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1. Introduction

Many practically important control systems do not have a
stable equilibrium. Instead, they may perform satisfactorily
while possessing only the kind of behavior characteristic that

has been described under various boundedness or practical

stability definitions [1]. This'report discusses a class of
techniques which were developed fof obtaining quantitative
information about the boundedness properties of such systems. A
system of particular interest in this work is the sampled-data
control of satellite attitude with quantization. Such a system
will be employed throughout as an example of the application of
the techniques described.

The report begins with an introduction of various relevant
stability concepts as a series of definitions in Section 2;
interreiationships are discussed between various definitions in
common use. Also included here is a description of the model of
a basic sampled-data control system with quantizatidn.

Section 3 describes the basic technique of estimating
boundedness regions by means of quadratic Liapunov functions. It
also states a sufficient condition, for a certain class of systems,
for the existence of a boundedness region. The proof of this
condition (Theorem 3-1) involves the estimation technique. Some
of the results in this section (Eqn. (3-12) and Egn. (3-14))
parallel results of Johnson and Lack [2,3], which havevalso been

applied recently by Parker and Hess [u].



Section 4 applies a particular quadratic Liapunov function
to the Lur'e-Postnikov class of systems, along the lines proposed
by Weissenberger and Siljak [5, 6]. This class of systems is more
restricted than that to which the techniques of Section 4 applies;
however, the stability property established is the stronger one
of absolute boundedness (Definition 4). Relationships are
developed for applying the technique to the specific system with
quantization.

Section 5 presents an example of the calculation of region-of-
boundedness estimates.

Section 6 discusses the linear analysis of the system used
in the example and simulation results of the nonlinear system for
use in comparison with results obtained in Section 5 by Liapunov
techniques.

Section 7 presents conclusions.

The Appendix contains a paper*"On Practical Stability", by
Ljubomir Grujié, Visiting Research Associate in the Electrical
Engineering Department, University of Santa Clara, on leave from
the Mechanical Engineering Department, University of Belgrade,
Belgrade, Yugoslavia. This work was motivated by an interest in
applying the practical stability concept to the systems of this
report, and although it treats only continuous-time systems,
useful extensions to discrete-time systems are obvious. Connec-
tions between boundedness and practical stability concepts are

discussed in Section 2.

3 ' _
. The paper was presented at the Fifth Asilomar Conference
on Circuits and Systems, Pacific Grove, California, November 8-10,
1971.



Notation

Throughout this report, except where otherwise noted, lower
case Roman letters denote vectors, capital Roman letters denote
matrices, lower case Greek letters denote scalars, and capital
Greek letters denote sets (except the letter X, which represents
the set of all points in the state space). Vectors will be
considered as éolumn matrices. The superscript T denotes the
transpose and * denotes the conjugate transpose. The notation
H > 0 means that H is positive definite real symmetric matrix.
The letter t is used for discrete-time index, and the letter V

for a Liapunov function. The region QC is the complement of Q.



2. Preliminaries: Definitions and Models

a. Definitions

Consider a discrete-time system described by the equation

X = g(t,xt) + f(t, xt), t = to’ t + 1, «... (2-1)

t+1 o)

where x, 1s the n-vector state of the system and g and f are

t

n-vector functions of time t and state x The vector f is

t-

considered as the input to the fundamental, unforced system

X = g(t,xt) (2-2)

t+l
In later applications in this work, a special form will be

taken for the function g,
_ g o T
g(t, xt) =P x_+q ¢(0t),0t Sl S S (2-3)

a decomposition into a linear part and a special nonlinear part:

P is an n x n matrix of constant‘coefficients, q is an n-vector of
constant coefficients, and ¢ is a scalar function of the linear
combination o of system states. However, for purposes of stéting
definitions in this section we for the most part retain the more

general system description (2-1).

All the motions Xt(xo’to) of system (2-1), are bounded, if
for each initial state and time (xo,to) there exists a number

GCXO,tO) > 0 such that

lx_t-(xo,to)l <8, t2t .

The motions of system (2-1) are then said to be Lagrange stabdle.
By itself, such a boundedness property may give little useful

information about the behavior of the system; one quite often

~



desires at least that all motions ultimately satisfy a particular

bound. We are then led to construct

Définition 2

The motions of system (2-1) are said to be ultimately

bounded if there exists a number § such that for each (x o’ to)

there exists a t, > t_ such that

1

Ixt(xo,to)l <8 , t > t -

Thus, ultimate boundedness implies the existence of a
bounded region Q containing the origin which all solutions
ultimately enter.

It is frequently useful to consider a modification of
Defiﬁition 2 to explicitly recognize this region 2 and also to
take into account the fact that for some systems the ultimate
boundedness property is not global with respect to initial states:
that there are system stétes from which motions do nof enter the
region Q.

Let 2,9, be bourided regions containing the origin.

Definition 3

The motions of system (2-1) are said to be ultimately bounded

with respect to regions Ql and @, if for each ty and. for each X.€ 9,

there 1s a-t; > t such that the motion x,(x_,t ) € @ for all t > T
A modification of Definition 3 will find application later to

the special system of the form (2-1) - (2-3). Suppose that ¢ is a

certain class of nonlinear functions ¢(0t) and that F is a certain

class of input functions f(t, X.). The class ¢ will be described

later, the class F is the class of bounded inputs,



F:o [flt,x)]| < v, (2-4)

Definition U4

The motions of system (2-1) - (2-3) are said to be absolutely

ultimately bounded with respect to regions Ql and 92, and to the

class of nonlinearities ¢ and to the class of inputs F, if for each

to,x, each xoe.Qz,each ¢e®,and each feF,there is a'tl> to such that

the motion Xt(xo’ to) € 9, for all t > t

1 1’

Closely related to our definitions of boundedness are several

notions of practical stability, which were stated originally by

LaSalle and Lefschetz, Let QOCZQ be closed and bounded regions
containing the origin.

Definition §

The motions of (2-1) are said to be practically stable if for

each feF, each tos and each X, € Qo’ the motion Xt(xo’ to) e Q for
~all t > t_. A stronger stability is described by

Definition 6

The motions of (2-1) are said to have strong practical stability
if they are practically stable and if in addition for each feF, each

t,» and each X s there exists a ty >t such that the motion

Xt(xo’ to) € Q for all t > tl.
Figure 2-1 illustrates for comparison purposes three divisions of
Q

stability behavior: ultimate boundedness with respect to Q 2

1’
practical stability, and strong practical stability.

Note that the roles of the region of initial conditions (92,
Qo) and the region in which solutions ultimately enter and remain

(Ql, Q) are reversed in ultimate boundedness and practical stability:

in ultimate boundedness there is a kind of convergence toward a



Ultimate Boundedness with Respect to 9, 9,

f\//

X

Practical Stability

@\

a

Strong Practical Stability

Note: The indicated behavior holds for each feF

FIG. 2-1
COMPARISON OF STABILITY TYPES
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Def. 1.

