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SUPERSONIC AERODYNAMIC CHARACTERISTICS OF A

LOW-ASPECT-RATIO MISSILE MODEL WITH WING AND TAIL CONTROLS

AND WITH TAILS IN LINE AND INTERDIGITATED

By Ernald B. Graves
Langley Research Center

SUMMARY

A study has been made to determine the aerodynamic characteristics of a low-
aspect-ratio cruciform missile model with all-movable wings and tails. The configura-
tion was tested at Mach numbers from 1.50 to 4.63 with tails in line and interdigitated
with the wings in the vertical and horizontal planes (0 = 0°) and with the wings in a
45° roll plane.

Test results indicate that the all-movable wings produce very nonlinear longitudinal
control characteristics, while in general the tail provides linear incremental control char-
acteristics. At the 0° roll attitude, the tails in the interdigitated position provide more
linear control characteristics than in the in-line position. At the 45° roll attitude, some
interference-induced nonlinearities are apparent with the tails interdigitated.

Tail control for this model permits a degree of maneuverability over the entire test
Mach number range, whereas wing control permits maneuverability only at the lower Mach
numbers.

INTRODUCTION

The National Aeronautics and Space Administration is engaged in a continuous pro-
gram of missile research to better understand the parameters affecting the aerodynamic
behavior of missiles. As part of this program, tests have been conducted in the Langley
Unitary Plan wind tunnel on a cruciform wing-tail missile model with a fineness ratio
of 10. This study compares wing control and tail control with tails both in line and inter-
digitated with respect to the wings. Test Mach numbers ranged from 1.50 to 4.63.

SYMBOLS

Values are given both in the International System of Units (SI) and in the U.S.
Customary Units. Measurements were made in U.S. Customary Units. Force and



moment data are referred to both the body and stability systems of axes. The moment
reference is located at 69.59 percent of the body length.

A reference area (body cross section)

d body diameter

CA axial-force coefficient, Axial forceA " . qA
*,

CD drag coefficient,
"'

CL lift coefficient,

_ ., ,. . ,,.. . , Pitching momentCm pitching-moment coefficient, ^-3

CN normal-force coefficient, NormaMorce

L/D lift-drag ratio

M Mach number

q free-stream dynamic pressure

a angle of attack, deg

6t tail deflection, positive when leading edge is up, deg

6W • wing deflection, positive when leading edge is up, deg

0 model roll orientation, deg ($ = 0° when wings in horizontal and vertical
planes)

APPARATUS AND METHODS

Tunnel

Tests were conducted in Langley Unitary Plan wind tunnel, a closed-circuit,
variable-pressure facility which has two test sections. An asymmetrical sliding-block-
type nozzle leading into the test sections permits a continuous variation in Mach number
from about 1.50 to 2.86 in the low Mach number test section and from about 2.30 to 4.65
in the high Mach number test section.
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Model

A dimensional drawing of the model used for these tests is shown in figure 1. The
model had an ogive nose, a cylindrical afterbody, and all-movable cruciform wings and
tails. The wings had a clipped-delta planform. The tails had a rectangular planform
and could be positioned either in line with the wings or interdigitated at 45° with respect
to the wings. Both the wings and the tails could be deflected for control either indepen-
dently or simultaneously. A photograph of the model is shown as figure 2.

(i

Test Conditions

The model was tested at Mach numbers from 1.50 to 4.63 at a constant Reynolds
number of 8.20 x 106 per meter (2.5 x 106 per foot). Transition strips 0.159 cm
(1/16 in.) wide (No. 40 carborundum for Mach numbers greater than 3.5 and No. 60 car-
borundum for Mach numbers less than 3.5) were placed 3.05 cm (1.2 in.) aft on the model
nose and 1.02 cm (0.4 in.) aft streamwise on all wing and tail surfaces. The dewpoint
temperature was maintained sufficiently low to insure negligible condensation effects.

Measurements and Corrections

Aerodynamic forces and moments were measured by means of an electrical strain-
gage balance that was housed within the model and was connected to a sting-support sys-
tem. Pressure in the model chamber was measured by means of a single static orifice.

Data presented herein have been corrected for balance and sting deflections due to
aerodynamic loads and wind-tunnel airflow misalinement. Drag results have been adjusted
to free-stream static pressure acting over the model base.

