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ABSTRACT

The design of filters for detection and

- estimation in radar and communications systems is

considered, with inequality constraints on the
maximum output sidelobe levels. A constrained
optimization problem in Hilbert space is formulated,
incorporating the sidelobe constraints via a partial
ordering of continuous functions. Generalized
versions (in Hilbert space) of the Kuhn-Tucker and
Duality Theorems allow the reduction of this problem
to an unconstrained one in the dual space of regular

Borel measures. A convergent algorithm is presented -

for computational solution of the dual problem.
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1. INTRODUCTION

In many radar and communications systems, pulses of relatively long

‘time duration are transmitted because of peak power limitations, and an

. operation known as "pulse compression”" is performed at the receiver. This

compression is most commonly achieved with a matched filter [1-7], that {s,

:_by correlating the incoming signal with time— and/or frequency-shifted

copies of the transmitted waveform, a technique which is well-known to be
optimal with respect.to various performance criteria. The presence of a
signal 1is detected when the matched_filter output exceeds a threshold value,

and perameters such as time delay and (Doopler) ftequency shift are estimated

by locating the peak output in time and frequency. One’example of such a

o : : |
system is a pulse-position modulation communication scheme [7-10}, where

information is coded in the time delays of individual pulses and then

decoded by estimating the delay with a matched filter. Another is a linear

FM, or "chirp" radar ([2-4], where the frequencies of transmitted pulses are

_swept linearly with time and the receiver has a linear time delay vs.

frequency characteristic of the opposite slope.
1f a signal s, non-zero on the interval (to, to+T), aopears at the input

*
to a pulse-compression filter, the output typically consists of a main peak

surrounded by sidelobes, as shown in Figure 1, and it 1s desirable in certain

cases to reduce or restrict the height of these sidelobes. This becomes

In the case of a matched filter, this is simply the autocorrelation
 function of s.



impoftant,-for instance, when a radar must distinguish émong multiple
‘targets, or when a pulse~position modulation system operates iﬁ an
environment of severely degraded signal-to-noise ratio [8). This paper
is ;éncerned with the design of optimal "mismatched" filters for detection
aﬁd estiﬁation, subjeét to 1néqdality constraints on the sidelobe levels.

Previous work in this area has been principally concerned with
analogous pr&bléms of designing antenna arrays [2-3] or with discrimination
against statistically-distributed clutter [2-5], an approach which is often
equiQalent to réducing the sidelobe.energy {12]. Another gethod [9-11]
involveé constraining the sidelobes apprﬁximately, with inequalities at a
finite set of‘times, and leads to an optimization'problem'in terms of
ordinary differential equations wi;h delays.

In the next section attention is restricted to finding ah optimal filter
for detection, and a problem is formulated with the'objective'of |
maximizing the probability of detection subject to constraints on the
sidelobe levels. Section 3 summarizes some results of constrained
optimization theory in function space, which is applied in Section 4 to
reduce the detection filter problem to an unconstrained minimization in the
dual space. An algorithm for the solution of this dual problem is developed
in Section 5. Finally, the problem of determining an optimal filter for
estiﬁation is.fbrmuiated in Section 6, and its_solution is seen to be

analogous to that of the detection filter problemn.



" 2. Receiver model and formulation of detection filter optimization problem

The receiver modei to be considered 1§ shown in FigureAZ, its possible
interbreté;ions as pért Qf a communication, radaf,'or other system [1-7]
being left unspecifiéd.. Tﬁe sighal 8 isvassumed to'Be a given reai

Acéntinﬁous fdﬁction'of‘time with support in [0,T] and unit energy, that is

. [ ] T ' . .
[1s]]? = J 's’(g') dt = J sz(t). dt = 1 S (2-1)
O .

-d

It appéa:s at the input to the réceive;, aftér a delay to, corrﬁpted by
zero—mean; staiiona:y, gauésian’white nbise n with édwer}spectral dénsity
No. The impulse response of the liﬁear; time;invariant filter is to be
" determined, and is restricted to be square-integrable withvsupport in [O,T].
.The two terms y and ﬁ of the output, due respectively to the signal

and noise, are given by

y(t) = J é(T*to)h (t-1) dt | o (2-2)
E(t) = r n(0Oh (e-1) dt ' (2-3)

and it 18 an easy matter to show that the output noise powef is -

E(E2(t)} = Nor h2(t-1) dt = Nbr h2(t) dt for all t (2-4)

- -

where E denotes the expectation_operator.
N -
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It;is convenient at this point to replace the filter impulse response.

"h with an equivalent "receiver function" u defined by

u(®) A h(T-t) | E (2-5)

shift the time origin to to + T, and consider the output of the filter

to be the cross-correlation function ¢ defined by

W(t) Q..y(t‘i-to-l- T)

, f? s(T~to)h(t+te+ T-1) dr‘

- r s(T+t)h(T=T) dt

= J@. s(T+t)u(T) .dt

(2-6)
-0
) o
Because s and u both have support in [0,T], ¥ mudtvhéve support
in [-T,T] and -
. T .
P(t) = J u(t)s(T+t) dt = <u,s > ‘ (2-7)
0

By an abuse of terminology, u will be referred to as "the filter."



T A ,
E {£2(t)} = No J u?(1) d1 = Nollu||? forall ¢ (2-8)

* L ' ‘
where 8, is the shifted time function defined by

- s(t+t) T €[0,T]
8. (1) A | .
‘ : 0 otherwise : (2-9)

For this model it is well;known.ghét the detection scheme which

maximizes the p;obébiiit},of detection consists of,proceésing the input
with a matched filter (u = g) andvcomparing the output [P(0)+£(0)] to a
threshold value. Assuming thét thg threshold is specified independently
(often so as'td'énsure an acceptable "false alarm" probability), the‘
deteétion probability depends onli onn the outpui signal—fo-noise ratio, in
this case 1/No .

