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ABSTRACT

The design of filters for detection and
estimation in radar and communications systems is \\-
cohsidered, with inequality constraints on the _.. }'•
maximum output sidelobe levels. A constrained
optimization problem in Hilbert space is formulated,
incorporating the sidelobe constraints via a partial
ordering of continuous functions. Generalized
versions (in Hilbert space) of the Kuhn-Tucker and
Duality Theorems allow the reduction of this problem .- •"
to an unconstrained one in the dual space of regular \\ '
Borel measures. A convergent algorithm is presented "" ]; ~
for computational solution of the dual problem.



1. INTRODUCTION

In many radar and communications systems, pulses of relatively long

time duration are transmitted because of peak power limitations, and an

operation known as "pulse compression" is performed at the receiver. This

compression is most commonly achieved with a matched filter [1-7], that is,

by correlating the incoming signal with time- and/or frequency-shifted

copies of the transmitted waveform, a technique which is well-known to be

optimal with respect to various performance criteria. The presence "of a

signal is detected when the matched filter output exceeds a threshold value,

and parameters such as time delay and (Doppler) frequency shift are estimated

by locating the peak output in time and frequency. One example of such a
. i

system is a pulse-position modulation communication scheme [7-10], where

information is coded in the time delays of individual pulses and then

decoded by estimating the delay with a matched filter. Another is a linear

FM, or "chirp" radar [2-4], where the frequencies of transmitted pulses are

swept linearly with time and the receiver has a linear time delay vs.

frequency characteristic of the opposite slope.

If a signal s, non-zero on the interval (to, to+T), appears at the input

to a pulse-compression filter, the output typically consists of a main peak

surrounded by sidelobes, as shown in Figure 1, and it is desirable in certain

cases to reduce or restrict the height of these sidelobes. This becomes

In the case of a matched filter, this is simply the autocorrelation

function of s.



important, for instance, when a radar must distinguish among multiple

targets, or when a pulse-position modulation system operates in an

environment of severely degraded signal-to-noise ratio [8]. This paper

is concerned with the design of optimal "mismatched" filters for detection

and estimation, subject to inequality constraints on the sidelobe levels.

Previous work in this area has been principally concerned with

analogous problems of designing antenna arrays [2-3] or with discrimination

against statistically-distributed clutter [2-5], an approach which is often

equivalent to reducing the sidelobe energy [12]. Another method [9-11]

involves constraining the sidelobes approximately, with inequalities at a

finite set of times, and leads to an optimization problem in terms of

ordinary differential equations with delays.

In the next section attention is restricted to finding ah optimal filter

for detection, and a problem is formulated with the objective of

maximizing the probability of detection subject to constraints on the

sidelobe levels. Section 3 summarizes some results of constrained

optimization theory in function space, which is applied in Section 4 to

reduce the detection filter problem to an unconstrained minimization in the

dual space. An algorithm for the solution of this dual problem is developed

in Section 5. Finally, the problem of determining an optimal filter for

estimation is formulated in Section 6, and its solution is seen to be

analogous to that of the detection filter problem.



2. Receiver model and formulation of detection filter optimization problem

The receiver model to be considered is shown in Figure 2, its possible

interpretations as part of a communication, radar, or other system [1-7]

being left unspecified. The signal s is assumed to be a given real

continuous function of time with support in [0,T] and unit energy, that is

T
: f°° I

||s||2-l 92(t) dt = ] s2(t) dt - 1 (2-1)

-do

It appears at the input to the receiver, after a delay to, corrupted by

zero-mean, stationary, gaussian white noise n with power spectral density

NO. The impulse response of the linear, time-invariant filter is to be

determined, and is restricted to be square-integrable with support in [0,TJ.

The two terms y and £ of the output, due respectively to the signal

and noise, are given by

•fy(t) - s(T-t0)h (t-t) di
 { (2-2)

n(T)h (t-T) dT (2-3)

and it is an easy matter to show that the output noise power is

E(C2(t)} - No! h2(t-T) dT = No I hz(T) dt for all. t (2-4)

100

where E denotes the expectation operator.
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It is convenient at this point to replace the filter impulse response

h with an equivalent "receiver function" u defined by

u(t) A h(T-t), (2-5)

shift the time origin to to + T, and consider the output of the filter

to be the cross-correlation function ty defined by

iji(t) A y(t+t0+ T)
!

' - I s(T-to)h(t+t0+ T-T) dt

T s(T+t)h(T-T) dT

I s(T+t)u(T) dt (2_6)

—00

Because s and u both have support in [0,T], ̂  must have support

in [-T,TJ and

u(r)s(T+t) dT = <u,s > (2-7)
J n r

*
By an abuse of terminology, u will be referred to as "the filter."