PRESENTATION OF RESULTS

The results of the tests are presented in the following figures: -
, Figure

Effect of wing deflection on longitudinal aerodynamic characteristics;
5t = 0°; <j> = 0°; tails in line 3

Effect of wing deflection on longitudinal aerodynamic characteristics;
6t = 0°; 0 = 45°; tails in line 4

Effect of tail deflection on longitudinal aerodynamic characteristics of
body-tail configuration; 0 = 0° . . . - . . • . :. . 5

Effect of tail deflection on longitudinal aerodynamic characteristics of
body-tail configuration; $ = 45° '. 6

Effect of tail deflection on longitudinal aerodynamic characteristics of
model; d^ = 0°; <£ = 0°; tails inline ; . . 7



Figure
Effect of tail deflection on longitudinal aerodynamic characteristics of

model; 6W = 0°; 0 = 45°; tails in line 8
Effect of interdigitated-tail deflection on longitudinal aerodynamic

characteristics; 6W = 0°; 0 = 0° 9
Effect of interdigitated-tail deflection on longitudinal aerodynamic

characteristics; 6W = 0°; 0 = 45° 10
Effect of tail deflection on longitudinal aerodynamic characteristics;

6W = 10°;" 0 = 0°; tails in line 11
Effect of tail-deflection on longitudinal aerodynamic characteristics;

6W = 20°; "0 = 0°; tails in line 12
Effect of tail deflection on longitudinal aerodynamic characteristics;

6W = 10°; 0 = 45°; tails in line 13
Effect of tail deflection on longitudinal aerodynamic characteristics;

6W = 20°; 0 = 45°; tails in line 14
Effect of interdigitated-tail deflection on longitudinal aerodynamic

characteristics; 6W = 10°; 0 = 0° 15
Effect of interdigitated-tail deflection on longitudinal aerodynamic

characteristics; 6W = 20°; 0 = 0° 16
Effect of interdigitated-tail deflection on longitudinal aerodynamic

characteristics; 6W = 10°; 0 = 45° 17
Effect of interdigitated-tail deflection on longitudinal aerodynamic

characteristics; 5^ = 20°; 0 = 45° 18

DISCUSSION

Effect of Wing Deflection
i:

The effects of wing deflection on the longitudinal aerodynamic characteristics of the
model with in-line control surfaces are shown in figure 3 for wings in a horizontal-vertical
orientation (0 = 0°) and in figure 4 for wings in an x-orientation (0 = 45°). Increasing
6W leads to significant increases in CL at small values of a, but the increment in CL
decreases with increasing a at low Mach numbers. The pitching-moment variation with
lift coefficient with 6W = 0° is reasonably linear. With increasing wing deflection, how-
ever, the pitching-moment variations are very nonlinear with lift coefficient and indicate
that wing-interference flow fields are affecting the tail. Increasing Mach number tends to
alleviate this effect. The data indicate that the model could be trimmed stable over a
range of lift coefficients at the low Mach numbers but only near CL = 0 at the high Mach
numbers. Thus it appears that for missiles requiring high maneuverability, wing control
might be adequate only at .the lower supersonic Mach numbers. It should be pointed out



that the wings of this model are rather small for a wing-control missile configuration and
some differences might be obtained with a larger wing.

Effect of Tail Deflection

Effects of tail deflection for $ = 0° and 0 = 45° are presented in figures 5
and 6, respectively, for the body-tail configuration and in figures 7 and 8, respectively,
for the complete model. The tail is effective in producing pitch control, particularly at
the lower Mach numbers. However, there is evidence of adverse interference affecting
tail effectiveness for 6^ = -10° at the higher Mach numbers. Further increase in 6t
to -20° tends to eliminate this effect. With the wing at 0° deflection and the tail at

•3

6^ = -20°, the relative linearity of the pitching-moment data is such that the model may
be trimmed in stable flight through a relatively large center-of-gravity range over the
entire test Mach number range.

Effect of Interdigitated Surfaces, 5W = 0°

With the wings in the $ = 0° orientation and the fins in an interdigitated position,
the stability and control characteristics are considerably improved in linearity and effec-
tiveness relative to those obtained for the in-line position throughout the Mach number
range (fig. 9). However, with the wings at <£ = 45° and the tails interdigitated (fig. 10),
some nonlinear effects are still apparent and the tail control effectiveness is less than
that shown in figure 9, particularly at the higher Mach numbers.

