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ARCHED-OUTER-RACE BALL-BEARING ANALYSIS 

CONSIDERING CENTRIFUGAL FORCES 

by Bernard  J. Hamrock a n d  Wi l l i am J. Anderson  

Lewis Research Center  

SUMMARY 

A thrust load analysis of an arched-outer-race ball bearing that considers centrif- 
ugal forces but that neglects gyroscopics, elastohydrodynamics, and thermal effects was 
performed. Elliptic integrals were evaluated by using the Landen transformation. A 
one-point iteration method was used in evaluating the load-deflection constant. A 
Newton-Raphson method of iteration was used in evaluating the axial displacement and 
the radial and axial projection of the distance between the ball center and the outer- 
raceway groove curvature center. 
analysis of a conventional bearing can be directly obtained from the arched-bearing 
analysis by simply letting the amount of arching be zero (g = 0) and not considering equa- 
tions related to  the unloaded half  of the outer race. 

Fatigue life evaluations were made. The similar 

The analysis was applied to a 150-millimeter-bore, angular-contact ball bearing. 
Results for  life, contact loads, and contact angles a r e  shown for a conventional bearing 
(g = 0) and several arched bearings (g = 0.127 mm (0.005 in. ), 0.254 mm (0.010 in. ), 
. . . , and 0.762 mm (0.030 in. )). The results indicate that an arched bearing is highly 
desirable for high-speed applications. In particular, for a DN value of 3 million (20 000 
rpm) and an applied axial load of 4448 newtons (1000 lb), an arched bearing shows an 
improvement in life of 306 percent over that of a conventional bearing. At 4.2 million 
DN (28 000 rpm), the corresponding improvement is 340 percent. It was  also found that 
the arched bearing does not offer the advantages at low speeds that it does at high 
speeds. 

INTRODUCTION 

Aircraft gas turbine engine rotor bearings currently operate in the speed range 
from 1.5 to 2 million DN (bearing bore in mm times shaft speed in rpm). It is esti- 



mated that engine designs of the next decade will require bearings to operate at DN 
values of 3 million or more (ref. 1). In this DN range, analyses (refs. 2 and 3)  predict 
a prohibitive reduction in bearing fatigue life due to the high centrifugal forces developed 
between the rolling elements and the outer race. 

being developed. One approach is to reduce ball mass  through the use of thin-wall 
spherically hollow balls (ref. 4) o r  drilled balls (refs. 5 to 7). Theory indicates that 
significant improvements in bearing fatigue life can be obtained at DN values of 3 mil- 
lion and above with a 50 percent o r  greater weight removal from the balls. Flexure 
failures have occurred with both hollow and drilled balls after short running times, how- 
ever,  s o  that both of these concepts must still be considered highly experimental. 

Hybrid bearings consisting of a combination ball and fluid film bearing constitute a 
second approach. The parallel hybrid bearing (ref. 8), in which the fluid film bearing 
and ball bearing share the system load with both operating at full speed, can be used to 
improve high-speed-ball-bearing life. 
brid bearing diminishes at high speeds because it does not attenuate centrifugal effects 
in the ball bearing. 
bearing and a ball bearing both carry full system load while each operates a t  part speed, 
is theoretically the most effective approach to extending high- speed- ball- bearing life. 
This concept, too, is still quite experimental. Mechanical complexity is a problem, 
and effects on shaft stiffness and rotor dynamics must be evaluated. 

Initial experiments with an arched-outer-race ball bearing (ref. 11) indicated that 
th i s  design operated with lower torque than a conventional angular- contact bearing. The 
experiments of reference 11 were conducted at DN values up to about 1 million. In light 
of the successful experiments of reference 11, the arched-outer-race ball bearing 
seemed to be a promising high-speed-bearing concept because of its ability to share the 
centrifugal loading at two outer-race contacts per ball. 

The objective of the work described in this report was to conduct a fatigue life anal- 
ysis of the arched-outer-race ball bearing and to compare the fatigue life of this bear- 
ing with that of a conventional bearing at various combinations of thrust load and speed. 
A first- order thrust load analysis, in which gyroscopic, elastohydrodynamic and ther- 
mal effects are neglected, is reported. 

Several approaches to  the high-speed- bearing problem have been suggested and are 

However, the effectiveness of the parallel hy- 

The ser ies  hybrid bearing (refs. 9 and lo),  in which a fluid film 

SYMBOLS 

A 

d 

a 

distance between ,raceway groove curvature centers 

right- side- outer- race curvature center 

semimajor axis of projected contact ellipse 
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C 

D 

9 

d 

dm 
E 

€ 

F 

Fa 

FC 

9 

f 

x 
h 

Jf 

J 

B 

8 
K 

k 

fo + fi - 1 = A/D 

ball center initially 

semiminor axis of projected contact ellipse 

initial position, inner- raceway groove curvature center 

function of axial displacement defined in eq. (53)  

ball diameter 

left- side- outer- race curvature center 

race way diameter 

pitch diameter 

percent improvement of a rch  bearing (g = 0.005) over that of conventional bear- 

elliptical integral of second kind 

cur va tur e di f f e r e  n c e 

axially applied load 

centrifugal force 

elliptic integral of first kind 

r/D 

functions of V and W defined by eqs. (27) and (28)  

inner-race contact, initially 

amount of arching, or  width of material  removed from outer race of conventional 
bearing 

outer-race contact, initially 

distance from top of a rch  to top of ball when bearing is in radial contact position 

inner-race contact, finally 

function of k defined by eq. (45) 

right- outer- race contact, finally 

load- deflection constant 

left- outer-race contact, finally 

a/b 
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m 

N 

3y 

n 

P 

pd 

pe 
Q 
r 

S 

‘d 
T 

T1 

U 

U 

V 

W 

X 

Y 

Y 

Z 

z O  

a 

P 

life, h r  

ball center, finally 

defined by eq. (63) 

final position, inner- raceway groove curvature center 

ball mass  

defined by eq. (64) 

tip of arch 

rotational speed 

basic dynamic capacity of raceway contact 

bearing diametral clearance 

free end play 

ball normal load 

raceway groove curvature radius 

distance between inner- and outer- raceway groove curvature center loci 

diametral play 

surface velocity 

number of stress cycles per revolution 

radial projection of distance between ball center and outer-raceway groove curva- 
ture center 

axial projection of distance between ball center and outer-raceway groove curva- 
ture center 

defined in eq. (31) 

diameter of ball track 

defined in eq. (32) 

number of balls 

depth of maximum shear s t ress  

radial contact angle 

axial contact angle 
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Y D cos p/dm 