Lagrange stability

1

Def. 2.

Ultimate boundedness, with number §

y 1

v

Ultimate.boundedness with respect to Ql, 255 where 92 = X,
the entire state space
Def. 3. Ultimate boundedness with respect to Ql, 92, 92 # X
Y
Def. 5. Practical stability with respect to Qo’ Q
:
Def. 6.

Strong practical stability with respect to Qo’ Q

FIG. 2-2

Interrelationships Between Stability Types




neighborhood of the origin in that QICZQQ, while in practical
stability, motions are allowed to enter a larger region than the
region of initial states, QD Q,- Strong practical stability,
however, combines elements of both: there is both practical
stability with respect to Qo, Q and ultimate boundedness with
respect to Q, X, where X is the whole state space.

Figure 2;2 shows interrelationships between various stability
types. The arrows mean "implies" and are to be understood, for
example, in the following sense: ultimate boundedness of motions
with respect to certain regions Ql, 92(92 # X) implies that there
exists some other regions Qo’ Q for which the motions are
practically stable.

b. Models

Systems of particular intérest in this work are sampled-data
control systems containing quantization nonlinearities. The block
diagram of a class of such control systems is shown in Fig. 2-3;
important features are: linear plant dynamics G(S), time delay Tys
sample and zero-order hold, and a single quantization nonlinearity,
which is shown in detail in Fig. 2-u4 in a form with saturation.

In subsequent developments, it will be necessary to put

system equations in the state-variable form (2-1). Define the

discrete-time open-loop transfer function of the system of Fig. 2-3

as
6(z) = - {21 | (2-5)
where $(z) =2§{Ok} (2-6)
8(2) =9{¢Ok[o(k>]} O (2-D)

From Fig. 2-3 we calculate

a(z) =3’{’-—._1"’e-'TS -T,s ) }
S e”qd G( s (2-8)
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QUANTIZER NONLINEARITY WITH SATURATION
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= (1-2-1)2§{e-Tds G(s)} (2-9)
where
_ G(s) -
Then
. i 1 _ i
G(z) = (1-z )gm{el(s,m)}lm:l_Td/T (2-11)
where gm is the modified z-transform.
The computation of (2-11) will yield in general,
n-1 .
L bi z+ 0
_ i=o - - -
G(z) = —T — » a; = ai(m), bi = bi(m) (2-12)
1+ & a, z= M
izo *
From (2-5) and (2-12) we can construct the state equations
Xppy = Px.+q¢ (Gf) (2-13)
I
Oy = Xt
where
= - - e o -~
0 . b
o
. 0 bl
P = e ee aee e 39 =) ¢« s = (2-14)
o 0 ... 1
-ag-ay eeTan -1 b -1
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3. Quadratic Liapunov Tunction Estimates of Boundedness Regions

In this section we establish a sufficient condition for the

existence of a region Q. of ultimate boundedness with respect to

1
Ql, X. In the process of establishing this condition by means of

quadratic Liapunov functions, we formulate techniques for calculating
estimates of the region Ql.
First, cénsider the basic

Theorem 3-1: Suppose that the system (2-1) can be put into the

form

X = Px

41 + £(t, x) (3-1)

t
where P is a constant coefficient, Hurwitz matrix and the vector f
is bounded,

feF, ¥ t > t_, Vx.

Then there exists a region ., such that the system (3-1) is

1

ultimately bounded with respect to Q X.

l,

Proof: Consider the quadratic scalar function

V(x) = xTHx

and its difference along motions of (3-1),

A S T

AV = V(Xt+1) - V(Xt) = (th + f) H(th + f)
T

| - Xy H_Xt

- . T T -
AV = - Xy th + f Hf | (3-2)

where Q =H - PHP, (3-3)
Since by assumption
[A; P < 1, 1i=1,2 ..., n,

for each Q > 0 there exists a unique solution H > 0 to Egn. (3-3)

[7]. IfQ >0 is chosen, the first term in (3-2) is a positive
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definite quadratic form. Since feF, the second term is bounded.
Hence, for sufficiently large |x|, AV < 0; in this region where
AV < 0 all motions cross surfaces V(x) = constant from the outside

to the inside. Consequently, an estimate Q. of the region 27 will

1
be given by

Ql = {x: V(x) < Gl} (3-4)
91:3 Ql (3-5)
where 31 = maximum V(x) (3-6)

x: AV(x,t) = 0, t > t, -

Note the conservativeness of the estimate Ql (Egqn. (3-5)).

This demonstration has established the theorem and also provided
a procedure for calculating estimates Ql:
Procedure:

i) Chqose Q >0

ii) Determine H from the equation

H - PIHP = Q (3-6)
iii) Calculate Gl:
Gl = maximum V(x)
x: AV(x,t) = 0, t > t_ - (3-7)

i.e., v1_= maximum x Hx subject to the constraint
- XTQX + f(t,x)THf(t,x) =0, t > ty
iv) Ql = x: V(x) < vy | (3-8)

In all but contrived, low-order examples, this procedure
requires a computer. The calculation of H in (3-5) is straight-

forward: the equation may be transformed into a set of linear

equations in the elements of H, or else various direct algorithms



15

for the solution of the continuous time version of (3-5) [8] may
be employed in conjunction with a bilinear transformation [8]%.

The calculation in step iii) contains the most potential
difficulties, depending to some extent on the nature of the
function f(t,x). References [§], [10], [11] discuss computer
methods which were used successfully in solving the analogous
equations which arise in computing quadratic estimates of regions
of asymptotic stability for the time-invariant case, f = f(x).

The quality of the approximation, i.e., the "closeness" of
Ql to 24 will depend in general on the choice’of Q (as well, of
course, on one's criterion for evaluating its quality); for each Q
a different Ql may be expected to result. A strategy for obtaining
improved results would be to determipe the elements of Q (subject
to the constraint Q > 0) which extremize some measure of the quality
of Ql. The volume is a.reasonable quality measure and is readily
calculated for a quadratig. The resulting modified pfocedure is
anélogous to that used by Weissenberger [12], Nelson [10] and -
Geiss, et al., [11] to célculate estimates of regions of asymptotic
stability.** TIts defects are the likelihood of excessive computer
time and convergence problems for high-order systems.

Difficulties in the calculation of 01 in (3-7) may be avoided
by introducing some degree of approximation and accepting more
conservative results. The first term in (3-2) satisfies the
inequality
,2

- xTQx < - AQ [ % (3-8)

E3 " -1 _ T T, Y
Let B = I + 2(P-I) and Y = (B -I)Q(B-I). Solve B'H + HB = - 5
% ' . '

In the case of boundedness regions, the volume would be minimized,

as opposed to the maximization in the case of regions of asymptotic
stability.

%
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where AQ > 0 is the minimum eigenvalue of Q. Because feF, the

second term satisfies the inequality

2

T
£HE > AY

where Ay 20 is the maximum eigenvalue of H.

