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1. Introduction

Many practically important control systems do not have a

stable equilibrium. Instead, they may perform satisfactorily

while possessing only the kind of behavior characteristic that

has been described under various boundedness or practical

stability definitions [1]. This report discusses a class of

techniques which were developed for obtaining quantitative

information about the boundedness properties of such systems. A

system of particular interest in this work is the sampled-data

control of satellite attitude with quantization. Such a system

will be employed throughout as an example of the application of

the techniques described.

The report begins with an introduction of various relevant

stability concepts as a series of definitions in Section 2;

interrelationships are discussed between various definitions in

common use. Also included here is a description of the model of

a basic sampled-data control system with quantization.

Section 3 describes the basic technique of estimating

boundedness regions by means of quadratic Liapunov functions. It

also states a sufficient condition, for a certain class of systems,

for the existence of a boundedness region. The proof of this

condition (Theorem 3-1) involves the estimation technique. Some

of the results in this section (Eqn. (3-12) and Eqn. (3-14))

parallel results of Johnson and Lack [2,3], which have also been

applied recently by Parker and Hess [4].



Section H applies a particular quadratic Liapunov function

to the Lur'e-Postnikov class of systems, along the lines proposed

by Weissenberger and Siljak [5, 6]. This class of systems is more

restricted than that to which the techniques of Section 4 applies;

however, the stability property established is the stronger one

of absolute boundedness (Definition 4). Relationships are

developed for applying the technique to the specific system with

quantization.

Section 5 presents an example of the calculation of region-of-

boundedness estimates.

Section 6 discusses the linear analysis of the system used

in the example and simulation results of the nonlinear system for

use in comparison with results obtained in Section 5 by Liapunov

techniques.

Section 7 presents conclusions.

The Appendix contains a paper*"0n Practical Stability", by

Ljubomir Grujic, Visiting Research Associate in the Electrical

Engineering Department, University of Santa Clara, on leave from

the Mechanical Engineering Department, University of Belgrade,

Belgrade, Yugoslavia. This work was motivated by an interest in

applying the practical stability concept to the systems of this

report, and although it treats only continuous-time systems,

useful extensions to discrete-time systems are obvious. Connec-

tions between boundedness and practical stability concepts are

discussed in Section 2.

*
The paper was presented at the Fifth Asilomar Conference

on Circuits and Systems, Pacific Grove, California, November 8-10,
1971.



Notation

Throughout this report, except where otherwise noted, lower

case Roman letters denote vectors, capital Roman letters denote

matrices, lower case Greek letters denote scalars, and capital

Greek letters denote sets (except the letter X, which represents

the set of all points in the state space). Vectors will be

considered as column matrices. The superscript T denotes the

transpose and * denotes the conjugate transpose. The notation

H > 0 means that H is positive definite real symmetric matrix.

The letter t is used for discrete-time index, and the letter V

for a Liapunov function. The region ft is the complement of ft.



2 . Preliminaries: Definitions and Models

a. Definitions

Consider a discrete-time system described by the equation

xt+1 = g(t,xt) + fCt, xt), t = t0, t0 + 1, ---- (2-1)

where x. is the n-vector state of the system and g and f are

n-vector functions of time t and state x. . The vector f is

considered as the input to the fundamental, unforced system

xt+l = gCt>xt) C2-2)

In later applications in this work, a special form will be

taken for the function g ,

gCt, xt) = P xt + q <K<V»fft = r
Txt , (2-3)

a decomposition into a linear part and a special nonlinear part:

P is an n x n matrix of constant coefficients, q is an n-vector of

constant coefficients, and <j> is a scalar function of the linear

combination cr of system states. However, for purposes of stating

definitions in this section we for the most part retain the more

general system description (2-1).

Definition 1

All the motions x. (x ,t ) of system (2-l)/ are bounded, if

for each initial state and time (x ,t ) there exists a numbero o

6(xo,tQ) > 0 such that

l̂ o'V < 6 ' t ± to '

The motions of system (2-1) are then said to be Lagrange stable.

By itself, such a boundedness property may give little useful

information about the behavior of the system; one quite often



desires at least that all motions ultimately satisfy a particular

bound. We are then led to construct

Definition 2

The motions of system (2-1) are said to be ultimately

bounded if there exists a number 6 such that for each (x , t )

there exists a t, >. t such that

|xt(xo,tQ)| <
 5 » t >. ̂  .

Thus, ultimate boundedness implies the existence of a

bounded region ft containing th.e origin which all solutions

ultimately enter.

It is frequently useful to consider a modification of

Definition 2 to explicitly recognize this region ft and also to

take into account the fact that for some systems the ultimate

boundedness property is not global with respect to initial states:

that there are system states from which motions do not enter the

region ft.

Let ft-Cft- t"e bounded regions containing the origin.

Definition 3

The motions of system (2-1) are said to be ultimately bounded

with respect to regions ft, and ft9 if for each t and for each x e ft0-L ^ O O L-

there is at, > t .such that the motion x, Cx ,t ) e ft, for all t1 > t.,
- L — O l O O - L — 1

A modification of Definition 3 will find application later to

the special system of the form (2-1) - (2-3). Suppose that $ is a

certain class of nonlinear functions 4>(a.) and that F is. a certain

class of input functions f(t, x.). The class $ will be described

later, the class F is the class of bounded inputs,



F: | f ( t ,x t) | <_ V . (2 -4 )

Definition 4

The motions of system (2-1) - (2-3) are said to be absolutely

ultimately bounded with respect to regions ft, and £}« » an<^ to the

class of nonlinearities 0 and to the class of inputs F, if for each

t .x, each x e. n2,each <j>e$,and each feF,there is a t,> t such that

the motion x. (x , t ) e Ji. for all t > t, .t o o l — 1

Closely related to our definitions of boundedness are several

notions of practical stability, which were stated originally by

LaSalle and Lefschetz, Let Q dQ be closed and bounded regions

containing the origin.

Definition 5

The motions of (2-1) are said to be practically stable if for

each feF, each t , and each x e Q , the motion x. (x , t ) e Q for

all t >_ t . A stronger stability is described by

Definition 6

The motions of (2-1) are said to have strong practical .stability

if they are practically stable and if in addition for each feF, each

t , and each x , there exists at, > t such that the motion

x . (x o , t ) e Q for all t >_ t, .

Figure 2-1 illustrates for comparison purposes three divisions of

stability behavior: ultimate boundedness with respect to ft.., f^ >

practical stability, and strong practical stability.

Note that the roles of the region of initial conditions ( ^ 2 »

Q ) and the region in which solutions ultimately enter and remain

(ft-, , Q) are reversed in ultimate boundedness and practical stability:

in ultimate boundedness there is a kind of convergence toward a



Ultimate Boundedness with Respect to fi,, Q«

Practical Stability

Strong Practical Stability

Note: The indicated behavior holds for each feF

FIG. 2-1

COMPARISON OF STABILITY TYPES



Def. 1. Lagrange stability

Def. 2. Ultimate boundedness , with number 6

I t
Ultimate boundedness with respect to ft, , ft~, where fi_
the entire state space

= X,

Def. 3. Ultimate boundedness with respect to ft,, fl?, fl2

i
Def. 5. Practical stability with respect to Q , Q

I
Def. 6. Strong practical stability with respect to Q , Q

FIG. 2-2

Interrelationships Between Stability Types



neighborhood of the origin in that ^.-Cft-, while in practical

stability, motions are allowed to enter a larger region than the

region of initial states, QOQ . Strong practical stability,

however, combines elements of both: there is both practical

stability with respect to Q , Q and ultimate boundedness with

respect to Q, X, where X is the whole state space.