A 
. 

distance between raceway groove curvature center and f inal  position of ball 
center 

6 contact deformation 

axial displacement 6a 
6* defined by eq. (50) 

5 ratio of depth of maximum shear s t r e s s  to  semiminor axis, zo/b 

77 defined by eq. (9) 

x modulus of elasticity 

5 Poisson's ratio 

P curvature sum 

Omax maximum normal stress 

maximum orthogonal subsurface shear s t ress  

cp auxiliary angle 

0 defined in eq. (74) 

wm 
Subscripts: 

B ball 

orbital speed of ball 

i inner raceway 

n iteration 

0 outer raceway 

oz left outer raceway 

o r  right outer raceway 

X x- direction 

Y y-direction 

Z z-direction 

Superscript: 
- final position 
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ARCHED-BEARING GEOMETRY 

Figure 1 shows how the arched outer race is made. A conventional outer race is 
shown in figure l(a) with a race radius of ro. Also shown in figure l(a) is the portion 
of the conventional outer race that is removed in forming an  arched outer race. Fig- 
u re  l(b) shows the arched outer race with the portion of length g removed. Note that 
there a r e  now two outer-race radius centers separated by a distance g. 

Figure 2 shows the arched bearing while in a noncontacting position. Here the pitch 
diameter h, diametral clearance Pd, diametral play sd, and raceway diameters di 
and do a re  defined. The diametral play is the total amount of radial movement allowed 
in the bearing. Furthermore, the diametral clearance is the diametral play plus two 
times the distance from the bottom of the ball to the tip of the arch when the bearing is 
in a radial contact position. 

at one point at the bottom of the outer raceway, the ball contacts at two points separated 
by an angle 2a.  From figure 3 the radial contact angle a! can be written as 

Figure 3 shows the arched bearing in a radial contact position. Instead of contacting 

a! =sin- '(  2 r o  g - D ) 
A distance which needs to  be formulated is the distance from the tip of the arch to  the 
bottom of the ball when the ball and raceway are in the radial contact position as shown 
in figure 3. This distance is defined as h. From figure 3(b) and the Pythagorian theo- 
rem the following can be written: 

Solving for h results in 

h = - - (ro - t) cos ac + 1 b(4ro - D) + (2r0 - D) 
2 2 

Note that as one might expect as a - Oo, h - 0. With h known, a number of conven- 
tional bearing parameters can be formulated from figures 2 and 3. The outer-raceway 
diameter may be written as 

do = di + Pd + 2D (3 1 
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where 

Pd = Sd + 2h 

From equations (3) and (4) the diametral play can be written as 

s d  = do - di - 2D - 2h 

The pitch diameter dm from figure 2 can be expressed as 

d = d i + - + D  'd 
2 m 

(4) 

(5) 

Figure 4 shows the arched ball bearing while in the axial contact position. Note 
that the ball is in the top position. From this figure the distance between the center of 
curvature of the inner and right outer race can be written as 

A = r  0 + r i - D  

With fo = ro/D and fi = ri/D this equation becomes 

A = BD 

where 

B = f o + f i -  1 

From figure 4(b) the following equation can be written: 

Solving for q gives 

q = r  0 -{a (9) 
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With 77 known, the contact angle can be expressed as 

2 
A 

cos p = 

or  

The end play of an arched bearing is 

Pe = 2A sin 0 - g 

ANALYSIS 

Contact Geometry 

From the experimental work of Haines and Edmonds (ref. 11) it is observed that the 
arched bearing will initially operate with two-point contact at the lower speeds and then 
with three-point contact at higher speeds when the centrifugal forces become significant. 
When centrifugal force acts on the ball, the inner- and outer-raceway contact angles a r e  
dissimilar; therefore, the lines of action between raceway groove curvature radius cen- 
t e r s  become discontinuous, as shown in figure 5. In this figure the right- and left- 
outer-raceway groove curvature centers d and 9 a re  fixed in space, and the inner- 
raceway groove curvature center Y moves axially relative to these fixed centers. 

tance between the fixed right- and left-outer-raceway groove curvature centers st' and 
9 and the final position of the ball center 9 can be written as 

When the general approach of reference 12 is followed and figure 5 is used, the dis- 

(fo - 0.5)D + 6,l - D Aol - ro - - + 6ol  = 
2 

Aor = (fo - 0.5)D + 6or (13) 

where 6ol is the normal contact deformation at the left-outer-raceway center, and GOr 
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is the normal contact deformation at the right- outer-raceway center. Similarly, the 
distance between the f ina l  inner-raceway groove curvature center y1y and the final posi- 
tion of the ball center Y is 

A. = (f. - 0.5)D + Gi (14) 1 1  

where bi is the normal contact deformation at the inner-raceway center. 

groove curvature center is 
The axial distance between the final position of the inner- and right-outer-raceway 

S, = A sin 0 + 6, (15) 

where ba is the axial displacement. The radial distance between the final position of 
the inner- raceway groove curvature center and the right- or left- outer-raceway groove 
curvature center is 

S, = A  COS p 

From figure 5 and equations (12) to (16) the following can be written: 

V 
(fo - 0 . 5 ) D  + 6oz 

cos pol = 

sin Po, = g -  w 
(fo - 0 . 5 ) D  + G O 1  

V 
(fo - 0 . 5 ) D  + 60r 

cos por = 

W 
(fo - O.5)D + 6or 

sin Po, = 

A COS p - V 
(fi - 0 . 5 ) D  + 6i 

cos p .  = 1 

A sin p + 6, - W 
sin p.  = 

(fi - O.5)D + Gi 1 

9 



Using the Pythagorean theorem and regrouping t e r m s  result in 

= d V 2  + (g - W)2 - D(fo - 0.5) (23 1 

6or = ,‘V2 + W2 - D(fo - 0.5) (24) 

Gi =$A cos P - V)2 + (A sin p + Ga - W)2 - D(fi - 0.5) (25) 

The normal loads shown in figure 6 are related to the normal contact deformation in 
the following way: 

With proper subscripting of i, 02, and o r  this equation could represent the nornial 
loads of the inner ring &1, left outer ring Qol ,  or  right outer ring Qor. 
the equilibrium equations of the forces in the horizontal and vertical directions a r e  

From figure 6 

&1 sin pi + Qo2 sin Pol - Qor sin Po, = 0 

&1 COS P. - Qol COS POL - Qor COS Po, + Fc = 0 
1 

Substituting equations (15) to (22) and (26) into these equations gives 

Ki6:* 5(Sx - W) Kor6:. 5W Ko26Ai5(g - W) 
+ = 0 = G(V, W) (27) 

(fi - 0.5)D + 6i (fo - 0.5)D + GOr (fo - 0.5)D + G o 1  

KiGt* 5(S, - V) Kor6AE5V KO 6; 5V 
+ Fc = 0 = H(V, W) (28) 

(fi - 0.5)D + Gi (fo - 0.5)D -t 6or (fo - 0.5)D + GOL 

Before equations (27) and (28) are solved for V and W, the expressions for the load- 
deflection constants, the centrifugal force, and the axial contact displacement must be 
developed. 