2-3

T

E U2(t)} - No f u2(T) dT - N0||u||
2 for all t (2-8)

0

*
where s is the shifted time function defined by

( s(T-l-t) T€[0,1]
Jt(T) A ][ 0 otherwisotherwise (2-9)

For this model it is well-known that the detection scheme which

maximizes the probability of detection consists of processing the input

with a matched filter (u = s) and comparing the output [iKO)+£(0)l to a

threshold value. Assuming that the threshold is specified independently

(often so as to ensure an acceptable "false alarm" probability) , the

detection probability depends only upon the output signal-to-noise ratio, in

this case I/No •

More generally, if a threshold-type detection scheme is used with a

filter which is not necessarily matched to the signal, the probability

of detection (at t = 0) for this model is easily shown to depend monotonically

upon the output signal-to-noise ratio

(S/N) = ip2(0) / E{£2} = <u,s>2 / N0||u||
2 (2-10)

The problem here will be to find a filter u which maximizes this

**
value subject to the sidelobe constraint

All norms and inner products refer to L2[0,T] unless labelled otherwise
by a subscript »

** "
It is a straightforward generalization to replace e by e(t)
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max
|t|< T

which is illustrated in Figure 3. This allows for a central lobe of width

26 about t.° 0 and restricts the magnitude of <C(t) elsewhere to be less

than a fraction e of <KO), where 6 and e are parameters to be chosen

by the designer.

It is implicit in the constraint (2-11) that the peak value of

|tj>(t)'| i-n fact occurs at t = 0, an assumption which is justified intuitively

by the fact that |̂(0)| will be the performance index to be maximized.

This in turn is justified by the observation that maximizing at any t ̂  0

corresponds either to making a decision before the entire signal has arrived

or to delaying the decision until some time after it has.

It can be assumed with no loss of generality that ,i|>(0) = <u,s> > 0,

since (2-10) and (2-11) are the same for both u and -u. But then the

maximization of (2-10) subject to (2-11) is equivalent to maximizing

<u/||u||,s> (2-12)

subject to the constraints

<u,s > <__ e <u,s>
i . .

(2-13)

<u,s > < e <u,s>t ~~
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Next, note that scaling u has no effect on (2-13), so that

maximizing (2-12) is equivalent to maximizing <u,s> over all u of unit

energy (||u||2 « 1). In fact, it is also equivalent (and more convenient)

to maximize <u,s> over the unit ball {u : £ 1}, since a nonzero

solution of this latter problem will clearly have ||u||2 a 1. Thus, the

detection-filter optimization problem has assumed the following form:

maximize <u,s> , u£L2[0, T]

subject to <u»st
> £ e <u,s> , 6 <Jt|£ T

- <u,s > £ e <u,s> , 6 <.|t|£ T

(2-14)

u 2 < 1



3. Constrained optimization jheory

In this section some results from the theory of constrained

minimization in normed linear spaces are stated, and in the next section

they will be applied to the filter optimization problem just formulated.

This presentation follows Luenberger [13], but the theory may also be found

in Hurwicz [14] and elsewhere.

Let U and Z,, i = 1,2, ••• n be real normed linear spaces, with

convex cones P. C Z , i = 1,2, ••• n. Each cone P generates a

partial ordering on Z., denoted ^ and defined by

x «! y y-x , x,y €Z (3-1)

P. is called the positive cone of Z , since P. = {z € Z : z ^ 0},

and the notation x •< y indicates .that y-x is an interior point of P..

® *
The dual positive cone P. in the dual space Z. is defined by

*

pi® 4 <z* € I* : z* ' z 1 0 V z £ P^ } (3-2)

The function G

ordering ^ ) if

is said to be convex (with respect to the partial

Gi[au+(l-a)v] u) + (l-a)G1(v), u, v€ U, a€ [0, 1] (3-3)

A partial ordering is defined as in Dunford and Schwartz [15] to be a

transitive and reflexive but not necessarily antisymmetric relation. Thus

x ̂  y and y ̂ x» moy not imply that x =.y (i.e. Z. may not be well-ordered)



If the ordering sign is reversed in (3-3) , then the function is said

to be concave. Note that if G. : U •*• Z. is convex in the sense of (3-3)

ffi * i
and p € P VCZ , (i.e. p ̂  0), then the functional g : V •* R defined by

gi(u) P1'G1(u), u€ U (3-4)

is convex in the ordinary sense.

Consider the optimization problem

minimize f(u) , u £ V

subject to G (u) ̂ 0 , i=l, 2, ••• n

where f : U ->• R1 and G.: U •* Z , 1=1, 2, ••• n are all convex. The

* * * .
Lagrangian functional L : U x z 1 x Z 2 X » - » » x z "*" R for Pr°blem (3-5) is

defined by

A n

Uu ; pi, p2, ••• pn)= f(u) + -I p • G.(u) (3-6)
n 1 x

+ *
If p^e P. C Z , i » 1, 2, ••• n, are all given then

L(*; pi, P2» ••• p ) is a convex functional on U.

The dual functional $: Zi x z* '*•••* z ~" R1 for problem (3-5) is

defined by

0 (Pi> P2» •** p ) = inf L(u; pj, p2, ••• p ) , (3-7)
u€U

and it is easily verified [13,12] that <j> is a concave functional.



