicle may be represented by a set of nine differential equa-
k

tions written in variables u. , w.. The set may be reduced to six by making the

substitution u. = u. - u. , where u. represents the skew symmetric mode of the

elastic deformations and hence causes angular motion about the vehicle's
steady-state attitude. In this investigation stability of rotational motion is of
interest, so only the skew symmetric mode will be considered. The corre-
sponding linearized equations of motion are

wj - KlW2 + y^Gz's' + MS) = Ti/¥2

w2
T - KjWj = T2/I2fl

(i/fl)M + wz) + /4' + A3Mj + (<r3
2 + I)MS =0 (i)

and

- 2/i|) = T3/i3n

+ MI' + A j M j + ^Vi - (l/r2)M2 ' = 0

(-2/n)w3 + (l/r2)Ml + M2.

where

It = if + 2mF2

- *
~

.. I3 = I + 2mF

. .
1 1

j. = 2mr2/I.1 1

A. = d./mfli i



K2 = (I3 -

ju. = U./2T'i i

and T. represents the applied torques. For physical reasons,

[ K k l < i fk = 1,2),

0 < y < 1 (m = 1,3),

d. > 0,

and

k. > 0.i

Primes represent derivatives with respect to r, where

T = fit,

and t denotes real time. Equations (l) describe wobble motion (resulting from
angular motions about the 1- and 2-axes and linear motion in the 3-direction).
Equations (2) describe in-plane motion (a combination of angular motion about
the 3-axis and linear motions in the 1- and 2-directions).

STABILITY ANALYSIS

The motion of the vehicle can be described by a nutation about the axis
of angular momentum which, in the absence of external torques, is inertially
fixed. This motion is called passively stable if the nutation damps out and the
vehicle rotates only about the axis of angular momentum (the effect of applied
torques T. is to change the attitude of this axis). The following analysis

determines under what conditions the spinning vehicle can be passively stabi-
lized, assuming I1<I2<I3.



The stability of wobble motion is investigated by obtaining the charac-
teristic equation from equations ( l) :

A3X3 - (KjKg + YlK2 + YI - <r3
2 - l)X2 -

- [(<r3
2 + IJiKiKj-f YlK2 ] - 0, (3)

where

X = s/fi = TJ + if

and s is the Laplace operator. Regions of stability may be determined by
applying the D-composition technique [2] . The stability boundary associated
with the origin of the complex \-plane is found by setting the coefficient of \°
equal to zero in equation (3), yielding

Kg = -[(cr3
2 + iVnlK^. (4)

The boundary associated with infinity on the X-plane is found by setting the
coefficient of X4 equal to zero:

Tl = L • (5)

The stability boundary associated with the imaginary axis of the X-plane is
found by setting X equal to iv in equation (3) and writing the real and imaginary
parts of the result as the two equations

[ p 2 - (cr3
2+ i N K i K j + y^2- 1)K2= V[(l- r iV

2 + ( Y l - c r 3
2 - l)]

and

-As* (K^ = - „ * ) . (6)

Equations (6) may be solved for the relationship

(7)

Finally, a stability boundary may exist that is associated with the singular case
where equations (6) are not independent; i.e. , when the Jacobian J becomes
identically equal to zero [ 2] . The Jacobian of equations ( 6) is

J =&3y iv(v2 - I ) , (8)



2 _ ,2 _which is zero when A3, yj, or v equals zero or when v = 1. If v - 1 is
substituted into equations (6), the J = 0 stability boundary is found as

K1K2 = -1. (9)

These stability results corroborate those reported by Barbera[3] .

The wobble motion stability requirements may be portrayed on a-K1K2,
K2 parameter plane (Fig. 3). The stable region may be found by considering
the sign of J [2]. Double cross-hatching is used on the boundary associated
with the imaginary axis (including the J = 0 boundary) „ The hatching lies on
the side of the boundary that is toward the stable region; in the \^plane, it lies
on the left side of the boundary for increasing v. If J>0, the hatching in the
parameter plane will also lie on the left side of the boundary as v increases
(and on the right side if J<0). Single cross-hatching is used similarly on the
boundary associated with the origin of the X-plane. Continuity of cross-hatching