10 



Centrifugal Force 

From figure 7 the following two right triangles can be drawn: 

Solving for x and y, we get 

- - D + tjor) cos por - (io - ;) cos P 
Y=('o 2 

Note that  in figure 7 the unbarred values represent initial location, and the barred values 
represent final location when the centrifugal forces have acted on the ball. 
ure  7 the pitch diameter when the centrifugal force acts on the ball is dm = dm + 2y or  

From fig- 

(3 1) D - 
+ Gar) cos Po, - 2 to - :) cos p 

Also from figure 7 the contact diameters can be written 

- 
Yi = (1 - yi)-G 

(3 4) 

11 
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where 

I 

D cos pi 

dm 
- y. = 

1 

The surface velocities at the contacts and contact diameters are represented vectorially 

by 

I "or 

71 

"i 

.. . - - 

From this representation the following equation which neglects spin, can be written: 

- - 
'or - 'i 

'i - 'or 2 

2 

or  

12 



But 

Y - any u = w-  -- 
2 60 

Therefore, 

Finally, the equation for the centrifugal force is 

1 -  2 F = - m d  wm 
c 2  

Where m is the ball mass. 

Load -Def lectio n Con stants 

The equations for the curvature sum and differences can be obtained from refer- 
ence 12: 

p. = -  ( 4 - 1  fi+2J 
' D  

fi 1 - yi 

1 2ri 
F. = 
1 

4 - - + -  

(39) 

fi 1 - yi 

13 



- fo + yo.? 

4 - - -  1 2r02 
- 

- fo + yor 
For - n 

(43 1 

(44) 
4 - - -  1 'Yor 

fo + yor 

From reference 12 auxiliary equations (45) to (47), relating the curvature difference and 
the elliptic integrals of the first and second kind, can be written: 

F =/'I2 [' - (1 - +)sin2 .] - 1/2 d q  

0 

where 

in which a and b are  the semimajor and semiminor axes, respectively, of the pro- 
jected elliptical area of contact. A one-point iteration method will be used in evaluating 
equation (45), where 

14 



From reference 12 the following can be written: 

where 

From equations (26) and (49) the following can be written: 

2 
3-+-- l-3 

With proper subscripting of i, 02, and or in equations (45) to (51) three se t s  of corre- 
sponding equations can be obtained for the inner race,  the outer left race,  and the outer 
right race. 

The elliptic integrals (eqs. (46) and (47)) were evaluated by using a method describ- 
ed by Bulirsch (ref. 13). 
it possible to compute these integrals very rapidly. 
Landen transformation. 
in evaluating ki, kol ,  and kor proved to be a fast method as compared to presently 
used formulations. 
used was 26 times faster. 

In this reference a short algorithm is described which makes 
The method of evaluation is the 

This method, coupled with using a one- point iteration method 

For example, compared to a Ralston integration scheme the method 

Axial Displacement 

Thrust ball bearings subjected to  centric thrust load have the load distributed equal- 
ly  among the balls. Hence, 

Q1= Fa 
Z sin pi 

15 



where Z is the number of balls. Substituting equation (26) into equation (52) gives 

+ "12 sin pi = C(ea) Fa o = - -  
ZKi 

(53 1 

A Newton-Raphson iteration method will be used to  evaluate 6a in equation (53). 
The derivative of C(da) with respect to 6, when equation (22) and (25) a re  used, gives 

(54) 

2 sin pi 
2 

-- 6i + - ki + 3D(fi - 
D(fi - 0.5) + Gi 

ac(6,) - 

a 'a 

Therefore, the Newton-Raphson iteration equation is written as 

Therefore, for a given value of V and W and using equations developed thus far, one 
is able to use equation (55) to find Ga while satisfying equation (53). 

Co m pu te r Eva I uat io n 

Having derived expressions for the centrifugal force Fc, the load deflection con- 
stants Ki, Koz, and Kor, and the axial displacement da in equations (38), (51), and 
(55), we can now return to solving for V and W in equations (27) and (28). The 
method to be used to solve this system of nonlinear equations is the Newton-Raphson 
iteration method, which can be found in most numerical analysis books (e. g. , ref. 14). 
When this method is used, the following equations can be written: 

16 



.. . .,., . ,..,, -.-,.--,.-..-,. . ---... ....--. --.-.--. 
I 

where 

= -Ni(A cos p - V)(A s in  /3 + Ga - W) + NozV(g - W) - N o r m  
av (59) 

(60) 2 2 8 = -Ni(A sin p + 6, - W)2 - Noz(g - W) - NorW - M. 1 - M o ~  - Mor 
aw 

(61) 2 2  
= -Ni(A cos p - V) - V (Noz + Nor) - - Mol - Mor av 

(62) aH - = -Ni(A cos p - V)(A sin p + 6, - W) + NozV(g - W) - N o r m  
aw 

where 

M =  K63/2 
6 + D(f - 0.5) 

N =  K6112[6 + 3D(f - 0 . 5 1  

2 b  + D(f - 0. 5)i3 

Therefore, with equations (56) and (57) we are able to find values of V and W which 
satisfy the system of equations. With V and W known and given equations (17) to (26), 
the contact loads Q1, Qoz, and Qor and angles pi, poz, and Po, can be evaluated. 

Derivation of Fatigue Life 

From the weakest link theory, on which the Weibull equation is based, we get the 
relation between life of a n  assembly (the bearing) and its components (the inner and 
outer rings): 

17 



In t h i s  equation life L is expressed in hours. A material  improvement factor of 5 has 
been assumed; however, no adjustment factors for reliability or operating conditions 
have been added. For point contact 

Therefore, equation (65) becomes 

1x106 1 T ,  =- - 
12ni 

L J 

The contact loads a r e  defined by equation (26). From Lundberg and Palmgren (ref. 15) 
the following can be written: 

With proper subscripting of i, 02, and or  th i s  equation can represent the dynamic 
loads of the inner ring Pi, the left outer ring Pol, and the right outer ring Por. 

