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1. Introduction

This Report describes that portion of work done under contract

NAS 8-21315 which.concerns the reentry guidance of the shuttle orbiter.

I.1 Reentry Requirements

At the start of reentry, the shuttle orbiter may be assumed to be .

in a circular orbit at approximately 100 n.mi. altitude. From this condition,

it is to be brought near a landing site. At the end of its glide toward the

site, the craft should reach an altitude, airspeed, and flight path angle

at which the air-breathing engines can be turned on, and the craft flown

manually to a landing.

A typical reentry begins with a retrofire of the rocket engines

such that the flight path is one or two degrees below horizontal at the time

aerodynamic force reaches .01 of gravity. As the vehicle plunges deeper

into the atmosphere, the trajectory must be controlled to prevent excessive

.deceleration or skin temperature. In addition, the entire history of heat

flow through the skin and insulation-must be controlled to prevent excessive

cabin temperature.

1.2 Footprint as a Measure of Performance

Before retrofire, the set of possible landing points for some

fixed future time interval is a band centered on the subsatellite trace.

After retrofire, the set of reachable points is much reduced, and continues

to shrink as reentry progresses. Since atmospheric density and winds, ve-

hicle aerodynamics, efficacy of control actions, etc., are known only ap-

proximately, it is prudent to reenter so that at all times the desired

terminal state remains well inside what the reentry planner estimates to

be the boundary of the reachable set.

It follows that a desirable feature of a guidance algorithm is

that, in addition to meeting constraints on deceleration and heating, it

should produce a large reachable set. In the work to be reported here, we .



1-2

consider a subset of the reachable set which we define to be the positions

attainable at a specified terminal altitude. We refer to this set of

reachable positions as a "footprint" and use it as a measure of performance

for guidance schemes. The airspeed and path angle associated with trajec-

tories which reach the boundary of the footprint appear to be suitable ini-

tial conditions for maneuvers leading to powered flight.

1.3 Role of Optimal Trajectories

Trajectories which reach the boundary.of our reachable set are

necessarily optimal with respect to the performance index

J = sTx(t ) • (1.3-1)

for some s. Each boundary point is the terminus of the unique trajectory

which maximizes J subject to the constraint h = h,, where s is a unit n-
f d

vector, t is final time, x is final state, h is final altitude, and h

is desired final altitude. For each, value of s, the optimal trajectory

reaches the boundary of the reachable set at the point x(tf) at which the
m ^»locus s x = s x(t ) is tangent to the reachable set. By maximizing J for an

appropriate sequence of values of s, we generate a reentry footprint.

The trajectories forming our footprint have constant 30° angle

of attack and variable bank angle. Although deceleration and heating are

unconstrained, no trajectory has aerodynamic deceleration above 1.25g or

skin temperature above 2400°F, and these peak values can be reduced by in-

creasing initial path angle.

In addition to serving as a standard for measuring performance

loss due to suboptimal guidance, the optimal trajectories suggest functional

forms for parameterized guidance.laws. • One may parameterize a control his-

tory to imitate the optimal control history, or parameterize costate to

.imitate optimal costate, then iterate on the parameters to meet end condi-

tions.

The trajectories also show that optimal state, costate and control

histories consist, of smooth functions with a superimposed oscillation. This
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information may be useful in designing numerical integration methods

which partition solutions into slowly-varying and oscillatory parts.

It also suggests the use of guidance which damps the oscillation.

1.4 Outline of Report

Section 2 and Appendix Al present the coordinate systems, aero-

dynamics, equations of motion, and numerical constants used in the Report.

Section 3 and Appendices A2 and A3 describe the computation of the foot-

print. Section 4 presents numerical results for a suboptimal scheme which

generates reentry trajectories subject to constraints on heating rate and

aerodynamic acceleration. Section 5 summarizes our work on contract

NAS 8-21315 since its inception.
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2. Reentry Dynamics and Aerodynamics

For the purpose of reentry guidance , we regard the attitude of the

vehicle as being instantaneously controllable , we consider only translational

dynamics as affected by lift, drag and . gravitational forces, disregarding

forces which may be required for attitude control. For the purposes of

obtaining the "data presented in this report and to facilitate geometrical

insights , we have used equations of motion in spherical coordinates . Al-

though it is possible to include the effect of rotation of the earth ' s at-

mosphere in these equations, we have not done so because we felt the addi-

tional complexity thus introduced would be an unnecessary burden at this point

in our investigations. Thus, we regard the earth as being an inertially-

fixed, homogeneous sphere with an exponential atmosphere.