Effect of Combined Wing and Tail Deflection

The effectiveness of combined wing and tail control may be found in figures 11 to 18
for both in-line and interdigitated model surfaces. With the wings at deflections of either
10° or 20° the deflection of the tail produces essentially additive values of coefficients
throughout the Mach number range, and the degree of linearity of Cm with CL ,is
essentially unaffected.

CONCLUDING REMARKS

A study has been made of a low-aspect-ratio cruciform missile model with all-
movable wings and tails. The configuration was tested at Mach numbers from 1.50 to 4.63
with tails in line and interdigitated with the wings in the vertical and horizontal planes
(<£ = 0°) and with the wings in a 45° roll plane.

Test results indicate that the all-movable wings produce very nonlinear control
characteristics, whereas in general the tail provides linear incremental control charac-
teristics. At the 0° roll attitude, the tails in the interdigitated position provide more



linear control characteristics than in the in-line position. At the 45° roll attitude, some
interference-induced nonlinearities are apparent with the tails interdigitated.

Tail control for this model permits a degree of maneuverability over the entire
test Mach number range, whereas wing control permits maneuverability only at the lower
Mach numbers.

Langley Research Center,
National Aeronautics and Space Administration,

Hampton, Va., February; 11, 1972.
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12 16 20 24 28 32

(a) M= 1.50.

Figure 3. - Effect of wing deflection on longitudinal aerodynamic characteristics.
6t = 0°; 0 = 0°; tails in line.



(a) Continued.

Figure 3.- Continued.
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(a) Concluded.

Figure 3.- Continued.
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28 32

(b) M = 1.90.

Figure 3.- Continued.
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(b) Continued.

Figure 3.- Continued.
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(b) Concluded.

Figure 3.- Continued.
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(c) M=2.36.

Figure 3.- Continued.
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CL

(c) Continued.

Figure 3.- Continued.
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(c) Concluded.

Figure 3.- Continued.
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(d) M=2.86.

Figure 3.- Continued.
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(d) Continued.

Figure 3.- Continued.
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(d) Concluded.

Figure 3.- Continued.
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(e) M = 3.95.

Figure 3.- Continued.

21



CL

(e) Continued.

Figure 3.- Continued.
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(e) Concluded.

Figure 3.- Continued.
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28 32

(f) M = 4.63.

Figure 3.- Continued.
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(f) Continued.

Figure 3.- Continued.
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(f) Concluded.

Figure 3.- Concluded.
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(a) M=1.50.

Figure 4. - Effect of wing deflection on longitudinal aerodynamic characteristics.
6t = 0°; $ = 45°; tails in line.
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(a) Continued.

Figure 4.- Continued.
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(a) Concluded.

Figure 4.- Continued.
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(b) M = 1.90.

Figure 4. - Continued.
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(b) Continued.

Figure 4.- Continued.
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(b) Concluded.

Figure 4.- Continued.
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(c) M=2.36.

Figure 4.- Continued.
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(c) Continued.

Figure 4.- Continued.
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(c) Concluded.

Figure 4.- Continued.
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(d) M = 2.86.

Figure 4.- Continued.
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(d) Continued.

Figure 4.- Continued.
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(d) Concluded.

Figure 4. - Continued.
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28 32

(e) M = 3.95.

Figure 4.- Continued.

39



-3 -2 -1 0 1

(e) Continued.

Figure 4.- Continued.
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(e) Concluded.

Figure 4.- Continued.
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-8 -4 28 32

(f) M = 4.63.

Figure 4.- Continued.
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(f) Continued.

Figure 4. - Continued.
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(f) Concluded.

Figure 4.- Concluded.
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12 16 20 24 28 32-8 -4

(a) M=1.50.

Figure 5. - Effect of tail deflection on the longitudinal aerodynamic characteristics
of the body-tail configuration. 0 = 0°.
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(a) Continued.

Figure 5.- Continued.
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(a) Concluded.

Figure 5.- Continued.
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(b) M = 1.90.

Figure 5.- Continued.
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(b) Continued.

Figure 5. - Continued.
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(b) Concluded.

Figure 5.- Continued.
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28 32

(c) M = 2.36.

Figure 5.- Continued.
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(c) Continued.

Figure 5.- Continued.
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(c) Concluded.

Figure 5.- Continued.
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28 32

(d) M = 2.86.

Figure 5.- Continued.
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(d) Continued.

Figure 5.- Continued.
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(d) Concluded.