Using these definitions, the following theorems apply to

problem (3-5)

Theorem 3.1: (Generalized Kuhn-Tucker conditions) For i • 1, 2, ••• n

let U, Z be real normed linear spaces, as above, with each of the

positive cones -Pj Sss Z. having a non-empty interior. Let f:U •*• Rl

and G.: U -*• Z be convex, as above, and assume the existence of u € U

such that G (u) •< 0 for all i.

Then if: u° e U -solves the problem

(u), u « U 1 ' • • '

G±(u) 4 0, 1=1,2,...,nj

minimize f(i

subject to

there must exist Lagrange multipliers 0^ p° £ Z" , 1=1, 2, ••• n, such that

(a) u° solves the problem

minimize L(u ; pj, pj, ••• pj ) , u£ U (3-9)

where L is the convex Lagrangian functional defined in (3-6)

0>) Pj ' G±(u°) = 0 , 1-i, 2, ••• n ' . (3-10)

Proof; See [13, p. 217], where it is proved for a single inequality

constraint G(u) ̂ 0 in the space Z with positive cone P .

This theorem becomes equivalent if one identifies Z as the Cartesian

product space

x Z2 x ••• x z , (3-11)



G:U •*• Z as the mapping

G(u) - [Gi(u), G2(u), ••• Gh(u)] t (3-12)

and the primal and dual positive cones as

P4" » PI+ x p2
+ x •«• x p +

e • * "• (3'13)
P B Pi X P2 X ••• X P ̂

n

The details are straightforward and will be omitted.

The above theorem generalizes the well-known Kuhn-Tucker conditions

for convex nonlinear programming problems in finite-dimensional spaces.

Condition (3-10) expresses the fact that a Lagrange multiplier is non-zero

only where the corresponding constraint is "active". The following duality

theorem provides a method for finding the Lagrange multipliers.

Theorem 3.2; (Duality) In Theorem 3.1, the Lagrange multipliers

p° £ Z; , i=l, 2, ••• n, solve the problem ;

>i» P2, •*• Pn) "j

)± ̂  0 , i-1, 2, ••• n J

maximize <Kpj
(3-14)

subject to p.

and

min f(u) = max 4>(pi, P2» ••• p ) (3-15)
n

where <(> is the concave dual functional defined in (3-7). Moreover,

conditions (a) and (b) of Theorem 3.1 hold for any pj, p2, •••• p which

solve (3-14).
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Proof; See [13, p.224]. The last statement follows by examining

the proof [13, p.218] of Theorem 3.1, which consists of showing

the existence of a hyperplane, defined by pj°, p2°, ••• p° ,

which separates two sets in R1 x Zi x Za * • • • x Z . It is easily

verified that any p», pa, ••• p which solve (3-14) also define

a separating hyperplane, and hence mUst yield u° through (3-9).



4. Application to detection filter optimization problem

The optimization theory of the previous section will now be applied

to the detection filter problem formulated In Section 2. In order to

consider (2-14) in the form (3-5) let

U " L2[0, T]

Zi= Z2 « C[-T, T]

Z3= R
l

(4-1)

and define f, GI, G2, 63 as follows:

f(u)

[G2(u)](t)

G3(u)

-<U, S>

- e <u, s> , te[-T, t]

s > - e <u, s> , te[-T, t]

(4-2)

The fact that GI and 62 map L2 functions into continuous functions

is easily established by noting that the translation defined in (2-9) is a

uniformly continuous mapping from R1 to L2[-°°, °°] [16, p.183]. The four

mappings in (4-2) are all convex, the first three by virtue of their

linearity and the last because the; norm is convex.

The detection filter optimization problem (2-14) can now be written as

minimize f(u) , ue L2[0, T]

subject to GI(U) ̂  0 , 1=1, 2, 3

where the ordering in Z3 = R1 is the natural one (i.e. PS = R , the

nonnegative reals, and the partial ordering ^ in Zi = Z2 = C[-T, T]

is generated by the positive cone

(4-3)



?i+ - P2"*" • ?£*"- (x € C[-T, T] : x(t) > 0, 6 < |t| < T}, (4-4)

In other words,

x <y < > x(t) < y(t) , 6 < |t| < T (4-5)

It Is easy to verify that P_ is a closed, convex cone with\j

nonempty interior [12].

The dual space C [-T, T] is well-known [15,16] to be represented

by M[-T, T], the space of regular Borel measures on [-T, T], where the

linear functional <J> € C [-T, T] corresponding to m € M [-T, T] is

obtained by Lebesgue integration,

T

<J> • x = x dm , x £ C[-T, T] , (4-6)

-T

The norm of a measure in M[-T, T] is given by its total variation,

n
i i im M - sup ]> | m(E1) I , m e M[-T, T] ' (4-7a)

where the supremum is taken over all Borel partitions {E.} of [-T, T]. In the
1 1=1

case of a positive measure p (i.e. p(E) > 0 for E Q [-T, T] , the

norm is
T

MP||M = PU-T, T]) - j .1 dp • (4-7b)

-T

A non-empty interior is essential, since the proof of Theorem 1 relies on the

Separation Theorem. The corresponding positive cones in I/ [-T, T] , 1 < p < »,

have no interior points.