The simplified force model we use is shown in figure 2-1 where r is

a vector defining the position of the vehicle center of mass in an inertially-

fixed, earth-centered cartesian coordinate (ECCC) system. The vector v is

the time derivative of r and g is gravitational acceleration given by

g = - r (2-1)
r

where r = r .

The vector L represents aerodynamic lift force which is normal to v

and D represents aerodynamic drag force which is antiparallel to v. The

magnitude of the lift and drag forces may be expressed as

1 2
L = — p v S C_ (a)

£• Jj

1 2
D = - p v S CD(CX)

(2 2)

where S is the planform area of the vehicle, C is the coefficient of lift,
L

C is the coefficient of drag and p is atmospheric density. The coefficients

of lift and drag depend on mach number as well as angle of attack but the

dependence is not too strong at hypersonic velocities and since we shall be
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interested mainly in this flight regime, we neglect it. We use a four-

parameter model for hypersonic C and C as functions of angle of attack
L D

and atmospheric density is computed as an exponential function of altitude.

These models are discussed in appendix Al.

Relative to the ECCC system of figure 2-1, the equations of motion

of the vehicle are

= v

- - L D
v = g + — + —

m m

(2-3)

where m is the vehicle mass. We should like to express these equations in

spherical coordinates. To this end, we define spherical coordinates of po-

sition relative to the ECCC system as shown in figure 2-2. Several inter-

pretations of the angular coordinates of position, (f> and A, are possible

depending on the orientation of the ECCC system and the initial conditions
^

subject to which the equations of motion are solved. For example, let i
A A

and j span the earth's equatorial plane, let k point in a northerly direc-

tion, and let <j> and A be initialized, respectively, with the longitude and

latitude of vehicle position at the initial time. If latitude is measured

positively north of the equator and longitude positively east of the prime

meridian, then A and <j> at any time are equal to true latitude and true
,̂

longitude, respectively. As a further example, if i points toward the po-

sition of the vehicle at the initial time and if j lies in the initial (r,v)

plane, then <j> is down-range angle and A is cross-range angle.

We now define spherical coordinates of velocity relative to the (r,

4>,A) position-oriented cartesian coordinate (RCC) system as shown in figure
A

2-3 where the unit vector r points in the direction of increasing r, <j> in
,«,

the direction of increasing $, and A in the direction of increasing A.

Several interpretations of the angular coordinate ty are possible depending

on the orientation of the ECCC system. For example, if i and j are chosen
7T *

to span the equatorial plane, and if A < —-, then $ points in a locally
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easterly direction and X in' a locally northerly direction and ^ is heading

angle measured positively north from an easterly direction. On the other
A

hand, if i points toward the position of the vehicle at the initial time
>\ — — *• *

and if j lies in the initial (r,v) plane, then $ points downrange, X points

crossrange and fy is heading angle relative to the downrange direction measured
^ ». •

by a positive rotation about r. In either case, the (<j>,X) plane is locally

horizontal so that y is the inclination of the velocity vector above the •

local horizontal.

The lift and drag forces are defined relative to the (v,$,y)

velocity-oriented cartesian coordinate (VCC) system of figure 2-4. Here

the drag vector is antiparallel to v and the lift vector lies in the ($,y)
ys

plane making an angle of B with j .

The equations of motion relative to these spherical coordinates are

derived in reference 1 as

r = v sin y

1 _ v cos Y cos \p
r cos X

* _ v cos y sin
A — "~"~" — ~~ — "~ ~ ~"~ —

D y
v - _ — _ _— sin

m 2

(2-4)

L c o s B y v- r
r v

Y = - --- cos Y + cos Y

• _ L sin 3 _ v cos y cos
mv cos y r cot X
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VCC.
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3. Unconstrained Reentry Footprint

3.1 Introduction

The importance of a reentry footprint during inflight targeting

and guidance is obvious — for safety and stability, a vehicle's control

system must .try to achieve a destination within its reachable set. More- •

over, a reentry footprint can be an important factor during both vehicle

design and guidance algorithm development. In addition to indicating the

stability and ease of convergence of a reentry formulation, calculating

reentry footprints gives insight into the behavior of state and control

variables during optimal trajectories. Such insight can be vital to under-

standing the tradeoffs involved between constraining heating and aerodynamic

forces, and maximizing cross range 'capability, guidance stability, and com-

putational speed and can lead to safe, effective targeting and guidance

schemes.