Figure 2-2 shows interrelationships between various stability

types. The arrows mean "implies" and are to be understood, for

example, in the following sense: ultimate boundedness of motions

with respect to certain regions ft,, ft2^o ̂  ̂  implies that there

exists some other regions Q , Q for which the motions are

practically stable,

b. Models

Systems of particular interest in this work are sampled-data

control systems containing quantization nonlinearities. The block

diagram of a class of such control systems is shown in Fig. 2-3;

important features are: linear plant dynamics G(S), time delay T,,

sample and zero-order hold, and a single quantization nonlinearity,

which is shown in detail in Fig. 2-4 in a form with saturation.

In subsequent developments, it will be necessary to put

system equations in the state-variable form (2-1). Define the

discrete-time open-loop transfer function of the system of Fig. 2-3

as

G(z)=-§fzT (2-5)

Where ZOz) = 3{ak> (2-6)

$ (z) = o{ 4 > v [ a ( k ) ] } (2 -7)

From.Fig. 2-3 we calculate

* -T 0-TS

G ( z ) =2{i^ e-Tds G ( s ) } ( 2 - 8 )
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QUANTIZER NONLINEARITY WITH SATURATION
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G(s)}

where

Then

G(s)

G(z) = i=l-Td/T

(2-9)

(2-10)

(2-11)

where is the modified z-transform.

The computation of (2-11) will yield in general,

n-1
b. zi-n

G(z) = =o
n-1

1 + Z a. z
i=o

i-n
ai = (2-12)

From (2-5) and (2-12) we can construct the state equations

xt+l = P x (2-13)

= rT

where

P =

0 1 ... 0

0 ... 0

0 0 ... 1

'ao"al •••'an-l

; n =J H

0

0
•

0

-1

i r =
> -1-

b
0

b,
1

•

•

Vi

(2-14)



13

3. Quadratic Liapunov Function Estimates of Boundedness Regions

In this section we establish a sufficient condition for the

existence of a region Q, of ultimate boundedness with respect to

ft,, X. In the process of establishing this condition by means of

quadratic Liapunov functions, we formulate techniques for calculating

estimates of the region n, .

First, consider the basic

Theorem 3-1; Suppose that the system (2-1) can be put into the

form

xt+l = Pxt + f(t' xt) (3-1)

where P is a constant coefficient, Hurwitz matrix and the vector f

is bounded,

feF, V t >_ tQ, Vx.

Then there exists a.region fi, such that the system (3-1) is

ultimately bounded with respect to fi-, , X.

Proof: Consider the quadratic scalar function

V(x) = xTHx

and its difference along motions of (3-1),

AV = V(x±+1) - V(xt) = (Pxt + f)
TH(Pxt + f)

T- x. H x

AV = - xt
TQxt + Af (3-2)

where Q = H.- PTHP. (3-3)

Since by assumption

|Xi(P)| < 1, i = 1,2 ..., n,

for each Q > 0 there exists a unique solution H > 0 to Eqn. (3-3)

[ 7 ]. If Q > 0 is chosen, the first term in (3-2) is a positive
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definite quadratic form. Since feF, the second term is bounded.

Hence, for sufficiently large |x|, AV < 0; in this region where

AV < 0 all motions cross surfaces V(x) = constant from the outside

to the inside. Consequently, an estimate n, of the region ft, will

be given by

ft1 = (x: V(x) < v1> (3-4)

f̂ IS QI (3-5)

where v_ = maximum V(x) (3-6)

x: AV(x,t) = 0 , t •> tQ .

Note the conservativeness of the estimate H (Eqn. (3-5)).

This demonstration has established the theorem and also provided

a procedure for calculating estimates SL :

Procedure:

i) Choose Q > 0

ii) Determine H from the equation

H - PTHP = Q (3-6)

iii) Calculate \L :

v = maximum V(x)

x: AV(x,t) = 0, t _> • t ' (3-7)

Ti.e., V-. = maximum x Hx subject to the constraint

- xTQx + f(t,x)THf(t,x) = 0 , t _> tQ

iv) &1 = x: V(x) < v.j_ (3-8)

In all but contrived, low-order examples, this procedure

requires a computer. The calculation of H in (3-5) is straight-

forward: the equation may be transformed into a set of linear

equations in the elements of H, or else various direct algorithms
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for the solution of the continuous time version of (3-5) [8] may

be employed in conjunction with a bilinear transformation [8]*.

The calculation in step iii) contains the most potential

difficulties, depending to some extent on the nature of the

function f(t,x). References [9], [10], [11] discuss computer

methods which were used successfully in solving the analogous

equations which arise in computing quadratic estimates of regions

of asymptotic stability for the time-invariant case, f = f(x).

The quality of the approximation, i.e., the "closeness" of

fj, to ft, will depend in general on the choice of Q (as well, of

course, on one's criterion for evaluating its quality); for each Q

a different ft, may be expected to result. A strategy for obtaining

improved results would be to determine the elements of Q (subject

to the constraint Q > 0) which extremize some measure of the quality

of £2, . The volume is a reasonable quality measure and is readily

calculated for a quadratic. The resulting modified procedure is

analogous to that used by Weissenberger [12], Nelson [10] and

Geiss, et al., Cll] to calculate estimates of regions of asymptotic

stability.** Its defects are the likelihood of excessive computer

time and convergence problems for high-order systems.

Difficulties in the calculation of v, in (3-7) may be avoided

by introducing some degree of approximation and accepting more

conservative results. The first term in (3-2) satisfies the

inequality

- xTQx <_ - X |x|2 (3-8)

Let B = I + 2CP-I)"1 and Y = (BT-I)Q(B-I). Solve BTH + HB = - | .
&*
In the case of boundedness regions, the volume would be minimized,

as opposed to the maximization in the case of regions of asymptotic
stability.
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where X~ > 0 is the minimum eigenvalue of Q. Because feF, the

second term satisfies the inequality

fTHf

where X~ > 0 is the maximum eigenvalue of H.

Eqns. C3-2), (3-8) and (3-9) give

AV < - A |x|2 + XRY
2 (3-10)

AV < 0

for all x such that

- XQ |x|
2 + XHy

2 < 0

|x| >YA^/2 X'1/2 $ p (3-11)

Consequently, an estimate ft-. C H, C J^ is given by

f i - = ( x : V ( x ) < v > (3-12)

v, = maximum V ( x ) , (3-13)
where

v, = ma>i § i
= P

The number v, is readily found to be given by

*1 = V2

or v., = Y 2 X H
2 X ~ 1 (3-14)

In situations where the set of initial states ^~ is not the

whole state space X, we make use of

Theorem 3-2;

Let V(x) > 0, and define the (bounded) regions ?L and fL as

0 = ' ( v « - v( v^ < \) >06-1 — IA» y v x / > V - » J

and H2 = (x: V ( x ) < V2) ,

where 0 < v-, < \52 . Assume

no /n, {x: A V ( x ) < 0}
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Then, the motions of the system (3-1) are ultimately bounded with

respect to the regions n and fi» .

