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PREFACE

This report summarizes the efforts and results of a study to
establish requirements for a flight programming language for future
onboard computer applications. This study was performed by M&S
Computing under contract NAS8- 26990 from the Marshall Space Flight
Center of NASA. The technical monitor was Mr. Richard Jenke,
S& E- CSE- LI.

Several government- sponsored study and development efforts
have been directed toward design and implementation of high level
programming languages suitable for future aerospace applications.
As a result, several different languages were available as potential
candidates for future NASA flight programming efforts. The study
centered around an evaluation of the four most pertinent existing aero­
space languages. Evaluation criteria were established and selected
kernels from the current Saturn V and Skylab Flight Programs were
used as benchmark problems for sample coding. An independent
review of the language specifications incorporated anticipated future
programming requirements into the evaluation. A set of detailed lan­
guage requirements was synthesized from these activities.

This report is the final report of the study and is provided in
three volumes. This second volume describes the details of program
language requirements and of the language evaluations •.

Distribution of this report is provided in the interest of informa­
tion exchange and should not be construed as endors~mentby NASA of
the material presented. Responsibility for the contents resides with
the organization that prepared it.

Participating personnel were:

T. T. Schansman
R. F. Thurber
L. C. Keller
W. M. Rogers

Approved by:
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4. DETAILED LANGUAGE REQUIREMENTS

The genera11anguage requirements have been described in _
Section 3 of this report. This section discusses these requirements
in detail. Some of the detailed requirements have more background
iI).formation or implications which are too lengthy to be conveniently
included in this section. Such requirements are specified in this
section, but the supporting information is deferred to a discussion of
special topics in Section S.

To organize the presentation, the language requirements have
been categorized into seven major groups. The groups and the major
paragraphs in which their associated requirements are described are
as follows:

A General Characteristics (Paragraph 4.1)

B Data Descriptions (Paragraph 4.2)

C Data Manipulation (Paragraph 4.3)

D Internal Program Sequencing and Control (Paragraph 4.4)

E _. Program Structure (Paragraph 4.5)

F External Data Access (Paragraph 4.6)

G Compiler Directives (Paragraph 4.7)

These major categories have been subdivided into more specific items
under which the detailed requirements are described. Figure 4-1 is
a complete list of the items covered. These are the same items under
which the characteristics of the four evaluated languages were organized
during Phase II of the study (Section 7).

These requirements are presented at three levels:

o A mandatory requirement is one which should be included
in the initial specification ap.d implementation of the
language.

o A deferred requirement covers capabilities whiGh are
cost-effective for a large programming effort, but
which are not immediately required in an initial imple­
mentation of the language.
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LANGUAGE CHARACTERISTICS COMPARISON ITEMS

4. 5. 1 Overall Structure
4.5.2 Programs
4.5.3 Procedures
4.5.4 Real Time Tasks
4.5.5 Functions
4.5.6 Closes
4.5. 7 Program and Subroutine Returns
4. 5.8 Subroutine Parameters
4.5.9 Priority Assignments
4.5. 10 Exclusive Subroutines and Inter-

rupt Controls
4.5.11 Error Recovery
4.5.12 Library Subprograms
4. 5. 13 Scope of Names and Labels

Par.

4. 1. 1
4.1.2

4.1.3

4.2. 1
4.2.2

4.2.3
4.2.4
4.2.5

4.2.6
4.2. 7

4.2.8
4.2.9
4.2. 10

4. 2. 11
4.2. 12
4. 2. 13

4.2.14

4.3. 1
4. 3. 2
4.3.3
4.3.4
4 •. 3.5

4.3.6

4. 3. 7
4.3.8

Title

Statement Format
Names, Labels, and

Character Set
Interaction with Other

Languages

Numeric Data Items
Logical, Bit, Character

Data Items
Other Data Items
Numeric Data Values
Logical, Bit, Character

Data Values
Other Data Values
Numeric Data Item Pre-

cision Attributes
Presetting Data Values
Other Data Item Attributes
Alternate Data Declara-

tions
Data Organizations
Index Types
Default Data Item Char­

acteristics
Hardware Registers

Arithmetic Operations
Logical Operations
Relational Operations
Boolean Operations
Explicit Data Conversions

and String Operations
Operations on Data Organi­

zations
As signment Statements
Scaling of Intermediate

Results

Par.

4.4.1
4.4.2
4.4.3
4.4.4
4.4.5
4.4.6
4.4.7
4.4.8

4.6. 1
4.6.2

4.6. 3

4.6.4
4.6.5

4.7. 1
4.7.2
4.7.3
4.7.4
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Title

Direct Unconditional Transfers
Variable Transfers
Conditional Statements
Decision Tables
Iterative Loop Control
Conditional Loop Control
Statement Groups
Stop Execution

Common Data
Compile Time Data Protection

Features
Execution Time Data Protection

Features
Conventional Input/Output

. Real Time Input/Output

Optimization Directives
Memory Allocation Controls
Program Debug Aids
Compile Time Identifiers
Macro Statements

Figure 4-1
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o A desirable requirement is a nice-to-have feature
whose cost-effectiveness is marginal and whose imple­
mentation must be judged in the light of actual cost.

The requirements discus sions
gated by the foregoing levels.
otherwise designated.

in the following paragraphs are segre­
Requirements are mandatory unless

Three verbs are used in the description of these requirements
and have very explicit meanings in this context:

o "Will" describes an explicit feature or characteristic
required of the language, e. g., the language will in­
clude floating point data items.

o "May" describes an option which the language will
allow the programmer to exercise if he wishes, e. g. ,
a program may have multiple entry points.

o "Must" describes a rule to be followed by the program_
mer and enforced by the language syntax and/or its
processor, e. g., each entry point to a program must
be explicitly declared.

4. 1 General Characteristics

These requirements reflect the general features and appearance
of the language, and have an overall effect on the totallangu~ge.

4. 1. 1 Statement Format

A source program consists of a sequence of individual state­
ments, and all of the language requirements are ultimately reflected
in what can or cannot be included in statements. The statement format
requirements establish the overall appearance and structure of these
statements.

The statement format requirements are:

o Each statement will be concluded by a delimiting char­
acter which is a natural punctuation mark. This re­
quirement prohibits the use of symbols such as the
currency symbol ($), percent sign (%), or commercial
at sign (@) as statement delimiters.

o More than one statement may appear on the same
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input line and any statement may extend over multiple
input lines without continuation indicators.

o . Each statement label will be concluded with a natural
delimiting character which is different from the state­
ment delimiter.

o Comments may appear anywhere that a blank may
appear, within 0 r outside a statement, except that
comments may not appear within a string literal (Para­
graph 4.2. 5)0

o All comments will be enclosed in begin and end
delimiters whether they appear on the same input
line as a program statement or on a separate line.

o There will be a facility controlled (as opposed to pro­
grammer-controlled) limit on the length of a comment.
The intent of this limit is to allow the compiler to detect
a mis sing end delimiter, and not pas s over a large num­
,ber of subsequent statements under the assumption that
they are part of the commento

These requirements are intended to result in statement syntaxes which
are convenient to write, natural in appearance, easy to distinguish
one from another, and prone to compiler detection of format errors.

4.1.2 Names, Labels, and Character Set

Names are the identifiers which are created by the programmer
and assigned to the data items which he defines. Similarly, labels are
identifiers which are created and as signed to statements and procedureso
The character set is the set of symbols used to build the commands,
operations, and other primitive elements of the languageo A subset
of these characters is made available for the programmer to create
identifiers. The requirements are:

o Names and labels will be of limited character length,
but the limit will be greater than 28 characters. This
requirement allows the identifiers sufficient length to
be descriptive.

o Names and labels may be made up of decimal digits
(0-9), upper case letters (A-Z), and the "break" char­
acter (_). The "break" character is provided because
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Inany identifiers are created as Inulti-word ITIneInonics,
and the "break" character iInproves readability by
separating the individual words within a single identifier.

o NaInes and labels Inust begin with a letter. This re­
quireInent Inakes naInes and labels Inore readily dis­
tinguished froIn literal nUIneric values.

o There will be two character sets in the language: re­
stricted and extended. The language will be fully
expressible in either character set. The restricted
character set will include at least:

DeciInal digits (0- 9)

Upper case letters (A- Z)

ArithInetic syITIbols (+, -, >:<, /, =)

DeliIniters (coIl).Ina, period, apostrophe, left
and right parentheses, blank, and break char­
acter).

The extended character set will include the restricted
character set and at least:

Relational syITIbols (>, <)

Logical syITIbols (&, I ,--,)

DeliInite r s (s eInicolon, colon)

The above requireInents are intended to give the prograInIner
sufficient °freedoIn to generate expres sive naInes and labels, and to
provide a rich enough syITIbology that the operators and keywords of
the language can also be expressive.

4. 1. 3 Interaction with Other Languages

There will be no direct interaction with other languages. That
is, there will be no capability to write stateInents of another language
in the saIne procedure with stateInents of the flight prograInIning lan­
guage. However, there will be nothing in the language to prevent a
full two-way interaction with separate procedures written in other
languages.
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This isolation of other languages is neces sary to allow the
desired level of compiler verification for procedure s. The use of
assembly language, for example, in the midst of a procedure could
easily violate the effectiveness of the usage rules built into the flight
programming language.

4.2 Data Des criptions

4. 2. I Numeric Data Items

Numeric data items are those used primarily to represent
quantitative values. The following are required:

o There will be floating point data items with program­
mer- specified precision.

o There will be fixed-point data ite:ms with programrrier­
specified precision and scalingo

Requirements for explicit precision controls are described in Paragraph
4 0 2.7. The integer data item has been specifically excluded from the
requirements, because an integer is equivalent to a fixed point number
scaled zero (i. eo, the binary point is placed at the right end of the com­
puter word, resulting in no fractional part). Therefore, the integer capa­
bility is easily made available through a compile-time identifier which
is defined to mean a fixed point number scaled zero (see Paragraph 5.1)0

4.202 Logical, Bit, Character Data Items

These data items are generally used to represent natural lan­
guage messages and other coded information rather than numeric
quantities. The following types are required:

o There will be bit- string data items with programmer
specified length.

o There will be character-string data items with pro­
grammer- specified length.

o String lengths may be declared as fixed or variable.
In a fixed length string, the value of each element of
the string will always be defined. String-expression
values will be "padded If as required with additional
binary values or character-codes to fully define the
receiving data item in every assignment. A variable
length string will take on the length of the expres sion
to which it is as signed o The values of elements be­
yond the current string length will be undefined.
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o Variable length strings will have a programmer-speci­
fied maximum length. Any expres sion which exceeds
the maximum length will be truncated to fit o

The variable length string capability is included, so that string
values may be built up by concatenation and so that the execution over­
head of "padding" the data item is not required. Boolean data items
are not provided because they are equivalent to bit-strings of length
one. Therefore, the Boolean capability is easily made available through
a compile time identifier (see Paragraph 5.1)0

4. 2. 3 Other Data Items

In addition to the numeric and string data, two types of location
variables are required. Location variables allow a single statement
to reference different data items or different statements depending
upon the value of the location variable through which the reference is
being made.

The following requirements specifically restrict the usage of
location variables to retain static checking capabilities in the compiler:

o Data location variables will allow indirect reference
to data items.

o Location values tnay be changed only by simple assign­
ment to a data itetn name. This requirement is to
ensure that the compiler (and the hutnan reader) can
detertnine, at the time of assignment of the location
value, which data item will be indirectly referenced.
Validity of the reference can be verified at location
value as signtnent time, rather than indirect reference
time.

o A data location variable must have the same data type
and attributes as the data items being referenced through
it. This requiretnent prevents implicit data conversion
through indirect reference.

o Statement label arrays will allow a variable transfer
statement (Paragraph 4.4.2) to pass control indirectly
to any of several statements.

o The declaration of the statement label array will in­
clude the complete list of statement labels to which
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control may be transferred through it.

These requirements are intended to provide some of the flexi­
bility and programming power which comes from indirect addressing
techniques, but to also restrict the capabilities sufficiently that the
static checking capabilities of the compiler are not significantly de­
graded.

The real time task control functions (Paragraph 4.5.2) depend
upon an event variable which can be used for intertask coordination.
The requirements are:

o The language will include event variable s which can be
turned on or off (i. eo, assigned one of two states) under
program control.

o Event variable values (states) will be valid arguments
of conditional statements. This requirement allows
them to be easily tested under program control.

o Event variables will be valid conditions for the sched­
uling of a task or for a task to resume execution after
it h.as been suspendedo

4. 2.4 Numeric Data Values

Numeric data values are the direct literal representation of
numeric quantities in the language. These literal values are reflected
in the compiled program as fixed point or floating point binary numbers.

The following requirements apply:

o All numeric data value literals will have the same
general form, whether they are ultimately to be com­
piled in fixed point or floating point format. The com­
piled format will be determined from the context in
which the literal is used.

o All numeric digits will be decimal digits. This require­
ment prohibits the use of binary octal and hexadecimal
bases for numeric data values, but bit- string values
(Paragraph 4. 2. 5) may incorporate themo

o A decimal point will be required only if the digit string
includes a fractional part.
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o The minus sign (-) will be used to indicate negative
values and the plus sign (+) or omis sion of the sign
will indicate positive values.

o The format will provide for specifying a power of 10
by which the digit string is to be multiplied to derive
the final numeric value.

4.2. 5 Logical, Bit, Character Data Values

The string data values must include both bit- string literals
and character-string literals, as follows:

o Bit-string literals will be expressible as binary digit
patterns, octal digit patterns, or hexadecimal digit
patterns enclosed between begin and end delimiters.

o An explicit indication of the digit type will be part of
the literal.

o Character-string literals will be enclosed between
begin and end delimiters and may include any character
recognized by the target systemo This may include
characters outside the character set defined for the
language.

o The character-string delimiter may be represented
within the character- string by including two adjacent
copies of the delimiter character. (If, for example,
the apostrophe were selected for the delimiter, then
a double apostrophe (II) within a character-string
literal would represent a single apostrophe character).

o Repetition factors for string literals will be provided
to represent repeated patterns.

Boolean literals such as TRUE, FALSE, ON, OFF, are not provided
because they can be defined through compile time identifiers (Para­
graph 5. 1).

4.2.6 Other Data Values

In addition to the numeric and string literals, there is also a
need for literal values to be as signed to location variables:
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o Data location constants will be provided to represent
the internal memory locations of data items.

o Statement label constants will be provided to represent
·the internal memory locations of program statements.

o The literal representation of a location constant will
include the name of the data item, or label of the state­
ment, being referenced.

4.2.7 Numeric Data Item Precision Attributes

Precision attributes of numeric data item.s determine the num­
ber of bits which will be used to represent values stored in the data
item. For fixed point data items, location of the binary point (scaling)
may also be specified. The requirements are:

o Fixed point data item declarations will include speci­
fication of total word length (precision) and number of
fractional bits (scaling).

o Floating point data item declarations will include
total word length.

o All precision specifications will have default values.

4.2.8 Presetting Data Values

As data items are declared, it is frequently useful to as sign
them initial values through the declaration rather than through execu­
table as signment statements. This is particularly true for constant
data items which need not be changed during program execution.
Requirements for presetting data values are:

o Data items may be preset in their declaration state­
ments with literal values, compile-time identifiers
(Paragraph 4.8.4), or previously preset data items.

o Non- scalar (multiple-element) data items may be
initialized by a list of the above listed types of values.

A related deferred requirement is:

o Data items may also be preset with arithmetic formulas
consisting of the above listed types of values and the
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arithmetic operators +, -, ~<, I,

Related desirable requirements are:

..1.....1....
""""1"

o Formulas for presetting data values may include
standard arithmetic functions, such as trigonometric
and logarithmic, as well as matrix and vector opera­
tions.

o Data items may be declared constant if they are pre­
seto This requirement allows the compiler to some­
times generate more efficient code and also allows the
compiler to detect inadvertent attempts to reas sign a
constant.

402.9 Other Data Item Attributes

The protection of data which is external to multiple compila­
tions (Paragraph 4.6.1) is enhanced if the compiler can determine
which procedures are permitted to read and write which data it~ms.

Furthermore, during concurrent execution of separate tasks, legiti­
mate accesses may be in temporary conflict because of the concur­
rency of execution.

The following requirements are intended to support the system
data protection features required:

o External data items will include, in their declarations,
identification of each procedure within whose scope
reading of the item is permitted, and each procedure
within whose scope writing of the item is permittedo
This requirement will allow the compiler to validate
external data acces sese

o Data items which are subject to access by separate
tasks that may be in execution concurrently may be
so identified. This identification will be used by the
compiler to ensure that real time accesses to these
data items are properly protected from conflicts.
(Paragraph 4 0 703).

In addition, other requirements described in other paragraphs
may be best implemented through data attr.ibutes, but that form of
implementation is not intended to be specifically requiredo
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4.2. 10 Alternate Data Declarations

Several alternate forrns of declaring data items may be incor­
porated into a language to make the coding of declarations easier.

The following requirements apply:

o Factored declarations will be provided, allowing
common data types or attributes to be written only
once but apply to multiple data items in the same
declaration.

o Data item attributes will have defaults, m.ost of which
may be changed by the programmer.

o No implicit data item declarations will be permitted.

4.2-. 11 Data Organizations

Non- scalar data items are organizations of individual data
elements into aggregates which can be treated as a whole.

The following non-scalar data items are required:

o Arrays of at least four dimensions will be provided.

o Matrices and vectors will be provided and will be
structured and accessed in the same manner as
arrays but will be subject to special arithmetic op­
erations (Paragraph 4.3. 1) which differ from the
array operations.

o Data structures will be provided, allowing a hierachy
of data levels and any combination of data type s within
a structure.

4. 2. 12 Index Types

Index values are used to identify specific elements or parti­
tions within a data organization.

The following requirements apply to indices:

o Any scalar (i. e., single valued) arithmetic expres sion
will be valid for an index.
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o The capability will be provided to select the full range
of any index value (e. g., an entire row of an array) in
addition to selecting individual values.

4.2. 13 Default Data Item Characteristics

Requirements for defaults for characteristics of data items
are identified in Paragraph 4. 2. 10.

4.2. 14 Hardware Registers

There are no requirements for data items declared within the
language to identify specific hardware registers.

4. 3 Data Manipulation

The language requires a variety of features to perform a broad
spectrum of operations on the data types and organizations described
in Paragraph 4.2. The following paragraphs describe the requirements
for forming expressions with, and making assignments to,the required
data types.

4.3. 1 Arithmetic Operations

Arithmetic operations are considered in three classes:

o Scalar Operations

o Matrix/Vector Operations

o Array/Structure Operations

Scalar operations will apply to any combination of floating point,
fixed point; and bit- string data elements and will include the following:

0 Prefix minus

0 Addition

0 Subtraction

0 Multiplication

0 Division

0 Exponentiation
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Matrix and Vector operations will apply to combinations of
matrices and/or vectors of either fixed point or floating point data
elements and will include:

o Prefix minus

o Addition

o Subtraction

o Vector Dot Product (between two vectors)

o Vector Cross Product (between two vectors)

o Multiplication by another matrix or vector

o Inverse of a matrix

o Transpose of a matrix

The scalar operations will also apply between:

o A scalar and an array

o A scalar and a structure

o Two arrays of identical dimension

o Two structures of identical organization

The applicability of two-operand operations is summarized in
Figure 4- 2.

4. 3. 2 Logical Operations

Logical operations apply to bit- strings and character- strings.
They manipulate these strings as patterns without attaching quantita­
tive values to themo The following logical operations are required
for bit- strings:

o Complement, which changes all "zero" bits of the
string to ones, and all Iionesil to r'zeroes".

o Logical "AND" which combines two strings, bit-by­
bit, generating a "one" bit where corresponding bits
of the source strings are both "ones", and generating
a "zero" bit otherwise.
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o Logical "OR " , which combines two strings bit-by-bit,
generating a "zero" bit where corresponding bits of the
source strings are "zero", and generating a "one" bit
otherwise.

o Concatenation, which attaches one source string on the
end of another, creating a new string with length equal
to the sum of the two source string lengths. Individual
bit value s are unchanged in the proce s s.

In addition, the concatenation operation is required for char­
acter strings.

Operations which apply to strings will also apply to arrays of
strings, so long as arrays to be combined are of identical dimension.
They will also apply to structures of strings, so long as structures to
be combined are of the same organization.

A desirable requirement for bit-strings 1S:

o "Exclusive OR" operation which combines two bit- strings,
bit-by- bit, generating a "one" bit where corres ponding
source string bits are different, and a zero bit where
they are the same.

4. 30 3 Relational Operations

Relational operations compare the values of different operands
and result in values of "one" if the relational expression is true, or
"zero" if it is false. The result of such an operation is a bit-string
of length one.

The following relational operations will be provided:

0 Equal

0 Not Equal

0 Less Than

0 Greater Than

0 Less Than or Equal

0 Greater Than or Equal

0 Not Less Than

0 Not Greater Than
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All relational operators will apply to fixed point, floating point and
bit- string operands in any combination. "Equal" and "Not Equal" will
be the only operations which may compare character-strings and non­
scalar data items; non- scalar data items being compared must be of
the same organization and dimension.

Desirable requirements are the two relational operations:

o Within Limits

o Outside Limits

which would compare a single operand against a pair of operand limits.

4. 3.4 Boolean Operations

Boolean variables are bivalued variables which can take on one
of two sta~es (e. g., one or zero, on or off, true or false). There is
no language requirement for a data type explicitly called a Boolean
variable, because a bit-string of length one (single bit) provides the
full capability. Consequently, there is no requirement for operations
which are explicitly called Boolean. However, all of the bit-string
logical operations (Paragraph 4.302) will be applicable to single bit
bit-string operands (i. e., Boolean values), including relational ex­
pressionso The relational operations (Paragraph 4.3.3) will also be
applicable to single bit bit-string operands.

