
9G90-11

WEAKLY STATIONARY NOISE FILTERING
of SATELLITE-ACQUIRED IMAGERY

TECHNICAL REPORT NO. 3

DECEMBER 1971

CONTRACT NO. NAS 5-21617

^ m^ ^ ^

U. U. O. F»AL<3EISI

I. TAIV1CI-IES

E. S. DELJTSCM

prepared for
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

GODDARD SPACE FLIGHT CENTER
GREENBELT, MARYLAND

ALLIED RESEARCH ASSOCIATES, INC.
FRIENDSHIP AIRPORT • BALTIMORE, MARYLAND



9G90-11

WEAKLY STATIONARY NOISE FILTERING
of SATELLITE-ACQUIRED IMAGERY

TECHNICAL REPORT NO. 3

DECEMBER 1971

CONTRACT NO. NAS 5-21617

J. O. O. RALC3EN

I. TAIVICMES

E. S. DELJTSCM

prepared for
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

GODDARD SPACE FLIGHT CENTER
GREENBELT, MARYLAND

ALLIED RESEARCH ASSOCIATES, INC.
FRIENDSHIP AIRPORT • BALTIMORE, MARYLAND



FOREWARD

The research described in this report was performed by the Geophysics and

Aerospace Division of Allied Research Associates, Inc. , under sponsorship of the

National Aeronautics and Space Administration, Goddard Space Flight Center,

Contract No. NAS 5-21617.

The authors wish to acknowledge the cooperation of Dr. A. Shulman of

NASA/GSFC and Mr. N. Belknap, whose contributions were invaluable.

11



ABSTRACT

A type of weakly stationary noise called herringbone noise has been observed

in satellite imagery. This may degrade the quality of ERTS pictorial data. The

characteristics of this noise are described and a model for its simulation is developed.

The model is used to degrade pictorial data for comparison with similar noise-degra-

ded Nimbus data. Two filtering methods are defined, and evaluated. A user' s appli-

cation demonstration is discussed.
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1. INTRODUCTION

Among the more vexing problems of line-scan imaging sensors aboard

earth-observing satellites is the occurrence of various types of noise that distort

and degrade photometric and geometric properties of the imaged data. The herring-

bone noise patterns observed in the High Resolution Infrared Radiometer (HRIR)

imagery from the Nimbus satellite is an example of one type of such noise. The

Multispectral Scanner (MSS) on the Earth Resources Technology Satellite (ERTS)

is similar to the HRIR. Thus, image cleaning through the development of effective

techniques for noise removal should be considered.

This report presents the results of: (a) a definitive study of the properties

of herringbone noise, including the results of a computer simulation, and (b) the

initial results of a digital filtering routine which operates in the two-dimensional

frequency domain.

2. BACKGROUND

Palgen (Merritt et al, 1969 and Palgen, 1970) examined the application of

optical processing to diagnose and filter noise in line-scan images f rom Nimbus

and ERTS. In the reported study, sequences of both noisy and clean Nimbus HRIR

images were processed on a coherent light optical processor (Figure 1). The sig-

nificance of the short parallel vertical line patterns present in the transforms was

not immediately recognized. Silverman (1971) , in another study of the line scan

imagery from the ITOS satellite presented generated digital Fourier transforms of

noisy images (Figure 2). The same pattern of two vertical lines was observed but

again not understood. The author stated, "The double vertical line is difficult to

explain physically. It is a function of the output display program, however, and not

the processed data. "

Utilizing hardwired circuits, RCA' s Astroelectronics Division attempted to
*

filter herringbone noise from Nimbus HRIR imagery by notch-filtering the noise

component in every scan line of the picture. The bandpass of the one-dimensional

filter was estimated using the data from another channel in the tape recorder. The

A discussion of the RCA filtering system is given in Palgen (1970), item 4. 31,

p. 16 and 17.
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RCA technique improved the pictorial quality of the image for meteorlogical users.

Analysis of pictorial details in the cleaned images revealed residual features which

may be attributed to aliasing problems in the filter process similar to those dis-

cussed by MacGlamery (1969) in relation to white-noise filtering.