Note that this procedure will produce results which are

conservative in the sense that

and ?L CT ft_ t

Theorem 3-2 will be employed in Section 4.
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4. Lur'e-Postnikov Liapunov Function Estimate of Bqundedness
Regions

In certain applications, attitude control systems may be

modeled by the Lur'e-Postnikov class of systems where the linear

part of the system is not asymptotically stable and the quantizer

represents the nonlinear characteristic. A simple transformation

can be used to make the linear part asymptotically stable which,

in turn, forces the quantizer characteristic to violate the usual

sector condition in the neighborhood of the origin. An approach

to the analysis of this class of systems is to estimate the result-

ing regions of ultimate boundedness as proposed in references [5]

and [6].

The estimation procedure makes use of a quadratic Liapunov

function, a modification of the Tsypkin frequency criterion [1.3],

or algebraic test £14],and the Szego-Kalman construction .[15]. In

applying the procedure to a specific situation, one has several

parameters available with which to improve the estimates of the

regions of boundedness.

We consider a free, discrete-time system of the Lur'e class

described by the nth-order difference equation,

xt+l = Vt + q <))o(at) + f ( t>V

at = rTxt, t = 0,1, ... (4-1)

where x . , . q , and r are real n-vectors; P is a real n x n matrix;

<J> 0 (a ) is a real scalar function of the real variable a, which may

have isolated discontinuities; and f ( t , x . ) eF. It is assumed that

the pair (P ,q) is com;

completely observable.

Tthe pair (P ,q) is completely controllable and the pair (P ,r ) is
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Note that in this section, unlike the previous one, we identify

a particular scalar nonlinearity (although we retain also a vector

nonlinearity f).

The system (4-1) is transformed into

xt+l = Pxt + cl*(0t) + f(t>xt)

a = rTxt, t = 0,1, ... (4-2)

where T
P = P + rqr

° (4-3)
<j>(a) = <j>Q(a) - Ta

The number T in (4-3) is chosen in order to insure that the trans-

formed matrix P is Hurwitz, that is, the n eigenvalues r̂,(P) of

the matrix P satisfy

|Ak(P)| < 1, k = 1,2, ..., n (4-4)

and to guarantee that the transformed nonlinear function c(>(a)

belongs to the class $ defined by

r\

$: 0 < a<f>(a) < <a , a, <J a | _< cu

|*(a)| < 8 , |a| < o1 (4-5)

where a , , 3 > 0 , 0 < a 9 < + °°, and the numbers K > 0, 6 > 0 are_L ••• £. "™

selected to satisfy the inequality

K*1 + Re x C z ) -5 h*h > 0, V z : | z | = 1 (4 -6)

In ( 4 - 6 ) ,

X ( z ) = rT(P - zl)'1 q (4-7)

is the open-loop transfer function of the linear part of (4-2)

from the input ^ ( . o . ) to the output - a , and h(z) is the complex

vector defined by

h(z ) = (P - zl)-1q (4-8)

Condition (4-6) is necessary and sufficient [16] for the existence

of a function
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V(x) = xTHx (4-9)

with H > 0, such that along the solutions of (4-7)

- AV = 6 | x | 2 + U<f> + PTx)2 + 4 > ( o - K'1 4>)

- 2xT Hf (4-10)

where the matrix H, vector P, and scalar t, satisfy the equations

T T
H - P HP = PP1 + 61

qTHq + C2 = K'1 (4-11)

PTHq + qc - j r

Since the system is described within a Lur'e context, it is

natural to use a boundedness property which reflects the class $

as well as the class F. Such a property was characterized in

Section 2 in Definition 4 as absolute boundedness with respect to

regions fi, and ft,,, and classes $ and F. To calculate estimates

0, and J^ of the regions fi, and fi« we make use of the function

V ( x ) and Theorem 3-2. Use is also made of the following

inequalities, obtained from (4-10):

- AV > < 5 | x | 2 - X Y |x| - y |a| < a
2
 H (4-12)

- A v _ > < $ | x | - XHY |x| , |a| > a

where XH is the largest eigenvalue of H, and

y = BCc^ + K"1 3) (4-13)

Based upon inequalities (4-12), the least conservative estimates

obtainable for system (4-2) with properties (4-4) and (4-5) are

the following:

ftn = {x: V(x) < v, }
., ^ (4-14)
no = .{x: V(x) < V0}
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- = max x Hx
xeAl (4-15)

T= mm x Hx ,

where
Al = Fl U F2 U F3 (4-16)

= (x: |x| = P-L , |rTx| < c^}
rn

= {x: |x| = p2 , |r x| > c^}

= {x: |rTx| = as p <_ |x| < p} (4-17)

n . .
pl ' 2T" +

P2 = -3-
and T

A2 = {x: |rx| = ̂ } (4-18)

An illustration of the sets A, and A» in two dimensions is given

in Fig. 4-1.

The value of v, given in (4-15) can be calculated by the following

procedure:

(i) Define

v11 = max xTHx , (4-19)
xeX,

where ~
A1X = {x: |x| = px> (4-20)

From (4-19) and (4-20), we compute

vn = XRp
2 (4-21)

Using (4-21) we test

rTe

> 0 , v, = VI;L (4-22a)

< 0, go to (ii) (4-22b)

where e is an eigenvector corresponding to X,,.
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FIGURE 4-1

ILLUSTRATION OF.REGIONS 1^, F2, T^ AND ^,
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(ii) Proceeding from (4-22b) we calculate v, as

follows:
2 -,

\2 - P!
 61 + 7 al 62

where 9, and 9? are solutions of the equations

Hx - 616x - j- 92r = 0

T 2-1x x = p,o

Tr x = a.

Also

Then ~ * " ,
VI;L = max {v12, v13). (4-25)

Note that the value v,, can always serve as a conservative

approximation for v, .

The value of v2 given in (4-15) is obtained simply as

V2 = a2(r
TH~1r)~1. (4-26)

Note that a necessary condition for the existence of estimates
A A
ft., C J^ » and a sufficient condition for the existence of regions

ft-|Cft2 ^
s "that

It is of interest to point out certain special cases of this

analysis that arise when the constraints on nonlinearity a, and ot2

assume certain limiting values. If a, is reduced to zero the above

procedure produces finite regions of absolute stability. When a,,

is infinite the procedure establishes either a global property of

absolute ultimate boundedness (ct ,^ 0), or a global property of

absolute stability (<*-,= 0)-
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Application to the Quantization Nonlinearity

In order to apply the foregoing analysis technique to the

computer control system with quantization described in an earlier

section (see Fig. 2.3 and Fig. 2.4), we require calculation of

the numbers a,, ou , and 6. Figure 4-2 shows how these quantities

depend on the transformation parameter T and the Popov sector

parameter K.