•

In the following paragraphs, we present an unconstrained reentry

footprint for a shuttle vehicle which enters the earth's atmosphere at 93

km. initial altitude after deboost from a near earth orbit. The reentry

trajectories used to generate the footprint have bank angle 3 as control.

The angle of attack is held constant at the maximum lift/drag ratio con-

sistent with vehicle design, and earth rotation is ignored. After briefly

describing the method of computation, we present graphs illustrating the

footprint and the variation of state and control variables along it. We

discuss the effects of constraints and of variations in initial state upon

the footprint.

3.2 Method of Computation

We calculated the unconstrained footprint presented in the following

section by maximizing the cost functional

J = 0Af + (l-0)<frf (3-1)
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for values of 0 ranging from 0.0 (maximum downrange case) to 1.0 (maximum

crossrange case). Here, A and <}) are the final crossrange and downrange,

respectively. We used the six differential equations for state components

Pf v, Y/ tyi $t and X presented in Section 2 in a Mayer formulation with
T.

Hamiltonian H = p x. As shown in Appendix A2, the problem was reduced to

choosing initial values for p , p , p , and p. (components of costate ad-
P Y V A

joint to P,'Y/ <J>/ and X, respectively) so that the end conditions at final

time' t,.

PY(tf) = 0

(3-2)
vv = °
px(tf)..= 0
Pv(tf) = 0

were satisfied. Values of state and costate at t were obtained by inte-

grating the state equations (2-4) and (A2-1)* and costate equations (A2-5)

until the desired final altitude was obtained. The control B (bank angle)

was .selected from equations (A2-4) using values of p , p and cos Y- As

described in Appendix A3, a quadratic extrapolation technique was used to

initialize p , p , p , and p, accurately enough for a finite-difference
p Y V A

Newton-Raphson procedure to converge each optimal trajectory along the

footprint.

3.3 Shape of Footprint

Figure 3-1 illustrates the smooth, convex shape of the reentry

footprint from the maximum cross range point (0 = 1.0) to the maximum down-

range point (6 = 0.0). Over 1350 nautical miles cross range are achieved.

The state differential equation for p is given in Appendix A 2.
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The dashed lines illustrate paths of reentry trajectories to three points

on the footprint. Points 4 to 6 show values of $ and A. .for three feasible

trajectories generated using the algorithm described in Section 4 of this

report. Table 3-1 summarizes data for these six points, while Table Al-1 .

in Appendix Al summarizes vehicle and initial state data for the trajectories.

Table 3-1 Explanation of Points on Fig. 3-1

Point Method of Calculation

1
2

3

4

5

6

66.6

102.6

144.5

31.1

67.0
*

70.2

22.7

20.9

0.0

13.9

21.1

20.8

Optimal cross range trajectory

Optimal trajectory for 0 = 0.91

Optimal down range trajectory
18

Feasible trajectory with 10.2x10
= pv6 and 3g arcs

18
Feasible trajectory with 3.8 x 10
= pv° and 1.5g arcs

18
Feasible trajectory with 5.6 x 10
pv6 and 1.25g arcs

As shown in Figure 3-2, initial values of p , p , and p are

surprisingly linear functions of 0,* while initial values of p. and p.. are
fy A

slowly varying functions of 0. Figure 3-3 illustrates the deviation of

initial costate from linearity along the footprint arc 9=

0.9 to 1.0 . As shown by Figure 3-4, initial bank angle does not reach 90°

along the front of the footprint (|0| £ 1.0).

3.4 Variation of State and Costate Along Trajectories

Figures 3-5 to 3-13 show details of the trajectories leading to

The footprint parameter 0 is related to the angle x between the crossrange
axis and the tangent to the footprint by x = arctan [0/(l-0].
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points 1, 2, and 3 on the footprint on Figure 3-1. Although all three tra-

jectories involve an oscillatory descent, aerodynamic accelerations never

exceed 1.25 g's. Flight time for the trajectories increases with final'

downrange <j> and velocity magnitude is a mono tonic function of time after

the first 100 sec. of each trajectory. None of the costate variables

changes sign during optimal trajectories, although we often saw p go nega-

tive when an initialization was outside the algorithm's region of convergence.