 More generally, if a threshold-type detection scheme is ﬁsed with a
filter which is not‘neceSSarily matched to fhe signal, the'prob;bility
of detection (at t = 0) for this model is easily showﬁ to depend monotonically

upon the output signal-to-noise ratio
(S/N) = $2(0) / E{£?} = <u,s>2 / No||u||? ' (2-10)

The problem here will be to find a filter u which maximizes this

*k
value subject to the sidelobe constraint

All norms and inner produéts refer to L2?[0,T] unless labelled otherwise
by a subsctipt

2

It is a:straightfofward generalization to replace € by €(t)
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Cmax |y | 2 e wo| - | (2-11)
s<|ej< T L |

which is illustrated in Figure 3. This allows for a centrél lqbe of width
28 about t, =0 .ana reé;ricts the magnitu&e of Y(t) elséwhere to be less
than a fraciibn € of W(d), where 6 and € are parameters to be chosen
by the designer. .

It is implicit im the constraint (2-11) that the peak_value.of
|¢(£)1 in fact occurs at t = 0, an assumption'wﬁich is justified intuitively
by the_facf that lw(O)l,'will be the pérformance index to Se maximized.
This in turn is justified by the observation that maximizing at any t f 0
corresponds either to ﬁakihg,a decision before the entire signal has arrived

" or to delaying the decision until some time after it has.

Tt can be assumed with no loss of generality that Y(0) = <u,s>2 0,
since (2-10) and (2-11) are the same for both u and -u. But then the

maximization of (2-10) subject to (2—11) is equivalent to maximizing
<u/||ul],s> ' - (2-12)

subject to the constraints

<u;st> < € <u,s>

5<|tL§'T (2-13)

- <u,st> < € <u,s>



2«5

Next,'note that scaling u has no effect on (2-13), so that

" .. maximizing (2—12) is equivalent to méximizing <u,8> over all u of unit

energy (]|u|]? = 1). 1In fact, it is also equivalent (and more convenient)
to maximize <u,s> over the unit ball {u : ||u}|? < 1}, since a nonzero

solution of this latter problem will clearly have ||u||? = 1. Thus, the

detection-filter optimization problem has assumed the following form:

‘maximize <u,s> , ué€lL?[0, T]
subject .to <uy8 > <€ <ups>, § <ft|<T _ ) (2-14)

- <u,8 > < € <u,8> 6 <lefcT F’

Hull?

A
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3. Constrained optimization theory

In ;his sectibn some results froﬁ the theory of constfained
' minimizétion in normed linear spaces are stated, and in the next section
they will be applied to the filter optimization problem just formulated}
This presentatioﬁ follows Luenberger [13], but the theor&_may also be found
ih Hurwicz [14] and eléewhere.
Let U an@ Zi, 1i=1,2, *** n be real normed linear épéces; with

convex cones -PI'QE Zi, i=1,2, *** n, Each cone P; genefates a

partial drderiﬁgf on Z,, denoted =z = and defined by

x & yvé) y-x € Py, Xy €2z (3-1)

-

P.;: is called the positive cone of Z;s since - PI ={z€Z,: z ¥ 0},

i
and the-notatioh x €<y 1indicates that y-x is an 1n:erior point of P;.

.
is defined by

The dual positive cone P£0 in the dual space Zi

: B ’ . |
P, A{z € 2,z z>0 Vze Pi} (3-2)

The function Gi:U > Zi is said to be convex (with respect to the partial

ordering <) if

Gi[ap+(1-—cz)v]‘< aci(u) + (l—u)Gi(v), u,veU, a€f0, 1] - (3-3)

A partial ordering is defined as in Dunford and Schwartz [15] to be a
transitive and reflexive but not necéssarily antisymmetric relation. Thus

xy and y={ x* may not imply that x =y (i.e. Zi may not be well-ordered).



_If the ordering sign 1s reversed in (3-3), then the function is said
to be concave. Note that if Gi U+ Zi is convex in the sense of (3-3)

. * ) ’ 4
and pie Pieg Zi y (1.e, pi} 0), then the functional gy} U + R! defined by
g, (w2 PG (w), ueUu (3-4)
i 11 ’
is convex in the ordinary sense.
‘Constder the optimization problem
~minimize f(u) , U €U
' o . . (3-5)
subject to - Gi(u) < 0, i=1, 2, *** n

where f : U+ R! and G: Uz, , 1=1, 2, **s n are all convex. The

- : ‘ * x *
Lagrangian functional L ¢ U X Z; X Zy X evee X Z > R} for problem (3-5) is

defined by

n . .
L(u ; p1, P2, *°° pn)é f(u) +‘i21 Py * ~Gi(9) ‘ : -(3~-8)

N * ’ . -
1f pie P1+_ g_zi s 1=1, 2, *** n, are all given then

L(*; p1, p2y °*°° pn) is a convex functional on ﬂ.

_ : * *
The dual functional ¢ : Z, X Z5 X eee x z > R! for problem (3-5) is

defined by

4 inf L(u; p3, p2, *** Pn) s (3-7)

¢ CP], pz, o Pn)
. u€y

and it is easily verified [13,12) that ¢ is a concave functional,



Using these definitions; the following theorems apply to

~ problem’ (3-5) ‘
Theorem 3.1: (Generalized Kuhn-Tucker conditions) For i = 1, 2, *** ny

let U, Z, .be real normed linear spaces, as above, with each of the

i

positive cones“PI7 S;. Zi having a non-empty interior. Let £:U + R!

and G, U+ Z, be convex, as above, and assume the existence of u € U

i
such that Ci(ﬁ) < 0 for all 1.
~ Then if u° e U;.s61ves the probléﬁ
minimize f£(u), uey - : ' ' .
subject to G (u) € 0, inl”z’.;."n} 4 (3.8)

i ' -k A
there must exist Lagrange multipliers 0 p; € Zi , 1=1, 2, *** n, such that

(a) u® solves the problem
minimize L(u ; pg, pg, e p; ) ,u€vu : (3-9)

where L 1is. the convex Lagrangian functional defined in (3-6)

(b) pJ + G (u°) =0, 4=1,2, *** n | ' , (3-10)

Proof: Seé [}3, p.217], where it is proved for a single inequality
constraint G(u) X 0 4in the space Z w.ith positive cone pt.