4.3.5 Explicit Data Conversions and String Operations

Implicit data conversions will be made among bit-strings,
fixed point, and floating point data elements when they are combi,ned
through the arithmetic operations of Paragraph 4.3. 1. The order of
conversion will be from:

o Bit- string (interpreted as an integer) to

o Fixed point, to

o Floating point

Furthermore, implicit conversion will be made across any
legitimate as signment statement (Paragraph 4.3. 7).

In addition there are requirements for explicit data conver­
sions and manipulation of portions of string valueso These require­
ments include:
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o The ability to interpret any data element as a bit­
string without modification of its bit pattern.

o The ability to extract any single contiguous substring
from a character-string or bit-string.

o The ability to replace any single contiguous substring
of a character-string or a bit-string with a string of
the same type and length, leaving the remainder of
the receiving string unchanged.

4.3.6 Operations on Data Organizations

The requirements for application of data manipulation opera­
tions to vectors, matrices, arrays, and structure.s are described
along with the operation descriptions (Paragraphs 4.3. 1 through
4.3.3).

4. 3. 7 As signment Statements

Assignment statements are used to assign the value(s) of a
formula to one or more data items, which include partitions of non­
scalar dat~ items, or substrings of strings. The following require­
ments apply to as signment statements:

o As signment statements will be of the form:

variable, variable, • 0 0 variable = formula

o The formula may be any data item or any valid com­
bination of data items using· the data manipulation
operations.

o One or more variables may be listed, where each
listed variable must be of the same organization and
dimension, and each will be identically assigned the
the same value or set of va1ueso

o If the variables are non- scalar, the formula may be
a non-scalar formula, a list of scalar formulas, or a
single scalar formula whose value is assigned to each
element of the non-scalar variab1e(s).

o Any scalar data type may be assigned any other scalar
data type and the necessary conversions will be made
implicit!y.

-18-



o Statement label arrays must not appear in assignment
statements. They may be assigned values only through
the initialization capabilities of their data declarations.

o Data location variables may be modified only by direct
as signment to a single data item name.

o Vectors, matrices, and arrays, or partitions thereof,
may be as signed to each other in any combination, but
must be of the same dimension.

o Structures may be assigned only to other structures of
the same organization.

A desirable requirement for assignment statements is the
following:

o A structure assignment "by name" which would assign
values -only to those elements of the receiving struc­
ture which had the same name as elements in the
source structure. Other elements of the receiving
structure would remain unchanged.

4.3.8 Scaling of Intermediate Results

Fixed point data items will include, in their declarations, the
precision (number of bits) and scaling (number of fractional bits) of
values to be stored in the data item (see Paragraph 4.2.7). The <;:om­
piler uses this information to align data values before performing
arithmetic operations in expressions. In some Cases, the programmer
needs to generate an intermediate result in an expression which has
scaling and/or precision different from that dictated by the precision
and scaling of the operands. The following language requirements
are included to fulfill that need:

o The language will provide the capability to specify a
new precision for any intermediate value of an expres­
sion.

o The language will provide the capability to specify
the precision at which any arithmetic operation will
be carried out.
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4.4 Internal Program Sequencing and Control

In addition to the data manipulation operations described above,
the programmer needs to specify the sequence in which these opera­
tions are to be performed and the decisions which must be made to
control that sequence. This paragraph describes requirements for
language features which specify decision making and sequencing con­
trols within a single procedure. The controls and interfaces among
separate procedures are discussed in Paragraph 4.5.

4.4. 1 Direct Unconditional Transfers

The direct unconditional transfer statement will be provided
in the form of a "GO TO Statement-label" which will transfer control
directly to the statement whose label appears as an argument. The
following restrictions will apply to the statement-labels which may
be used as arguments of the GO TO statement:

o The argument statement must be internal to the pro­
cedure which contains the GO TO statement.

o The GO TO statement may not transfer control into:

A DO group

A BEGIN block

A nested procedure

These requirements are intended to provide the programmer
with flexibility in transfer of control within a procedure, but restrict
the interfaces among procedures and selected statement organizations
within procedures to reduce the complexity of the overall program
structure.

4 04.2 Variable Transfers

A powerful part of the internal control flexibility which can
be provided by the programmer is the ability to execute a variable
transfer. This capability allows a single statement to transfer to any
one of a list of alternative statements depending upon conditions at
the time of execution. The language requirements are as follows:

o A label array (Paragraph 4.203), with an index, may
be the argument of a GO TO statemento
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o The value of the index at the time of execution of the
GO TO statement will determine which statement- .
label from the label array will be selected for the
transfer.

It should be noted that the label array elements cannot be
assigned new statement label values; all values are established in
the declaration and are fixed throughout program execution. The
only variable is the label array index.

4.4. 3 Conditional Statement

Conditional statements are provided in the language as the
basic decision making tool. They allow either one of two responses
to be executed depending upon the state of a logical-condition. The
requirements are:

o The conditional statement will have three clauses:

IF clause

THEN clause

ELSE clause

o The IF clause may be any scalar expression and is
interpreted as false if it evaluates to a zero value and
true if it evaluates to a non- zero value.

o The THEN clause will be a statement or statement
group which is executed when the IF clause is true.

o The ELSE clause will be optional. If included, it will
be a statement or statement group which is executed
when the IF clause is false.

o THEN and ELSE clauses which are statement groups
must be enclosed between the delimiting DO and END
statements.

4.4 0 4 Decision Tables

Decision tables provide the capability to compactly and graph­
ically portray a complex combination of decisions and responses.
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Decision tables will be included in the language and will fulfill the
following requirements:

o Any number of relational conditions may be listed.

o Decision rules may be generated from any combina­
tion of the true or false or "don It care" states of the

relational conditions listed o

o Any number of actions in the form of assignment state­
ments or direct transfer statements may be listed o

o A re sponse, consisting of any combination of the actions
listed, may be attached to each decision rule and be
executed if the decision rule is fully satisfied.

A desirable requirement associated with decision tables IS

the following:

o The ability to declare a decision table with a label
and execute it remotely through reference to the label,
rather than placing all decision tables in the direct line
of program execution.

4.4. 5 Iterative Loop Control

Iterative loop control provides a technique for executing groups
of statements several times in succes sion using different values of a
loop variable for each iteration. The requirements for iterative loop
control are:

o The sequence of value s to be as signed to the loop
variable will be expressed as a list of independent
values or value sets.

o A value set will be expressed as a specified initial
value, increased by a specified increment for each
iteration, until a specified final value is exceeded.

o Iterative loops may be nested within other iterative
loops.

o Each iterative loop, whether nested within another
iterative loop or not, must have its own unique END
statement as its final statement.
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o At termination of the iterations, the loop vari~ble will
retain its last assigned value, whether the termination
was caused by a transfer out of the loop or by comple­
tion of the list of values.

o The initial value, increment, and final value of a loop
variable value set may each be any valid scalar arith­
metic expres sion, and such expre s sions will be reevalua­
ted at the completion of each iteration.

o The loop variable may be assigned new values by state­
ments within the loop.

A desirable requirement is the ability to specify multiple in­
dependent loop variables with independent sets of values for a single
loop. These loop variables would each be assigned a new value for
each iteration of the loop.

4.4. 6 Conditional Loop Control

Conditional loop control allows the specification of a logical
condition upon which to base termination of the iteration of a loop.
The requirements are:

o Any iterative loop control statement may include a
logical-condition which will be tested before each
iteration of the loop. 1£ the logical-condition is not
true, the loop will terminate.

o A conditional loop may be iterated without specifying
a loop control variable.

o A logical-condition may include any relational expres­
sion or logical combination of relational expressionso

4 0 4. 7 Statement Groups

Statement groups allow multiple statements to be considered
~s a single execution unit. Statement groups are used in multiple
statement THEN and ELSE clauses and in iterative loops. The re­
quirements are:

o All statement groups must be delimited by the begin­
ning delimiter DO and the terminating delimiter END.
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, 0 A properly deliInited stateInent group Inay be used at
any place in the prograIn where a single stateInent is
valid.

4. 4. 8 Stop Execution

The language will not include a specific stateInent to halt execu­
tion of the cOInputer. However, an individual task luay suspend or
terIninate itself, returning control to the operating systeIn (Paragraph
4. 5. 2).

4. 5 PrograIn Structure

The preceding paragraphs have discussed data access and state­
Inent execution sequence control within a prograInIned procedure.
The ensuing discus sions present the requireInents for cOInbinations of
and interactions aInong groups of procedures. Again, it is eInphasized
that the terIninology used here to describe the requireInents is not
intended to iInpose a syntactical requireInent on the language. The
concepts described are required, but there is no specific requireInent
for the naInes which Inust be used to reference theIne

4. 5. I Overall PrograIn Organization

The overall prograIn organization capabilities Inust allow for
Inulti-tasking through a highly Inodular structure which allows any
Inodule, at any level of the structure, to be furthe r Inodularized into
a substructure. It Inust also allow portions of the organization to be
cOInpiled separately and be efficiently linked together after cOInpila­
tion. In addition, the data and control interfaces aInong Inodules Inust
be straightforward so that the organization and Inodule interactions
are easily understood and can be reliably Inaintained. The specific
requireInents are:

o An overall prograIn organization will include one or
Inore external prograIns, which are separately COIn­
pilable procedures that Inay contain internal proced-
ures nested to any level. (Note: Unless explicitly re­
stricted to internal procedures, any requireInent which
willapplytoa"procedure", will also apply toa IlprograInll.)

,

o A procedure (internal) or prograIn (external) Inay be
invoked as a:

Called procedure through a calling stateInent,
allowing Inultiple paraIneters to be cOInInunicated
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to and from the called procedure (Paragraph
4.5.3).

Function procedure by appearance of the proce­
dure name in an expression, allowing multiple
parameters to be transmitted and a single para­
meter to be returned (Paragraph 4. 5.5)0

Task through a task calling statement, allowing
for concurrent execution with the invoking pro­
cedure and the pas sing of parameters to the
invoked procedure (Paragraph 4.5.4).

o An overall program organization may also include a
set of external data items which are acces sible to all
procedures (assuming proper authorization, Paragraph
4.6.2). Any data accessible to multiple tasks which
can be in concurrent execution must be external data.

4.5.2 Programs

The program level of organization will be the highest declared
level in the structure, and multiple programs may exist in the same
organization, although they will be separately compilable. The follow­
ing requirements apply to programs:

o The language statements which specify a program will
be enclosed between a "begin delimiter'T statement
and an "end delimiter" statement.

o The Ifbegin delimiter" statement will be labeled with
the program label and the Trend delimiter lf statement
will reference that label.

o A program may have multiple entry points, and each
entry point must be explicitly declared. For each
declared entry point, there must be a statement with­
in the program which has the declared entry point
label.

o A program may be scheduled (as a task) to be executed
at some time in the future as a function of:

An absolute time

An increment of time from the instant of scheduling
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A cOITlbination of prograITlITler declared as well
as systeITl defined events.

o A prograITl ITlay be scheduled (as a task) to be executed
. repeatedly at SOITle periodic rate.

o While in execution, a prograITl ITlay suspend its own
execution until anyone of the above three types of
occurrences.

o A prograITl which is scheduled for execution as a task,
and has not yet started execution, ITlay be cancelled by
another task. Such cancellation will reITlove the sched­
ule request.

o A prograITl in execution ITlay terITlinate the task under
which it is running.

o The language stateITlents within a progrRffi must be
organized in the following sequence:

Beginning deliITliter

Declarative stateITlents

IITlperative stateITlents

Nested procedures

Ending deliITliter

o The prograITl attributes recursive and re-entrant will
be provided in the language.

4.5.3 Procedures

The language requireITlents for a procedure definition capability
are the saITle as for a prograITl, except that:

o A procedure ITlust be nested within a prograITl, and
ITlay not be separately cOITlpiled.

A deferred requireITlent for procedures is:

o Procedures ITlay be declared with the inline attribute,
in which case the cOITlpiler will duplicate the object
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code at the point of invocation, rather than generating
a calling sequence to object code.

4.5.4 Real Tim.e Tasks

Real tim.e tasking will be provided through the ability to sched­
ule program.s and procedures for future and concurrent execution (Para­
graph 4.5.2). The following restriction will apply to procedures which
are to be scheduled as tasks:

o Data which is to be acces sed by m.ultiple tasks which
can be in concurrent execution m.ust be external data.

4.5. 5 Functions

A function is a procedure which is invoked by the appearance
of its label, and input param.eters, within an expression. The follow­
ing requirem.ents apply:

o A procedure m.ay be invoked as a function, as well as
through a separate calling statem.ent.

o When a procedure is invoked as a function,· its only
output is the value assigned to the function label where
it appears in the invoking expression.

4. 5. 6 Close

A close is a m.echanism. for providing very sim.ple and efficient
subroutine interfaces. There is no explicit language requirem.ent for
closes, but there is a com.piler consideratio::l to provide a m.ore efficient
linkage for procedures which neither declare data internally nor com.­
m.unicate input and output param.eters.

4.5. 7 Program. and Subroutine Returns

When a program. or a procedure (subroutine) is invoked it can
becom.e part of the task which invokes it, or if it is scheduled (Para­
graph 4.5.2), a new task is created. Corresponding to the two types
of invocation, there will be two ways to return control when a program.
or procedure has com.pleted its operations:

o A term.inate statem.ent will return control to the opera­
ting system., rem.oving the task under which it was
executing.
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o A return statem.ent will return control to that program.
or procedure which directly invoked it. 1£ it was in­
voked through a schedule statem.ent, then the return is

.to the operating system. and the effect will be the sam.e
as for the term.inate statem.ent.

o 1£ the invocation was a function invocation, the return
statem.ent m.ust include an expression which repre­
sents the function value to be returned.

4.5.8 Subroutine Param.eters

When a procedure is invoked it m.ay operate upon, and generate
values for, data item.s from. two general classes: data item.s which
are "known" to it through declarations (Paragraph 4. 5. 13) and data
item.s which are pas sed to it or returned by it as param.eters at the
tim.e of invocation and return. The following requirem.ents apply to
the transm.ission of these param.eters:

o A procedure invoked directly through a separate pro­
cedure call statem.ent m.ay receive m.ultip1e param.eters
and m.ay return m.ultip1e param.eters, as nam.ed in the
calling sequence.

o A procedure invoked directly through a function invoca­
tion m.ay receive m.ultiple param.eters, as nam.ed in
the calling sequence, but m.ay return only one para­
m.eter.

o A procedure invoked by scheduling for future concur­
rent execution m.ay receive m.ultip1e param.eters, but
m.ay not return any param.eters.

4.5.9 Priority Assignm.ents

In a m.ulti-tasking environm.ent, a priority assignm.ent is fre­
quently used to establish a precedence order for initiating and/or
executing tasks. The absolute execution priority should be established
outside the coding of the procedure. However, it is som.etim.es useful
for a procedure, when scheduling a task, to establish a priority rela­
tive to itself and to other tasks it schedules. Therefore, the following
language requirem.ent is im.posed:

o The statem.ent which is used to schedule a task will
include provision for a num.erica1 priority to be
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as signed to the scheduled task. The precise meaning
of the priority number will depend upon the real time
operating system implementation.

4.5. 10 Exclusive Subroutines and Interrupt Controls

In addition to the normal priority controls used for sequencing
tasks there is a need for selected temporary overriding of these
priorities. Two specific techniques are required in the language: ex­
clusive procedures and interrupt controls. The requirements are:

o An exclusive attribute will be provided for procedures,
such that if one task invokes an exclusive procedure,
no other task regardless of priority may execute the
procedure until the first task has completed execution
of it.

o The capability will be provided to selectively inhibit
interrupts individually or in groupso

o The capability will be provided to selectively enable
inhibited interrupts individually or in groups.

4.5.11 Error Recovery

When a system error, such as arithmetic overflow, occurs
the computer hardware or operating system frequently has a stand­
ard response o Sometimes it is useful to replace the system response
with a programmer defined response. It i.s also useful to have error
conditions defined and controlled by application programs in addition
to the system defined errors. The requirements are as follows:

o A set of system-defined errors will be named in the
language so they can be referenced in program state­
ments.

o The programmer will be able to declare error con­
ditions which he may then cause to occur through
program statements.

o The language will include the facility for as signing a
statement sequence to an error condition or an interrupt.

A desirable requirement is:
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o The abi:ity to reassign the response to an error con­
dition within a procedure at execution time. This capa­
bility would obviate the need for deciding, within a

. single response sequence, which action should be
taken.

4. 5. 12 Library Subprograms

Several classes of subprograms (procedures) .are normally
used in the development of a software system. Earlier paragraphs
have described capabilities the programmer will have for writing
his own procedures. In addition, there are built-in functions, which
are an integral part of the compiler. Many of the requirements speci­
fied in this document are implementab1e through built-in functions.
Between these extremes there is a need for commonly used procedures
which can be defined and controlled centrally. The specific require­
ments are:

o The language will provide for an interface with a library
of common procedures.

o Library procedures will be accessible by programmers
through the normal procedure invoking capabilities of
the language, without the programmer defining the
procedures or explicitly declaring their existence.

4. 5. 13 Scope of Names and Labels

The scope of a name or label is that set of procedures in which
the name or label is "known". That is, the set of procedures whose
statements can use the name or label as an argument. Name and label
scopes will be as follows:

o Data item names will be known within the procedure
where they are declared and within all procedures
nested in the declaring procedure.

o External data item names will be known to all pro­
cedures.

o Internal statement labels will be known only to the
procedure in which they are declared. They will
not be known in nested procedures no in procedures
in which the declaring procedure is nested.
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o Procedure entry point labels will be known to:

The procedure to be entered by the label (the
host procedure).

All procedures nested within the host procedure.

The procedure in which the ho st procedure is
declared.

All procedures declared within the same pro­
cedure (and at the same level) as the host pro­
cedure.

o Entry points to external procedures (programs) will
be known to all procedures.

4.6 External Data Acces s

External data is data which is defined outside the compilation
of a program module. It falls into two classes: data outside the
computer (input/output) and data which is stored in computer memory
but is common to two separate program compilations or two concur­
rently executing tasks. Special language features are required to
ensure that this data can be made available where it is needed and
that data communications can be maintained reliably.

4.6. 1 Common Data

Data which is common to separately compilable program mod ...
ules requires special attention because the separate compilations
must be linked to the data outside the compiler and because it is nec­
essary to ensure that separately compiled procedures are attempting
to access the same data in the same manner.

"-
Data which is common to procedures, w~ich may execute under

separate concurrent tasks also needs special attention because im­
proper sequences of independent access can produce erroneous re­
sults.

The language must allow for centralization of this data through
the following requirements:

o The language will allow for a common pool of external
data, potentially accessible by all procedures of a
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program organization.

o The language will provide a mechanism for retrieving
a common data pool, by name, from a central source
and incorporating it into the compilation proce s s.
Data declared in that common d~ta pool will not re­
quire additional declaration within the procedures
being compiled.

4.6.2 Compile Time Data Protection Features

Frequently, individual data items declared in a common data
pool are actually accessed by only a few of the procedures with which
they are compiled. To protect against erroneous acces s by other
procedures, common data items need associated authorizations to
identify procedures which have legitimate access to them. The re­
quirements are:

o Data which is to be accessed by two or more separately
compiled procedures must be declared external and
may be retrieved through the common data pool.

o All external data items will include read authoriza­
tion and write authorization attributes.

o Any procedure identified in a read (write) authoriza­
tion, or any of its nested procedures, will be permitted
to read from (write into) the corresponding data item.

4.6. 3 Execution Time Data Protection Features

Although two procedures may be compiled together or may
have independent authorization to read and/or write a data item,
access conflicts can arise at execution time if these two procedures
are in concurrently executing tasks. Therefore, execution time pro­
tection features are required to ensure that authorized data accesses
are executed in non-conflicting sequences. The requirements are:

o An acce s s protection attribute will be provided for
external data items which indicate s that they are
accessible by two or more tasks which are subject
to concurrent execution. A data item with such an
attribute will be acces sible only from within blocks
of statements called access protection blocks.
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o Beginning and ending delimiters will be provided to
delimit instructions within access protection blocks.
These delimiters will dictate compiler generation of
object code, which at execution time will suspend
execution of a protection block, if necessary, until
other protection block.s with conflicting accesses
have completed execution.

o The following restrictions will be imposed on access
protection blocks to avoid deadlocks:

No branches into or out of access protection
blocks except through the beginning and ending
delimiter s.

No nesting of access protection blocks.

No task suspensions in an access protection
block.

No protection blocks in exclusive procedures.

4.6.4 Conventional Input/Output

A variety of conventional peripheral equipment can be antici­
pated for future spaceborne computer systems. Printers and on-line
terminals with keyboard inputs and printed or CR T outputs are ex­
pected for man-machine interfaces. Record-oriented devices such
as tape, disk, and drum are expected for bulk data storage. To
support this range of devices, two broad classes of input/output are
required:

o The language will provide for character- string input/
output which will treat the data as a continuous string
of characters and will convert groups of characters
to specified data types (and vice versa). Data pOl>ition­
ing, such as line numbers, page controls, and char­
acter positions, will be provided.

o The language will provide for record-oriented input/
output which will treat data which has been structured
into records, which in turn are organized into files.

Record-oriented input/ output will include the following capa­
bilities:
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o Blocked records so that many logical records may be
maintained in a single physical record.

o Synchronous operations, where the input or output
operation is complete before control is returned to
the procedure.

o Asynchronous operations, where control is returned
to the procedure as soon as the input/output operation
is started, and an event is created through which the
procedure can determine when the operation is com­
pleted.

o Consecutive files, where each input/output operation
refers to the next consecutive record on the file.

o Direct acces s files, where each operation can specify
the relative number of the record desired and acces s
it directly, independent of the last record accessed.

o Indexed files, where records can be accessed based on
their data content in a "keyll field. Access may be seq­
uential, where the next operation refers to the record
with the next highest value in the key field, or it may
be direct where the operation specifies the key field
value of the record to be accessed.

o Buffered operations for sequential input/output, where
the operating system can maintain overlapped input/
output because the next record to be accessed is pre­
dictable.

o The ability to declare data files centrally and associate
them logically with devices, so that the input/output
operations themselves refer only to data file names and
are fully dissociated from any "hard coded" device
identifications.