Thus, the study reported herein centers on two questions:

a) What is the nature of "herringbone" noise in the picture domain and in

the frequency domain?

b) How can it be filtered digitally with minimum degradation of the image

information?

3. THE NATURE OF HERRINGBONE NOISE

*
Herringbone noise is a weakly stationary spatial noise which has strong local

statistical autocorrelation properties. It can be viewed as an interference pattern

between two or more repetitive functions such as a sinusoidal gray-level modulation

of a television raster. The strong local autocorrelative property of the noise appears

to manifest itself as a series of parallel shadow lines of various lengths and in dif-

ferent directions. These shadow lines may interfere with the visual interpretation

of the pictorial information on which it is superimposed (Figure 3). The primary

noise variable appears to be a sinusoidal component added to the picture along the

scan direction and whose gray level amplitude of modulation, frequency and phase can

be considered as random variables of unknown distributions. Studies of the satellite

recording systems have shown that power consumption variations and random mech-

anical frictions may affect the basic frequency of the "wow" and "flutter" noise of

the on-board tape recorder. This continually changing effect suggests that an ampli-

tude modulation and/or frequency modulation concept be taken as a basis for the

noise model. Amplitude modulation measurements made on a Nimbus HRIR image

(Figure 3) revealed the following:

1) The basic modulating frequency (f) is 27 cycles per scan line. It is normal-

ly distributed with a variance ( cr) of 0. 5 cycles per scan line.

2) Quantitative modulation measurements obtained with an optical scanner

A weakly stationary random process is one whose expectations (mean, variance,
correlation, etc. ) are slowly varying with translation in time. A test of the hypothe-
sis that the data sample is weakly stationary can be found in Enochson and Otnes, 1968.



indicated a gray level amplitude modulation of approximately 20%.

3) The presence of variable horizontal bands of strong local spatial

correlation whose widths are quasi-binomially distributed.

To obtain a better understanding of the nature of the herringbone noise, two differ-

ent approaches using a computer for noise simulation were taken. Both used the

basic parameters listed above together with an intuitive concept of the noise struc-

ture.

In the first simulation approach, a routine was developed which was essen-

tially a continuous frequency modulation model where the frequency was varied at

each pixel by a pseudo-random number generation routine. While it generated an

image of pseudo-herringbone (Figure 4), it did not prove promising by visual inspec-

tion, and therefore was discarded.

In the second simulation approach the frequency was held constant along a

scan line and modified with each new scan line. The noise simulation subroutine

was based on a sinusoidal function with its frequency uniformly distributed between

26. 5 and 27. 5 cycles per scan line. The assumption of constant frequency yields a

considerable saving in computer time. Gray-level amplitude modulation was held

at 20%. Two examples of pseudo-herringbone noise images generated by this

approach are presented in Figure 5. These patterns favorably simulate the noise-

Visual analysis of the data on two adjacent raster lines explains the appearance of

the typical parallel gray-level regions oriented at a given angle. Figure 6 presents

a schematic local representation of the patterns.

The same pattern relationships can be expressed in the two-dimensional

Fourier domain. Referring to Figure 6, it is clear that:

1) b = a sin &

Thus, using a sinusoidal gray level modulation of the scan line, the

representation of the gray level bands in the two-dimensional Fourier domain

consists of energy concentration points (Figure 7).

These energy concentrations are located a distance d from the transform' s center

and at an angle tf to the horizontal frequency line.

The distance d and the angle <P are given by:



b a sin g

and

3) <p= 6 - 90°

Taking into account that bands can take every possible orientation, it is expected

that the visual bands considered to be the herringbone noise in the pictorial domain

have most of their energy randomly concentrated along two parallel lines in the

Fourier domain. The distance between the energy lines is 2/a and those lines

should be centrally located perpendicular to the horizontal frequency axis (Figure 8).

The digital two-dimensional Fourier transform of the pseudo-herringbone noise

image is, in fact, distributed along the two predicted parallel lines (Figure 9). A

typical noise energy distribution along spectral line (A-A* ) is shown in Figure 10.

