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CHAPTER I
INTRODUCTION

The purpose o6f this thesis isAthg presentatioﬁ of an improved
method for obtaining numerical solutions of a certain class of two-point
boundgry value problems which then arise in optimal control theory.
These problems are characterized by systems of_nonliﬁear orainary differ-
ential equationsrwith nonlinear bounéary condigions.

A general problem in optiﬁal conFrol'theory is often s£ated in the
following manner. Given a system which is described by a set of non-

linear ordinary differential equations

x o= £(x,u,t) C(1.1)

where x 1is an n vector describing the state (poéition and velocity)

of the system as & function of time t, u is a q vector"of time

varying controls which can be applied to the system, and f is an
n vector of nonlinear fﬁnctions; it is required‘to determine the control
histories u(t), so that an extremum (maximum or minimum) of some scalar

performance index ¢(x(t_),t ) is obtained at some terminal time tf.

f f

The system must satisfy certain initial conditions in the form of an

m vector of functions

nE(to)st0) 70 (1.2)



and the controls must not only extremize the performance index, but also
yield a final system state which satisfies a k vector of nonlinear

functions

(1.3)

A
o}

tp(x(tf) ,tf)'= 0 k
The probleﬁ as stated is known as a Mayer problem in the calculus of
variations. Simplé transformations are givén by Blisé (1] thch‘trans-
fprm‘the Légrange problem (where the performance index is a definite
integral) and the more general Bolza problem into Mayer problems.' With
these transformations, a large number of optimal control problems can
“be stated in the convenient Mayer form.

Since the control problem stated is rarely amenable to analytic
solution, methods for obtaining numerical solutions are necessary. The
availability of large digital computers coupled with a demand for solu-
tions in various space age applications has resulted in considerable
research activity in the solution of the optimal control problem by
numerical methods. The majority of this wérk has occurred in the past
ten years and methods of solution are basically divided into either
direct or indirect methods.

The direct methods are so-called because they seek to directly

manipulate the control histories wu(t) in order that an augmented
functional (which includes the given performance index and a.measure

of terminal constraint satisfaction) is extremized. The direct methods



are not investigated in this thesis, but because of their importance,

a brief-reference’to some of these methods is made. The most pop-

ular direct methods are the gradient or steepest ascent methods
developed independently by Kelley (2], and Bryson, Denham, Carroll and
Mikami [3,4]. Many extensions to the basic method have been made and
are'diecussed in the recent text by Sage [5]. Significantly different
direct approaches are Bellman's dynemic programing [6,7], the conjugate
gradient method discussed by Lasdon, Mitter, and Waren [8]; and the
dﬁtimaltsﬁeep meﬁhod introduced by McReynolds and Bryson [9].

Indirecf hethods are those in which the control histories are not
directly manipulated. Insteed, the control problem is transformed into
a two~poirt boundar& value problem by deriving certain ordinary dif-

" ferential equations and bbundary conditions which must be satisfied for
mathematicalvoptimality. 'Tﬁe governing differential equetions and
boundary conditions are obtained from either the necessary'conditions
of the_classieal calculus of variations (see for example Bliss [1] or
Sage [5]), the Pontryagln maximum principle [10], or the theory of
dynamic programing as discussed by Dreyfus [11]. The various succes-
sive abproximatioh techpiques for solving the resultihg nonlinear two-
point boundary value problem are called indirect optimizaﬁion methods .
There are several generaliy applicable methods which have been developed

.in recent years. A discussion of these methods is deferred until

Chapter 1II, where the general boundary value problem to be con31dered

in this thesis is presented.



A common problem with existing indirect oétimization methods is
that initial approximations to either the solution or initial conditions
of the boundary value problem are required. The success in solving
the problem is sometimes extremely gensitive to thé accuracy of the
initial apprpximations. Convergence, when it occurs, is generally more
rapid- for indirect methods than for direct methods. Ideally, one seeks
a method which converges rapidly to a solution from an arbitrary initial
approximation._ One of the major reasons for this‘investigation is to
impr§Ve upon the performancé of existing indirect methods with regard
to this ideal characteristic. 'To this end, se&eral new innovafions and
improvements to known techniques are combined in a unified approaéh.
This inclﬁdes the introduction of a power series integration method
which exhibits several characteristics uniquely suited for'detefmining
numerical solutions of nonlinear two-point boundary value problems.
Moreover, a new approach is presented for solving problems where the
Iterminal boundary bonditions.are general functions of the final state
and unknown final time. The computational algorithm is derived such
that the differential equations to be integrated have improved numerical
stabili?y. Consequently, numerical difficulties due to ill conditioned
matrices of boundary values can be avoided. .
| The indirect optimization method presented here is applied to the

solution of a minimum time, planar, Earth-Mars transfer problem for a

\ constant low-thrust rocket. The problem was chosen because it has been

used to test many other methods and thus, a direct comparison with



p

previous results could be made. The optimization method is also applied

t0 a similar problem where a minimum time rendezvous with-a moving target

(the planet Mars) is required.



CHAPTER II
THE INDIRECT APPROACH TO TRAJECTORY OPTIMIZATION

In order to apply an indirect trajectory optimization method, it
is neceséary'to formulate the optimal control problem as a two-point
boundary value problem. This is accomplished by deriving ce?tain ordi-
nary differential equations with accompanying boundary conditions which
must be satisfied. In this chapter, necessary conditioﬁs from the cal-
culus of variations are used to formulate the control problem as a two-
point boundary value problem and previous numerical methods for solving
such prob}ems are discussed.

The control préblem which will be considered in this thesis_can be
stated: a system is described by a set of nonlinear ordinary differ-

ential equationé -

x(t) = £(x(t),ult),t) (2.1)

where x 1is an n vector and u is a q vector, gq < n. The initial

state is specified at some initial time to



and the terminal state x(t,) end time t. are given implicity by

f

the following k vector of functions
‘P x(t t =0 . 2.2

It is necessary to determine the g -vector of controls u(t) from some

£)ote)

is minimized. The admissible set of controls will be taken to be the

admissible set of controls so that the performance‘index o(x(t

set of all piecewise continuous functions on the interval [to,tf}.
An augmented functional is formed by adjoining to the given per-
, ‘ .

formance index, using Lagrange multipliers, the contraints (2.1) and

" (2.2) to obtain

where v is a k véctor_bf constant Lagrange multipliers, and A(t) is
an n vector of time dependent Lagrange mulﬁiplierS. The problem can now
be viewed as one of seeking a minimum of the performance index J sub--
Ject to no additional constraints. A necessary condition for J to
have an.extremum is that the first variation of J vanish.

It is helpful when considering variations of J to introduce the

scalar function called the Hamiltonian_ _ _ _ _ _ __ . _ _ . . . __

H(A,x,u,t) = AT f(x,u,t)



such that by definition

T
. oH
p's =If(x,u,t) = (ﬁ)

Using the Hamiltonian and .an integrétiori by parts, the performance index

is yritten
; T
J " $(x(tg)ste) * v U(x(tr)oty)

t t

Tl v [ {ue 3T R
)\tx‘ |t+f { + A x}dt

t
o] o]

The requirement that the first variation of J vanish along an optimal

trajectory with final time not specified results in the following neces-

sary conditions.

i

: 3H .

X = (a—x-) (2-)4)
T

«  [oH

;- (5;) (2.5)

3H _ 0 (2.6)



(%% vT %%-— A#) =0 | : (2.7)
te
wec%)¢a =0 ‘ (2.8)
(% + %%—+ T %%) =0 ‘ (2.9)
te

The derivation of these equations is adequately treated in several
texts and the reader is referred in particular to Bliss [1] for classical
problem formulatiohs or to the recent book by Sage [5] for a treatment

in the more modern control notation. Equations (2.4) and (2.5) repre-

" sent 2n simultaneous ordinary differential equations in the 2n + q

.variables of the vectors A, X, and u. Equation (2.6) provides .q con-

ditions by which the q variables of the control vector u can be elim-

‘inated from equations (2.4) and (2.5) so that 2n differential equations

in 2n- dependent variaﬁles‘are obtained. It is assumed that this is
possible, since, in general, it is not always possible to solve explic-
itly for each of the‘conﬁrol variables via equation (2.6).

The conditioﬁs (2.4) to.(2.9) are merely necessary conditions for
an extremum of J. A further necessary condition for 'J to be mini-

mized is given by the non-negativify of the Weierstrass E-Function

: e . 3F . .
E = F(t,x,X,U,A) - F(t,x,x,u,A) - 5§<t,x,x,u,x)(x - x)

oF .
- Sa(t,x,x,u,k)(U - u) 2 0
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where F = AT(f(x,u,t) - x) and~ X and U a?e nonoptimal but
permissible values for x(t) and u(t). This condition is normally
applied in conjunction with equation (2.6). For the example problems‘
which will be presented, this condition is used to resolve an ambiguity
in sign resulting from the application of equation (2.6) (see Appendix A).

Equétions (2.7), (2;8), and (2.9) yield n, k, and one algebraic
equations, fespectively, which must be satisfied at the final time.-
Since the Lagrange multipliers v are cohstants, v = 0. Adjoining
these k trivial differential equations with those of equations (2.k)

and (2.5) yields the following 2n + k system

T
e

A= _(g_i.)T  (2.10)
v=0

with thé 2n + k + 1 boundary conditions needed in the case of unknown

final time, given by

x(to) = x (n condi‘tions) w
T ) T 3 :
A (ta 3$- + v 5% (n conditions)
£ t > (2.11)
w(x(tf) ,tf) =0 (k conditions)
3 T 3y
H 331 + v 3% =0 (1 condition)
t t t
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To simplify reference to these eqﬁations, the system (2.10) is

written as an N vector of nonlinear first order differential equations

z = £(z,t) (2.12)

and thé boundary conditions (2.11) Qre generalized to
zi(to) =z, i=1,2,...n (2.13)
hi(z(tf),tf) =0 i=1,2...(N-m+1) (2.1h)

Thus, the solution of the optiﬁal control problem is reduced to finding

‘the solution of a system of nonlinear ordinary differential equations

with two-point boundary conditions, the terminal boundary conditions in

: génefal being nonlinear functions of the terminal state and unknown

‘terminal time.

It should be noted that for many problems the terminal conditions

(2.8) may not be very complex, and, as a consequence, the Lagrange

“multipliers v may be eliminated from equations (2.7) and (2.9) ana-

lytically so that N + 1 terminal boundary conditions not involving

v are obtained. - This allows the deletion of
ential equations v =0 with the assoéiated

conditiéns, and thus reduces the dimension of
This approach is used in the example problems
although the computational algorithm which is
chapters can bé applied to the more difficult

tions (2.10) and (2.11).

the k trivial differ-
k terminal boundary
the problem considerably.

which will be presented,

developed in succeeding

problem given by equa-
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Since the system (2.12) is, in general, nonlinear, with two-point
boundary conditions (2.13) and (2.1L4), solutions are not easily obtained.
The essential problem involved is to determine the missing initial con-
ditions for the Lagrange multipliers so that at some later time equa-
tions (2.14) are satisfied.

A numerical method for solving the more simplified version of the
above boundary value problem with fixed final time was considered in
1949 by Hestenes tl2], wvho also fofmulated the general optimal control
probiem given above [13]. Hestenes [1L4] explained that his early work
was not actively pursued due td a lack of interest in the problem.

Breskwell [15], in 1959, published the general control problem
formulation in the form given abové and presented numerical results
for a variety of problems. The problems were solved by repeated numer-
| iéal integrations of the nonlinear differential equations with perturbed
initial conditions and using an interpolation scheme for determining
the initial conditions which would yield the desired terminal condition.
A.simiiar approach was used by Melbourne [16], and Melbourne, Sauer,
and Richardson [17] for solving fixed time duration optimal payload
trajectories for continuous low thrust orbit transfer maneuvers between
the Earth and several other planets. These efforts are representative
of some of the first attempts to obtain solutions by straightforward
"brute force" tactics. These methods resulted in considerable frustra-
tion and generally poof convergence or no convergence at all. Although
some success was realized through such approaches, the'general problems

with convergence motivated the development of the direct methods.
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The systematic algorithms of contémporary indirect optimization
ﬁethods can be traced to the papers of Goodman and Lance [18] in 1956
and the work of Kalaba [19] in 1959, glthough neither of_the papers
wes directly concerned with trajectory optimization. Goodman and Lance
[18] discussed numerical solutions 6f systems of linear differential
equations with two-point boundary conditions by the adjoint equations

of Bliés (20]. They also proposed a method called complementary func-

" tions which utilizes the principle of superposition of particular and

homogeneous (or complementary) solutions. In addition, they outlined
an approach for solving nonlinear problems by relating initial and

final boundary value perturbations of a nominal solution with a system

~of linear adjoint equations. Kalaba [19] developed the early ideas
_of Hestenes [12] and produced a method conceptually different from those

'prop05ed by Goodman and Lance [18]. This method was calléd Quasiline-

arizstion and required iterative solutions of a system of linear dif-
ferential equations which were derived from & Taylor series expansion
of the nonlinear equations. An initial solution approximation

which satisfied initial and final boundary conditions was iteratively.