This theoreﬁ ﬁecomes equivalent if one identifies Z as the Cartesian
product space

Z =12y X Zyg X *°¢ X Zn ) (3-11)
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G:U+2Z as the-mapping
Gw) = [G1(w), Ga(w), *=* G (W], | o (3-12)

and the primal and dual positive cones as

+ + .+ +

P = Pl x P2 X eee X Pn
® o ® ® . (3~-13)

P = : X eee X
| Py X P2 P“

The détails are straightforward and will be omitte&.

The above theorem.géneralizes the well-known Kuhn-Tucker conditions
for convex.nonliﬁear programming problems in finite—dihensional spaces,
Condition (3—10) ekpresses the faCt_ﬁhat a Lagrange ﬁultiplier is non-zero
only whére the corresponding constraint is “"active". The following &uality

theorem provides~a method for finding the Lagrange multipliers. .

 Theorem 3.2: (Duality) 1In Theorem 3.1, the Lagrange multipliers

!

* _ .
p; €2, , =1, 2, *** n, solve the problem L i

maximize ¢(p1, p2, *°*° Pn)
: (3-14)
subject to Py > 0, i=1, 2, ***n
and h
min £(u) = max ¢(p1, p2, *** p ) (3-15)

Gi(u)$0 - Piko

where ¢ is the concave dual functional defined in (3-7). Moreover,

conditions (a) and (b) of Theorem 3.1 hold for any P1s P2, *** P, which
solve (3-14),

3



Proof: See [13, p.224].A The last statement follows by examining

the proof [13, p.218] of Theorem 3.i, which consists of showing
the existence of a hypetplane, defined by pf; pf, soe p: .
which separates two sets in R! x Zy X Zp X eee X Zn. It is'easily

verified that any py, p2, °*°*°* P, which solve (3-14) also define -

a separating hyperplane, and hence must yield u’ through (3-9).

2D



"4, Application to detection filter optimization problem

The optimization theory of the previous section will now be applied
to the detection filter problem formulated in Section 2. In order to-
consider (2-14) in the form (3-5) let
U = L%[0, T)
. (4-1)
1= Z; = C[-T, T}

-Zi= R!
and define f, G, G2, G3 as follows:

| f(u) = ~<u, 8> ‘ w
[C1(WI(E) = <u, 8> - € <u, 8> , tel-T, t] ~ (4-2)

[G2(w](e) = = <u, 8,> - € <u, 8> , tel-T, t]

- 2
G = [ull” -1

The fact thaf G1 and G mapi L? functions into continuous functioné.
”.is easily estaslished by noting that the translation défined in (2-9) is a
uniformly continuous mapping from R! to L?[-», o] (16, p.183]; The four
mappings in (4-2) are all convex, the first three by vi;tue of their
linearity and the last because the norm is convex.
The deﬁectibn-filter optimization problem (2-14) can now be written as
minimize £(u) , ue L3[0, T] }
(4-3)

subject to Gi(u) £ 0, 1=1, 2, 3

where the ordering in 23 = R! 1is the natural one (i.e. P3+ = R+, the’
nonnegative reals, and the partie}l ordering £ in " Z, = 2, = C[-T; T]

is generated by the positive cone



* ot x(t) >0, 6§ < |t| < T}, (4-4)

A
nt=rt -2 % xecl-T, T :
In othér wofdé,
x Ky &> x() cy®) ,8< el T | (4-5)
It is easy to verify that PC+ is a ciosed, convex cone with

nonempty interior ¥ [12].

. . ‘ o
The dual space C [-T, T] 4is well-known [15,16] to be represented

by M[-T, T], the space of regular Borel measures on [~T, T], where the

linear functional ¢ € C [-T, T] corresponding to m € M [-T, T} is

obtained by Lebesgue integration,

T

¢ * x = f x dm , x € C[~T, T] -, A (4-6)
- L

The norm of a measure in M[-T, T] is given by its total variation,

n : ’
lImly =sup ] |mED|,men-1, 11 - ' © (4-7a)
' 1=1

where the supremum is taken over all Borel partitions {Ei}: 1 of [-T, T]. In the

case of a positive measure p (i.e. p(E) >0 for E ¢ [-T, T], the

norm is

T
llPllM = P(I‘T, T]) - J .1 dp - ‘ N (4-7b)
-T

A non-empty interior is essential, since the proof of Theorem 1 relieé on the
Separation Theorem. The corresponding positive cones in LP [-T, T} , 1 <p <o,

have no interior points.



. The dual positive cone consfs_ts of positive measures which are zero

on (-8, &), as follows:

Lemma 4.1: If the positive cone PC < C[-T, T] 4is given by (4-4),

then the dual positive cone PMQ & M[-T, T] is
2® = meM-T,T) :mE 20,E<S {-T, 7]

and m(F) = 0, F & (=6, 6)} o -8)

Proof: Suppbsg X € PC+’ so that x(t) >0 for 6§ < e} < T, and

m e Pﬁe as defined:by (4-8). Then it is clear that

jxdmaJ'xdm+_jxdm>O‘, : ,(4-9)

so that m must belong to the dual poéitive cone as defined by (3-2).
Conversely, suppose m belongs to the dual positive cone. If
m (E) <0 for any E& [-T, T], then by Urysohn's Lemma ([15,16] there

. must exist x € PC+ such that

J x dm < 0 , . (4-10)
_T ’

which contradicts (3-2). Similarly, if m(F)#:. 0 for any F&(-6, §) ,

then there exists y € C[~T, T], with support in (-6, 6), such that

[ yamgo | | (4-11)
vl |



. . +
Since .y and =~y both belong to PC , this also contradicts (3-2).

e

Thus m must beibng to PM .