Figure 3-12 illustrates such a case. Initial costafee for ~p in Figure 3-12

differs from the optimal initial costate by less than 0.3%. The behavior

of state and costate variables during the last few hundred seconds of the

trajectory for 0 = 1.0 is similar to their behavior for 0 = 0.91.

3.5 Effect of Initial State upon Results

Since costate p = (3J/0x), initial values of p for optimal trajec-

tories indicate the effect of variations in initial state upon final cross

range and downrange. Table 3-2 lists values of initial costate for the op-

timal trajectories denoted by points 1, 2, and 3 in Figure 3-1.

Table 3-2

0
pp
PY

P*
PA
P
Pv

1.0

-839.319

0.315950

0.917802

0.397039

0.0

0.183885-10"3

0.91

-4490.23

2.39840

0.895611

-0.164809

0.09

0.455339-10-3

0.0

-48,982.3

28.6895

0.0

0.0

1.0

4.98680-10-3

As seen from the Table, increasing initial v increases <J> and A

while increasing initial p (decreasing initial altitude) decreases range.

Since p (t ) - 1/3 for 0 = 1.0, probably less than 1° more cross range would
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be gained by optimizing X with respect to y • (For the optimal y »
t o o

p (t ) =0.0 and initial B = 90° if p > 0.). Figure 3-15 illustrates the
Y o ij) .
change in the optimal crossrange trajectory caused by increasing y(t ) by

0.275°. The trajectory seems to become smoother as the optimum value of

Y is approached, although we only obtained 0.08° more cross range from this
o
increase in Y •

o

3.6 Heating and G-limit Constraints

Figures 3-15, 3-16, 3-17, and 3-18 show radiation equilibrium

temperatures during the various optimal trajectories described above. None

of the trajectories would violate a heating constraint of 2400°F, but the

maximum crossrange trajectory for Y (t ) = -1.14 exceeds 2300°F. However,

a comparison of Figures 3-15 and 3-16 indicates that peak heating can be

significantly reduced by varying initial path angle. Aerodynamic accelera-

tion for the trajectories were shown in Figures 3-5, 3-8, and 3-11. For

heating limit constraints above 2400°F and reasonable G-limit constraints,

our unconstrained reentry footprint does not violate either heating or G-

limit constraints and would thus be the same as a constrained one.
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4. Generation of Reentry Trajectories Subject to In-Flight Constraints

The previous section discussed a method for determining a "footprint"

by generating a sequence of trajectories which are not subject to in-flight

constraints and which are optimal in the sense that equation 3-1 is maxi-

mized subject to a given terminal altitude. Here we discuss a method, moti-

vated by reference 4, of generating trajectories which are not necessarily

optimal in any sense subject to in-flight constraints.

. These trajectories have constant angle of attack with roll angle

free and satisfy constraints on maximum total aerodynamic acceleration and

maximum heating rate. The method we use to generate them is summarized in

the following:

1) Entry is at a constant bank angle from deboost until the

maximum permissible heating rate is obtained. This bank angle

is uniquely determined by imposing the requirement that the time

derivative of heating-rate be zero when the heating rate limit

is encountered. This "tangency condition" is necessary to avoid

violating the constraint.

2) Constant heating rate is then maintained by varying bank

angle.

3) At the appropriate time, a transition is made from constant

heating-rate flight to constant aerodynamic acceleration flight

by maintaining a constant bank angle for 60 seconds. The timing

of the transition maneuver and the angle of bank are uniquely

determined by applying the appropriate tangency condition at

the beginning of the constant dynamic pressure arc.

4) Constant aerodynamic acceleration is maintained by varying

bank angle until a heading of -90° is obtained.

5) Bank angle is then held at zero for the remainder of the

flight. This strategy is at least locally optimal with respect
i +

to maximizing cross range after a heading angle of -90° is attained.
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For a given initial orbit, the family of trajectories generated

using this technique is parameterized by deboost time, deboost velocity

increment, maximum heating rate and maximum aerodynamic acceleration. Sub-

ject to obvious limits, these parameters may be regarded as mission variables

selected to provide suitable trajectory shaping for each mission.

Following reference 3, we have assumed that heating rate is pror
1/2 3

portional to p v For a particular vehicle, actual heating rate at

any point on the vehicle will vary with angle of attack and will almost

surely be a more complicated function of vehicle state. However, we believe

that this simple model is adequate for the purpose of investigating the feas-

ibility of trajectory shaping techniques and guidance algorithms. Moreover,

the simple model can be made to at least crudely approximate more sophis-

ticated models by the selection of an appropriate constant of proportionality.

