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CHAPTER I

INTRODUCTION

The purpose of this thesis is the presentation of an improved

method for obtaining numerical solutions of a certain class of two-point

boundary value problems which often arise in optimal control theory.

These problems are characterized by systems of nonlinear ordinary differ-

ential equations with nonlinear boundary conditions.

A general problem in optimal control theory is often stated in the

following manner. Given a system which is described by a set of non-

linear ordinary differential equations

. x = f(x,u,t) (1.1)

where x is an n vector describing the state (position and velocity)

of the system as a function of time t, u is a q vector of time

varying controls which can be applied to the system, and f is an

n vector of nonlinear functions; it is required to determine the control

histories u(t), so that an extremum (maximum or minimum) of some scalar

performance index 4>(x(t ),t ) is obtained at some terminal time t .

The system must satisfy certain initial conditions in the form of an

m vector of functions

= 0 (1.2)



and the controls must not only extremize the performance index, but also

yield a final system state which satisfies a k vector of nonlinear

functions

=0 k < n (1.3)

The problem as stated is known as a Mayer problem in the calculus of

variations. Simple transformations are given by Bliss [l] which trans-

form the Lagrange problem (where the performance index is a definite

integral) and the more general Bolza problem into Mayer problems. With

these transformations, a large number of optimal control problems can

be stated in the convenient Mayer form.

Since the control problem stated is rarely amenable to analytic

solution, methods for obtaining numerical solutions are necessary. The

availability of large digital computers coupled with a demand for solu-

tions in various space age applications has resulted in considerable

research activity in the solution of the optimal control problem by

numerical methods. The majority of this work has occurred in the past

ten years and methods of solution are basically divided into either

direct or indirect methods.

The direct methods are so-called because they seek to directly

manipulate the control histories u(t) in order that an augmented

functional (which includes the given performance index and a measure

of terminal constraint satisfaction) is extremized. The direct methods •



are not investigated in this thesis, but because of their importance,

a brief reference to some of these methods is made. The most pop-

ular direct methods are the gradient or steepest ascent methods

developed independently by Kelley [2], and Bryson, Denham, Carroll and

Mikami [3,̂ ]. Many extensions to the basic method have been made and

are discussed in the recent text by Sage [5]. Significantly different

direct approaches are Bellman's dynamic programing [6,7], the conjugate

gradient method discussed by Lasdon, Witter, and Waren [8]; and the

Optimal sveep method introduced by McReynolds and Bryson [9]-

Indirect methods are those in which the control histories are not

directly manipulated. Instead, the control problem is transformed into

a two-point boundary value problem by deriving certain ordinary dif-

ferential equations and boundary conditions which must be satisfied for

mathematical optimality. The governing differential equations and

boundary conditions are obtained from either the necessary conditions

of the classical calculus of variations (see for example, Bliss [l] or

Sage [5])» the Pontryagin maximum principle [10], or the theory of

dynamic programing as discussed by Dreyfus [ll]. The various succes-

sive approximation techniques for solving the resulting nonlinear two-

point boundary value problem are called indirect optimization methods.

There are several generally applicable methods which have been developed

• in recent years. A discussion of. these methods is deferred .until

Chapter II, where the general boundary value problem to be considered

in this thesis is presented.



A common problem with existing indirect optimization methods is

that initial approximations to either the solution or initial conditions

of the boundary value problem are required. The success in solving

the problem is sometimes extremely sensitive to the accuracy of the

initial approximations. Convergence, when it occurs, is generally more

rapid for indirect methods than for direct methods. Ideally, one seeks

a method which converges rapidly to a solution from an arbitrary initial

approximation. One of the major reasons for this investigation is to

improve upon the performance of existing indirect methods with regard

to this ideal characteristic. To this end, several new innovations and

improvements to known techniques are combined in a unified approach.

This includes the introduction of a power series integration method

which exhibits several characteristics uniquely suited for determining

numerical solutions of nonlinear two-point boundary value problems.

Moreover, a new approach is presented for solving problems where the

terminal boundary conditions are general functions of the final state

and unknown final time. The computational algorithm is derived such

that the differential equations to be integrated have improved numerical

stability. Consequently, numerical difficulties due to ill conditioned

matrices of boundary values can be avoided.

The indirect optimization method presented here is applied to the

solution of a minimum time, planar, Earth-Mars transfer problem for a

constant low-thrust rocket. The problem was chosen because it has been

used to test many other methods and thus, a direct comparison with



previous results could be made. The optimization method is also applied

to a similar problem vhere a minimum time rendezvous with' a moving target

(the planet Mars) is required.



CHAPTER II

THE INDIRECT APPROACH TO TRAJECTORY OPTIMIZATION

In order to apply an indirect trajectory optimization method, it

is necessary-to formulate the optimal control problem as a two-point

boundary value problem. This is accomplished by deriving certain ordi-

nary differential equations with accompanying boundary conditions which

must be satisfied. In this chapter, necessary conditions from the cal-

culus of variations are used to formulate the control problem as a two-

point boundary value problem and previous numerical methods for solving

such problems are discussed.

The control problem which will be considered in this thesis can be

stated: a system is described by a set of nonlinear ordinary differ-

ential equations

x(t) = f(x(t),u(t),t) (2.i)

where x is an n vector and u is a q vector, q < n. The initial

state is specified at some initial time t

= X
o



and the terminal state x(t ) and time t are given implicity by

the following k vector of functions

It is necessary to determine the q vector of controls u(t) from some

admissible set of controls so that the performance1 index <J>(x(t ),t )

is minimized. The admissible set of controls will be taken to be the

set of all piecewise continuous functions on the interval [t ,t.]'.o f

An augmented functional is formed by adjoining to the given per-
«

formance index, using Lagrange multipliers, the contraints (2.1) and

(2.2) to obtain

•

tf

J = *(x(tf)»
t
f)

 + vT *(x(tf)'
tf) + f V^tKf - x). dt (2.3)

"to

where v is a k vector of constant Lagrange multipliers, and X(t) is

an n vector of time dependent Lagrange multipliers. The problem can now

be viewed as one of seeking a minimum of the performance index J sub- •

ject to no additional constraints. A necessary condition for J to

have an extremum is that the first variation of J vanish.

It is helpful when considering variations of J to introduce the

scalar function called the Hamiltonian ___________ •. ___________________

H(X,x,u,t) = XT f(x,u,t)



such that by definition

x = f(x,u,t) = I—

Using the Hamiltonian and .an integration "by parts, the performance index

is written

= +(x(tf),tf) + v%(x(tf).tf)

t.
f f

- XT('t)x(t) + f JH + AT xidt

t t
o o

The requirement that the first variation of J vanish along an optimal

trajectory with final time not specified results in the following neces

sary conditions.

(2.5)



=0 ,2.T)

.The derivation of these equations is adequately treated in several

texts and the reader is referred in particular to Bliss [l] for classical

problem formulations or to the recent book by Sage [5] for a treatment

in the more modern control notation. Equations (2.̂ ) and (2.5) repre-

sent 2n simultaneous ordinary differential equations in the 2n + q-

variables of the vectors X, x, and u. Equation (2.6) provides q con-

ditions by which the q variables of the control vector u can be elim-

inated from equations (2.U) and (2.5) so that 2n differential equations

in 2n dependent variables are obtained. It is assumed that this is

possible, since, in general, it is not always possible to solve explic-

itly for each of the control variables via equation (2.6).

The conditions (2.It) to (2.9) are merely necessary conditions for

an extremum of J. A further necessary condition for J to be mini-

mized is given by the non-negativity of the Weierstrass E-Function

E = F(t,x,X,U,A) - F(t,x,x,u,A) - |?(t,x,x,u,A) (X - x)

9F
- -r-(t,x,x,u,A)(U - u) > 0



. . . 10

T • *
where F = X (f(x,u,t) - x) and X and U are nonoptimal but

permissible values for x(t) and u(t). This condition is normally

applied in conjunction vith equation (2.6). For the example problems

which will be presented, this condition is used to resolve an ambiguity

in sign resulting from the application of equation (2.6) (see Appendix A)

Equations (2.7), (2.8), and (2.9) yield n, k, and one algebraic

equations, respectively, which must be satisfied at the final time.

Since the Lagrange multipliers v are constants, v = 0. Adjoining

these k trivial differential equations with those of equations (2.k)

and (2.5) yields the following 2n + k system

(2.10)

with the 2n + k + 1 boundary conditions needed in the case of unknown

final time, given by

to) -

_

ax 3x

*f

*(X(tf) »*f)' =

H
3t at = o

(n conditions)

(n conditions)

(k conditions)

(1 condition)

> (2.11)
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To simplify reference to these equations, the system (2.10) is

written as an N vector of nonlinear first order differential equations

z = f(z,t) (2.12)

and the boundary conditions (2.11) are generalized to

Zi(to) = Zoi i = 1»2>-"m (2.13)

= ° i = 1,2...(N - m + 1) (

Thus, the solution of the optimal control problem is reduced to finding

the solution of a system of nonlinear ordinary differential equations

with two-point boundary conditions , the terminal boundary conditions in

general being nonlinear functions of the terminal state and unknown

terminal time.

It should be noted that for many problems the terminal conditions

(2.8) may not be very complex, and, as a consequence, the Lagrange

multipliers v may be eliminated from equations (2.1} and (2.9) ana-

lytically so that N + 1 terminal boundary conditions not involving

v are obtained. This allows the deletion of the k trivial differ-

ential equations v = 0 with the associated k terminal boundary

conditions, and thus reduces the dimension of the problem considerably.

This approach is used in the example problems which will be presented,

although the computational algorithm which is developed in succeeding

chapters can be applied to the more difficult problem given by equa-

tions (2.10) and (2.11).



12

Since the system (2.12) is, in general, nonlinear, with two-point

boundary conditions (2.13) and (2.1̂ ), solutions are not easily obtained.

The essential problem involved is to determine the missing initial con-

ditions for the Lagrange multipliers so that at some later time equa-

tions (2.lU) are satisfied.

A numerical method for solving the more simplified version of the

above boundary value problem with fixed final time was considered in

19̂ 9 by Hestenes [12], who also formulated the general optimal control

problem given above [13]. Hestenes [l̂ ] explained that his early work

was not actively pursued due to a lack of interest in the problem.

Breakwell [15], in 1959, published the general control problem

formulation in the form given above and presented numerical results

for a variety of problems. The problems were solved by repeated numer- •

ical integrations of the nonlinear differential equations with perturbed

initial conditions and using an interpolation scheme for determining

the initial conditions which would yield the desired terminal condition.

A similar approach was used by Melbourne [l6], and Melbourne, Sauer, .

and Richardson [IT] for solving fixed time duration optimal payload

trajectories for continuous low thrust orbit transfer maneuvers between

the Earth and several other planets. These efforts are representative

of some of the first attempts to obtain solutions by straightforward

"brute force" tactics. These methods resulted in considerable frustra-

tion and generally poor convergence or no convergence at all. Although

some success was realized through such approaches, the general problems

with convergence motivated the development of the direct methods.
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The systematic algorithms of contemporary indirect optimization

methods can be traced to the papers of Goodman and Lance [18] in 1956

and the work of Kalaba [19] in 1959, although neither of the papers

was directly concerned with trajectory optimization. Goodman and Lance

[18] discussed numerical solutions of systems of linear differential

equations with two-point boundary conditions by the adjoint equations

of Bliss [20], They also proposed a method called complementary func-

tions which utilizes the principle of superposition of particular and

homogeneous (or complementary) solutions. In addition, they outlined

an approach for solving nonlinear problems by relating initial and

final boundary value perturbations of a nominal solution with a system

of linear adjoint equations. Kalaba [19] developed the early ideas

of Hestenes [12] and produced a method conceptually different from those

proposed by Goodman and Lance [18]. This method was called Quasiline-

arization and required iterative solutions of a system of linear dif-

ferential equations which were derived from a Taylor series expansion

of the nonlinear equations. An initial solution approximation

which satisfied initial and final boundary conditions was iteratively.

improved by repeatedly solving the derived linear equations. Kalaba

[19] gave a convergence proof and demonstrated the method for second

order differential equations. .Both of these approaches for solving

nonlinear boundary value problems were restricted to fixed intervals

-of-the-independent variable and s'imple boundary conditions, and, there-

fore, were not directly applicable to the general boundary value problem

considered here. Extensions of the methods soon followed, however,



ll*
and in this thesis those stemming from the ideas of Goodman and Lance

[l8] are called Perturbation methods while those following Kalaba and

Hestenes are called Quasilinearization methods. The Perturbation and

Quasilinearization-classifications will be more clearly distinguished

in Chapter IV.