! g'E.D.

In order té apply jheorem 3.1, it is necessary to assume the

existence of a feasible.solution‘which satisfies the inequalities strictly:

Assumption 4.2: There exists u € L2 [0, T} such that

¢, @-< 0,41, 2, 3 ‘ o (4-12)

Because_éf the nature of the sidelobe constraints (2-11), one
expects that if € or & 4s chosen too small, there will be no non-zero
feasible solutions at all. On the other hand, if there is a feasible

solution u, i.e.

Gi (v) < 0 » 1=1, 2, 3, (4-13)

then it is clear from the definition (4-2) that an infinitesimal increase
in € will allow %u to satisfy (4-12). Thus Assumption 4.2 is not a
particularly strdng additional restriction. With this assumption, the

existence and'uniqueness of a nontrivial optimal solution may be established:

Theorem 4.3: Under Assumption 4.2, a unique nonzero optimal solution

exists for the detection filter optimization problem (4-3).



Proof: The problem is to minimize f on the constraint set

s 2 {uel?(0, Tl : 6 () < 0, =1, 2, 3}

= 6t NN et H A s fu]] < 1) (4-14)

Note that S #={d} by Assumption 4.2. Since -PC+ is closed and convex,
the continuity énd linearity of Gi; and G2 1mply that G;I(-PC+) and
G;l(-PC+) are also closed and convex;iand the intersection S of these
two sets with the unit ball V{u : |ul] <1} 1is cloSéd, convex, and
bounded. But ;his implies that S 1is we;kly closed+,land, L2[0, T)
being reflexivé, Alaogiu'g Theorem+>says that it is weakly compact. The
continuous lipeaf furctional f 1is a;so weakly continuous*, so f(S) 1is
compactiin. R! and must coﬁtain its infimum, wﬁich establigshes the

0

existence of an optimal u" € S.

1

Now suppose that u € S 1is also optimal. Assumption 4.2 implies

0 1

that u® and u' are non-zero, so that [|u®|| = ||u!|| = 1, according to
the discussion preceding (2-14). The elemeht u = % + %u! satisfies
the constraints because they are convex, and the linearity of f dimplies

that u 1is also optimal:

£(u) = £(%u’ + %u!)

= %E(u®) + %E(u!) = £ = £Qul) - (4-15)

Thus u must also have unit norm,

T See [15], pp. 422-424



[lal1? = [Psu® + sl [[% = %) [u[]2 + % < o ub >+ 5] |ul ]2

=g+%<u’,ul>e1 . (4-16)

8o that the Schwartz inequality becomes an equality:‘

< u’, u? >= 1

This implies that u! = u® so that the optimal u’ must be unique.

Q.E.D.

Necessary conditions and dual problem

Theorem 3.1 may now be applied to the detection filter optimization
problem (4-3). The spaces (4;1) and positive cones (4—4) are as‘
specified by the theorem, and Assumﬁtion 4.2 asserts the existence of a
feasible solutién which satisfies the constraints with strict inequality.

]

Theorem 4.3 guarantees the existence of a unique optimal solution u°,

so by Theorem 3.1’there must exist‘nonnegativé Lagrange multipliers

pts pf € 2,2 € H-T, T)

S ) : ' (4-17)
‘ pP € Rf o

such that



(a) u minimizes

- 3
LGu; p1°% p2% p3%) = £(u) + ] p.° ¢ 6, (u)

| 1=1
A T
e - <u,s> + J [<u,at> - € <u,s8>]dp1?(t)
-T
T
+ I, t-<0,st> - € <u,8>}dp2°(t) + pa°[||u]|? - 1] (4-18)
-T
over all u € L?[0, T], and
T : .
®) - P Gi(uY) =‘I [<u’, 8> - € <u’, 8>]dp1°(t) = 0
~T ,
. . | (4-19)
‘ p2° Gz(u°j = J - [=<uf, 8,> -g<u’, s>]dp;°(t) =0
~T

ps® + G3(u®) = paf][u®][2 - 1] =0 (4-20)

i

Changing the order of 1ntegration+ and rearranging terms in (4-18) yields
L(u; p1, P2, P3) = - <u, ulpy, p2)> + p3|luj}® - ps (4-21

where Gl(p(, p2) € LZ[O, T] is defined by

T T
a(Plr P2) =8 +‘[ (-St + ¢ s)dp, (t) + I (Sf + ¢ s)dp,(t)
-T -T
T. T ' T T
= g - J S, dp)(t) + j s, sz(t)-+ e s j dp(t) +f dpz ()]
-T -T ~-T -T

.i.

Since ,s' and S; have been assumed continuous on {-T, T}, this 4is a trivial
application of Fubini's Theorem [15, 16].



= st +ellmlly + e lpallyd = | s, apao) + [ o apace

(4-22)

If §3° = 0, fhen'either L(u; p1%, p2%, p3?) has a minimum value

of -~ » or u(p;’, p2%) = 0, but in the lgcter cage the duality theorem
implies that f(u’) = 0, contradicting the existence of a unique non-zero
optimal 36lution. Thus it suffices to consider bniy p; > 0, and

completing the square in (4-21) yields

t(u;. Pi, P2, P3) = p3}ju - G(m, P2)/2p3]|2 - ps - ||U(p1, p2) ||2/4ps

(4-23)

This is éinim%zed.bver u by
u = u(py, pz2)/2ps o | “ - .(4-24)

80 tbat the dual fun;tional is
$(p1s P2, P3) = - P3 - IFIG(PA, pz)Hz/"pa_‘» ‘(4-25)

for p;, p2 > 0 and p3>0.