Experiments have shown that frequency-modulating the fundamental noise

frequency in the pictorial domain causes a broadening of the spectral lines about

their corresponding center in the Fourier domain. Also, data truncation, such as

that occurring during sensor saturation, produced harmonic vertical parallel lines

in the Fourier domain. Both effects lower the obtainable signal-to-noise ratio of

the picture after filtering.

Further confirmation of the validity of the computer-simulation of herring-
•J-

bone noise is obtained from visual examination of a Nimbus satellite subpicture

and its digital Fourier transform. The parallel herringbone noise lines are easily

identified in the Fourier domain, while the visual noise can hardly be noticed in the

picture (Figures 11 and 12)

4. HERRINGBONE NOISE FILTERS

Filtering the herringbone noise from affected line scan imagery is a complex

problem, especially since the frequency of the noise is often close or identical to the

* A subpicture is defined as a dimensional-limited (N x N) subset of the picture
matrix, generally kept at 64 x 64 elements due to computer memory limitation.

* This pattern of parallel vertical lines is analogous to the optical transforms pre-
pared by Palgen (1970) and the digital transforms presented by Silverman (1971)
but not understood in either case.



frequency of parts of the pictorial information. Therefore, it is necessary to devise

a technique to enhance the pictorial signal-to-noise ratio.

4. 1 One-Dimensional Filtering - RCA

Considering herringbone noise to be generated by a one dimensional random

process, RCA adopted a one dimensional filtering approach to remove this noise

from Nimbus imagery. This approach, where the notched frequency-filter was defined

by a one-dimensional Fourier analysis, improved the overall visual appearance with

some improvement in the depiction of large meteorological features and a little im-

provement in small-size features. Some features were found to be added or subtracted

in a manner analogous to the mathematical "aliasing" phenomena described by

MacGlamery (1969). A cumulative one-dimensional Fourier transform was obtained

for Figure 14b by summing the transforms of the 64 horizontal scan lines, as shown

in Figure l6a. Noise and signal share the same bands in the one-dimensional

transform and they cannot be separated without affecting the energy of the signal in

these bands.

4. 2 Two-Dimensional Filtering - ARA

During the study and review of the background experiments and literature

of quasi-stationary noise filtering, optical filtering concepts and optical-digital

filtering techniques were compared.

The two-dimensional filtering approach used in this study makes extensive

use of the model understanding gained through simulation of the nature of herring-

bone noise. Initial tests have been accomplished using simulated noise superim-

posed on an Apollo 9 (S065) photograph of the Salton Sea area.

Figures 13 and 14 present the scanned and digitized test imagery in clean

and noisy forms respectively. A subpicture of 64 x 64 pixels is shown extracted



from each one. The Fourier transforms of Figures 13b and 14b are shown in

Figures 15a and 15c respectively. In the Fourier transform, the primary energy of

the undegraded subpicture is at the center of the transform (Figure 15a). Noise

energy is distributed along vertical parallel lines, symmetrically located about the

center (Figure 15b).

The two-dimensional digital filtering routine for the herringbone noise

presented here operates in the Fourier domain in a manner which is analogous to

coherent optical filtering. In the tests, the noise distribution in the spatial frequency

domain was initially estimated from a noisy subpicture area having a low gray level

variance. The one-dimensional cumulative Fourier transform of such an area was

obtained and the noise energy found to be strongly localized to a narrow band in the

one-dimensional case (similar to Figure 16). Therefore, the location of this band

was easily estimated from the absolute magnitude of the slope of the cumulative

one-dimensional Fourier transform curve. On this basis, self-adapting binary

energy blocking filters were applied in the two-dimensional Fourier domain (Figure 18).

The indicated positions show the areas of energy blocked in each step in the test

filtering sequence. At each step, a reconstructed image is obtained from the filtered

transform. A useful diagnostic tool was developed during the testing, utilizing outputs

of the noise residuals at each step in the filtering sequence. Figure 17a-e presents

the sequence from the original clean image to the filtered image showing (in Figure

17f-i) the appropriate residuals at each step.