Inspection of Fig. 4-2 shows that a-, is determined by

either a lower or upper sector intersection with the transformed

nonlinearity ,

a., = max {aT , aTT} , (4-28)j. LJ u

where aT arises from the intersection with the lower limit of thei_i

sector (the a axis) and a,, arises from the intersection with the

upper limit of the sector (the line <a). The quantity a, is

obtained from the relations

e (4-29)

for that integer value of n such that

2n 2n+2 ru ,n.
T - * (4-30)

The quantity «TT is obtained from the relations

for that integer value of n such that

2n-l < n 2n+l ^ (ii_q?')

A simpler, conservative estimate of a, may be obtained

using the straight line envelope of the nonlinearity (the parallel
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FIGURE 4-2

TRANSFORMED QUANTIZATION NONLINEARITY



26

dashed lines in Fig. 4 -2 ) . We still use ( 4 - 2 8 ) but in place of

( 4 - 2 9 ) - ( 4 - 3 2 ) we have

'
and % = 5u = 2 ("-31l)

Since it is necessary that a, > 0 , we have from (4-33) and (4-34)

the following limitation on the transformation parameter T:

I-T < T < 1 (4-35)

The approximate analysis from the straight-line envelope

also gives, for 3,

B = (1-T) a1 + f (4-36)

The value of a is given simply by

a2

m + y
= , T > 0
T (4-37)

In those applications, such as satellite attitude control,

the linear part of the system is not asymptotically stable, the

calculation of regions of absolute ultimate boundedness requires a

transformation described in (4-3). Consequently, the first step in

the calculation is a selection of T such that P is Hurwitz and (4-35)

is satisfied. To verify (4-35)we need a K which satisfies

frequency condition (4-6) for a certain choice of 6. Once K and

6 are selected, one calculates the vector g by the Szego-Kalman

[15] factorization procedure and computes the matrix H from Eqs.

(4-11). After H is determined, one calculates the numbers v, and

v2 as explained at the end of the preceding section. If either
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v, > v2, or estimates P,, and °-2
 are no"t satisfactory, one repeats

the entire procedure with a different choice of the transformation

T, and possibly different numbers for 6 and <. As is clear from

this outline, the application of the proposed method to higher

order systems would require utilization of a computer.
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5. Example

In this section we perform a numerical calculation of a

boundedness region by Liapunov methods. The result will be

compared with that to be obtained in Section 6 by simulation.

Let the specific system be that to be described subsequently in

Section 6 in Fig. 6-7a; this model can be taken as a very

simplified representation of a satellite attitude control system.

Direct calculation (by integration between sampling intervals)

gives the state equations

xt+l
 = Po xt + q <j)o(at)

= r
(5-1)

where

P =o

1 T

0 1

qT = - [T2/2

rT = [GK

T]

and <{> is the quantization nonlinearity of Fig. 2-4 with m = °°.

The quantity BETA in Fig. 6-7 has been given a unity value, and

the quantity GAMMA is denoted above by G.

Using the methods of Section 3 we require a transformation

of Eqn. (5-1) to form in which the nonlinearity is bounded. Such

a transformation is given by Eqn. (4-3) with T = 1. Equation (5-1)

then becomes

xt+l = P xt

= r
(5-2)
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where

and

= P0 +

<f> = <f>o - r x

To calculate a boundedness estimate let us use the simplified

form of the calculation which relies on Eqns . (3-6), (3-12), and

(3-14):

H - PTHP = Q > 0 (5-3)

: V(x) <

where V ( x ) = xHx (5-6)

The specific choice of numbers in the simulation in Section

6,

K = 0.292o

KX = 1.146

G = 1.6

T = 1.0

gives

Choosing

P =
0.76 0.08

-0.47 -0.83

q= [-0.5

rT= [0.467

Y = 0.56e

-1.0]

1.83]

Q =

and solving (5-3) , we obtain

H =
2.52

0.78

0.78

2.87
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Eqn. (5-5) then gives

= 3.8e

so that the estimate of the boundedness region is given by

2.52

0. 78

0. 78

2.87
3.8e' (5-8)

This region is shown in Fig. 5-1 together with the region as

estimated from the simulation results of Section 6 in Figs. (6-13)

through (6-15). The overlap of the regions may be due to inaccura-

cies in estimation from the simulation results: the actual region

may be smaller than was concluded from the simulation, due to the,

very complex, long-duration dynamic behavior of the simulated

system. In any case, more examples and comparisons are needed

before a definitive statement can be made about the merits of the

Liapunov approach.
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6 . Linear Analysis and Simulation Results

a. Linear Sampled Data Studies

One model of an attitude control for a satellite has been

given by Seltzer [17] and is represented in Fig. 6-1 as Model A.

An alternate representation representing somewhat different

instrumentation is given in Fig. 6-1 as Model B. Both models are

linear sampled data systems with digital compensator and a time

delay due to the use of the digital computer. It is intended that

a nonlinearity (a quantizer) be inserted into Model B, and the

effect of such nonlinearity on stability is to be studied. First,

however, a linear analysis of Model B is undertaken with appropriate

comparisons to Model A.

Symbol equivalences in the two models :

Model A Model B

Ko V

Kl Kv

K2

K

kQ = KQT
2/2I kQ = KKQT

2/2I

kx = K^/I k = KKvT/I

In Z-domain, the characteristic equations and transfer func-
7

tions for Model A (with digital filter and F(Z) = »+K ) and Model

B (without digital computer) are as follows:

Model A

Characteristic Equation:

Z3 + (K2 - 2)Z
2 + (1 + kQ + k1 - 2K2)Z + (kQ - ̂  + K2) = 0
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MODEL A (Seltzer's model)

Vehicle
Control

Law

K1S

-*-Digital
.Filter

F(Z)

T

Zero
Order
Hold

-SI1 - e

S

Computa-
tional
Delay

e-TDS

Vehicle
Dynamics

is

MODEL B

*R^
+.jL*

Digital
Computer

F(Z)

1

Zero
Order
Hold

. -ST1-e
S

Computa-
tion
•Delay

e-STD

-•»

Gain

K
I

Accelerdraeter

Ka

Rate Gyro

K
V

Position Gyro

K
P

•

Vehicle
Dynamics

1
S

Vehicle
Dynamics $

1
S

FIG. 6.1: TWO MODELS FOR A LINEAR SYSTEM
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Transfer Function:

= (k0 + k l)Z + (kQ - kx)

Z3 + (K2 - 2 ) Z 2 + (1 + kQ + ^ - 2 K 2 ) Z + (kQ - ^ + K2>

or:

(kQ + k1)Z"2 + (kQ - k 1 )Z~ 3

^R 1 + (K2 - 2)Z"1 + (1 + kQ + ^ - 2 K 2 ) Z ~ 2 + (kQ - k-L + K 2 > Z " 3

Model B

Characteristic Equation:

Z3 + (K2 - 2 ) Z 2 + (1 + kQ + k-j^ - 2 K 2 ) Z + (kQ - k-j^ + k2> =0

Transfer Function:

( 0 . 5 ) K T 2 ( Z

Z + K - 2)Z + (1 + k + k- - 2 K ) Z + (k -

or (set K = 1)

( 0 . 5 ) T 2 ( Z " 2 + Z"3)

1 + (K2 - 2)Z - 1 + (1 + kQ + k1 - 2K 2 )Z" 2 + (kQ - k;L + K2)

Notice that both Model A and Model B have identical characteristic

equations .