The dual positive cone consists of positive measures which are zero

on (-6, 6), as follows: .

Lemma 4.1; If the positive cone Pr Q C[-T, T] is given by (4-4),
———-^——— \j

®
then the dual positive cone P £ M[-T, T] is

P- - {m € M[-T, T] : m(E) > 0 , E £ [-T, T]
M . —

and m(F) - 0 , F £ (-6, 6)} (4-8)

Proof; Suppose x £ P , so that x(t) > 0 for 6 < |t| < T, and

m € P as defined by (4-8). Then it is clear that
M

T -6 T ,

x dm <= x dm + x dm > 0 , (4-9)

-T —T 6

so that m must belong to the dual positive cone as defined by (3-2).

Conversely, suppose m belongs to the dual positive cone. If

m (E) < 0 for any E£ [-T, T], then by Urysohn's Lemma [15,16] there

must exist x e PC such that

T

I x dm < 0 , (4-10)

-T

which contradicts (3-2). Similarly, if m(F) ̂ : 0 for any FQ(-6, 6) ,

then there exists y € C[-T, T], with support in (-6, 6), such that

T

y dm ̂ 0 (4-11)
! -T



Since .y and -y both belong to PC , this also contradicts (3-2).

Thus m must belong to P., .M

. ' Q.E.D.

In order to apply Theorem 3.1, it is necessary to assume the

existence of a feasible solution which satisfies the inequalities strictly:

Assumption 4.2; There exists u € L2 [0, T] such that

G± (u) -< 0 , 1=1, 2, 3 ' (4-12)

Because of the nature of the sidelobe constraints (2-11), one

expects that if e or 6 is chosen too small, there will be no non-zero

feasible solutions at all. On the other hand, if there is a feasible

solution u, i.e.

Gi (u) ^ 0 , 1=1, 2, 3, (4-13)

then it is clear from the definition (4-2) that an infinitesimal increase

in e will allow %u to satisfy (4-12). Thus Assumption 4.2 is not a

particularly strong additional restriction. With this assumption, the

existence and uniqueness of a nontrivial optimal solution may be established:

Theorem 4.3; Under Assumption 4.2, a unique nonzero optimal solution

exists for the detection filter optimization problem (4-3).



Proof; The problem is to minimize f on the constraint set

S - {u € L2[0, T] : Ĝ u) «< 0, 1-1, 2, 3}

{u : ||u|| < l} (4-14)

Note that S ̂  {0} by Assumption 4.2. Since -P_ is closed and convex,o

the continuity and linearity of GI and 62 imply that G! (-P ) and

Ga (-Pr ) are also closed and convex, and the intersection S of these
L»

two sets with the unit ball {u : ||u|| < 1} is closed, convex, and

bounded. But this implies that S is weakly closed , and, L2[0, T]

being reflexive, Alaoglu's Theorem says that it is weakly compact. The

continuous linear functional f is also weakly continuous , so f (S) is

compact in R1 and must contain its infimum, which establishes the

existence of an optimal u° € S.

Now suppose that u1 C S is also optimal. Assumption 4.2 implies

that u° and u1 are non-zero, so that ||u°|| = Hu'll =• 1, according to

the discussion preceding (2-14) . The element u = %u° + ̂ u1 satisfies

the constraints because they are convex, and the linearity of f implies

that u is also optimal:

f(u) »

°) + %f(uz) = f(u°) = f(uj) (4-15)

Thus u must also have unit norm,

See [15], pp. 422-424



u 2 - W> + W 2 - u ° 2 + % < u° , u 1

u1 > = 1 (4-16)

so that the Schwartz inequality becomes an equality:

This implies that u1 =• u° so that the optimal u° must be unique.

Q.E.D.

Necessary conditions and dual problem

Theorem 3.1 may now be applied to the detection filter optimization

problem (4-3). The spaces (4-1) and positive cones (4-4) are as

specified by the theorem, and Assumption 4.2 asserts the existence of a

feasible solution which satisfies the constraints with strict inequality.

Theorem 4.3 guarantees the existence of a unique optimal solution u°,

so by Theorem 3.1 there must exist nonhegative Lagrange multipliers

Pi°, P2° € PM^^
 Mt~T» T^

... (4-17)
P3°£R+

such that



(a) u° minimizes

. L(u; pi°, P2°, P3°) - f(u) +1 p.° • G.(u)
4 1

T

- <U,8> I t<u,at> - e <u,

-T

8>ldPl°(t)

t-<u,8t> - e <u,8>]dp2°(t) + P3°[||u||
2 - 1) (4-18)

-T

over all u € L2[0, T], and

(b)

-T

: fT
P2° • G2(u°) - 1

-T

- e <u°, s>]dpi°(t) =• 0

, 8>]dp2°(t)

(4-19)