" . improved by repeatedly solving the derived linear equations. Kalaba

[19] gave a convergence proof and demonstrated the method for .second
order differential equations. - Both of these approacheé for solving

nonlinear boundary value problems were restricted to fixed intervals

of-the- independent variable and simple boundary conditions, and, there-

fore, were not directly applicable to the general boundary value problem

considered here. Extensions of the methods soon followed, however,
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and in this theéis those stemming from the ideés of Goodman and Lance
[18] are called Perturbetion methods while those following Kalaba and
Hestenes are called Quasilinearization methods. The Perturbation and
Quasilinearization-classifications will be more cleérly distinguished
in Chapter IV. | |

The adjoint equation Perturbation approach of Goodman and Lance [18]
was extended to solve variable final time optimization problems by
Jurovics and McIntyre [21]. Jazwinski [22] developed the method further
to ailow for bdundary conditions which are general funcfions of the prob-
iem variables and time. A proéédure for handling ineéuality cdnstraints
on state and control variebles was also presented. Breakwell, Speyer,
and Bryson [23] independently derived a method éimilar to Jazwinski's
through considerations of the second variation of the calculus of
variations.

The.alternate'Perturbation approach of Goodman and Lance [18],
involving complementary functions, was also studied by Breakwell, Speyer,
and Bryson [23] and compared to the adjoint Perturbation method from an
operational standpoint of a computer storage requirement versus a matrix
inversion requirement. Lewallen [24] made extensive comparisions of the
two Perturbation techniques and found them to have equivalent convergence
characteristics. Further study of the Perturbation methods have been
made by Shipman and Roberts [25] and Lastman [26] to show their connec-
tion with the famous Kantorovich theorem [27] on Newton's method in

functional analysis. Armstrong [28) has proposed a Perturbation method.
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which seeks to iteratively reduce a norm of terminal constraint dis-
satisfaction and which displays some characteristics of direct methods.

Adaptation of the Quasilinearization approach for optimal control
problems was studied by McGill and Kenneth [29], [30], who extended
Kalaba's [19] convergence proof for>systems of differential equations,
and modified the method to solve variable final time problems. Their
appfoaéh for solving variable final time problems involved the solution
of a sequence of fixed final time éroblemé and was inefficient.

'A novel apbroach for solving variable final time problems with the
Quasilinearization method was developed independently by Conrad.[31] and
Long [32] and involves a change of independent variable to one integrated
between fixed limits. Further extensions and improvement of the change

.of varisble approach have been proposed by Johnson [33] and Leondes and
'Paine,[3h]. Leondes and Paine [34] have alsc extended McGill and
Kenneth's [29] coﬁvergence proof for problems with bounded control vari-
ables., A differenﬁ technique for handling variable final time problems
with the Quasilinearization methoa has been proposed by Lewallen [35].
This approach is similar to the one used by Jazwinski [22] for the
adjoint Perturbation method, and Lewallen [35] has shown this method to
have convergence properties superior to the other above-mentioned Quasi-
linerization methods. This method is also applicable to problems with
general-type boundary conditions. Numerical techniques for handling
ihequality constraints on control and state variables with the Quasi-
linearization method have been studied by Kenneth and Taylor [36] and

MeGill [37].
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Although the methods of indirect trajectory optimization are well
developed, the methods sometimes are unable to converge to a solution
from arbitrary initial solution guesses. Van Dine [38], [39] has sought
to circumvent this. problem by solving the linear boundary value problem
of the Quasilinearization'approach Qith a finite difference technique.
Results have been ob%ained by this approach for fixed final time prob-
lems and control variable inequality constraints, but it is doubtful
whether the gccurécy of other indirect mefhods can be obtained. Although
the ﬁethoé is ciaimed to avoid the convergence problems of other in-
direct methods, no direct compaiisons on convergence have been published.

The comparison of various direct and indirect trajectory optimi-
zation methods by Kopp and McGili [uo], Moyei and Pinkham [U41], Tapley
and Lewallen [42] and Tapley, Fowler, and Williamson [L43] have pointed
.out the desirability for an indirect method with ability to converge
’from poor initial solution estimates. These studies have indicated
that direct methods are more likely to converge from poor solution
estimafes, but that indirect methods have more rapid and accurate con-
vergence when it occurs. Various strategies have been suggested for
improving the range of convergence of indirect methods, but implemen-
tation of these strategies often requires considerable skill and effort
on the.part of the user in order to retain the rapid cbnvergenée char-
acteristics of the methods. Several of these schemes have been investi-
gated by Lewallen, Tapley, and Williams [L4]. In spite of notable
improvement with these strategies, convergence sensitivities remain a

problem.
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In the following chapters, a method for solving the nonlineaf
boundary value problem is presented, which displays convergence prop-
erties superior to previously published indirect optimization methods.
Both Quasilinea.rizz;tion and Perturbation approaches are considered, and
a Perturbation apprbach is selected because of its minimum storage re-
quirement, ease of implementation, and fewer‘necessary integrétions per
itération. The method, which is not develéped according to standard
perturbatién formulations, reveals a new scheme for handling the variable
final time problem resulting in a few number of iterations required
for convergence. Numerical difficulties'which sometiﬁes occur with
adjoint equations or perturbation equations are avoided through an alter-
.nate method for solving linear boundary val;e problems. A power series
vnumericﬁl integration scheme is used which allows for a variable inte-
gration step size and simultaneous integration of reference and perturbed
solutions. This eliminates the approximations of functions evaluated
on the ‘reference tfajectbry necessary without simultaneous integration
of reference and perturbed solutions. The‘characferistically high
accuracy capability of power series integration, together with elimina-
tion of approximations used in the iterative solution process, give the

method presented here a capability for obtaining extremely accurate

numerical solutions of boundary value problems in ordinary differential

_'eqtia.tions. T T oSS T T T T T T T T T T T



CHAPTER III

"SOLUTION OF LINEAR DIFFERENTIAL EQUATIONS WITH NONLINEAR

TWO-POINT BOUNDARY CONDITIONS -

An integral part of the method presented in Chapter IV for solving
nonlinear boundary value problems requires ‘numerical solutions of linear
differential equations with nonlinear boundary conditions. Numerical
methpds for soiving linear differential equations with linear boundary
conditions are well known and include (l),the method of complementary
solutions [18], (2) the method of adjoint equations [18], [20],.and,

(3) the method of Green's functions [L45]. An alternate method which has
received attention in sevetral recent.papers [46] to [50] is known as the
i method of particular solutions. The method is extended here in order

to so;ve éystems of linear differential equations subject to two-point
nonlinear boundary conditions with an unspecified terminal value of the
'independent variable. ‘

The method of particular solutions is very similar to the method
of complementary funcﬁions with the exception that the general solution
is obtained by sﬁperposition of several particular solutions of the gi%en
set of differential equations rather than superposition of a single
particular solution and several complementary or homogeneous solutions.
When numerical solutions with digital computers are to be obtained, the
method ofiparticular~solutions displays several important advantages over

the above-mentioned methods. First of‘all, unlike the other methods,

only one set of differential equations (the given set) need be programed

18
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for solution which reduces the programing complexity. More important,
however, is the fact that each solution intfgrated is a physically
possible solution. Therefore, each equation integrated possesses the
stability inherent in the physical system model with the result that
solutibn values at the boundaries afe closer in magnitude than would be

expected for values of homogeneous solutions. This generally results

in more numerical accuracy in the determination of superposition con-

-stants from inversion of matrices of boundary values. The first stated

advahtage.motivated Miele's work [46]. Holloway [47] encountered numer-

ical instabilities with the method of complementary functiogs and was
led to study superposition of particular solutions because of the second
stated advantage.

Other discussions of the method and varioué applications to two-

point.and multipoint boundary value problems in ordinary and partial

differential equations are given by Luckinbill and Childs [48], Baker

and Childs [49], and Heideman [50]. These applications have been
1imitéa to problems with linear boundary conditions at specified bound-
ary points. A more general appfoach for solving problems Qith terminal.
boundary conditions given as general nonlinear functions of the problem
variables and an unspecified terminal time is developed below.

Consider the N dimensional linear vector differential equation
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where A and b are a given N x N metrix and N vector, respectively,,
of timé varying functions. Boundary conditions are given at the initial

-

specified time _to in the form
yi(to) = ¥4 i=1,2...m <N (3.2)

and terminal conditions are specified as general functions
- hi(y(tf),tf) =0 i=1,2...r <N (3.3)

is specified, then r =N -m. If t is not

If the terminal time +t r

f
specified, then r = N - m + 1.
A general solution of equation (3.1) satisfying equations (3.2)

and (3.3) can be represented by

| s41 -
y(t) = 3 op(t), S=N-m
- k=1

with the auxiliary condition
S+1

' 2: a, =1
k=1 k

where any S of the pk are linearly independent particular solutions of
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equation (3.1), and the a ere superposition constants. Initial

conditions for the pk(t) are chosen such that

1 _ .
pi(to) = ¥4 i=1,2...m
1 . . ]
pi(té) = any value i = m+l,m+2...N
k 1
p.t) =B, p (t)+y. kK = 2,3...(5+1)
1(%) = Faft (o 1k i=1,2...N
where E ' ‘ . . (3.4)

, 1if i # k+m-1

B., =

MO lsy if 1= el

0if i # k+m-1l
Yik ©

yi'if i = k+m-1
1 t <
pi( o» Yi

The particular chqice of Bik and Yik given, insure the condi-

and

tion for linear independence of particular solutions. The choice of the
constants Bi and Y4 is free except that 8., A # 0, and B, # 1.
These constants can be chosen, depending on the sensitivity of the system,

to control the magnitude of terminal values of the particular solutions.
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The superposition constants o are to be chosen so that the
equations in (3‘3) are satisfied and the condition for superposition of

particular solutions

¥ a- |
a, - 1=0" (3.5)
k=1 & .

is satisfied. 1In order to determine the % s 8 formal substitution of
S+1 A , } A

k . . .
2: @, p (t) is made for y(t) in equation (3.3), and equation (3.5) is
k=1 : :

written as

hr+l’ to obtain an r+l vector of functions h with elements
/ ’ : o o
hi\y(al,ae,...as+l,tf),tf) =0 i=1,2...r
| > - (3.6)
hr+l(al,92...as+l) =0 )

For the case where t_ is unknown, r =8 +‘l, and equation (3.6)

_ f
represents S + 2 nonlinear equations in the S + 2 unknowns @ and tf.
The eqﬁations in (3.6) can be solved for the o and 'tf by a Newton-

Raphson [51] iterative procedure.
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The Newton-Raphson procedure is employed in the following manner.

An initial guess for the o and tf is written as a column vector

NONE R

S+l
te

- -

Successive approximations for the proper values of this vector are ob-

tained by repeated solution of the following equation
-1
o) (n) [J(n] n(n) ' 10=0,1,2... (3.7)

where - J(n) is the Jacobian matrix with elements

s dh, i=1,2...842
iy -~ duJ J=1,2...8+1
. (3.8)
I = ahy i=1,2...8+2
ij dtf Jj = s+2

and the n superscript denotes evaluation with the nth approximation for

O.(n).
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Expanding the derivatives of equation (3.8) ‘and denoting elements

of y(t) by Yy

dh N ©3h, 3y dh N 2dh,. oh
i i L i_ z: i PJ( ) + i
dcx‘j 4=1 ayz aaj aaj- 4=1 ayz L\ T an
since ' ‘ ' .
S+1 p
v (t) = 20 a,py(t)
e J R
J=1
Also,
an, % 3h, 3h, f: 3h, S+Zl - %h
m-Eanl) m- Eat(E ) -
dt, = vy, Talte) TRt T & by k=l°‘kz f ot

The method of solution requires the forward integration of the
(s+1) particular éqlutions of equation (3.1), pk(t), with initial con-
ditions given by gquatibn (3.4) from to to some assumed final time
ta. At the assumed final time, the Jacobian matrix and the functions
hi are evaluated using initial guesses for the ay . Thg quation (3.7)
yields new approximations for a and tf. To continue the iteration
of equation (3.7), it is necessary to integrate the particular solutions
from thé assuméd final time to the new estimate for final time. The
forward and baékward integrations which may be necessary from the se-
quence of final times generated by the iteration of equation (3.7) may
be excessively cumbersome for some numerical integration methods. How-

ever, the power series integration scheme discussed in Appendix B is

well suited for this problenm.
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Application of the power series integration method yields Mth order

polynomial approximstions for pi(tf) and ﬁ;( ) written as

te

M .
| i-1-
;151 o,0,1 (br = to)

o
=
0

Na 3
]

(3.10)
.k M

i-1
- 1};1 bk,z,i (tf - ta)

el
©
ct
R
I

where the a# e and b are known power series coefficients
. 3 1]

k,2,1
determined by the method of Appgndix B and ta is used as the origin
of the power sefieg expansions. If ta- is sufficiently close to the
true final time, the equationé (3.10) represent sufficiently accurate
- formulae in the application of equation (3.7). If |(t.f -‘ta)| becomes
:tob large, a new center of expansion can be used as explained in Ap-
pendik B so that a specified accufacy is retained.

With sufficiently Qlose initial approximation for o and tf,
the seguence (3.7) is rgpidly convergent and yields the desired values
fof the oy 'and tf. ﬁpon convefgence of -equation (3.7), the general
solution of equation (3.1) satisfying equation (3.2) and equation (3.3)

can be obtained by integrating (3.1) over the interval [to,tf] with

initial conditions

Yy (to) = Z c"kplif(to) i=mtl,m+2,...N
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In this manner, the solution y(t) cah be constructed without storing
fhe solutions pk(t).

Although the method requires initial approximations, this has not
been found to be a-problem. If it happens that estimates are available
for thé missing initial conditions,.then using these estimates for
pl(to) implies @y should be chosen near unity with other values of
@, ~near zero. A very accurate method of estimating the o is obtained

when the method is used in an iterative technique for solving nonlinear

boundary value problems. This is discussed in the following chapter.