Figure 5.- Continued.
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(e) M = 3.95.

Figure 5.- Continued.
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(e) Continued.

Figure 5.- Continued.
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(e) Concluded.

Figure 5.- Continued.
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28 32

(f) M = 4.63.

Figure 5.- Continued.
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(f) Continued.

Figure 5.- Continued.
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(f) Concluded.

Figure 5.- Concluded.

62



12 16 20 24 28 32-8 -4

(a) M= 1.50.

Figure 6. - Effect of tail deflection on the longitudinal aerodynamic characteristics
of the body-tail configuration. $ = 45°.
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(a) Continued.

Figure 6.- Continued.
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(a) Concluded.

Figure 6.- Continued.
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(b) M = 1.90.

Figure 6.- Continued.
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(b) Continued.

Figure 6.- Continued.
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(b) Concluded.

Figure 6.- Continued.
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(c) M=2.36.

Figure 6.- Continued.
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(c) Continued.

Figure 6.- Continued.
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(c) Concluded.

Figure 6.- Continued.
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(d) M = 2.86.

Figure 6.- Continued.
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(d) Continued.

Figure 6.- Continued.
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(d) Concluded.

Figure 6.- Continued.
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(e) M = 3.95.

Figure 6.- Continued.
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(e) Continued.

Figure 6.- Continued.
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(e) Concluded.

Figure 6.- Continued.
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(f) M = 4.63.

Figure 6.- Continued.
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(f) Continued.

Figure 6.- Continued.
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(f) Concluded.

Figure 6.- Concluded.
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(a) M= 1.50.

Figure 7.- Effect of tail deflection on longitudinal aerodynamic characteristics.
6w = 0°; 0 = 0°; tails in line.
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(a) Continued.

Figure 7.- Continued.
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(a) Concluded.

Figure 7.- Continued.
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(b) M = 1.90.

Figure 7.- Continued.
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(b) Continued.

Figure 7.- Continued.
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(b) Concluded.

Figure 7.-Continued.
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28 32

(c) M = 2.36.

Figure 7.- Continued.
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(c) Continued.

Figure 7.- Continued.
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(c) Concluded.

Figure 7.- Continued.
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(d) M = 2.86.

Figure 7.- Continued.
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(d) Continued.

Figure 7. - Continued.
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(d) Concluded.

Figure 7.- Continued.
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(e) M = 3.95.

Figure 7.- Continued.

93



(e) Continued.

Figure 7.- Continued.
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(e) Concluded.

Figure 7.- Continued.

95



28 32

(f) M = 4.63.

Figure 7.- Continued.
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(f) Continued.

Figure 7.- Continued.
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(f) Concluded.

Figure 7.- Concluded.
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(a) M= 1.50.

Rgure 8.- Effect of tail deflection on longitudinal aerodynamic characteristics.
6^ = 0°; 0 = 45°; tails in.line.
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(a) Continued.

Figure 8.- Continued.
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(a) Concluded.

Figure 8.- Continued.
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(b) M = 1.90.

Figure 8.- Continued.
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(b) Continued.

Figure 8.- Continued.
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(b) Concluded.

Figure 8.- Continued.
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(c) M = 2.36.

Figure 8.- Continued.
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(c) Continued.

Figure 8.- Continued.
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(c) Concluded.

Figure 8.- Continued.
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(d) M = 2.86.

Figure 8.- Continued.
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(d) Continued.

Figure 8.- Continued.
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(d) Concluded.

Figure 8.- Continued.
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(e) M = 3.95.

Figure 8.- Continued.
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(e) Continued.

Figure 8.- Continued.
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(e) Concluded.

Figure 8.- Continued.
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(f) = 4.63.

Figure 8.- Continued.
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(f) Continued.

Figure 8.- Continued.
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(f) Concluded.

Figure 8.- Concluded.
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(a) M=1.50.

Figure 9.- Effect of inter digitated-tail deflection on longitudinal aerodynamic
characteristics. 6^ = 0°; 0 = 0°.
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(a) Continued.

Figure 9.- Continued.
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(a) Concluded.

Figure 9.- Continued.
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(b) M = 1.90.

Figure 9.- Continued.
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(b) Continued.

Figure 9.- Continued.
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(b) Concluded.

Figure 9.- Continued.
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(c) M = 2.36.

Figure 9.- Continued.
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(c) Continued.

Figure 9.- Continued.
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Figure 9.- Continued.
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(d) M = 2.86.