1. CROSS-HATCHED REGION IS STABILITY REGION
LOST BECAUSE OF FLEXIBILITY

2. ENCIRCLED NUMBERS REFER TO NUMBER OF STABLE
ROOTS OF CHARACTERISTIC EQUATION

3. ADDITIONAL CONSTRAINTS: 0<y i<l,A3 >0.

Figure 3. Stability region for wobble motion.



must exist at contour intersections in the parameter plane corresponding to the
origin of the X-plane and to other intersections where the contours have equal
values of v . •

The effect of boom flexibility on stability may be assessed by consider-
ing the booms to be rigid; i. e. , setting I/a.2 equal-to zero. The boundary of

equation (4) becomes K^ = 0. The stable region is thus decreased by boom
flexibility, as shown by the shaded region of Figure 3. Also, the effect of boom
length and tip mass may be seen by considering their effect on Kt.

Similarly, stability of the in-plane motion may be determined by examin-
ing the characteristic equation obtained from equations (2).

+ lAi + A2(l - y3)]X3

+ [of + cr2
2(l - ys) + 3(1 - ys) +

+ [Mo-l - 1 + 4y3) + A2Oi2]X + offo2 - 1 + 4y3)} = 0. (10)

If it is assumed that the stiffness coefficient k2 is a; times as great as k1 and
k3, where a is a positive constant, and that kj •= k3, the application of
D-decomposition to equation (10) yields the boundary associated with the origin
of the X-plane:

a2
2 = 0 and cr2

2 = 1 - 4y3. . (ll)

The boundary associated with infinity on the X-plane is y3 = 1. The boundary
associated with the imaginary axis of the X-plane yields the same two bound-
aries plus an additional constraint, A! = 0. No additional boundaries arise
from the J = 0 condition. The resulting region of stability is shown on a y3,
cr2

2 parameter plane (Fig. 4), which shows the effects of the boom characteris-
tics on the stability of the in-plane motion.

WOBBLE MOTION DYNAMICS

Once stability has been assured, the transient dynamics of the wobble
motion are of interest. The character of this motion may be investigated by
using the parameter plane technique [2]. Characteristic equation (3) is used,
selecting inertia ratios KtK2 and K2 as two adjustable parameters of interest to
the designer; i. e., the effect of various values of KtK2 and K2 on the wobble
motion dynamics will be determined. This is done by finding the relationship



NOTES:
1. SEE NOTE 2, FIG. 3

2. ADDITIONAL CONSTRAINT:

= 0

>o

Figure 4. Stability region for in-plane motion.

between these two parameters and the roots of equation (3). The relationship
may be shown by mapping a convenient contour from the X-plane onto the Kjf^,
K2 parameter pla,ne. The contour selected is the line

_!/
where v = v(l - £2) 2

n

(12)

Any root of equation (3) lying on this contour will

have a specified damping ratio f . This line is mapped onto the parameter
plane by substituting equation (12) into equation (3), which may be written in
the form

4
V (a iqK2 + b K2 + c )\P = 0, (13)

where values for coefficients a , b , c are found in Table 1.
P P P



TABLE 1. COEFFICIENTS OF WOBBLE CHARACTERISTIC EQUATION

p

0

1

2

3

4

a
P

-(cr2 + 1)

-A3

-i

0

0

b
P

-Tl

0

-n
0

0

c
P

0

0

1 + cr3
2 - T!

A 3

i - ri

If \ is written as the sum of its real and imaginary parts,

AP = X + iY ,
P P

values of X and Y may be found from the recurrence formulas,
P P

X + 2£v X + v 2X , = 0,p+1 n p n p-1

Y + 2£j; Y + v 2Y . = 0,p+1 n p n p-1

(14)

(15)

where it is seen from equations (12) and (14) that X0 =1, Y0 = 0, Xt = -£v ,
\i n

and Yj « v (l - f2) 2 . Substituting equation (14) into equation (13) and

separating the resulting real and imaginary parts, one obtains two simultaneous
algebraic equations that may be solved for parameters KjKg and 1^:

J =

BjCg - B2C1)/J, K2 = (A2C t - A1C2)/J,

- A2Blt (16)

where

^/P P' • Z
p=0

b X , C,
P P l

p=0
c X ,
P P



and

A, = Y a Y ,
I- Z_/ p p'

p=0 P P
B, = b Y ,

I- ^-J p p

p=0 P P
C2 = , c Y •L LJ p p

p=0 P ^
(17)

Equations (16) define the parameter plane contour corresponding to equation
(12) in the \-plane for a chosen value of £ and coefficients a , b , c . Eachv P P P
contour is plotted as a function of the nondimensional natural frequency v •

n

The real roots of the system may also be mapped from the X-plane onto
the parameter plane. Each selected value t] of a real root is substituted for X
in characteristic equation ('13). The resulting equation will define a contour on
the parameter plane representing the selected location rj of the real root.