Eqns. (3-2), (3-8) and (3-9) give

AV < - 2y Ix|2 + AHYZ
AV < O
for all x such that
- AQ |X|2 + XHYZ <0
or %l >vg/2 gt 4

Consequently, an estimate 51 c Ql C Q. is given by

1

&

{x: V(x) < 31}

where

. 31 maximum V(x).
lx|= p

'The number 51 is readily found to be given by

2
1 = MgP

2. 2.-1
or 1 = Y AH AQ

<
]

<
[

(3-9)

(3-10)

(3-11)

(3-12)

(3-13)

(3-14)

In situations where the set of initial states Qz is not the

whole state space X, we make use of

Theorem 3-2:

Let V(x) > 0, and define the (bounded) regions Ql and Qz as

Qi = {x: V(x) < vy}
and R, = {x: V(x) < 9},
where 0 <Vy; <V, . Assume
8, /8, {x: AV(x) < 0}

2°71
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Then, the motions of the system (3-1) are ultimately bounded with
respect to the regions Ql and 92.
Note that this procedure will produce results which are

conservative in the sense that
o9
and <, ,

Theorem 3-2 will be employed in Section Y4,
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4. Lur'e-Postnikov Liapunov Function Estimate of Boundedness

Regions

In certain applications, attitude control systems may be

modeled by the Lur'e-Postnikov class of systems where the linear
part of the system is not asymptotically stable and the quantizer
represents the nonlinear characteristic. A simple transformation
can be used to make the linear part asymptotically stable which,

in turn, forces the quantizer characteristic to violate the usual
sector condition in the neighborhood of the origin. An approach

to the analysis of this class of systems is to estimate the result-
ing regions of ultimate boundedness as proposed in references [5]
and [6].

The estimation procedure makes use of a quadratic Liapunov
function, a modification of the Tsypkin frequency criterion [13],
or algebraic test le],and the Szego-Kalman construction [15]. 1In
applying the procedure to a specific situation, one has several
parameters available with which to improve the estimates of the
regions of boundedness.

We consider a free, discrete-time system of the Lur'e class

described by the nth-order difference equation,

Xe4] Poxt + q ¢o(ot) + f(t,xt)

Op = PTx,

where Xis. 9o and r are real n-vectors; PO is a real n x n matrix;

t = 0,1, ... (4-1)

¢,(0) is a real scalar function of the real variable o, which may
have isolated discontinuities; and f(t,xt) eF. It is assumed that
the pair (Po,q) is completely controllable and the pair (PO,rT) is

completely observable.
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Note that in this section, unlike the previous one, we identify
a particular scalar nonlinearity (although we retain also a vector
nonlinearity f).

The system (4-1) is transformed into

Xipy © th + q¢(0t) + f(t,xt)
O_t = I‘TX_t, t = 0,1, K] (4-2)
where T
P = Po + 1qr
(4-3)
¢p(o) = ¢O(o) - 10

The number t in (4-3) is chosen in order to insure that the trans-
formed matrix P is Hurwitz, that is, the n eigenvalues Ak(P) of
the matrix P satisfy

AP <1, k= 1,2, ...y n (u-4)
and to guarantee that the transformed nonlinear functidn}¢(0)
belongs to the class ¢ defined by |

2 <lol < a

®: 0 < o¢(0o) < xko° ay 2
|¢Cad| < B , lo] < oy (4-5)
where a,, B > 0, 0 < a, < + = , and the numbers k > 0,86 >0 are
selected to satisfy the inequality
k™1 + Re x(z) =6 h#h > 0, Vz:|z| = 1 (4-6)
In (4-6), |
x(z) = rT(P - zI)"1 q - (4=7)

is the open-loop transfer function of the linear part of (u4-2)

4> and h(z) is the complex

from the input ¢(ot) tb the output - ¢
vector defined by |

h(z) = (P - zI)-lq o (4-8)
Condition (4-6) is necessary and sufficient [16] for the existence

of a funection
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V(x) = x'Hx (4-9)

with H > 0, such that along the solutions of (4-7)

- av = 8]x|2 4 (go + PTI2 + 4o - k7L ¢

- 2x! Hf (4-10)

where the matrix H, vector P, and scalar g satisfy the equations
H - PTHP = PPT + 61
qTHq + C2 = "L (4-11)
PTHq + qr - % r |
Since the system is described within a Lur'e context, it is
natural to use a boundedness property which reflects the class ¢

as well as the class F. Such a property was characterized in

Section 2 in Definition 4 as absolute boundedness with respect to

regions Ql and 92; and classes ¢ and F. To calculate estimates

Ql and @, of the regions @, and 2, we make use of the function
" V(x) and Theorem 3-2. Use is also made of the following

inequalifies, obtained from (4-10):

- av > 8lxl? -y Ixl - w o] <
2 (4-12)

- AV 2 8% - Ay x|, lo] > a

where Ay is the largest eigenvalue of H, and
W= Blag + k1 g) | (4-13)

Based upon inequalities (4-12), the least conservative estimates
obtainable for system (4-2) with properties (4-4) and (4-5) are

the following:

SH
1

{x: V(x) < 31}
(43-14)

05
1

9 fx: V(x) < 32}.



T
ry = {x: |r x| = A, Py < x| < Py}

1
v, =
where
A1 =
ry = {x: | %|
r, = {x: | x|
_ MY
pl -
_ MY
P2 = T
and

2

ALY
7t Lo

max xTHx
xeA1

min xTHx R
xeA2

rpur,yr,

=Py |rTx| < a}

Py s IrTxl > ag}

u_1/2
+ BF]

A, = {x: |rTx| = a,l

21

(4-15)

(4-16)

(4-17)

(4-18)

An illustration of the sets Al and A2 in two dimensions 1is given

in Fig. u-1.
The value of v
procedure:

(i) Define

v = max XTHX ’
11
xell
where A .
Ayq = Ix: | x| = Py}
From (4-19) and (4-20), we compute
~ 2
Vi1 = Mef1
Using (4-21) we test r
| >0, vy = vy
~1/2 T =1/2 _T
@y - VI (AHe e) re
< 0, go to (ii)
\

where e is an eigenvector corresponding to AH.