The signal-to-noise ratio, at each step, is defined as the ratio of the cumula-

tive signal power to the cumulative noise power obtained from the Fourier transforms

of the respective filtered pictures. At step four, in which the entire energy in the

frequency band is filtered (one-dimensional - RCA), the signal-to-noise ratio is less

than step three. This indicates that one-dimensional band-stop filtering is inferior

to the band-selective binary line filtering used in two-dimensional filtering.

As an ultimate test of the effectiveness of two-dimensional filtering for the

elimination of herringbone noise with periodic frequencies close to the information

frequencies, 512 x 512 pixel images of a sinusoidal bar pattern with a frequency of

27 cycles per frame were prepared and a herringbone superposed. The same 27-

cycle generating function described in Section 3 was used. Thus, the pictorial



information and the noise share the same one-dimensional frequency band (Figure 20).
•j,

The filtered image (Figure 20d) is very nearly the same as the original (Figure 20a) .

The residuals shown in Figure 20e are hardly noticeable.

5. USER APPLICATION DEMONSTRATION

The effectiveness of any image-filtering routine depends on its demonstrated

potential to extract pictorial information from noisy images. Studies reported thus

far have emphasized development and testing of filtering routines. In the following,

a brief example of the enhancement potential of the herringbone filter for either

visual or machine-assisted image information extraction is discussed.

5. 1 Visual Interpretation

Visual image interpretation is partly dependent on the identification of shapes

(edge detection), tones, and texture. The influence of the filter on these image para-

meters is therefore important. Density cross sections over selected areas of an

image can improve some user-oriented information on how a filtering routine affects

edge detection. For illustrative purposes, some of the images shown in Section 4

(Figure 17) are presented again, with the indicated locations of the selected density

cross sections, (see Figure 21). The scene is taken from an agricultural area, and

identifies crop tonal patterns, etc. The density cross sections identified as A-A' ,

B-B' and C-C' in Figure 21 present, (a) the clean image; (b) the noisy image, and

(c) the filtered image. Note that the predominant effect of the herringbone noise on

the cross section is in the accentuation and lateral displacement of the gray scale

peaks and valleys existing in the original clean image. After filtering, the artificial

peaks and valleys return to their original locations and the overall density levels

return to the average levels in the clean image. The potential for correct edge

identification and thereby visual shape and texture extraction has been reinstated.

* The "edge" effects relate to the border discontinuities on the periodic charac-
teristics of the Fourier operations on the 64 x 64 array.



5.2 Machine-Assisted Interpretation - Multispectral Discrimination Techniques

The multispectral discrimination techniques developed by the Laboratory for

Agricultural Remote Sensing (LARS) at Purdue University operate, in part, by fitting

experimental multispectral data statistics to an assigned joint probability density

surface in an n-dimensional vector space for each class of feature to be discrimin-

ated (Landgrebe, 1968). Effective operation of the technique is therefore limited

by the noise affecting the joint probability distributions (the statistical spread). In

application, the noise-generating function may be independent for each spectral band.

Due to herringbone noise, a serious increase in statistical spread may be expected.

To provide a brief test of the influence of the filter on statistical density distributions,

histograms were prepared for clean, noisy and filtered images (Figure 22). The

noise histograms of Figure 22b show the distribution is broadened, and of signifi-

cantly different shape than in Figure 22a. It is speculated that such distribution

modifications would introduce a serious increase in discrimination errors by intro-

ducing undefined features into each of the three or four channels of data which are

modified differently by the noise. The filtered histogram, Figure 22c, shows a

marked return to the overall shape of the clean histogram. Intuitively, it appears

that the LARS discrimination capability would be reinstated with the filtered stati-

stics. Only future tests will confirm this statement.

6. CONCLUSIONS AND RECOMMENDATIONS

This study had as its basic objectives: (a) definition of the properties of the

herringbone noise pattern often found in line-scan imagery from various spaceborne

sensors, and (b) development of routines to filter herringbone noise using digital

techniques.