. According to .Theorem 3.2, the Lagrange multipliers p;?, p2?, p3®
for the primal problem may be found by solving the dual problem of
maximizing ¢ over pi1, pz2, P3 & .0. It has already been argued that

p3° > 0 and G(p;o, p2?) # 0, so the maximization over p3 for



"any Ppi1, p2 1is easily accomplished by differentiation:

dd = - 1+ ||G(p1, p2)|]|3/4pa? = 0

dps
(4-26)
pa’(p1, p2) = %||G(p1.-P2)|| > 0
This must be a maximum, since
4% = - [|ulpr, p2)||%/2ps°
dps? , '
= - 4f/||upa, p2)|l < 0 : . (4427)
Substituting (4-26) into (4-25), the dual problem reduces to one of
maximizing
¢Ip1, P2, P3°(P1, P2)] = - ||8(p1,s P2) || (4-28)

over p1; P2 » 0 or equivalentlyf of minimizing

T T

\ |
Hupr, p2) || = [Isl1 + ellpally + €|l p2fly) - J s,dp1(t) + J spdp2(t) | |?

~T —_T (4-29)

@
over pi, p2 € B, & M[-T, T).

*  The quantity to be minimized is squared for convenience in taking
differentials. . '

3
i



Unconstrained minimization

This constrained minimization problem will now be reduced to an
unconstthiﬂed orie by combining pi1..and p2 into a single real measure.

Recalling Lémma 4.1, the const;aint Pi, P2 € PM9 means that pp and. P2
are positive measures on [-T, T] which are zero on (-6, §). But the sidelobe
constraint (2-13) implies that the integrands in the necessary conditions
(4-19) . are nonpositive, so that in each case .the measure must be zero wherever
the integrand is non-zero. ' "_ Put another way, the
Lagrange multipliers p; ahd‘pz are nonzero éﬁly where their respective
constfaints are active. Since the sidélobe constraints (2-13) cannot be

simultaneOusly.active, fhe measures p; and p, must be mutually singular

[15, 16]), that is, each must be zero wherever the other is not.

Consider the real measure

A
P=7P1 - P2, , - (4-30)

which belongs to the subspace of M[-T, T] defined by

Mo [-T, T] = {m e M[-T, T} : m(E) = 0, ES (-5, &)}, (4-31)

since both p; and p, are zero on (-§, &).

Because of the mutual singularity of p; and p; , the norm of p 1is given by

Helly = Heally + Heally o (4-32)
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and a(px. pé) ~in (4-22) can be written as

T

(pys pp) = G(p) = 8 + ¢]|p|lys - I s, dp(t) (4-33)
' -T

Moréover,.it follows from the Hahn Decomposition Theorem [15, 161 that
everyielement in Mo[-T, T] 1is uniquely -decomposable into two. such
mutﬁally singular meaéﬁres. Thereforg; minimizing lla(p), pz)llzover
p;,.pé c ?Aa 413 complete}y equivalent‘to minimizing'||ﬁ(p)||20ver
P E Mo[-T; T]. |

Tﬁe original problem (2-14) has thus been reduced to an unconstréined*

dual problem:

minimize n(p) = lla(p)llz, P € Mol-T, T]
T (4-34)

where 'G(p) =5 + ellplk{s - J s, dp(t)
| T

Once p° 1s found to minimize n, Theorems 3.1 and 3.2 establish

that the optimal solution of (2-14) is

u® = a(p®)/|lap® ] - | (4-35)

The stipulation that p € My[-T, T] is not reaily a constraint, since this

_subspace is in fact equivalent to the measure space M{[-T,-8§]1\J [(§,T]1}.



or

T
s(t) + €] |p°||s(T) -,J s (T+t)dp®(t)
(1) = — , 1€[0,T] (4-36)
s+ ellp®lls - | s, a°or]]
-T
Note that the denominator is nonzero in (4-35) because
<u®,;8>2-£(u’) =-¢(p:?, p2°, ps?) = h%<p°)_ = |1aeH|| | (4-37)

by (3-15), and Aﬁsumpfion 4,2 implies that thié quantity will be > 0.
~ The duality exhibited in (4-37) also provides a measure of optimality

for approximate solutions, since
<u,8> < <u®,8>'= |G| < TR ' - (4-38)

where p and u are any suboptimal solutions of the dual and primal

problems, respectively. Thus, a filter
ul =GN/ aehH || (4~39)

may be considered "approximately optimal" 1f it satisfies the constraints
(2-13) to within éome acceptable tolerance e; and
A1 1
HapH || - <ul,s> < e2 4 (4~40)

for some tolerance es.




5.1

| S. Computatidn31vsolution of dual pfoblem

In.the previbus section the detection filter optimization problem
was reduced to an unconstrained éual problem (4-34). An iterative
scheme will now be developed for its solution.