4.6.5 Real Time Input/ Output

Realtime input/output refers to communication with the avionics
equipment and other space vehicle related devices which interface
with the onboard computer but are not included in the "conventional"
class. The input/output requirements described in Paragraph 4.6.4
are suffiencient for performing the real time input/output, so long as
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the device names can be used in file declaration statements. The
real-time devices can be treated as individual files or as separate
records within a large file, depending upon implementation.

However, there are some desirable language requirements
which would enhance the real time device interface in some environ­
ments:

o Subscripted file names and/or record identifications.
One common characteristic of spaceborne hardware
is redundancy. The availability of a subscript (as an
array subscript) in an input/ output operation could
simplify the proces s of switching to a backup device
in case of failure. Only the value of the sub script
variable would need to be changed to switch device s.
It could also improve the quality of expres sion and
readability of procedures which must read multiple
redundant devices and compare their values.

o File names in decision tables, which would imply ob­
taining a new value from the device each time the
decision table is executed. This capability could
greatly simplify the specification of monitoring re­
quirements on vehicle test parameters.

4. 7 Special Compiler Directives

Special directives to the compiler provide selected additional
capabilities beyond those described in preceding requirements cate­
gories. They are described in the following paragraphs.

4. 7. 1 Optimization Directive s

Code optimization remains an important is sue for onboard
programming, although it is primarily a compiler consideration
rather than a language consideration. That is, the compiler must
devote some of its efforts to object code optimization, independent
of specific features in the language. What the language needs is the
capability for the programmer to tell the compiler when to optimize
and when not to optimize. The requirements are:

o The language will provide a directive which directs
the compiler to perform a specified level of optimi­
zation for a given compilation.
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o At least one of these levels will direct the compiler
to incorporate optimization techniques which will
specifically reduce the execution time of the com­
piled code at the expense of increased m.emory. This
is in addition to the memory allocation requirements
of Paragraph 4. 7.2.

A desirable requirement is the ability to specify different levels
of optimization for different procedures within the same compilation.

4.7.2 Memory Allocation Controls

Memory allocation controls are a special class of optimization
directives. They direct the compiler in allocating computer memory
to declared data items, allowing the programmer to select trade-offs
between program memory size and program execution time. The re­
quirements are:

o Data packing directives will be provided to select the
packing density of data items within data organizations.

o Automatic storage allocation will be provided, whereby
selected data items may be assigned storage only while
the declaring procedure is in execution. While the pro­
cedure is idle. the storage will be available for other
uses.

4.7. 3 Program Debug Aids

Some type of on-line debug capability which does not depend
upon compile-time debug directives is required as part of the total
flight program.ming system. This capability must be on-line so the
programmer can modify his debug requests during program testing
without returning to the language compiler. However, the on-line
capability by itself is insufficient. There will be some cases where
batch mode operations will be the most economical approach to debug.
at least initially. and compile time debug directives will be needed o

They should be fully compatible with the counterpart on-line controls o

The debug directives in the language will include:

o Statement trace capability which will list identifications
of statements in the sequence that they are executed.

o Branch trace capability which will list identification
of branch statements in the sequence that they are
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encountered and will indicate which branch was taken.

o Output of selected data values by the following criteria:

On command

Whenever the data item is assigned a value

Whenever the value goes out of (or into) an
indicated range between two limits.

4.7.4 Compile Time Identifiers

The compile time identifier capability allows the programmer
to centrally define values, terms, expressions and other character­
strings which may be used many places elsewhere in his program
source statements. He may as sign a simple identifier to the defined
character- string .and then use the identifier throughout his program.
The language processor, in a pre-compilation phase, will substitute
the defined character- string for each appearance of the identifier in
the source program. This capability is useful because the compile
time identifier can be more descriptive or easier to write than the
defined character- string, and because the central definition allows
the character-string to be easily redefined without modifying all the
source statements where it is used. The requirements are:

o Compile time identifiers will have the same syntax as
data item name s.

o Compile time identifiers can be defined as equivalent
to any character-string and will be replaced directly
by the equivalent character- string prior to compilation.

o The compile time identifier declaration will have the
same scope rules as a data item declaration.

4.7.5 Macro-Definitions

As any large-scale programming effort gets under way many
common operations, each performed in many procedures, become
apparent. It is generally desirable to have such operations always
performed in the same manner, readily specified by the programmer
and easily recognized in the source program listing. Macro-st~te­

ments are an effective way of accomplishing these goals. The following
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deferred language requirements are intended to provide a general
macro- statement capability:

o .The language will provide a macro- statement capa­
bility, through which new language statements may
be defined as sequences of other language statements.

o Macro- statements will be expanded in line where they
appear in the source listing.

o Macro- statement definitions may include formal
parameters. Actual argument identifiers, specified
in the use of the macro-statement will be directly
substituted for the formal parameters, when the macro­
statement is expanded.
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5. SPECIAL TOPICS

The benefits of the detailed language requirements, described
in the preceding paragraphs, can be realized fully only if supporting
requirements are imposed on other components of the overall flight
program development system. The language compiler and the on­
board computer operating system are the two components to which
the success of the language is most sensitive. Some of the more
significant requirements imposed by the language on these two soft­
ware components are described in the following paragraphs.

5.1 Language Processor

Certainly the overriding requirements on the language pro­
cessor are reflected directly in implementation of the language which
fulfills the requirements of Sections 3 and 4. Since many of the re ..
quirements reflect rules for using language capabilities, rather than
just additional capabilities, an important characteristic of the com­
piler is its validity checking. The language has been designed to
provide the compiler with explicit information about what the pro­
grammer is intending to do. The compiler must determine that re­
lated program statements are consistent with one another and should
be able to provide informative diagnostic data to the programmer when
an error does occur. Indeed, advanced compiler versions may well
provide error correction capabilities for the simpler punctuation
omis sians, mis spellings, and other easily diagnosed error s. Although
this capability can tend to encourage" sloppy coding", it can be more
beneficial than harmful if supporting management tools are available
to enforce programming disciplines.

The compile time identifiers of Paragraph 4. 7.4 are particu­
larly useful for very simple extensions to the language. For example,
the following very useful key words can be defined into the language
at a particular installation or by an individual programmer:

o

o

o

o

INTEGER

BOOLEAN

TRUE

FALSE

(a fixed point data item with default
precision and scaled with zero fraction­
al bits)

(a bit-string with a fixed length of one
bit)

(a binary "one")

(a binary "zero")
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o PI (3. 14159)

To maximize the benefits of this capability the compiler (and pos­
sibly other support software) must provide a simple technique by
which a facility may introduce a standard set of compile time identi­
fier definitions directly available to (or forced upon) application pro­
grammers. The language processor must also provide efficient
compile-time substitutions so that the cost of compiler execution
does not render compile time identifiers uneconomical.

Since the macro statement capability is essentially an ex­
tension of the compile time identifier capability, the above argu­
ments apply at least as much to macro statement processing,

Compiler optimization is an es sentia1 ingredient in the
economics of flight programs. The computer memory and proces­
sing time saving s for the object program can make the optimization
capability very cost effective. However, the costs of using an
optimizer (above and beyond the compiler development cost) can be
high:

o Compiler execution time is higher

o Object code is less easily related to source statements,
so the program debug is more complicated.

Therefore, at least during early development of a program module,
optimizing functions should be inhibited through the capabilities de­
scribed in Paragraph 4.7,1. The time-oriented optimization is re­
quired for frequently executed procedures or those with a critical
response time requirement. .

5.2 Operating System

Several of the language requirements imply a real time operat­
ing system interface to fulfill their intent. Fulfillment of these re­
quirements involves trade-offs between object code inserted by the
compiler and resident operating system routines which are invoked
through calling sequences inserted by the compiler. These trade-
offs are not discussed here, but requirements are established for func­
tions which should be provid~d by a combined effort of the compiler
and the operating system.

One of the more obvious of these requirements is multi-tasking,
including real time task scheduling. It is as sumed that, through an
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operating system. interface, a procedure can request that a new task
be created, and that a specified procedure be executed under that task.
The request can be for im.m.ediate creation of the task or creation at
som.e future tim.e or event. Param.eters m.ay be pas sed to the task by
the invoking procedure whether the task creation is im.m.ediate or in
the future. After a task has been created, it is as sum.ed that a pro­
cedure executing under that task m.ay term.inate the task or tem.por­
arily suspend it. A task schedule request can be cancelled by any
procedure before the scheduled task begins execution. Som.e sort of
num.eric priority as sociated with task execution is also as sum.ed.

Of course these assum.ptions m.ay not all be valid for a given
operating system.. Therefore, the language should be designed with
these features independent of each other so that when the capabilities
are provided in an operating system. the language can invoke them.,
but when selected capabilities are not provided, the corresponding
features can be elim.inated from. the language without reducing other
features.

Multiproces sing is another capability anticipated in future
com.puter system.s and their operating system.s. However, there are
no language features directed specifically at m.ultiprocessing. They
are om.itted because the individual program. m.odules should not be
directly concerned with m.ultiprocessing considerations. There are
sufficient opportunities to exploit parallelism. am.ong separate program.
m.odules without attem.pting to describe parallel paths within a m.od­
ule. Furtherm.ore, the parallel execution of separate m.odules should
be described outside the coding of the m.odules, and therefore outside
the flight program.m.ing language.

Another area of operating system. interface is the real tim.e
protection of external data. This protection is invoked by the lan­
guage through the data access protection blocks of statem.ents (Para­
graph 4.6.3). The im.plem.entation of this protection requires execu­
tion tim.e checks of data accesses to prevent conflicting accesses from.
separate tasks. While these checks could be perform.ed entirely with
object code inserted by the compiler, they m.ay be accom.plished m.ore
efficiently through centralized code in the operating system.. Som.e
current approaches to m.ulti-tasking advocate creating private copies
of external data for tasks when they are created and updating the com.­
m.on copy only when the task term.inates. Of course, such an approach
would obviate the need for special language designation of data access
protection blocks.

Input/output is another area where operating system. capabilities
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vary widely. The full set of language requirements for input/output
(Paragraph 4.6.4) implies an operating system data management sys­
tem of considerable sophistication. As with real time task schedul­
ing, the requirements are separable and can be implemented incre­
mentally to correspond to the features available in the operating sys­
tem.
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6. LANGUAGE EVALUATION BY CATEGORY

The evaluation summaries provided in the preceding discus­
sion showed the ratings of the languages in each of the evaluation
categories and briefly introduced some of the key factors which in­
fluenced those ratings. The following paragraphs provide a more
detailed discussion of the evaluations in each category. These dis­
cussions are not intended to expose every detail which influenced
the evaluation ratings. Rather they are intended to emphasize and
explain those features which most influenced the evaluation and which
best represent the overall capability of the languages. Further details,
which form much of the basis for these discussions, are provided in
Section 7, which summarizes and compares detailed features of the
language, and Section 8, which reviews the kernel coding effort.

6. 1 Quality of Expression

The quality of expression of a language is its most important
evaluation criteria category, because it reflects how easily and re­
liably the programmer can describe a desired process. It determines
what programming techniques can be invoked by the programmer in
describing his problem. This description activity is the first step
in the program development proces s to be directly influenced by the
programming language. Furthermore, the product of this a~tivity

is the source language program which is the object of the other evalua­
tion criteria. 1£ effective programming techniques cannot be invoked
or if the description of their use is not well expressed, then every
evaluation category is adversely affected.

Phase I of the study identified three major problems as sociated
with developing the expression quality of a language. These problems
and reflections on them resulting from the evaluation are summarized
below:

o A written program usually must specify "howl! a process
is to be performed rather than simply "what" is to be
done.

Trigonometric and matrix and vector operations are
the only significant language capabilities found which
attempt to specify high level functions frequently used
in flight programming. For example, no special.
features were provided for specifying digital filters
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or integration techniques. This problem relates to
readability and is discussed further in Paragraph 6.5.

o Quality of expression is in conflict with other evalua­
tion categories 0

As expected, readability and expression found many
beneficial features in common, and readability was
even improved by some of the features which reduced
the amount of writing required. Decision tables, and
factored declarations are notable examples. The major
conflict among evaluation criteria arose between ex­
pres sion and proces s reliability. The greater the
freedom and power available to the programmer, the
more opportunities there are to introduce programming
error s and the more difficult they are to detect. The
power of the indirect addressing capability provided
by SPL leads the list of these conflicts.

o Constraints imposed by the host computer input/output
media reduce the power of expression of the language.

This problem was in evidence primarily in limiting the
length of comments which were on the same line as
statements o Line length did not restrict expression in
the statements themselves for the sample coding,
because each statement generally fit well within avail­
able characters on a card imageo All the languages
provided some capability for continuing the statement
on the next line if necessaryo However, when a com­
ment must be continued, it loses much of its impact.
The scope of such a comment is frequently unclear o
Does it apply to a preceding statement (or several state­
ments) or a following statement? If several statements,
how many? The result is that comments are frequently
abbreviated so they will fit on the same line as the state­
ment, and the abbreviation reduces the value of the
commento The very rich HAL character set created
some minor problems with equipment and operators,
as discussed in Paragraph 6. L 2. 5.

The comparative evaluations presented below are categorized
under the following evaluation criteria questions:

o What programming techniques can be expres sed in the
language?
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o How naturally or easily can the available techniques
be expressed?

o How general is the form of the concepts presented by
the language ?

The major issues as sociated with each of these questions, and features
of the selected languages which contribute to or detract from these
issues, are discussed in the following paragraphs.

6.1.1 Techniques Expressed

The major issues concerning programming techniques which
can be expres sed are the following:

o Decision Tables

o Location Pointers

o Vector and Matrix Operations

o Data Preset Symbolically and by Formula

o Subroutine Control and Communication

The differences among the languages is these areas are discussed and
evaluated in the following paragraphs.

6. 1. 1. 1 Decision Tables

SPL is the only one of the evaluated languages which provides
Decision Tables. This is one of the outstanding differences in expres­
sion among these languages, and has been used very effectivelyin
commercially available languages in the past.

Decision tables were used advantageously several times in
four of the 11 kernels coded o They were particularly beneficial to
the Switch Selector kernel because of the many complex combinations
of decisions and actions associated with Switch Selector sequences o

The power and operation of the Decision Table are best de­
scribed by example. Figure 6-1 shows a simple Decision Table
taken from the SPL coding of the Switch Selector Processor. Below

-45-



DECISION TABLE EXAMPLE

SPL Decision Table

(Rules)

CONDITIONS I """:

VSNAl EQ MSKSSHIG , (Y, )

VSNAI EQ MSKSSLOG , ( , Y, )

VSNAl EQ MSKSSOMG , ( , , Y, )

VSNAI EQ MSKSSSIVB , ( , , Y, Y)

FBRNI EQ 'FIRST' , ( , , Y, N)

ACTIONS
DVMC7 = DVMC7 LOR MSKMC7HIG (Y, )

DVMC7 = DVMC7 LOR MSKMC7LOG ( Y, )

DVMC7 = DVMC7 LOR MSKMC70MG ( Y, )

DVMC5 = DVMC5 LOR MSKMC54BlI ( Y, )

DVMC6 = DVMC6 LOR MSKMC68BRI ( Y)

ELSE RETURN

Equivalent Logic Using IF.••• THEN ••• ELSE

IF VSNAI EQ MSKSSHIG
THEN DVMC7 = DVMC7 LOR MSKM7HIG

GOTO SSEXIT
END
IF VSNAl EQ MSKSSLOG

THEN DVMC7 = DVMC7 LOR MSKM7LOG
GOTO SSEXIT

END
IF VSNAl EQ MSKSSOMG

THEN DVMC7 = DVMC7 LOR MSKM70MG
GOTO SSEXIT

END
IF VSNAI EQ MSKSSSIVB

THEN IF FBRNI
THEN DVMC5 = DVMC5 LOR MSKM54B 1
ELSE DVMC6 = DVMC6 LOR MSKM68BR

END
END
GOTO SSEXIT

Figure 6-1
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the table is the sa:me logic expres sed in a sequence of typical (CLASP)
IF. • • THEN •• 0 ELSE state:ments. The CONDITIONS portion
of the table describes five equality (EQ) relations each of which is
either true or false on a given execution of the table. Below the con­
ditions, there are five ACTIONS (there could be any nu:mber), which
are perfor:med selectively depending upon the truth or falsity of the
individual conditions.

On the right side of the table, are the "rules II that deter:mine
which actions will be taken for various co:mbinations of conditions.
Each rule is a colu:mn of Y (yes), N (no), or blank indicators. Each
rule (colu:mn) is read as follows:

"If all the conditions :marked Yare true, and if all the
conditions :marked N are false, then perfor:m (sequen­
tially fro:m top to botto:m) all the actions which are :marked
Yo II

Rules are evaluated fro:m left to right until the first satisfied
rule (Y-conditions all true; N-conditions all false) is encountered.
The action state:ments specified in that rule are executed and (unles s
one of the action state:ments is a GOTO) execution proceeds at the
state:ment following the table. If none of the rules are satisfied, the
ELSE state:ment at the end of the table is executed and (unless the
ELSE state:ment is a GOTO) execution proceeds at the state:ment
following the end of the table •

.~
Figure 6 -1 is a very si:mple table where only the fourth and

fifth rules co:mbine co:mbinations o The fourth rule executes the
fourth action only if both the fourth and the fifth conditions are true.
(An i:mplied additional· constraint is that the first three conditions
be false because they are covered by preceding rules).

Decision tables have the slight disadvantage that they con­
stitute a new concept to :many progra:m:mers. However, they are very
straight-forward in principle and in application, and give SPL a distinct
advantage in quality of expressiono

3. 1. 1. 2 Location Pointers

The topic of location pointers represents a broad spectru:m of
progra:m:ming capability which covers both data access and co:qtrol
of the execution sequences. Each of the four languages took a so:me­
what different approach and each provided a different level of capability.
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SPL provided the most extensive capability through its loca­
tion variables. A location variable is a data item which takes on
integer values and whose values represent locations in computer
memory. It can be used in two ways:

o Indirect data access is provided by the phrase

IND(location-variable, index)

which treats the value of the location variable as a
memory address,addsthe value of the index to it, and
uses the result as the address of the data item to be
accessed. The index is optional. This phr~se can be
used anywhere in an SPL statement where a variable
can occur.

o Indirect transfer of execution control is provided through
the phrase

GOTO location-variable

which treats the value of the location variable as a mem­
ory address and trans fers control to it.

To as sist in as signing memory location values to location
variables, location constants:

LaC 'data- item-name I

LOC'statement-label. I

represent the address of the memory location of the data item or
statement which is identified between the apostrophes. If the data
item is an array or table, the name can include index values to get
the location of a specific data element. There are no special con­
straints on the formulas which can be used to assign values to loca­
tion variables in SPL so complete flexibility is provided. (As dis­
cus sed in Paragraph 6. 3, this extent of flexibility creates some
problems for process reliability.) The indirect addressing capability
is particularly useful for efficiently maintaining and searching large
quantities of data. SPL even allows a location variable to be assigned
a I'secondary data type", so the compiler can know what type of data
is being indirectly acces sed and can make any required data conver­
sions when combining data through formulas.

-48-



The indirect GOTO capability is useful, but all four languages
have some type of dynamically variable transfer which provides
virtually all of the capability required and is considered less detri­
mental to process reliabilityo

Indirect addres sing was used to particular advantage in
accessing Switch Selector tables in the Switch Selector kernel coding
(Paragraph 8.3.2).

CLASP does not provide nearly the location pointer flexibility
of SPL. Neither location variables nor indirect addressing are pro­
vided. However, the location constant capability is provided and can
be used to calculate array indices and provide more flexibility in
data acces s. This was done in the sample coding to access Switch
Selector tables. CMS-2 provides essentially the same capability as
CLASP with a core address (CORAD) operator.

HAL conscientiously avoids the explicit use or manipulation
of computer memory addresses by the programmer.

6. 1. 1. 3 Vector and Matrix Operations

HAL has put the greatest emphasis on vector and matrix opera­
tions by explicitly defining a vector data type and a matrix data type,
and by defining several operations which are performed upon them.
Therefore, in HAL a two dimensional array and a matrix are two very
different things. (As a logical consequence, arrays of matrices,
where each array element is a matrix, can be constructed.) Multi­
plication between two matrices is the conventional matrix multiplica­
tion. The same multiplication symbol (a blank in HAL) between two
arrays is a simple element-by-element multiplication where each
element of the resulting array is the product of the corresponding
elements of each of the operand arrayso

SPL takes the approach that anyone-dimensional array is a
vector and any two-dimensional array is a matrix. HAL's matrix
and vector operations are available, but there is no simple element­
by-element array multiplication, division, or exponentiation.

The only operation which CLASP performs on multi-element
data organizations is matrix multiplicationo CMS-2 provides no opera­
tions for multi-element data organizationso
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6. 1. 1. 4 Data Preset Symbolically and by Formulas

All four languages provide the capability to as sign specific
values to data items at compile time rather than having to do it
through as signment statements at execution time. However, the
flexibility of expression varies. Two specific capabilities are con­
sidered mandatory:

o The ability to symbolically represent a data value at
compile time, without that value occupying core mem­
ory at execution time.

o The ability to express a preset data item with formulas
combining literal values, symbolically represented
values (as described above), and data constants to be
used at execution time.

These needs and the corresponding language capabilities are exempli­
fied by mis sion time values in the Saturn flight program. The Saturn
real time clock accumulates time at the rate of 4,063.492 counts per
second. There are many data items, in the flight program which repre­
sent mission times and must be preset to constant or initial values.
It should be possible to express these values in seconds, even though
clock counts are manipulated at program execution time.