6. 1 Conclusions

Herringbone noise is a two-dimensional noise pattern, generated by a one-

dimensional process which can be approximated by a sinusoidal amplitude-modulated



signal with random frequency modulation from scan line to scan line. Computer

simulations employing this relatively simple model produce a noise pattern closely

resembling that observed in real imagery.

The study of the two-dimensional Fourier properties of herringbone noise

reveals that the noise energy clusters in two parallel lines perpendicular to the

horizontal frequency axis. Binary blocking filters introduced into the Fourier

domain provide improved images which appear superior to those obtained with a

comparable one-dimensional scan line filter introducing a bandpass notch derived

from a one-dimensional Fourier analysis. The two-dimensional frequency filter

advantage resides in the fact that the noise is less coherent from line-to-line than

the pictorial data. The two-dimensional frequency domain filter appears effective

even in the extreme case when the picture and the noise share essentially the same

bands in the two-dimensional frequency domain.

Evaluation of the influence of the filtering routine on visual and machine -

aided information extraction are in progress. Preliminary results indicate a signi-

ficant improvement on the potential for useful feature extraction in the filtered image.

The results appear most relevant to machine-assisted feature extraction techniques

such as the Purdue LARS technique in which the statistical distribution of the pictorial

densities in every multispectral band is very important.

6. 2 Recommendations

The study has shown the need for image noise filtering to enhance the uses

of satellite images in manual and machine-aided multispectral discrimination appli-

cations. Two-dimensional filtering using Fourier transform techniques is feasible

and more effective than one-dimensional techniques for filtering weakly stationary

noise of the herringbone type.

The following specific recommendations are made:

1) Image filtering tests should continue, culminating in a comparison

using the LARS routines operating on clean and noisy images.

2) Positional definition of the binary block filter should be automated by

taking advantage of the shape of the cumulative energy curve in the



Fourier domain.

3) The effectiveness of nonbinary and self-adaptive filters should be evaluated.

4) An operational image-processing system should permit Fourier processing

of the 512 x 512 pixel arrays.

5) Image mosaicing routines should be developed to permit computer recom-

positing of subarrays into larger arrays after filtering.

10



a. Normal HRIR image. b. Optical Fourier trans-
form of image (Fig. la)
HRIR

Figure 1 Example of Nimbus 3 HRIR image (Sudan, Egypt - Nile Valley)
degraded with various degrees of herringbone noise and their
respective optical Fourier transforms.
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c. Typical degraded image
d. Optical Fourier trans-

form of degraded image
in^Figure Ic.

e. Typical degraded image
f. Optical Fourier t rans-

form of degraded image
in Figure le

Figure 1 contd.

The optical transforms were generated in cooperation with
A. Shulman, NASA/GSFC.
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a. Unfiltered image
(from ITOS satellite)

b. Digital display of the log
of the magnitude of the
Fourier transform of
Figure Za.

Digital display of the quan-
tized Fourier transform
magnitude of Figure 2a.

Figure 2 An ITOS image and its digital Fourier transform (after
Silverman, 1971)
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Figure 3 Example of Nimbus 3 HRIR image (Red Sea), with added
bone" artifacts (related to the on-board tape recorder) .
NADUC, NASA/GSFC; August 1969).

"herring-
Courtesy
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Figure 4 Computer-generated herringbone noise
pattern based on the first noise model
and its statistics obtained from Figure
3 (see p. 2).

Figure 5 Computer-generated herringbone noise pattern based on the
second noise model. The pictures above have the same noise
model, but were generated using different pseudo-random
sequences.

15
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Horizontal Spatial
Frequency Axis

Vertical Bars Generated by Sinusoids of Period "a" and Coherent
from Line to Line
Slanted Bars Generated by Sinusoids of Period "a" and Incoherent
from Line to Line by Angle 0

Figure 7 Two-dimensional Fourier transform representations of

sinusoidal bar patterns.
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a. Herringbone noise pattern.
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b. Spatial frequency representation
of the noise shown in Figure 9a.