CHAPTER IV

METHODS FOR SOLVING NONLINEAR TWO-POINT BOUNDARY VALUE

PROBLEMS WITH NONLINEAR BOUNDARY CONDITIONS

A fundamental idea in most contémporary methods for solving non-
linear boundary value problems in ordinar& differential equgtions is to
. iteratiﬁely solve an associated set of linear differential equations.
The solutions either converge to thé nonlinear solution or provide a
sequence of inifiél conditions which coniérge to the proper set of
initial conditions for the ﬁonlinear system. The linear differential
equations are obtained by Taylor SériesAexpansiéns of the funétions
defining the nonlinear system. This linearization process is common to
many methods appearing under the various titles of Quasilineariza-
.fipn [19], [31], [35); Generalized Newton-Raphson Method [30]; [32];
Modified Newton's Method [26]); Second Variation Methods [23]; Adjoint
Method [21]; and Mgthod'of Perturbation Functions [42]. The systems
§f linéar differential equations uséd by thgse methods are similar and
in many cases identiqal. However, the actual.sequence of approximate
solutions generated may differ considerably depending on the type of
initial solution approximation used, the manner in which given boundary
conditions are  employed, and the reference solution used in the linear-
izationAexpansion for each iteration.

T~ 7 The type of ‘reﬁfér_e_n'c’e'—éélﬁtgiéhfu—sgd_f—éf each iteration provides a

basic classification of the methods into two groups which in this thesis

will be called Perturbation‘methods and Quasilinearization methods,

27
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Perturbation methods use a solution of the given nonlinear system with
approximate values for unknown initial conditions as the reference solu-
tion. The reference solution for Quasilinearization methods is a solu-
tiqn of a system of linear differential equations dérived from the
nonlinéar system. Both Quasilinearization and Perturbation methods are
developed below using the ideas of Chapter III for obtaining solutions
of 1inéar systems with nonlinear boundary conditions. The Quasilineari-
zation method obtained is recognizéd to be very similar to one proposed
by Lewallen [35). The Perturbation method obtained is significantly
different from previously derivéd Perturbation methods and offers some
decided advantages over presently known methods.

Consider the system of N nonlinear differential equations
z = f(Z,t) (’4.1)

with initial conditions

z'i(to) =z, 1=1,2,...m (k.2)

. and final conditions and final time given implicitly as the first time

the following q = N - m + 1 vector of functions is satisfied
1 _ St
h[z(tf),tf] =0 | {(4.3)

In general, a solution of equation (L4.1) with initial conditions, equa-
tion (4.2), and a.rbitra.r‘y values for the unspecified initial conditionms
will not satisfy the terminal conditions, equation (4.3). Denote such a
solution by 1z(t), where the superscript is used to index the first

I3
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approximation to a solution of equation (4.1) satisfying both the initial

and final conditions.

Let w(t) be an N vector of functions satisfying

'wi(to) =z, 1i=1,2...m

h[w(tf) ,tf] =0
as well as the differential equation

v=flw,t) ot (L.b)

A
o
A
ct

where'tﬁe vector of functions f in equation (4.4) is the same vector
of functions éppearing in equation (4.1). Clearly, w(t) is a desired
solution of equatioﬂ (4.1) satisfying both equations (4.2) and (5.3).
-Thé functions appearing on the right-hand side of equation (4.l4) can be
expressed iﬁ a Taylor series expansion about the reference or approximate

solution <+z(t). That is

9z

v o= flw,t) = f(lz,t) + ﬁﬁbﬁ— (w - lz) - | (L.5)

If the expansion is truncated after the second term, the following
linear differentisl equation, which is an approximation to equation (L.5),

is obtained
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where
1
- af( z,t)
Aft) = 3z
and

b(t) = ‘f(lz,t) - ale)tz(t)

A solution of -equation (4.6) subject to the boundary conditions,

lyi(to) =z, i=1,2,...m | (4.7)

h[ly(ltf) ,ltf] =0 (L.8)

‘will yield an approximation for w(t). The solution ly and correspond-

ing value for final time lt can be obtained by the method of particu-

T
lar solutions described in Chapter III. The accuracy of the approximate
solution obtained dépends on the closeness of the solutions lz and w.
Assume for the present that }z is sufficiently close to w so that

Y 1is a better approximation than lz. The meanner in which additional

approximate solutions are obtained determines whether the approach taken

is categorized as a Perturbation method or & Quasilinearization method.

A Quasilinearization Method
Since ly is a time varying vector of functions which is a better

approximation for w than is lz, then it is reasonable to replace lz
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with ly in the Taylor series expansion of equation (4.5). The linear

differential equation (4.6) is then written

t (2y _41y) (4.9)

and a solution of this equation subject to the given boundary conditioné
providés a new approximate solution’ 2y. According to the definition
set forth previously, this is a Quééilinearization method, the reference

splufion in the Taylor series expansion being & solution of the linear-

ized differential equation. USing 2y as the next reference solution

yields 3y and so on for ‘hy; Sy, 6y,...ny. Under appropriate condi-

tions provided by the convergence proofs of references [29] and [34],

.the sequence of solutions ny converges to the desired solution w.

‘These convergence proofs are restricted to problems with more simple

boundary conditions than those expressed in eqﬁation (hf3).'

A cioser obsgrvatibn of the Quasilinearization method with regard'
to thentechniqﬁe preseﬁtéd in Chapter III forhsolving the linear system
with nonlinear boundary conditions reveals a fundamental difficulty. It

may happen that 2t the terminal time corresponding to the solution 2y,

£?
may be larger than ltf, the value of tf obtained in the solution
for ly. In this case, ly is not known beyond ltf, and the differen-
tial equation (4.9) is not defined over the necessary range to <t < 2tf.

wton-Raphson iteration with equation (3.7) is made,

and a linear extrapolation for ly is used on the interval [ltf,até],
it is not necessary to integrate 1y past lt in order to construct

T
2y and a workable iterative scheme is realized. Lewallen [35], using
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somewhat different arguments, has presented a Quasilinearization method

which solves the variable final time problem essentially in the same

manner proposed here. The primary difference between the method sug-
gested here and the one proposed by.Lewalien is that particular solutions

rather than homogeneous solutions are used to construct the general solu-

tion of the linear system.

Lewallen (35] has compared this Quasilinearization approach with
the Quasilinearization techﬁiques described by Long [32], and McGill and
Kenneth [36], and has found this partiéular approach to have beﬁter con~
vergence characteristics. Another attractive feature of the method is
the capability for solving problems with general terminal boundary con-

ditions of the form given in equation (L.3).

A Perturbation Method
In order to proceed with the development of the Perturbation methcd,

it is assumed that ly (the solution of the problem defined by equa-

tions (4.6) to (L4.8)) has been obtained. It is further assumed that ly

is a better approximate solution than 1. (A method for satisfying

this assumption is discussed later in the prgsentation.) In particular,

ly(to) ‘should be a better approximation for w(to) than was z(to).

It is reasonable to expect that a solution of equation (4.1) using ini-
tial conditions, ly(to), will be a better approximation for w than

was 1z. Such a solution is denoted by 2z. Replacing lz with 2z
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in the Taylor Series ékpansion (4.5) and the associated linear ‘differen-

tial equation (4.6) yields
w R y = f( ) : BL(Q—Z‘-Q (2y - 22) (4.10)

If the solution 2y is to closely approximate w, it must also satisfy

similar boundary conditions, hence

(k.11)

The solution 2y can be obtained by the mgthod described in Chapter III,
and the difficulty ﬁith final time encountéred with the Quasiliheariza;
tion method can be avoided. This is acgomplished by generating. 2z by

~ integration of eéuation (4.1) simultaneously with the integration of
'all particular solutions of equation (4.10). 1In thi; manner the refer-

ence solution 2z is integrated to each estimate of final time required

by the algorithm of Chapter III. The solution 2z is thus defined over
the entire range of time required for the solution of equation (4.10) sub-

Jject to the boundary conditions (4.11). Consequently, as many Newton-

Raphson iterations as desired with equation (3.7) can be made. This gives

one the capability to obtain the initial condltlons 2y(to), so that the

terminal conditions (h 11) are satisfied as accurately as desired. This
capability has not been possible with existing methods for solving the
problem defined by equations (L4.1) to (4.3). Once 2y(t°) is determined,

a tliird reference solution 3z can be generated by integration of
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equation (4.1) using initial conditions 2y(to). The new reference solu-
tion allows continuation of the iterative process. 1If lz ig suffi-’
ciently close to w, the sequence of initial conditions ny(to) converges
to w(to), and hence, ‘z :converges to w. By the definition set forth

4previously, this.process is a Perturbation method, since. thé reference

solution at each iteration is a solution of the given nonlinear system.

Mbdifications for Improving Convergence

In the foregéing discussions of Quasilinearization and Perturbation
methods, it was assumed that the starting solution lz was sufficiently
close to the true solution w, so that convergence of the methods resulted.
In practice, it is sometimes difficult to find an initial approximate
solution which will lead to convergence. Conseguently, various modi-
fiéations of the basic methods outlined above have been proposed tb
imprové convergence characteristics [23], [26], [3h], and thh]- These

modifications are commonly referred to as "iteration schemes" or '"con-

' and the usefulness of a given method is often closely

vergence schemes,’
tied to.the ";onvergence schemes" employed. Two modifications to the
basic procedures describéd above are discussed ﬁere; They should be
considered to be integral parts of the basic methods rather than
schemes which are just added on.

Consider & simple version of the nonlinear problem described by

equations (4.1) to (4.3) such that the terminal time is specified and

terminal boundary conditions are given in the form

zi(tf)=zﬁ i=k+1k+2,...(k +N-m)
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for some k. (The restriction of‘fixé& final time in tﬁis discussion
éan be removed by'employing the transformation of independent variable
as described by Conrad [31] and Long [32].) The following discussion
assumes that the féftuibation methédiis used, but p;rallel arguments
can be made for the Quasilinearization method.

AAn gpproximate initial solution lz is obtained in the manner

described préviouSly to &ield at the fixed final time the values

zi(tf) 1= 1,2,..;N

Let w be a solution of the problem. Instead of, as before, seeking

an approximation for w on each iteration, a function nw (in this case

n = 1) is sought which has initial conditions
NN - .
wi(to) =z i=1,2,...m
and terminal conditions

i=k+1,k+2,...(k +N- m)
n : n ’ ?
w.ft,) = ez, + (1 -¢€) "z.(t -
i\’f fi f : ’
( ) . l( ) 0<ex<1l
n
That is, W has terminal values between those of the reference.

solution-and the desired solution. By chbosing € sufficiently small,

the approximation -
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with

4

nyi(to) = nwi(to) i=1,2,...m

n _n e o : _

yi(tf) = wi(tf) i=k+1,k+2,...(k + N -m)

can be made as aécurate as desired. To insure convergence, the approxi-
mation must be sufficiently accurate such that the initial condition

vector

n-O-lZ (to) = nY(tO)

is sufficiently close to nw(to), and hence, n+lz(tf) sufficiently

n+l

close to nw(tf), so that z(tf) is closer to w(t.) than is nz(tf).

f
4 By chdosing ‘€ sufficiently smali, initiallconditions for'successive
reference solutions are obtained which yield terﬁinal conditions closer
to the desired conditions than the previous reference solution. Repeti-
tion of the process for n = 1,2,3... results in the construction of
a sequence of terminal conditions nw(tf) converging to w(tf), a
sequence of initial conditions nz(to) converging‘to' nw(to), and hence,
solutions o, converging to w.

A practical consideratioﬂ is that some method for choosing e' is
necessary. From the above discussion it is apparent that there exists a
value at each iteration which will work, but no a pripri means of deter-

minihg € at each iteration is known. A trial and error method could

be employed but this could be very inefficient. A simple method for



3T

choosing € is proposed here which is based on practical considerations
and which‘improveé chanceé for convergence in a specified maximum number
of iterations. Since it is.apparent that the numerical methods proposed
here will be used only with the aid.of digital.compﬁters, it is always
necessary to limit the number>of iterations which can be attempted in
order to conserve computer time and costs. ‘

First it will be noted that the scheme given above for choosing
boundafy values is equivalent to the following procedure.

:1. :Solve equation (4.12) subject to the given initiél»and terminal

boundary va;ues

=1,2,...m

=]
<
e
P
ct
o
N’
"
3]
=
|

oi

n ' . -
.= - k + + PPN + -
yi(tf) 24 i=k+1,k+2,...(k + N - m)

2. Using the method of Chapter III, determine trial values for

the missing initial conditions

?‘yi(to) i=m+ 1l,m+ 2,...N

3. Compute a final set of missing initial conditions for the next

+
reference trajectory n lz from

1 (oA B ‘nzi‘(t'o )""F'E[ny_i (&) = ‘“z‘i‘(i'o)‘]"'i =m+1,m+2,...N

. ' . .
It is shown in Appendix C that the values -obtained for n lzi(to) using

a given € are equivalent for both the case where terminal conditions
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are modified before solving for initial’conditions and the case described

in steps 1, 2, 3 above. Implementation of the second approach is easier

than the first approach described because the change in initial conditions

M) = () - ()

can be computed 5efore chbosing €. Furthermore, the latter method is
simpler to apply for the more general problem with unspecified final
time and nonlinear terminal boundary conditions, since it is only nec-
essary to modify the missing initial conditions computed for each new
- reference trajectory.

‘The following method for choosing € 1is proposed. Let M be the
maximum number of solution iterations which can be allowed because of
iimitations bf computer time and costs. When initial guess values are
chosen for the missing initial values of the starting solution, also
estimate the maximum deviation of a guessed value from its true vealue.
Denote the maximum of the estimated deviatiéns by d. Also choose a
suitable norm for measuring the computed change ny(to) - nz(to). For

example

: 51172
o[ny(to)’nz(to)] ) Z [yi (tO)N-- :l(tO):l ;

Compute a maximum allowable "initial condition change step size" from

=~ ﬁ-, for example, § = %% On each reference trajectory iteration,
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n v n :
compute the norm, opl y(to). z(to)], and compare.its value to 4.