1 given in (4-15) can be calculated by the following

(4-19)

(4-20)

(4-21)

(4-22a)

(4-22b)



FIGURE Y4-1

ILLUSTRATION OF .REGIONS I'l,

r

2’

r
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A

(ii) Proceeding from (4-22b) we calculate v, as
follows:
~ 2 1
v _ p; B, + a0, 6
12 1 71 2 71 72
where 91 and 62 are solutions of the equations
Hx - 8.8x - 1 6,r = 0
1 7 72
XTX = pié-l (4-23)
rlx = o
1
Also
Via = Ap2 (4-214)
V13 T “gP2 ¢
Then ~ _ {A on } (
Vi * max {vy,, vy,lt. 4-25)
Note that the wvalue v,q can always serve as a conservative
approximation for vy |
The value of v, given in (4-15) is obtained simply as
v, = ab(rTH ML (4-26)

Note that a necessary condition for the existence of estimates

~ .
Qlc:ﬁ2 , and a sufficient condition for the existence of regions

Q. N, is that

1<% |
A (4-27)

vy < v,
It is of interest to point out certain special cases of this
analysis that arise when the constraints on nonlinearity ay and a,

assume certain limiting values. If a, is reduced to zero the above

1
procedure produces finite regions of absolute stability. When a,
is infinite the procedure establishes either a global property of
absolute ultimate boundedness (al¢ 0), or a global properfy of

absolute stability (dl= 0).
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Application to the Quantization Nonlinearity

In order to apply the foregoing analysis technique to the
computer control system with quantization described in an earlier
section (see Fig. 2.3 and Fig. 2.4), we require calculation of
the numbers Ays Gp, and B. Figure U4-2 shows how these quantities
depend on the transformation parameter T and the Popov sector
parameter «k.

Inspection of Fig. u4-2 shows that a, is determined by

1

either a lower or upper sector intersection with the transformed

nonlinearity,

@, = max {aL, aU}, . (4-28)

where ap arises from the intersection with the lower 1limit of the

sector (the o axis) and a,, arises from the intersection with the

9)
upper limit of the sector (the line ko). The quantity o is

obtained from the relations

_,2n+1
o =( ) (4-29)
for that integer value of n such that
2n 2n+2
T < T2 omEs (4-30)
The quantity oy is obtained from the relations
= -
oy = 5T € _ (4-31)
for that integer value of n such that
21‘1"1 < n < 2n+1 . (4_32)

2 - K+T = 2

A simpler, conservative estimate of o, may be obtained

1
using the straight line envelope of the nonlinearity (the parallel



25

A
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FIGURE 4-2

TRANSFORMED QUANTIZATION NONLINEARITY
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dashed lines in Fig. 4-2). We still use (4-28) but in place of

(4-29)-(Y4=32) we have

aL = aL = -—(—-3—2 1_1: (l}-33)
- — € -
and G.U = OLU = m Q" 34)

Since it is necessary that o, > 0, we have from (4-33) and (u4-34)

1

the following limitation on the transformation parameter T:
l-1t < 1 < 1 (4-35)

The approximate analysis from the straight-line envelope

also gives, for B,

B = (1-1) ay + 3 (4-36)
The value of a, is given simply by
f
m + %
= ) T >0
a, = (4-37)
+ . TXO0
\

In those applications, such as satellite attitude control,
the linear part of the system is not asymptotically stable, the

calculation of regions of absolute ultimate boundedness requires a

trans formation described in (4=3). Consequently, the first
the calculation is a selection of T such that P is Hurwitz
is satisfied. To verify (4-35)we need a k which satisfies

frequency condition (4-6) for a certain choice of §. Once

step in

and (4-35)

Kk and

8§ are selected, one calculates the vector g by the Szego-Kalman
[15] factorization procedure and computes the matrix H from Egs.
1 and
If either

(4-11). After H is determined, one calculates the numbers v

v, as explained at the end of the preceding section.
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vy > Vys OF estimates Ql and 92 are not satisfactory, one repeats
the entire procedure with a different choice of the transformation
T, and possibly different numbers for 6§ and «. As is clear from
this outline, the application of the proposed method to higher

order systems would require utilization of a computer.
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5. Examgle

In this section we perform a numerical calculation of a
boundedness region by Liapunov methods. The result will be
compared with that to be obtained in Section 6 by simulation.

Let the specific system be that to be described subsequently in
Section 6 in Fig. 6-7a; this model can be taken as a very
simplified representation of a satellite attitude control system.
Direct calculation (by integration between sampling intervals)

gives the state equations

Xipy = PO X, tq ¢o(0t)
(5-1)
T
0L T TR,
where
1 T
P = ]
o
0 1
qf = - [T%/2 T]
rl = [GK GK. ]
0 1

and ¢ is the quantization nonlinearity of Fig. 2-4 with m = o,
The quantity BETA in Fig. 6-7 has been given a unity value,.and
the quantity GAMMA is denoted above by G.

Using the methods of Section 3 we require a transformation
of Eqn. (5-1) tb form in which the nonlinearity is bounded. Such
a transformation is given by Eqn. (4-3) with T = 1. Equation (5-1)

then becomes

<
1

41 P Xt + q ¢(0t)

(5-2)

- T
Op = T Xy



where

and

To calculate a boundedness estimate let us use the simplified

form of the calculation which relies on Eqns.

(3-14):

where

6= ¢ -1

H - PHP = Q> 0

ﬁl = {%: V(x) < 6}
x 2,2,-1

Vi =Y AHAQ

V(x) = xTHx_

(3"6)’
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(5-3)
(5-4)

(5-5)

(5-6)

The specific choice of numbers in the simulation in Section

gives

Choosing

K = 0.292
o
Kl = 1.146
T = 1.0
0.76
P =
-0.47
qT= [-0.5
rT= [0.467
Yy = 0.56¢
Q

and solving (5-3), we obtain

-0o83

-1.01]

1.83]
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Eqn. (5-5) then gives

3.8¢°

<
1]

1

so that the estimate of the boundedness region is given by

(5-8)

This region is shown in Fig. 5-1 together with the region as
estimated from the simulation results of Section 6 in Figs. (6-13)
through (6-15). The overlap of the regions may be due to inaccura-
cies in estimation from the simulation results: the actual region
may be smaller than was concluded from the simulation, due to the,
very complex, long-duration dynamic behavior of the simulated
system. In any case, more examples and comparisons are needed
before a definitive statement can be made about the merits of the

Liapunov approach.
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6. Linear Analysis and Simulation Results

a. Linear Sampled Data Studies

One model of an attitude control for a satellite has been
given by Seltzer [17] and is represented in Fig. 6-1 as Model A.
An alternate representation representing somewhat different
instrumentation.is given in Fig. 6-1 as Model B. Both models are
linear sampled data systems with digital compensator and a time
delay due to the use of the digital computer. It is intended that
a nonlinearity (a quantizer) be inserted into Model B, and the
effect of such nonlinearity on stability is to be studied. First,
however, a linear analysis of Model B is undertaken with appropriate
comparisons to Model A. |

Symbol equivalences in the two models:

Model A Model B
K, K,
K, K,
K2 Ka
1 K
k. = K-T2/2T1 | k. = KK.T?/21
0o = KXo 0 0
ky = KqT/T , k, = KK T/I

In Z-domain, the characteristic equations and transfer func-

. : . . e . Z
tions for Model A (with digital filter and F(Z) = ) and Model
,Z+K2.