In Z-domain, the stability boundary is the unit circle, i.e.,

|Z| = R = 1.

Stability: |Z| < 1

Instability: |z| > 1

Z-plane

Z = eST = RE16

R = e-?V. , 9 = WnT(l-C2)1 / 2
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where C = damping ratio

W = rtatural frequency

T = Sampling period

The stability contours (for complex boundaries) of K» (third

parameter) in parameter kQ - k, plane are as shown in Fig. 6-2.

This corresponds to Seltzer's Fig. 4-1, but is explicit, i.e., it

has been computed quantitatively for a number of values, of K«.

The plot is done by a digital computer by introducing Chebyshey

functions into the characteristic equation. One real root

boundary, Z = 1, is k» = 1 (i.e., K2 - k, plane); it is independent

of the values of K2 and K, in 3-D space. Another (Z =• - 1). is

calculated by setting Z = - 1 in the characteristic equation, and

it is a plane defined by the equation k, = 2(K2 - D in the 3-D

space which we can see is independent of kQ. 3-D space is not easy

to show. However, in the parameter plane (2-D) for K? = 1, the

stable region is bounded by the two axes and the complex boundary

as depicted in Fig. 6-2. Relative stability contours in the

parameter plane K2 - 0, K2 = 0.5, K2 = 1, K2 -2 are computer

plotted, shown in Figs. 6-3,4,5 and 6, respectively, for discrete

varying values of R and 6, again Chebyshev functions are introduced

into the characteristic equation for the computer program.

Figures 6-3, 5, and 6 correspond to Seltzer's Figs. 5,6 and 7,

respectively, the only difference being in the variables chosen

for mapping.

The correlations of the above-mentioned graphs and those of

Figs,-5, 6, and 7 of Seltzer's paper are developed as follows:
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Since R = e~CWnT and 0 = W T(l -n

logeR 2 1 / 2
i.e., logeR = - CWnT and ^ - L / ^

9 1 / 2
set — g_ = A , we get e = A(l + A) WRT = e C l + A ^ ) 1 ' ^

Figure 6-7 is the computer generated data conversion chart to trans-

late between the R, 6, and C , W T variables for design purpose.

For example, choose K2 = 1, R = 0 .93 , 9 = 1.2 in Fig. D, we

find kQ = 0 . 4 , k, = 1.7, and in Fig. F we find ? = 0 . 0 7 and

WnT = 1 . 2 . To check this in Fig. 6 of Seltzer's paper for kQ = 0 . 4 ,

k, = 1.7, one finds £ = 0 . 0 7 and W T = 1.2. To choose a point

within the unit circle of the Z-plane and measure R and 6

(0 <_ 6 < 2ir) we can immediately define its corresponding ? and

W T values for a certain third parameter K? . The process can be

reversed, i.e., for a given £ and W T, we can, through using

Fig. 6-7, find the corresponding R and 9. The purpose of using

R - 9 variables instead of ? - W T is for the convenience of
n

choosing a point in the Z-plane. Once W T is found, for a

predicted system natural frequency W , one can find the sampling

time T.
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b. Simulation Results

One purpose of this project was to explore the possibility

of applying stability theory to the definition of regions in the

state space which the terminal state is guaranteed to reach from

some defined set of initial conditions. Digital simulation was

undertaken to provide "experimental" data which could be used to

verify the conclusions drawn from the theoretical studies. This

section describes the simulation program and some of the pertinent

results.

The block diagram used to represent the system in the

simulation studies is given in Fig. 6.7a. This was modeled in the

IBM 360 computer using the CSMP-360 program. The original program

is given in Fig.6-8, with a set of parameter numbers and initial

conditions. Note that the two blocks, BETA and GAMMA, shown in

Fig. 6-7a,were inserted for gain adjustment and distribution studies.

It was thought that the location of gain with respect to the non-

linear element might alter performance, but this was found to be

untrue as far as stability is concerned.

The numerical values selected, KO = .292, Kl = 1.146, T = 1.

and DEL3 = .1 were used rather than those supplied for the Skylab

because simple numbers were desired for the initial theoretical

studies (which would include some long-hand calculations). Note

that trapezoidal integration was used to avoid problems at the

discontinuities, and the integration interval was BELT = .01, which

turned out to be too large an interval. Fig. 6-9 a, b, c, show

phase plane plots of system response to initial conditions. The
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* * * *CCNTINyCUS_ SYSTF^ MGCri ING PROGRAM****

***ppfiRlEw INPUT S T A T E M E N T S * * *

LABEL S T A B I L I T Y CMG
-P K0=.292 -

P~AR~/> METER G A M M /5 = 1.

PAR A ME TCP -0£L2 = .L.
P /5P .8METSP P1=C.

—JNGGN—-X* = l. , >P = 2.
HISTRY ZHOLC(IOO)

7s-rNTGRL(X-Af)(2)
X 2 = I N T G R L ( X B t B E T A * A )

_. A-5L2.tlCL C.(.S.*-3-) —

C = G A M M A * C C
— e-e = 4 L P H A * e-

S=/LPHA
A L P H A = I V F L L S ( P 1 , T )___ . . . . . . _._

Z=K1*X2y — K j» ̂ , vi
~MefHCD T ' P A ' P Z "

PPEPAR X I . X 2
—P-P^N-T—X-H X 2-f -/6

END
~STOP

FIG. 6-8: INITIAL PROGRAM
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terminal portion of the trajectories shows what appears to be a

limit cycle. The plots, however, are rather crude because the time

increment was too large and the scale plots poorly chosen. It was

decided to get plots with better portrayal of the cycles, so the

program was rerun with better plot scales and with smaller time

increment and smaller integration interval. Typical results are

shown in Fig. 6-10. Note that the supposed limit cycles have

disappeared. The obvious cause of the discrepancy is the integra-

tion interval. This is mentioned in the report because the proposed

Skylab will use an on-line time shared digital computer, and the

position and velocity measurements are quantized for use in this

computer. Thus, if the integration interval or measurement

granularity are chosen too large, a situation such as we have

observed may be encountered.

To continue the simulation studies the loop gain was varied

to find a value for which the system would exhibit oscillatory

characteristics. This was done to inverse the probability of

finding limit cycles, since a part of the theoretical study is

concerned with such phenomena. It was found that for relatively

modest gain increases the system damping changes substantially.