P3° • (4-20)

i
Changing the order of integration and rearranging terms in (4-18) yields

(u; pi, p2, P3) ° - <u, u(p!, p2)> + p3||u||
2 - p3 (4-21

where u (plt p2) € L
2[0, T] is defined by

( rU(PI» P2) ° s + (~st + e s)dpj(t) + (sfc + e. s)dp2(t)

-T -T

T T T T

- s - st dpi(t) + st dp2(t) + e s[ dpl(t) -f dp2(t)]

-T -T -T -T

Since s and st have been assumed continuous on [-T, T], this is a trivial
application of Fubini's Theorem [15, 16].



e||pi||M + e ||p2||M] - j 8tdp,(t)+J st dP2(t)

(4-22)

If pa0 = 0, then either L(u; pi°, P2°» P3°) has a minimum value

of _ oo or u(pi°, p2°) • 0, but in the latter case the duality theorem

implies that f (u°) « 0, contradicting the existence of a unique non-zero

optimal solution. Thus it suffices to consider only pa > 0, and

completing the square in (4-21) yields

Uu; PI. P2, P3) - P3 | | u ~ "(Pi. P2)/2P3| |2 - P3 ~ |.|«(plt P 2 ) | 2 / 4 p 3

' (4-23)

This is minimized over u by

u - u(pi, p2)/2p3 (4-24)

so that the dual functional is .

<J>(P1, P2, Pa) = - PS - ||u(pi, P2)||2/4p3 (4-25)

for Pi» P2 ̂  0 and ps>0.

According to .Theorem 3.2, the Lagrange multipliers pi°, P2°, P3°

for the primal problem may be found by solving the dual problem of

maximizing <(> over pi, pj, pa b> 0. It has already been argued that

pa0 > 0 and u(pi°, p2°) ̂  0, so the maximization over pa for



Pl> Pz is easily accomplished by differentiation:

dp 3
(4-26)

P3°(P1, P2) - %||G(pi, p2)|| > 0

This must be a maximum, since

- - ||G(pi, p2)||
2/2p3

dP3

-. - 4/HGCp!, P2)|| < 0 • (4-27)

Substituting (4r-26) into (4-25) , the dual problem reduces to one of

maximizing

, P2, P3°(P1, P2)] " - ||G(pl, p2)|| (4-28)

over pi» pz ^> 0 or equivalently, of minimizing

T T

e||pi||M + e|| P2||M1 - j stdpl(t) + | 8tdp2(t)|
— T — T

• (4-29)

over pi, p2 £ PM S M[-T, T].

* The quantity to be minimized is squared for convenience in taking
differentials. .



Unconstrained minimization

This constrained minimization problem will now be reduced to an

unconstrained one by combining pi. and p2 into a single real measure.

©Recalling Lemma 4.1. the constraint pi, pz e Pu means that pi and p2n

are positive measures on [-T, T] which are zero on (-6, 6). But the sidelobe

constraint (2-13) implies that the integrands in the necessary conditions

(4-19).are nonpositive, so that in each case .the measure must be zero wherever

the integrand is non-zero. Put another way, the

Lagrange multipliers pi and p2 are nonzero only where their respective

constraints are active. Since the sidelobe constraints (2-13) cannot be

simultaneously active, the measures pi and pz must be mutually singular

[IS, 16], that is, each must be zero wherever the other is not.

Consider the real measure

P - Pi - P2 , (4-30)

which belongs to the subspace of M[-T, T] defined by

M0[-T, T] = (m e M[-T, T] : m(E) = 0, ES(-6, 6)}, (4-31)

since both pi and pz are zero on (-6, 6).

Because of the mutual singularity of pi and p2 , the norm of p is given by

l|p'MM- l l p i l ! M + IIP2||M (4-32)



H-J.A

and u(pi, pz) in (4-22) can be written as

G(Pi, P2) - "(p) - 8 + e||p||M8 - I st dp(t) (4-33)
-T

Moreover, it follows from the Hahn Decomposition Theorem [15, 16] that

every element in Mo[-T, T] is uniquely decomposable into two such

mutually singular measures. Therefore, minimizing ||u(pj, pa)|| over

PJ.» P2 C *Y« is completely equivalent to minimizing ||u(p)|| over

p € M0[-T, T].

The original problem (2-14) has thus been reduced to an unconstrained

dual problem:

minimize n(p) - ||u(p)||2, peM0[-T, T]

T r (4-34)

where u(p) = s + ejjpl^s - st dp(t)

-T J

Once p° is found to minimize ri, Theorems 3.1 and 3.2 establish

that the optimal solution of (2-14) is

u° - G(p0)/|jG(p°)|| (4-35)

The stipulation that p £ MQ[-T, T] is not really a constraint, since this

subspace is in fact equivalent to the measure space M{[-T,-6] \J [6,T]}.



or

s

I

(T) + e||p°||s(T) -.j s(T+t)dp°(t)

u°(T) - - =r-̂  , T€[0,T] (4-36)

st dp°(t)

-T

Note that the denominator is nonzero in (4-35) because

<u°,s>»-f(u0) = -<Kpi°, P2°, P3°) - n(p°) - |la<pd')|| (4-37)

by (3-15), and Assumption 4.2 implies that this quantity will be > 0.