CLASP allows the programmer to declare a constant data item,
preset it with a value, and then use that value in formulas to preset
other data items. For example, the CLASP statement:

DECLARE FIXED KR TCONV 10 CONSTANT =4063.492

defines the data item KR TCONV as a constant and assigns it the value
4063.492. CLASP then allows the statement:

DECLARE FIXED KDELTA 5 CONSTANT = 3>:~KR TCONV

to preset the constant KDELTA to a mission time value which repre­
sents 3 seconds. This capability provides three distinct advantages:

o The KDELTA declaration stateme nt is decoupled from
the precision of the real time clock so if the clock is
changed, only the KR TCONV statement need be updated,
rather than every time value in the program.
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o The formula avoids an error prone manual multiplica­
tion by the programmer.

o The preset value is more readable.

CLASP's disadvantage is that the data item KR TCONV occupies
a memory location at execution time even though the value is never
required after compilation. CLASP provides no capability to sym­
bolically declare a literal value for compile time use only.

HAL, SPL, and CMS-2 provide a compile time declaration
capability but will not allow presetting of data items with formulas •.
In all these languages, a name can be as signed to any character- string
and that character- string is substituted directly into the source code
wherever the name appears. For example, in SPL

DEFINE KR TCONV AS '4063.492'

would allow KR TCONV to be used (alone) to preset a data item, or to
be used as part of a formula in an assignment statement performed at
execution time. However, it cannot be used as part of a formula to
preset a data item.

6. 1. 1. 5 Subroutine Control and Communication

An important aspect of program modularity is the control and
'communication among program modules. This discussion is restricted
to program modules which are compiled and linked together prior to
loading in the computer. Language features to perform equivalent
functions for separately compiled and loaded tasks is part of the en­
vironment interaction· discussion of Paragraph 6. 2.

There are three distinct parts to the subroutine control and
communication problem:

o Invoking ("calling") the subroutine

o Communicating information between the caller and
the subroutine

o Returning control to the caller

All four languages have both procedures which are invoked by separate
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calling statelllents, and functions which are invoked whenever their
nallles appear in executable statelllents. All languages also provide

for the declaration of data at a high enough level that it can be
acces sed by both the caller and the subroutine. However, the follow­
ing differences are exhibited:

o SPL is the only language which allows a subroutine
(procedure or function) to have lllultiple entry points.
This capability was extrelllely us eful in coding the
kernels and is a useful concept in general.

o All languages except HAL allow a procedure to return
control to the caller at an alternate exit which is
different frolll the statelllent illllllediately following
the calling statelllent.

o CMS-2 and SPL allow parallleters to be passed between
separately cOlllpilable progralllllloduleso HAL does
not allow this. (CLASP does not allow separately COlll­
pilable lllodules to even call each other o )

o CMS-2 allows only one input parallleter to be passed to
a function.

o CMS-2 is the only language which provides a variable
procedure call. This capability allows a single calling
statelllent to invoke anyone of a list of procedures,
depending upon the value of a list index.

6.1.2 Naturalness and Ease of Expression

Alllong the four languages evaluated, there are lllany lllinor
differences in the way a given concept or technique is expressed. For
lllOSt of these differences, one forlll is as easy or natural as another
once it has been learned. However, it is an unfortunate training and
cOllllllunication burden, and it is surprising that four languages
apparently based on such silllilar lineage can look so different in
describing the sallle thingso SOllle of these differences have lllore
significance to readability than to expression and are discussed in
Paragraph 6. 5.

There are, however, a few significant characteristics which
give one language a distinct advantage over the other in writing a pro­
gralll. These are discussed below.
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6. 1. 2. 1 General Statement Format

SPL provide s the most flexible statement format and was
clearly the easiest to write during the kernel codingo No character
positions are reserved, a statement can continue over many input
lines without any special indication, and there is no statement term­
inator even for multiple statements on the same lineo The compiler
determines the beginning and ending of statements from the statements
thems elve s.

CLASP was somewhat less convenient to write primarily
because a continuation character (X) is required in column 73 to con­
tinue a statement on the next line. A dollar sign ($) delimiter is re­
quired between separate statements on the same line. Otherwise it
is as free as SPL'so

The HAL format presents more problems for the program
writer than either SPL or CLASP. The most striking difference in
appearance among these languages is HAL's two-dimensional state­
ment format, where exponents and subscripts are written on separate
statement lines. The appearance of this for'mat and its contributions
to readability are discussed in Paragraph 6.5. However, the writing
burdens introduced are discussed here. The first burden is simply
that it is different. Experienced programmers are accustomed to
writing

B*'~2 + C(5)

to represent liB squared added to the fifth element of array Clio They
require some adjustment to become accustomed to writing instead:

2
B + C 5

Experience overcomes this initial transient for the individual program­
mer, but so long as the programming community as a whole is using
predominantly the FOR TRAN-format, each programmer introduced
to the language will need to go through the readjustment.

Specific annoyances which were encountered were the require­
ment to identify exponent and subscript lines with an E or S in column
1, and the need to terminate every statement. HAL terminates state­
ments with a semicolon. While the semicolon is a very natural symbol
to be used for a delimiter, it is not available on all high speed printers.
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CMS-2 and CLASP use the less natural, but ITIore available dollar
sign ($) as a deliITIiter.

CMS- 2' s forITIat was the least natural and convenient for
several reasons. Every stateITIent is terITIinated by a dollar sign ($).
The first ten coluITIns of an input line are reserved for sequence nUITI­
bering, and selected cOITIpiler directives take on special ITIeaning if
they begin in certain coluITIns. For exaITIple, COMMENT beginning
in coluITIn 11 can be used to control the output listing. Such features
should be provided by separate cOITIITIand, not by location of a state­
ITIent.

6. 1. 2. 2 Status Variables

SPL and CMS- 2 provide the capability to declare status variables.
These data iten~s take on ITIultiple states which the prograITIITIer can
represent by sytnbolic naITIes. In execution, it is equivalent to an
integer variable which is assigned a different integer value for each
state. However, in the source language, the use of syITIbolic naITIes
is a ITIuch ITIore expressive and convenient approach for such variables
as prograITI flags, switches and SOITIe indices o Status variables were
used extensively in the SPL and CMS-2 kernel coding. For exaITIple,
the stateITIent

ITEM DFLT STATUS (FLIGHT, SIM, REP)

creates the status variable DFLT, representing the operating ITIode of
the flight prograITI. DFLT can take on the three states, FLIGHT (actual
flight), SIM (siITIulated flight), and REP (repeatable siITIulated flight).
The initialization stateITIent,

IF DFLT EQ 'FLIGHT' THEN •••

can easily test and react to the ITIode. The saITIe object code could
be accoITIplished by declaring DFLT as an integer and using the values
1, 2, and 3 in place of 'FLIGHT', 'SIM', and 'REP'.

The cOITIpile tiITIe declaration capability of HAL provides a
siITIilar capability, but it is ITIore difficult to declare and restricts the
use of COITIITIon sYITIbolic naITIes •

6.1. 2. 3 Bit and Text Manipulation

All of the languages except CMS-2 provided the capability
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to treat a data word as a bit- string and perform logical operations
(AND, OR, etc.) on bit-strings. These capabilities proved very
useful in coding the kernels. They all provide the capabilities to
selectively extract one or more bits from a data item and all but
CMS- 2 can insert binary patterns into selected portions of data items.
All but CLASP can also perform these extraction and insertion opera­
tions on characters and character-strings. Character extraction and
insertion were not required in the kernel coding, but in a mess age
formatting or decoding activity for a man-machine interface it would
be very useful.

A similar capability very useful to me s sage formatting is con­
catenation, which is provided only by HAL. A new character-string
or bit-string can be created by combining other strings in sequence,
so that complex phrases can be easily built-up from simpler building
blocks.

6. 1. 2.4 Factored Declarations

A language feature which greatly simplifie s writing of a pro­
gram.specification without detracting from its readability is the
factoring of data declarations. Rather than each data item be ing
declared separately with all its attributes spelled out, factoring
allows data items with some common attributes to be declared to­
gether and common attributes need be specified only once. For ex­
ample, the SPL declaration sequence:

ITEM AGE INTEGER 24 =37
ITEM SIZE INTEGER 24 =42
ITEM WEIGHT INTEGER 24 =172

declares three 24-bit INTEGER data items named AGE, SIZE, and
WEIGHT and initializes their values to 37, 42 and 172, respectively.
The same declarations could be made by the factored statement:

DECLARE INTEGER 24, AGE =37,
SIZE =32,
WEIGHT =172

Common attributes are listed first and additional attributes can be
declared with each item. Also, the common attributes can be over­
ridden by specifying different attributes witl1 given data items. For
example, SIZE could have been'declared a floating-point number in­
stead of an integer by including FLOAT after its name. AGE and
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1/

WEIGHT would have been unaffectedo

SPL, CLASP, and HAL provide essentially the same factor­
ing capability, but CMS-2 requires that all data items in a factored
declaration have identical attributes, including any stated preset
value.

6. 1. 2. 5 Miscellaneous

Several minor characteristics of the languages contributed
to, or detracted from, naturalness and ease of expression. These
are discussed below.

CMS-2 had several omissions or deviations relative to the
other languages. The following are the more bothersome ones:

o There are no mnemonics for Boolean values. The
other languages provide terms such as ON, OFF,
TR DE, FALSE to be us ed as values for as signment to
or testing of Boolean variables. CMS-2 provides only
numeric literals 11 rand '0 '.

o There is no ELSE clause on an IF statement. The
other languages provide the basic capability to write:

IF condition THEN response ELSE response

Either the THEN response or the ELSE response will
be executed depending on the truth or falsity of the con­
ditiono Execution then proceeds following the IF state­
ment. CMS-2 provides no ELSE responses, so execu­
tion proceeds without any action if the condition is false.
In many decision environments, the problem is to execute
one or two responses, not one response or nothing. Ad­
ditional branching must be explicitly coded in CMS-2 to
describe a dual response. An additional restriction
unique to CMS-2 is that the THEN response cannot be
another IF statement, so conditions cannot be nested.

o It has become almost universal in programming and
other algorithmic languages to express assignment state­
ments as:

A=B
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which norITlally ITleans A takes on the current value of
B. CMS-2 accoITlplishes this with the stateITlent:

SET A TO B

It is difficult to envision the prograITlITler or reader for
whoITl this verbosity would be helpful.

o Because ITlost arithITletic data values are conceived as
deciITlal nUITlbers, it is standard practice to interpret
a string of digits as deciITlal unless SOITle other indica­
tion like OC T or HEX is provided. CMS-2 takes the
approach that octal representation is the standard, and
requires that every deciITlal nUITlber be followed by the
character D.

HAL provides an attractive feature by allowing blanks to be
inserted in literals without affecting their values. (Character-string
literals are excepted of course, because the blank is a ITleaningful
character in the literal valueo) Where long strings of digits are re­
quired, like the octal constant:

OCT'374 105 631'

the blanks ITlake it easier to write the value correctly and verify it.
The other languages do not perITlit blanks in literals other than char­
acter- strings.

HAL provides a very rich character set including very expressive
operation sYITlbols. In ITlost cases a rnneITlonic equivalent, ITlade up
of alphabetic characters, is available for the less popular syITlbols
(eo g., AND for &). However, there is usually a desire on the part of
the prograITlITler to use the easiest forITl of expre ssion, which is the
sYITlbol. The richness of the character set contributed two ITlinor
irritations during kernel coding. First, the IBM 029 punch is capable
of generating the input characters, but the keypunch operators were
not faITliliar with theITl, and resulted in a higher density of keypunch
errors. Second, none of several printers available for listing the
language could print the entire character set and each one printed a
s lightly different subset. This is no ITlajor probleITl for a single
facility, after it has established the character set it will use and has
tailored the cOITlpiler and personnel to that set. However, transients
are introduced when related personnel are working at two different

-57-



sites with different equipITlent. Many irritations we re introduced
into the Saturn ground cOITlputer prograITlITling effort, because differ­
ent host cOITlputers were being used between MSFC and KSC. The
extended character set of HAL seeITlS to be a contributing irritant
in this type of en vironITlent.

Another unique feature of HAL operator sYITlbology is the use
of a blank for ITlultiplicationo That is, the stateITlent:

A=BC

assigns the product of Band C to the variable A.
derives from the rule of conventional algebra that
syITlbols ITleans ITlultiplication as in:

y= 5w(atb)

This notation
adjacency of two

This is a very useful construct in conventional algebra, where variable
naITles are alITlost universally single characters (perhaps subscripted),
and physical adjacency (no inte rvening blank) is pos sible without aITl­
biguity. However, in a flight prograITl with ITlulticharacter variable
naITles, the intervening blank looks ITlore like an oversight than an
arithITletic operation.

6. 1. 3 Generality of Concepts

The level of generality with which a language concept is pre­
sented, or can be used, is valuable both in learning the language and
in applying the concept to future applications. Unfortunately, SOITle
of the features provided by SOITle of the languages have special re­
strictions which ITlust be learned and reITleITlbered, lest they be viola­
ted, and which ITlake the concept ITlore difficult to apply, or totally
inapplicable, in SOITle situations.

HAL provides the greatest level of generality in its concepts.
Once an operation or data type is defined, it can be applied alITlost
anywhere that the application can have a reasonable ITleaning. SPL
has SOITle restrictions applied to several available concepts and tech­
niques. CLASP and CMS-2 provide the greatest level of restrictions.

Several concepts which have different levels of generality
aITlong the languages are.described below. It should be eITlphasized
that the restrictions described below generally represent two short­
cOITling s in a language:
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o First, a reduced capability

o Second, a set of special restrictions to be learned
and remembered, which represents a burden in train­
ing and use.

6. 1. 3. 1 Index Expressions

Index expressions are the subscripts or parenthetical entries
following a data item name which identify a particular element within
an array, or a single bit within a bit-string, or some other specific
selection from an ordered group. SPL and HAL both allow any valid
arithmetic expression to be used as an index. The expression is
evaluated and truncated,if necessary, to an integer value.

CLASP restricts the index expression to an integer variable
or integer constant or a simple formula of the form:

variable ':< constant + constant
or

variable / constant + constant

where all operands must be integers.

CMS-2 allows non-integer constants and variables, but the
formula format is restricted to:

variable + constant

6. 1. 3. 2 Numeric Data Items and Values

SPL, CLASP, and CMS-2 all provide for declaration of integer,
fixed-point, and floating-point data types. HAL pres ents the more
general concept of integers and scalars. A scalar is the numeric
data type which can have a fractional part. Whether it is fixed point
or floating-point is an implementation problem, but is not a distinc­
tion which needs to be made in every data declaration. If the target
computer has a floating-point arithmetic capability, then all scalar
data items are to be made floating-point by the compiler. Otherwise,
the compiler makes them fixed-point.

HAL provides an even greater generality to the specifi<;:ation
of literal numeric values. Most languages make a distinction in
syntax among numeric values which are to be stored as fixed-point,
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floating-point, or integer. However, HAL specifies all numeric
values in the same format:

{

Etdd}
dd. dd B±dd

Htdd

where each "dd" is a string of zero or more decimal digits. The
E, B, apd H expres sions are optional, may be included in any com­
bination with a given literal, and represent multiplication by powers
of 10, 2, and 16, respectively. If the literal evaluates to a whole
number, the item is interpreted as an integer. Otherwise, it is a
scalar. Precision is determined by context of use, rather than by
a specification with the literal, as in SPL. Fo r example, if the
literal appears in a formula in an addition to a double precision data
item, with a double precision result, it will be a double precision
value.

By contrast, SPL requires that integer literals may not have
decimal points, but fixed-point and floating-point literals must have
decimal points, even if they are whole numbers o Fixed-point literals
must include a scaling designator, even if the scaling is zero, and
even though it probabl y can be determined by context. For example,

4.23EIA6

is interpreted as 42.3 and is aligned in computer memory so that it
ha s six fr actional bits.

CLASP and CMS-2 both forbid a decimal point in integer
literals and require it in fixed and floating-point literals, but the
scaling designator (Axx)is optional in CLASP and not used at all in
CMS-2.

6. 1. 3. 3 Arrays

HAL allows arrays of data to be used in most of the contexts
where single data items may be used, with the interpretation that
the context (e. g., an arithlnetic operation) be applied independently
to each element in the array. All of the arithmetic and logical op­
erations are applicable to arrays of the proper data types.

CLASP apparently applies arithmetic and logical operations
on arrays, but SPL imposes severe restrictions. CMS-2 has no
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array operations.

HAL also allows functions to be defined as operating on a
single data elenlent and then be applied to an array. If an array
nanle is supplied as an operand of such a function, the function is
perfornled independently on each elenlent of the array, and the out­
put is an array of the resulting values.

6. 1. 3.4 Loop Variables

In iterative loop control statenlents the loop variable has a
starting value, a final linlit, and an increnlent (decrenlent) by which
it is increased (decreased) for each iteration. In SPL and HAL these
values can be any nUnleric fornlulas. However, CLASP restricts
the loop variable to an integer data itenl, and the other values to
integer variables or constants. CMS-2, without specifying how the
restriction is inlposed, restricts the loop variable to integer values.

6,2 Expression of Environnlent Interaction

A flight progranl can be characterized as a set of synchronous
and asynchronous progranl nlodules which have a continuous, and fre­
quently tinle critical, interaction with the vehicle and each other.
Each progranl nlodule thus has a distinct environnlent necessary (in
general) to provide nleaning to its execution. The nlajor flj.nctions
that a language needs to provide to express this interaction are de­
scribed below.

o COnlnlunication with Vehicle Systenls / Subsystenls

The progranl nlodules need to obtain infornlation fronl
various systenls (eo g., Inertial Measurenlent Unit) to
be able to perfornl cOnlputational and decision processes,
necessary to provide infornlation to other vehicle sys­
tenlS (e.g., Control Systenl). This cOnlnlunication is
provided through various Input/Output Registers.

None of the languages reviewed provided special COnl­
nlands to address "real tinle devices" (i. e., the Vehicle
Systenls /Subsystenls). However, it is sufficient that
the language contains an input/output cOnlnland which
includes a device nanle and a storage area. Input/
output alone, however, is not sufficient to perfornl the
total cOnlnlunication functions 0 The language nlust also
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have sufficient capability to access and manipulate one
or m.ore bits of the coded data com.m.unicated. The

coding of this data is generally dependent on the par­
ticular device addressed. Encoding and decoding of
the data is, therefore, very m.uch a part of this func­

tion.

o Synchronization with the Vehicle Mission

The tasks to be performed by the software are depend-
ent upon the progress of the m.ission and various asyn­
chronous events occurring during the m.ission. The prim.e
m.eans by which the software is synchronized with the
vehicle are:

l) Dis crete signals - To signal that specific events
have occurred. These mayor m.ay not result in
com.puter interrupts.

2) Real Tim.e Clock - To signal the progre s s of the
m.is sion in tim.e to control tim.e dependent tasks.

3) Interval tim.er - To m.easure elapsed tim.e for
various purposes, independent of the elapsed
m.is sion tim.e.

The language needs first of all to expres s the ability to
detect whether these events occurred. More im.portant,
however, it needs to be able to specify which instruction(s)
should be executed if and when these events occur, without
continuously and explicitly testing these events.

o Intertask Com.m.unication.

A flight program. generally consists of a set of repetitively
executed processes, each of which m.ay be executed at
a different rate, and a set of processes that are executed
when events, whose tim.es of occurrence are unpredictable,
actually occur. These processes access a com.m.on set
of data and m.ay "concurrently" progress. That is, a pro­
ces s m.ay start execution before another proces s has com.­
pleted execution.

The com.m.on term. in use to describe these processes
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is the term. Task. In m.ore com.plex system.s the trend
IS to im.pose the following requirem.ents upon the task:

1) Tasks should be separately com.pilable.

2) Tasks should be able to control the scheduling of
other tasks. That is, they should be able to
schedule and terminate execution of other tasks.

3) It should be possible to synchronize the progress
of execution of related, concurrently executing
tasks.

4) Tasks should be able to, reliably, access a set
of data elements comm.on to all tasks. Reliability
implies that the integrity of the data is preserved
during access.

Not included in the evaluation of the languages are the requirements
for intertask comm.unication in a multi-proces sing system. Concurrent
execution in the context of this study refers· to a multi-program.ming
or multi-tasking system.. The reason for this is that none of the lan­
guages has explicitly included execution on a multi-processing system
in their design objectives.

o Mass Storage Access

Aerospace software has, traditionally, not made any
extensive use of m.ass storage.

As the amount of data, programs, and the com.plexity
of tasks increases, a very definite need will exist to
manipulate m.as s storage data. The capabilities re­
quired are anticipated to be identical to the m.ore rudi­
mentary capabilities used by ground based com.puters.

In the following paragraphs each of the languages will be
separately discussed. Within each language discussion, the m.anner
in which each of the major functions can be expressed will be con­
sidered to evaluate the IIExpression of Environm.ent Interaction" of the
language.
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6.2. 1 SPL

This language provides good capabilities to express the re­
quired functions.

6. 2. 1. 1 Communication with Vehicle Systems / Subsystems

By considering a system/ subsystem a "file of records, " the
basic read/write operations can be used. Each read or write opera­
tion results in a direct data read-in or read-out with no data conver­
sion, which enables the programmer to convert the data as required
at his own dis creHon.

The basic input/output statement consists of a READ or WRITE
command followed by a file name and a (optional) data buffer name.
The latter is optional because it can also be specified in a Ilfile declara­
tion l

! •

A file declaration is as sociated with each file name. This
allows the symbolic file name to be associated with a (system defined)
device name. Other "file attributes" may also be specified in the file
declaration. Such attributes may, for example, specify the type of
conversion to be performed and the routine to be executed upon ab­
normal indications from the device addres sed.

An additional feature in SPL which may be useful in this area
is "Dynamic File Conversion". Frequently, the format of the input
data is dependent upon variables within the input record. SPL allows
all pos sible formats to be specified in the file declaration. It is then
a simple matter to test the control variable and then interpret the
input record within the appropriate format.

Decoding and encoding of the real time data is fully supported
by the strong bit manipulation capabilities of the language.