The adjoint equation Perturbation approach of Goodman and Lance [l8]

was extended to solve variable final time optimization problems by

Jurovics and Mclntyre [21]. Jazwinski [22] developed the method further

to allow for boundary conditions which are general functions of the prob-

lem variables and time. A procedure for handling inequality constraints

on state and control variables was also presented. Breakwell, Speyer,

and Bryson [23] independently derived a method similar to Jazwinski's

through considerations of the second variation of the calculus of

variations.

The.alternate Perturbation approach of Goodman and Lance [18],

involving complementary functions, was also studied by Breakwell, Speyer,

and Bryson [23] and compared to the adjoint Perturbation method from an

operational standpoint of a computer storage requirement versus a matrix

inversion requirement. Lewallen [2U] made extensive comparisions of the'

two Perturbation techniques and found them to have equivalent convergence

characteristics. Further study of the Perturbation methods have been

made by Shipman and Roberts [25] and Lastman [26] to show their connec-

tion with the famous Kantorovich theorem [27] on Newton's method in

functional analysis. Armstrong [28] has proposed a Perturbation method.



which seeks to iteratively reduce a norm of terminal constraint dis-

satisfaction and which displays some characteristics of direct methods.

Adaptation of the Quasilinearization approach for optimal control

problems was studied by McGill and Kenneth [29], [30], who extended

Kalaba's [19] convergence proof for systems of differential equations,

and modified the' method to solve variable final time problems. Their

approach for solving variable final time problems involved the solution

of a sequence of fixed final time problems and was inefficient.

A novel approach for solving variable final time problems with the

Quasilinearization method was developed independently by Conrad [3l] and

Long [32] and involves a change of independent variable to one integrated

between fixed limits. Further extensions and improvement of the change

of variable approach have been proposed by Johnson [33] and Leondes and

Paine.[3^]. Leondes and Paine [3̂ ] have also extended McGill and

Kenneth's [29] convergence proof for problems with bounded control vari-

ables. A different technique for handling variable final time problems

with the Quasilinearization method has been proposed by Lewallen [35]-

This approach is similar to the one used by Jazwinski [22] for the

adjoint Perturbation method, and Lewallen [35] has shown this method to

have convergence properties superior to the other above-mentioned Quasi-

linerization methods. This method is also applicable to problems with

general-type boundary conditions. Numerical techniques for handling

inequality constraints on control and state variables with the Quasi-

linearization method have been studied by Kenneth and Taylor [36] and

McGill [37].
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Although the methods of indirect trajectory optimization are well

developed, the methods sometimes are unable to converge to a solution

from arbitrary initial solution guesses. Van Dine [38], [39] has sought

to circumvent this,problem by solving the linear boundary value problem

of the Quasilinearization approach with a finite difference technique.

Results have been obtained by this approach for fixed final time prob-

lems and control variable inequality constraints, but it is doubtful

whether the accuracy of other indirect methods can be obtained. Although

the method is claimed to avoid the convergence problems of other in-

direct methods, no direct comparisons on convergence have been published.

The comparison of various direct and indirect trajectory optimi-

zation methods by Kopp and McGill [Uo], Moyer and Pinkham [Ul] , Tapley

and Lewallen [U2] and Tapley, Fowler, and Williamson [̂ 3] have pointed

out the desirability for an indirect method with ability to converge

from poor initial solution estimates. These studies have indicated

that direct methods are more likely to converge from poor solution

estimates, but that indirect methods have more rapid and accurate con-

vergence when it occurs.. Various strategies have been suggested for

improving the range of convergence of indirect methods, but implemen-

tation of these strategies often requires considerable skill and effort

on the part of the user in order to retain the rapid convergence char-

acteristics of the methods. Several of these schemes have been investi-

gated by Lewallen, Tapley, and Williams [Ui*]. In spite of notable

improvement with these strategies, convergence sensitivities remain a

problem.
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In the following chapters, a method for solving the nonlinear

boundary value problem is presented, which displays convergence prop-

erties superior to previously published indirect optimization methods.

Both Quasilinearization and Perturbation approaches are considered, and

a Perturbation approach is selected because of its minimum storage re-

quirement, ease of implementation, and fewer necessary integrations per

iteration. The method, which is not developed according to standard

perturbation formulations, reveals a new scheme for handling the variable

final time problem resulting in. a few number of iterations required

for convergence. Numerical difficulties which sometimes occur with

adjoint equations or perturbation equations are avoided through an alter-

nate method for solving linear boundary value problems. A power series

numerical integration scheme is used which allows for a variable inte-

gration step size and simultaneous integration of reference and perturbed

solutions. This eliminates the approximations of functions evaluated

on the reference trajectory necessary without simultaneous integration

of reference and perturbed solutions. The characteristically high

accuracy capability of power series integration, together with elimina-

tion of approximations used in the iterative solution process, give the

method presented here a capability for obtaining extremely accurate

numerical solutions of boundary value problems in ordinary differential

equations. '



CHAPTER III

SOLUTION OF LINEAR DIFFERENTIAL EQUATIONS WITH NONLINEAR

TWO-POINT BOUNDARY CONDITIONS

An integral part of the method presented in Chapter IV for solving

nonlinear boundary value problems requires 'numerical solutions of linear

differential equations with nonlinear boundary conditions. Numerical

methods for solving linear differential equations with linear boundary

conditions are well known and include (l) the method of complementary

solutions [18], (2) the method of adjoint equations [l8] , [20], and,

(3) the method of Green's functions [̂ 5]. An alternate method which has

received attention in several recent papers [̂ 6] to [50].is known as the

method of particular solutions. The method is extended here in order

to solve systems of linear differential equations subject to two-point

nonlinear boundary conditions with an unspecified terminal value of the

*
independent variable.

The method of particular solutions is very similar to the method

of complementary functions with the exception that the general solution

is obtained by superposition of several particular solutions of the given

set of differential equations rather than superposition of a single

particular solution and several complementary or homogeneous solutions.

When numerical solutions with digital computers are to be obtained, the

method of particular solutions displays several important advantages over

the above-mentioned methods. First of all, unlike the other methods,

only one set of differential equations (the given set) need be programed

- 18



19

for solution which reduces the programing complexity. More important,

however, is the fact that each solution integrated is a physically
*

possible solution. Therefore, each equation integrated possesses the

stability inherent, in the physical system model with the result that

solution values at the boundaries are closer in magnitude than would be

expected for values of homogeneous solutions. This generally results

in more numerical.accuracy in the determination of superposition con-

stants from inversion of matrices of boundary values. The first stated

advantage motivated Miele's work [1*6]. Holloway [hj] encountered numer-

ical instabilities with the method of complementary functions and was

led to study superposition of particular solutions because of the second

stated advantage.

Other discussions of the method and various applications to two-

point and multipoint boundary value problems in ordinary and partial

differential equations are given by Luckinbill and Childs [1*8], Baker

and Childs [̂ 9], and Heideman [50]. These applications have been

limited to problems with linear boundary conditions at specified bound-

ary points. A more general approach for solving problems with terminal

boundary conditions given as general nonlinear functions of the problem

variables and an unspecified terminal time is developed below.

Consider the N dimensional linear vector differential equation
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where A and b are a given N x N matrix and N vector, respectively,,

of time varying functions. Boundary conditions are given at the initial

specified time t in the form

=yoi i = 1.2...m<-N (3.2)

and terminal conditions are specified as general functions

hi(y(tf)'tf) = ° i = 1'2'"r < N (3'3)

If the terminal time t is specified, then r = N - m. If t is not

specified, then r = N - m + 1.

A general solution of equation (3.1) satisfying equations (3.2)

and (3.3) can be represented by

S+l
y(t) = E «vP ( t ) , S = N - m

k=l K

with the auxiliary condition

S+l
- y i
k=l k

where any S of the p are linearly independent particular solutions of
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equation (3.1), and the a are superposition constants. Initial

kconditions for the p (t) are chosen such that

= any value

fik

i = 1,2.. .m

i = m+l,m+2...N

k = 2,3...(S+1)
i = 1,2...N

where

rik

1 if i 1 k+m-1

B. if i = k+m-1

0 if i ± k+m-1

Yi if i = k+m-1

and p.

The particular choice of g., and y-k given, insure the condi-

tion for linear independence of particular solutions. The choice of the

constants 3. and y. is free except that 0., y. ? 0, and 6. ̂  1.

These constants can be chosen, depending pn the sensitivity of the system,

to control the magnitude of terminal values of the particular solutions.
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The superposition constants CL are to be chosen so that the

equations in (3»3) are satisfied and the condition for superposition of

particular solutions

S+l
E \ - 1 - 0 '
k=l *

(3.5)

is satisfied. In order to determine the a, , a formal substitution of
S+l •
« *A lr

£j a,p (t) is made for y(t) in equation (3.3), and equation (3-5) is
k=l k •

written as h ^, to obtain an r+1 vector of functions h with elements

(3.6)

=°

For the case where t is unknown, r = S + 1, and equation (3.6)

represents S + 2 nonlinear equations in the S + 2 unknowns a and t .
K. I

The equations in (3.6) can be solved for the a and t,. by a Newton-

Raphson [51] iterative procedure.
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The Newton-Raphson procedure is employed in the following manner.

An initial guess for the a and t is written as a column vector

a(0)

Successive approximations for the proper values of this vector are ob

tained by repeated solution of the. following equation

n=0,l,2. (3.7)

where J is the Jacobian matrix with elements

dh. i
J

1,2.
1,2.

1,2.
S+2

.S+2

.S+l

.5+2

(3.8)

and the n superscript denotes evaluation with the nth approximation for

Jn)



Expanding the derivatives of equation (3.8) and denoting elements

of y(t) by y

î. -f ̂i!rt + !̂  f
da ~ = 9* 8a 8«- " t

since

S+l

. £ j=l

Also,

dh. N 9h. 3h. N 9h. S+l 3h.
1 V 1 '• /, \ 1 V l / V ^ •*/. \ I . 1

The method of solution requires the forward integration of the
\r

(S+l) particular solutions of equation (3.1), p (t), with initial con-

ditions given "by equation (3.*0 from t to some assumed final time

t . At the assumed final time, the Jacobian matrix and the functions
El

h. are evaluated using initial guesses for the ot. . The equation (3.7)

yields new approximations for a, and t . To continue the iteration

of equation (3.7). it is necessary to integrate the particular solutions

from the assumed final time to the new estimate for final time. The

forward and backward integrations which may be necessary from the se-

quence of final times generated by the iteration of equation (3.7) may

be excessively cumbersome for some numerical integration methods. How-

ever, the power series integration scheme discussed in Appendix B is

veil suited for this problem.
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Application of the power series integration method yields Mth order

polynomial approximations for p.(t ) and Pn̂ f.) written as

(3.10)

where the i . and b . are known power series coefficients
K,x,l *•»*•»!

determined by the method of Appendix B and t is used as the origin
EL

of the power series expansions. If t is sufficiently close to the
» - ^*

true final time, the equations (3.10) represent sufficiently accurate

formulae in the application of equation (3.7). If | (t .. - t )| becomest a

too large, a new center of expansion can be used as explained in Ap-

pendix B so that a specified accuracy is retained.

With sufficiently close initial approximation for a arid t ,

the sequence (3.7) is rapidly convergent and yields the desired values

for the OL and t . Upon convergence of equation (3.7), the general

solution of equation (3.1) satisfying equation (3.2) and equation (3.3)

can be obtained by integrating (3.1) over the interval [t ,t ] with

initial conditions

S+l

i = m+l,m+2,...N
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In this manner, the solution y(t) can be constructed without storing
1_

the solutions p (t).

Although the method requires initial approximations, this has not

been found to be a-problem. If it happens that estimates are available

for the missing initial conditions, then using these estimates for

p (t ) implies a should be chosen near unity with other values of

a, near zero. A very accurate method of estimating the a, is obtained

when the method is used in an iterative technique for solving nonlinear

boundary value problems. This is discussed in the following chapter.