The duality exhibited in (4-37) also provides a measure Of optimality

for approximate solutions , since

<u,s> < <u,s> o fi(p)< fi(p) (4-38)

where p and u are any suboptimal solutions of the dual and primal

problems, respectively. Thus, a filter

u1 = G(p1)/||G(p1)|| (4-39)

may be considered "approximately optimal" if it satisfies the constraints

(2-13) to within some acceptable tolerance ei and

NuCp1)!.! ~ <uI,s> < e2 (4-40)

for some tolerance 62.

I
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5. Computational solution of dual problem

In the previous section the detection filter optimization problem

was reduced to an unconstrained dual problem (4-34). An iterative

scheme will now be developed for its solution.

In order to utilize a digital computer for the solution, it is

necessary to "discretize" the measure space Mo[-T,T] «« M{[-T,-6]U[6,T]}

defined in (4-31). This will be done by partitioning the time set into

intervals ( t»'

-T + jAn, j - 0, 1, 2, ... n

(5-1)

, n+2, ... 2n+l

and

'. A
(T-6)/n (5-2)

Next, define the finite-dimensional subspace

*T T '

M?[-T,T] = {p£M0 : f x(t)dp(t) - f x(t)p(t)dt, x € C[-T,T]} (5-
i -T -»-T

•

where p(t) (the Radon-Nikodym derivative of the measure p) has the

form

P(t) - Pj , t £ (t , t], j - 0, 1, 2, ... 2n (5-4)



and p • 0 so that

p(t) - 0, t € <tn, t] - (-6,6] (5-5)

This is illustrated in Figure 4.

In other words, a measure in M"[-T,T] is represented by a

"staircase" function (its derivative) which is constant on each of the

2n+l intervals of length A . Such a measure is completely specified
2n n

by the weights (p.) , and
J j=0

(T 2n rt. -
x(t)dp(t) - I p, J+1 x(t)dt (5-6)

j-T j=0 JJt.

for any x£ C[-T,T]. Its norm is given by

'||p||M- f |p(t)|dt -A I |p | (5-7)
T̂ -\ ̂f)

It will now be shown that for large enough n, the approximating

subspace always contains near-optimum elements. An equivalent statement
00

is that the subspace \J MO [-T,T] is dense in the weak-star topology
n=l

[15] of M0[-T,T].

Lemma 5.1 To every e > 0 there corresponds N such that

for n > N, MO(-T,T] contains an element p for which

|un(t) - U°(T)| < e, re [0, T] (5-8)
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and

n(P
n) - n(p°) < e ' (5-9)

where u° is given by (4-35) and

un - u(pn)/||u(pn)|| (5-10)

Proof: A measure p" € M̂ [-T,T] will be constructed such that

- [G(pn)](r)| 1 e|s(T)| I ||P°||M- l|p
nHM|

rT rT
+ |J st(T)dp°(t) - J st(T)dp

n(t)| < e, T£ [0,T] (5-11)

for large enough n. The last integral may be expressed for any fixed T

as a limit of integrals of a sequence of simple functions [15, 16] which

approach s (T) . Because a is continuous, such a sequence of simple

n °°
functions ^8^)}= is defined by

n f j+1
t(T) - j

t *

, t e (t , t], j=0, 1,2, ...2n (5-12)

where the intervals (t., t.+1] were defined in (5-1). Thus there must

exist an n (independent of T, because of the continuity of s) such

that



if S.(T)dp°(t) - [ s"(T)dp°(t)|
J_T « J_T t

fT 2n r J+l
" I 8jT)dp°(t) - I p°(Ct ,t ]) 8.(T)dt| < e/2,T € [0, T]

J-T . J-0 J 3 Jt,
j (5-13)

Referring to (5-4) and (5-6), a measure pn € M"(-T,T] may now be

specified by choosing

^ - P°«tj,.tj+1]X J ° 0, 1, 2, ... 2n (5-1A)

so that

if s. (T)dp°(t) - f s (T)dpn(t)| < e/2, T £ [0,T] (5-15)
j-T J-T

From the definition (4-7a) of the norm in M[-T,T], it is clear

that

2n
An I \P*\ - llp nM M< II P ° I I M (5-16)
n j=0 3

If equality in (5-16) is not approached with increasing n, then

| |p | |M can be increased, for instance by adding to pa measure whose

weight is y in (tk> tk+1J, -y in (tk+1> tk+2], and zero elsewhere

for some integer k < 2n and scalar y. Such a perturbation can be used to

make



P O M - p e/2, telO.T] (5-17)

and the continuity of s ensures that for large enough n, (5-15)

remains valid. '

This establishes (5-11) , from which (5-8) and (5-9) follow

immediately.
Q.E.D.