0.54 a r e  2.3 and 0.8 percent, respectively. The variation of the product of these func- 
tions over the curvature range from 0.52 to 0.54 is less than 2 percent. Therefore, for 
the range just described, the products of the T and [ functions can be considered a 
constant in equation (68), o r  

Variations of the T and 5 functions with curvature over the range from 0.52 to 

The number of s t ress  cycles per revolution for each contact is, to a good approximation, 

Z ui = -  2 (1 + yi) 

18 



Z 
=- (1 - Yor) 

Or 2 

Substituting equations (69) to (72) into equation (68), one can obtain the dynamic capacity 
at the inner ring and left and right outer rings as 

Therefore, from equations (26), (73) to (75), and (67) the life in hours of the bearing can 
be obtained. 
arched-bearing analysis by simply letting the amount of arching be zero (g = 0) and not 
considering equations related to the left outer race.  

The equations for a conventional bearing can be directly obtained from the 

DISCUSSION OF RESULTS 

Comparison of Arched and Conventional Bearings 

A conventional 150-millimeter ball thrust bearing was used for the computer evalu- 
ation. 
for various speeds and axial loads are shown in table I for the conventional bearing. 
Then calculations were made for the arched bearing (fig. l(b)). 
(fig. 2) was  se t  fixed at 0.2499 millimeter (0.0098 in. ) for all the results presented. 
an arched bearing the free contact angle becomes larger than that of the conventional 
bearing even though the diametral play is held constant. 

Bearing parameters and results such as life, contact loads, and contact angles 

The diametral play sd  
In 

The greater the amount of 

I 
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arching (the larger the g), the higher the free contact angle. Also some of the other 
bearing geometry parameters were changed by changing the amount of arching. Tables 
II to VII show the effect of the amount of arching (g = 0.127 mm (0.005 in. ), 0.254 mm 
(0.010 in. ), . . . , 0.762 mm (0.030 in. )) on life, contact loads, and contact angles for 
various speeds and axial loads. 

The following observations can be made from the results in tables I to VII: 
(1) For high speeds (ni 2 20 000 rpm) there is a substantial increase in life for an 

(2) At high speeds and light loads the longest life is obtained with a g of 0.127 mil- 

(3) There is less  advantage in using an arched bearing at high loads (Fa 2 13 345 N 

(4) For low speeds the arched bearing does not offer the advantages that it does for 

(5) At low speeds and a small  amount of arching the arched bearing operates at a 

(6) As the applied load Fa increases, the speed for initial three-point contact in- 

(7) As the amount of arching is increased, the speed where the arched bearing has 

arched bearing compared to a conventional bearing. 

limeter (0.005 in. ). 

(3000 lb)). 

high speeds. 

two-point contact. 

creases.  

initial three-point contact decreases. 
contact whenever Qoz is not zero. 

(8) Even small  contact loads (Qoz = 100 N (22.48 lb)) at the left outer race help to 
improve the life significantly over a conventional bearing. 

Figure 8 shows the percent improvement in fatigue life for an arched bearing 
(g = 0.127 mm (0.005 in. )) over that of a conventional bearing for axial loads of 4448, 
13 345, and 22 241 newtons (1000, 3000, and 5000 lb). The ordinate E of figure 8 is 
defined by the following relation: 

The arched bearing operates with three-point 

E = (  LI g=o. 005 - I g=o ) 100 

LI g=o 

The figure shows that the improvement over the conventional bearing is significant for 
high-speed applications. For example, at ni = 28 000 rpm and F = 4448 newtons 
(1000 lb), the improvement in life for an arched bearing (g = 0.127 mm (0.005 in. )) is 
340 percent. As the applied load Fa increases, the advantage of the arched bearing 
becomes less significant. 

a 
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Bearing Size Effects 

The use of bearing s izes  other than the 150-millimeter-bore diameter for compar- 
ing the performance of arched and conventional bearings would yield somewhat different 
but qualitatively similar results. The relative importance of centrifugal effects in bear- 
ings of different sizes can be determined by comparing the ratio of D3n2 to the dynamic 
capacity. The factor D3n2 is proportional to centrifugal force, and dynamic capacity 
is a measure of the load capacity of the bearing. For extra-light se r ies  angular contact 
ball bearings operating at 3 million DN the following data a r e  obtained: 

Bore diam- 
eter,  
m m 

50 
100 
150 
2 00 

D3n2 

.46X108 

. 6  
:. 68 
I. 38 

Dynamic 
zapacity 

5 010 
14 400 
31 210 
54 790 

3 2  1 n dynamic 
capacity 

2. 91x1O4 
1.11 
.86 
.80 

It is seen that centrifugal effects are relatively more severe in small  bearings when 
DN is kept constant. Thus, life improvement of the arched bearing will  be greater than 
that shown for bearings smaller than 150-millimeter bore and somewhat less for larger 
bearings. 

SUMMARY OF RESULTS 

A first-order thrust load analysis of an arched bearing which considers centrifugal 
forces but which neglects gyroscopics, elastohydrodynamics, and thermal effects w a s  
performed. Elliptic integrals were evaluated by using the Landen transformation. A 
one-point iteration method was used in evaluating the load-deflection constant. A 
Newton-Raphson method of iteration was used in evaluating the axial displacement and 
the radial and axial projection of the distance between the ball center and the outer- 
raceway groove curvature center. Fatigue life evaluations were made. The similar 
analysis of a conventional bearing can be obtained directly from the arched-bearing anal- 
ysis by simply letting the amount of arching be zero (g = 0) and not considering equations 
related to the unloaded half of the outer race. 
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Computer solutions were obtained for a 150-millimeter- bore ball bearing. The 
amount of arching investigated was from zero to g equal to 0.76 millimeter (0.030 in. ). 
The following results were obtained: 

1. The arched bearing shows significant improvements in fatigue life over a conven- 
tional bearing, especially at high speeds. In particular, at an axial load of 4448 newtons 
(1000 lb) the life improvement is 306 percent at 3 million DN and 340 percent at 4.2 mil- 
lion DN. 

2. There is an optimal value of g to produce maximum life for a given value of 
diametral play and thrust load. For the particular bearing investigated life improve- 
ment was greatest at a thrust load of 4448 newtons (1000 lb) when g was 0.127 milli- 
meter (0.005 in. ). 