CHAPTER IV

METHODS FOR SOLVING NONLINEAR TWO-POINT BOUNDARY VALUE

PROBLEMS WITH NONLINEAR BOUNDARY CONDITIONS

A fundamental idea in most contemporary methods for solving non-

linear boundary value problems in ordinary differential equations is to

iteratively solve an associated set of linear differential equations.

The solutions either converge to the nonlinear solution or provide a

sequence of initial conditions which converge to the proper set of

initial conditions for the nonlinear system. The linear differential

equations are obtained by Taylor Series.expansions of the functions

defining the nonlinear system. This linearization process is common to

many methods appearing under the various titles of Quasilineariza-

tion [19], [31], [35]; Generalized Nevton-Raphson Method [30], [32];

Modified Newton's Method [26]; Second Variation Methods [23]; Adjoint

Method [21]; and Method of Perturbation Functions [1*2], The systems

of linear differential equations used by these methods are similar and

in .many cases identical. However, the actual sequence of approximate

solutions generated may differ considerably depending on the type of

initial solution approximation used, the manner in which given boundary

conditions are employed, and the reference solution used in the linear-

ization expansion for each iteration.

The type of re~ference ̂solution used for each iteration provides a

basic classification of the methods into two groups which in this thesis

will be called Perturbation methods and Quasilinearization methods.

27
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Perturbation methods use a solution of the given nonlinear system with

approximate values for unknown initial conditions as the reference solu-

tion. The reference solution for Quasilinearization methods is a solu-

tion of a system of linear differential equations derived from the

nonlinear system. Both Quasilinearization and Perturbation methods are

developed below using the ideas of Chapter III for obtaining solutions

of linear systems with nonlinear boundary conditions. The Quasilineari-

zation method obtained is recognized to be very similar to one proposed

by Lewallen [35]. The Perturbation method obtained is significantly

different from previously derived Perturbation methods and offers some

decided advantages over presently known methods .

Consider the system of N nonlinear differential equations

z = f(z,t) (U.I)

with initial conditions

Zoi

and final conditions and final time given implicitly as the first time

the following q = N - m + 1 vector of functions is satisfied

h[z(tf),tf] = 0 (1*.3)

In general, a solution of equation (U.l) with initial conditions, equa-

tion (U.2), and arbitrary values for the unspecified initial conditions

will not satisfy the terminal conditions, equation (U.3). Denote such a

solution by z(t), where the superscript is used to index the first
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approximation to a solution of equation (U.l) satisfying both the initial

and final conditions.

Let w(t) be an N vector of functions satisfying

h[w(tf),tf] = 0

as well as the differential equation

w = f(w,t) t < t < t. (U.U)o ~ ~ i

vhere the vector of functions f in equation (U.U) is the same vector

of functions appearing in equation (U.l). Clearly, w(t) is a desired

solution of equation (l+.l) satisfying both equations (k.2) and (*t.3).

The functions appearing on the right-hand side of equation (U.U) can be

expressed in a Taylor series expansion about the reference or approximate

solution z(t). That is

If the expansion is truncated after the second term, the following

linear differential equation, which is an approximation to equation (U.5),

is obtained

y = A(t)1y + b(t) (U.6)
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where

A(t) = *

and

b(t) = f̂ z.t) -

A solution of equation (U.6) subject to the boundary conditions,

will yield an approximation for w(t). The solution y and correspond-

ing value for final time t can be obtained by the method of particu-

lar solutions described in Chapter III. The accuracy of the approximate

solution obtained depends on the closeness of the solutions z and w.

Assume for the present that z is sufficiently close to w so that

y is a better approximation than z. The manner in which additional

approximate solutions are obtained determines whether the approach taken

is categorized as a Perturbation method or a Quasilinearization method.

A Quasilinearization Method

Since y is a time varying vector of functions which is a better

approximation for w than is z, then it is reasonable to replace z
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with y in the Taylor series expansion of equation (̂ .5). The linear

differential equation (U.6) is then written

(V,t) * a%*I (2y - M (k.9)

and a solution of this equation subject to the given boundary conditions

2
provides a new approximate solution" y. According to the definition

set forth previously, this is a Quasilinearization method, the reference

solution in the Taylor series expansion being a solution of the linear-

2ized differential equation. Using y as the next reference solution

yields y and so on for y, y, y,...ny. Under appropriate condi-

tions provided by the convergence proofs of references [29] and [3**]»

the sequence of solutions y converges to the desired solution w.

These convergence proofs are restricted to problems with more simple

boundary conditions than those expressed in equation (U.3).

A closer observation of the Quasilinearization method with regard

to the technique presented in Chapter III for.solving the linear system

with nonlinear boundary conditions reveals a fundamental difficulty. It

2 2may happen that t _, the terminal time corresponding to the solution y,

may be larger than t , the value of t obtained in the solution

for y. In this case, y is not known beyond t_, and the differen-
o

tial equation (U.9) is not defined over the necessary range t < t < tf.

^However, if only one"Newt6h-Raphson iteration with equation (3.7) is made,

and a linear extrapolation for y is used on the interval t , t ,

it is not necessary to integrate y past t. in order to construct
n

y and a workable iterative scheme is realized. Lewallen [35], using
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somewhat different arguments, has presented a Quasilinearization method

which solves the variable final time problem essentially in the same

manner proposed here. The primary difference between the method sug-

gested here and the one proposed by Lewallen is that particular solutions

rather than homogeneous solutions are used to construct the general solu-

tion of the linear system.

Lewallen [35] has compared this Quasilinearization approach with

the Quasilinearization techniques described by Long [32], and McGill and

Kenneth [30], and has found this particular approach to have better con-

vergence characteristics. Another attractive, feature of the method is

the capability for solving problems with general terminal boundary con-

ditions of the form given in equation (U.3).

A Perturbation Method

In order to proceed with the development of the Perturbation method,

it is assumed that y (the solution of the problem defined by equa-

tions (H.6) to (U.8)) has been obtained. It is further assumed that y

is a better approximate solution than z. (A method for satisfying

this assumption is discussed later in the presentation.) In particular,

y(t ) should be a better approximation for w(t ) than was z(t ).

It is reasonable to expect that a solution of equation (U.l) using ini-

tial conditions, y(t ), will be a better approximation for w than

1 2 1 2was z. Such a solution is denoted by z. Replacing z with z
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in the Taylor Series expansion (U.5) and the associated linear differen-

tial equation (U.6) yields

2
If the solution y is to closely approximate w, it must also satisfy

similar boundary conditions, hence

y. ft \ = z .1711 o; 01
(U.ll)

2
The solution y can be obtained by the method described in Chapter III,

*

and the difficulty with final time encountered with the Quasilineariza-

2
tion method can be avoided. This is accomplished by generating z by

integration of equation (U.l) simultaneously with the integration of

all particular solutions of equation (U.10). In this manner the refer-

2
ence solution z is integrated to each estimate of final time required

2by the algorithm of Chapter III. The solution z is thus defined over

the entire range of time required for the solution of equation (U.10) sub-

ject to the boundary conditions (U.ll). Consequently, as many Newton-

Raphson iterations as desired with equation (3-7) can be made. This gives
P

one the capability to obtain the initial conditions y(t ), so that the

terminal conditions (U.ll) are satisfied as accurately as desired. This

capability has not been possible with existing methods for solving the
P

problem defined by equations (U.l) to (U.3). Once y(t ) is determined,

a third reference solution z can be generated by integration of
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equation (l*.l) using initial conditions y(t ). The new reference solu-

tion allows continuation of the iterative process. If z is suffi-.'

ciently close to w, the sequence of initial conditions y(t ) converges

to w(t ), and hence, z converges to w. By the definition set forth

previously, this process is a Perturbation method, since the reference

solution at each, iteration is a solution of the given nonlinear system.

Modifications for Improving Convergence

In the foregoing discussions of Quasilinearization and Perturbation

methods, it was assumed that the starting solution z was sufficiently

close to the true solution w, so that convergence of the methods resulted.

In practice, it is sometimes difficult to find an initial approximate

solution which will lead to convergence. Consequently, various modi-

fications of the basic methods outlined above have been proposed to

improve convergence characteristics [23], [26], [31*], and [UU]. These

modifications are commonly referred to as "iteration schemes" or "con-

vergence schemes," and the usefulness of a given method is often closely

tied to the "convergence schemes" employed. Two modifications to the

basic procedures described above are discussed here. They should be

considered to be integral parts of the basic methods rather than

schemes which are Just added on.

Consider a simple version of the nonlinear problem described by

equations (̂ .l) to (U.3) such that the terminal time is specified and

terminal boundary conditions are given in the form

Zi(tf) S Zfi i - k + l,k + 2,...(k + N - m)
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for some k. (The restriction of fixed final time in this discussion

can be removed by employing the transformation of independent variable

as described by Conrad [3l] and Long [32].) The following discussion

assumes that the Perturbation method is used, but parallel arguments

can be made for the Quasilinearization method.

An approximate initial solution z is obtained in the manner

described previously to yield at the fixed final time the values

i = 1,2,... N

Let w be a solution of the problem. Instead of, as before, seeking

an approximation for w on each iteration, a function w (in this case

n = l) is sought which has initial conditions

= Zoi

and terminal conditions

n n i = k + l,k + 2,...(k + N - m)
V(.tf) - '„ Mi - ..} %(tf)

0 < e < 1

That is, w has terminal values between those of the reference.

solution and the. desired solution. By choosing e sufficiently small

the approximation
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with

i = k + l,k + 2,...(k + N - m)

can be made as accurate as desired. To insure convergence, the approxi-

mation must be sufficiently accurate such that the initial condition

vector

n+1

is sufficiently close to nw(t ), and hence, n+1z(tf) sufficiently

close to nw(t ), so that n+1z(t ) is closer to w(t ) than is nz(t ),

By choosing e sufficiently small, initial conditions for successive

reference solutions are obtained which yield terminal conditions closer

to the desired conditions than the previous reference solution. Repeti-

tion of the process for n = 1,2,3... results in the construction of

a sequence of terminal conditions nw(t ) converging to v(tfl), a

sequence of initial conditions nz(t ) converging to nv(t ), and hence,

solutions z converging to w.

A practical consideration is that some method for choosing E is

necessary. From the above discussion it is apparent that there exists a

value at each iteration which will work, but no a priori means of deter-

mining e at each iteration is known. A trial and error method could

be employed but this could 'be very inefficient. A simple method for
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choosing e is proposed here which is based on practical considerations

and which improves chances for convergence in a specified maximum number

of iterations. Since it is . apparent that the numerical methods proposed

here will be used only with the aid of digital computers , it is always

necessary to limit the number of iterations which can be attempted in

order to conserve computer time and costs .

First it will be noted that the -scheme given above for choosing

boundary values is equivalent to the following procedure.

1. Solve equation (U.12) subject to the given initial and terminal

boundary values

= zfi i = k + l,k + 2,...(k + N - m)

2. Using the method of Chapter III, determine trial values for

the missing initial conditions

ny.ft \ i=m+l,m+2,...N

3, Compute a final set of missing initial conditions for the next

reference trajectory z from

n+1 .
z,

It is shown in Appendix C that the values -obtained for z.(t ) using

a given e are equivalent for both the case where terminal conditions
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are modified before solving for initial conditions and the case described

in steps 1, 2, 3 above. Implementation of the second approach is easier

than the first approach described because the change in initial conditions

can be computed before choosing e. Furthermore, the latter method is

simpler to apply for the more general problem with unspecified final

time and nonlinear terminal boundary conditions, since it is only nec-

essary to modify the missing initial conditions computed for each new

reference trajectory.

The following method for choosing e is proposed. Let M be the

maximum number of solution iterations which can be allowed because of

limitations of computer time and costs. When initial guess values are

chosen for the missing initial values of the starting solution, also

estimate the maximum deviation of a guessed value from its true value.

Denote the maximum of the estimated deviations by d. Also choose a

suitable norm for measuring the computed change y(t ) - z(t ). For

example

0PVt ^ <Vt Yl -p[y(tQ), z(to)J -

N

N - m
i=m+l

Compute a maximum allowable "initial condition change step size" from

d ^ A '
6 « — , for example, 6 = -j- — : On each reference trajectory iteration,
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compute the norm, p[ny(t ),nz(t )], and compare, its value to <5 .