Steepest Descent Algorithm

A steepest descent algorithm will now be proposed for minimizing

n(p) in the subspace M?[-T,T], Lemma 5.1 establishes that the true

optimum in Mo[-T,T] can be approached as closely as desired by increasing

n. The functional to be minimized is

rT

-T
n(p) = I Is + e||p|lMs - j stdp(t)||

2n 2n [fcj+l
, I IpJs + I P, J s
J=0 J j=0 J tj

s + eAn I |PJs + I p, J s,dt||< (5-18)

(recall that (t , t . . ] = (-6,6] and p =» 0) .n nTi n

The functional (5-18) is not Frechet (strong sense) differentiable

because it contains a term

2n
I IP, I (5-19)
j=0

This norm does, however, possess a directional Gateaux (weak sense)

differential [13, 17, 18] which is convex (but not always linear) in
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its increment. This differential at p in the direction h is defined

as

5*1 IP; hl!M - H* £lllp + ahl
0*0

For each J, .it is easily verified that

V V
Ihjl. ^-0

-h , x. < 0

, p, h € MO [- (5-20)

(5-21)

from which it follows that

+ A y |h,|. n « A i T *
j£S j£S

(5-22)

where

5+^ (j: P4 > 0}

and

j

Pj < °}

PJ ~ 0>

- (0, 1, 2, . 2n}

(5-23)

(5-24)

(5-25)

(5-26)

It is a straightforward matter to show that the differential of (5-18)

is
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Vi
,dt],+ / MM r H* 1

6 n(p; h) - 2 ^[s + e l J p H j f - I P.jj t stc

; [ea+llp.; hH^ - I h i P ^ a d T l N (5-27)
M i=0 X Jt±

Interchanging integrals, this becomes

. - , ,, 2n rVl , ,
6 n(p; h) - 2e[l + e||p||M- \ p <s,s >dt]6 ||p; h||M

j=0 J ;t.

-2(1 + e l l p I L ) I h. f.1+1<8fs >dt
. i=0 x Jt±

2n 2h

. 2n
K« ||p; h | | M + I h L (5-28)

i=0

where

K $ 2 e [ l + e | | p | | - I p f J+1 <s,s >dt] (5-29)
• J-0 J Jt. ;

_ A ,.2? ft+l f'l+l^
L - 2[ I p I J <8

t'
8

T'
J-0 j jtj Jt±

 T

- (l + e||p||M) f .i+1 <s,s t>dt], i=0, 1, ... 2n (5-30)
t •

>dtdT

and i|pl]M is given by (5-19).

Finally, substitution of (5-22) yields



6+n(p; h) - I (L + KA )h
3 • n 3

s

j,
(5-31)

The object is now to iteratively decrease the cost H(p) by choosing

a sequence of increments h for which the differentials n(p;h) is negative.

Suppose for a moment that S° is empty, eo that (5-31) Is a linear

functional of h,

S+n(p; h)
jeSUS

N h
J

(5-32)

where N. = L. + KAn for j £ S+ and j £ S~, respectively.

Then -S'Mp; h) will be maximized over all h of unit norm whenever h

is aligned* with it. This means that h. should be nonzero only where

|N. | is a maximum, and opposite in sign to N . .

The generalization to non-empty S° is straightforward if one notes

that the last term in (5-31) can be written for any S C S° as

(LjHj+KAjhjl)^

I (L. + KA )h. if h. > 0 on S
j€S j n j j " '

7 (L. - KA )h. if h < 0 on S
£c J n J J "

(5-33)

* An element x£.X and a functional f C. X* must satisfy the inequality
f*x 5 l l f l l l l x l ! » by the definition of f. The functional f is said
to be aligned with x whenever equality is achieved.
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On S°, then, an "aligned" h will have h. nonzero only where

(-L. - KA ) or (L. - KA ) is positive and a maximum, its sign being
j n j n

positive or negative, respectively.

To summarize, an "aligned" h C M̂ [-T,T], resulting in a maximally

negative cost differential 6 n(p; h), will have h - 0 for j ̂  R,

where* RC (0, 1, 2, ... n-1, n+1, ... 2n} is the set of integers for

which the maximum

M «• max (0, max JL. + KA I , max |L. - KA I ,
jes+ -1 jes- 3

max t-L. - KA ], max [L. - KA ]} (5-34)
J€S° j n J€S° j

is achieved. For j € R, the sign of h. will be opposite to

(L. + KA ) or (L - KA ), whichever applies. The magnitudes |h. |,

j £ R will be chosen equal for simplicity, although they could be

optimized if desired. This leaves only the "step size" ^ |h | to be
j£R J

adjusted at each iteration.

Whenever M > 0, there will exist an increment h for which

6 Tl(p; h) < 0 and hence n can be decreased. On the other hand, if

M = 0 for some p°, then

6+n(p°; h) > 0 for all h - (5-35)

* Recall that by the definition of M̂ [-T,T], p and h are both zero

on (-6,6), which implies that p => h =0.
n n



and H must have a minimum at p°.