3. For low speeds the arched bearing does not offer the advantages that it does for 
high speeds. 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, February 10, 1972, 
114-03. 
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1007 
1098 
3796 

33.53 

9.192 

30 
107: 
542' 

34.41 

6.41' 

27.88 

25.03 

30.14 

19.70 

Life ,  L, hr 
:mer-raceway load, q, N 
iight- outer-raceway load, 

Qor7 

angle, Pi, deg 
nner-raceway contact 

tight-outer-raceway contact 
angle, Por, deg 

306( 
213i 
2271 

28.23 

26.43 

TABLE I. - LIFE, CONTACT LOADS, AND CONTACT ANGLES FOR CONVENTIONAL 

BEARING (ZERO ARCHING) AT CONTACT ANGLE O F  25' AND VARIOUS 

SPEEDS AND AXIAL APPLIED FORCES 

knner-raceway groove curvature, 0.54; outer-raceway groove curvature, 0.52; 
pitch diameter,  187.55 mm (7.3838 in. ); ball diameter,  22.23 m m  (0.8750 in. ); 
diamet ra l  play, 0.2499 mm (0.0098 in. ); 22 ba l l s1  

Rotational speed of inner raceway, ni, rpm 

Axially applied load, Fa, 4448 N (1000 lb) 

34 727 
389.5 

1037 

31.28 

11.25 

~ 

Life, L, h r  
Inner-raceway load, q, N 
Right- outer- raceway load, 

Inner-raceway contact 

Right- outer- raceway contact 

Qor7 

angle, Pi, deg 

angle, Po,, deg 

11 478 
376.0 

1911 

32.53 

6.075 

1955 
368.1 

3167 

450 
361.2 

4809 

130 
354.5 

6849 

34.77 

1.693 

45 
347.9 

9302 

35.53 

1.246 

37 
1030 
9924 

36.08 

3.503 

30 
1702 

0 515 

36.44 

i. 516 

342 291 
426.3 
570.1 

28.31 

20.77 

33.32 34.04 I 
3.662 2.411 

Axially applied load, Fa, 13 345 N (3000 lb) 

6996 
1208 
1799 

3163 
1138 
2579 

32.20 

13.60 

13 432 
1297 
1433 

9: 
105( 
746t 

Life, L, hr 
Inner-raceway load, 9, N 
Right- outer-raceway load, 

[nner-raceway contact 

Right- outer-raceway contact 

Qort 

angle, Pi, deg 

angle, Po,, deg 

35.2: 

4.65s 

Axially applied load, Fa, 22 241 N (5000 lb) 

1649 
2030 
2598 

29.87 

22.90 

l O l E  
1915 
3293 

31.86 

17.88 

50( 
183: 
444c 

19< 
177i 
6035 

34. 6E 

9.642 

76 
1737 
8060 

33.47 35.60 

13.16 7.204 
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TABLE II. - LIFE, CONTACT LOADS, AND CONTACT ANGLES FOR BEARING WITH 

0.127-MILLIMETER (0.005-IN. ) ARCHING AT CONTACT ANGLE O F  25.46' 

AND VARIOUS SPEEDS AND AXIAL APPLIED FORCES 

[hner-raceway groove curvature,  0.54; outer raceway groove curvature,  0.52; pitch diameter,  
187.55 mm (7.3838 in. ); ball diameter,  22.23 mm (0.8750 in. ); diametral  play, 0.2499 mm 
(0. 0098 in. ); 22 balls2 

Rotational speed of inner raceway, ni, rpm 

4000 I 8000 I 1 2  000 116 000 I 2 0  000 124 000 128 000 

Axially applied load, Fa, 4448 N (1000 lb) 

Life, L ,  h r  
Inner-raceway load, q, N 
Left-outer-raceway load, Q,,, N 
Right- outer- raceway load, Q 
Inner-raceway contact angle, pi, deg 
Left-outer-raceway contact angle, P O L ,  deg 
Right-outer-raceway contact angle, par, deg 

N or '  

158 866 
419.5 

0 
563.4  
31 .41  

0 
10. 62 

Axially applied load, Fa, 

Life, L ,  hr 
Inner-raceway load, 9, N 
Left-outer-raceway load, Qo,, N 
Right-outer-raceway load, Qor, N 
Inner-raceway contact angle, p., deg 
Left-outer-raceway contact angle, p,,, deg 
Right- outer- raceway contact angle, par, deg 

1 4  036 
1279 

0 

1415 
28 .31  

0 
25.38 

Axially applied load, Fa, 
~ 

Life, L ,  h r  
Inner-raceway load, 9, N 
Left-outer-raceway load, Q,,, N 
Right-outer-raceway load, Qor, N 
Inner-raceway contact angle, pi, deg 
Left-outer-raceway contact angle, Po,, deg 
Right-outer-raceway contact angle, Po,, deg 

.- 

3188 
2109 

0 
22 43 

28.64 
0 

26.79 

39 881 
384.2 
20 .01  

1015 
31.76 
4.645 
11.59 

16 299 
379.3 
503.4 

1404 
32 .21  
5 .761 
10.37 

6804 
375.0 

1178 
1969 

32.63 
6.318 
9.698 

13 345 N (3000 lb) 

7288 
1180 

0 
1783 

30.63 
0 

19. 89 

3411 
1127 

80.51 
2 492 

32.57 
1. a79 
14.15 

1752 
1110 

784.4  
3006 

33 .14  
3.393 
12.54 

22 241 N (5000 lb) 

1717 
2 003 

0 
2571 

30.32 
0 

23.15 

._ 

1051 
1890 

0 
3272 

32.34 
0 

18.00 

622 
1836 

48.37 
3955 

33.41 
.9138 
14.93 

1825 
370.5 

2031 
2727 

33.07 
6.655 
9.236 

817 
1095 
1701 
3691 

33.63 
4.339 
11.49 

372 
1 809 
1423 
4595 

33.98 
2.310 
13.44 

- 
5 60 

366.0 
3068 
3682 

33.53 
6.867 
8.892 

3 48 

2 a02 
4578 

1082 

34 .10  
4.998 
10 .71  

204 
1785 
2567 
5428 

34.49 
3.315 
12.33 

198 
3 6 1 . 4  

4292 
4837 

3 4 . 0 1  
6.996 
a. 621 

146 
1069 
4087 
5675 

34 .58  
5.467 
10 .11  

103 
1763 
3898 
6474 

34.99 
4.060 
11.46 
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TABLE III. - LIFE, CONTACT LOADS, AND CONTACT ANGLES FOR BEARING WITH 