6.2. 1. 2 Synchronization with the Vehicle Mission

The prime means of expres sion in SPL to perform this function
are "Chronic Statements". These are statements that are not part of
the normal (i. e., inline) sequence of statement execution.

These statements are preceded by ON••• (Boolean formula)

The Boolean formula is automatically evaluated whenever the
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first operand acquires a new value, either by assignment or by hard­
ware action. Either discrete events (including interrupts) or real
time clocks may be used as the variable to be evaluated. It is not
clear from the specification whether chronic responses may be re­
assigned dynamically. However, there is no language design limita­
tion that would prevent a different (and proper) implementation.

Hardware interrupts may be enabled or disabled selectively.
Unfortunately, no means is provided to test whether a particular
interrupt has been enabled or disabled. Another inconvenience is
that no means is provided to group all or some hardware interrupts
under a single name. This forces each individual hardware interrupt
to be named separately.

Program action may be delayed for an interval of time or until
a specific event occurs by the use of a WAIT statement. The WAIT
statement is always used in conjunction with either an IF .•. , LOOP
WHILE ••• , or LOOP UNTIL ..• statement and indicates that whil~

the logical condition is true, the program execution will not continue
to the next statement.

6.2. 1. 3 Intertask Communication

A system in SPL may consist of a set of independently com­
pilable Programs and a llCompoolll (a common accessible set of data).
The Program in SPL is its closest concept to a Task.

Tasks may call (i. e., initiate scheduling) other Tasks and pas s
parameters to them. By using the chronic statement described in
6.2. 1. 2 the initiation of scheduling may be attached to the occurrence
of various conditions. Once a task is as sociated with an event through
a chronic statement, it cannot dynamically be disassociated from
that event.

Execution synchronization between tasks is provided through
the WAIT statement described in Paragraph 6.2.1. 2 and flags (e. g.,
status variables) set/reset in the compoo!.

The integrity of common data may be insured by a task reading
the data through LOCK/UNLOCK statements. A LOCK statement
prevents any other task from writing into a specific portion of mem­
ory until a subsequent UNLOCK frees it up.· It is intended to be imple­
mented only if the computer has a memory protect feature. The
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disadvantage of this scheme is that there is no positive check that
LOCK's are used where they should be used. That is, they may be
omitted and not cause errors until after many, many runs.

Another major shortcoming is that deadlocks may occur. The
language specification does not explain how deadlocks are resolved.

6. 2. 1.4 Mas s Storage Acces s

The basic input/output statements available in SPL are
described under Paragraph 6.2.1. 1. Notable is that the capabilities
are adequate only for sequential input/ output files; that is ,devices
such as tape, card reader /punch, and printer.

Mass storage is likely to consist of some sort of direct access
storageo Acces sing such storage requires the identification of in­
dividual records. This capability is not now a part of the language
specification. Note, however, that it is possible to define direct
access storage as containing several sequential files, thereby pro­
viding a limited direct access to such storage. This may be sufficient
for some applications.

6.2.2 CLASP

Expression of the required functions discussed here is the main
deficiency in CLASP as it is currently defined.

6.2.3.1 Communication with Vehicle Systems/Subsystems

No input/output capability whatsoever is provided in CLASP.
Any communication with external devices is meant to be expressed
by lapsing into basic as sembly language. Bit manipulation capabilities
within the language are sufficient to expres s encoding /decoding func­
tions.

6.2.2.2 Synchronization with the Vehicle Mission

The chronic statement ON, is used to indicate the statements to
be executed upon the occurrence of a specified enabling condition.
This enabling condition could be a discrete event coming on (if detected
by a central executive or the hardware), a hardware interrupt, or an
interval timer interrupto

Interrupts may be enabled/disabled selectively. No means is
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provided to detect the disable/enable status of the interrupts. No
direct means is provided to delay program execution for a period of
time; neither is access to an elapsed time clock provided.

6. 2. 2. 3 Intertask Communication

No means of communication between independently compilable
modules is available.

6.2.2.4 Mass Storage Access

The same comments as those noted under Paragraph 6. 2. 2. 1
applyo

6.2.3 HAL

A significant characteristic of HAL in the support of this
function is that it as sumes the existence of a Control Executive. It
is the only language that provides an explicit interface with a Control
Executive. This does reduce the applicability of the language in
small applications where the Control Executive and application pro­
grams are, for simplicity, integrated.

6.2.3.1 Communication with Vehicle Systems/Subsystems

By considering a system/ subsystem a Jrfile of records ", the
basic FILE statement can be used to express this. A FILE statement
has the appearance of an as signment statement and may be used for
both reading and writing data, depending upon which side of the equal
sign (=) the term FILE appears. Device name and data area to be used
can be indicated.

Decoding and encoding of the real time data is fully supported
by the strong bit manipulation capabilities of the language.

6.2. 3. 2 Synchronization with the Vehicle Mission

The prime means of expression in HAL to perform this func­
tion is the SCHEDULE statement. The SCHEDULE statement is used
to request initiation of a program module based on any of three
criteria:

o at a specified time
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o after an interval of time

o on events or combination of events

The se events may be defined to be hardware interrupts or
other detectable dis crete events.

As previously mentioned, HAL as sumes the existence of a
Control Executive. Therefore, no provision is made to enable/
disable interrupt conditions nor is any other direct control of inter­
rupts provided.

Direct acces s to a real time clock is also not provided as a
part of the language.

Program execution may be delayed through a WAI T s tate­
mente This statement can be used by an active program module to
suspend and reactivate its elf bas ed on anyone of three criteria:

o until a specified time

o for a specified time interval

o until the occurrence of an event or combination of
events

6. 2. 3. 3 Intertask Communication

Extensive capabilities are provided to perform this function.
Among the reviewed languages HAL is the only one that explicitly
recognizes the task concept.

Independently compilable programs as well as subprograms
can be considered tasks. All tasks can access a common set of data:
the Compool. Only a task as an independently compilable program
will be considered here.

Tasks can initiate scheduling of other Tasks through the
SCHEDULE statement previously discussed in Paragraph 6.2.3.2.
No parameters can be pas sed. Tasks can terminate scheduling of
other Tas ks through a TERMINATE statement. Tasks may have
priorities (relative to other tasks) assigned to them. Priorities may
be changed dynamically.
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Synchronization between Task executions is performed through
EVENTS. EVENTS may be turned ON or OFF or may be pulsed
through a SIGNAL statement.

An elaborate scheme is available to protect the integrity of
dynamically shared data. Each data element in the COMPOOL may
have acces s rights as sociated with it to indicate which task may
access it. Each data element in the COMPOOL may have either one
or two LOCKTYPES associated with it.

o LOCKTYPE(I)

Prevents a Task from updating the statement if another
task is reading ~ updating it.

o LOCKTYPE(2)

Prevents a Task from updating the data element if
another Task is updating it.

A Task may only access a data element that is declared tq be
LOCK led if the acces s is preceded by an UPDATE statement. This
gives a positive check that the LOCK mechanics are indeed invoked if
a Task attempts to use a protected data element. The language speci­
fication describes in detail the algorithm to be used to insure minimum
task execution delays and prevent deadlocks.

6.2.3.4 Mass Storage Access

The FILE statement in HAL contains sufficient information to
obtain an identified record from a device. A limitation is that it is
as sociated with a device and not with a file. It, therefore, does not
allow any" File Management" to take place. Neither does it provide
sufficient input/output capabilities to design such a package within
the language. Therefore, although HAL ostensibly may directly access
a record from some type of direct access storage, the capability is
not anticipated to be sufficient for practical applications.

6.2.4 CMS-2

This language, like HAL, explicitly assumes the existence of
a Control Executive. The language itself does not contain any.real
time control features as discussed in the following paragraphs.
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6.2.4. 1 Co~nlUnication with Vehicle SysteITls / SubsysteITls

By considering a systeITl/ subsysteITl a "file of records" the
basic input/output stateITlents can be used to express all inforITlation
required to perfprITl real tiITle input/ output. Bit ITlanipulation capa­
bilities are sufficient .to accoITlplish decoding of the input data. En­
coding of output data, however, is difficult ITlainly because the BIT
conversion function cannot be used on the left side of an assignITlent
stateITlent. That is, bits cannot be inserted easily into a portion of
a data word.

6. 2.4.2 Synchronization with the Vehicle Mis sion

The intent of CMS-2 is to let the Control Executive perforITl
any real tiITle synchronization and let these requireITlents be COITl­
n~unicated to the Control Executive outside the language. No spec­
ific features are therefore provided in the language.

6.2.4.3 InterITlodule Synchronization and COITlITlunication

No real tiITle features that aid this function can be expressed
within the language.

6.2.4.4 Mass Storage Access

Currently the input/output is ITleant to be sequential files. No
direct access capabilities are therefore provided within the languageo
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6.3 Process Reliability

The reliability of the program development proces s is re­
flected in the reliability of its final product, the object program. A
higher level language I s greatest contribution toward a reliable object
program is in the generation of more reliable code in the beginning.
That is, most of the language features which contribute to effective
expression also naturally contribute to reliable code. However, pro­
gram reliability is at least confirmed, and usually established, during
the verification step of the process. There are specific features
within a language which can assist the verification step directly.
Verification, in this context, includes all activities directed toward
finding and correcting errors in a program after it has been coded.

The designers of HAL took a very conscientious approach
to providing a language which would produce reliable code. Indeed,
increased reliability was one of the major design objectives of the
language. This objective was pursued primarily through providing
the opportunities for the compiler to static check the source code.
Static checking allows the compiler to detect and diagnose some errors
in the source code which otherwise would not be detected until execu­
tion time. The attempt to provide a language which produces static
checkable source code is reflected in the language in two ways:

o Several features have been included to allow the com­
piler to perform static checking of the source code.
Foremost examples are data access rights and lock
types on compool data, which is available to all tasks.

o Several features whose execution time performance
are difficult to predict, and therefore difficult to
check, at compile time have been omitted. The most
notable of these is indirect addressing.

HAL I S efforts in this area have achieved the reliability object­
ive to a sufficient degree that HAL is expected to produGe more reliable
object code than any of the other languages.

SPL, due primarily to the flexibility and power in some of the
feature s provided, is expected to produce the least reliable object
code. Even if the use of this flexibility and power is administratively
restrained, SPL still does not provide some"of the built-in safety
features of HAL. CLASP and CMS-2 lie between SPL and HAL in pro­
cess reliability, primarily because they do not provide the flexibility
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and power of SPL.

To present and discuss the pertinent characteristics of the

languages, the evaluation criteria have been organized into the
chronological order of error generation and detection. Following
are the fourIT1ajor issues under which the language characteristics

are discussed:

o Does the language include characteristics which en­
courage the generation of reliable source code while
it is being written?

o How easily are prograIT1 errors detected by visual
inspection of the prograIT1 listing?

o How well can the cOIT1piler static check the source code?

o How IT1uch control can the user exercise over the
verification process?

6.3.1 Generation of Reliable Source Code

Of course the eliIT1ination of prograIT1 errors before they are
ever IT1ade is the IT10st effective contribution to process reliability.
Even errors which can be easily detected by the cOIT1piler slow down
the prograIT1 developIT1ent process because they force additional itera­
tions of the cOIT1pilation cycle. Therefore, elimination of an error is
one step better than detection of it. The characteristics which tend
to prevent errors derive primarily from naturalness and consistency
in language features and in rules for applying those features.

6.3.1.1 Loop Variable LiIT1its

Each of the languages provides a capability to iterate a group
of stateIT1ents for specific val'ues of a loop variable. The following
stateIT1ents represent (alIT1ost) the same logic in each of the four lan­
guages:

(SPL)
(CLASP)
(HAL)
(CMS-2)

FOR LOOP = 1 BY
FOR LOOP = 1 BY
DO FOR LOOP 1
VARY LOOP FROM

2 UNTIL 7
2 TO 7
TO 7 BY 2
1 THRU 7 BY 2

The se stateIT1ents each call for execution of a group of stateIT1ents,
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first for LOOP = 1, then again for LOOP = 3, and again for LOOP = 5.
For all languages except SPL, the group is iterated a fourth tiITle with
LOOP = 7. However, SPL doe s not iterate the stateITlent group for
the final value of the loop variable. This is an unnatural way to express
iterative control and certainly reduces readability. However, its great­
est effect is that it is ITlisleading enough to cause confusion and errors.

6.3. 1. 2 Re-entry into Chronic StateITlents

SPL and CLASP both provide chronic stateITlent sequence s which
specify the actions to be taken when an interrupt occurs or, in the
case of SPL, when SOITle logical condition is satisfied. These state­
ITlents are described in the specifications as outside the norITlal se­
quence of execution, but there are no special protections to insure
that they stay outside the norITlal sequence. There is no inherent pro­
tection against a GOTO stateITlent in the norITlal sequence branching to
a labelled stateITlent in the ITliddle of a chronic stateITlent sequence.
A subsequent interrupt could suspend that proces sing and start execu­
ting froITl the beginning of the chronic stateITlent sequence. The result
is re-entrance into a portion of the chronic stateITlent sequence.

In HAL, the real tiITle task, which is the counterpart of the
chronic stateITlent sequence, is a separate prograITl ITlodule, with a
separate naITle and label scope and with only one entry point. It is
ITluch better protected frOITl inadvertent re -entrance than is the chronic
stateITlent sequence. Re-entrance is also pos sible in HAL, because
the saITle task can be scheduled on two different priority levels. In
fact, the priority level can be changed after the task has been sched­
uled, or even after it has started execution. While these HAL capa­
bilities are potentially hazardous and ITlust be used with considerable
caution, they are considered les s error prone than the totally unpro­
tected chronic stateITlents.

CMS-2 provides no real tiITle control capability.

6. 3. 2 Ease of Scanning for Errors

There were no ITlajor advantages
of scanning the source code for errors.
tinctions bear ITlention.

aITlong the languages in ease
However, a few ITlinor dis-

SPL I S decision tables were certainly easier to review fO'r errors
than were the equivalent IF stateITlents.
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HAL I S program, task, and subroutine declarations all begin
with the label of the program module being declared. For example:

ALPHA:
BETA:

PROGRAM
PROCEDURE. 0 •

begin declarations of program ALPHA and procedure BETA, respec­
tively. Therefore, scanning the listing to find the declaration is
fairly easy because the label begins the statemento However, in SPL
and CLASP, the declarator proceeds the label. For example in SPL:

START
PROC

• ALPHA
.BETA

begin the declarations of program ALPHA and procedure BETA. It
was much more difficult in this format to pick a declaration out of a
listing.

6. 3. 3 Static Checking

By far, the majority of the language contributions to process
reliability are in the area of providing feature s which allow the com­
piler to better interpret the programmer I s intent and therefore better
detect and diagnose errors in the source codingo The HAL design has
paid particularly close attention to providing such features, while SPL
has incorporated features which make it very difficult for the com­
piler to interpret a programmer I s intent. The following topics are
discussed:

o Indirect Data Acces s

o Indirect GO TO

o Direct Code

o Contextual Variables

o Overlays

o Compile Time Data Access Control

o Execution Time Data Access Controls

o Implicit Data Declarations
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o Com.piler Controlled Scaling

6.3. 3. 1 Indirect Data Access

SPL provides an indirect data access through location variables.
The content of the location variable is interpreted as a m.em.ory ad­
dress and is used to locate the data to be accessed. As explained in
Paragraph 6. 1. 1. 2, this is an extrem.ely powerful technique for data
access, but is also a hazardous approach because the com.piler can­
not m.onitor the data acces s to determ.ine that it is valid. Since the
language allows any type of data item. or form.ula to be as signed to a
location variable, there is no way for the com.piler to m.ake even a
gross validity check. If indirect data access through a location vari­
able is to be provided at all in a language, severe restrictions m.ust
be placed on the types of form.ulas which can be as signed to the loca­
tion variable.

The use of indexed tables and arrays, as provided by all of the
languages, is considered a m.uch m.ore reliable approach to data access
than SPL's indirect addressing.

6.3. 3. 2 Indirect GOTO

SPL extends its indirect addressing capability beyond data
access to execution control through its indirect GOTO. The statement:

GOTO location-variable

branches control to the mem.ory location indicated by the contents of
the location variable. The SPL specification warns the user that
when using a location variable in an indirect GOTO statement:

" the programmer should make certain that the contents
of the variable points to an imperative statement and
not to a data item, since the compiler has no way of
checking this. "

Of course, given that the variable does point to executable instructions
rather than data, it may point to operations in the middle of a higher
level language statement, or it may point to instructions in a com­
pletely separate procedure or program which could not be legitimately
accessed through defined statement labels. It is highly unlikely. that
a programmer would calculate the number of computer instructions
that the compiler will generate in expanding statements so that he could
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establish numeric values or formulas to represent the location of a
statement. The most practical approach (and the only reliable one)
is to label the statement and use the location constant:

LaC I statement-label'

to assign the location variable. Therefore, it seems reasonable from
the point of view of expression capability, and imperative from the
point of view of reliability, to restrict the assignment of a location
variable which is to be used for an indirect GOTO. It should be re­
stricted to as s ignment to a simple location constant.

However, SPL has a switched GOTO statement which already
provides that capability. The switched GOTO references a list of
statement labels and, through an index value, selects one of those
statement labels for the GOTO. Therefore, r ather than as signing
the statement label to a location variable and executing an indirect
GOTO, the programmer assigns a value to an index and uses a switched
GOTO.

This is a much more reliable approach and affords the re­
quired capability. Each of the four languages has a switched GOTO
or nearly equivalent capability.

6. 3. 3. 3 Direct Code

Another popular feature which obscure s intended program
action from the compiler is "direct code" capability provided by all
of the evaluated languages except HAL. Through this capability, the
programmer may, anywhere in his program, lapse into machine lan­
guage or assembly language programming. Since all of the data items
and statement labels available to the higher level language statements
are also available to the direct code, there is very little capability to
control or monitor modifications to data items or the execution se­
quence.

There is undoubtedly an occasional desire to perform some
operation in assembly language rather than a higher level language.
However, the interface between the direct code and the higher level
language should be at least as carefully controlled as the interface
between two separate procedures both in the higher level language.
That is, unrestricted data access and statement label access should
not be allowed for the assembly language code. A subroutine interface
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where named parameters are passed back and forth and control is
returned in an orderly manner, would greatly reduce the likelihood
of direct code circumventing the static checking which is performed
by the compiler.

6. 3. 3.4 Contextual Variables

SPL allows the programmer to declare contextual variables,
whose attributes vary with the context of the data item's use. Each
time it is assigned a value, it takes on the attributes of the formula
by which it was as signed. When it is subsequently used, as part of
a formula for example, the attributes of the last assignment are used
to determine the conversions and formatting to be applied. Thus, a
contextual variable may be used to store and retrieve a Boolean value
(true or false) in one part of a program and a floating-point number
in another part.

CLASP provides a similar capability but limits it to fixed­
point data items. The only variable attribute is the scaling, which
aligns the radix point of the data value.

For both languages, "subsequent use" of the variable is de­
termined by the compiler from the physical sequence of statements
in source code. This, of course, is not necessarily the logical se­
quence of execution of these statements as indicated by the following
example:

TEMP = INTEGI

IF TEMP GT 3 GOTO L2

L 1. FLOAT2 = TEMP

TEMP = FLOATI

L2. FLOAT2 = TEMP

Assuming that TEMP is contextual, INTEGI is an integer, and FLOATI
and FLOAT2 are floating-point, then TEMP is treated by the compiler
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as an integer in statement Ll and as a floating-point number in
statement L2. This is because Ll follows a TEMP assignment by
an integer, and L2 follows a TEMP as signment by a floating - point
number.

When the compiler expands statement L 1, it includes a con­
version from integer format to floating-point format. However, in
statement L2, the expansion is a simple transfer of (unconverted)
value because both sides of the as signment statement are floating­
point. Note that when TEMP, as assigned by INTEGl, has a value
greater than 3, control is transferred directly to statement L2. In
this case, the executed sequence of assignment statements takes
the value contained in INTEGI and transfers it via TEMP to FLOAT2.
However, since no conversion is made by either assignment state­
ment, FLOAT2 does not receive a floating-point representation of
the integer value contained in INTEGl, as it would if TEMP were
not contextual.

CLASP warns of this potential error with a compiler diag-
nostic mes sage. Any time a labeled statement appears between the
assignment of a temporary data item and its subsequent use, there
is a possibility in that in execution, control will be transferred to that
statement. The compiler does not know what data format will have
been stored in the temporary variable. Therefore, the CLASP speci­
fication states that the compiler will output a diagnostic message at
the subsequent use of the temporary variable and will identify the pre­
ceding assignment statement which is dictating the data characteristics
assumed. In the example, a diagnostic message at statement L2 would
warn that the current characteristics of TEMP are determined from
the as signment at statement L I + 1. CLASP also allows the program­
mer to specify explicitly the label of the as signment statement he wishes
the compiler to use for determining characteristics. These two features
constitute an improvement over SPL I S complete lack of regard for
the problem. However, errors still can occur, and a more stringent
control seems desirable. Neither HAL nor CMS-2 allow contextual
data.

6. 3. 3. 5 Overlays

A situation very similar to that of contextual data is created
by the capability for data overlay. All of the evaluated languages
except HAL allow the programmer to specify that multiple data items
are to occupy the same computer memory locations. This is an
effective memory conserving capability, and could probably be used
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reliably if it were restricted to constants (of the same value, of
course) and to temporary data used by independent program modules
which could never be in execution during the same time interval.
However, the general case of two different variable data items oc­
cupying the same memory location is an invitation to very unreliable
object code. The specifications which describe the capability warn
of its hazards, but neither the languages nor the corp.pilers appear
to provide any protection.

The HAL approach of automatic and static storage is a more
reliable approach to conserving memory.

6.3.3.6 Compile Time Data Access Control

The concept of a common data pool allows all tasks and sub­
routines to directly access data which must be communicated among
them. However, any single module usually requires access to only
a po rtion of the total compoo!.