B (without digital computer) are as follows:
Model A
Characteristic Equation:

- -3 -
Z 0 * Ky ) =0

1

+ (K, - 2)2% + (1 + k.. + k )

- 2K2)Z + (k0 -k, + K
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MODEL A (Seltzer's model)

- Vehicle Zero Computa-
¢R Control..)(._. Digital_)‘____,. Order tional [} Vehicle
& Law _Filter Hold Delay Dynamics
-ST|
Kd+-KlS F(Z) l1-e | 1
e-T S ——
] D IS2
MODEL B
o Zero ||Computa- - Vehicle | - | Vehicle
Digital] | Order }jtion Gain Dynamics Dynamics|
Computer;¥ Hold [Pelay ™ :
. -ST, '
1-e STy K. 1 |
F(2) s |{° i S s
Acceleréneter ]
K
a
Rate Gyfo
K
v

Position Gyro

. K
P

FIG, 6.1: TWO‘MODELS‘FOR A.LINEAR SYSTEM
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Transfer Function:

(k0 + kl)Z + (k0 - k,)

¢ _ 1
b 53 2 _ _
R 7z + (K2 - 2)Z° + (1 + k0 + k1 2K2)Z + (ko k1 + K2)
or:
-2 -3
i_ ) (k0 + kl)Z + (ko - kl)Z
e =1 N =7 ~ =3
R 1 + (K2 - 2)Z + (1 + k0 + k1 A2K2)Z + (kO kl + K2)Z
Model B
Characteristic Equation:
3 2 _
z° + (K2 - 2)Z° + (1 + k0 + kl - 2K2)Z + (ko - kl + k2) =0
Transfer Function:
%_ ) (0.5)KT2(Z + 1)
- .3 2 v
R zZ° + K2 - 2)Z2° + (1 + k0 + k1 - 2K2)Z + (k0 - kl + K2)
or (set K = 1)
6 _ (0.5)T2(272 + 7279
o o o1 . =2 — =3
R 1 + (K2 2)Z + (1 + kO + kl 2K2)Z + (kO kl + K2)Z

Notice that both Model A and Model B have identical characteristic
equations.

In Z-domain, the stability boundary is the unit circle, i.e.,

|2] =R =1
Stability: |z] < 1
Instability: |Z| > 1
Z-plane
7 = eST - RBle |
Rze Wl | g- wnTcl-cz)l/2
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where ¢z = damping ratio
Wn = natural frequency
T = sampling period

The stability contours (for complex boundaries) of K, (third

2
parameter) in parameter k0 - kl plane are as shown in Fig. 6-2.
This corresponds to Seltzer's Fig. 4-1, but is explicit, i.e., it
has been computed quantitatively for a number of values of K2.

The plot is done by a digitglycomputer by introducing Chebyshev
functions into the characteristic eduaéion. One real root
boundary, Z = 1, is k0 =1 (i.e., Ky - k1 plane); it is independent
of the values of K, and Ky in 3-D space. Anather (Z = - 1) is

calculated by setting Z = - 1 in the characteristic equation, and

it is a plane defined by the equation k, = 2(1(2 - 1) in the 3-D

1
space which we can see is independent of kg+ 3D space is not easy
to show. However, in the parameter'plane (2-D) for K, = 1, the
stable region is bounded by the two axes and the complex boundary
as depicted in Fig. 6-2., Relative stability contours in the
parameter plane K2 =0, K2 = 0.5, K2 ? 1, K2 = 2 are computer '
plotted, shown in Figs. 6-3,4,5 and 6, respectively, fof discrete
varying values of R and 6, again Chebyshev functions are introduced
into the characteristic equation for the computer program.
Figures 6-3, 5, and 6 correspond to Seltzer's Figs. 5; 6 and 7,
respectively, the only difference being in the variables chosen
for mapping.

The correlations of the above-mentioned graphs and those of

Figg.-5, 6, and 7 of Seltzer's paper are developed as follows:
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Since R = e WpT and 0 = W T(1 - C2)1/2
log R
i.e., logeR = - CWnT and ee (1 - C2)1/2 = -z
log R _
set ——39— = A , we get ¢ = A(l + A?) 1/2 WwTs= 6(1+A2)1/2

Figure 6-7 is the computer generated data conversion chart to trans-
late between the R, 6, and T, WnT variables for c&¢sign purpose.

For example, choose K, = 1, R = 0.93, 6 = 1.2 in Fig. D, we

2

find k0 = 0.4, k1 = 1.7, and in Fig. F we find ¢z = 0.07 and

wT = 1.2. To check this in Fig. 6 of Seltzer's paper for k, = 0.4,

0
k1 = 1.7, one finds ¢ = 0.07 and wnT = 1.2. To choose a point
within the unit circle of the Z-plane and measure R and 6

(0 < 8 < 27) we can immediately define its corresponding ¢ and
WnT values for a certain third parameter Kz. The process can be
reversed, i.e., for a given ¢ and WnT, we can, through using
Fig. 6-7, find the corresponding R and 6. The purpose'of using
R - 8 variables instead of ¢ - Ww.T is for the convenience of
choosing a point in the Z-plane. Once WnT is found, for a
predicted system natural frequency Wn, one can find the sampling

time T.
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b. Simulation Results

One purpose of this project was to explore the possibility
of applying stability theory to the definition of regions in the
state space which the terminal state is guaranteed to reach from
some defined set of initial conditions. Digital simulation was
undertaken to provide "experimental" data which could be used to
verify the conclusions drawn from the theoretical studies. This
section describes the simulation program and some of the pertinent
results.

The block diagram used to represent the system in the
simulation studies is given in Fig. 6.7a. This was modeled in the
IBM 360 computer using the CSMP-360 program. The original program
is given in Fig.6-8, ﬁith a set of parameter numbers and initial
conditions. Note that the two blocks, BETA and GAMMA, shown in
Fig. 6-7a,were inserted for gain adjustment and distribution studies.
It was thought that the location of gain with respect to the non-
linear element might alter performance, but this was found to be
untrue as far as stability is concerned.

The numerical values selected, KO = .292, K1 = 1.146, T - 1.
and DEL3 = .1 were used rather than those supplied for the Skylab
because simple numbers were desired for the initial theoretical
studies (which would include some long-hand calculations). Note
that trapezoidal integration was used to avoid problems at the
discontinuities, and the integration interval was DELTV= .01, which
turned out to be too large an interval. Fig. 6-9 a, b, ¢, show

phase plane plots of system response to initial conditions. The
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terminal portion of the trajectories shows what appears to be a
limit cycle. The plots, however, are rather crude because the time
increment was too large and the scale plots poorly chosen. It was
decided to get plots with better portrayal of the cycles, so the
program was rerun with better plot scales and with smaller time

increment and smaller integration interval. Typical results are

shown in Fig. 6-10. Note that the supposed limit cycles have
disappeared. The obvious cause of the discrepancy is the integra-
tion interval. This is mentioned in the report because the proposed
Skylab will use an on-line time shared digital computer, and the
position and velocity measurements are quantized'for use in this
computer. Thus, if the integration interval or measurement
granularity are choseh too large, a situation such as we have
observed may be encountered.