Choose e according to

6

(U.13)
if p[ny(to) ,

n
Z(tj| < 5

Initial conditions for successive reference trajectories are computed

from

n+1z,

(U.uo

For variable final time problems it may also be necessary to modify

successive final time estimates according to

* \ + e nAtf (

where nAt is a computed change for final time determined in the

solution for ny(t ).

The attractive features of this method for inducing convergence

from poor initial estimates is that (l) very little effort on the part

of the user is required (all he must do is choose 6), (2) as the solu-

tions begin to converge, the scheme does not retard convergence and

(3) chances for convergence with one computer run are" maximized con-

sistent with available computer time. Of course, if 6 is chosen to

be much smaller than necessary, the rate of convergence may be slowed
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considerably. On problems which do not display convergence sensitiv-

ities, 6 should be chosen arbitrarily large so that rate of conver-

gence is not retarded.

In situations where 6 is chosen to be too large, a second modifi-

cation -can be employed which may induce convergence." When 6 is too

large, a typical behavior is for initial conditions to be chosen in the

proper direction for several iterations but then as the true values are

approached, one or more of.the unknown values may oscillate about its

true value on successive iterations. When this occurs, halving the

computed change for the oscillating value will bring it closer to its

true value. Thus, the following procedure is proposed.

(a) Compute z./t \ as described above,

i = m + l,m + 2.. .N

ft,) Compute (U.16)

(c) If the above quantity is less than -1/2, compute

n+1zjt \ = nz.(t \ - tfnz./t } - "̂ z./t }]
i\ o) i\ o) 2|_ i\ o) i\ ojj

If the quantity in (b) is positive, the particular element of the vector

is not oscillating on successive iterations. If the quantity in (b) is

negative but larger than -1/2, then the oscillation has a convergent

nature. In either case there is no reason to modify the computed value

for n z.(t ). This modification may also be applied to successive

final time estimates for variable final time problems.

There are other possible variations of the two basic modifications

presented above. For example, one might reduce the value of 6 whenever
i
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the norm p[ny(t ),nz(t )] is computed to be less than 6, .and/or 6

might be reduced whenever oscillation of one or more initial condition

values or final time value occurs. Details of such procedures are best

worked out through numerical experiments. When upper and lower bounds

are known for missing initial conditions and/or final time, these bounds

should be imposed in the event that the values chosen violate these bounds.

Comparison of Quasilinearization and Perturbation

Computational Requirements

A basic goal of this investigation is to formulate an-improved com-

putational method for solving nonlinear two-point boundary value problems.

While convergence characteristics are a major concern, other factors

such as ease of implementation, computer storage requirements, computer

time per iteration, and control of solution accuracy are also important.

Two basic methods, Quasilinearization and Perturbation, have been pro-

posed from a theoretical standpoint. A comparison of the computational

requirements and restrictions of each method is made here. This com-

parison reveals the Perturbation method to be a more efficient computa-

tional scheme, especially when used in a unified approach with the

particular solution method of Chapter III and the power series numerical

integration method discussed in Appendix B.

A distinctive computational feature of the Quasilinearization

method, often considered-to-be-an advantage of "the" method, 'is" that" I~t~

is not necessary to program the given nonlinear system of equations for

solution. For convenience in the previous presentation of the method,



it vas assumed that an initial guess solution was obtained by integra-

tion of the given nonlinear system with assumed initial conditions.

This is not necessary since any guess solution satisfying only the bound-

ary conditions can be used. This "advantage" of the method is lost,

however, if a starting solution is generated by integration of the non-

linear system. With the Quasilinearization method, one has an option of

storing each particular solution of the linear system at each integra-

tion step and forming the reference solution by the properly weighted

sum of these solutions, or one may avoid the storage problem by.inte-

grating the linear system with the proper initial conditions to form the

reference solution. With reference to equation C+.9), the. latter approach

still requires that the values for f(ny,t) and 8f(ny,t)/8z ny be

stored at each numerical integration step. To simplify access to these

stored quantities, one is forced to use numerical integration schemes

which use a fixed integration step size. The choice of this step size

is influenced not only by truncation error of the numerical integration

scheme, but also by the required spacing of the stored quantities in

order to achieve the necessary accuracy for the approximation of these

functions along the reference trajectory. Thus, selection of integra-

tion step size in order to achieve a specified final solution accuracy

is not a routine matter. The restriction to fixed numerical integration

step size could be a serious handicap for problems where considerable

integration speed and accuracy are realized through frequent changes in

integration step size. Many of the boundary value problems arising in

optimal control theory (for example, those in interplanetary navigation)
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have this property. The Quasilinearization method, with the minimum

storage option, requires N - m + 2 integrations of the linear system

(eq. (U.9)) at each reference solution iteration since N - m + 1

integrations are required to determine the proper initial conditions,

and then these initial conditions must be used in one additional inte-

gration of the system to generate the reference trajectory.

In comparison, the Perturbation method offers some unique computa-

tional advantages. Since it is never necessary to generate the entire

solution of the linear system (U.12), but only the initial conditions

y(t ), there is no need for storing perturbed particular solutions of

the linear system. Furthermore, since the reference solution ~z can

be generated by simultaneously integrating equation (U.l) forward with

all particular solutions of equation (U.12), the quantities f( z,t)

and 8f( z,t)/8z z appearing in equation (U.12) need not be saved.

They are merely computed from z at each integration step, used in

all integrations of equation (U.12) for the integration step, and then

discarded. With this procedure, variable step integration schemes may

be used since there is no need to restrict end points of numerical inte-

gration steps to coincide with previously stored information.

The combination of simultaneous and variable step integration of.

the nonlinear and linearized differential equations which is possible

with the Perturbation method provides an additional adya.nta.ge_ for this

approach. The variable step capability allows one to use integration

schemes which automatically determine an integration step size to yield
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a specified solution accuracy. The simultaneous integration of the non-

linear and linearized equations not only eliminates storage of the func-

tions f(nz,t) and —. * nz, but it also eliminates the necessity
d Z

for interpolation schemes used to convert discreet values of these func-

tions into more accurate approximations over the integration step. Si-

multaneous integration automatically provides the interpolation for

these functions through the mechanics of the particular integration

scheme used. With the variable step power series integration method

discussed in Appendix B, Taylor series expansions of these functions are
/

generated which yield an approximation accuracy equal to the desired

integration accuracy. The automatic step size selection of this method

also relieves the user of the burden of determining beforehand an

acceptable integration step size.
i

In addition to the above-mentioned computational advantages of the

Perturbation method over the Quasilinearization method, the Perturbation

method requires one less numerical integration per iteration of a com-

parable set of differential equations. This may not be immediately

obvious since it has been previously indicated that N - m + 1 integra-

tions are required to solve the linear system (U.12) and one integration

of equation (l+.l) is necessary to construct the reference trajectory.

This totals to N - m + 2 integrations per iteration, but only

N - m + 1 are required if the following observation is made.

Theorem 1: A solution z of the nonlinear system (U.l) is iden-

tical to a particular solution of the linear system (1+.12) if

"initial conditions of'the two solutions are identical.
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Proof: Let p be a particular solution of equation (1+.12) and let

z be a solution of equation (U.l). Let x be defined

x(t) = p(t) - nz(t)

which implies

x(t) = p(t) - nz(t)

Since p satisfies equation (k.1.2) and z satisfies equation (U.l),

n« Jn A 8f(nz.t)f n \ Jn .x = p - z = f( z,t) + —^p - z) - f\ z,t

or

x - !!( n } 3f\ z.t

Now this is a homogenous linear differential equation, and by

hypothesis

For these initial conditions, it is well known (see, for example,

Petrovski [52]) that the solution for x(t) is

x(t)-= O '--
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which implies

p(t) = nz(t)

and thus the proof is complete.

Using this theorem, one of the N - m + 1 integrations of equation (U.12)

can be eliminated since the reference trajectory z can be used in its

place.

A further point of comparison of the computational requirements

for Perturbation and Quasilinearization methods is concerned vith the

manner in which convergence is detected for the methods. For the

Perturbation method, a direct indication of convergence is given when

the reference trajectory satisfies the terminal boundary conditions to

some specified accuracy, or when the change in the initial condition

vector is less than a specified accuracy. However, with the

Quasilinearization approach, the reference trajectory does not satisfy

the nonlinear system until convergence has occurred. To determine when

successive trajectory iterations are converging, it is necessary to

compute some suitable norm p[ y(t), y(t)]. The computation of this

norm requires a comparison of the successive reference trajectories at

each integration step and consequently requires additional programing

and computer time.

This comparison of the computational requirements and restrictions

of the Quasilinearization and Perturbation methods indicates that the

Perturbation method is somewhat easier to implement, and is better

suited for adaptation with the method of particular solutions described
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Appendix B. Outlined below is a computational algorithm which combines

these various concepts together with the proposed modifications for

extending the range of convergence in a unified method for solving the

nonlinear two-point boundary value problem in ordinary differential

equations.

The Particular Solution Perturbation Method

To obtain an efficient computational algorithm utilizing the con-

cepts set forth in this chapter and the preceding chapter, a study of

the manner in which these various ideas are incorporated into an inte-

grated framework is in order. Because the Perturbation concept is

employed with the method of particular solutions, the algorithm described

below is referred to as the Particular Solution Perturbation Method (PSPM)

On each solution iteration, the PSPM requires a simultaneous for-

ward integration of the given N dimensional nonlinear system

nz = f(nz,t) (

together with S forward integrations of the derived linear system

.

_ where S = N - m and -m -is the numb'er of specified" initial conditions

- zol
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The terminal conditions specified for the nonlinear system are assumed

to be of the form

hi[z/tf),tf~| = 0 i = 1,2,. . .(S + 1)

so that the linear system is to satisfy boundary conditions given by

Using the method of particular solutions, y is expressed

Subject to

S+l
ny(t) = E «k np (t)

k=i k n

S+l

where any S of the p - are linearly independent particular solutions

of equation (Ii.l8), and the a are superposition constants. Theorem 1
K.

is used to write
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and the systems (U.IT) and (U.18) are written

n
.1
p =

.k
JE> =

8z

8f

n

I/'*) 1
9z

;/>')

k = 2,3,...(S + 1)

with m initial conditions for each solution provided.by

. ft \ = z •o/ 01

and other bovmdary conditions

S+l

S+l

i = 1,2,...m

k = 1,2,...(S + 1)

=0 i = 1,2,. ..(S + 1)

= 0

(U.20)

(U.21)

to be satisfied by selection of proper values for a and tf.

Since only m initial conditions for the solution p .are speci-

fied, the remaining S missing initial conditions are taken to be the

best available estimates for these values. For n = 1, the missing

initial conditions are. actually estimates, but for' n ~=~273;lr,.".. , the"

initial conditions are provided by the algorithm in the manner described

previously for nz(t ) (eqs. (U.lU) and (U.l6)). Initial conditions for
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k 1
the p , k = 2,3,...(S + l) are determined from p according to

the scheme of equation (3.1*),

Vik

i = 1,2,...H

k = 2,3,...(S + 1)

where

Yik =

if i ^ k + m - 1

[3. if i = k + m - 1

if i

(Y. if i = k + m -. 1 and

> (U.22)

and 3. and y. are perturbation factors prescribed by the user in

order to control the magnitude of deviations between the various partic-

ular solutions.

At each iteration of the PSPM, S + 1 vector differential equa-

tions (U.20) are integrated from t to the best estimate for t , and

the Newton-Raphson algorithm, equation (3.7), is used to determine

values of a and t which satisfy the boundary conditions (U.21). .