In order to utilizeAa digital computef for the solution, it is
neéessary to "discretize" the measure space Mo[-T,T] = M{[-T,-6]U(6,T]}
defined‘in (4-31). This will be done by partitioning the time set into

intervals (ij"tj+1]' where

-T + jAn. j = O. 1’ 2, eese N

fi>

ty (5-1)

s + (j—n—l)An, j = ntl, nt2, ... 2ntl

and

8 & @6/ o - (5-2)

Next, define the finite-dimensional subspace

T

. ' T . ) )
Mo [~T,T) 4 {pe M : I x(t)dp(t) = f x(t)p(t)dt, x € C(-T,T]} * (5-3)
. =T

-T

where p(t) (the Radon-Nikodym derivative of the measure p) has the

form

p(t) TRyt € (ty, 50, 3=0,1, 2, ... 2n (5-4)




and Py, " 0 8o that
p(t) = 0, t & (c, t ] = (-6,6) o (5-5)

This is illustrated in Figure 4.
In other words, a measure in M%[-T,T] is represented by a
“"staircase" function (its derivative) which is constant on each of the

2n+l intérvals of length An" Such a measure is completely specified

2n
by the weights {p } ,» and
b =0
(T . t :
I x(t)dp(t) = | pJJ I p(oyae ’ (5-6)
-7 : 3=0 : A

ty

for any vi € C[-T,T]. 1Its norm is given by

: T ., 2n -
lolly = | 1polae =] 1ol (5-7)
-T 3=0 ‘ A

It will now be shown that for large enough n, the approximating
subspace always contains near-optimum elements. An equivalent statemeﬁt
is that the subspace LJ) Mo {-T,T] 41is dense in the weak-star topology

n=1
[15] of My(-T,T].

Lemma 6.1 To every e > 0 there corresponds N such that

for n > N, M?[—T,T] contains an element pn for which

vt - w0 <e, TE,T] (5-8)
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and
n(pn)vb-ﬁ(p°) <e ' (5-9)
where u’ 1is givgn by (4-35) and
e G(p“)/llﬁ<p“>ll | - (5-10)
Proof: A measu?e P € M?[-T,T]  §111 be constructed such that

| 166" 10 - @M1 < els@] | 1%, = He

T T
+ || s (mdp®(t) - | s (mdp"(t)| < e, T [0,T) (5-11)
ot pt

- for large enough n. The last integrai may be expressed for any fixed <

as a 1limit of integrals of a sequence of simple functions (15, 16] which

approach at(f). Because 8 1is continuoué, such a séquence of simple

functions {s:(r)}:=1 is defined by

Y441

8y (1) .'J 8 (DAE, t € (¢
g

5 tj+1]’ =0, 1,2, ...2n (5-12)

where the intervals (tj, tj+l] were defined in (5-1). Thus there must

exist an n (independent of T, because of the continuity of s) such

that



T T ,
II 8, (T)dp’(t) - j 8 (1)dp’ (1) |
~T -T

t‘_1+1

- |
- If—'r 8 (‘l')dp (t) - j§0p°((t j+l )[ s't(T)dtl <e/aT€ [0, T]

Referring to (5-4) and (5-6), a measure p“ € M%[-T,T] may now be

spécified by choosing
pg‘ "'Apo«“j'-tjﬁ])‘ 3J=0,1,2, ... 20 (5-14)
so that

' T
| St(T)dp"(t) - [ st(r)dp“(t)l < e/2, T € [0,T] (5-15)
-T . -T |
From the definition (4-7a) of the norm in M[-T,T], it is clear

that

2n
np n 0 . ' -
8, 1195 = ey < el (5-16)
j=0 .
If equality in (5-16) is not approached with increasing n, then
llpn[|M can be increased, for instance by adding to pn, a measure whose
weight {8 ¥ in (tk, tk+1]’ -y in (tk+1’ tk+2]' and zero elsewhere

for some integer k < 2n and scalar Y. Such a perturbation can be used to

make

E S (5-13)




es(®| |lpolly - ey < er2, t€ 0,1} (5-17)

"~ and the continuity of s ensures that for large enough n, (5-15)
remaing valid. -
This establishes (5-11), from which (5-8) and (5-9) follow

immediately.
B QchDn

Steepest Descent Algorithm

-

A steepest descenf algorithm will now be proposed for minimizing
n(p) 1in the subspace M%[—T,T]. Lemma 5.1 establishes that the true
optimum in Mo [-T,T] can be approached as closely as desired by increasing

n. The functional to be minimized is

. T .
mm-(u+euqms-fT%@aHP

Itj+l

t

s dt||2 (5-18)
; |

e+ es T lpils+ T
= |ls + €A Pils + P
R nj:o j jao j

(recall thag ’(tn, tn+1] = (-§,8] and P, f 0).
The functional (5-18) is not Fréchet (strong sensé) differentiable

because it contains a term
2n
lelly = 2, 1 Iz o s-19)

This norm does, however, possess a directional Gateaux (weak sense)

differential '[13, 17, 18] which 1s convex (but not always linear) in



its increﬁent, This differential at p in the direction h is

as

&*11ps nlly = 1ta  lllp +anll - [lp]11, ps b € Mo1-T,7]

o0

For each j, it is easily verified that

hj’ xJ >»O
‘-hj, xj <0

from which it follows that .

+ v
§|lps nlly=8_ I . h,-A ] h, +A h

where

+
fi»

' {3: pj > 0}
{3:
s® & {3:

wn
i
i

and sTusus® = {0, 1, 2, ... 2n}

defined

5.6

(5-20)

(5-21)

(5-22)

(5-23)
(5-24)‘
(5-25)

(5-26)

It is a straightforward matter to show that the differential of (5-18)

is



: 2n tj+l
s m) = 2 (s + ellpllys - 1 jftj s dt1,
o 4=0

. 2n t
T e T AT
(8" los bllya - 1 %y jt 5 .a11)
. : i

,Interchanging'iﬁtegrals, this becomes

t

+ ' . 2n j+1 ' + ‘
§n(p; h) = 2¢[1 + ef|pl[y~ I pj[ <s,s,>dt]8 [|p; hlly
, =0 't :

1=0 t

2n t :
2@+ ellplly ) by [ a0
. L

T 2n  2n t t
. j i <g,,8 _>dtdT’
3=0 1i=0 ty ty t’t

‘ 2n
+
= K6 ||p; hlIM + 120 hiLi

where

2n . t '
2 pj [ i+l <s,st>dt]
j=0 tj

A ’

€ 2cn + el Il -
' 2n t

Li‘é 2] » J 3+l

t
5 I i+1<st,ér>dtdr
j=0 t

I

ti41

<s,st>dt], i=0, 1, ... 2n
t

o —atelblly |
‘ i

and IIpIIM is given by (5-19).