Choose e according to

| .. ,pry(to)'n‘(to)] it o[y (t,) ,nz(to)]
o te o lv(e) "2 (2]

v
(]

(4.13)

A
O

Initial conditions for successive reference trajectories are computed

from

g ) Pl (] rraenes

(b.14)

For variable final time problems it may also be necessary to modify

successive final time estimates according to

ptly My e Ty (4.15)

where nAtf is a computed change for final time determined in the
solution for ny(to). |

The attfactive features of this method for induciﬁg convergence
from poor initial estimates is that (1) very little effort on the part
of the user is required (all he must do is choose §6), (2) as the solu-
~ tions begin to converge, the scheme does not retard convergence and
(3) chances for convergence with one computer run are maximized con-

sistent with available computer time. Of course, if & 1is chosen to

be much smaller than necessary, the rate of convergence may be slowed
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considerably. On problems which do nét display convergénce sengitiv-
.ities, S should be chosen arbitrarily large so that rate of conver-
gence is not retarded.

In situations where § 1is chosen to bé too large, a second modifi-
cation.can be employed which may induce convergence. When & is too
lafgé, a typical behavior is for initial conditions to be chosen in the
proper direction for several iterations but then as the true values are
apprqached, one Qr more of the unknown values may oscillate about its
true value on successive‘iterations. When this occurs, halving the
computed change for the oscillating Qalue will bring it closer to its

true value. Thus, the following procedure is proposed.
(a) Compute n+lzi(to) as described above, )
i=m+1m+ 2...N

(b) COmputé [nﬂzi(to) o nzi(tO)]/[nzi(tO) - n_lzi(tO)]

(¢) 1If the above quantity is less than -1/2, compute

e () () ()]

If the quantity in (b) is positive, the particular element of the vector

——

(4.16)

is not oscillating on successive iterations. If the quantity in (b) is
negative but larger thén -1/2, then the oscillation has a convergernt
lnature. In eithgr case there is no reason to modify the computed value
for n+lzi(to). This modification may also Se applied to successive
final time estimates for variable final time problems.

There are other possible variations of the two basic modifications

presented above. For example, one might reduce the value of § whenever
!
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the norm p[ny(to),nz(to)] is computedAto be less than >6,.and/or 1)
might be reduced whenever oscillation of one or more initial condition
valués or final time value occurs. Details of such procedures are best
worked out through numerical experiments. When uppér and lower bounds
are known for missing iﬁitial conditions and/or final time, these bounds

should be imposed in the event that the values chosen violate these bounds.

Comparison of Quasilineariiation and Perturbation
Compufational Requirements
A basic goal of thié investigation is to formulate an~impro#ed com-
putational method for solving nonlinear two-point boundary value problems.

While convergence characteristics are a major concern, other factors

such as ease of implementation, computer storage requirements, computer

‘time per iteration, and control of solution accuracy are also important.

Two basic methods,‘Quasilinearization and Perturbation, h;ve been pro-
posed from a theorefical standpoint. A comparison of the‘computational
rquiréments and restrictions of each method is made here. ‘This com-
parison.reveals the Perturbation method to be a more efficient computa-
tional scheme, especially when used in a unified approach with the
particular solution method of Chapter III and the power series numerical
integration method discuésed ih Appendix B.

A distinctive computational feature of the Quasilinearization

.-method, often considered to—be -an advantage of the method, 'is that it~ =~

is not necessary to program the given nonlinear system of equations for

solution. For convenience in the previous presentation of the method,
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it was assumed that an initial guess sonlutio'n was obtained by integra-
tion of the given nonlinear system with assumed initial conditions.

This is not necessary since any'guess solution satisfying only the bound-
ary conditions can be used. This "advantage'" of the method is lost,
howe&er, if a starting solution is generated by.integration of the non-
linéar system. With the Quasilinearization method, one has an option of
storing each particular solution of the linear system at each integra-
tion step and forming the reference solutidn by the properly weighted
sum of these solutions, or one may avoid the storage problem by inte-
grating the linear system with the proper initial conditions to form the
reference solution. With reference to equation (4.9), thg latter approach
still requires that the values for f(ny,t) and Bf(ny,t)/az ny be
stored at each numerical integration step. To simplify access to these
stored quantities, one is forced to use numerical integration schemes
which use a fixed integration step size. The choice of this step size
is influenced not only by truncation error of the numerical integration
scheme, but also by the required spacing of the stored quantities in
order to achieve the necessary accuracy for the approximation of these
functions along the reference trajectory. Thus, selection of integra-
tion step size in order to achieve a specified final solution accuracy
is not a routine matter. The restriction to fixed numerical integration
step size could be & serious handiqap for problems where considerable
integration speed and accuracy are realized through frequent changes in
integration step size. Many of the boundary value problems arising in

optimal control theory (for example, those in interplanetary navigation)
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have this propefty. Thé Quasilinearizétion method, with the minimum
étorage option, requires N - m + 2 integrations of the linear system
(eq. (4.9)) at each reference solution iteration since N -m + 1
integrations are required to determine the proper initial conditions,
and then these initial éonditions must be useq in one additional inte-
grétibn of the system to generate the reference trajectory.

In comparison, the Perturbation method offers some unique computa-

tional advantages. Since it is never necessary to generate the entire

solution of the linear.s&stem (h.lE), but only the initial conditions
ny(to),‘there is no need for storing perturbed particular solutions of
the linear system. Furthermore, since the reference solution %2 can
be gener;ted by simultaneously integrating equation (4.1) forward with
_ ail particular solutions of equation (4.12), the quantities f(hz,t)
and 3f("z,t)/3z "z appearing in equation (4.12) need not be saved.
They are merely computed from B, at each integration step, used in
all integrations of equation (4.12) for the integfation step, gnd'then
Aiscarded. With this procedure, variable step integration schemes may
be used since there is rio need to restrict end points of numerical inte-
gration steps to.coincide with previously stored information.

The combination of simultaneous and variable step integration of.
the nonlinear and linearized differential equations which is possible
approach. The variable step capability allows one to use integration

schemes which aﬁtomatically determine an integration step size to yield

«
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a specified solution accuracy. The.simulﬁaneous intégration of the non-
linear and linearized equations not only eliminates storage of the func-
tions f(hz,t) and 221;%;31.“2’ but it also eliminates the necessity
for interpolation schemes used to cqnvert discreet values of these func-
tions into ﬁore accurate approximations over the integration step. 8Si-
multaneous integration automatically provides thé interpolation for
these functions through the mechanics of the particglar integration
scheme used. With the variable step power series integration method
discussed in Appendix B, Taylor series expansions of these functions Are
generated which yield an approximation accuracy/equal to the desired
integration accuracy. The automatic step size selection of this meﬁho@_
also reliévés the user of the burden of determining beforehand an

. acceptable integration step size.
)

In addition to the above-mentioned computational advantages of the
Pertﬁrbation method over the Quasilinearization method, the Perturbation
method requires one less numerical integration per iteration of é com-
parable éet of differential equations. This may not be immediately
obvious since it has been previously indicated that N - m + 1 \integra-
tions are required to sblve the linear system (4.12) and one integration
of equation (4.1) is necessary to construct the reference trajectory.
This totals to N - m + 2 integrations per iteration, but only
N-m+ 1 are required if the following observation is made.

Theorem 1: A solution Anz of the nonlinear system (L.1) is iden-

tical to a particular solution of the linear system (L4.12) if

‘initial conditions of the two solutions are identical.
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Proof: Let p be a particular solution of equation (4.12) and let

%2 ‘be a solution of equation (4.1). Let x be defined

x(t) = p(t) - "z(t)

which implies

x(t) = p(t) - "z(t)

Since p. saﬁisfies equation (4.12) and "z satisfies equation (4.1),
aa(n
X=p - Bz = f(nz,t) + 2££5§432(p - nz) - f(nz,t)

or

N

Now this is a homogenous linear differential equation, and by

hypothesis

R VR AR CARY:

For these initial conditions, it is well known (see, for example,

Petrovski [52]) that the solution for x(t) is
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which implies

p(t) = "z(t)

and thus the proof is complete,

Using this theorem, one of the N - m + 1 integrations of equation (L.12)
can.be eliminated since the reference trajectory B, can be used in its
place.

A'furthér point of comparison of fhe computational requirements
for Pértu;ﬁation and Quasilinearization methods is concerned with the
menner in which convergence is detected for the methods. For tﬁe'
Perturbation method, a direct indicatibn of convergence is given when
the reference trajectory satisfies the terminal bound;fy conditions to
some specified-accuracy, or when the change in the initiael condition
vector is less than a specified accuracy. However, with the
Quasilinearization approach, fhe reference trajectory does not satisfy
the nonlinear system until convergence has occurred. To determine when
successive trajectory iterations are converging, it is necessary to

n-ly(t)]. The computation of this

compute some suitable norm o[ y(t),
norm requires a comparison of the successive refereﬁce trajectories at
each integration step and consequently requires additional programing
and computer time.

This comparison of the computational requirements and restrictions
of the Quasilinearization and Perturbation methods indicates‘that the

Perturbation method is somewhat easier to implement, and is better

suited for adaptation with ihe method of particular solutions described

1
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in Chapter III and the powér series integration scheme presented in
Appendix B. Outlined below is a computational algorithm which combines
these various concepts together with the proposed modifications for
extending the range of convergence in a unified mefhod for 'solving the

nonlinear two-point boundary value problem in ordinary differential

equations.

The -Particular Solution Perturbation Method

.To obtain an éfficient computational algorithm utilizing the con-
éepts set forth in this chapter and the preceding chapter, a stud& of
the manner in which these varioué ideas are incorporatéd into an inte-
grated framework is in order. Because the Perturbation concept is
employed with the mefhod of particular solutions, the algorithm described
_below is referred to as the Particular Solution Perturbation Method (PSPM).

On each solution iteration, the PSPM requires a simultanéous for-

ward integration of the given N dimensional noniinear system

P2 = £("z,t) (4.17)

together with S 'forward‘integrations of the derived linear system

~

ng ___'af‘l;:,t) L f(nz’,;) - 3_12.(.;1_2;3)_% (4.18)

. __ vhere- S=N - m and m -is the number of specifiéd initial conditions

rizi(to) =2 i=1,2,...m
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The terminal conditions specified for the nonlinear system are assumed

to be of the form

hi[?(tf),tg] =0 i=1,2,...(8 +1)

so that the linear system is to satisfy boundary conditions given by

1,2,...m

o]
<
=)
N
ct
O
S’
]
S
o]
!
[
[}

hi[ny(ntf)’nth =0 is 1,2,...(§ +1) (1:29)

Using the method of particular solutions, ny is expressed

Subject to

S+1
, o, =1

where any S of the npk\ are linearly independent particular sclutions

of equation (4.18), and the «, are superposition constants. Theorem 1

is used to write
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and the systems (4.17) and (4.18) are written

1 1 )

n f(np ’t) .
off p ,t :

I')k = J%z—-—-l npk + f(npl,t> } (4.20)

. Bf!npl,t! 1 »
- — P k =2,3,...(8 +1)

with- m initial conditions for each solution provided by

Le)
|

i=11,2,...m

K
p.{t =2z .
n 1( °) ot k=1,2,...(8 + 1)

and other boundary conditions

k=1

541 k /n n \
hy 3 o P ( tf), tof=0 i=1,2,...(8 +1)

} (4.21)
S+1

hS+2(al"°"aS+l) = ééi @ - 1 =-O ~

to be satisfied by selection of proper values for a and Tt

k £’

Since only m initial conditioﬁs for the solution npl .are speci-
fied, the remaining S missing inifial conditions are taken to be the
best avéilab;e estimates for these yalues. For 'n = 1, the missing
~initial conditions are actually estimates, but for n-="2;3;4,..., the ~

initial conditions are provided by the algorithm in the manner described

previously for nz(to) (eqs. (4.14) and (4.16)). Initial conditions for
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the nPk, k =2,3,...(8+ 1) are determined from npl according to

the scheme of equation (3.4),

. 1 i=1,2,...N \
p;(t.) =B, Pt }+ v,
ni( O) ik n ( O) ik k=2,3,...(s+l)
where
) (k.22
1 if i#k+m-1 F )
8., =
ik B, if i=k+m-1
0 if i#k+m-1
Y, =
ik X _ 1
\ if i=%k+m-1 and npi(to) <Yy y

and Bi and Y; are perturbation factors p;escribed by the user in
order to control the magnitude of deviations between the various partic-
ular solutions.

At each iteration of the PSPM, S + 1 vector differential equa-

tions (4.20) are integrated from t, to the best estimate for t., and

£
the Newton-Raphson algorithm, equation (3.7), is used to determine
values of o and' ty which satisfy the boundary conditionms (4.21). .
However, in order to efficiently incorporate this élgorithm into the
PSPM, the following observations are made. Each iteration of the

Newton-Raphson algorithm yields estimates of the superposition constants

‘from which an estimate of the initial conditions

n 541 k
y(to) = g;a a P (to)
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can be made. - This estimate can be used to compute an estimate for the

change in the initial conditions of the nonlinear system, nAz(to),

where

Using equation (4.22) and simplifying, the estimated change in initial

conditions can be -expressed as a function of the o  and perturbation

' k
factors

nAzi(to) =0 i=1,2,...m

- i
nAzi(to) = ak[npi(to)(-si -1)+ Yik] ‘-

=3i-m+ 1

m+ 1l,m+ 2,...N

A suitable norm for this estimated change p[nAz(to)] can be computed
and compared to‘the‘maximum allowable norm for this change (the value §

appearing in egq. (h.13)).' If

DI:nAz(to)] > 6

then additional iterations of the Newton-Raphson algorithm are not use-

ful since this would only serve to compute nAz(to). to greater accuracy,

with the subsequent application of the convergence modification (4.14) - - -
— ﬁasting this effort. Therefore, in this situation, only one Newton-
Raphson iteration should be made. When the norm of nAz(to) is less

thean 6, then an indication that the PSPM is in the terminal stages of
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convergence is obtained, and continuédﬂiteratidns of the Newton-Raphson
algorithm can be expected to yield better estimates of the unknown
initial conditions and final time. The effect of the number of Newton-
Raphson iterations allowed for the case when p[nAZ(to)] is less than
§ is a sublect of investigation in the following chapter.