The response of the system in terms of variables wt, w2, //3 may be
found by casting equations (l) in the form

x ' = Fx ,

where the vector x is defined as

(18)

x = w^ w2,

and the matrix F is

F = (i - n)
K2(l _

0

0

0 0

0 0

-(KA + i) (n - al

(19)

o

( i - n )

-A,

(20)

The response X(T) may then be found from

X(T) = 0 ( r ) x ( o ) , (21)

where x(0) is the initial condition vector and <f>( r ) is the state transition matrix

10



0(r) = eFT=£~1{[\E - F]'1}. (22)

Matrix E is a unit matrix of the same dimensions as the F matrix, and £-1

represents the inverse Laplace operation. In evaluating < f > ( r ) , the roots of
the characteristic equation (3) are the roots of the determinant | AE - F | and
may be taken directly from the parameter plane. For example, if initial con-
ditions exist only on Wj and w2; i. e.,

x(G) ?= (xlfl, x20, 0, 0)T , (23)

the Wj (T ) response is found from

WJ(T) = £-1[$n(X)x10 + *2i(\)x20], (24)

where

*ll(^) = A. [A.2 + A3A/(l - 7^) + (l + a3
2 - y^)/(l - y ^ J / j X E - F|,

*21(\) = K2*n(\)/A . (25)

Example

The model described by equations (l) and (2) may be used to crudely
represent a spinning Skylab. Representative values for the coefficients in
equation (3) are given in Table 2.

. TABLE 2. PHYSICAL CHARACTERISTICS OF SKYLAB

If = 1.01 x 106 kg m2 r = 23.3 m k2 = 7.4 x 104 N/m

I* = 6.90 x 10s kg m2 m = 227 kg d. = 0.04 (k.m)/2

I* = 6. 85 x 106 kg m2 kA = k3 = 146 N/m £2 = 0. 6 s"1

If the values are substituted into equations (16), ^-contours may be
plotted on the KjKj, K2 parameter plane as functions of v (Fig. 5). Stability

boundaries defined by equations (4), (7), and (9) are also plotted in Figure 5.
Real root boundaries are found to be outside the stable region and hence are of
no interest in the Skylab problem.

11
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Figure 5. Kg versus K^ parameter plane plot.
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A typical design point for Skylab is shown on the parameter plane. It
corresponds to the physical characteristics shown in Table 2. The correspond-
ing roots of the characteristic equation are seen to have damping ratios (g) and
nondimensional natural frequencies v ofn

£ = 0. 002, v = 0. 2854
n

and

f = 0.01863, v = 1.7612. (26)

If the values of Table 2 and equations (26) are substituted into equation
(21), the response for the Skylab model is found. For example, from equation
(24),

w t(r) = 1.0978 e~°'°0056r72Tcos(0. 2854T + 0. 3274^(0)

+ 0. 09359 e"°'0328lTcos(l.76lT + 4. 1270)w2(0), (27)

where x(o) is defined by equation (23). Forw1(o)= w2(0) = 0.001, the
response W^T) is plotted in Figure 6. Similarly w2(r) and ju3(r) are also
determined and shown in Figures 7 and 8.

CONCLUSION

It has been shown that it is possible to passively stabilize the motion of
a simplified model of a spinning Skylab by deploying flexible booms, thus
altering the moments of inertia. Analytical results indicate the required boom
stiffness properties for given vehicle mass properties and spin rates to achieve
passive stability. Further, the use of the simplified model leads to results
amenable to physical interpretation.

To gain confidence that these results will apply to the actual Skylab, an
additional step is being implemented. A detailed digital simulation model of
the spinning Skylab vehicle has been developed at the Marshall Space Flight
Center, and results compare favorably with those of the simplified model.

13
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