Finally, substitution of (5-22) yields

5.7

(5-27)

(5-28)

(5-29)

(5-30)



&nps b) = § + @

jes J * Kén)h

3

+ ¥ _ @

- KA )h
jes~ 3 n

3

+ L,h, + KA |h | 5-31
3Z,s° (Lyhy + KA b ]) | (5-31)
The object is now to iteratively decrease the cost nN(p) by choosing

- +
a sequence of increments h for which the differential § n(p;h) is negative.
Suppose for a moment that S° is empty, so that (5<31) is a linear

functional of h,

§tnp; h) = . E _ Nh, : (5-32)
» jes'us

where Nj 4 Lj + KAn for j € S+ and j € S-, respectively,

Then —6+n(p; h) will be maximized over all h of unit norm whenever h

is aligned* with it. This means that hj should be nonzero only where

: leI is a maximum, and opposite in sign to 'Nj.

The generalization to non-empty s s straightforward if one notes
that the last term in (5-31) can be written for any SC s? as
f‘z @
jes 3

jgs (LyH, + KAnIhjl)f{ "~ (5-33)

+ KAn)hj if hj ; Q on S

) (L - KA DB, 1€ b, é 0 on S
J€s

e

* An element x € . X and a functional £ € X* must satisfy the inequality

£.x < ||£]] |]x]], by the definition of f. The functional f is said
to be agligned with x whenever equality is achieved.
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" Oon S°, then, an "aligned” h will have h, nonzero only where

3

(-L -_KAn) or (Lj’— KAn) is positive and a maximum, its sign being

3

positive or négative, respectively.
" To summarize, an "aligned" h € M?[-T,T], resulting in a maximally

negative cost differential 6+n(p; h), will have h, = 0 for J ¢ R,

k|
where * RC {0, 1, 2, ... n-1, nt¥l, ... 2n} 1s the set of integers for

which the maximum

M = max {0, max |L, + KA |, mgx‘lL - KA |,
. jes* 3 T n jgs— 3 n
max [-L, - KA ], max [L, - KA_]} ‘ (5-34)
" jes® st 30 ®

is'achieved. For J € R, the sign of h, will be opposite to

i
'(Lj + KAn) or (Lj - KAn), whichever applies. The magnitudes Ihjl’
j € R will be chosen equal for simplicity, althbugh they could be \
optimized if desired. This leaves only the "step sizé" ) Ihj' to be
adjusted at each iteration. ‘ jex

Whenever M > 0, there will exist an increment h for which

+ '
d'n(p; h) <0 and hence n can be decreased. On the other hand, if

M =0 for some §°, then

§'n°% h) > 0 for all ~ (5-35)

* Recall that by the definition of M?[-T.T], p and h are both zero
on (-§,6), which implies that P, = h =0,



o e AV

and N must have a minimum at p°.

' ﬁpreover; the second differential can be calculated ffom (5-28),

12
§+ n(p;h,g)

. E t.. 2
- 2eq1+ellpl I, - zp [[41<0,0 20016 L psm,sl
. j°0 tj :

X |
+ + .
+ 26% [pisl 18" Tpinl by + 2 zo izo . 1[ 3 [t o saear
. . 3=0 1= t '

by Tty
2n t . .

-2 ] I Wes,sat (s 5+||p:h11' + 1,8 [psgl (5-36)
3=0 ‘e £ SoOM ) M |

For any j, it 1is easy to verify that
= if p =0, h,g, <0

2
6+ lpj ;hj!gjl = . . ‘ . ' (5-37)

0  otherwise

+2
Thus & ||p; h,glIM is not defined for all h and g, but
+2
§ |lp; hyh|]y =0  for all heE Mo [-T,T] _ - (5-38)
Substituting this into (5-36) with h = g and again rearranging integrals
yields -
8" n(p;h,h) = 2|]ed ||psh||s - ] n s, dt]|
2a 3 t 2
1=0 Ve,

>0 for all p, hg M?[-T,T] (5-39)
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2

This establishes that 6+ n(p; h,h) 1s nonnegative definite for all p,
g0 N must be convex and have no relative minima on Mn[-T,T]. The
algorithm will decrease n at every iteration and hence approach the

minimum.

The steepest descent algorithm described.above will produce a
Sequence of ‘meésuresl pi€ M%[-T,T], i=1, 2, ... for which the cost
‘n(pi) approaches a minimum on this subspace. Lemma S.i verifies that
by increasing n (i.e. using finer paftitions of [fT,T]), this cost

~ may be made to approach the optimal cost n(e®, p° € Mo[-T,T]. Moreover,

i ~, 1 ~, 1 ’ '
u = 4/ aeH]]  (5-40)
approaches the optimal filter u’.
Recall from the end of Section 4_that duality provides a criterion for

stopping the algorithm: the constraints (2-13) should satisfy

i

i
<u,s,> - €<u ,8>

IA

t €1

§< Jt] <71 (5-41)
<ui,st> - e<ui,s>

IA

€1
for some tolerance ej;, and the primal and dual costs should satisfy (4-40),
i,,¢ i ‘ .
|G| - <u™,8> < e (5-42)

for some other tolerance e;.
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6. Estimation filter optimizatfon problem

Sections ZfS are concerned with determining an optimal filter for
detection of a signal, by maximizing the signal-to-noise ratio (2-10)
subject to the sidelobé constraint (2-11).