~ When the final Newton-Raphson iteration is made on each reference
solution, and the subsequent estimate of nAZ(to) is obtained, the
modification (h.lé) is spplied to yield a final value for nAz(to).
Initial conditions for the hext‘reference solution are then computed

from

a1® (fo) = o (8) * 02 (%)

In this manner, if'convergence occurs, the initial conditions
P (to) converge to the proper initial conditions of the desired non-

linear solution. Since ny(t) also converges to the desired nonlinear

solution, the following result is obtained at convergence

prft ) = Paft \ = Pyft ) = a. pi(t +S+Zlu o5rt Y
n ( o)' ( o) y( o) ln ( o) K=o kn ( o)

This condition is satisfied if o, =1 and o = ... = a = 0.

1 27 %3
Besides offering a simple and positive test for convergence of the PSPM,
the above mentioned final converged values for the ak provide reason-
able estimates for these values which are required by the Neﬁton—Raphson
aléorithm. These estimateshbecome increasingly more accurate as the

PSPM converges.
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In the next chapter, ;l:he convergence characteristics of the PSPM
are investigated and compared with published results for other Perturba~
tion and Quasilinearization methods. The effects on convergence by the
various modifications are investigated separately ih order to evaluate

the effectiveness of each.



CHAPTER V
DISCUSSION OF RESULTS

In this chaptér, the convergence characteristics of the Particular
Solution Perturbation Methoa (PSPM) are investigated on two typical
nonlinear boundary value problems which result from the formulation of
an optimal control problem for solution by an indirect method. The
problems are formulated from the same basic optimal coptrol problem and
diffef only in the boundary‘conditions which are imposed. The basic
control ﬁroblem considered is the determination of the thrust véctor
control for a minimum time, planar, Eafth—Mars, orbit\transfer for a
spacecraft with a continuously firing, low-thrust rocketvengine,_ This
problem was selected because it has been used to test several other
optimization methods, and consequently considerable data were available
from which a direét}comparison of results could be made.

The equations of motion for the thrﬁsting rocket are formulated in
heliocentric, polar coordinates where only the gravitational attraction
of the Sun is consideredv(Fig. 1). 1In a@dition, it is assumed that the
thrust vector of fhe rocket can be turned continuously and effortleésly
so Fhat the spacecraft is idealized as a point mass with negligible

rotatiohal dynamics. The nonlinear ordinary differential equations to

5k
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Figure 1.- Coordinate system.

i /T\

be solved for the determination of minimum time transfer trajectories

are derived in Appendix A and include the spacecraft equations of motion

2
> .y _GM_ T -
Zl =y = " % + - sin 8 = fl
r
7 s o -uw T =
Z2 = Vv = - + - cos B = f2
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and the associated Euler-Lagrange differential_equafions

e

[}
o

=

!

(e

]

&l

[N

where. T is the constant thrust of the rocket, ¢ 1is the constant

mass flow rate of ‘the exhéust, GM 1is the gravitational constant of
the Sun, sin 8 = _AI/J A.l + A2 and cos B = -Az/‘/ )‘l + A2 .

Example Problem 1

For the first examplg problem considered, it is required only that
the spacepraft reach an assumed circular Mars orbit with zero radial
velocity and tangéntiél velocity equal to that of Mars. The final
angle © 1is not specified. The known initial conditions are the posi-
tion, velocity, and mass of the spacecraft as it leaves an assumed
circular Earth orbit; the normalized value of one Lagrange multiplier;
ana & known zero value for the constant Au, which results from not

specifying a value for O(tf);
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Zg(to) =1, =0

-

The normalization of the Lagrange multipliers and other system param-
eters is discussed in Appendix A. The terminal boundary conditions at

the unknown final time are

' hl[Z(tf),tf] = Zl(tf) -0=0
hz[Z(tf),tf] = Zz(tf) - 0.81012728 = 0
h3[Z(tf);tf] = 23(tf) - 1.5236790 = 0

For this problem, the dimension of the vector Z is N =9, with m = T
specified initial conditions and S F1l=N-m+1-= 3 terminal condi-
tions given since final time is unknown. The unspecified initial condi-

4/

tions are
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- Example Problem 2
For the second example problem, it is required that the final
spacecraft central angle B(tf) be equal to the central angle of Mars
at the time of rendezvous. The central angle of Mars at the end of the
transfer trajectory is computed from a known central angle of the planet
at the beginning of the transfer, the constant angular velocity of the

Mars about the Sun, and the time of flight,

Thus, for this problem an additional terminal boundary condition is
added to the set given for example problem 1,

V.

hu[z(tf),tf] = Z3(tf) - GM(to) ", tp =0

Since, in this case, the terminal value of 6 is constrained, Ah
cannot be determined to be zero, and the initial and constant value for
xu is unknown. Therefore, for this example problem there are three

unspecified 1n1t1a1.cond1tlons: Al(to), A2(to), and Ah(to).

Numerical Results for Example Problem 1
The solution of example problem 1 provided correct initial multi-

plier values and final time as follows:

Xl(to) = -0.L9L865
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-Az(to) % -1.07855

ty = 3.319437 (1 time.unit = 53.132355 days)

N

>

These values were obtained using a relative error bound of 10 ° with

the power series integration scheme of Appendix B.  Convergence of the

PSPM was detected by requiring‘that the sum of the absolute values of
I

the superposition constants a, and Qg be less than 1 x 10" . For

this problem, this convergence criterion was more demanding than requir-
ing that the initial condition and final time changes be less than the

specified convergence tolerance, since it was observed that changes in

these values were about one order of mégnitude smaller than values of

o . All computations were made in single precision arithmetic

> and .a

3
(eight significant figures) on the Univac 1108 digital computer. Each
iteration of the PSPM required approximately 2 seconds of computer time.

In order to evaluate the convergence sensitivity of the PSFM to

initiel guess values for Al,

A2, and tf, the problem was solved'many
times using starting guesses which deviated from the true values by
known percentages. The deviations from the true values were chosen in’

a systematic manner so that the data could be presented in the form of

convergence envelopes. The convergence envelope shown in Figure 2 was

e

construéted from all initial guess data having a final time error of

-20 percent (a guessed final time less than the actual final time).
The convergence envelope was formed by locating the percentage devia-
tions used for the initial guess- values of the two Lagrange multipliers

on a Cartesian coordinate grid. Each problem attempted was located on
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the grid by a small circle, Darkened circles represent initial guess
values which did not lead to convergenée in 20 iterations of the PSPM.
Oben circles containing numbers represent initial guess values for the
multipliers which aid lead to convergence, and the numbers in the cir-
cles represent the number of iterations required. On divergent trials,
typical behavior of the method was to successively select multiplier
chahgés in thé wrong direction on e;ch iteration. Also shown in Fig-
ure 2 is the boundary of a convergence envelope obfained for this prob-
iem by Lewallen [éh], who invéstigated and compared several trajeétory
optimizafién methods. In reference [24], similar sized convergence
boundaries were preseﬁted for three meﬁhods; the Method of Adjoint
Functions studied by Jezwinski [22]; the Method of Perturbation Func-
_tions discussed by ﬁreakwell, Speyer, and Bryson [23]; and Lewallen's [35]
'Modified Quasilinearization Method. These methods typically required

11 to 20 iteraﬁions for initial multiplier errors-along the outer edge

of the-convergencé,boundary shown. The superior éOnvergence characteris-
tics of the PSPM are evident.

| Presented in Figures 3 and 4 are similar convergence envelopes for
cases with O-percent and -+20 percent deviations in initial guesses for
‘final time, respectiveiy. Also shown in these figures are typical con-
vergence envelopes presented in rekerences [24] and [L2] on the same
broblem with the three methods mentioned previously. _The.superior co£—<__ _

vergence characteristics of the PSPM are again indicated by these data.
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The most probable reasons for this marked difference in convergence
characteristics of the PSPM and the other methéds (which are quite simi-
lar methods) are discussed below.

For the data pfesented in Figures 2, 3, and 4, the velue used for
the maximum allowable initial condition step size norm, ¢ of equation
(4.13), was 0.5. Each time'that the requested step size norm was less
than 8, the value of § was set equal to theAnorm of the requésted
change. For significant errors in the initial values of the Lagrange
multipliers, typidal values for p[nAZ(to)], the norm of the requested
changé in 'Al(to), A

(to), and t, varied between 8 and 5000. This

2 f

means that for some cases, the value of € used in the convergénce
modification of equation (4.14) was on the order of 1 x lO_h and the

requested changes ‘in Al(to), A2(to), and t_ ‘were reduced by this

t
fraction. In comparison, the various methods studied in references [2k]
and [42] were implemented with a fractional correction scheme which had
the essential efféqt of halving the computed initial condition changes
and final time changes on the first few iterations. With this schene,
for multiplier errors below the indicated boundary in Figures 2, 3,

and 4, the first iteration yielded multipliers in the upper part of the
envelopes. The PSPM also diverges in these upper regions due to sub-
sequent multiplier changes being selected in the "wrong direction."
AHowever; for multiplier guesses in the lower half of the envelopes, the
fractional éor;ection computed for the PSPM was sufficiently small to
prevent "stepping over" the solution. Had the PSPM been implemented

with the fractional~correction scheme of references [24] and [42], the

PSPM convergence characteristics would have been similar to the
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convergence characteristics of the methods studied in-these references.
However, not all of the desirable convérgence chﬁracteriétics of the
PSPM caﬁ be attributed to this one item alone. It is expected that many
cases which conveféed with the PSPM-would not have if Ehe convergence
modification (4.16) had not been used. |

A vivid illustrétion of the importance of the modification (L.16)
is presented by the data of Table I. These data represent the values
of the Lagrange multipliers and final time estimates obtained on suc-
cessive iteration§ with and without the convergence modification (4.16).
The iﬁitiél guesses correspond to multiplier errors of 0 percent and
-50 percent with a terminal time error of -20 percent. The PSPM will
never convergé from these initial guesses without the mod&fication, and
Cwith it convefgenCe is obtained in eight iterations. Of the eight iter-
_atipns, only three required application of the modification as indicated
by the (H) symbolvin the table for values affected by the halving
feature.

Another feature of the PSPM which contributed in part to the good

-

convergence performance shown in Figures 2, 3, and 4 was the use of

upper and lower bounds for t Upper and lower bounds of UL.4 and 2.2

£
were specified, and although these bounds were rarely approached, they
were imposed in several instances. Since bounds on the Lagrange multi-
 pliers ;Al(to) ahd_sz(to)_‘wergrgog easily determined, no upper and . _
lower bounds for their values were specified in this study.

For those starting guesses indicated in Figures 2, 3, and 4 which

did not lead to convergencé of the PSPM, the typical behavior of the
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PSPM was to select both multiplier initial value changes to be in the
wrong direction on each iteration. Usﬁally after 20 iterations the
mﬁgnitude of the initial values for _Al(to) and A2(to) were so large,
thgt'fhe effects of A3 on the solution of the Euler-Lagrange equations
were negligible. Consequently, although increasingly larger values-were
obtained for Al(to) and Az(to), their ratio remained almost constant
and each successive reference trajectory was an essential repeat of the
previous reference trajectory. With fhis type of béhavior, it was appar;
eht fhat the PSPM‘would not converge in any number of iterations for the
particular.choice of initial Lagrange multipliers. Any initiallguesseé
for Al(to) and Ae(to) .which were large in magnitude compsdred -to
A3(to) = -1, caused the PSPM to generate very similar reference trajec-
tories on the first several iterations. However, in most cases, the
muitiplier changes on these first few iteraéions were made in the proper
direction, and convergence'resﬁlted. This behavior suggests that the
convergence space of the PSPM is boundless in the lower quadrants of the
envelopes of Figures 2, 3,,and 4 when a value of 6 is used which.will
prevent the method from "stepping over" the solution and selecting
- values in,thé uppér quadrants of the convergence envelopes.

The Operaﬁion of the PSFM is illustrated graphically in Figure 5.
Each arrow represents the change in the values of Al(to) and Ae(to)
vftgken,on eaéh‘iterationt, Also_presented in.tabulated- form-is the value - -
of tf at each iteration, the requested step size norm, the fractionai
'reduction factor €, and the value of the terminal constraint norm

obtained with the reference'solution of eéch iteration. The initial
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value of § was taken to be 0.5, and 6 was set equdal to the norm of
the requested change whenever this norm.was less than &. Figure 5
iilustrates that the proper direction for the multiplier change is
chosen at each iteration. Similar results can be expected for much
larger errors in the lower left quadrant of the convergence envelbée.