For KO = .292, Kl = 1.146, BETA = GAMMA = 1, the system is

heavily damped, exhibiting characteristics similar to the chatter

mod- of relay servos. Changing only GAMMA, it was found that at

GAMMA =1.8 the system appears to be divergingly unstable. It

was decided that GAMMA = 1.6 was a suitable value for our

purposes.
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FIG. 6-10a: BETA = 1 . 0 , GAMMA = 1.4, XA = 0 .2 , XB = - 0.2
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FIG. 6-10b: BETA = 1 . 0 , GAMMA = 1.4, XA = 0 . 4 , XB = - 0 . 0
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FIG. 6-10c: BETA = 1.0, GAMMA = l . U , XA = XB = - 0.6
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FIG. 6-10d: BETA = 1.0, GAMMA = 1.4, XA = 0 . 0 , XB = 0.8
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FIG, 6-10er BETA = 1.0, GAMMA = l.i*., XA = XB = 1.6
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All remaining simulation runs were made with the forward

gain set at GAMMA = 1.6, and the initial conditions were chosen

on a square grid surrounding the origin of the phase plane. A

copy of the program is given in Fig. 6.11; it differs from that in

Fig. 6-8 only in the value of GAMMA, the integration interval,

and the run time, print interval, etc. The results for this

increased gain condition not only differ amazingly from those in

Fig. 6-10,but showed some surprising symmetries which can be

described briefly. First, the responses showed symmetry in a

polar sense, i.e., initial conditions in the first and third

quadrants gave responses which were identical in a polar symmetry

sense, as were responses to initial conditions in the second and

fourth quadrants. Initial conditions of position only gave

comparatively well damped responses, with .no chatter or limit

cycles for small values of initial condition, but exhibited a

chatter mode type of limit cycle* as it approached but did not

reach the origin. Initial conditions of velocity only went

immediately into a limit cycle type of oscillation about the

origin, and as the magnitude of this initial condition increased

several such modes of different amplitudes appeared. Initial

conditions in the first and third quadrants gave limit cycles that

did not enclose the origin, while initial conditions in the second

and fourth quadrants gave limit cycles that did enclose the origin,

Because of the symmetries noted above, the results presented

do not contain all of the data obtained but just representative

s>Note tne term limit cycle is used rather loosely here to
describe a type of motion which is not precisely a limit cycle.
This is discussed later.



.**?*.C_OINITINUCU_S SYST?^ MQnSI. ING PROGRAM****

* * *FROPL^M INPUT S T A T E M E N T S * * *

LAB5L S T A B I L I T Y CMG

P A R A M E T E R B"TA = 1 . ,GAM*A= 1.6
PARAK£TFP T=I.
P A R A ^ E T R P DEL3 = .l
P A

I N C O N X * = 0 . » X P = - 1 . 6
HI-S Tft^—Z-HOb-B t-K)S-|—

X 1 = I N T G R L ( X 4 , X 2 )
CXB , BE TA»A r

A = 2 H C L C ( S , P )
6 = K T P

C C = A L P H A * C
S"/ iLPHA
A L P H A = T V F U L S ( P 1 , T )

Y=KC*X1
T R A P ?

PREPAR >1,X2
PRINT X 1 , X 2 , A
^fMtfl-—riNTlM«00>TCf:LT«»OOlT
END
STOP

FIG. 6-11: REVISED PROGRAM FOR RESULTS OF FIGURES 6-12
THROUGH 6-15
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samples. Fig. 6-12 shows four trajectories starting from an

initial position with zero initial velocity. Note that for small

values of initial position there is no tendency to cycle, but at

large values of initial position some cycling is produced, but

does not enclose the origin. Fig.6-13 shows three trajectories

starting from an initial velocity with zero initial position. For

a small magnitude of initial conditions, the system immediately

starts cycling about the origin. For a substantially larger

initial velocity two modes of cycling occur as the trajectory

approaches the origin, but for a still larger initial velocity

one of these modes disappears. Fig.6-14 shows four trajectories

starting in the first and third quadrants. All seem to terminate

in a type of limit cycle which does not enclose the origin.

Fig.6-15 shows four trajectories starting in the second and

fourth quadrants. In this case all seem to terminate in a type

of limit cycle, but for the smaller initial conditions the cycle

does not enclose the origin, while for the larger initial conditions

it does.

c. Comments on Simulation Results

From the trajectories shown on Fig. 6-12 through Fig. 6-15, it

is clear that the oscillations observed are not limit cycles in

the usual sense, since the trajectory is not repeated exactly on

successive cycles. There appears to be a "drift", i.e., successive

cycles tend to be displaced along the position axis, usually

tending toward the origin. There was evidence, in some of the

print-out data, that the trajectories eventually reached the
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FIG. 6-12a: BETA = 1 . 0 , GAMMA = 1.6, XA = 0 . 2 , XB = 0.0

,2. .2,
-002 132 JSJ

FIG. 6-12b: BETA = 1.0, GAMMA = 1.6, XA = 0 . 4 , XB = 0.0
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FIG. 6-12c: BETA = 1.0, GAMMA = 1.6, XA = 1.6, XB = 0.0

-024 -01*

FIG. 6-12d: BETA = 1.0, GAMMA = 1.6, XA = 3 .0 , XB = 0.0
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FIG. 6-13a: BETA = 1.0, GAMMA = 1.6, XA= 0 . 0 , XB = - 0.2
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FIG. 6-13b: BETA =1.0, GAMMA = 1.6, XA = 0.0, XB = 1.6
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FIG. 6-13c: BETA = 1 . 0 , GAMMA = 1.6, XA = 0 . 0 , XB = 3.0
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FIG. 6-ma: BETA = 1.0, GAMMA = 1.6, XA = - 0 . 2 , XB = - 0.2



FIG. 6-14b: BETA = 1.0, GAMMA = 1.6, XA= - O . U , XB = -
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FIG. 6-lUc: BETA = 1 . 0 , GAMMA = 1.6, XA = - 1.6, XB = - l.b



FIG. 6-14d: BETA = 1 . 0 , GAMMA = - 1 . 6 , X A = 3 . 0 , X B = 3 . 0
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FIG. 6-15a: BETA = 1.0, GAMMA = 1.6, XA = - 0 . 2 , XB = 0.2
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FIG. 6-15b: BETA = 1.0, GAMMA = 1.6, XA = - 0 .4 , XB = 0.4
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FIG. 6-15c: BETA = 1.0, GAMMA = 1.6, XA = - 1.6, XB = 1.6
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124

FIG. 6-15d: BETA = 1 . 0 , GAMMA = 1.6, XA = 3.0, XB = - 3.0
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dead zone of the quantizer and that a no-power, constant velocity

mode followed the cycling mode. Since the model has no damping

in the dead zone, it was of interest to investigate whether the

motion entered a very slow limit cycle mode crossing the entire

dead zone or whether the trajectory entered a type of limit cycle

around one edge of the dead zone.

To explore these possibilities several of the preceding

simulations were repeated using a longer problem time. These

results were not conclusive, but several of the test cases did

recycle about one edge of the dead zone without ever crossing

the dead zone. ^

No valid conclusions can be drawn at this point, especially

in view of the fact that the simulation model was a much simpler

system than any practical realization. It is clear, however, that

the type of behavior observed is due to the sampled nature of the

nonlinear system. One suspects that this oscillatory behavior

can be changed substantially by altering the sampling period.
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7. Conclusions

This report has considered the problem of estimating regions

of boundedness for discrete-time dynamic systems. Based on

Liapunov-functions, several methods were developed for this

purpose. A technique based on simple quadratic Liapunov functions

led to a number of possible variants, with various degrees of

complexity and a wide range of numerical difficulty. An example

by this method was performed and the estimate compared with one

obtained by simulation. Tentative conclusions from this example

are that Liapunov results may be good and that simulation results

may be difficult to interpret and time-consuming to generate; more

examples, however, will be required for a definitive judgment on

the effectiveness of these methods.