HAL allows the programmers to describe selective access to
compool data through access rights. Each program cal/. be a$signed
an identification, and each compool data item with that identification
(access right) can be accessed by the program. Each compool data
item can be assigned as many access rights as necessary to identify
all the programs which need to access it. The compiler can then
ve rify at compile time that all compool data acce s s es within each
program have been properly authorized. None of the other languages
provide such acces s control.

The acces s rights concept provide$ a very valuable static
check capability; that ability should be extended to include a distinc­
tion between read-accesses and write-accesses. In many cases a
module needs to read a variable, but should not be permitted to
modify it.

6. 3. 3. 7 Execution Time Data Acces s Controls

CLASP and SPL both provide a LOCK and UNLOCK data capa­
bility which allows a program to selectively protect data from outside
interference while it is being used within the program. The com­
mands are intended to enable and release the hardware memory pro­
tect capabilities provided by the object computer. While this is an
execution time feature, it has compile time static checking implica­
tions. There is no way for the compiler to determine which data items
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require protection and, therefore, which data acces ses should be
surrounded by LOCK and UNLOCK statements.

HAL provides an opportunity for static checking by declaring
LOCKTYPE data attributes. Any access, by any program module,
to a data item which has a LOCKTYPE attribute can be checked to
insure it has the proper real time locking controls surrounding it.

6. 3. 3.8 Implicit Data Declarations

Each of the languages provide s a capability to explicitly
declare a data item by specifying its name, and the data attributes
which it possesses. The name then references the defined data item
when it is used in executable statements. All the languages except
CLASP also allow for implicit data declarations. That is, a vari­
able name may appear in an executable program statement without
having been previously declared in an explicit declaration statement.
The first appearance of an undeclared data item causes it to be im­
plicitly declared by the compiler and to be assigned default attributes.
This is provided as a convenience to the programmer, but it removes
a redundancy which is important to static checking. For example,
if the programmer (or the keypunch operator) misspells the name of
a previously declared data item, the compiler creates a new data
item, compiles the executable statement with a data reference dif­
ferent from what the programmer intended, and proceeds to the next
statement. The compiler detects no error, and may compile a work­
ing program module which will successfully execute to completion.
1£ the unintended data item is used in an infrequently executed branch
of the program, the error could avoid detection for some time.

The convenience afforded the programmer by implicit declara­
tions does not warrant the increased probability of an error undetected
by the compiler. This is especially true, because the ability to factor
declarations makes explicit declaration so convenient anyway.

6. 3. 3. 9 Automatic Scaling of Fixed-Point Data

One of the biggest problems associated with flight program­
ming on a fixed-point computer is the scaling of numeric data items o

Since the length of a data word in the computer is limited, there is
a limit on the precision of a value which can be retained o The pro­
blem is one of aligning a variable such that its maximum value will
not overflow the left-hand end of the computer word, but still have
sufficient bits on the right to prevent truncation of significant pre­
cision. This alignment is usually described by specifying the location
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of the binary point which separates the integer part from the frac­
tional part of the value.

In all four languages, the declaration of fixed-point data
scaling is approximately the same. The significant difference is
that only in CMS-2, SPL, and HAL does the declaration specify
exactly how values will be aligned in the data item. CLASP is
defined so that the programmer's precision declarations are treat­
ed as minimum precision requirements and the compiler determines
the actual data alignment within thos e pre cis ion constraints. The
compiler picks the alignment so that when this data item is combined
with other data items as specified in formulas and assignments in
the program, the number -of scaling shifts can be minimized, result­
ing in a more efficient program execution.

The problem is that the scaling of a data item in one pro­
cedure may be changed by the compiler because of a change made in
a separate procedure. One data item common to both procedures
is all that would be necessary to propagate the requirement for re­
scaling. If the programmer could guarantee that his minimum
scaling specification was sufficient, the change would not create
an error. However, flight program verification is historically,
and will continue to be, an empirical process on object code. That
is, the object program is exercised over various ranges of para­
meters to determine that it operates properly. This level of verifi­
cation can demonstrate that the compiler selected the proper scaling
for that compilation, but it does not verify that the programmer's
minimum specification is sufficient. Therefore, it is considered
very hazardous for the compiler to modify the scaling of a data item
without an explicit declaration change by the programmer.

6.3.4 User Control Over Verification

One of the major problems .in verification of a program written
in a higher level language is the difficulty in correlating object code
with source language statements. The only significant features found
among the languages were some compiler directives intended for
debug aids. HAL did not include these directives.

While debug directives are useful, they are extremely dif­
ficult to use because the program module must be recompiled to
change the controls. Effective user control over program verifica­
tion is essential if the program development is to proceed efficiently.
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To be effective, this control must be provided through the verifica­
tion facility itself, and must not be restricted to those controls and
test cases which occur to the programmer at compile time.

6.4 Object Program Efficiency

Computer storage. space and processing power have been,
traditionally, limited to minimize weight and power requirements.
Consequently, the efficiency of the utilization of these computer re­
sources have been a major concern. Existing and near future com­
puter system designs provide a many-fold increase in processing
power over previous aerospace computers. Although this relieves
the heavy emphasis on efficiency somewhat, it by no means negates
it completely. It should be realized that on-board applications con­
tinue to increase in scope as well as complexity. It is naive to
assume that the available processing power will outrun the required
processing power o . Efficiency of resource utilization therefore re­
mains a factor to be considered.

The efficiency of an object program resulting from the
description in a high level language is primarily a result of the
design and implementation of the compiler. That is, the object
program may be highly efficient or inefficient in spite of the design
of the language.

However, the. language may contain features that can aid the
compiler in generating efficient object code, if the compiler indeed
utilizes the information provided. By the same token, that language
may contain features that prevent or make it difficult for the com­
piler to generate efficient object code. It is these features that are
considered in this study.

It is important to re -emphasize at this point that an optimizing
compiler. should be considered mandatory for aerospace software
and should, therefore, be the primary means to obtain object pro­
gram. .efficiency. The features described here still help in obtain-
ing efficiency objectives, but should not be considered the primary
method used.

From the language s reviewed, CLASP is significantly dif­
ferent in that it assumes the availability of a compiler that has highly
sophisticated optimization capabilities. HAL is the only language
that pays little or no attention to time-efficiency. It should be pointed
out, however, that the primary means by which other languages attempt
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to obtain tim.e-efficiency is through providing the program.m.er acces s
to m.achine registers. This is first of all a highly m.achine dependent
m.ethod that significantly depends on the program.m.er I s insight. Secondly,
it m.ay interfere with the autom.atic assignm.ent of these registers by
an optim.izing com.piler, thereby possibly causing ~n overall decrease
in efficiency.

In the following paragraphs we will discuss each language
separately. For each language, the discussion will be divided into
two evaluation criteria.

l) Language features that aid in the generation of efficient
object code.

2) Language features that hinder the generation of efficient
object code.

6.4. 1 SPL

More specific features are provided in SPL than in any of the
other languages.

6.4. 1. 1 Efficiency Aids

Language features that aid in the generation of tim.e efficient
object code are:

o Constant attribute

Data item.s which values rem.ain constant during execu­
tion can be inC!.icated to the com.piler. This allows the
compiler to generate. code to use im.m.ediate instruction,
whenever they are available. An im.m.ediate instruction
contains the data in the instruction rather than in a mem­
ory location.

o Index declaration

This allows a data elem.ent to be a.ssigned to a hardware
register because it is frequently referenced during a
particular section of the program.. Mem.ory references
for each time the data item. is manipulated are thus unneces ..
sary.
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o Hardware declaration

This allows machine registers (if available) which are
normally only available to the programmer in basic
assembly language, to be used as storage locations
for variables thus decreasing the memory accesses
required.

o Decision table s

Reference Paragraph 6. 1. 1 for a description.
facilitate the optimization of complex decision
a large segment of code.

o Inline attributefor procedures

These
logic over

This provides for the generation of code at the point in
the program that the procedure is referenced. This
eliminates the execution of instructions normally re­
quired to process input and output parameters in invok­
ing the procedure.

o Timing directive

This only aids indirectly in the generation of efficient
code•. It provides the programmer with the ability to
have a section of code timed. He may thus check the
reasonableness of the execution time for his application
and check upon the results of possible improvements he
may makeo

Language features that aid in the generation of storage efficient
code are:

o Data packing attributes

This allows data elements in tables/arrays to be stored
with various packing densities o Normally a single data
item is stored in one computer word. To save storage
(at the cost of execution time) SPL allows the program­
mer to specify packing of two or more data items into
one computer word where pos sible.

-84-



o Overlay declaration

This provide s a means by which more than one data
element can occupy core storage previously used by
another data element. This is simply done by declar­
ing a data element to "overlay" the storage of another
data element that is no longer in use.

6.4. 1. 2 Efficiency Hinderances

No features were identified that specifically hinder the efficiency
of the object code. However, two of the features that aid in efficiency
as described in Paragraph 6.4. 1. 1 may, in effect, cause inefficiencies
if improperly handled. These are:

o Decision tables

Unles s logic optimization technique s are indeed imple­
mented, these can cause very inefficient code tobe
generated as compared against the direct use of IF•••
THENo •• statements o The latter allows the program­
mer to perform some logic optimization.

o Index/hardware declaration

If the compiler performs automatic optimization, im­
proper use of this feature may interfere with it, actually
resulting in less efficient code.

6.4.2 CLASP

The main emphasis of the CLASP optimization directives is to
enable the programmer to optimize selected portions of his program and
to explicitly specify whether time or core efficiency is of major concern
for a specific section of code. This provides it with the most power-
ful efficiency feature, as suming that the implementation is practicaL

6.4. 2. 1 Efficiency Aids

The following time-efficiency features in CLASP are equivalent
to their SPL counterparts:

o Constant attribute
o Index declaration
o Timing Directive
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o Hardware declaration
o Inline attribute for procedures

CLASP also provides an OPTIMIZE TIME(n) directive, which allows
the specification of the relative im.portance (n) of tim.e optim.izing to
the (optim.izing) com.piler for various sections of code.

Storage efficiency is aided by an overlay declaration identical
to SPL I 5 (Paragraph 6. 4. 1. 1), and an OPTIMIZE SPACE(n) directive.
This directive allows the specification of the relative im.portance (n)
of storage optim.ization to the (optim.izing) com.piler for various sec­
tions of code.

6.4.2.2 Efficiency Hinderances

The only significant language feature that m.ight hinder the
generation of efficient object code is the index hardware declarationo
The explicit use of these registers by the program.m.er m.ay interfere
with the tim.e optim.ization autom.atically perform.ed by the (optim.izing)
com.piler.

6.4.3 HAL

Little or no attention is paid to tim.e-efficiency features in this
language. It does, however, provide various m.eans to obtain efficiency
in storage us ed.

6. 4. 3. 1 Efficiency Aids

The only significant language feature that aids in the generation
of efficient object code through tim.e efficiency is the constant attribute
described for SPL (Paragraph 6.4. 1. 1).

Storage efficiency is provided through:

o Data packing 'attributes

This is sim.ilar in principle to SPL I S capability (Paragraph
6.4. 1. 1). The m.ain difference is that SPL only accepts
packing attributes for tables / arrays while HAL allows it
to be applied to any data elem.ento

o AUTOMA TIC storage allocation attribute

This allows storage to be allocated to data elem.ents only
when the corresponding program. m.odule is entered for
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execution. This allows data elements to be overlaid
in the same storage if they are not used by concurrently
executing program modules.

6.4. 3. 2 Efficiency Hinderances

The significant language feature in HAL that may hinder the
generation of efficient object code is shared data protection. The
algorithm used by HAL to protect the integrity of data shared between
asynchronous program modules may result in relatively inefficient
code. However, whether a more efficient, simpler algorithm can
be designed, or whether protection is better accomplished by pro­
gram design is an open question.

6.4.4 CMS-2

The features available in this language are largely identical
to those provided in SPL, but only part of them are provided.

6.4. 4. 1 Efficiency Aids

CMS-2 language features that aid in the generation of efficient
object code for time efficiency are:

o Constant attribute (Paragraph 6. 4. 1. 1)

CMS-2 provides a similarly usable feature through its
EQUALS/MEANS declaration.

o Hardware declaration (Paragraph 6.4. 1. 1)

CMS-2 provides this capability through its SYS-INDEX
and LOC-INDEX declarations.

Storage efficiency features include data packing attributes
and an overlay declaration equivalent to SPL's capabilities (Paragraph
6.4.1.1)0

6.4.4. 2 Efficiency Hinderances

CMS-2 I s SYS-INDEX and LOC-INDEX declarations may inter­
fere with a time optimizing compiler in the. same manner as SPL I S

hardware declarations 0
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6. 5 Source Program Readability

The primary conclusion reached from the evaluation of the
readability of the languages is that none of them result in a program
listing which, by itself, contributes significantly to the reader I s under­
standing of the problem being solved. The most that can be said is
that a reader who thoroughly understands the problem and the con­
straints on it, can after considerable effort understand how it is being
solved, and with some additional effort can determine to a large ex­
tent if it is being solved correctly. The inability of the language to
communicate a description of the problem itself relates back to the
expression discussion of Paragraph 6. 1. The statements of the lan­
guage describe operations at such a low level of detail that the broader,
more informative, elements of the problem are never articulated
concisely. Until the major high level functions performed in a flight
program can be clearly identified and isolated, and until standard
techniques for performing those functions can be established and
widely accepted, the programmer I s task will continue to be one of
describing the detailed steps to solve very esoteric problems. In
that environment only the reader who is concerned about those de­
tailed steps should be reading a program listing.

As mentioned in Paragraph 6. 1, decision tables and matrix/
vector operations are the only innovative features presented by any
of the evaluated languages which help to raise the level of detail de­
scribed by a program listing.

The readability features of the language were provided at such
a detailed level that the overall evaluation criteria questions of the
Phase I Report revealed very little distinction among the languages
as indicated below:

o How dependent is the readability of the language upon
externally imposed writing disciplines?

All of the languages reviewed have fairly rigid syntaxes
for individual statements. The only significant dis­
cipline beyond that level concerns the ordering of state­
ments within an overall program 0 rganization.

The following list indicates the relative level of dis­
cipline imposed by each of the languages:

HAL (most disciplined)
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CLASP

CMS-2

SPL

These differences reflected priITlarily where declaration
stateITlents ITlust be placed relative to executable state­
ITlents. The only advantage to readability is that the
reader can be ITlore certain where he should look in a
listing for a given data declaration.

This relatively ITlinor consideration is the ITlost signifi­
cant writing discipline iITlposed by any of the languages.

o Does the language provide notational aids to enhance
readability?

Each of the languages provides for COITlITlents to be in­
serted by the prograITlITler o The only other significant
notational aid is HAL I S data type notation attached to
data iteITl naITles by the cOITlpiler. The effect on read­
ability is discussed in Paragraph 8. 3. 3.

o Are "language extensions 11 available to enhance read­
ability?

All four languages provide for l'extensions 11 in the forITl
of procedures and functions which can consolidate detailed
prograITl steps under a descriptive label.

Aside froITl the above issues, the features of the language cOITlITlunicate
inforITlation to the reader at a very detailed level.

Consequently, the differences exhibited by the languages are
liITlited alITlost exclusively to how well they help a reader, who thor­
oughly understands the probleITl being solved, to see what steps are
being taken to solve that probleITl. As deITlonstrated by the saITlple
coding perforITled in this evaluation, several overall probleITls exist
even. in trying to re'ad the details of a prograITl. Most of the individual
prograITl stateITlents in the coded kernels are readable. However, the
relationships aITlong stateITlents, and therefore, the prograITl itself
are very difficult to deterITline froITl the codingo The ITlost significant
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stumbling blocks to program readability are:

o Under standing the purpose and meaning of variables
being manipulated. In many cases, the manipulation
is very easy to understand, but the use for the result
and the physical interpretation of the operands are
not clear.

o Determining the sources of update values for variables.
Even when an appropriate as signment statement is
found, it is not clear that this is the only update source.
Variable eros s reference listings are helpful, but cum­
bersome, and do not differentiate between updates and
"read-only" accesses.

o Understanding the sequence of program execution through
branch points. It is very frequently difficult for the
reader to determine, understand, or remember the
reasons for alternate execution paths.

o Understanding the relationships among separate program
modules. The overall program structure was not at all
clear from the individual kernels. Even the supporting
descriptions in the Equation Defining Document were
lacking in this respect.

Because of the above shortcomings there is an unavoidable
need for documentation aids such as flowcharts, textual descriptions,
dictionarie s of data items, and data file format diagrams. Some of
these aids can be embedded in the program listing as comments, but
this is not neces sarily the easiest form to read. Appendix A of this
report includes textual descriptions, flowcharts, and glossaries to
assist the readers of the listings in Appendix B.

Within this context, several language features were found
which enhanced or detracted from source program readability. These
features are discussed below, organized by the languages in which they
appear.

6.5.1 SPL

SPL IS mo st significant contribution to readability is its decision
tables, demonstrated in Paragraph 6. 1. 1. 1. It also provides matrix
and vector operations which expressed the Iterative Guidance Mode
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equations more concisely than element by element operations. The
third significant contribution to readability made by SPL is its status
variable with the as sociated status constants (Paragraph 6. 1. 2. 2).

Several features of SPL detract in a minor way from its over­
all readability. Nested assignment statements are confusing especially
to someone new to them. As an example:

A=BtC=DtF

which is interpreted as "Set C equal to D t F. Then add B and set A
equal to the result." Less confusing but still difficult to read is the
format of the multiple as signment statement:

A, B, C = D, E, F

which is equivalent to the three statements A = D, B = E, and C = F.
As the strings of multiple variables grow, the reader's task of count­
ing commas to match corresponding entries becomes more formidable.

The program and subroutine declaration and calling sequence
also detract from readability. The fact that the declaration format
does not begin with the label of the module has already been discus sed
in Paragraph 6. 3. 2. The statement which calls the module PROG1,
for example, is:

. PROGl

followed, if necessary, by input and' output parameters. The use of
a command word such as CALL (used by HAL) seems more descriptive.
Another confusion in SPL' s program structure is in finding the entry
point to a program. Nominally, the main entry point to a program is
its first executable statement. However, the TERM statement which
concludes the source language statements of a program, may contain
a label identifying some other statement as the entry point. Conse­
quently, the reader must scan the listing to find the TERM statement
before he can identify the entry point •.

Either a statement label or a location variable (indirect address)
may be, the argument of a GOTO statement, and there is no difference
in appearance between the two in the statement. Therefore, the reader
does not know whether to scan statement labels or data declarations to
find the destination.
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6.5.2 CLASP

CLASP provides one readability feature which was very help­
ful in reading the kernel coding. The ability to preset data with
forrr1Ulas (Paragraph 6.1. 1. 4) made date values much easier to
read. The features which contribute to SPL' s readability are scarce
in CLASPo There are no decision tables and no status variables,
and matrix/vector operations are restricted to matrix multiplica­
tion.

CLASP share s some of SPL I S detractions from readability,
notably multiple as signment and the procedure declaration and
calling sequence. CLASP has an additional readability restriction
in that names and labels may not exceed eight characters. This did
not affect the kernel coding greatly because most of the names and
labels were taken directly from the existing Saturn flight program
and did not exceed eight characters anyway. However, some names
were created for the effort and these had to be curtailed in the CLASP
coding.

6.5.3 HAL

HAL's primary contributions to readability are its two -di­
mensional statement format and its data type annotations (Item A2)
generated by the compiler. The kernel coding in HAL (Appendex B)
demonstrates both these features. A significant confusion factor
is introduced in the HAL kernel coding, (Appendix B) because there
is no special spacing to isolate separate statements o It is sometimes
difficult to determine, at a glance, if a given character or string of
characters is a subscript on the line above, or an exponent on the line
below. To diminish this confusion, two alternative line spacings were
attempted on a short sample of coding, cis 'indicated in Figure 6-2.
The first sample simply double spaces between statements, which
improved separations somewhat. However, exponents and subscripts
still did not seem clos ely enough as sociated to the main line. The
second sample simulates th'e output of a printer which would hal£­
space subscripts and exponents (assuming such a printer were avail­
able)o The association is quite clear in this case, but the data type
notation on the exponent line (the period over T2STA T) merges with
the main line character and tends to lose its effectiveness. The samples
demonstrate that the benefits of the two-dimensional format are con­
siderably restricted by the mechanics of presenting it.

Even under the se restrictions, there is a noticeable format
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HAL 2-D FORMAT SPACING ALTERNATIVES

Double Space Between Statements

S

s

F

S

F.

s

IF FPTARLF =0
1,FPTJNDX

T HF 1\1 II rJ

\/TflLD = FPTAHLE
/ , i= PT T [\11) X

nLTTl = I)VTMI{ + I/TI1LD rlKkTCSFC/L!fl
D(,) S T~

T?STAT = TRtlE
1)(.) S T?

ELSF T2STAT = FALSE
DC,) ST 2

Half -Space for Subs cripts and Exponents

IF EPTARlF1,FPTINDX =0

THEI'.l nn
VTnLU = EPTABlf 2 ,EPTINnx

nLTTlOWST2 = UVTMK + VTOLn DKRTCSEC/40

E1'.\ f)

El S F t 2 STAT DC') ST 2 = F l\ L SE

Figure 6-2
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advantage to HAL in complex mathematical expressions. However,
this is the least of the self-documenting problems, because the
equations of a flight program are typically so well documented any­
way. Even with programming in a conventional one -line format, it
is a fairly straightforward proces s to take the written equations and
verify that the coding accurately reflects them.

The more complicated readability problem is with such opera­
tions as decision logic, execution flow, and data retrievaL In these
areas, the conventional single-line format for program statements
seems as readable as HAL's.

The data type notation provided with HAL is useful. However,
as mentioned early in this readability dis cus sion, the reader needs to
know the functional meaning of an operand and its sources of update,
before he can fully under stand the significance of a program state­
ment. The data type notation tells only a small part of that story.
Its primary utility is in serving as a clue to remembering the rest
of the information about the data item.