Figure 9 Herringbone noise pattern and its spatial frequency representation.
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Figure 11 Nimbus 3 IDCS image (Greenland and Iceland). Orbit 16,
15 April 1969- Arrow indicates location of a 64 x 64 sub-
picture utilized in Figure 12. The presence of herringbone
noise at subliminal level is indicated by the typical Fourier
transform signature shown in Figure 1Z. b.
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Digital Fourier t ransform of the subpicture shown in (a).
The observed parallel align pattern is the "signature"
of the herringbone noise, in the frequency domain.

Figure 12 Computer detection of herringbone noise in the digital

Fourier transform domain.
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a. Main input picture b. Input subpicture

Figure 13 Scanned and digitized test imagery in its undegraded form.

a. Main picture with
herringbone noise added.

b. Subpicture with
herringbone noise added.

Figure 14 Scanned and digitized test imagery with Herringbone

noise added.
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a. Fourier transform of the input

subpicture shown in Figure 13. b.

b. Fourier transform of the

herringbone noise.

c. Fourier transform of the noisy

subpicture shown in Figure 14. b.

Figure 15 Spatial frequency representations.
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(a )

li

Cumulative
Energy Distribution
(X-Spatial Direction)

Picture Energy

Noise Energy

o

(b)

Cumulative
Noise Energy

Figure 16 Cumulative one-dimensional spatial representation of the Fourier
Transform of the subpicture shown in Figure 14b.
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a. Input picture subset
(shown for comparison).

b. Picture subset with
herringbone noise
added before filtering.

Picture subset with
herringbone noise added,
after passing through
filter step 1.

d. Picture subset with
herringbone noise
added, after passing
through filter step 2.

e. Picture subset with
herringbone noise
added, after passing
through filter step 3.

Figure 17 Filtering results.
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f. Original noise residues

before filtering, i. e.
Fig. 17. b. minus
Fig. 17. a.

Noise residues after

passing through filter

step 1, i. e. , Fig. 17. c.

minus Fig. 17. a.

h. Noise residues after pass-

ing through filter step 2,

i.e. Fig. 17. d. minus

Fig. 17. a.

i. Noise residues after pass-

ing through filter step 3

i. e. Fig. 17. e. minus

Fig. 17. a.

Figure 17 (conf d)
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Figure 18 Four-step binary spatial filter used on the frequency representa-
tion of the noisy picture subset shown in Figure 17b.
Level N. corresponds to Fig. 17c and Fig. 17g.
Level N_ corresponds to Fig. 17d and Fig. 1 7h.
Level N corresponds to Fig, 17e and Fig. 17i.
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-d
TJ

0 Filter Step N

Figure 19 Signal-to-noise ratio values calculated for Figures 17b through
17e.

29



a. 64 x 64 original bar pattern
window extracted from the
original 512 x 512 array.

c. Bar pattern of Fig. 20. a.

with herringbone noise 20. b

added.

b. Herringbone noise.

d. Eesults of filtering (c) in its

two-dimensional spatial rep-

resentation. For an explana-

tion of the border artifacts

see the footnote on page 7.

Figure 20

e. Residues left in the recon-

structed picture after filter-

ing.

Filtering herringbone noise patterns generated by a random

phased sinusoid of 3. 32 cpf from a sinusoidal bar battern

having the same frequency.
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a. Grey level representation of a scan line across the

input subpicture shown in Figure 17. a.

b. Grey level representation of a scan line across the

subpicture shown in Figure 17. b. (noise added):

local relationships are strongly perturbed.

c. Grey level representation of scan line across the
filtered subpicture shown in Figure 17. e. : the
overall picture of Fig. 21. a. has been nearly
restored.

Figure 21 Grey level representation of a typical scan line across
the subpictures.
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a. Grey level statistics of clean image shown in
Figure 17. a.

i
I!!!!!!!
11!!::::

b. Grey level statistics of noisy image shown in
Figure 17. b. : histogram spreads and becomes

flatter.

. < ! • : : • •
i:!!Ji!!!:!H!li!!ljj

c. Grey level statistics of filtered image shown in
Figure 17. e. : the overall pattern of Fig. 22. a.
has been nearly restored.

Figure 2Z Grey level histograms
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