The other Liapunov-based technique made use of the Lur'e-

Postnikov quadratic Liapunov function and yields estimates of

regions of absolute boundedness. These results contain new and

useful information regarding the influence of the nonlinearity on

the boundedness region; this new information is apparently obtained

at the cost of greater analytical complexity. The implications of

this complexity, however, cannot be judged until further experience

is gained with a computer implementation of this technique.

It should be noted that this Lur'e-based technique is

limited in its .present form to a system containing a single non-

linearity, while the simple quadratic Liapunov technique is

applicable to systems containing multiple nonlinearities.

Based on studies to this time, the Liapunov methods of this

report remain potentially attractive compared to the simulation

method. Further work would profitably be devoted toward
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increasing experience with the application of these techniques

to a specific system, and to the development of effective

computer programs for this purpose.
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A P P E N D I X

! :

ON PRACTICAL STABILITY*

1. INTRODUCTION

This paper 1$ concerned with a practical stability
analysis of nonautonomous nonlinear dynamic systems
which have a nunter of nonllnearltles depending on
several variables.

Important results 1n practical stability analysis
over a finite time Interval have been obtained by
Weiss and Infante [1] and Weiss [2]. They derived
necessary [2] and sufficient [1] conditions ex-
pressed 1n terms of real valued functions. In this
work, as In reference [3], the function V(x)- bT|x|
Is proposed as a candidate for system Llapunov func
tlon. This function leads to algebraic conditions
for testing practical itaku.it.ty with a «peci£ied

tint, which 1s defined over a prescribed
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University<f {Belgrade
Belgrade,! 1 jgoslavla
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In QUA pope*, a. C&UA otf nonlxneaJt 'nonautanomouA tyvtemt with mittjpte. non- \
anitieA -ci conA-idened. Su^^icieni condition* ate. developed 40/1 a t*/pe 04 ;

practical ttahiUt.(j with specified settling time. The condition* a/te .independent:
o< the actual rfo/un orf nontinea/l chatacte/UAticA 40 that they can be .inteApiieted 04
conditions jo/i "absolute" practical ttatufUy. The. Atahitity ieiX XA «educe<i to j
veA^^iAation orf the HuAuictz psicpfUy oft <£ dowtant maCtix. T*Ui maUei the Ataiut-
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2. NOTATIONS i I
j I
;A - (a^) , n * n constant matrix. j

jb • (b-| b2 ... bn)
T , constant positive; vector. .'

ic • (cj Cj ... cn)
T , constant positive vector.

V £«", V « U:||z|| <.Y> . set of all {allowed vec-
: tor disturbances. ,
ĵ R11 « R " » T * R n , f • (f, f2 ... fn)f j

|gs) i '1«R««T*Rn ,g- (a, 82 ... Qn)r

|H C R"* , H • (A:Re X ((A) < 0 , 1 - I, J2 n}.

«:Rn x R*1 x T + Rn* , H • (h^) . j
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'-'•• I'.. S r PERIODICALS CO.

prescribed constant positive vector. j

sgn x - dlag {sgn Xj sgn x2 ... sgn xn> . :

t e Ji1 , — < t0 <. t < *- .

T: either t 6 K and T > -0 , or t • •*• .

^eR1 , tge(0, T) , system settling time.

T £ R ' , r - U^ «. t < tg + t> , T, - <t:tg + !

V:«n * R1 , Vm(.j - nln V(x) , »H{t) - max V(x) . j

((x) Is the total time derivative of V(x) ,
along solutions of a system. ;

x • (x1 x2 ... XR) , state of a system. :

x(t;Xg, tg): Rn « T * Rn , motion of a system sat4
Isfylng x(tQsx0, tQ) • XQ . J

z:Rn x T + R*1 , z(x, t) 1s a disturbance vector. '

644 Kronecfcer delta. i

It Is Inportant to note the difference:between the
{definition of contractive stability of;reference
[1] and the definition proposed above. The former

|1s related to practical stability over a finite
•time Interval and only the existence of a number
!TS 1$ required. The latter 1s concerned with
;practical stability over a given time interval T ,
'which may be either finite or Infinite. Moreover,
'the number TSC(O, t) Is a speclfledjposltlve
|number. In the sequel, T • *• . •

'Now we state:

Theowi 1; Lei bT|x|V(x) -
: ticatty Atabte. uUk tht

a. constant, vtvte* b > 0!
i lowing condition* ate

1(1) bV <. m1n

| (U ** p*oc-
ting. • TS -trf ih&u
«uch that Qit (,ot-

«4 • {+1 or !-l) • const., 1 • 1, 2, ... , n .

c - dlig (cJ t2 ... CR} .

o:Rn x «" «|T* Rn , o • (o ... on) .

IK'MI - CHH] •

3. PRACTICAL STABILITY WITH SPECIFIED SETTLING TIMt

usIn this papa>, we shall study a class of systems i

governed by the vector differential equation i

'. t) . (1)

1(11) ¥(x) < 0 on P. x P x T

Theorem 1 Is proved In Appendix 1. For a class of;

jsystems (1) satisfying assumptions defined In the '

sequel, a simple sufficient condition for the exis-

tence of a vector b > 0 , which satisfies the ::

condition (11) of Theorem 1, Is presented In ;

Theorem 2. 1 \

where z • i(x, t)eV on Pa x T . Motions ;
x(f, XQ, tQ) of system (1) are required to satisfy
x(t; XQ, t0)€Pa , neT , and x(t; XQ, tQ)cPf , :
Vt€T$ , whenever »g£^. 2CP . More precisely:! '

; A.) The vector function g(x, z, t) may be
written In the form g(x, z, t) -j H(x, z, t)'

f(x, z, t) , I.e., system (1) mayjbe described

by equation [ 'I
| || - H(x, Z, t) f(x, z, t) .j (2)

i A.2 h4((x, z, t) < 0 on PL x p x T j, 1-l,2,...,n.

(If this assumption Is satisfied only for

1 - 1 , 2 r < n then two additional

assueptlohs should be satisfied [J4]). :

' Syttan (1) -u pnncti ratty t&ktt

tlit tvttUna tan. t, i.(, ud only 44 \,£fft zeP
•vmtyt . *
(IK x(t:x,j, t0)€Pa , VteT , aid

(11) x(t;x^, t0)£Pf

A.4

z, t)| < •»- on
1§ J • li 2, ... , n .

f^x, z, t) sgn xf > 0 ,
P x p « T , 1 » 1, 2

Pa » P 4 T ,

on

| Under the assumptions A.1-4 a matrix

L defined by -

Is
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•11 ' "*1J
Inf

P\*V*T

,,
1J

sup i, *, t)| , (3)i

£9

-69

3.45

3.45

-3.45

NjÛ )" 60 sgn ô ,

and WB have:

Tneoiem 2: I
04 vecXoA4

T

H€H thvu. exuX -ui^uvote numbe/ir
0 Auch that ;

)i <_ |fT(x, z, t)|ATb < 0 on

b

V(x) • b(sgn

Theorem 2 1s proved 1n Appendix Z.