The data presented in figures 4-1 through 4-3 illustrate a typical

trajectory generated by the technique just described. The 2300°F boundary,

appearing as a dashed line in figure 4-2, was taken from reference^. Maxi-

mum temperature occurs during the transition and is clearly an increasing

function of both maximum heating rate and maximum aerodynamic acceleration.

If we superimpose figure 4-2 and figure 3-15, which is a plot of

altitude versus velocity for an unconstrained optimal trajectory which maxi-

mizes cross-range, the suggestive result is figure 4-4. The trajectory of

figure 4-2 seems to be a "smoothed" version of the optimal trajectory. More-

over, not much cross-range is lost as a result of the smoothing process since

the non-optimal trajectory terminates at a final crossrange of 20.8° whereas

the optimal trajectory terminates at 22.7°. It is possible to obtain even

more crossrange by adjusting the parameters of the non-optimal trajectory

properly (cf. point 5 of figure 3-1). This result suggests that trajectories

generated by the technique described in this section are perhaps nearly

optimal with respect to final cross-range. We are presently investigating

the possibility of taking advantage of this property in a practical guidance

algorithm.
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5. Summary of Work and Conclusions

Early work under this contract concerned minimum-fuel vacuum

ascent to orbit and transfer between orbits. This work is summarized in

[5], Many of the numerical techniques currently used in.the GUIDE program

[6] were first developed under this contract. Work on shuttle optimal at-

mospheric ascent is summarized in [7], Work on reentry trajectories is

presented in this current Report.

A result which we:, consider particularly significant is that the

trajectory described in Section 4, which consists almost entirely of arcs
£• ' . r\

with pv constant or pv constant, achieves almost the same crossrange as

the optimal unconstrained trajectory, and has no oscillation in altitude

or flight path angle except during the final unconstrained range extension

mode. It is suggestive that the non-optimal constrained trajectory follows

a path in altitude-velocity space (Fig. 4-4) which is a smoothed version

of the altitude-velocity path of the optimal unconstrained trajectory.

We have observed that unconstrained optimal trajectories are

difficult to converge and we have observed that a trajectory which is not

optimal in any sense can achieve -near optimal crossrange. Our experience

with the trajectory described in Section 4 suggests that, for trajectories

with constant angle of attack, it may be fruitful to choose 3 to maintain

flight in various mainfolds of the form f(p,v) = constant. These mainfolds

may be chosen to be the mean of oscillatory optimal paths in p,v. Cross-

range would be determined by switching the sign of 3. \.

The fact that by following the heating rate constraint one elimi-

nates the oscillation in h and y suggests the possibility that an optimal

arc subject to a heating rate constraint might be considerably less oscil-

latory than the unconstrained optimal arc, and might be easier to converge.

A guidance scheme might then ̂ consist of flying an optimal maximum crossrange

trajectory subject to-a heating constraint until such time as the trajectory,

is continued with 3 = 0 , would pass over the target. The remainder of the

trajectory would consist of maneuvers to lose altitude by rolling symmetrically

about 3=0.
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Al — Vehicle Aerodynamic Coefficient Model, Atmospheric Density Model and
Initial State Data

We have devised a four-parameter model for CT and C given by
ii D

C (a) = C sin 2(a-C)
L Lmax

CT(a) = cn~ + C [1 " cosL Do 2

(Al-1)

In figure Al-1, C and C as given by these formulas are compared with more
L D

exact data taken from [1].

Atmospheric density, p, is computed according to an exponential

model as

p = p e-
k<r-r0) - (A1_2)

o

where r = earth's radius. We are interested mainly in altitudes from 35 km,

to 100 km. and have chosen p and k to give a good approximation to atmos-
o

pheric density at these altitudes. A comparison of atmospheric density

computed according to the formula (Al-2) and the density of the 1962 U.S.

Standard Atmosphere is given in figure Al-2.

The initial vehicle state and vehicle characteristics used for

generating all the numerical data appearing in this report are given in

table Al-1.