0.254-MILLIMETER (0.010-IN. ) ARCHING AT CONTACT ANGLE O F  26.82' 

Life, L, hr 
Inner-raceway load, q, N 
Left-outer-raceway load, Qol, N 
Right- outer-raceway load, Qor , N 
Inner-raceway contact angle, Pi, deg 
Left-outer-raceway contact angle, Po,, deg 
Right-outer-raceway contact angle, Po,, deg 

AND VARIOUS SPEEDS AND AXIAL APPLIED FORCES 

bnner-raceway groove curvature, 0.54; outer raceway groove curvature, 0.52; pitch diameter ,  
187.55 mm (7.3838 in. ); ball diameter ,  22.23 mm (0.8750 in. ); diametral  play, 0.2499 mm 
(0.0098 in. ); 22 balls2 

3591 1931 1180 707 
2031 1926 1837 1816 

0 0 132.2 778.2 
2164 2496 3106 3683 
29.86 31.67 33.40 33.84 

0 0 12.84 13.31 
27.85 23.89 19.56 18.85 

1 Rotational speed of inner raceway, ni, rpm 

1 4000 I 8000 112 000 16 000 120 0001 24 000 128 000 

Axially applied load, Fa, 4448 N (1000 lb) 

Life, L, hr  
Inner-raceway load, q, N 
Left-outer-raceway load, QoL, N 
Right- outer-raceway load, QOr, N 
Inner-raceway contact angle, pi, deg 
Left-outer-raceway contact angle, Po,, deg 
Right-outer-raceway contact angle, Par, deg 

111 173 
400.5 

0 
545.1 
31.46 

0 
17.71 

Axially applied load, Fa, 

Life, L, hr 
Inner-raceway load, q, N 
Left- outer-raceway load, Qol, N 
Right-outer-raceway load, Qor, N 
Inner-raceway contact angle, Pi, deg 
Left-outer-raceway contact angle, Po,, deg 
Right-outer-raceway contact angle, par, deg 

15 944 
1228 

0 
13 63 
29.60 

0 
26.42 

128 403 
382.2 
194.2 
847.7 
31.94 
15.40 
17.41 

~~ ~ 

31 701 
378.4 
644.8 
1276 
32.30 
15.53 
17.07 

7084 
374.2 
1279 
1886 
32.70 
15.55 
16.81 

13 345 N (3000 lb) 
____ 

2013 
1102 
102c 
280C 
33.3f 
14.38 
17.88 
____ 

1803 
369.8 
2101 
2681 
33.14 
15.53 
16.57 

~~ 

855 
1091 
1861 
3571 
33.78 
14.52 
17.49 

396 
1796 
1631 
443 4 
j4.26 
13.60 
18.33 

5 45 
365.2 
3113 
3667 
33.61 
15.47 
16.36 

3 45 
1078 
2896 
4533 
34.23 
14.60 
17.14 

204 
1776 
2682 
5373 
34.70 
13.78 
17.88 

192 
360.6 
4320 
4841 
34.11 
15.3t 
16.15 

142 
1065 
4128 
5691 
34.71 
14.62 
16.84 

100 
1755 
3934 
6509 
35. 17 
13.90 
17. 49 
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TABLE IV. - LIFE, CONTACT LOADS, AND CONTACT ANGLES FOR BEARING WITH 

0.381-MILLIMETER (0.015-IN. ) ARCHING AT CONTACT ANGLE O F  29.06' 

7027 
373.2 
1373 
1822 
32.80 
24.41 
24.99 

AND VARIOUS SPEEDS AND AXIAL APPLIED FORCES 

btmer-raceway groove curvature, 0.54; outer raceway groove curvature,  0.52; pitch diameter,  
187.55 mm (7.3838 in. ); ball diameter,  22.23 mm (0. 8750 in. ); diametral  play, 0.2499 mm 
(0. 0098 in. 1; 22 ballsd 

1739 
368.6 
2189 
2631 
33.26 
24.25 
24.75 

~ ~~~~~ 

I Rotational speed of inner raceway, ni, rpm 

2218 
1099 
1273 
2608 
33.50 
23.80 
25.44 

~~ 

j 4000 I 8000 I 12 ooo I 16 ooo I 2o ooo 124- 

888 
1087 
2094 
3409 
33.93 
23.71 
25.14 

Axially applied load, Fa, 4448 N (1000 lb) 

796 
1806 
1167 
3376 
34.04 
23.25 
25.84 

Life, L. h r  
Inner-raceway load, Q., N 
Left-outer-raceway load. Qo, , N 
Right-outer-raceway load, Qor, N 
Inner-raceway contact angle, fli, deg 
Left-outer-raceway contact angle, f l o L ,  deg 
Right-outer-raceway contact angle, Po,, deg 

431 
1787 
1991 
4170 
34.45 
23.21 
25.50 

479 904 
384.5 
37.71 
501.5 
31.72 
24.60 
25.77 

149 602 
381.4 
301.3 
761.1 
32. 02 
24. 62 
25. 49 

33 736 
377.5 
745.3 
1201 

32.38 
24.54 
25.24 

Axially applied load, Fa, 13 345 N (3000 lb) 

Life, L. h r  
Inner-raceway load. 9, N 
Left-ouler-raceway load, Q o I ,  N 
Right- outer- rac:ewny load. Qor, N 
Inner-raceway contact angle, pi, deg 
Left-outer-raceway contact angle, p o l ,  deg 
Right-outer-raceway contact angle. par. deg 

19 476 
1152 

0 
1287 
31.77 

0 
28. 13 

93 17 
1121 
198.1 
1561 
32.78 
23.81 
26. 09 

4829 
1110 
642. 1 
1993 
33.12 
23.84 
25.75 

Axially applied load, Fa, 22 241 N (5000 lb) 

Life, L, hr 
Inner-raceway load, q, N 
Left-outer-raceway load, Q,,, N 
Right-outer-raceway load, Qor, N 
Inner-raceway contact angle, pi, deg 
Left-outer-raceway contact angle, Po,, deg 
Right- outer-raceway contact angle, /3',, deg 