To continue the simulation studies the loop gain was varied
to find a value for which the system would exhibit oscillatory
characteristics. This was done to inverse the probability of
finding limit cycles, since a part of the theoretical study is
concerned with such phenomena. It was found'that for relativeiy
modest gain increases the system damping changes substantially.

For KO = .292, K1 = 1.146, BETA = GAMMA = 1, the system is
heavily damped, exhibiting characteristics similar to the chatter
mod- of relay servos. Changing only GAMMA, it was found that at
GAMMA = 1.8 the system appears to be divergingly unstable. It
was decided that GAMMA = 1.6 was a suitable value for our

purposes.
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FIG. 6-10b: BETA = 1.0, GAMMA = 1.4, XA = 0.4, XB =-0.0



50

155

AXB
4

o ' i
\ ez
YN . 4 X2
3% FOde a8 . i Aey] N REY

.QK]

—~
“

i

Luna

FIG. 6-10c: BETA = 1.0, GAMMA

Laas



51

hrs

~
hux

2

4

1A

U

-20d

B ahd
-ung

ah

[c2

JHE

R

L3035

\/

O3

FIG. 6-10d:

BETA = 1.0, GAMMA = 1.4, XA

0.0, XB

0

.8



52

Riz

sE e e :

s

L2

L.

AT

22

[14

022 )

- FIG. 6-10e: BETA = 1.0, GAMMA




53

All remaining simulation runs were made with the forward
gain set at GAMMA = 1.6, and the initial conditions were chosen
on a square grid éurrounding the origin of the phase plane. A
copy of the program is given in Fig. 6.11; it differs from that in
Fig. 6-8 only in the value of GAMMA, the integration interval,
and the run time,vprint interval, etc. The results for this
increased gain condition not only differ amazingly from those in
Fig. 6-10,but showed some surprising symmetries which can be
described'briefly. First, the responses shdwed symmetry in a
polar sense, i.e., initial conditions in the first and third
quadrants gavé responses which were identical in a polar symmetry
sense, as were résponses to initial conditions in the second and
fourth quadrants. Initial conditions of position only gave
comparatively well damped‘responses,_with,no_qhatter or 1imit
cycles for smallfv31Ues_of iﬁitial ¢ondition,fbut,e2hibited a
éhatter mode tybe df_limit cycle® és it'appfoached but did not
reach'fhe.ofigin; :Initiai'cqnditions of Velocify only went
immediateiy into é?limit éyclé type of oscillation about the
origin, and as tﬂe magnitude of this initial_condition increaséd
several suéh modes df different amplitudes appeared. Initial
~ conditions in the first and third quadrants gave limit cycles that
did not eﬁcloSe the origin. while initial conditions in the second
and fourth quadranfs gave limit cycles that did enclose the origiﬁ.

Because of the symmetries noted above, the results presented

do not contain all of the data obtained but just representative

*Note the term limit cycle is used rather loosely here to
describe a type of motion which is not precisely a limit cycle.
This is discussed later.
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samples. TFig. 6-12 shows four trajectories starting from an
initial position with zero initial velocity. Note that for small
values of initial position there is no tendency to cycle, but at
large values of initial position some cycling is produced, but
does not enclose the origin. Fig.6-13 shows three trajectories
starting from an initial velocity with zero initial position. For
a small magnitude of initial conditions, the system immediately
starts cycling about the origin. For a substantially larger
initial velocity two modes of cycling occur as the trajectory
approaches the origin, but for a still larger initial velocity
one of these modes disappears. Fig.6-14% shows four trajectories
starting in the first and third quadrants. All seem to terminate
in a type of limit cycle which does not enclose the origin.
" Fig.6-15 shows four trajectories starting in the second and
fourth quadrants. In this case all seem to terminate in a type
of limit cycle, but for the smaller initial conditions the cycle
does not enclose the origin, while for the larger initial conditions
it does.

c. Comments on Simulation Results

From the trajectories shown on Fig. 6-12 through Fig. 6-15, it
is clear that the oscillations observed aré not limit cycles in
the usual sense, since the trajectory is not repeated exactly on
successive cycles. There appears to be a "drift", i.e., successive
cycles tend to be displaced along the position axié, usually
tending toward the origin. There was evidence, in some of the

print-out data, that the trajectories eventually reached the
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dead zone of the quantizer and that a no-power, constant velocity
mode followed the cycling mode. Siﬁce the model has no damping
in the dead zone, it was of interest to investigate whether the
motion entered a very slow limit cycle mode crossing the entire
dead zone or whether the trajectory entered a type of limit cycle
around one edge of the dead zone.

To explore these possibilities several of the preceding
simulations were repeated using a longer problem time. These
results were not conclusive, but several of the test cases did
recycle about one edge of thevdead zone without ever crdssing
the dead zone. b

No valid conclusions can be drawn.at this point, especially
in view of the fact that the simulation model waé a much simpler
system than any practical realization. It is clear, however, that
the type of behavior observed is due to the sampled nature of the
nonlinear system. One suspects that this oécillatory behavior

can be changed substantially by altering the sampling period.



70

7. Conclusions

This report has considered the problem of estimating regions
of boundedness for discrete-time dynamic systems. Based on
Liapunov-functions, several methods were develoﬁed for this
purpose. A technique based on simple quadratic Liapunov functions
led to a number of possible variants, with various degrees of
complexity and.a wide range of numerical difficulty. An example
by this method was performed and the estimate compared with one
obtained by simulation. Tentative conclusions from this example
are that Liapunov results may be good and that simulation results
may be difficult to interpret and time-consuming to generate; more
examples, however, will be required for a definitive judgment on
the effectiveness of these methods. |

The other Liapunov-based technique made use of the Lur'e-
Postnikov quadratic Liapunov function and yields estimates of
regions of absolute boundedness. These results contaih new and
useful information regarding the influence of the nonlinearity on
the boundedness region; this new information is apparently obtained
at the cost of greater analytical complexity. The implications of
this complexity, however, cannot be judged until further experience
is gained with a computer implementation of this technique.

It should be noted that ‘this Lur'e-based technique is
limited in its present form to:a system containing a single non- '
linearity, while the simple quadratic Liapunov technique 1is
applicable to systems containing multiple nonlinearities.