The following procedure for an analysis of practi-
cal stability with specified settling time results!
from the previous theorems. A matrix function
H(x, z, t) and a vector function f(x, z, t) ;

should be selected to satisfy the assumptions j
A. 1-4. Knowing H(x, z, t) and f(x, z, t) a '
matrix A • (a^,) has to be determined according •
to tquatloni (3). The procedure may be continued j
only 1f A€H , which guarantees (Theorem 2) the j
existence of Infinite number of vectors b > 0
such that the condition (11) of Theorem 1 1s satis*
fled. A vector b > 0 should be chosen to satis-'
fy tht condition (1) of Theorem 1 and the Inequal-;
Ity t

A|b < 0 . (4)

Provided that such a vector b > 0 has been deter-
mined, the condition (111) of the same theorem has;
to be tested. |

4. EXAMPLE |

The outlined procedure for analysis of practical j
stability with specified settling time Is now j
applied to system (1), where j

0 0
-1.0 2.0
0 -5.Q/

10 sgn
4, or ;

2, oo.

N4(o4) •

• .Ao3l< At-ojij^

\l"3l<2 I

12 sgn o4 , |o4| <_ 6

3<|o4|- 2)sgno4 , 2 <Jo4| <.6

0 . l»dl i 2

'16> <1.0\
S« -30 , s1 - 5 , ST • 0.5 , T. - 12 sec. :

,70^ JO

,In this example, f(x, z, t) and H(x,< z, t) are :

selected as f(x. z, t) • x ,
N,(o,) N.(o4) \

-0.2-0.1-i—L.O;-250-=—2-s1n 3ft

!H(x, z, t) •

The above selection of functions f(x, ;z, t) and
H(x, z, t) 1s made In order to satisfy assumptions
A.1-4. According to Equation (3), we get i

« .i

•The vector b Is chosen to be b • (10,1 22 10)',
;such that 1st and 2nd condition (Theorem 2) of
iTheorem 1 are satisfied. |

The following nutters are calculated fcr the selected
vector b as j

i \
j Therefore, | :.
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o-l < 12 • T

Hence, thi conditions (1-111) of Theorem 1 are sat-
isfied, and the analyzed system 1s practically
stable with the settling time 12 sec.

5. CONCLUSIONS

In this paper, a definition of practical stability
with specified settling time Is proposed. .The out-
lined analysis provides Information about quality
of the forced system dynamic behavior over a pre-
scribed time Interval, which may be finite or In-
finite, and about a value of the system settling
time.

An analysis of the proposed type of practical sta-
bility has been carried out for a broad class of
nonlinear nonautonomous dynamic systems. The class
of systems Is defined by some general requirements
and Is limited neither by the order of system nor
by the form of nonlinear!ties. The latter fact
shows that the proposed procedure enables an In-
vestigation of "absolute" practical stability.
The stability test Is reduced to verification of
the Hurwltz property of a constant matrix and to
a choice of a positive vector to satisfy given In-
equalities. < In complex situations procedure nay
require machine computations.

• ACKNOWLEDGEMENT

The author 1s Indebted to Professor Dragoslav 0.
Slljak, Electrical Engineering Department, Univer-
sity of Sant* Clara, Santa Clara, California, for
his useful commnts on this paper.

' APPENDIX 1

If b > 0 then the following Is true:

V(x) - bT|x| » 0 , Vx j" 0 ; V(x) * - for ||x||* •

and since V(x) < 0 on P^xVxT , according to con
dltlon (11) of Theorem 1, then V(x) Is a system
Uapunov function on P^xVxT . From the sane con-
dition 1t follows that, for VteT ,
VLx(t} XQ, y] «.V(y . From condition (1) of
Theorem 1, and from the previous result, one ob-
tains i
V[x(t} XQ, yj iV(X0) <.bV ^ mln

on P,xW . . . . ' *"I1._(A-UJ.

J • 1, 2,

x(ts

n , I.e.

eP , on

Furthermore

V(x)|p < VHp < 0 . ,

Integrating the last expression In (A-2) from
to t , we get

(A-2)

Since P£ 1s defined as the largest of Pf such
that

vmP; , (A-4)

then from (A-3) It follows that

' tO)

or

(A-5)

where t..- (t|x(t, ^

(A-6)

1s the

,
T$ . From (A-2) and (A-4) jt also i

at |xj(t; x,,, y| <. sj onj PfV*Tt , ,

actual settling time, which 1s evidently less than!
the given
follows that
j • 1, 2, ... , n , I.e.

x(t; XQ, yePf on P^V

This proves Theorem 1.

APPENDIX 2
i |

The proof of Theorem 2 Is based on Per^ldskH's •
lemna In [3] and the following assumption:

(A-A); The elements of a certain basis,
and the coefficients of the matrix A »

are related by

lama. [3]; AMUDK tht
ia^) CMS. *ueh that tht. x

OAA tatiAlitd ^01 a. ceMocn babti

- • n<

oft the.

(A-l )
;. Tfien in

o*dg\ ion aJUL Jiaott orf tkt ttcula*. e^ujatwn

det(A - xl) - 0
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to have negative 4ea£ pott* it .ii necmaty and : '|~[
4u4(icient 44 $o* any positive vector c a vector! J i
b deXe/imined ^Aom Xhe equation ; ' [1]

A tb - -ec (A-2)! J i

.u positive.

Let the elements a^ of the matrix A be defined
by

*1J " "41J 1nf 'h1j'x* 2| *)l +
L*

sup , z, t)| , (A-3)!

[2]

5 '

I t«"

[4]
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provided that ^̂ (x, z, t) satisfy the assump-
tions A. 1-3, 1, j • 1, 2, ... , n . It can be •
easily verified that all elements a^ , Equation i
(A-3), satisfy Assumption (A-A) whenever c Is j
chosen to b« the Indent! ty matrix, I.e. j

c • dlagO 1 ... 1} - I . (A-4)l
i

Now, we proceed to prove Theorem 2. For system j

(1) satisfying the assumptions A. 1-4 and for j

V(x) bT|x| b (sgn x)x ,

V(x) • bT (sgn x)x • bT (sgn x) H(x, z, t)

• fT(x, z, t) HT(x, z, t)(sgn x)b .

Using assumption A.4 and Equations (A-3) we obtain

the following relation for V(x) j

V(x) - |fT(x, z, t)|(sgn x) HT(x, z, t)(sgn x)b <j

<. |fT(x, z, t)|ATb on (A-6)

If ACK , according to the Lemna [3] and Equations

(A-3), (A-4), for any c > 0 , there exists a vec-

tor b > 0 'such that

ATb • -c < 0 . (A-7)|

From Equations (A-6), (A-7) we conclude that 1
. f I
V(x) <_-|f (x, z, t)|c < 0 on PLxpxT

and since c > 0 Is an arbitrary positive vector,j
the proof of Theorem 2 Is complete.
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