However, in order to efficiently incorporate this algorithm into the

PSPM, the following observations are' made. Each iteration of the

Newton-Raphson algorithm yields estimates of the superposition constants

'from which an estimate of the initial conditions

S+l
ny/t } = V av p

k/t
\ °) £1 k n \
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can be made. This estimate can be used to compute an estimate for the

change in the initial conditions of the nonlinear system, Az(t ),

where v

S+l

Using equation (k.22) and simplifying, the estimated change in initial

conditions can be -expressed as a function of the a and perturbationit

factors

nAz i/tQ) =0 . i = l ,2 , . . .m

i = m + l , m + 2 , . . . N

k = i - m + 1

A suitable norm for this estimated change p[ Az( t )] can be computed

arid compared to the maximum allowable norm for this change (the value 6

appearing in eq. (U.13)) . If

> 6

then additional iterations of the Newton-Raphson algorithm are not use-

ful since this would only serve to compute Az(t ) to greater accuracy,

with the subsequent application of the convergence modification (U.lU)

wasting this effort. Therefore, in this situation, only one Newton-

Raphson iteration should be made. When the norm of Az(t ) is less

than 6, then an indication that the PSPM is in the terminal stages of
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convergence is obtained, and continued'.iterations of the Newton-Raphson

algorithm can be expected to yield better estimates of the unknown

initial conditions and final time. The effect of the number of Newton-

Raphson iterations allowed for the case when p[nAz(tQ)] is less than

6 is a subject of investigation in the following chapter.

When the final Newton-Raphson iteration is made on each reference

solution, and the subsequent estimate of nAz(t ) is obtained, the

modification (it.l6) is applied to yield a final value for Az(t ).

Initial conditions for the next 'reference solution are then computed

from

•-.P1^ } = p1^ \ + nAz(t \
n+1̂  ^ o) n^ ^ oj ^ o)

In this manner, if convergence occurs, the initial conditions

p (t ) converge to the proper initial conditions of the desired non-

linear solution. Since ny(t) also converges to the desired nonlinear

solution, the following result is obtained at convergence

S+l

' £a* -1

This condition is satisfied if an = 1 and "a_ = a_ = ... = a_ , = 0.
_L <- J

Besides offering a simple and positive test for convergence of the PSPM,

the above mentioned final converged values for the a provide reason-
K.

able estimates for these values which, are required by the Newton-Raphson

algorithm. These estimates become increasingly more accurate as the

PSPM converges.



53

In the next chapter, the convergence characteristics of the PSPM

are investigated and compared with published results for other Perturba-

tion and Quasilinearization methods. The effects on convergence by the

various modifications are investigated separately in order to evaluate

the effectiveness of each.



CHAPTER V

DISCUSSION OF RESULTS

In this chapter, the convergence characteristics of the Particular

Solution Perturbation Method (PSPM) are investigated on tvo typical

nonlinear boundary value problems which result from the formulation of

an optimal control problem for solution by an indirect method. The

problems are formulated from the same basic optimal control problem and

differ only in the boundary conditions which are imposed. The basic

control problem considered is the determination of the thrust vector

control for a minimum time, planar, Earth-Mars, orbit transfer for a

spacecraft with a continuously firing, low-thrust rocket engine. This

problem was selected because it has been used to test several other

optimization methods, and consequently considerable data were available

from which a direct comparison of results could be made.

The equations of motion for the thrusting rocket are formulated in

heliocentric, polar coordinates where only the gravitational attraction

of the Sun is considered (Fig. 1). In addition, it is assumed that the

thrust vector of the rocket can be turned continuously and effortlessly

so that the spacecraft is idealized as a point mass with negligible

rotational dynamics. The nonlinear ordinary differential equations to
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Sun

Figure 1.- Coordinate system.

be solved for the determination of minimum time transfer trajectories

are derived in Appendix A and include the spacecraft equations of motion

Zl - U = r~

• •
Z2 = V =

= r = u =

r

GM T . 0

~ + m sin 8 = flr

T
m C°S

• •

= m = -c = f



56

and the associated Euler-Lagrange differential equations

*6 ' Xl " (F>2 - X3 ' f6

. . /v , _

" 1 " 2 8

- V ° - f9

where T is the constant thrust of the rocket, c is the constant

mass flow rate of the exhaust, GM is the gravitational constant of

the Sun, sin g = -A /J X 2 + X~ and cos g = -;>12//VA1 + X2 '

Example Problem 1

For the first example problem considered, it is required only that

the spacecraft reach an assumed circular Mars orbit with zero radial

velocity and tangential velocity equal to that of Mars. The final

angle 6 is not specified. The known initial conditions are the posi-

tion, velocity, and mass of the spacecraft as it leaves an assumed

circular Earth orbit; the normalized value of one Lagrange multiplier;

and a known zero value for the constant A, , which results from not

specifying a value for 9(tf);

MM =
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The normalization of the Lagrange multipliers and other system param-

eters is discussed in Appendix A. The terminal boundary conditions at

the unknown final time are

h2|"z(tf),tfj = Z2(tf J - 0.81012T28 = 0

h3[z/tfj,tfj = Z3/tfJ - 1.5236790 = 0

For this problem, the dimension of the vector Z is N = 9, with m = 7

specified initial conditions and S + l = N - m + l = 3 terminal condi-

tions given since final time is unknown. The unspecified initial condi-
/

tions are

MM
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Example Problem 2

For the second example problem, it is required that the final

spacecraft central angle 6(tf) be equal to the central angle of Mars

at the time of rendezvous. The central angle of Mars at the end of the

transfer trajectory is computed from a known central angle of the planet

at the beginning of the transfer, the constant angular velocity of the

Mars about the Sun, and the time of flight,

Thus, for this problem an additional terminal boundary condition is

added to the set given for example problem 1,

Since, in this case, the terminal value of 6 is constrained, X,

cannot be determined to be zero, and the initial and constant value for

A i is unknown. Therefore, for this example problem there are three

unspecified initial conditions: X (t ), X (t ), and X,(t ).

Numerical Results for Example Problem 1

The solution of example problem 1 provided correct initial multi-

plier values and final time as follows:

= -O.U9U865
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= -1.07855

tf = 3.319̂ 37 (1 time-unit = 53.132355 days)

These values were obtained using a relative error "bound of 10 with,

the power series integration scheme of Appendix B. .Convergence of the

PSPM was detected by requiring that the sum of the absolute values of

-1+the superposition constants a? and ct_. be less than 1 * 10 . For

this problem, this convergence criterion was more demanding than requir-

ing that the initial condition and final time changes be less than the

specified convergence tolerance, since it was observed that changes in

these values were about one order of magnitude smaller than values of

a2 and a_. All computations were made in single precision arithmetic

(eight significant figures) on the Univac 1108 digital computer. Each

iteration of the PSPM required approximately 2 seconds of computer time.

In order to evaluate the convergence sensitivity of the PSPM to

initial guess values for A.. , X , and t , the problem was solved many

times using starting guesses which deviated from the true values by

known percentages. The deviations from the true values were chosen in

a systematic manner so that the data could be presented in the form of

convergence envelopes. The convergence envelope shown in Figure 2 was

constructed from all initial guess data having a final time error of

-20 percent (a guessed final time less than the actual final time).

The convergence envelope was formed by locating the percentage devia-

tions used for the initial guess- values of the two Lagrange multipliers

on a Cartesian coordinate grid. Each problem attempted was located on
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the grid by a small circle. Darkened circles represent initial guess

values which did not lead to convergence in 20 iterations of the PSPM.

Open circles containing numbers represent initial guess values for the

multipliers which did lead to convergence, and the numbers in the cir-

cles represent the number of iterations required. On divergent trials,

typical behavior of the method was to successively select multiplier

changes in the wrong direction on each iteration. Also shown in Fig-

ure 2 is the boundary of a convergence envelope obtained for this prob-

lem by Lewallen [2U], who investigated and compared several trajectory

optimization methods. In reference [2U], similar sized convergence

boundaries were presented for three methods; the Method of Adjoint

Functions studied by Jazwinski [22]; the Method of Perturbation Func-

tions discussed by Breakwell, Speyer, and Bryson [23]; and Lewallen's [35]

Modified Quasilinearization Method. These methods typically required

11 to 20 iterations for initial multiplier errors-along the outer edge

of the convergence boundary shown. The superior convergence characteris-

tics of the PSPM are evident.

Presented in Figures 3 and U are similar convergence envelopes for

cases with 0 percent and +20 percent deviations in initial guesses for

'final time, respectively. Also shown in these figures are typical con-

vergence envelopes presented in references [2U] and [U2] 'on the same

problem with the_ three .methods, mentioned previously.. _The. superior con-

vergence characteristics of the PSPM are again indicated by these data.
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The most probable reasons for this marked difference in convergence

characteristics of the PSPM and the other methods (which are quite simi-

lar methods) are discussed below.

For the data presented in Figur.es 2, 3, and U, the value used for

the maximum allowable initial condition step size norm, & of equation

(U.13), was 0.5. Each time that the requested step size norm was less

than 6, the value of 6 was set equal to the norm of the requested

change. For significant errors in the initial values of the Lagrange

multipliers, typical values for p[ AZ(t )], the norm of the requested

change in \,(t ), X (t ), and t_ varied between 8 and 5000. This

means that for some cases, the value of E used in the convergence

modification of equation (J+.l^) was on the order of 1 * 10~ and the

requested changes in A., (t ), A (t ), and t were reduced by this

fraction. In comparison, the various methods studied in references [2U]

and [1*2] were implemented with a fractional correction scheme which had

the essential effect of halving the computed initial condition changes

and final time changes on the first few iterations. With this scheme,

for multiplier errors below the indicated boundary in Figures 2, 3,

and U, the first iteration yielded multipliers in the upper part of the

envelopes. The PSPM also diverges in these upper regions due to sub-

sequent multiplier changes being selected in the "wrong direction."

However, for multiplier guesses in the lower half of the envelopes, the

fractional correction computed for the PSPM was sufficiently small to

prevent "stepping over" the solution. Had the PSPM been implemented

with the fractional correction scheme of references [2k] and [U2], the

PSPM convergence characteristics would have been similar to the
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convergence characteristics of the methods studied in these references.

However, not all of the desirable convergence characteristics of the

PSPM can be attributed to this one item alone. It is expected that many

cases which converged with the PSPM would not have if the convergence

modification (U.l6) had not been used.

A vivid illustration of the importance of the modification (U.l6)

is presented by the data of Table I. These data represent the values

of the Lagrange multipliers and final time estimates obtained on suc-

cessive iterations with and without the convergence modification (k.l6).

The initial guesses correspond to multiplier errors of 0 percent and

-50 percent with a terminal time error of -20 percent. The PSPM will

never converge from these initial guesses without the modification, and

with it convergence is obtained in eight iterations. Of the eight iter-

ations, only three required application of the modification as indicated

by the (H) symbol in the table for values affected by the halving

feature. .

Another feature of the PSPM which contributed in part to the good
^

convergence performance shown in Figures 2, 3, and k was the use of

upper and lower bounds for t,,. Upper and lower bounds of H.1+ and 2.2

were specified, and although these bounds were rarely approached, they

were imposed in several instances. Since bounds on the Lagrange multi-

pliers A, (t ) and. X?(t ) were not easily determined, no upper and

lower bounds for their values were specified in this study.

For those starting guesses indicated in Figures 2, 3, and U which

did not lead to convergence of the PSPM, the typical behavior of the
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PSPM was to select both multiplier initial value changes to be in the

wrong direction on each iteration. Usually after 20 iterations the

magnitude of the initial values for A (t ) and X_(t ) were so large,

that the effects of X_ on the solution of the Euler-Lagrange equations

were negligible. Consequently, although increasingly larger values were

obtained for X (t ) and A9(t ), their ratio remained almost constant

and each successive reference trajectory was an essential repeat of the

previous reference trajectory. With this type of behavior, it was appar-

ent that the PSPM would not converge in any number of iterations for the

particular choice of initial Lagrange multipliers. Any initial guesses

for X,(t ) and X2(t ) which were large in magnitude compared to

X (t ) = -1, caused the PSPM to generate very similar reference trajec-

.tories on the first several iterations. However, in most cases, the

multiplier changes on these first few iterations were made in the proper

direction, and convergence resulted. This behavior suggests that the

convergence space of the PSPM is boundless in the lower quadrants of the

envelopes of Figures 2, 3, and U when a value of 6 is used which will

prevent the method from "stepping over" the solution and selecting

values in the upper quadrants of the convergence envelopes.

The operation of the PSPM is illustrated graphically in Figure 5.

Each arrow represents the change in the values of X1(t ) and X?(t )

taken on each_iteration.. Also presented in tabulated-form-is the value

of t at each iteration, the requested step size norm, the fractional

reduction factor e, and the value of the terminal constraint norm

obtained with the reference solution of each iteration. The initial
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value of 6 was taken to be 0.5, and 6 was set equal to the norm of

the requested change whenever this norm was less -than 6. Figure 5

illustrates that the proper direction for the multiplier change is

chosen at each iteration. Similar results can be expected for much

larger errors in the lower left quadrant of the convergence envelope.