4335 
1913 

0 
2045 
31.90 

0 
29. 63 

2254 
1840 
96.79 
2339 
33.32 
23.12 
26.63 

1342 
1824 
536.2 
2768 
33.67 
23.23 
26.21 

52 1 
363.9 
3197 
3632 
33.75 
24.06 
24.50 

~~ 

3 43 
1074 
3109 
4403 
34.40 
23.58 
24.84 

212 
1767 
3011 
5155 
34.90 
23.13 
25.18 

. -  

183 
359.0 
4404 
4830 
34.28 
23. 85 
24.24 

138 
1060 
4324 
5594 
34.90 
23. 42 
24.55 

100 
1746 
4232 
63 40 
35.38 
23.01 
24.85 
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TABLE V. - LIFE, CONTACT LOADS, AND CONTACT ANGLES FOR BEARING WITH 

0.508-MILLIMETER (0.020-IN. ) ARCHING AT CONTACT ANGLE O F  32.16' 

AND VARIOUS SPEEDS AND AXIAL APPLIED FORCES 

b n e r - r a c e w a y  groove curvature, 0.54; outer raceway groove curvature, 0.52; pitch diameter ,  
187.55 mm (7.3838 in. ); ball diameter, 22.23 m m  (0.8750 in. ); diametral  play, 0.2499 mm 
(0. 0098 in. ); 22 bal ls3 

4000 8000 12 000 16 000 20 000 24 000 28 OO( 

Life, L,  hr  
Inner-raceway load, q, N 
Left-outer-raceway load, Qol, N 
Right-outer-raceway load, QOr, N 
Inner-raceway contact angle, pi, deg 
Left-outer-raceway contact angle, pol, deg 
Right- outer-raceway contact angle, Po,, deg 

9806 
1115 

398.5 
1450 

32.95 
33.61 
34.76 

501 596 
383.5 
110.1 
462.8 
31.81 
34.26 
34.83 

5032 
1105 
839.4 
1889 
33.29 
33.47 
34.47 

153 552 
380.3 
372.6 
725.2 
32.11 
34.14 
34.59 

860 
1080 
2283 
3326 
34.16 
33.05 
33.82 

485 
361.5 
3272 
3620 
34.00 
33.11 
33.35 

324 
1066 
3296 
4334 
34.67 
32.78 
33.48 

Axially applied load, Fa, 13 345 N (3000 lb) I 

Life, L, hr 
Inner-raceway load, q, N 
Left-outer-raceway load, Qol,  N 
Right-outer-raceway load, Qor, N 
Inner-raceway contact angle, pi, deg 
Left-outer-raceway contact angle, bo,, deg 
Right-outer-raceway contact angle, Po,, deg 

Life, L, hr 
Inner-raceway load, q, N 
Left-outer-raceway load, Qol ,  N 
Right-outer-raceway load, Qor, N 
Inner-raceway contact angle, pi, deg 
Left-outer-raceway contact angle, Po,, deg 
Right-outer-raceway contact angle, Po,, deg 

4966 2381 1415 827 434 207 
1839 1828 1813 1795 1775 1754 
153.1 410.9 849.6 1474 2290 3303 
1901 2159 2595 3216 4025 5031 
33.35 33.58 33.90 34.28 34.71 35.19 
33.21 33.17 33.07 32.91 32.71 32.47 
35.15 34.91 34.61 34.29 33.95 33.60 

21 476 
1123 
138.3 
1191 
32.70 
33.67 
35.00 

2233 
1093 
1466 
2512 
33.70 
33.28 
34.15 

17C 
356.3 
4486 
483 1 
34.57 
32.79 
33.00 

129 
1052 
4511 
5544 
35.20 
32.49 
33.12 

95 
1732 
4520 
6239 
35.70 
32.20 
33.23 
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TABLE VI. - LIFE, CONTACT LOADS, AND CONTACT ANGLES FOR BEARING WITH 

0.635-MILLIMETER (0.025-IN. ) ARCHING AT CONTACT ANGLE OF 36.22' 

AND VARIOUS SPEEDS AND AXIAL APPLIED FORCES 

pnner-raceway groove curvature,  0.54; outer raceway groove curvature,  0.52; pitch diameter,  
187.55 m m  (7.3838 in. ); ball diameter,  22.23 mm (). 8750 in. ); diametral  play, 0.2499 mm 
(0.0098 in. ); 22 balls] 

144 853 
378.5 
435.0 
719.4 
32.28 
44.72 
44.97 

I 

29 572 
373.9 
874.3 
1159 
32.73 
44.41 
44.61 

I Rotational speed of inner raceway, ni, rpm 

I 4000 I 8000 I12 0001 16 0001 20 00- 

4880 
1096 
1016 
1870 
33.60 
43.98 
44.52 

Axially applied load, Fa, 4448 N (1000 Ib) 

2081 
1083 
1637 
2493 
34.05 
43. 65 
44.14 

Life, L, hr 
Inner-raceway load, q, N 
Left-outer-raceway load, Q,,, N 
Right-outer-raceway load, Qor, N 
Inner-raceway contact angle, pi, deg 
Left-outer-raceway contact angle, p,,, deg 
Right-outer-raceway contact angle, par, deg 

2420 
1811 
700.6 
2124 
33.94 
43.83 
44.76 

498 260 
381.9 
175.4 
459.5 
31.96 
44.94 
45.24 

1415 
1796 
1134 
2560 
34.27 
43.61 
44.45 

Axially applied load, Fa, 13 345 N (3000 lb) 

5971 
368.8 
1499 
1785 
33.25 
44.03 
44.21 

~ 

Life, L, hr 
Inner-raceway load, q, N 
Left-outer-raceway load, Qo,, N 
Right-outer-raceway load, Qor, N 
Inner-raceway contact angle, fii,  deg 
Left-outer-raceway contact angle, Po,, deg 
Right-outer-raceway contact angle, por, deg 

21 776 
1115 
322.5 
1175 
32.97 
44.35 
45.08 

Axially applied load, Fa 

Life, L ,  hr 
Inner-raceway load, q, N 
Left-outer-raceway load, Q,,, N 
Right-outer-raceway load, Qor, N 
Inner-raceway contact angle, pi, deg 
Left-outer-raceway contact angle, po l ,  deg 
Right-outer-raceway contact angle, por, deg 

5083 
1821 
445.2 
1868 
33.72 
43.97 
44.97 

9812 
1107 
579.7 
1433 
33.23 
44.23 
44.85 

12 241 N (5000 Ib) 