Based on studies to this time, the Liaéunov methods of this
report remain potentially attractive compared to the simulation

method. Further work would profitably be devoted toward



increasing experience with the application of these techniques
to a specific system, and to the development of effective

computer programs for this purpose.
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1. INTRODUCTION :
. l
This paper is concerned with a practical stability i
-analysis of nonautenomous nonlinear dynamic sysunsl
which have a number of nonlinearities depending on ; é

several variables. i

Important re;ults in practical stability analysis
over a finite time interval have been obtained by
Weiss and Infante [1] and Weiss [2]. They derived
necessary [2] and sufficient [1] conditions ex-
pressed in térms of real valued functions. In tMs,
work, as in reference [3], the function V(x)= Al le'
is proposed &s a candidate for system Liapunov func- ;
tion. This function leads to algebraic conditions ; |
for testing practical stability with a specigied
settling time, which 1s defined over a prescribed

Tha research reported herein was supported by
the National Aercnautics and Space Mm1nistration :
under the: Contract No. NAS-27799. ¥

FHR X R x T RV

;; ‘PLc Py s PLm Py Pl = (xixeP,

dystems convenient for machine .

(finite or infinite) time interval.

2. NOTATIONS , '

A= (a”) sRxn constant matrix.

ib - (b] by wee b )T » constant positive vector. .3

lc = (c.‘ €p eee € ) , constant positive vector,

v ez"‘ V= (2:]|z]] < v} , set of all !alloved vec-
‘ tor disturbances; :

fxf-k" Rm-T-»R.f-(f]fz...f)T ;

'

xT+R" oﬂ'(ﬂ] 73D Bn)r _
.H-(ARBM(A)<0.1-I.P.....n).
c“'(hu). ;

ﬂCR

'NR <R N (N Ny T

r( =R Py . (x:lxl <sty, ()I “a it

: li‘f :P1 < P i

EPL; Pe s PL is the largest subset of | P, such
that Py =(x:V(x) < Vgl < Vogh < L:Hrp Sy

and .xﬁP‘) . "

le (-) boundary of a closed set P, ) r( )Py Pt(’ )

1__j-dimensional real vector space. .. e
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s(') [ [s](') s.‘(,') wee sl(;)]T >d o (*) = a, 'f.. -{. ‘
prescribed constant positive vector, '

sgn x = diag {sgn xy sgn Xy een SOR X ) .
tERI.""toit"‘o
T GithGTTER‘ and 1>.40,or T e dw

TSER] s T,E(0, T) , system sattling time,

TER  Te(uitgetatyrn) , T, = (titg+
gttty tT),

Vi Ry Ly e i V) V() = max V(x) .

f(x) 1s the total time derivative of V(x)
along solutions of a system,

x = (% Xy vee %o )7 , state of a system.

x(tixg to): R" » 7T+ R" , motion of a system sat-
1sfying x(to.xo. to) "X .

R «x T+ R, z(x, t) is a disturbance vector,
6” Kmneck'er delta,

$ " {+1 or;%-l} o conste, 1 =1, 2, see 4N,

¢ = diag (e.'i £y e tn) .

; C T
R xR xlT+R" , 0. (cl Oy eee °n) .

Il <ot o
MO cc SUQILL *
3 PRACT!CAL STABILITY WITH SPECIFIED SETTLING TlnT

'x1|<‘1)01'102000- o N,

In this papq’r. we shall study a class of systems ’
governed by the vector differential equation i

Koz, ()

where z = i(x, t)EV on P, x T . Motions v
(5 x5, to) of system (1) are required to sat‘lsf;
x(t; Xg to)cl’u s ¥teT , and x(t; Xge t'.(,)ePf .
¥t&T, , whenever X,EP;, 2&D . More precisely:|

Vedlnitions * System (1) “vabﬁuug mum5 {

the Awtung Lime v if and only if xy€P, ZED
a3 xies xo. tp)E€P, , T , and o

(1) x(txg, to)EP, | ¥teT, |

SN

ARPTEETAL 155 KTATIAN S8 7 1+ a0 TCI S BT TR TS L O e

SGIICALS CO.

1It 1s {mportant to note the difference ‘between the:
dafinition of contractive stability of ‘reference
i[l] and the definition proposed above. The former
313 related to practical stability over a finite
_ztiu interval and only the existence of a number
i‘s is required. The latter {s conceviod with
;practical stability over a given time interval 7 ,
'which may be either fintte or 1nfinit¢. _ Moreover,
'the number rse(o. T) is a specified’positive
tnul)er-. In the sequel, t = 4=,

'Now we state:

Theonem 1: Let V(x) = bl|x| . Syua (1) is prac-
‘tically stable with the settling time - ‘tg 4§ there
iexidts a consdant vecton b > 0 such that the fol-
llmbng conditions are satisfied
i) olst<  min by
; J=1,2,...4n

(1) V(x) <0 on PLxVxT ,

(411) =, ;[V,,Z = Yue,-r})) Vnp xOxT .

Theorem 1 is proved in Appendix 1, For a class of’

systems (1) satisfying assumptions defined in the '

tence of a vector b > 0, which ntisfiu the

| condition (14) of Theorem 1, 1s presentad in

{ Thaoren 2,

MM RS 3 ! :

A1 The vector function g(x, z, t) may be

- written in the form g{(x, z, t) = H(x, z, t)-‘
f{x, z, t) , t.e., sysm (1) mayl be describeh
by equation !

B iy 20 0 flxy 24 1) @)

A2 h"(x. Z,t) <0 on P xVx T 1-1,2,....p.
(If this assumption is satisfied nnly for
121,2, 00 4 P <n then two q_dditionul
assumptions should be satisfied [4]).

A.3 lh“(x.z,t)l<¢-on Puo»}r, !

v J= 1,2, 400 30, i

A4 f1(x.x.tj.) sgpx1>0 .xifo .%on

' PLxDxT.'l'l'Z.....n.:u

! Under the usumptions AJ1-4 a matrix A-(a,,j) is

--daﬁned by e

sequel, a stuple sufficient condition for the cxis- .
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8y " -6“ PLinf |h1j (x, z, t}] + "{
|

(1-6”) Pt:r)x‘r lhiJ(x' z, t)| (3)'

and we have:
Tneonem £: 1§ AEH
of vectons b > 0 such that

Vix) = bT(sgn X)X < |f (xy 2, t)]ATh <0 on PLxere
Theorem 2 is proved in Appendix 2. f

The following procedure for an analysis of practi-:

cal stability with specified settling time results' § .

from the pravious theorems. A matrix function
H(x, z, t) and a vector function f(x, z, t)
should be selected to satisfy the assumptions '
A.1-4, Knowing H(x, z, t) and f(x, z, t} a i
matrix A= (a”) has to be determined according
to Equation.(3). The procedure may be continued l
only if AE€H , which guarantees (Theorem 2) the -
existence of infinite number of vectors b > 0 ]
such that the condition (i1} of Theorem 1 is satislo
flad, A vector b > 0 should be chosen to satis-t
fy the condition (1) of Theorem | and the inequal-'
ity {

ATb <0 ., ()]

Provided that such a vector b > 0 has been deter-
mined, the dondition (§11) of the same theorem has
to be testaq.

!
H
!
i
r
1
-

4, EXAMPLE

The outlined procedure for analysis of practical
stability wilth specified settling time is now
applied to system (1), where

0.2 0 0 X

glx, 2y t) =| 0 -1,0 2.0 J{ x, |+
P\0 0 -5/ \x .