It is interesting to note the behavior of the terminal constraint norm

of the reference solution at each iteration for the problem presented

in Figure 5. Although the PSPM takes each step in the proper direction,

the successive values of the terminal constraint norm initially decrease

very slightly and actually increase for the fourth, fifth, and sixth

iterations. This behavior suggests that fractional correction proce-

dures utilizing the value of a terminal constraint norm of the reference

trajectory may not work well on this problem.

An Improved Method for Choosing 6

Perhaps the most appropriate criticism of the PSPM as presented is

the necessity for choosing a value for <S, the maximum initial condition

change norm. If 6 is chosen too large, the method may "step over" the

solution into the divergent region. On the other hand, if 6 is chosen

too small, the convergence of the method is unduly retarded. For exam-

ple, if 6 = 0.25 had been selected for the problem presented in Fig-

ure 5, it would have taken lU iterations to arrive at the same

multiplier values obtained in seven iterations when 6 was chosen to

be 0.5. In order to illustrate the sensitivity (or insensitiyity) of

the PSPM to the value chosen for 6, the problem of Figure 5 was solved
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using 6 values of 0.25, 0.5, 0.75,;1.0, 1.25, 1.5, 1.75, and 2.0.

The results of this investigation are presented in Table II.

TABLE II

NUMBER OF ITERATIONS REQUIRED FOR VARIOUS VALUES OF 6

6

0.25

0.5

0.75

1.0

No. iterations
required

20

12

11+

19

6

1.25

1.5

1.75

2.0

No. iterations
required

13
y

Diverge

10

Diverge

These results indicate that for 6 = 1.5, the allowable change in ini-

tial conditions was large enough to allow the method to "step over" the

solution. The convergence with 6 = 1.75 was coincidental since the

second iteration produced the same multipliers as the 7th iteration of

the case when 6 = 0.5.

The behavior of the PSPM shown in Figure 5 suggests an approach

for making the selection of 6 a self-adapting feature of the method.

When each successive initial condition change vector is taken in the

same direction as the previous change vector, an indication that 6

can be increased is obtained. This behavior can be detected ~by forming

the dot product of successive initial condition (and final time) change

vectors and computing the cosine of the angle between successive change

vectors. When this angle is near zero, successive Lagrange multiplier

and final time values lie very near a line connecting the initially
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assumed values for these parameters and values of these parameters near
I

the true values (as indicated in Fig. 5). By referring to the table of

Figure 5, one may plot the requested step size norm as a function of

distance moved along this "line" which we will designate as the "con-

vergence path." The data of the table in Figure 5 are plotted in' this

manner in Figure 6. At convergence, the requested change is zero. An

estimate of the distance to move along the convergence path in order to

obtain multipliers and final time which yield a zero change (converged

values) is obtained by estimating the point of intersection of the

curve and the horizontal axis in Figure 6— The slope of this curve can

be computed numerically by evaluating the successive requested norms

and keeping track of the distance moved along the convergence path on

successive iterations. Graphically, the estimated distance to move

along the convergence path using the self-adapting approach is shown by

the intersection of the dashed lines and the horizontal axis in Fig-

ure 6. To implement this self-adapting approach, the initial iteration

is made with any small value for 6, (6. ='0.5 in Fig. 6). If the

change vector of the second iteration is in the approximate same direc-

tion as the first iteration, then the distance to move along the conver-

gence path is found by

(Requested norm 2)(6,\
-2 ~ (Requested norm 1) - (-Requested-norm ~2r



72

1600-

Succeasive requested step size norms
of the problem of figure 5

0.5 1.0 1.5 2.0

Distance moved along convergence path

2.5 3.0

Figure 6.- Behavior of requested step size norm along convergence path.
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Successive values for 6 at each iteration are chosen in this manner

until successive change vectors are not approximately along the same

line or until the computed value for 6 is less than the initial spec-

ified value 6. .

This self-adapting feature was incorporated into the PSPM and

studied on a variety of initial multiplier guesses. Typical results

with this scheme are illustrated by solving the problem of Figure 5

with. 61 = 0.25 in 12 iterations instead of the 20 required when

6 = 0.25 at each iteration. Using &I = 0.25 with initial final time

error of -20 percent and initial Lagrange multiplier errors of

-1000 percent for both A., and X~, convergence was obtained in 16

iterations. Similarly, with initial multiplier errors of +1000 percent,

-1000 percent, and final time error of -20 percent, convergence was

obtained in lU iterations .

Experience with this scheme is limited at the present time and '

undoubtedly its effectiveness is somewhat problem dependent. For exam-

ple, if the curve of Figure 6 were concave instead of convex, the

scheme may cause 6 to be chosen too large. In such cases it may be

necessary to restrict the maximum value that 6 can attain. That is,

the method would be allowed to be self-adapting within a range of

values between 6n and some 6 . Further investigations of this
X .

scheme on various problems &re recommended in order to_evaluate its

effectiveness as a general approach.
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Numerical Investigations With Distinctive

Features of the PSPM

Besides the convergence modifications, there are several distinc-

tive features of the PSPM that may cause it to operate differently from
(

other Perturbation and Quasilinearization methods. One of these fea-

tures is the capability for forcing the solution of the linearized

equations to satisfy given terminal constraint functions to a specified

accuracy at each iteration. This capability was used only in the ter-

minal stages of convergence for the results presented and had no pro-

nounced effect on whether convergence was actually obtained. It was

found that the most optimum use of the capability was to restrict the

PSPM to use only one Newton-Raphson iteration when the initial condi-

tion step size norm was greater than 6, and to use no more than two to

four Newton-Raphson iterations when this norm was less than 6. By

restricting the PSPM to use only one Newton-Raphson iteration at all

PSPM iterations, the method was operated in a fashion very similar to

the Perturbation methods discussed by Lastman [26] and Lewallen [2U],

The primary difference in the normal PSPM operation and the restricted

operation was that one to three total trajectory iterations were saved

in the normal operation mode at the expense of one to five extra

Newton-Raphson iterations. It is believed that the fewer trajectory

iterations required resulted from better final time estimation obtained

during the last several iterations. A definite savings in computer

time was realized since the computer time required for a Newton-Raphson

iteration is small compared to the time required for a total trajectory
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iteration. This savings in computer time averaged about 20'percent for

the cases compared. This result was not consistent for all cases and

there was some dependence on the initial value of 6, since this

affected the point in the terminal convergence phase where extra Newton-

Raphson iterations were started.

The generality of the PSPM operation makes it possible to use

initial guess values for the a's .other than the 1, 0, 0 values dis-

cussed previously. An examination of the dh./dt terms of the

Jacobian matrix of equation (3.7) reveals that when the 1, 0, 0 values

are chosen, only the reference solution influences these elements of
! '

the matrix on the first Newton-Raphson iteration. However, the influ-
\

ence of the perturbed particular solutions can be obtained on the first

iteration by assigning "weighting factors" to the various solutions

with the initial choice of the a's. A typical choice investigated for

example problem 1 was a. = O.U, a_ = 0.3, a_ = 0.3, so that the sum

of the values totaled to 1 and more "weight" was given to the reference

solution p . During terminal stages of convergence, the initial

guess was switched back to a = 1, ct? = 0, a_ = 0. The results with

this type of operation are inconclusive. In a comparison with the

normal a selection procedure on a set of four different cases, this

operation produced convergence in fewer iterations for two of the cases

and required more iterations for the other two. This unique feature, of.

the PSPM makes it more general than other Perturbation and Quasilinear-

ization methods, and it may be found to be more useful for other

problems.
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Another distinctive feature of the PSPM investigated vas the capa-

bility for using different perturbation factors, 3. and y. appearing

in equation (U.22). Results were compared on various starting vectors

using all 3. = 1.2 in one case and all 6. = 0.5 in the other. All

Y- were selected to be 0.1. If only one Newton-Raphson iteration at

each solution iteration of the PSPM is made with the standard 1, 0, 0 ...

guess on the ex's, then theoretically the results with different per-

turbation factors should be identical. However, significant differences

were noted due to purely numerical causes. • These differences were sig-

nificant enough to cause the method to require a different number of

iterations for convergence when different perturbation factors were

used. However, this difference was never more than one or two itera-

tions. The results do point out the importance of minimizing numerical

round-off errors in the matrix inversion computations. In this connec-

tion, an important advantage results from using the particular solution

method for solving the linear system, since the user can exercise con-

trol over the numerical values which form the Jacobian matrix in equa-

tion (3.7) by selection of appropriate perturbation factors.

Results With Example Problem 2

The second example problem, having a higher dimensionality and more

complex terminal boundary conditions, would appear to be a more diffi-

cult problem to solve than the first example problem considered. How-

ever, once the first example problem is solved, the difficulty of

guessing Lagrange multipliers for the second example problem is greatly

reduced. The family of problems obtained by considering optimal
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trajectories for different launch dates is most easily parameterized by

the value 8Q, the central angle of Mars at the launch time tQ. For

the "open problem" discussed previously, the Lagrange multipliers and

final time for X_(t ) = -1 were found to be
j o

x2/to) = -1.07855

A,. = 0

tf = 3.319̂ 37

and the corresponding .value of 6 is easily determined to be

9 = 0.726U radian by using the time of flight, the angular velocity

of Mars, and the final central angle of the spacecraft in the open

problem. To solve the second example problem for any value of 9 , a

succession of problems having initial Mars central angles defined by

vhere A9 is some small increment, is solved in sequence using the

converged values- of the previous problem as starting guesses for the

next. The process is continued until a solution with the desired value

for 9 is obtained. The convergence characteristics of the PSPM were

investigated on this example problem by studying allowable magnitudes

for A9Q.

Using the converged values for the open problem, a solution was

first obtained for 9 =0.8. Repeated attempts to solve the problem
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with 6 =0.9 using guess values from the 6 =0.8. solutions ended

in failure. It was decided that A6 =0.1 was too large and A6o , o

was reduced to 0.02. After solving several problems with this increment

for A6 , difficulties were again encountered. After reducing A6

further to 0.002, the sequence of converged problems shown In Table III

TABLE III

CONVERGED MULTIPLIERS AND FINAL TIME FOR

VARIOUS INITIAL MARS LEAD ANGLES

Lead angle 6 ,
rad

0.7261+

0.800

0.820

0.81*0

0.860

0.880

0.882

0.8814

0.886

0.888

Xl

-0.1+91+8

-0.2321

-0.0638

0.21+31+

0.9821+

5.1917

7.0329

10.5011

19.1*653

• 96.8223

X2 '

-1.078

-1.991*

-2.58

-3.6U

-6.1718

-20.5ll+l+

-26.7821

-38.5871

-69.0958

-332.3581+

\

0.000

-0.5177 •

-0.8379

-1.1+106

-2.7660

-10.1+111

-13.71+96

-20.0369

-36.281+8

-176.1+839

*f

3.319^

3.3586

3.3776

3.3985

3.1+208

3.1+1+1+3

3.1+U67

3.1+1+91

3.1+515

3.1+51*0

was obtained. The data in the table relate 6 with the corresponding

converged values of multipliers and final time. An examination of

these data indicates that the PSPM was displaying good convergence

characteristics on the boundary value problem but was getting nowhere
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with finding' a solution to the optimization problem defined by

6 =0.9- After plotting the data in Table III versus 6 , and.noting

the asymptotic character of the Lagrange multipliers as 6 approached

0.9> it was realized that all multipliers were seeking large .values

with respect to the normalized value of -1 for A_(t ). This suggested

that the unnormalized value of A~(t ) approaches zero as 6

approaches 0.9. Since it was known that A, would not be zero for this

problem because of the constrained final central angle 9(t ), the

multipliers were normalized to A, = -1. This eliminated the diffi-

culty with convergence.

With the problem normalized to A, = -1, it was found that a value

of A0 =0.5 radian could be used to generate optimal trajectories

for 9 = 1.0, 1.5, 2.0, ... 6.5, 7.0 with an average of 11 iterations

per problem. In this study, a maximum step size norm, 6, equal to 0.5

was used without the self-adapting feature previously discussed. Opti-

mal trajectories for 6 < O.T26U were also obtained. In this case it

was necessary to normalize the multipliers to A, = +1 in order to

obtain the proper sign relationships between the multipliers. A plot

of converged multipliers and final time as a function of 8 is given

in Figure 7.