803 
1777 
1752 
31811 
34.68 
43.32 
44.09 

1472 
363.2 
2317 
2603 
33. 82 
43.61 
43.77 

782 
1069 
2450 
3308 
34.57 
43.27 
43.71 

408 
1755 
2562 
3992 
35.16 
42.97 
43.67 

441 
357.6 
3333 
3620 
34.43 
43.16 
43.30 

292 
1054 
3464 
4323 
35.14 
42.86 
43.26 

~ 

189 
1733 
3573 
5006 
35.70 
42.58 
43.23 

154 
351.9 
4556 
4842 
35.08 
42.68 
42.80 

116 
1038 
4685 
5545 
35.75 
42. 40 
42.77 

86 
1709 
4792 
6225 
36.28 
42.15 
42.75 

29 
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TABLE VII. - LIFE, CONTACT LOADS, AND CONTACT ANGLES FOR BEARING WITH 

0.762-MILLIMETER (0.030-IN. ) ARCHING AT CONTACT ANGLE OF 41.87' 

120 028 
374.2 

514.0 
752.5 
32.70 
57.66 
57.79 

AND VARIOUS SPEEDS AND AXIAL APPLIED FORCES 

knner-raceway groove curvature, 0.54; outer raceway groove curvature ,  0.52; pitch diameter ,  
187.55 mm (7.3838 in. ); bal l  diameter ,  22.23 mm (0.8750 in. ); diametral  play, 0.2499 mm 
(0.0098 in. ); 22 ballsd 

24  692 

368 .8  
935.2 

1175 
33.25 
57.17 

57.28 

.- ~ 

Rotational speed of inner raceway, ni, rpm 

1-6 0001 20  OOo(24 00- 

1310 
1757 

1490 
2694 

35.13 
56.07 
56.51 

Axially applied load, Fa, 4448 N (1000 lb) 

. ~ 

710 
1736 
2083 
3292 

35 .61  
55.62 

56.03 

Life, L,  hr  
Inner-raceway load, q, N 
Left-outer-raceway load, Qo2, N 
Right- outer-raceway load, Qor , N 
Inner-raceway contact angle, Pi, deg 
Left-outer-raceway contact angle, Po,, deg 
Right-outer- raceway contact angle, Po,, deg 

160 
1687 
3864 
5083 

36.82 

54.48 
54.84 

L51 172 

378.2 
267.5 
505.3 
32 .31  
58.01 
58.15 

- .  

73 
1660 
5078 
6303 

37.52 
53.82 
54.16 

Axially applied load, Fa, 13 345 N (3000 lb) 

- 

52 05 

362.6 
1542 
1782 

33.89 
56.59 
56.68 

Life, L,  hr 
Inner-raceway load, q, N 
Left-outer-raceway load, QoL, N 
Right- outer-raceway load, Qor , N 
Inner-raceway contact angle, Pi, deg 
Left-outer-raceway contact angle, Po,, deg 
Right-outer-raceway contact angle, par, deg 

2 0  985 
1096 

575.7 
1292 

33.60 
57.22 
57.55 

9073 

1088 
818.8 

1537 
33.88 
56.96 
57.27  

- 

4257 

1076 
1234 
1954 

34.32 
56.57 
56.85 

- 

1751: 

1061 
1832 
2555 

34. 86 
56.06 
56.32 

Axially applied load, Fa, 22 241 N (5000 lb) 
~~ 

~ ~~ 

Life, L,  hr 
Inner-raceway load, q, N 
Left-outer-raceway load, Qol, N 
Right-outer-raceway load, QOr, N 
h e r - r a c e w a y  contact angle, Pi, deg 
Left-outer-raceway contact angle, Po,, deg 
Right-outer-raceway contact angle, Po,, deg 

-. 

5023 
1784 

836.7 
2035 

34.51 
56.64 
57.13 

2335 
1774 
1078 
2279 

34.75 
56.42 

56.89 

- 

1315 

355.9 
2345 
2586 

34 .61  
55.93 
56.02 

66( 
104E 
262f 
3352 

35.4s 
55.4E 
55.72 

- 

3 49 
1713 
2871 

4084 
36.18 
55.08 
55.47 

__  - 

. ~ 

397 
349.2 

3355 
3598 

35.38 
55.23 
55.30 

- 

2 49 

1028 
3627 
4357 

36.18 
54.83 
55.05 

13: 
342. E 

4581 
482 f 

36. 1 E  
54.4E 
54.56 

_ 

10c 
1010 
4848 
5582 

36.93 
54.13 
54.34 
-. - -_ 
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Figure 1. - Bearing outer race geometries. 

Figure 2. - A r c h e d  bal l  bearing in noncontacting 
position. 

I---I 

(al Radial contact position. (b) Details of contact. 

Figure 3. - Arched bal l  bearing radially loaded. 

,- Left-outer- 
raceway 
curvature 
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h 
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\Tip of arch 

Right-outer- 

.d curvature I . _ _ _ _ .  

center 

(a) Details of contact. (b) Axial contact position of top ball. 

Figure 4. -A rched  bal l  bearing axially loaded. 

4 

Figure 6. - Normal bal l  loading. Ball in top position; 
bearing axially loaded. 

Jp Right-side-outer-race curvature center 
B Ball  center, i n i t i a l l y  
V? 
9, Left-side-outer-race curvature center 
P Bal l  center, f ina l ly  
Jl Inner-raceway groove curvature center, f ina l ly  

Inner-raceway groove curvature center, in i t ia l ly  

i I- SX 

I 

Figure 5. - Position of ball center and raceway groove curvature 
centers wi th  and without centr i fugal force acting on the  ball. 
Points shown fo r  ball in top position, wi th  bearing loaded 
axially. 

.J Right-side-outer-race curvature center 
B Ball center, i n i t i a l l y  
V 
C? Left-side-outer-race curvature center 
!5 Inner-race contact, i n i t i a l l y  -If .x Outer-race contact, i n i t i a l l y  
,$’ Inner- race contact, f ina l ly  

.X Left -side-outer-race contact, f ina l ly  

.Y Ball center, f ina l ly  
.,If 

Inner-raceway groove curvature center, i n i t i a l l y  

Right-side-outer-race contact, f ina l ly  

Inner-raceway groove curvature center, f ina l ly  

Figure 7. - Position of bal l  and raceway groove curvature centers and contacts wi th  
and without centr i fugal force acting on ball. 

I 
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Figure 8. -Effect of speed on percent improvement of arched 
bearing (arching, 0.127 mm; 0.005 in. 1 compared t o  that of 
conventional bearing (zero arching) for  various axially 
applied loads. 
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