HAL's matrix and vector notations improve its readability,
but HAL provides neither the decision table nor the status variables
of SPL. The break character in names and labels makes some of the
longer ones (e. g., CHI_BAR_STEER) much more informative at first
glance. The appearance of blanks in long strings of digits is also
helpful (Paragraph 6.1. 2.5). HAL's CALL NAME statement is Inuch
more readable than the .NAME procedure call used by the other lan­
guages. The overall program organization is more readily absorbed
if the CLOSE statements ,which conclude program and subprogram
declarations, include the label of the module being concluded. HAL
provide s the option; it should be a requirement as in CMS- 2.

6.5.4 CMS-2

CMS-2 provides the status variables of SPL but omits both
decision tables and matrix/vectoroperations. As mentioned above,
in CMS-2 the END-PROC statement which concludes a procedure
declaration must include the label of the procedure. This is beneficial.

The most striking characteristic of CMS-2 is its elimination
of the equal sign (=) as a character. This is an unexpected omission
for an algorithmic language, and is inconsistent with its stated pur­
pose of being developed for scientific applications. Assignment state­
ments and loop control statements are still reasonably readable,but
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unnatural without equal signs. Scanning is more difficult, because
the statement begins with the term SET rather than the name of the
variable being as signed. Another distraction to the reader is the
dollar sign ($) which concludes every statement.
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7. LANG UAGE CHARAC TERISTICS SUMMARIES

To perform a comparative evaluation of several programming
languages, it is important to have available language descriptions in
a common format and common terminology. However, there are no
widely accepted documentation standards for describing a language
specification, and the available specifications for the selected lan­
guages are widely divergent. Therefore, the salient characteristics
of each of the four selected languages have been extracted and sum­
marized in this section, in such a manner that direct comparisons
can be made. These summaries are not intended to include evalua­
tion of the characteristics, but simply to present them very briefly
in a form which highlights the differences.

7. 1 Characteristics Categorie s

To organize the presentation, the language characteristics
have been categorized into seven major groups:

A General Language Characteristics

B Data Descriptions

C Data Manipulation

D Internal Program Sequencing and Control

E Program Structure

F External Data Access

G Compiler Directives

These major categories have been subdivided into more specific items,
which are introduced in the following paragraphs. Figure 7 -1 is a com­
plete list of the items covered.

7. 1. 1 General Language Characteristics

Under this heading are described those general items which
are reflected through many of the language characteristics. Specifically,
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LANGUAGE CHARACTERISTICS COMPARISON ITEMS

No.

AI·
A2

A3

Bl
B2

B3
B4
B5

B6
B7

B8
B9
B 10
Bll
B12
B13

B14

Cl
C2
C3
C4
C5

C6

C7
C8

Title

Statement Format
Names, Labels, and Charac­

ter Set
Interaction with Other Lan­

guages

Numeric Data Items
Logical, Bit, Character Data

Items
Other Data Items
Numeric Data Values
Logical, Bit, Character Data

Values
Other Data Values
Numeric Data Item Precision

Attributes
Presetting Data Values
Other Data Item Attributes
Alternate Data Declarations
Data Or ganizations
Index Types
Default Data Item Character­

istics
Hardware Registers

Arithmetic Operations
Logical Operations
Relational Operations
Boolean Operations
Explicit Data Conversions and

String Operations
Operations on Data Organiza­

tions
As signment Statements
Scaling of Intermediate

Results

No.

Dl
D2
D3
D4
D5
D6
D7
D8

E1
E2
E3
E4
E5
E6
E7
E8
E9
EIO

Ell
E12
E13

F1
F2

F3

F4
F5·

G1
G2
G3
G4

Title

Direct Unconditional Transfers
Variable Transfers
Conditional Statements
Decision Tables
Iterative Loop Control
Conditional Loop Control
Statement Groups
Stop Execution

Overall Structure
Programs
Procedures
Rea1-Time Tasks
Functions
Closes
Program and Subroutine Returns
Subroutine Parameters'
Priority As signments
Exclusive Subroutines and

Interrupt Controls
Error Recovery
Library Subprograms
Scope of Names and Labels

Common Data
Compile Time Data Protection

Features
Execution Time Data Protec­

tion Features
Conventional Input/ Output
Real-Time Input/Output

Optimization Directives
Memory Allocation Controls
Program Deb ug Aids
Compile Time Identifiers

Figure 7-1
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the following items are included:

Al Statement Format

Describes the general format 6f the statements used to
write programs. It includes techniques for ins erting
comments.

A2 Names, Labels, and Character Set

Describes the rules for forming user-defined data item
names and statement labels in the language, as well as
the general character set used.

A3 Interaction with Other Languages

Describes the capability to interact with programs
written in another programming language.

7.1.2

can be
them.

Data Descriptions

These items include the types and organizations of data which
manipulated in the language and the techniques for describing
The manipulation of this data is described in another category.

B 1 Numeric Data Items
B2 Logical, Bit, Character Data Items
B 3 Other Data Items

These three items include all of the types of individual
data elements which can be specified in the language.
It is limited to repre s entations of individual data ele­
ments; the ways in which these elements can be orga­
nized into structures is described in Item B 11.

B4 Numeric Data Values
B5 Logical, Bit, Character Data Values
B6 Other Data Values

These three items describe the techniques for specify­
ing actual values which can be as signed to (stored in)
data items.
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B 7 Numeric Data Item Precision Attributes

Because the length of a computer word is limited, the
precision with which it can represent a numeric value
is limited. The programmer is given some control
over how values are aligned in data items to take best
advantage of available precision. This sometimes in­
cludes the allocation of multiple computer words to
provide the desired precision.

B8 Presetting Data Values

This item describes the techniques for as signing per­
manent values to constants, or initial values to variables.

B 9 Other Data Item Attribute s

Each language provides for specification of selected
data item attributes in addition to those described
earlier.

B 10 Alternate Data Declarations

Certain features are provided in some languages to sim­
plify the declaration of data items.

B 11 Data Organizations

This item describes the ways in which individual data
elements can be organized into arrays, tables, and
structure s 0

B 12 Index Type s

Data elements within data organizations are generally
acces sed by specifying indices whose values identify
the element o This item describes the techniques for
handling indices.

B 13 Default Data Item Characteristics

To save the programmer from having to specify in
detail every attribute of a data item, default character­
istics are defined. In some cases, the programmer has
control over the defaults.
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B 14 Hardware Registers

This item. describes language capabilities to declare
and directly access internal registers in the com.putero

7 0 1.3 Data Manipulation

Program.m.ing languages typically have a variety of operations
for m.anipulation of different type s of data elem.ents. The following
item.s describe these operations and language features to support them.:

C 1 Arithm.etic Operations
C2 Logical Operations
C3 Relational Operations
C4 Boolean Operations

These item.s describe the operations available, their
applicability to different data types, and the conversions
which are m.ade when data types are m.ixed.

C5 Explicit Data Conversions

In addition to data conversions ITlade im.plicitly in a
m.ixed operation, there are special functions provided
to convert a data elem.ent or portion of a data elem.ent
to another data type. .

C6 Operations on Data Organizations

Som.e bf the datam.anipulating operations can be applied
to arrays or tables of data.

C7 As signm.ent Statem.ents

As signm.ent statem.ents are the m.echanisrn for changing
the value of a data item..

C8 Scaling of Interm.ediate Results

In addition to the data precision attribute s which can be
assigned to data item.s at their declaration (Item. B7)
there are scaling operators which can be used in form.ulas
to override declared scaling or to assign specific scaling
to interm.ediate expressions in a form.ula.
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7. 1.4 Internal Progra:m Sequencing and Control

Language features to specify execution control within a pro­
gra:m :module are described in this category. These features include
all transfer type state:ments and any conditional state:ments, whether
or not they change the sequence of state:ment execution.

Dl Direct Unconditional Transfers
D2 Variable Transfers

These are the si:mple "GOTO" type state:ments which
transfer to a single state:ment or to one which :may
be selected dyna:mically.

D3 Conditional State:ments

These are the state:ments which check relations a:mong
data ite:ms and execute different responses depending
upon whether the relationship is true or false.

D4 Decision Tables

A Decision Table is a tabular co:mbination of several
conditional state:ments.

DS Iterative Loop Control
D6 Conditional Loop Control

Loop control provides techniques for executing groups
of state:ments several ti:mes in succession. This can
occur for a specified nu:mber of iterations, or until
so:me condition is satisfied, or both.

D7 State:ment Groups

Conditional state:ments and loop control create a need
for grouping state:ments. This ite:m describes the tech­
niques for deli:miting groups 0

D8 Stop Execution

Features are provided to stop co:mputer execution and,
in so:me cases, specify a restart point.
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7. 1. 5 Program. Structure

Program.m.ing languages have characteristics which im.ply,
or explicitly direct, a particular program. structure or m.odularity.
They also include feature s for controlling program. execution between
m.odules. These characteristics are described in the following item.s.

El Overall Structure
E2 Program.s
E3 Procedures
E4 Real- Tim.e Tasks
E5 Functions
E6 Closes
E7 Program. and Subroutine

These item.s describe
are organized and the
which m.ake them. up.
of individual m.odules
are also covered.

E8 Subroutine Param.eters

Returns

the ways in which total program.s
characteristics of the m.odules
Technique s· for causing execution

and returning control from. them.

Procedures and functions generally are defined to
operate on data which is m.ade available to them. when
they are executed. The techniques for m.aking that data
available and receiving results are described in this
item..

E9 Priority As signm.ents
ElO Exclusive Subroutines and Interrupt Controls
Ell Error Recovery

These item.s describe language capabilities for con­
trolling an orderly execution of program. m.odules In
real tim.e.

E12 Library Subprogram.s

This item. describes special purpose subroutines which
are provided with the languages and can be used in the
sam.e m.anner as subroutines defined by the program.m.er.
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E13 Scope of Names and Labels

Data item names and statement labels are generally
recognized only within the area (scope) of the program
organization where they are defined. This item describes
the rules by which this scope is established and special
feature s for extending or restricting the scope of a par­
ticular name or label.

7. 1. 6 External Data Acces s

Theprogram modularity introduced by language features to
describe program structures also introduces the problem of communi­
cation among separately compiled program modules. Language features
to facilitate acces s to data outside a given program module, including
data outside the computer, are described in the following items:

Fl Common Data

Common data is data that can be accessed by the entire
program organization. The techniques for declaring
such data and for access by individual program modules
are described in this item.

F2 Compile Time Data Protection Feature s

These are feature s to prevent erroneous acces s to
compool data.

F3 Execution Time Data Protection Features

In a real time application, data manipulation errors can
occur when one program module interrupts another and
accesses data which the interrupted module was acces­
sing. Features to protect data from these multiple con­
current accesses are described in this item.

F4 Conventional Input/Output
F5 Real Time Input/ Output

These items describe the capabilities for specifying
communication with conventional peripheral equipment
such as card reader, printer, and magnetic tape and
disk, as well as avionics equipment and other space
vehicle hardware.
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7. 1. 7 Special Compiler Directives

Special directives to the compiler provide selected additional
capabilities beyond those described in preceding categories. These
are described in the following items.

Gl Optimization Directives

These are capabilities to inform the compiler or direct
the compiler in such a way that it will produce more
efficient object code.

G2 Memory Allocation Controls

These features direct the compiler in organizing and
locating data items in memory.

G3 Program Debug Aids

These are items which direct the compiler to generate
information or special object code which will aid in
evaluating the operation and performance of the program.

G4 Compile Time Identifiers

The compile time identifier capability allows data such
as constant data values to be represented symbolically
throughout the source program and be as signed a literal
meaning in one placeo

G5 Macro Statement Definitions

The macro statement definition capability allows the
programmer to introduce new statements into a language
by defining them in terms of existing statements.

7. 2 Terminology

From the different terminologies used in the four language
specifications, an attempt was made to select a single set of terms
and use it consistently throughout the summary characteristics descrip­
tions. Where appropriate, the characteristics descriptions include
terms which are part of the language (key words) and these are capital­
ized to indicate that they are key words. The most widely used non­
key word terms are defined in the glos sary.

7.3 Characteristics Des criptions

The following pages describe the pertinent characteristics of the
languages under the comparison items introduced in Paragraph 7 .. 1.
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Al Statement Format

HAL

Two-dimensional statement format allows exponents and subscripts to be de­
signated by appearance on separate lines. Each line starts with a single char­
acter identifying the line type (Exponent, Main, or Subscript). Statements end
with a semicolon(;) and may be of any length. Entities may be continued on
next line. An alternate single line format is available where exponents are pre­
ceded by':":' and subscripts by $.

Comments are delimited by slash and asterisk: 1':'COMMENT ':'1 • May appear
anywhere a blank is legal, even within a character-string. May appear on
separate comment lines (C in column 1) without delimiters. May contain any
characte r s except the ':' I sequence •

CMS-2

Columns 1 through 10 of every card are reserved for an identification field;
columns 11 through 80 are available for statementso Statements may be of any
length and every stat'ement is terminated by a $. No continuation character is
needed for multi-line statementso Exponents, subscripts are like SPL.

Comments are the same as in SPL, but cannot include $. Also, comments on
separate lines may be introduced by the keyword COMMENT, and may omit
double apostrophe.

SPL

Statements may be of any length and have no delimiters. Entities may be con­
tinued on next line. Multiple statements may appear on one line without de­
limiters. Exponents are preceded by':'>:' and subscripts are parenthesized.

Comments are delimited by double apostrophe: "COMMENT". May appear
anywhere a blank is legal except within a textual constant (character -string)o
May not contain multiple consecutive apostrophes or end in apostrophes.

CLASP

Statement lines must appear in columns 1 through 72. Statements may be con­
tinued to the next line by a continuation flag in column 730 Multiple statements
on the same line must be separated by a $. Exponents are preceded by':":' and
subscripts are enclosed in parentheses.

Comments are the same as in SPL.
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~::::

=Vector, M =
{S} =Structure.

A2 Nam.es, Labels, and Character Set

HAL

Nam.es and labels consist of up to 32 alphanum.eric characters, including the
"break" character ( ). First character m.ust be a letter. Nam.es of certain

data types and structures are annotated by the com.piler: V
• t

Matrix, B =Bit String, C = Character String, [A] =Array,
-'-~ .

Com.binations are also possible: [A] = Array of Matrices, [B] = Array of bit­
strings. Statem.ent labels are followed by colons.

The character set is the sam.e as SPL but also includes lower case letters (a­
z) and > < ., I & ; : - # @ [ ] f ~ , $

CMS-2

Nam.es and labels are the sam.e as in SPL.

The character set is the sam.e as SPL plus $ and li (equivalent to blank in input/
output form.ats), but = is not includedo

SPL

Nam.es and labels can be unlim.ited length string of alphanum.eric characters,
beginning with a letter. Statem.ent labels are followed by periods.

The character set is m.ade up of upper case letters (A-Z), decim.al digits (0-9),
blank, and + - ':' / , () . ' =

CLASP

Nam.es and labels are the sam.e as in SPL, but are restricted to eight charac­
ters in length.

The character set is the sam.e as SPL plus $

-107-



A3 Interaction with Other Languages

HAL

No explicit capability, but in a given im.plem.entation it should be possible to
call or schedule programs written in another language.

CMS-2

Direct code is delimited by a DIRECT statement at the beginning and a CMS-2
statement at the end.

SPL

Assembly language can be inserted directly into a sequence of SPL statements;
it must be delimited by a DIRECT and END statem.ent. Variable nam.es and
statement labels declared in the SPL coding are recognized"in the direct coding,
and an SPL statem.ent may GO TO a direct code labeL (This im.plies com.pati­
ble naming conventions between SPL and the assem.bler.) SPL provides an
ASSIGN statem.ent which can be used in direct code to transfer data between a
com.puter hardware register and data item.s declared in the SPL codeo

SPL provides the ability to switch between SPL and the Basic JOVIAL language
at any point in the program..

CLASP

Sam.e as SPL DIRECT and END capability bu~ there is no ASSIGN statem.ento
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B 1 Numeric Data Items

HAL

INTEGER and SCALAR. SCALARs are floating point if floating point hardware
is available in the target computer, and fixed point otherwise. Vectors and
Matrices are discussed under Data Structures (Item B 11).

CMS-2

Same as SPL (I, A, and Fare declaratives for integer, fixed, and floating).

SPL

INTEGER, FIXED point, and FLOATING point. FLOATING pointis available
only if the target computer has floating point hardware.

CLASP

Same as SPL.

-109-



B2 Logical, Bit, Character Data Item.s

HAL

BIT- string (length fixed at declaration)
Boolean (declared as a BIT-string of length one)
CHARACTER-string (length fixed at declaration)
Variable length CHARACTER-string (m.axim.um. length fixed at dec~aration)

CMS-2

Boolean (declared as B)
Character-string (declared as H for Hollerith) with length fixed at declaration
There ii-re no logical data item.s and no logical form.ulas.

SPL

LOGICAL (bit-string with length fixed at declaration)
BOOLEAN (declared as BOOLEAN)
TEXT (character_string with length fixed at declaration)
TEXT with secondary type is available for input/output (Item. D4).

CLASP

BOOLEAN (declared as BOOLEAN)
TEXT (character-string with length fixed at declaration)
There is no logical data item., but logical constants (Item. B5) and form.ulas
(Item. C2) are used.
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B3 Other Data Item.s

HAL

None.

CMS-2

Status variables (declared as S) are the sam.e as SPL's.

SPL

LOCATION variables contain addresses (m.em.ory locations) of dataitem.s or
im.perative statem.ents. They are used for indirect access to data and for an
indirect GOTO statem.ent (Item. D2). They are declared with a secondary data
type to indicate the type of data item. being indirectly addressed so the com.piler
m.ay generate code to perform. the proper conversions.

CONTEXTUAL data item.s are provided for tem.porarystorage within a pro­
gram.. They are declared without fixed attributes, and each tim.e they are
assigned a value in the program. they take on the attributes of the expres sion
from. which they were assigned. Only the word size (num.ber of bits) is speci­
fied in the declaration.

STATUS variables are like BOOLEAN variables but have m.ultiple states. The
program.m.er m.ay declare any num.ber of states for a given status variable. A
program.m.er defined nam.e (STATUS constants - Item. B6) is assigned to each
of the states in the declaration of the variable.

CLASP

Location variables are not provided as data item.s, but location constants
(Item. B6) reference m.em.ory locations of data item.s and statem.ents and can be
used in expressions. Indirect addressing is not provided.

The TEMPorary data attribute provides the sam.e capability as SPL's CON­
TEXTUAL data item. but allows it only for fixed-point data item.s. Only the
scaling of the fixed point value is determ.ined from. the assignm.ent statem.ent.
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B4 Numeric Data Values
(dd = string of zero or more declmal digits)

HAL

Both integer and scalar literals have the same form:

dd. dd {. ~~~~}
H+dd

where the E, B, and H expressions represent powers of 10, 2, and 16 respec­
tively. These expressions are optional and may be used in any combination in
a single literal. If the value of the literal is a whole number, the re suIt is an
integer, regardless of the form of expression. If the value has a fractional
part, the result is a scalar. The decimal point is optional if there is no frac­
tional part. Scaling of a (fixed point) scalar is determined entirely by the con­
text of its use.

CMS-2

Decimal numeric literals are expres sed as:

integer:
fixed or floating point:

ddD
dd. ddE+ddD

where the E-expression is a power of 10 and the D indicates decimal number.
Fixed-point scaling is determined by context. The same general formats are
used for hexadecimal (followed by S indicator instead of D) and octal (no indica­
tor required). In t~ese cases, all digits are interpreted in the indicated num­
ber system and the E-expression is a power of 16 or 8 respectively. Hexadec­
imal numbers must begin with a numeric digit.

SPL

Integer, fixed point, and floating point literals each have different forms:

Integer:
Floating Point:
Fixed Point:

ddEdd
dd. ddE+dd
dd. ddE+dd A+dd

The E-expression represents a power of 10 and is optional in all forms. The
A-expression is a required scaling factor to determine the number of fraction­
al bit positions in the computer word. The decimal point is required in both
non-integer forms.

CLASP

CLASP forms are identical to SPL except that integers may not have an
E-expression, and the A-expression is optional (scaling determined by context)o
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B5 Logical, Bit, Character Data Values

HAL

Four forms of bit-string literals are available:

BIN 'binary digit string I
OCT loctal digit stringI
HEX Ihexadecimal digit string l

DEC Idecimal digit string I

Blanks may be embedded within digit strings but have no significance. The
first three forms may include an integer repetition factor to repeat the digit
string pattern.

Special forms are available for Booleans:

TRDE or ON can be used for BIN III
FALSE or OFF can be used for BIN '0'

Two forms of character -string literals are available:

Icharacter -string l

CHAR 'character -string'

The CHAR form may have a repetition factor to repeat the pattern. Within a
character-string double apostrophe (I') must be written to represent a single
apostrophe (I), and the sequence /':< starts a comment (Item AI)o

CMS-2

Bit-strings may be generated as numeric integers (Item B4).

Boolean literals are expressed as the integers 1 and O.

Hollerith (character-string) literals are expressed as:

H(character -string)

Within a character-string, two consecutive right-parentheses or left-parenthe­
ses must be written to represent a single right-parenthesis or left-parenthesis
(just as HAL does for apostrophes).
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B5 (continued)

SPL

Logical (bit-string) literals have the same forms as HAL bit-strings except they
do not include DEC. Additionally, the characters B, 0, and X may be used in
place of BIN, OCT, and HEX, respectively. Blanks may not be embedded in
digit strings.

Boolean literals are:

'TRUE'
'FALSE'

'ON'
'OFF'

(true condition)
(false condition)

Note that the apostrophes are part of the literalexpres sion.

Two forms of textual (character-string) literals are available:

'character string'
nT'character string'

where n indicates the number of characters in the string and T indicates Iltex_
tual". The second form is required if apostrophes are to be embedded in the
character-string.