It is interesting‘to note the behavior of the terminal constraint norm
of'fhé reference solution at gach iteration for the problem présented

in Figure 5. Although the PSPM fakes each step in the proper direction,
the sgccessive values of the terminal constraint norm initially decrease
very slightly and actually increase for thé fourth, fifth, and sixth
iterations. This behavior suggests that ffactional correction'procé—
dures utilizing the value of a terminal constraint norm of the reference

-trajectory may not work well on this problem.

An Improved Method for Choosing §

Perhaps the most appropriate criticism of the PSPM as presented is
the neceésity\for cﬁoosing a value for 6, the maximum initial condition
change norm. If & is chosen too large, the method may "step over" the
solutioh into the divergent region. Qn the other hand, if & is chosen
too small; the convergence of the method is unduly retarded. For exam-
ple, if & = 0.25 had been selected for the problem presented in Fig-

ure 5, it would have taken 1h iterations to arrive at the same

" “multiplier values obtained in seven iterations when & was chosen to
be 0.5. In order to illustrate the sensitivity (or insensitivity) of

the PSPM to the value chosen for 8, the problem of Figure 5 was solved



using & values of 0.25, 0.5, C.75,:1.0, 1.25{ 1.5, 1.75, and 2.0.

The results of this investigation are presented in Teble II.

TABLE II

NUMBER OF ITERATIONS REQUIRED FOR VARIOUS VALUES OF ¢

70

s No. iterations 5 No. itérations
, required required
0.25 . 20 ' 1.25 13
0.5 o 12 1.5 Diverge
0.75 ‘ 1k 1.75 _ | 10
1.0 . 19 ) 2.0 Diverée

)
These results indicate that for 6 = 1.5, the allowable change in ini-

tial conditions was large enough to allow the method to "step over" fhe
soiution. The convergence with §&§ = 1.75 was coincidental since the
second'iteration produced the same multipliers as the Tth itération of
the case when &6 = 0.5.

The behavior of the PSPM shown in Figure 5 suggests an approach
fof making the selection of § a self-adapting feature of the method.
When each'sucéessive initial condition change vector is taken in the
same direction as the previous changé vector, an indication that 6§
can be increased is obtained. This behavior can be detected by forming
the dot product of successive initial condition (and final time) change
vectors and computing the cosine of the angle between successive change
vectors. When this angle is near zero, successive’Lagr;nge multiplier

end final time va;ues lie very near & line connecting the initially
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assumed values for these parameters and values of these parameters near
the true values (as indicated in Fig. 5). By referring to thextable of
Figure 5, one may plot the requested step size norm as a function of
distance moved aloﬁg this "line" which we will designate as the "con-
vergence path." The data of the table in Figure 5 are plotted in this
manner in Figure 6. At convergence, the requested change is zero. An
estiméte of the distance to move along the convergence path in ordér to
obtain multipliers and final time which yield a zero change (coﬁverged
vﬁlues) is obtained by estimating the point of intersection of the
curve and £he horizontal axis in Figure 6.. The slope of this curve can
be computed numerically by evaluating the successive requested norms
and keeping tfack'of the distance moved along the convergence path on

. successive iterations. Graphically, the estimated-distance to pove
albng the convergence path using the self-adapting approach is shown by
the intersection of the dashed lines and the horizontal axis in Fig-
ure 6. To implement this self-adapting approach,:the initial iteration
is made with any small value for 6, (di = 0.5 in Fig. 6). If the
change vector of the second iteration is in the approximate same direc-
tion as the first.iteration, then the distance to move along the conver-
’gence path is fpund by

s (Requested norm 2)(61)

s 2 ='(Requested norm 1) - (Requested norm2) -~ ~— - -~ —- - -
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Successive values for & at each iteration are.chosen in this manner
until successive change vectors are not approximately along the . same
line or—ontil the computed value for & 1is less than the initial spec-
iffed value §,.
This self-adapting feature was incorporated into the PSPM and
studied on a variety of initial multiplier guesses. Typical results.
with this scheme are illustrated by solving the problem of Figure 5
with Gi = 0,25 in 12 iteratlons instead of the 20 required when

§ = 0.25 at each iteration. Using &, = 0.25 with initial final time

1
errorjof -20 percent and initial Lagrange multiplier errors of
-lOOOnpefoent for both _kl and Ae, convergence was obtained in 16
iteratioos. Similarly, with initial multiplier errors of +1000 percent,
. =1000 percent, and final time error of -20 percent, convergence was
obtained in 14 iterationms. |

‘Experience with this scheme is limited at the present time and '
undoubtedly its effectiveness is somewhat problem dependent. For exam-
ple, if the curve of Figure 6 were concave instead of convex, the
scheme may cause & to be chosen too large. In such cases it may be
necesaary'to restfict the maximum value that §&§ can attain. That is,
the method would be allowed to'be'self-adapting within a range of
values between 61 and some Gmax’ Further investigations of this
'echeme én various problems are recommended in order to_evaluate its

effectiveness as a general approach.
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Numerical Investigatioﬁs With Distinctive
Features of tﬁe PSPM

Besides the convergence modificaticns, therg are séveral distinc-

tive features of the PSPM that may cause it to operate differently from
(

other Perturbation and Quasilinearization methods. One of these fea-
tﬁres is the capabilit& for forcing the solution of the linearized
equétions to satisfy given terminal constraint functions to a specified
accuracy at each iteration. This capability was used only in the ter--
minal.stages of cénvergence,for the results presented and had no pro-
nounced effect on whether convergence was actually obtained. It was
found that the most optimum use of the capability was to restrict the
PSPM to use ohly one Newton-Raphson iteration when.the initial condi-
tion step size norm was greater than &, and to use no more than two to
'foﬁr Newton-Raphson iterations when this norm was less than 6. By
restricting the PSPM to use only one Newton-Raphson iteration at all
PSPM iterations, the method was operated in a fashion very similar to
the Perturbation methods discussed by Lastman [26] and Lewallen [2Lk].
' The primary difference in the normal PSPM operation and the restricted
operation was that one to three total trajectory iterations were saved
in the normal operation mode at the expense of one to five extra
Newton-Raphson iterations. It is believed that the fewer trajectory
iterations required resulted from better final time estimation obtained
during the last several iterations. A definite savings in computer

time was realized since the computer time required for a Newton-Raphson

iteration is small compared to the time required for a total trajectory
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iteration. Tpis savings in computer'time averaged about 20" percent for
the cases compared. This result was ndt consistent for ﬁll cases and
there waé‘some dependence on the initial value of §, since this
affected the pointtin fhe terminal convergence phase where extra Newton-
Raphson iterations were §tarted.

The generality of the PSPM operation makes it possible to use
initial guess values for the a's .other than the 1, 0; 0 values dis-
cussed previously.- An examination of the dhi/dtf terms of the
Jécobian matrix of equation (3,7) reveals thaf when the 1, 0, O values
are choseﬂ, only the referencg solution_influences these elements of

4

the matrix on the first Newton-Raphson iteration. However, the influ-

encé of the perturbed particular solutions can be obtained on the first
_iteration by assigning "weighting factors" to the various solutions
with the initial choice of the a's. A typical choice investigated for

example problem 1 was a, = O.k,

1 = 0.3, a

a, 3 = 0.3, so that the sum

of the. values totaled to 1 and more "weight" was given to the reference
solution npl. During terminal stages of convergence, the initial

guess was switched back to o, =1, a, =0, a, = 0. The results with

3

this type of bperation are inconclusive. In a comparison with the

1 2

normal a selection procedure on a set of four different cases, this

operation produced convergence in fewer iterations for two of -the cases

the PSPM makes it more general than other Perturbation and Qu&silinegr—
ization methods, and it may be found to be more useful for other

problems.

and required more iterations for the other two. This unique feature of _
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Another distinctive feature of the PSPM iqvestigated was the capa-
bility for using different perturbatioﬁ factors,' Bi and A appearing
in equation (h.éZ). Results were compared on various starting vectors
using all Bi = 1.2' invone case and all Ei = 0.5 in the other. All
Y; Wvere selected to be 0.1, If only one Newton-Raphson iteration at'
each solution iteration of the PSPM'is made with the standard 1, 0, O ...
guess on the a's, then theoretically the results with different per-
turbation factors should be identical. Hoﬁever, significant diffefences
were noted due to‘pﬁrely numerical causes. - These differences were sig-
nificént énough to cause the method to require a different numbgr of
iterations for convergence when different perturbation factors were -
used. However, this difference was never more than one or two itera-
tions. The results do point out the importance of minimizing numerical
round-off errors in the matrix inversion computations. In this connec-
tion, an important advantage results from using the particular solution
method for solving the linear system, since the user can exercise con-
trol over the numerical values which form the Jaéobian matrix in equa-

tion (3.7) by selection of appropriate perturbation factors.

Results With Example Problem 2
The second example problem, having a higher dimensionality and more
complex-tefminal boundary conditions, would appear to be a more diffi-
cult problem to sclve than the first example problem considered. How-
ever, once the first example problem is solved, the difficulty of
guessing Lagrange multipliers for the secohd example problem is greatly

reduced. The family of\problems obtained by considering optimal



77

trajectories for different launch dates is most easily parameterized by
the value 60, the central angle of Mars at the launch time to. For
the "open problem" discussed previously, the Lagrange multipliers and

final time for A3Ito) = -1 were found to be

-

Al(to) = -0.494865

Az(po)‘= -1.07855
A, =0

t, = 3.319437

and the corresponding value of ‘60 is easily determined to be

6, = 0.7264 radian by using the time of flight, the angular velocity
“of Mars, and the final'central angle of the spececraft in the open
problem. To solve the second ekample problem for any value of eo, a

succeseion of problems having initial Mars central angles defined by

6 =8 + 88 i=1,2,3...

where Aeo is some small increment, is solved in. sequence using the
converged values- of the previous problem as starting guesses for the
next. The process is continued until a solution with the desired value

for 6 ' is obtained. The convergence characterlstlcs of the PSPM were

' investlgated on this example problem by studying allowable magnitudes
for Aeo.
Using the converged values for the open problem, a solution was

first obtained for 90 = 0.8. Repeated attempts to solve the problem
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with eo = 0.9 wusing guess values from the 80 = 0.8. solutions ended

in failure. It was decided that ABO = 0.1 was too large and vAeo

was reduced to 0.02. After solving several problems with this increment

for Aeo, difficulties were again encountered.

After reducing Aeo

further to 0.002, the sequence of converged problems shown ‘in Table III

TABLE IIT

CONVERGED MULTIPLIERS AND FINAL TIME FOR

VARIOUS INITIAL MARS LEAD ANGLES

Lead agg;e e, L A2 Au tf
0.7264 ~0.4948 -1.078 0.000 .3194
0.800 ~0.2321 -1.99k -0.5177 . .3586
6.820 ~0.0638 -2.58 -0.8379 L3776
Q.Bho "0.2L43L -3.6k -1.4106 .3985
0.860 0.9824 -6.1718 -2.7660 L4208
0.880 5.1917 -20.51k4Y -10.4111 LLuk3
0.882 7.0329 -26.7821 -13.7L496 LLkéT
0.88k4 10.5011 -38.5871 -20.0369 .hloa
0.886 19;h653 -69.0958 ~36.2848 4515
0.888 96.8223 -332.3584 ~176.4839 .Lsko

was obtained.
converged values of multipliers and final time. An examination of

these data indicates that the PSPM was displaying good convergence

D

The data in the table relate 80

with the corresponding

characteristics on the boundary value problem but was getting nowhere
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Y

with finding a solution to the optimization prqblem defined by

eo = 0.9. After plotting the data in Table III versus éo’ and noting
the asymptotic character of the Lagrange multipliers as 60 approached
0.9, it was.realized that all multipliers were seeking large values

with respect to the normalized value of -1 for AB(tO). This suggested

that the unnormalized value of- A3(to) approaches zero as '60

approaches 0.9, Since it was known that Xh would not be zero for this

problem because of the constrained final central angle e(tf), the

multipliers were normalized to Au = -1. This eliminated the diffi-

culty with convergence.

With the problem normalized to Ah = -1, it was found that a value
of Aeo = O.S-radian could be used to generate optimal trajectories
for 6 = 1.0, 1.5, 2.0, ... 6.5, 7.0 with an average of 11 iterations

per problemf In this study,'a meximum step size norm, ¢, equal ﬁo 0.5
was used without the self-adapting feature previously discussed. Opti-
mal trajectories for 60 < 0.7264 were also obtained. In this case it
was necessary to normalize the multipliers to k# = +1 _in order to
obtainjthe proper sign relationships between the multipliers. A plot
of cénverged multipliers.and final time és a function of 80 is given
in Figure T.

The good convergence characteristics of the PSPM were also demon-

_strated for this example problem by solving the problem for 6 = 3
using initial guess values for Al, x2, AB’ and tf' from the con-
verged values of the problem with 60 =1 in 10 iterationsf The

difference in the initial éuess_trajectory and the final converged
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trajectory is illustrated in Figure 8, where several of the optimal
trajectories for different initial values of 6, are displayed.
Interesting features evident in Figure 8 are the two distinctive
types of optimai‘trajectories which.result from launching before and
"after the most favorable launch date which corresponds to the open
problem (90 = 0.726L4 radian). This behavior has been previously dis-
cussed by Kelley (53], who solved this problem with different numerical
values for thrust and inifial>mass using a direct optimization method.
The trajectories éorrespdnding to early (60 > 0.7264) launch dates have
a "pufspif from behind" character, while the spacecraft wﬂen departing
from 1ate.(6o < 0.7264) launch dates tends to "wait" for Mars to over-
take it. The severe time-of-flight penalty associated with not launch-
_iﬁg on the most favorable daﬁe is shown in Figure 7. It is also evident
from Figure T that the "pursuit from behind" type of trajectory has a
shorter transfer time than the "waiting" type for most of the unfavor-

able launch dates.
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CHAPTER VI
CONCLUSIONS AND RECOMMENDATIONS

‘Several important extensions and modifications to existing indirect
optimization methods have been made; The method of particglar soiutions
was extended in order to solvg linear boundary value problems with
boundary conditions specified in the form of nonlinear functioné of the
dependent and independent variables. WThis extension was incorporated
into'a Perturbation method for solving the nonlinear boundary vélue
problem which results from forﬁulating optimal control problems for
solution by an indi;ect method. This new-Perturbatioﬁ method, called
the Particular Solution Peréurbation Method (PSPM), reveals a new
apfroach for sélving problems with unknown final time,which can reduce
Athe number of trajectér{ iterations required for convergence to the
optimal trajectory. The application of this new @ethod for treating
unspecified final time problems was simplified by the use of a power
series nuﬁérical integration method which was ideally suited fof the
forward and backward variable‘step integrafion required. The method is
not restricted for use with power series integration, however, and may

be implemented with any numerical integration scheme. /

The PSPM was found to have excellent convergence characteristics.