Figure 9.- Continued.
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(d) Continued.

Figure 9.- Continued.
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(d) Concluded.

Figure 9.- Continued.
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(e) M = 3.95.

Figure 9. - Continued.
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(e) Continued.

Figure 9.- Continued.
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(e) Concluded.

Figure 9.- Continued.
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(f) M=4.63.

Figure 9. - Continued.
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(f) Continued.

Figure 9.- Continued.
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(f) Concluded.

Figure 9.- Concluded.
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(a) M= 1.50.

Figure 10.- Effect of interdigitated-tail deflection on longitudinal aerodynamic
characteristics. 5W = 0°; 0 = 45°.
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(a) Continued.

Figure 10.- Continued.
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(a) Concluded.

Figure 10.- Continued.
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(b) M=1.90.

Figure iO.- Continued.
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(b) Continued.

Figure 10.- Continued.
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(b) Concluded.

Figure 10.- Continued.
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(c) M=2.36.

Figure 10.- Continued.

141



Cm I

CL

(c) Continued.

Figure 10.- Continued.
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(c) Concluded.

Figure 10.- Continued.
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(d) M = 2.86.

Figure 10.- Continued.
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(d) Continued.

Figure 10.- Continued.
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(d) Concluded.

Figure 10.- Continued.
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(e) M = 3.95. 

Figwe 10. - continued 
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Figure 10.- Continued.
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(e) Concluded.

Figure 10.- Continued.
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(f) M = 4.63.

Figure 10.- Continued.
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.Figure 10.- Continued.
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(f) Concluded.

Figure 10.- Concluded.
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(a) M = 1.50.

Figure 11.- Effect of tail deflection on longitudinal aerodynamic characteristics.
6W = 10°; 0 = 0°; tails in line.
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(a) Continued.

Figure 11.- Continued.
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Figure 11.- Continued.
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(b) M = 1.90.

Figure 11.- Continued.
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Figure 11.- Continued.
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Figure 11.- Continued.



.4

(c) M=2.36.

Figure 11.- Continued.
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Figure 11.- Continued.
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(c) Concluded.

Figure 11.- Continued.
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(d) M = 2.86.

Figure 11.- Continued.
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Figure 11.- Continued. 163



164

(d) Concluded.

Figure 11.- Continued.
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(e) M = 3.95.

Figure 11.- Continued.

165



a,
deg

-3

(e) Continued.

Figure 11.- Continued.
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Figure 11.- Continued.
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Figure 11.- Continued.
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Figure 11.- Continued.
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(f) Concluded.

Figure 11.- Concluded.
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(a) M= 1.50.

Figure 12.- Effect of tail deflection on longitudinal aerodynamic characteristics.
6W = 20°; $ = 0°; tails in line.
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Figure 12.- Continued.
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(a) Concluded.

Figure 12.- Continued.
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(b) M = 1.90.

Figure 12.- Continued.
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(f) M = 4.63.

Figure 12.- Continued.
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Figure 12.- Continued.
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Figure 12.- Concluded.
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(a) M= 1.50.

Figure 13.- Effect of tail deflection on longitudinal aerodynamic characteristics.
6W = 10°; ^ = 45°; tails in line.

189



(a) Continued.

Figure 13.- Continued.
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Figure 13.- Continued.
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(c) M=2.36.

Figure 13.- Continued.
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(e) M = 3.95.
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(a) M= 1.50.

Figure 14.- Effect of tail deflection on longitudinal aerodynamic characteristics.
6W = 20°; $ = 45°; tails in line.
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(c) M = 2.36.
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(a) M.= 3.95.

Figure 15.- Effect of interdigitated-tail defle,ction*on longitudinal aerodynamic
characteristics. 6W = 10°; 0 = 0°.
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(a) M = 3.95.

Figure 16.- Effect of interdigitated-tail deflection on longitudinal aerodynamic
characteristics. 5^ = 20°; 0 = 0°.
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Figure 16.- Concluded.

236



8 12 16 20 24 .28 32

(a) M=1.50.

Figure 17.- Effect of interdigitated-tail deflection on longitudinal aerodynamic
characteristics. 6W = 10°; <}> = 45°.
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Figure 17.- Continued.
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Figure 18.- Effect of inter digitated-tail deflection on longitudinal aerodynamic
characteristics. 6W = 20°; .<£ = 45°.
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