: i

02.0 0 0 Nyley) :

+10.-2 0 o0 Np(op) ,

0 i 0 2 -100/} Nylog, d3) i

' N4(o4) §

3 1 O R . y
93 9 1 0 !

% 25 stn 3t 7%y 1073t/

there exist inginite numben”

- TR

ST

LTHE ! T A -::nw

= R O B T v

+

6 4, o> 3.45 i
N](a]) = { 2oy s oyl £3.85 |, Hylap)n 60 sgn oy,
g 63 . o) <-3.45
s fogl> 4, or
.i . 10 sgn °3’{|°3|> 2, 046y < ‘}
2_3(33...63) j - e .{}03|< A,.o3&3;.: Q )
% \ ogl< 2 ;
| , |
l 12 sgn o, ’ {ogl <6
; Nqlog) = { 3fogl- 2)sgnaq 4 2 < log| <6},
’ L (1] ’ l"4| <2
i
1

L6 /4 I .
PO -(30 ystel 5], sf= [0.5}. , = 12 sec, !
i\, 10 u. ; :

:In this example, f(x, z, t) and H(x| z, t) are ’
selected as f(x, z, t) » x,

Ny(oy)
-0,2-0, 1..._1_..0~.

Hix, z, t) | .. 1"\“’ ) 0'.‘.2“’.._2.’ 2,'.‘.3.“’__3._"2’_

i

i

!

i

?

P o %2 )

‘ =1 Nylog)

f _,‘ 4o, |

| s
Nlog) !

0; 2; -o.s-o.l-‘l‘-,%{fxﬂ

The above selection of functions f(x, gz. t) and

H(x, z, t) is made in order to satisfj usmtious

A.1-4, According to Equation {3), wa get

@5 2 0\ !
Ael 0 -4t 2 )eH.]

5 30 -5 §

The vector b 1s chosen to ba b= (101 22 10)T,
such that 1st and 2nd condition (Theor,m 2) of
Theorem 1 are satisfied. .

i
i

The following nusbers are ulculaud fyr the selecud

¥ ivector b as .'

! Therefore '
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!

Hance, the conditions (i-1i1) of Theorem 1 are sat-lf
isfied, and the analyzed system is practically
stable with the settling time 12 sec.

!
5. CONCLUSIONS ‘
In this paper, a definition of practical stability
with specified settling time is proposed. .The out~
1ined analysis provides {nformation about quality
of the forced system dynamic behavior over a pre- |
scribed time interval, which may be finite or in-
finite, and about a value of the system settling

time,

An analysis of the proposed type of practical sta-
bility has been carried out for a broad class of

nonlinear nonautonomous dynamic systems. The clasg
of systems is defined by some general requirements !
and s limited neither by the order of system nor 1
by the form of nonlinearities. The latter fact |
shows that the proposed procedure enablas an in-
vastigation of “absolute” practical stability.

The stability test {s reduced to verification of |
the Hurwitz property of a constant matrix and to

a choice of a positive vector to satisfy given in- _

equalities, : In complex situations procedure way
require machine computations,
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; APPENUIX 1

If b> 0 then the foliowing s true: §

Vix) = bT|;|‘. >0, ¥x 90 ;V(x) » = for {|x]|s ey

and since V(x) <0 on PvauT , according to con
dition (i1) of Theorem 1, then V(x) 1is a system
L{apunov function on PvauT . From the same con-
dition 1t follows that, for ¥teT ,

Vix(t; x50 tg)] < ¥{xy) . From condition (1) of
Theorem 1, and from the previous result, one ob-
tains

Vix(t; xg, t;,)] < V(xg) < s} =y

!
o {bys§l,

5102400090

on P1xU:T . . . I :u.-. [

—_——

e TTITHEN FERIOGICALS CO.

Thcufb're.‘]x LT "~y | s rs" ONTRRORT
j-]Z.....n,i.G. !

L x(ty Xy, t)EP, 4 on Py .

i

{Furthermore

; v(x)|,,L < V“PL <0, : (A=2)
H
{Integrating the last expression in (A-2) from ¢,
',t.o t , we get ) : _
: v(x)lP - v("o)lr _Pi s v,,‘P (t - :0) < 0.(A-3)
t
iSince Pz is definad as the largest of P such
lt.hat

VIRl < Vol <V ob < Vb < Vo {A-4)
[7 < Vupd < Viph < Vyrd wp, * .

|
!

1

ithen from (A-3) 1t follows that
i

where g is the

R ECE YRR .
actual settling time, which is evidently less thani
the given 1, . From (A=2) and (A-4) it also .
follows that |xj(t; Xgs to)l _<_s;r on P,nvxr‘ .
J-']. 2. XY} .“.10‘0 : !
x(t3 xo.~to)eP' on P,uvxr, .
This proves Theorem 1, )
APPENDIX 2

The proof of Theorem 2 is based on Pergidskii's
‘lem in {3] and the following assumption:

Assumption (A-A): The elements of a certain basis:

% {¢q} and the coefficients of the matrix A= “13)
'am related by

; aij‘1j’o°1"3011'1.2.a...n.

(A-'I)S

| owma Lema [3]: Assume the coefficients o the mtrix

(A e (a1 ) msmmmmumu (A-1)
lmamm for a certain basis (c,),. Then 4in
onder gor all xoots of the secular a.quhuon

l ‘

det(A -~ al) =0 {

} Vn(P‘-pb ) ) z_-\;",,L(t - t) . (A-S){

or : ‘ i :
Uetts ngotg) P, "W %2l ! -

' -1 ; -
“»»:-V»m.-»zﬂ'»au el
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(A-3), satisfy Assumption (A-A) whenever ¢ is
chosen to be the indentity matrix, i.e.

1
i
f
¢ =dlag{l 1 ,,, 1)=1, (A'4)’
|
!
!

Now, we proéeed to prove Theorem 2. For system
Mm satisfying the assumptions A.1-4 and for

Vix) = lexl e b’ (sgn x)x ,
V(x) = b (i'gn X)X = b! (sgn x) H(x, z, t) f(x,z,t)
-AfT(x. Z, t) HT(x. z, t)(sgn x)b .(A-5)

Using assuuﬁ;tion A.4 and Equations (A-3) we obtain

the following relation for ¥(x)

V(x) = If {k, 2, t)|(sgn x) W {xy 2, t)(sgn x)b <
<17k, 2, ]AT on PLVAT (a-6)! ;

If AE€H , sccording to the Lemma [3] and Equationls ' . i

(A-3), (A-4), for any ¢ > 0 , there exists a vec- :

tor b>0 ?such that

Nbe=ec<o, (A7)
From Equatfons (A-6), (A-7) we conclude that
V(x) _5_-|fT(x. z, t)jc <0 on PLx0xT

and since c > 0 ',5 an arbitrary positive vector.'
the proof o‘f Theorem 2 is complete.
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