Moreover, the second differential can be calculated from (5-28),

n(p;h,g)

| - , f j+1<8,s >dt]6+2||P;h,g|lM

6+| |pjg| | 6*| |p;h| |M + 2 ̂  ^ g^p*1 fi+1<8t,8T>dtdT
J-0 i-0 J t, J t±

2 e s . s d t t g l l p ^ h M * h l l p j g ] (5-36)
j=0

For any J , it is easy to verify that

o if p . 0, h jgj < 0

(5-37)

0 otherwise

2

Thus 6 | |p; h,g| |M is not defined for all h and g, but

6* ||p; h,h| |M = 0 for all h € M?[-T,T] (5-38)

Substituting this into (5-36) with h = g and again rearranging integrals

yields

6+2T)(p;h,h)- 2||e6+||p;h||s - \ h. f j+1s.dt| | *
j=0 JJt.

> 0 for all p, h € M?[-T,T] (5-39)



J.iX

+2

This establishes that 6 n(p; h,h) is nonnegative definite for all p,

so H must be convex and have no relative minima oh n [-T,T], The

algorithm will decrease r\ at every iteration and hence approach the

minimum.

The steepest descent algorithm described above will produce a

sequence of measures p € Mo[-T,T], 1=1, 2, ... for which the cost

n(p ) approaches a minimum on this subspace. Lemma 5.1 verifies that

by increasing n (i.e. using finer partitions of [-T,T]), this cost

may be made to approach the optimal cost n(p°)» P° £ Mo[-T,T]. Moreover,

- > s , v j ^ v , . SI-J.M.Vu - u(p )/||u(p )|I (5-40)

approaches the optimal filter u .

Recall from the end of Section 4 that duality provides a criterion for

stopping the algorithm: the constraints (2-13) should satisfy

«- i ^ i<u »s > - e<u ,i

<u ,s > - e<u ,s

6 < |t| < T (5-41)

for some tolerance ei , and the primal and dual costs should satisfy (4-40) ,

< e2 (5-42)

for some other tolerance
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6. Estimation filter optimization problem

Sections 2-5 are concerned with determining an optimal filter for

detection of a signal, by maximizing the signal-to-noise ratio (2-10)

subject to the sidelobe constraint (2-11).

Another task which radar and communications systems must usually

perform is the estimation of unknown signal parameters, particularly

the arrival time to of the signal. In a radar system the signal delay

is proportional to the range of the target. In certain communications

systems, such as Pulse Position Modulation (PPM), the signal delay

carries some portion of the transmitted information. It is well-known

[1] that for a given continuously differentiable signal, the maximum-

likelihood estimate of unknown time delay is obtained by processing

the input with a matched filter and subtracting T from the time at

which the output achieves a maximum.

More generally, if this same estimation scheme is used with a

filter which is not necessarily matched to the signal, the accuracy of

the estimate has been determined by McAulay and Johnson [11]:

Lemma 6.2 Assuming a large signal-to-noise ratio a priori,

the above estimate of signal arrival time has a bias proportional

to

= <u,s> = - <u, s> (6-1)
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If this bias is zero, the variance of the estimate is the

reciprocal of

i2(0)/E{£2} - <u, s>2/No||u||2 (6-2)

which may be interpreted as an output signal bandwidth-to-noise

.bandwidth ratio.

•

Proof; Using the same assumptions as in Section 2, with the

additional provisos that the signal s is twice differentiable and the

signal-to-noise ratio is large, an optimal filter for estimating signal

arrival time may be sought. The problem will be to choose a filter u

so that the estimate is unbiased and its variance (6-2) is minimized,

subject to the sidelobe constraint (2-11).

The argument which led to (2-14) may be used [12] to put this

estimation filter optimization problem in the following form:

maximize <u, s>, u£ L2[0,T]

•

subject to <u, s> » 0

<u, s > < e<u, s>, 6 <

<u, s > < e<u, s>, 6 <

T

T

(6-3)

The requirement of zero bias can be dropped, but then the expression
for the variance becomes very complex.
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* i
The results of Sections 3 and 4 may be used, mutatis mutandis , . ;

to reduce (6-3) to an unconstrained dual problem analogous to (4-34),

minimize v(p) - ||v(p)||2, p£M0[-T,T]

(6-4)
.' rT

v(p) - s + e||p||Mr0 - J r dp(t)

The function r is defined by

rt(T) - St(T) + <St, s> s(T)

I1

t(T> - J •

(6-5)
•T
s(a + t)da

Once p° is found to minimize v, the optimal solution' of (6-3) is given

by

u° - v(P
0)/||v(P

0)||, ; (6-6)

and the duality theorem implies that

<u°, s> - v%(p°) - ||v(p°)|| (6-7)

The algorithm of Section 5 for minimizing r\ is equally suited to

minimizing v; the function u(p) in (4-34) need only be replaced by

v(p) in (6-4).

* Theorems 3.1 and 3.2 must be extended slightly to account for the
equality constraint <u, s> » 0. See [12] for details.
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