The good convergence characteristics of the PSPM were also demon-

strated for this example problem by solving the problem for 9 =3
— - _ _ - _ . - _ _ _ _ _ _ _ ^ _ _ -,_ - _ _ _ . __ Q . , _

using initial guess values for A-, A,., A^, and t from the con-

verged values of the problem with 9 =1 in 10 iterations. The.

difference in the initial guess.trajectory and the final converged
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trajectory is illustrated .in Figure 8, where several of the optimal

trajectories for different initial values of 6 are displayed.

Interesting features evident in Figure 8 are the two distinctive

types of optimal trajectories which result from launching before and

after the most favorable launch date which corresponds to the open -

problem (6 = 0.726U radian). This behavior has been previously dis-

cussed by Kelley [53], who solved this problem with different numerical

values for thrust and initial mass using a direct optimization method.

The trajectories corresponding to early (6 >x 0.126k) launch dates have

a "pursuit from behind" character, while the spacecraft when departing

from late (9 < 0.726U) launch dates tends to "wait" for Mars to over-

take it. The severe time-of-flight penalty associated with not launch-

ing on the most favorable date is shown in Figure 7. It is also evident

from Figure 7 that the "pursuit from behind" type of trajectory has a

shorter transfer time than the "waiting" type for most of the unfavor-

able launch dates.
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CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

Several important extensions and modifications to existing indirect

optimization methods have been made. The method of particular solutions

was extended in order to solve linear boundary value problems with

boundary conditions specified in the form of nonlinear functions of the

dependent and independent variables. This extension was incorporated

into a Perturbation method, for solving the nonlinear boundary value

problem which results from formulating optimal control problems for

solution by an indirect method. This new Perturbation method, called

the Particular Solution Perturbation Method (PSPM), reveals a new

approach for solving problems with unknown final time which can reduce
i

the number of trajectory iterations required for convergence to the

optimal trajectory. The application of this new method for treating

unspecified final time problems was simplified by the use of a power

series numerical integration method which was ideally suited for the

forward and backward variable step integration required. The method is

not restricted for use with power series integration, however, and may
/

be implemented with any numerical integration scheme.

The PSPM was found to have excellent convergence characteristics.

The range of convergence of the indirect optimization approach was

extended far beyond that of previous methods without compromising the

rapid convergence of this approach, and thus now places the indirect
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optimization approach in a more competitive position with direct

methods. Although the PSPM utilizes several features not available

with currently more well known indirect optimization methods, the ex-

cellent convergence characteristics"are primarily due to the easily

applied modifications of equations (U.13) to (U.l6) together with upper

and lower bounds placed on allowable values of the unknown final time.

Thus, it is expected that with these modifications, other indirect

optimization methods currently programed need not employ the particular

solution method presented and the more unfamiliar power series integra-

tion in order to obtain the good convergence characteristics displayed

by the PSPM.

As a result of this study, several areas are recommended for

future investigations. Although the good convergence characteristics

of the PSPM are not believed to be unique to the example problems pre-

sented, the convergence characteristics of this method should be studied

on other problems of larger dimension and of a different nature (such as

atmospheric reentry problems with inequality constraints on control and

state variables) in order to support the claims made here.

It would appear that the use of regularizing transformations

discussed by Tapley, Szebehely, and Lewallen [5̂ ] would be as beneficial

with power series integration as with more conventional integration

schemes in solving trajectory optimization problems. This should be

investigated.

The methods presented here for solving two-point boundary value

problems are not restricted to the typical problem which results from

trajectory optimization. The modifications employed to extend the

range of convergence should be equally as beneficial on any two-point
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or multi-point boundary value problem solved by a Perturbation or

Quasilinearization method, and this should be investigated. The advan-

tages of power series integration may be more fully realized for multi-

point boundary, value problems because of the ease with which the method

can obtain solution values at any value of the independent variable.

The details of adapting the method for solving nonlinear multipoint

boundary value problems have been worked out in this study, and several

such problems should be solved to test the usefulness of the power series

method. The Newton-Raphson method utilized for solving unspecified

final time problems could be applied to multipoint boundary value

problems where several boundary conditions at unspecified values of the

independent variable are known. This should be demonstrated.

Finally, this investigation has revealed the Perturbation approach

to have several practical advantages over the Quasilinearization approach

for solving nonlinear boundary value problems. Besides requiring fewer

integrations per iteration and less computer storage than the Quasi-

linearization method, the Perturbation approach admits the capability

for simultaneous integration of the reference solution and linearized

equations, which in turn allows for variable step integration and

capability for extreme solution accuracy. However, the convergence of

the Quasilinearization approach has been rigorously established [19]»

[29], [3̂ ] for boundary value problems of a less general nature than
••.

considered in this investigation, while the Perturbation approach is

lacking in this regard. When compared in numerical studies [2U], [U2],

the methods have displayed, similar convergence characteristics, and the

Perturbation approach as modified in this study exhibits convergence

characteristics superior to the Quasilinearization method reported in
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reference [35] for the same example problem. Further theoretical in-

vestigations of the Perturbation method are needed to establish the

necessary and sufficiency theorems for convergence which must exist.

In the past, theoretical investigations of the Quasilinearization method

have been easier because the method involves iterative solutions of a

system of linear differential equations only, while the Perturbation

approach involves iterative solution of both linear and nonlinear

systems. However, it was established in this investigation that the

nonlinear solution at each iteration of the Perturbation method is a

particular solution of the linear system. In addition, as shown in

Appendix C, initial and final values of the nonlinear reference solution

can be related through the same fundamental set of solutions used to

construct the general solution of the linear system. • Perhaps some

advantage can be made of these properties in future theoretical in-

vestigations of the Perturbation method. .
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APPENDIX A

REDUCTION OF.AN OPTIMIZATION PROBLEM TO A TWO-POINT

, BOUNDARY VALUE PROBLEM

For the example problem considered in Chapter V, it is necessary

to determine the optimal thrust vector control for a constant low-

thrust rocket in a planar Earth-Mars orbit transfer so that the trans-

fer is completed in minimum time. The orbits of both Earth and Mars

are assumed to be circular in this example. In this appendix, the

necessary conditions for optimal control outlined in Chapter II are

applied to the example problem considered in Chapter V in order to

reduce the optimization problem to a two-point boundary value problem.

The equations of motion for the thrusting rocket, expressed in

a polar coordinate system with origin at the sun, are given by:

• . v2 GM T . 0u = — - —— + — sin 8
r 2 m /

r

-uv T a 'v = + — cos 6
r m

r = u '

6 = 7

m = -c

where T is the thrust magnitude, GM is the solar gravitational constant,

c is the constant mass flow rate of the rocket exhaust, and 6 is the

time varying thrust control angle.
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In order to apply the necessary conditions outlined in Chapter II,

the following substitutions are made:

= e

Ul =

So that the equations of motion are written in the form x = f(x,u,t)

corresponding to equation (2.1),

2
X2 GM T .

• ~12 T
x_ = — + — cos un = f0(x,u,t)2 x_ x 1 2 ' '

3

x3 = x1 = f3(x,u,t) (A.I)

X2

_ = -c = f (x,u,t)

The Hamiltonian function is given by

H



and the Euler-Lagrange equations are obtained from the necessary

conditions, equation (2.5)>

which, after some simplification, can be written

/2x
X_ = -

2GM

= 0

X5 = * ~
sin u + cos uA

The control variable u is eliminated from equations (A.l) and

(A.2) by application of necessary conditions (2.6),

3H
= 0

with the result

cos
'I'
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-— = tan u

which implies,

sin

cos u =

+ x

(A.3)

The necessary Weierstrass condition

E = F(t,x,X,U,X) - F(t,x,x,u,X) - — (t,x,x,u,X)(X - x)
, - 3x

- — (t,x,x,u,X)(U - u) > 0

T • •
where F = X (f(xjU,t) - x) and X and U are nonoptimal but per-

•

missible values for x and u, is imposed to resolve the ambiguity in

sign appearing in equations (A.3). Since the equations of motion

must be satisfied on a permissible trajectory,

F(t,x,X,U,X) - F(t,x,x,u,X) = 0

and since, from the optimality condition,

= =
3u du



the Weierstrass E-function reduces to 96

E = - — (t,x,x,u,A)(X - x) > 0
3x

which for this problem simplifies to

E = A (X - x) > 0

Substituting with x = f (x ,u , t ) and X = f ( x , U , t )

FT
|xE = A' I±— /sin U.. - sin u\
l|x \ 1 I)

+ A
T /cos U - cos u \

( 1 Ij
> 0

Substituting for sin u . and cos u with equations (A.3) yields, after

some manipulation,

cos > 0

If the above expression is to be nonnegative for all admissible

values of IL , then the negative sign on the radical must be chosen,

hence,

sin u =

cos u =

Substituting the above expressions into equations (A.l) and (A.2)

eliminates the control parameter u, from the equations of motion.
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The terminal boundary conditions, <Hx(t ),t ], which correspond

to necessary conditions (2.8), are given by

where the subscript M refers to the value for Mars. The performance

index 4>[x(t ),t ]• 'is simply t for a minimum time transfer.

Applying necessary condition (2.7),

= 0

yields

=.0

2(tf) = 0
V ;

- A

. (A.5)

- X3(*f) = °
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One version of the example problem in Chapter V assumes that

the final angle x. ft j is not constrained. In this case it is

seen from the above application that

= A, = 0

Just as ^cft ) was determined to be zero since no constraint was

placed on the final spacecraft mass.

The necessary condition corresponding to equation (2.9)

becomes

Using equations (A.5)» v, can be eliminated from the above equation

to yield

= 0 . (A.6)

Since the constant Lagrange multipliers v have been eliminated from

the terminal boundary conditions, there-is no reason to compute them

and the trivial differential equations v = 0 appearing in equa-

tion (2.10) can be eliminated from the formulation of the two-point

boundary value problem.
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Equations (A.I) and (A.2) provide 10 ordinary differential equations

to be solved with five initial conditions provided by the known initial

position, velocity, and mass of the spacecraft as it leaves an assumed
>

circular Earth orbit about the sun.

XlCo) ' °

X2 o = VEarth

Xs(to) = rEarth

Equations (A. 5) yield a zero value at the final time for A(_(t ),

Since tf is not specified, five additional boundary values are re-

quired for the 10 differential equations. Four of these conditions are

provided by equations (A.U) and the fifth condition is provided by

equation (A. 6).

From a computational point of view, it is desirable to normalize

the values of the variables in the differential equations .so that some

degree of numerical magnitude compatibility is achieved. Since it was

desired to compare. the_ numeric al_ results of .this .investigation- with _ _ _

previously published results of reference [2k] t the normalization scheme

of reference [2k] was employed. In this scheme, the fifth equation in

(A. 2) is eliminated together with terminal condition (A. 6). The
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initial values of the Lagrange multipliers are normalized to the

unknown value of A.0(t ) such that X_(t ) is specified to be -1.
3 o 3 o

This is possible since the remaining Euler-Lagrange equations (A. 2)

are linear and homogeneous in the A's, and since only the ratios of

X and A appear in the equations of motion (A.l). In addition to

providing better numerical accuracy, this normalization technique also

reduces the complexity of the boundary value problem since an additional

initial condition is obtained and the terminal condition (A. 6) need

not be used as a. boundary condition. Since equation (A. 6) must be

satisfied on the optimal trajectory, it can be used to recover the un-

normalized values of the Lagrange multipliers. However, there appears to

be no practical reason to recover these values. Other normalized values

of parameters of interest are

Gravitational constant of the Sun, GM = 1.0

Initial spacecraft mass, m =1.0

Initial spacecraft velocity, v =1.0

Initial spacecraft radius, r,., ,, =1.0
^ Earth

Terminal spacecraft velocity, v = 0.81012728

Terminal spacecraft radius, r = 1.5236790
*

Thrust = 0.1U012969

Mass flow rate = 0.07̂ 800391
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With these normalized values, units of various physical quantities

are

- Length unit = 1 astronomical unit = 1.̂ 95987 x 10 meters

Mass unit = 6̂ 7978852 x io2 kilograms

L
Velocity unit = 2.978U901 x 10 m/sec

Force unit = k.0312370 nevtons

Time unit = 5-0226355 x 10 second = 58.132355 days



APPENDIX B

A POWER SERIES NUMERICAL INTEGRATION METHOD

One of the most important facets of any method for solving multipoint

boundary value problems is the numerical integration scheme used. Since

the numerical integration of differential equations consumes the bulk of

computer time, it is desirable to have a fast and accurate integration

method. Among the most popular integration methods are the well-known

Runge-Kutta formulas and predictor-corrector methods. In this appendix,

a power series integration method is presented which has several features

which make it uniquely suited for use as an integration method in solving

multipoint boundary value problems.-

The capability for solving differential equations by power series

expansions has been known since B.-Taylor (l685-173l). However, this

method has not enjoyed the popularity of other numerical integration

schemes. This is probably due to the fact that it is an impractical

method 'for hand .calculation or even desk calculators , and thus did not

receive the early attention and development of the currently more

popular integration methods used on digital computers.