Another task which radar and communications systems must usually
perform is the estimation of unknown signal parameters,_particularly
the arrival time to of the signal.  In a radar system the signal delay
is proportional to the range of the'target.‘ In certain_communications
systems, such as Pulse Position Modulation (PPM), the signal delay
-carr;es some portion of the transmitted information. It is well-known
(1] that for avgiven continuously differentiable sigﬁal; the maximum-
-likelihood eétimate of unknown time delay is obfainéd by processing
the input with a matched filter and subtracting T from the time at
which the output achieves a maximum.

More generally, if this same estimation scheme is used with a
filter which is ﬁot necessarily matched to the signal, the accuracy of

the estimate has been determined by McAulay and Johnson [11]:

Lemma 6.1 Assuming a large signal-to-noise ratio a priori,
the above estimate of signal arrival time has a bias proportional

to

P(0) = <u,8> = - <d, &> (6-1)
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If this bias 1s zero, the variance of the estimate is the

'téciproc§l of
V() /ELE2) = <b, B2/l [3]]? (6-2)

which may be interpreted as an output signal bandwidth-to-noise

bandwidth ratio.

giggg:‘ Using the same assumptions as in Section 2, with the
‘additional provisos that the signal s 1s twice differentiable and the
signal—td—noise.ratiolis large, an optimal filter for estimating signal
afrival time may be sought. The ptobiem will be to choose a filter u
80 thatithe estimate is unbiased* and its variance (6?2) ié minimized,
- gubject to the sidelobe constraint (2-11).
| The argument which led to (2-14) may be used [12] to put this

estimation filter optimization problem in the following form:

maximize <;, §>, uweé L%[0,T) B
subject to <6, s> =0
<u, 8> < €<y, 82, §<|t] <T > (6-3)
- <u, 8> <e<u, 8>, §< |t < T
[ul]? <1 o
* The requirement of zero bias can be dropped, but then the expression

for the variance becomes very complex.
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: . I3 1] 4 -
*_ The results of Sections 3 and 4 may be used, mutatis mutandta .

to reduce (6-3) to an unconstrained dual problem analogous to (4-34),

" minimize V() = |[9(®]|2, P € Mo[-T,T]

(6-8)
S B T . ' .
- 9@ ='s +€|[p]lyro - f _r.dp(t)
The function r, 18 defined by
- (1) & S (T)b+ <s_, 8> S(T;
et T % Pt
(6-5)
: T
Se (1) = J -8(0 + t)do
RS

,Once §° is found to minimize v, the optimal solution of (6-3)'13 given

by

u’ =50/ 136eNI], . o ; (6-6) -
and the duality theorem implies that
<6, 8> = v Y = |[06Y)]] | (6-7)

The algorithm of Section 5 for minimizing n 1is equally suited to

minimizing Vv; the function G(p) in (4-34) need only be replaced by
v(p) in (6-4).

Theorems- 3.1 and 3.2 must be extended slightly to account for the
equality constraint <u, 8> = 0. See [12] for details.

i



in a ”discrete"

8. Acknowledgements
The authorg wish to ex

Press thejiy 8ratitude té Dr. Robert MbAulay
and Profeasor Ian Rhodeg fo

I varjoug Commentg and suggestions.



(1]

2]

(3]
(4]

(5]
(6]
(7}

(8]

(9]
(10]

(11]

(12} ‘T. E. Fortmann, "Optimal Design of Filters and Signals Subject to

(13]

(14]

REFERENCES

E. J. Kelly, I. S. Reed and W.-L. Root, "The Detection of Radar
Echoes in Noise," Parts I and II, Journal of SIAM, v. 8, No. 2-3,
June-September 1960, pp. 309-341, 481-507.

M. I. Skolnik, Introduction to Radar Systems, McGraw Hill,
1962. .

C. E. Cook and M. Bernfeld, Radar Signals, Academic Press, 1967.

A. W. Rihaczek, Principles of High~Resolution Radar,
McGraw~H111, 1969.

C. W. Helstrom, Statistical Theory of Signal Detection,
Pergamon Press, 1960.

H. L. Van Trees, Detection, Estimationlgand Modulation Theory,
Part I, Wiley and Sons, 1968. v

J. M. Wozencraft and I. M. Jacobs,
Principles of Communication Engineering, Wiley 1965.

R. J. McAulay and L. P. Seidman, "A Useful Form of the Barankin
Lower Bound and Its Application to PPM Threshold Analysis,"
I1EEE Trans. on Information Theory, IT-15, No. 2, March 1969,
pp. 273-279.

R. J. McAulay, "Numerical Optimization Techniques Applied to PPM
Signal Design," IEEE Trans. on Information Theory, IT-14, No. 5,
September 1968, pp. 708-716. ‘

R. J. McAulay, "Optimal Control Techniques Applied to PPM Signal
Design," Information and Control, v. 12, No. 3, March 1968,
pp. 221-235.

R. J. McAulay and J. R. Johnson, "Optimal Mismatched Filter Design

for Radar Ranging, Detection, and Resolution,"

JEEE Trans. on Information Theory, IT-17, No. 6, November 1971.

Sidelobe Constraints," Report ESL-R-400, M.I.T., Cambridge, ,
Massachusetts, September 1969. !

D. G. Luenberger, Optimization by Vector Space Methods,
Wiley and Sons, 1969.

L. Hurcwicz, "Programming in Linear Spaces", Studies in Linear and
Nonlinear Programming, ed. by K. J. Arrow, L. Hurwicz, and

H. Uzawa, Stanford University Press, 1958.



[15] N. Dunford and J. Schwartz, Linear Operators, Part I,
Interscience, 1958.

[16] w. Rudin, Real and Complex Ané;ysis, McGraw Hill, 1966.

{17] L. V. Kantorovich and G P. Akilov,
. Functional Analysis in Normed Spaces, MacMillau, 1964,

{18] bp. G. Luenberger, "Control Problems with Kinks, "
IEEE Trans. Auto. Control AC-15, {5, October 1970
ppo 570-75 .