1. Letter from Mr. Jerome R. Redus of George C. Marshall Space Flight
Center, S&E-AERO-GT, to Dr. G. W. Johnson of IBM, June 1, 1970.
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Table Al-1 Vehicle and Initial State Data

2
Vehicle planform area (S) = 836.1 m

Vehicle mass (m) = 108864. kg

Initial altitude (h) = 93.0 km

Initial path angle (y) =-1.1459156°

Initial velocity magnitude (v) = 7.8 km/sec

Initial heading angle (^) = 0.0°

Initial cross range (A) = 0.0°

Initial down range (<()) = 0.0°

Vehicle lift coefficient (C ) =0.4

Vehicle drag coefficient (C ) =0.27

Atmospheric density (p) = equation (Al-2) with:

p = 1.76924 (kg/m3)
o

k = 0.15002033 km"1

r = 6378.165 km.
o
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A 2 — Costate Formulation Used to Calculate Reentry Footprint

For the calculation of the reentry footprint, we used a state
T T

vector x = (p ,<(> ,A ,v,Yf ip) and a costate vector p = (p , p. , p, , p , p , p.)
p <p A ' v y V

and maximized the cost functional J = 6X + (1-9)$f. Since the state dif-

ferential equations (2-4) and

p = - fcpv sin Y (A2-1)

where

r = r + (i)ln (p /p) (A2-2)
o k o

do not contain <J> explicitly, p, is a constant. Hence, in the Mayer formula-

tion we used, the optimal p was (9J/3<f> ) ,

p = 1 - 6 (A2-3)

T
The control B which maximized the Hamiltonian H = p x was

2 2 2 1 / 2
cos 3 = p cos Y/(P cos Y + P.)

2 2 21/2
sin 3 = P^/(Py cos Y + P^)

.T
We obtained differential equations for costate from p = -(9H/3x)

(vC A, + 2p gS + p gC /v)
= -VA + —3Q ir_J—PY9 r

P u krp
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cx

p D 2p gC
\7 Y Y

p = -PA + -^- + C A, - V-1 (A2-5)
v u mv Y n 2

Lp.S.S
<1) 8 Yp = -vS A, - —~—- + p k vC + p gC

Y Y^i 2 *p p Y ^
Y

Here,

P D L ^BA = -p kS - -- + -=-— ( -̂ -̂  + p C0)u P Y Pvm 2 C ^Y 3mpv Y

p.C.S, p.S. (1-9)C,
A _ ^ ̂  X X ^ 4. ^ , „ , g
Ah " rC, " "7~ + rC. + PY( "

A A V

g =

and siibscripted S and C denote sines and cosines of the subscript angles.

Since the Hamiltonian H is not an explicit function of time for this problem,

it is a constant of the motion (zero for a free time optimization). Hence,

one component of initial costate can be determined so that H = 0. During

the actual calculations, we determined p (t ) from the initial values of
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P i P / Pii Pi/ and p•• State and costate equations were integrated until
P Y W " 9
the desired final altitude was obtained to determine t . We chose initial

values of p , p , p., and p. so that final p , p., p, , and p were equal to
p Y y A ' Y y ^ V

the partial derivatives of J with respect to J , if; , X , and v , respectively.
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A3 — Initialization of Costate for Calculating Reentry Footprint. .

Even when formulated in terms of appropriate spherical coordinates,

the region of convergence for optimizing down range and cross range using

a. linear Newton-Raphson scheme is fairly small. During a preliminary ex-

periment involving a 300-second maximum crossrange trajectory, over 50

trial trajectories were calculated in order to obtain accurate enough ini-

tial values for p , p , p, , and p to converge an optimal trajectory.
P Y A . ip

In order to avoid calculating extensive trial trajectories for the

93 km. case, the optimal downrange trajectory (9 = 0) was calculated first

by holding bank angle B at 0.0 and integrating from h = 93 km. to h.= 35 km.

Then final costate components were assigned their optimal values and a back

integration was performed to obtain' initial costate. We had to use a fairly

small (0.35 sec) step size for the fourth order Runge Kutta integration in

order to obtain reasonably accurate values of p(t ). Figure 3-12 illustrates
o

the effect of an inaccurate value for p(t ) upon p . (When p becomes nega-

tive, the reentry vehicle dives sharply, pulling minimum lift).

Once we had obtained an optimal value for p(t ) for 8 = 0.0, we
_5 °

increased 6 by 5 x 10 twice and iterated to converge these cases. We used

converged values of p(t ) at these three points to initialize a quadratic

extrapolation scheme. After each extrapolation of p(t ) to a new value of 9,

we converged p(t ) and used the new point to continue extrapolating. We

were never able to extrapolate through a change in A9 corresponding to
2 2 1/2

(AA + A<() ) >3° because of the small region of convergence of the

Newton-Raphson iteration.