With modern digital computers, the cumbersome application of the

power series method is easily overcome and its practicality is evidenced

by-its high accuracy, large step sizes, good speed, and variable step

size capability. The use of power series as a method for digital

computers has been studied by Fehlberg [55] and Hartwell [56]. Detailed

programing steps for the method are given by Doiron [5?]. The method is

102
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reported to have superior speed and accuracy characteristics on problems

where integration must be made over large intervals of the independent

variable with frequent changes in the integration step size.

Given a system of differential equations,

the method assumes a power series expansion exists in a neighborhood of

t for each of the variables z . of the formo i

k=l

(k)where the z. are power series coefficients and t is the valuei *^ o

of the independent variable where the power series expansion is made.

In the following, it will be assumed that power series solutions of

equation (B.l) exist.

Letting (z.)

it is easily determined from term-by-term differentiation of (B. 2) that

Letting (z.) denote the power series coefficients of z.,

(B.3)

which yields a recurrence relation fpr (z..) if (z. ) is

known. Since z. = f.(z ,z2...z ,t), it follows that power series

expansions of the functions f. exist with power series coefficients
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(k) '
denoted by f. . Thus, by equality of power series, we have equality

of the power series coefficients, and (B.3) can be written

(k)

T— ' (B.10

The main difficulty in applying the method is involved with deter-

(k)
mining the coefficients f. . The functional re'lationship between

the z., as expressed by (B.l), must be carried out in "power series

arithmetic" and when coefficients of like powers of (t - t ) are

(k)
collected, these coefficients represent the f. . It can be shown

(k)
(see Theorem 13-27 of Apostol [58]).that the coefficients f. involve

(k)
only the first k coefficients, z. , of the power series for the z..

This guarantees that equation (B.U) does actually represent a recurrence

(k+l) (k)
formula for z. in terms of the first k, z. . The application

of the power series arithmetic is greatly simplified through the use of

auxiliary series and repetitive application of known algorithms for

series addition, subtraction, multiplication, and division. Easily

programed algorithms are also known for generating power series coeffi-

cients of transcendental functions of power series such as sin z and

R
z , where . 6 .is some real number.
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Let u, v, and w be power series of the form

k=l

v=£v.ft-

k=l

j
k-1

k=l

The following power series operations are defined by:

Addition:

Subtraction: w = u - v =4w, = u, - v,
k K. k

Multiplication: w = u • v =^w. = \ ^ u.v, . nk x . i k-i+1

Division: w = u/v

L-l

\
- ̂ "̂ f w v
i=l i k-i+1 , w

Vl

Square root:

.1- _± 1

w, =



io6

Integral or fractional powers:

w = = u,

BU2V1
U-,

for k > 1

Sine and cosine:

w.

u = cos w u = cos

v = sin w vn = sin w

Vi -
k

k-1

iw

k+1
ivi+

These algorithms are sufficient for the differential equations which are

solved in this thesis.
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An Example Problem.

Given the differential equations,

x = y +

y-= x

w = w • y

cos w
3/2

sin w
3/2

th

vith initial conditions, x(t ). = x , y(t ) = y' , and w(t ) = .v̂ ,
i

generate power series coefficients for x, y, and w for a power

series expansion about t . . !

The coefficients are obtained by computing in sequence the . k'

coefficient of each of the auxiliary series in equations (B.5) using the
\ .

above algorithms, and then applying the recurrence relations (B.6) to

obtain the (k + l)st coefficients for x, y, and w. The process

is repeated for k = 1, 2, 3 ... N-l, where N is the desired number

of coefficients.

a = w • y

u = cos w

v = sin w

- b = x • x (B.5)

' - - - - - - - c _ y . y

r = b + c

e = u • s

f = v • s
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_yk+l (B.6)

Mk
Once the desired number of coefficients N are computed, the next

step in the integration process is to determine the integration step

size (t - t ), which can be used with the available coefficients, while

maintaining a specified numerical accuracy in the evaluation of the power

series solutions. In general, a larger step size may be used with a

larger number of coefficients. A practical limit for the number of

coefficients which should be computed is determined by the magnitude of

the N coefficient of the series to be evaluated. Digital computers

have a largest and smallest value of the magnitude of a number which can

be accurately represented. Depending on the radius of convergence of

the series, the coefficients may approach one or the other of these

limits. The number of coefficients computed should be limited to avoid

these number magnitude limits.

It is assumed that N power series coefficients are available for

evaluation. A method for determining the largest allowable integration
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step size is developed below. The equivalence of the power series

expansion and Taylor series expansion of a function x(t) about a

point t is well known. The Taylor series expansion can be written

x'(to)(t-to)

N .
t

vhere the remainder, R^ - is given by

N+l
"(bj

RN+1 = (H+l) if " to)
H+l t < t, < t

o 1

If it is assumed that x (t ) a x (t ), then the truncation

error FL, . is of the order of the first neglected term in the

summation of the series. Since in most applications it is desirable to

limit the relative truncation error rather than the absolute truncation

error, the step size (t - t ) should be chosen to meet a specified

relative truncation error bound, e .. Let the relative truncation

error be.defined by

"rel
. |x(t Numerical - x(t)exact

x(t) exact |

For all practical purposes, the denominator

need only represent the magnitude of x(t), and,

in the above expression

therefore, it may be
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approximated by the summation of the first p terms of the power series

representation of x(t). In light of the foregoing assumptions, if

x(t) is to be accurately represented by

k-1

k=l

then a reasonable truncation error check would require that each of the

last several terms (r "terms, for example) of the summation be less in

magnitude than

rel
k-1

k=l

where e , is the specified relative error allowable. The value of

r depends on the severity of the test desired. In practice, r = 2

has been sufficient to maintain the desired accuracy. With r specified,

a requirement of the test can be stated.

N-r < erel

N-r

E
k=l

k-1
(B.7)

It is desirable to solve for (t - t ) which will satisfy this

test. Since the summation on the right of the inequality (B.7) is used

only to approximate the magnitude of x(t), let the magnitude be
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approximated by the constant term in the expansion

logarithms of both sides above yields

Then, taking

log jt - to|

log rel
N-r+1

N-r

Exponentiating both sides yields an estimate for the allowable convergence

interval

t - t <' e

log(erel

Xi hi
Vr+ll,/

(N-r) i (B.8)

Since normally there are more than one series to be evaluated!, it

is necessary to determine the largest convergence interval common to all

series to be evaluated. Noting in (B.8) that |t - t | is a monotonic

increasing function of |XI/XN .|, it is only necessary to compute

for each series the value analogous to jx̂ /x., . | to determine which

of the series will yield the smallest convergence interval. A trial

convergence interval can then be obtained by multiplying the quantity

on the right of (B.8) by a positive number, P, less than unity to insure

the inequality. A trial step size determined in this manner may still

not satisfy the convergence test (B.7) because the approximation of

x, for

N-r

•>(* - M
k-1

k=l

may not be sufficiently accurate. Since a failure of the test (B.7)

during evaluation for any one series would require reducing the convergence
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interval and reevaluating all series, it is desirable to choose the

number P so that the likelihood of convergence test failure is very

small. The choice of P is dependent on the number of coefficients

used, since longer convergence intervals allow for a larger change in

magnitude of the solutions. In practice, values of P of 0.9 or

0.8 have worked well with 10 to 20 term power series. It should be

noted that special logic is required in the case where either of the

coefficients x or x^ is zero.

Returning to the example problem, once a trial convergence interval

At .for the series x(t), y(t), and w(t) has been determined, the

series can be evaluated for any value t-, |t - t | < At. If the

solution is required for some t1 outside the convergence interval, the

series may be evaluated at t? = t ±At and new series expansions about

t • can be obtained. The analytical continuation can be repeated until

power series which will converge at the desired value of t are obtained.



APPENDIX C

EQUIVALENCE OF TWO METHODS FOR MODIFYING BOUNDARY

CONDITIONS OF LINEAR DIFFERENTIAL EQUATIONS

The following derivation is made to support the claim made in

Chapter IV regarding the equivalence of two methods for determining

modified initial conditions for the reference solution of the Particular

Solution Perturbation Method. To simplify notation in the derivation,

the general solution of the N dimensional linear system (U.12) with

m specified initial conditions is written as a linear combination of

particular solutions

ny(t) =
3+1

k=l
np*(t) = nP(t)a S = N - m

where P(t) is an N by (S+l) matrix formed with columns of

particular solutions ^ '

and a is the vector of superposition constants

al

113
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Let terminal boundary conditions at .the fixed final time be specified

'ti k + 1, k + 2, ... k + S

for some 0 < k < N - 1. 'An (S+l) vector y(t) and (S+l) by

(S+l) submatrix [p(t)J are formed by partitioning out the (k+l)st
s.

through the (k+S) rows of ny(t) and P(t) and then augmenting each

by a row of 1's to obtain

y(t)

1

n
yk+l

n
yk+2

*

*

•

yk+S

[P(t)l =
S

1

npk+l

1
npk*2

•

•

•

1
nPk+S

1 ,

2
npk+l

2
nPk+2 * ' '

•

•

•

2
npk+S

1

S+l
npk+l

•

S+l
npk+S

Method 1

Given terminal boundary conditions z .,, i = k + 1, ... (k + N - m)

tions for the system (U.12) are formed by

written as an S = N - m vector zf, modified terminal boundary condi-

nyf = (1- e) n (C.I)



where ny and nz are S vectors with elements
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\+l(tf)

nyk+2
(tf)

_

nyk+s(tf)

and

"WV

"wv
.

*

respectively, and z(t) is the nth reference solution of a Perturbation

method.

It follows from applying the boundary condition (C.l) and the

S+l
auxiliary conditions £ a, = 1 that

k=l

- [p(*f)] °
n

Solving for a,

• • -1
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Initial conditions for the (n+l)st reference solution are obtained from

n+1
-1

8

n
L'fJ (C.2)

Before proceeding with an analysis of the alternate method for

computing n z(t ), it is necessary to establish an identity vhich vill

be needed. Using Theorem 1 of Chapter IV, it is possible to write

nz(t)

subject to

Forming an (S+l) vector z(t) by partitioning z(t) and then

augmenting with a 1 in the same manner that y(t) was formed .from

ny(t) yields z(t) « [P(t)J Y, where y = [l,0,0,...0]T. At the finals

time
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so that

-1 n
L z f J

which allows initial and final conditions for nz(t ) to be related by
o

-1

"8 I f J (C.3)

This seemingly awkward result will allow considerable simplification in
/

the derivation which follows.

Method 2

For this method, ny(t ) is computed without modifying terminal

boundary conditions, and then n z(t ) is computed by

n-H

It is necessary to show that z(t ) computed in this manner is equal

to the result, (C.2).

First, y(t ) is determined by applying the unmodified terminal

boundary conditions. Using similar notation as before

y(tf) - (P(tf)



so that

• • J
-1

5

and consequently
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Implementing the modification (C.H)

n+1

-""»(%)

Using the result (C.3) and factoring

n+1
-1

e

1

Zf_ + (1 - e)

r 1 1
n

L z f J

Substituting with equation (C.l), the final result is obtained

n+1
-1

s
(C.5)
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A comparison of equations (C.2) and.(C.5) reveals that they are identical

and therefore Methods 1 and 2 are shown to be equivalent.

NASA MSC