The range of convergence of the indirect optimization approach was

" extended far beyond that of previous methods without compromising the

- rapid convergence of this approach, and thus now places the indirect

83
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optimization approach in a more competitive position with direct
methods. Although the PSPM utilizes several features not available
with currently more well known indirect optimization methods, the ex-

cellent convergence characteristics are primarily due to the easily

applied modifications of equations (4.13) to (4.16) together with upper
and lower bounds placed on allowable values of the unknown final time.
Thus, it is expected that with these modifications, other indirect
optimization methods currently programed need not employ the particular
solution method presented and the more unfamiliar power series integra-
tion in order to obtain the good convergence charactefistics displayed
by the fSPM.

As a‘resﬁlt of fhis study, several areas are recommended for
future investigations. Although the good convergence characteristics
of the PSPM are not believed to be unique to the example_problems pre-~
sénted, thé convergence characteristics of this method should be studied
on other problems of larger dimension and of a different nature (such as
atmospheric reentryAproblems with inequality constraints on control and
state variables) in order to support the claims made here.

It would appear that the use of regularizing transformations

discussed by Tapley, Szebehely, and Lewallen [54] would be as beneficial

with power series integration as with more conventional integration
schemes in solving trajectory optimization problems. This should be
investigated.

The methods presented here for solving two-point boundary value
problems are not restricted to the typ}cal problem which results from
trajectory optimization. The modifications employed to extend the

range of convergence should be eqﬁally as beneficial on any two-point
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or multi-point boundéry value problem solved by a Perturbation or
Quasilinearization method; and this should be investigated. The advan-
tages of power series integration may be more fully realized for multi-
point boundary. value problems because of the ease ﬁith which the method
can obfain éolution values at any falue of the independent vari;ble.

The details of adapting the method for solving nonlinear multipoint
bound#ry value p:oblems have been worked out in this study, and several
such problems should beAsolved toAteét the usefulness of the power series’
metﬁod. The Néwtén-Raphson method utilized for solving unspecified

final time problems could be abplied to multipoint boﬁndary value
problems where several boundary conditions at unspecified values of the
independent variable are known. This should be démonstrated.

Finally, this investigation has revealed fhe Perturbation épproach
to have several practical advantages over the Quasilinearization approach
fof solving nonlinear boundary value problems. Besides requiring fewer
integrations per iteration and less computer storage than the Quasi-
linearization methéd, fhe Perturbation approach admits the capability
for simultaneous integration of the reference solution and linearized
equations, which in turn allows for variable step integration and
capabilit& for extreme solution accuracy. However, the convergence of
the Quasilinearization approach has 5een rigorously eétablished [19],

[29], [3&] for boundary value problems of a less general nature than

con51dered in thls investlgatlon whlle the Perturbation approach is
lacking in this regard. When compared in numerical studies [24], [L42],
the methods have displayed-similar convergence characteristics, and the
Perturbation approach ;s modified in this study exhibits convergence

characteristics superior to the Qﬁasilinearization method reported in
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reference [35] for the same example problemn. Further theoretical in-
vestigatidns of.the Perturbation method are néeded to establish the
necessary and sufficiency theorems for convergence which must exist.

In the past, theoretical investigations of the Quasilinearization method
have been easier because the method‘involves iterative solutions of a
system of linear differential equations only, while the Perturbation
approach involves iterative solution of both linear and nonlinear
systems. However, it was established in this inVestigation that the
nonlinear solution at each iteration of the Perturbation method is a
particular solution of the linear system. In addition, as showﬁ in
Appendix C, initial and final values of the nonlinear referencé solution
can be related through the same fuﬁdamental set of sblutions used to
construct the general solution of the linear system.  Perhaps some

’ advantage can be made of these properties in future theéretical in-

vestigations of the Perturbation method. .
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APPENDIX A

~ REDUCTION OF AN OPTIMIZATION PROBLEM TO A TWO-POINT

\ BOUNDARY VALUE PROBLEM

For the example problem considered in Chapter V, it is necessary
to determine the optimal thrust vector contro; for a constant low-
thrﬁst rocket in a planér Earth-Mars orbit transfer so that’the trans-
fer is completed in minimum time. .The orbits of both Earth and Mars
are éssumed’to be circular in this example. In this appendix, the
necessary conditions for optimai control outliqed in Chapter II are
applied to the example problem considered in Chapter V in order to
redﬁce thé oﬁtimization problem to a two-point boundary value problem.

The equations of motion for the thrusting rocket, expréssédAin

a polar coordinate system with origin at the sun, are given by:

.V T .
u=-——--—/+ =35in B
r m

i
=
<

T
v = —— + = cos B
m

@
1]
Bid

where T is the thrust magnitude, GM 1is the solar gravitational constant,
¢ 1is the constant mass flow rate of the rocket exhaust, and R 1is the

~ time varying thrust control angle.
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In order to apply the necessary conditions outlined in Chapter II,

the following substitutions are made:

So that the equations of motion are written in the form x = f(x,u,t)

corresponding to equation (2.1),

2
X
. %M, T
X, =5 - Sty sinuy = fl(x,u,t)
3 x3 ‘ 5
XX .
X, = —x 2 4 — cos u, = f_(x,u,t)
2 b'4 x 1 2
3 5 :
X.3 = xl = f3(xau,t) (A.l)
X
-
X, == fh(x,u,t)
3
. = _ = t
Xg c fs(x,u, )

The Hamiltonian function is given by

H= )T f A f2 + A3f3 + Ahfh T Asfs

11 2
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and the Euler-Lagrange equations are obtained from the necessary

R an)"
- 9X

which, after some simplification, can be written

conditions, equation (2.5),

>e >e
\V] Il
1] 1
} TN
TN NS
w I o S——
N N
>
— [}
+ >
. w
= '
w |-
NS————
>
\V]
1
wN |i—‘
S———”’
>~
=
-4

X x. X % '

s |22\ _eemf, o [Tf2 2

Ag = < ;) 3 Ay 2 Ay + 3 A > (A.2)
3 3 3

Ah =0
i = -~ L A, sin u, + A, cos u |

5 x2 ( 1 1 2 g

> ),

The control variable ul is eliminated from eqqations (A.1) and

(A.2) by application of necessary conditions (2.6),

g

aul

"with the result



Simplifying,
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A
Xl'= tan u1
> ]
which implies,
sin u, = Al )
1 2 2 :
. AT + A2
‘ P (A.3)
coOs u, = A2
1 2
AT+ A5 )

The necessary Weiérstrass condition

E = F(t,x,X,U,A) - F(t,x,x,u,A) - E (t,%,%,u,A) (X - x)
. | . 9X
3F .
- 35 (Ex,x,u,0)(U - u) > 0
where F = AT(f(x,u,t) 4vi) and X and U are nonoptimal but per-

missible values for x and u, is imposed to resolve the ambiguity in
sign appearing in equations (A.3). Since the equations of motion

must be satisfied on & permissible trajectory,

F(t,x,X,U,\) - F(t,x,x,u,A) =0

and since, from the optimality condition,

oF oH
—_—= — =0
Ju aul



the Welerstrass E-function reduces to - 96

E=- g-l.?_ (tQXQ;(’u’A)(i - }.{) 2 0

ax

which for this problem simplifies to

>3
|
>
| v
o

Substituting with x = f(x,u,t) and X = f(x,U,t)
; .

=]

E = Xll::_rlc‘; (sin Uy - sin ul):l + Agl}s (cos U, - cos ul):] 2 9

Substituting for sin Uy and cos uy with equations (A.3) yields, after

some manipulation,

S O CRNN
E = " * 1 + A2 -1 + cos (Ul - ul) >0
>
If the above expression is to be nonnegative for all admissible

values of Ul’ then the negative sign on the radical must be chosen,‘

hence,

sin u, = Xl
1
- +)\2
1
cos u, = Ag
1 5
- +
A A2

Substituting the above expressions into equations (A.l) and (A.2)

eliminates the control parameter u from the equations of motion.

1
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The terminal boundary conditions, w[x(tf),tf], which correspond

to necessary conditions (2.8), are given by

h=¢
—
L[}

xl(tf) -0=0
Yy = xe(tf) - Yy

“’3. = x3(tg) - Ty "

(A.L)

il
o

!
o

Vv

¥, = xh(tf) - eM(tf) = xh(tf) - 'eM(t‘o) - rM to =.o

=

wﬁere the subscript M refers to the value for Mars. The performance

index ¢[x(tf),tf]' is simply t_  for a minimum time transfer. )

f
"Applying necessary condition (2.7),

(%Q+VTB_'£-)‘T)I =0
x t

yields

' vl-xi(tf) =0 )
vV, = A (Lt =0
2 = X5(t) )
vy - A3(tf) =0
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One version of the example problem in Chapter V assumes that
the final angle xh(tf) is not constrdained. In this case it is

seen from the above application that

¢ .
Just as As(tf) was determined to be zero since no constraint was
placed on the final spacecraft mass.
The necessary condition corresponding to equation (2.9)
\

by , T2y ]
(at*" ot " Fle, 7O

becomes - -

<

1+ Ny % + Al(tf);cl(tf) + A2(tf)§c2(ti;) + A3(tf)).c3(tf)
+ Ah).ch(tf) + XS}.{SV(tf) = 0

Using equaﬁions (A.S), vu can be eliminated from the above equation

to yield

L+ A X, + A X, + A%, + A [x, = =—)+xrx. |=0 . (a.6)
U r
tf
Since the constant Lagrange multipliers v have been eliminated from
the terminal boundary conditions, there-is no reason to compute them
and the trivial differential equations v=0 appearing in equa-

tion (2.10) can be eliminated from the formulation of the two-point

boundary value problem.
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Equations (A.1l) and (A.2) provide 10 ordinary differential equations
to be solved with five initial conditions provided by the known initial
position, velocity, and mass of the spacecraft as it leaves an assumed

circular Ear%h orbit about fhe sun.

»
[
ot
O
S
"
(@]

%2(*) = “Eartn :
3 (to) - "Earth

»
P
T
(o)
et ™
] n.
o

Equations (A.5) yield a zero value at the final time for A_(t_),

5
)‘S(tf) =0

Since itf is not specified, five additional boundary valués are re-
quired for the lOldiffefential equations. Four of these conditidns are
provided by equations (A.h) and the fifth condition is provided by
equation (A.6).

| From a computational point of view, i£ is desirAble to normalize_
the values of the variables in the differential equAtions‘so that some
degree of numerical magnitude compatibility is achieved. Singe it was
desired to compare.the numerical results ofAthis_invesxigatioﬁ*with .....
previously published results of reference [24], the normalization scheme

of reference [24] was employed. In this scheme, the fifth equatibn in

(A.2) is eliminated together with terminal condition (A.6). The
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initial values of the Lagrange multipliers are normalized to the

unknown value of A3(§o) such that xg(to) ié specified to be -1.

This is possible since the remaining Euler-Lagrange equations (A.2)

are linear and hompgeneous in the A's, and since only the ratios of

\; and )\, appear in the equations of motion (A.1). In addition to
providing better numerical accuracy, this normalization technique also
reduces the complexity of the boundary value problem since an additional
initial condition is obtained and the terminal condition (A.6) need

not be used as a boundary condition. Since equation (A.6) must be
satisfied on the optimal trajectory, it can be used to recover the un-
normalized values of the Lagrange multipliers. However, there appears to

be no practical reason to recover these values. Other normalized values

of parameters of interest are

)

Gravitational constant of the Sun, GM = 1.0

Initial spacecraft ﬁass, m = 1.0

Initial spacecraft velocity, VEarth —

Initial spacecrgft radius, Tharth

Terminal spacecraft velocity, VMars = 0.81012728

Terminal spacecraft radius, rMars = 1.5236790

N

Thrust = 0.14012969

Mass flow rate = 0.0Tk800391
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With these normalized values, units of various pPhysical quantities

are
. Length unit = 1 astronomical unit = 1.495987 x 10ll meters
Mass unit = 6:7978852 x 102 kilograms )

Velocity unit = 2.9784901 x 10° m/sec

‘Force unit = L4.0312370 newtons

Time unit = 5.0226355 x 166.second.= 58.132355 days

L]



APPENDIX B
A POWER SERIES NUMERICAL iNTEGRATION METHOD

One of the most important facets of any method for solving multipoint
boundary value préblems is the numefical integration scheme used. Since
the numerical integration of differential equations consumes the bulk of
éomputer time, it is desirable to have a fast and accurate'integration
method. Among thé most popular infegration methods are the well-known
Rungé—Kutt; formulas and predictor-gorrector methods. In this appeﬁdix,_
a power series integration method is presented which has several features
which make it uniquely suited for use as an integration method in solving
multipoint boundary value problens.

The capability for solving differential équations by power series
expansions has been known since B.  Taylor (1685-1731). However, this
method'has‘not enjoyed the popularity of other numerical integration
schemes. This is prob;bly due to the fact that it is an impractical
method for hand calculation or even desk calculators, and thus did not
receive the early attention and development of the currently more
popular integration methods used on digital computers.

With modern digital computers, the cumbersome application of the
power series method is easily overcome and its practicality is evidenced
by its high accuracy, la}ge step sizes, good speed, and variable step
size capability. The use of power series as a method for digital
‘computers has been studied by Fehlberg [55] and Hartwell [56]. Detailed

programing steps for the method are given by Doiron [5T].. The method is

102
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reported to have superior speed and accuracy characteristics on prdblems»
where integration must be made over large intervals of the independent
variable with frequent changes in the integration step size.

Given a,systeﬁ of differential equations,

zi = fi(zl’z2""zN’t)
5 zi(po) =z o i=1,2, ... N (B.1)
) . AY
the method assumesia pover series expansion exists in a neighborhood of

to for each of the varia@les ﬁi of the form

a0

2, (t) =Z zi(k)(t - to)k'l | (B.2)

k=1 ' -
where the zi(k) are power series coefficients and to is the value
of the independent variable where the power series expansion is made.
In the"following,lit will be assumed that power series solutions of

equation (B.1l) exist.

Letting (éi)(k) denote the power series coefficients of Z; s

- it is easily determined from term—by—term differentiation of (B.2) that

which yields a recurrence relation for (zi)(k+l) if (2 )(k) i$
known. Since éi'= fi(zl,§2...zN,t), it follows that power series

expansions of the functions fi exist with power series coefficients
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(k)

denoted by fi . Thus, by equalityvof power series, we have equality

of the power series coefficients, and (B.3) can be written

(x) | |
(21) R ‘(f_l)'k— ' (B.1)

The main difficulty in applying the method is involved with deter-

(k)

mining the coefficients fi ‘The functional relationship between

the z., as expressed by (B.1), must be carried out in "power series

arithmetic" and when coefficients of like powers of (t - to) are

coliected, these coefficients represent the fi(k). It can be shown

(see Theorem 13-27 of Apostol [58]) that the coefficients fi(k)

only the first k coefficients, zi(k)

involve
, of the power series for the zi.
‘This guarantees that equation (B.4) does actually represent a recurrence

formula for zi(k+l) in téerms of the first k, zi(k).

The application
of the-power series arithmetic is greatly simplified through the use of
auxiliary series and repetitive application of known algorithms for
series addition, subtraction, muI%iplicatién, and division. Easily
programed algorithms are also known for generating power series coeffi-

cients of transcendental functions of power series such as sin z and

B .
Z , where .B .is some real number.



Let

u, v, and w Dbe power series of the form

k=1 )
= k-1
v = vk (t - to)
k=1
w = wk6 tg ‘
k=1 .

The following power serieé operations are defined by:'

Addltlonzl w=u+t vw=§wk = + Vi
‘Subtractlon: wW=u-1v =§wk = - v

. k
Multiplication: w ='g . v=§wk = WiV i

1=1
Division: w=u/v
k-1
v = Y T Tl ViVk-i4l oWy = Uy

o
<
<

Square root:

105
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Integral or fractional powers:

w o= uB% v, = ui
Vo = Buyvy
ol
1 k-1
= — i + -
for k>1 Y41 ku, BRuy ¥y * Z [1(6 + 1) k]ui+,lwk—.i+l
_ i=1
Sine and cosine:
u=cosw u =cosw
=
v=sinw v, =sinw
= - L : iw v
Y+1 T Tk 141 k>i+l
i=1

<
!

L X
k+1 - E}: Mie1Yk-i41
i=1

These algorithms are sufficient for the differential equations which are

solved in this thesis.
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An Example Problem.’

Given the differential equatidns,

COS W

= +
A A ETF
X +y
y sin w
= +
o 2 2 3/2
X . +Yy
vy |

i
Qith initial conditions, x(to) =X, y(to) = y;, and w(to) =,wi,
generate pﬁwer series coefficients for x, vV, ahd w for a power
series expansion about t_. o i _
Thé coefficients are obtained by computing~in sequence the Akthf
:coefficient df each of the auxiliary series in eéuatioﬁs (B.5) using the
agéve algorithms, and then app}ying the recurrence relations (B.6) to
obtain the (k + l)st. coefficients for x, y, and w. The proceés

is repeated for k=1, 2, 3 ... N-1, where N is the desired number

of coefficients. - ’

¢

®
i
£
%
_

u'=s cos w %
v = sin w t
/ b=x-x (B.5)
" - s gy . _g___4__ -
r=>b+c¢
s = r-3/2
e=u-*s




108

y Y * e W
’S(+1‘(XK) '4( K )

() ()

k

-

(B.6)

TN

Y1 =

K
"’k+1=ﬁl—‘)-‘=f-]£’)—
K

k y ,

Once the desired number éf coefficieﬂts N are computed, the next
step in the integration process is to detérmine the integration step
size' (t - to),'which can be used with the available coefficients, wh;le
maiptaining a specified numerical accuracy in the evaluation of the power
‘series solutions. In general, a larger step size may be used with a
larger number of coefficients. A practical limit for the number of
coefficients which should be computed is determined by the magnitude of
‘the Nth coefficient of the series to be evaluated. Digital computérs
haQe a largest and smallest value of the magnipude of a number which can
be accﬁrately represented. Depending on the radius of convergence of
the series, the coéfficients may approach one or the other of these
limits. The number of coefficients computéd should be limited to avoid
these number magnitude limits.

It is assumed that N power series coefficients are available for

evaluation. A method for determininé the largest allowable intégration
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step size is developed below. The equivalence of the power series
expansion and Taylor series expansion of a function x(t) about a

péint“ to is wellzknoyn. The Taylor series expansion can be written

N» N
NI ('c - to) * Bye1

where the remainder, Rye1 is given by

xN+l t

= 1 N+l '
 Rynl = TEe (t'to) b <fp <t

If it is assumed that xN+l(tl) & xNﬂ'

(to), then the truncation |
erfor. Rﬁ+1 is of the order of the first neglected term in the
sﬁmmation of the series. Since in most applications it is desirable to
limit the relative truncation error raﬁher.than ﬁhe absolute truncation
error, the step size (t - to) should be chosen to meet a specified

relative truncation error bound, erel' Let the relative truncation p

error be . defined by

- x(?>exactl

*rel - - lx(t)

exéctl_d‘lﬁ ) e

For all practical purposes, the denominator'in the above expression
need only represent the magnitude of x(t), and,gtﬁerefore, it may be
;‘ .

;
i
l
13
{
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124

approximated by the summation of the first p terms of the power series
representation of x(t). In light of the foregoing assumptions, if

x(t) is to be accurately represented by

N

x(t) = 37 x (b - lto)k—l

k=1

then a reasonable truncation error check would require that each of the
last several tefms'(r‘"terms, for example) of the summation be less in

magnitude than

N-r

, k-1
®rel Z xk(t - to)
k=1
where e is the specified relative error allowable. The value of

rel

r depends on the severity of the test desired. In practice, r =2
has been sufficient to maintain the desired accuracy. With r specified,

a requirement of the test can be stated.

. N-r = k-1
L (t - to) <e.g Z xk(t - to) (B.7)
k=1

It is desirable to solve for (t - to) which will satisfy this
test. Since the summation on the right of the inequality (B.T) is used

only to approximate the magnitude of x(t), let the magnitude be
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approximated by the constant term in the expansion X, . Then, taking

!

logarithms of both sides above yields

A 108 ﬁrel
< -

N-r

. i
) i
i

Exponentiating both sides yields an estimate for the allowable convergence

*

N-r+l

loglt - to

interval

: L : X
¢ l
logje 1 e
‘ ' ( e J N-r+l

It - tol <'e -7)

) 1 (B.8)

Since normaliy there are more than one sefies’to be evaluatedi it

. is-necessar& to determine the largest convergence interval common éo all
" series to be evaluated. Noting in (B.8) that [t - t, | is a monofonic
1ncreasing functlon of |x /xN r+l|’ it is only necessary to compute

for each series the value anelogous to | x /%y +1| to determine which
of the series will yield the smallest convergence interval. A trial
convergence.inte;val can'then be obtained By multiplying the quantity

oﬁ the right of (B.B) by a positive number, P, less than unity to insure

the inequality. A ffial stgp size determined in this manner may still

not satisfy the conQergence test (B.T) because the approximatioh of

may not be sufficiently accurate. Since a failure of the test (B.T7)

during evaluation for any one series would‘require reducing the convergence
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interval and reevaluating all series,iit is desirable to choose the
number P so that the likelihood of convergenée test fallure is very
small. The choice of P is depeﬁdent'on the number of coefficients
used, since longer’ convergence inte;vals allow for é larger.change in
magnitude of the solutions. In practice, values of P of 0.9 or
0.8 haye worked well with 10 to 20 term povwer series. It should be
noted that special logic is required in the case where either of thg
coefficients X or X is zero.

Returning to the example problem, once a trial convergence intervél
At . for the series x(t), y(t), and w(t) has been determined, the
series can be evaluated for any value t,, ltl - tol < At. If the

solution is required for some t outside the convergence interval, the

1

series may be evaluated at t2 = totAt and new series expansions about

t2' can be obtained. The analytical continuation can be repeated until

power series which will converge at the desired value of t are obtained.



APPENDIX C

EQUIVALENCE OF TWO METHODS FOR MODIFYING BOUNDARY

CONDITIONS OF LINEAR DIFFERENTIAL EQUATIONS

 The folloviné derivation is made to support the claim ﬁade in
Chépter IV regarding the equivalence of two methods for determining
modified initial conditions for the reference solution of the Particular
Solﬁtion Perturbation Method. To-simplify notétion in the derivati;n,
the general solutioh of the N dimensional linear system (h.i2) with

m specified initial conditions is written as a linear combination of

particular solutions

. S+1 .
v(t) = kz=:1“k P (t) = Pltda -8

N-m

where nP('p) is an 'N by (S+1) matrix formed with columns of

partiénlar-solutions . ' . -

[ 2 S+1
_ nP(t) = [np P eee P ]

and o 1is the vector of superposition constants
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Let terminal boundary conditions at the fixed final time be specified

n
yi(tf)=zfi 1=k+1l,k+2,...k+S

for some 0 <k <N -1, An (S+l1) vector y(t) and (S+1) by
(S+1) submatrix EP(tﬂ are formed by partitioning out the (k+1)st
8. , ,
through the (k+S) rows of “y(t) and _nP(t) and then augmenting each

by a row of 1's to obtain

[ 1 ] . [ 1 1. .. 1
n 1l 2 S+1
Yk+1 ; nPk+1  nPk+1 nPk+1
y(t) = |n [P(t)] = 1 2
yk+2 s npk+2_ npk+2 ce
1. 1 2 S+1
Yk+s nPr+s  nPx+s P45
T | _
Method 1

Given terminal boundary conditions Zog o i=k+1, ... (k + N -m)
written as an S =N - m vector Zos modified terminal boundary condi-
tions for the system (4.12) are formed by

n

= _ n
Yo ezf+(l €) Z, (c.1)
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where nyf and nzf are S vectors with elements

. . — 1 r . -

n E:
yk+l(tf) zk+l(tf)

n. oy, . n;
Yiesplte) Zyao(ts)

and

e - -d

respectively, and nz(t) is the nth reference solution of a Perturbation

method.

It follows from applying the boundary condition (C.1) and the

4 st
auxiliary conditions o =1 that
" k=1
A 1
t,y = [P(t =|"
s = )] =

Solving‘for a,

Cesbed,

A 2

<o

1
n
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Initial conditions for the (n+l)st"reference,eolution are obtained from

, " (tO)g’ny (to) - nP(to)“ b [,,P (to)] [P (tf)] ;l nyf (c.2)

Before proceeding with an analysis of the slternate method for
computing n+lz(to), it is necessary to establish an identity which will

be needed, Using Theorem 1 of Chapter IV, it is possible to write

B2 (t)

npl(t)

subject to

ot (t o)

‘Forming an (S+1) vector z(t) by partitioning "z(t) and then

"2 ()

augmenting with a 1 in the same manner that y(t) vas formed from
Ry(t) ylelds z(t) = '[P(t)]sy, vhere vy = [1,0,0,...0]T. At the final

time

1

() = [l =L
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so that

1l

-]
-~ In .
Ul ) 3
~s
which allows initial and final conditions for ni(to) to be related by

1

! . | E lr'lz(;""o) ® nP (to)Y-.-_' [np(to) [P(tf)] ;1 nzf ‘ ' .(C'3)

This seemingly avkward resulf will allow considerable simplification in

/

the derivﬁtion which follows.
- Method 2

For this method, ny(to) is computed without modifying terminal

n+l

boundéry conditions, and then z(to) is computed by

) )56 ) e

n+l

It is necessaiy to show that z(to) computed in this manner is equal

to the result, (C.2).
First, ny(to) is determined by applying the unmodified terminal

boundary conditions. Using similar notation as before



so that

and consequently '
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Implementing the modification (C.4)

"afig) = ary) * < 3[,@ ) F ) { ] - w( |

Using the result (C.3) -and factoring

) - Lot b }H o “( ~

Substituting with equation (C.1), the final result is obtained
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(c.5)
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A comparison of equations (C.2) and.(C.5) reveals that they are identical

and therefore Methods 1 and 2 are shown to be equivalent.
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