CLASP

Logical (bit-string) literal forms are identical to SPL but only the B, 0,
keywords are permitted. Blanks may not be embedded in digit strings.
ean literals are TRUE~ ON. FALSE, OFF.

and X
Bool-

Textual (character-string) literals are identical to SPL except that the T is not
required in the second form.
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B6 Other Data Values

I

HAL

None.

CMS-2

Status constants are defined as in SPL, and can include any characters except
dollar sign ($) and apostrophe (I).

SPL

Location constants have three fonns:

LOC Ilabel l

LOC Inamel
LOC Iname(sub)1

for statement label
for data items
for arrays, tables, and table items

The subscript sub (see Item BIZ), identifies a specific element.

Status constants have the form:

Iname I

Every status variable (Item B3) has a status constant assigned to each of its
defined states at declaration. The status constants are represented internally
as integers, but may be represented in the source code by the defined literal
Iname I.

CLASP

Location constants are defined as in SPL.
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B 7 Numeric Data Item Precision Attributes

HAL

1£ SCALARs are floating point, the only declared precision attribute is specifi­
cation of the number of significant decimal digits required. This number is
used only to determine whether a single precision or a multiple precision word
will be used.

1£ SCALARs are fixed point, the declaration includes the required number of
integer bits and the required number of fractional bits. These values are used
both to determine single or multiple precision and to align data values within
the computer word.

The word length of INTEGERs is fixed and not underprograrnrner control.

CMS-2

Floating point data items have no precision attributes.

Fixed point and integer data items have the same precision attributes as SPL.

SPL

FLOATING point data items have the same precision attributes as HAL.

FIXED point data items have declared attributes for the total number of bits and
the number of fractional bits. The total number of bits determines if single or
multiple precision is required and the number of fractional bits aligns data val­
ues within the computer word.

INTEGER data items have an attribute for the total number of bits.

CLASP

FIXED and FLOATING point data items have the same precision attributes as
their SPL counterparts. However, FIXED point precision attribute declara­
tions are considered minimum precision requirements. In an effort to reduce
scaling shifts during program execution, the compiler may allocate more frac­
tional bits than are requested.

INTEGERs have no precision attribute. Maximum value is the highest com­
puter memory address.
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B8 Presetting Data Values

HAL

Any data item may be declared CONSTANT and have its permanent value
assigned in the declaration, or it may be declared INITIAL and have its initial
value as signed in the declaration. In either case the value must be a literal,
or list of literals if the data item has multiple elements. Literal lists may in­
clude repetition factors to avoid writing the same literal many times.

CMS-2

Initial values may be preset by appearance of a literal value in the declaration,
or through a separate DATA statement. Numeric values in DATA statements

I
,may be followed by an integer which places the binary point within the value, to

align it with the binary point of the data item being preset.

CMS -2 data items cannot be declared constanto

SPL

Same basic declaration capability as HAL. In addition, there is a PRESET
statement which allows preset (initial or constant) values to be assigned to por­
tions (e. g. selected columns or rows) of arrays and tables. The values must
be literals or lists of literals.

CLASP

Same basic declaration capability as HAL, with the additional capability of re­
presenting preset values with formulas consisting of literals and predefined
CONSTANTS.
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B 9 Other Data Item. Attributes

HAL

See Item. F3 for LOCKTYPE and Item. G2 for data packing and dynamic storage
allocation. See Item. F2 for access rights.

CMS-2

Integers and fixed point data item.s m.ay be declared signed (S) or unsigned (U)
as in SPL.

SPL

Integers and fixed point data item.s m.ay be declared SIGNED or UNSIGNED.

Any arithmetic data item.s m.ay be declared ROUND. When a ROUNDed data
item. is assigned to a data item. or expression of higher precision than its own,
the res ult is rounded rather than sim.ply truncatedo

A data item. m.ay be assigned m.inim.um. and m.axiJ;num. values which are used to
scale interm.ediate results of expressionso

See Item. G2 for data packing.

CLASP

The PARAMETER attribute m.ay be assigned to any data item. which is a con­
stant during any program. execution, but whose precise value is not known at the
tim.e of program. com.pilation. PARAMETER values m.ay be changed without re­
com.pilation, but data type and attributes m.ay noto
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Factored DECLARE statements may be used to simplify the declaration of
many data items with similar characteristics. The common (factored) attri­
butes are listed immediately following the DECLARE statement, and the data
items follow the factor list specifying only additional attributes. These may
override the common attributes for specific data items.

B 10 Alternative Data Declarations

HAL

Selected data items may be declared implicitly by appearance of the item name
in the program. Data type is determined by the notation on the exponent line
over the item name indicating vector (_), matrix (>:<), character string ('), bit
string (.), or scalar (blank). Default attributes (Item Bl3) for the data type are
assigned. To avoid inadvertently using an already declared name for an impli­
cit declaration, an OUTER statement (Item El3) is provided to selectively iso­
late a block of code from names declared outside it.

The data type notation on the exponent line may also be used in a DECLARE
I statement instead of writing out the word describing the data type.

I
i

I
CMS-2

Implicit declarations are not permitted, but a MODE statement, as in SPL, de­
fines default data type and attributes. Any data item declared (explicitly) with
no type or attributes specified takes on the default data type and attributes.

Declarations can be factored only to the extent that multiple data items may all
be given exactly the same attributeso

I
SPL

SPL also allows data items to be declared implicitly by appearance, but the no- .
tation does not permit distinction among data types. Instead, a MODE state­
ment is used to define a data type and specific attributes, and implicitly de­
clared data items take on the type and characteristics of the most recent MODE
statement.

Factored declarations are provided.

CLASP

Implicit declarations are not permitted.

Factored declarations are provided but all items within a single declaration
must be of the same data type.
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B 11 Data Or ganizations

HAL

VECTOR and MATRIX forms can be defined explicitly. Their data elements are
SCALAR, by definition. A full complement of VECTOR and MATRIX arithmetic
functions is provided (see Item C8). .

ARRAYs can be defined to be made up of any data type, including VECTOR and
MATRIX. Maximum number of dimensions is implementation dependent.

Structures allow data to be organized in a hierarchy of data levels. Each ele­
ment at any level of a structure may be either a data item (including ARRAY.
VECTOR, or MATRIX types) or a substructure (minor structure) which is made
up of elements on the next lower hierarchical level. A structure may be
QUALIFIED, or NON QUALIFIED (unique structure element names are used at
each level).

Multiple copies of a structure may be declared for the major structure at the
top level, as well as for any minor structure at lower levels. Specific copies
are accessed by indices in the structure element nameso

CMS-2

Tables of items may be defined, where table-items are further structured into
named fields. Table-items are selected by an index, and fields within items
are selected by name. The term TABLE1 (Index, NAME) retrieves the data
element from field NAME of item number "Index" in TABLE!. A field can con­
tain any data type (Items B1, B2, and B3). The programmer can exercise full
control over field definitions and can overlap fields, providing for variable
data structures.

Tables may have one, two, or three dimensions, and require the corresponding
number of indices. The field nam.e is in addition to the dim.ension indices.
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B 11 (continued)

SPL

ARRAYS can be defined to be made up of any data typeo Maximum number of
dimensions is implementation dependent. ARRAYs are used to represent vec­
tors and matrices.

TABLEs are two-level data organizations with numbered entries and named
items within the entrieso The term NAME(Index) retrieves table item NAME
from the entry number "Index" . Features are provided for both variable
structures and variable length table entrieso

Group structures can be defined to organize unrelated data declarations under
a common group name. This concept allows different data tables, arrays, and
items to have the same declared name and provide unique references by quali­
fying it with the group name (e. g. GROUPl'ITEM and GROUP2'ITEM). The
same type of qualified name 'applies to items within tables if items in two dif­
ferent tables have the same name (e. g. TABLEl'ITEM and TABLE2'ITEM).

CLASP

ARRAYs are the same as for SPL but cannot have more than three dimensions.

Groups are similar to SPL but all items within a group must be of the same data
type. Qualified names are not provided and the only place a group name can be
used is on the left side of a multiple assignment statement (Item C7).
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B 12 Index Type s

HAL

Indices are written as subscripts on a data item name. They can specify
either single elements or multiple-element partition of vectors, matrices, bit­
strings, character -strings, arrays, and structures. Individual index expres­
sions may be any valid arithmetic expression which results in a single value.

Three index forms are available to select a multiple-element partition of a data
organization:

o An asterisk (,;,) in any index position selects all
elements in the corresponding row, column,
plane, etc. of the organization (M':',4 selects the
entire fourth column of the matrix M).

o The phrase A TO B in any index position selects
elements A through B, inclusive, of the corres­
ponding dimension (Ml TO 3 4 selects the first,
3 elements of column 4).

o The phrase A AT B in any index position selects
A elements beginning with element B (M2 AT 4 4,
selects elements 4 and 5 of column 4).

In the most general case, structures may contain arrays which may contain
vectors, matrices or strings.

CMS-2

Indices are included in parentheses following a table name. Any literal value,
data item name, tag (Item G4), or hardware index name (Item B 14) may be
used. The only formula allowed is a variable.±. a constant.

The only multiple-element partition capability (such as HAL's asterisk and
SPL's blank) is the ability to access an entire table item (all fields) within a
TABLE (Item B 11).
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B 12 (continued)

SPL

Indices are enclosed in parentheses following a data name. They can specify
either single elements or multiple element partitions of tables, table items,
arrays, bit-strings, and byte (character) strings. Any valid arithmetic expres­
sion which results in a single value may be used. A blank in any index position
is treated the same as HAL's asterisk.

Implicit indices may be named for an array at the time it is declared. If the
array name appears without an index expression, the implicit indices are used.
Note that ARRAY has no index expression so implicit indices are used, but
ARRAY ( ) has blank indices so the entire array is referencedo This notation
applies only to arrays which have implicit indices declared. 1£ the array has
no implicit indices, then the term ARRAY references the entire array.

CLASP

Indices are enclosed in parentheses following an array name, and are used only
with arrays. The index must be an integer constant or variable or a simple

integer formula ::r:::::rT;} constant + constant
where all operands must be integers 0

An asterisk (,:') in an index position is treated as in HAL. SPL's implicit in­
dices are also available.
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B 13 Default Data Item. Characteristics

HAL

System. defaults are provided for essentially all declarable data item. character­
istics. A DEFAULT statem.ent can be used to m.odify these default characteris­
tics independently for each data type. The DEFAULT statem.ent applies only to
the program. block in which it is defined (and sub -blocks within that block).

CMS-2

Default characteristics are im.plem.entation dependent. They are under pro­
gram.m.er control only for MODE-defined data item.s (Item. BlO).

SPL

Default characteristics are defined but they are under program.m.er control only
for im.plicitly declared data item.s (Item. B 10).

CLASP

Default characteristics are defined but there is no program.m.er control of
them..
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B 14 Hardware Registers

HAL

None.

CMS-2

Index registers may be declared, assigned names, and access~cl directly as if
they were data items. They may be deClared on the system level (SYS-IND~X)

or the loca11eve1 (LOC -INDEX).

SPL

HARDWARE registers within the computer such as accumulators, index regis­
ters, and base registers can be declared, assigned nam.es, and accessed dir­
ectlyas if they were data item.s. They may a.lso be assigned data types and
attributes like any other data item.. These registers are used to comm.unicate
with direct assembly language code (Item A6). LOCK and UNLOCK directives
(Item. E10) m.aybe used to prevent the compiler from m.anipu1ating these regis ~

ters while the programm.er is using them.

CLASP

:Sam.e capabilities as SPLo

-127-



Cl Aritlunetic Operations

HAL

Arithmetic operations on scalars include:

Prefix minus (-)
Addition (+)

Subtraction (-)
Multiplication (blank)
Division (/)
Exponentiation (exponent as superscript on exponent line)

Arithmetic operations on vectors and matrices include:

Prefix minus (-)
Addition (+) and subtraction (-)
Ve dor Dot Product (A. .a)
Vector Cross Product (A';<B)
Multiplication (blank) or division (/) by a scalar
Multiplication (blank) by another vector or matrix
Matrix inversion and transpose

In any of the above operations, integers or bit-strings may be used in place of
scalars. Implicit conversions are made as necessary.

CMS-2

Arithmetic operations on scalars are the same as SPL. There are no vector
or matrix operations.

SPL

Arithmetic operations in SPL provide the same basic capabilities as those in
HAL. Differences are primarily in notation for multiplication (':<), exponentia­
tion (':0;<), dot product (':'), and cross product (/':'). While vectors and matrices
are not explicitly declared in SPL, vector operations apply to one-dimensional
arrays and matrix operations to two-dimensional arrayso Appropriate parti­
tions of higher -dimension arrays can also be used for vectors and matrices.

CLASP

Arithmetic operations on scalars are the same as for SPL. The only matrix
operation available is matrix multiplication (/ ,;, /).
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C2 Logical Operations

HAL

Bit-string operations include:

Com.plem.ent (NOT or .., )
Logical AND (AND or &)
Logical OR (OR or , )
Concatenation (CAT or II )

The only character -string operation is concatenation.

NOT, AND, and OR can be applied only to bit-strings. For concatenation,
both operands m.ust be bit-strings or one argum.ent m.ul;lt be a character-string.
Bit-strings can be concatenated on the end of character -strings but not char­
acter-strings on bit-stringso

No exclusive OR and no explicit shift operations are providedo

CMS-2

No capability.

SPL

Logical operations include:

Logical AND (LAND)
Logical OR (LOR)
Exclusive OR (LXOR)
Right Shift (RSH)
Left Shift (LSH)

These operations m.ay be applied to any data type or com.binations of data types.
Shift operations are logical shifts if the argum.ent is logical or textual, and
algebraic shifts if the argum.ent is num.eric.

Com.plem.ent and concatenation are excluded.

CLASP

Operations are identical to SPL except that all shift operations are algebraic,
and textual data cannot be shifted.
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C3 R~lational Operations

Symbologies for available relational operations are shown below:

s:: s::
11l 11l ~

..d ..d Q)
~ s:: .... s:: ....

~ ~11l 11l 11l
.....

~ 11l I-< 11l Ul
:l ..d ..d Q)

Q) :l Q) ::J Ul
0"' ..... .... .... .... 0"' .... 0"' Q) ~

Q) 11l 11l 11l ..... OJ) s::Ul Ul Q) Q) s::.... :l Ul Q) Ul Q) .... 11l b 11l0 0"' Q) I-< Q) ~ I-< ~ 0 ..ds:: Q) ..... 00 ..... 0 OJ) 0 s:: .... s::-E

HAL ...,= = < > < = > = ...,< ...,>

CMS-2 NOT EQ LT GT LTEQ GTEQ
Q) Q)..... .....

SPL NQ EQ LS GR LQ GQ ~
,D

.... ..... .... ~
0 .,-l o .,-l

CLASP NQ EQ LS GR LQ GQ s:: 11l s:: 11l
:> :>
11l 11l

HAL

Vectors and matrices can be compared only with "equal" and "not equal" oper­
ations o Only integer, scalar, or bit-string formulas may be mixed in relation­
al formulaso (NOT may be used for -, in any operation. )

CMS-2

Textual (Hollerith), status, and Boolean Formulas may be compared only with
"equal" and "not equal". Numeric formulas may be compared with any of the
operations 0

SPL

Single -valued formulas of any type may be compared in any combination.

CLASP

Textual and logical formulas may be compared only with "equal" and tlnot equal"
Numeric formulas may be compared with any of the operations.
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C4 Boolean Operations

HAL

All of the bit-string logical operators (NOT, OR, AND, ConCATenate) can be
applied to single-bit bit-strings or to the results of relational operations (Item
C3). There are no operations which are exclusively Booleano

CMS-2

Boolean operations include:

COMP
OR
AND

(complement)
(true if either operand true)
(true if both operands true)

Operands must be Boolean. COMP is implemented as an open function; the ar­
gument must be enclosed in parentheses.

SPL

Boolean operations include:

NOT
OR
AND
EQUIV

(complement)
(true if either operand true)
(true if both operands true)
(true if both operands equal)

Operands must be Booleano

CLASP

Same as SPL.
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C5 Explicit Data Conversions

HAL

The following data element conversion functions are provided:

INTEGER (ar gument)
SCALAR (argument)
BIT (argument)
CHARACTER (argument)

These functions convert single data element formulas to the indicated data type,
and convert array, vector, or matrix formulas to arrays of elements of the in­
dicated data type. Subscripts on these functions can convert lists of arguments
to arrays of the indicated data type and with dimensions dictated by the sub­
scripts. Subscripts on BIT and CHARACTER can also select a portion of an
argument for conversion (Item B12).

Selected portions of bit-strings and character -strings can be as signed values
without modifying the remainder of the string. This is accomplished by sub­
s cripting the string name on the left side of an as signment statement.

Other data types may also be partially assigned by using the SUBBIT (argument)
operator which allows any argument to be treated as a bit-stringo A subscript
on the operator identifies the bits to be changedo

Two other conversion functions:

VECTOR (argument)
MATRIX (argument)

convert arguments to scalar data types and form them into vectors and arrays.

CMS-2

The same BIT and CHARacter operations as provided in HAL. CHAR may be
used on the left side of an assignment statement to assign a portion of a charac­
ter -string, but BIT may not.
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SPL

C5 (continued)

I
I

I

Almost all data conversions are performed implicitly in SPL, and there are no I
functions provided exclusively for data type conversion. However, BIT and II

BYTE modifiers extract portions of data items and interpret them as bit-strings
and character -strings, respectively, similar to their HAL counterparts. In- I
dices on the modifier indicate how many consecutive bits (bytes) to extract and
at which bit (byte) to start. BYTE operates only on textual data item.s, but BIT
operates on any type of data item.

BIT and BYTE can both be ul?ed on the left side of an assignment statement to
as sign a portion of a data item.

The scaling operator (Item C8) converts to fixed point data.

CLASP

A built-in function UNPACK extracts selected bits from a formula. A corres­
ponding procedure, PACK, inserts the low order bits of a numeric formula in­
to selected bit positions of a numeric data item.

-133-



(BLANK)

-134-



C6 Operations on Data Organizations

HAL

All of the arithmetic and logical operations (Items C 1 and C2) are directly ap­
plicable to arrays and array partitions of the appropriate data types. The two
array operands must be the same size and shape, and the operation is per­
formed element by element between pairs of corresponding elements in the two
arrays. The "equal" and "not equal" relational operations may also be applied
to arrays.

If only one of the operands is an array, then the indicated operation is perform­
ed in sequence using the single operand and each element of the arrayo

Data structures and multiple copies of structures may be treated as arrays in
operations, provided they do not contain substructureso

CMS-2

No capability.

SPL

Arrays or array partitions which qualify as vectors (one dimension) or matrices.
(two dimensions) are subject to a comprehensive set of standard operations
(Item Cl). Other arrays are subject only to multiplication by a scalar and hav­
ing scalars added to or subtracted from them. ("Scalar" refers to a single
valued item, as opposed to table or array.) There are no two-array operations.

Tables (or table-entries) are subject only to "equal" and "not equal" compari­
sons, and can be compared only to integer zero, textual blank, or another
table (or table-entry).

CLASP

All arithmetic and logical operations are apparently applicable to arrays and
array partitions (the specification is not explicit). (Relational operations are
not mentioned in conjunction with arrayso) Groups are not subject to any oper­
ations.
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C7 Assignm.ent Statem.ents

HAL

Assignm.ent statem.ents are of the form.:

variable, variable, ... variable· = form.ula

where m.ultiple variable nam.es m.ust be all of the sam.e data organization (sin­
gle elem.ent, vector, array, etc.), and each variable is assigned the sam.e val­
ue (or set of values if the data organization has m.ultiple elem.ents). The form.­
ula represents that value or set of values. If the data organization is m.ulti~

elem.ent, then either the form.ula is m.ulti-elem.ent and assignm.ent is m.ade ele­
m.ent by elem.ent or the form.ula is single -elem.ent and the single value is
assigned to each elem.ent of each variable. The VECTOR and MATRIX conver­
sion functions (Item. C5) can group data elem.ent values for as signm.ent to vec­
tors, m.atrices, and arrays.

Integer, scalar, and bit-string form.ulas m.ay be assigned to any data type, and
conversions are im.plicit. Textual (character-string) form.ulas m.ay be assign­
ed only to textual variables.

CMS-2

Assignm.ent statem.ents for data elem.ents are of the form.:

SET variable, variable, 0 •• variable TO form.ula

where each variable is assigned the single value represented by the form.ula,
as in HAL. Multiword assignm.ent statem.e nts are restricted to:

SET Table TO Table
SET Table-Item. TO Table-Item.
SET Table or Table-Item. TO form.ula

The first two cases assign elem.ent by elem.ent from. one m.ultiword data item..
to another. In the third case, the single-valued form.ula is assigned to each
elem.ent of the table or table -item..

No data type conversions are m.ade between arithm.etic, Hollerith, Boolean,
or status variableso Within an assignm.ent statem.ent, all variables and the
form.ula m.ust be of the sam.e type. Conversions am.ong fixed-point, floating
point, and integer are m.ade im.plicitly. Status variables m.ay be assigned only
to single status constants. Exchange as signm.ent is available in the form.:

SWAP variable AND variable

The sam.e conversion and com.patibility rules apply as for one -way assignm.entso
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C7 (continued)

SPL

Assignment statements are of the form:

variable, variable, •.• variable = formula, formula, • 0 0 formula

and are interpreted the same as for HAL if the variables are single -element
and there is only one formula. If there are multiple formulas, each variable
is assigned the value of the corresponding formula. Excess formulas are ig­
nored; excess variables are each assigned the value of the last formula.

Tables (or table -entries) may be assigned only from integer zero, textual
blank, or word for word from another table (or table-entry). An array (or
table -item) may be as signed from another array (or table -item) or from a list
of single-element formulas.

Implicit conversions are made among all data types except textual data which
does not have a secondary type (Item D4). Such data can be assigned to (or
from) textual or logical data only; assignments involving other types are un­
defined.

Nested assignment statements allow variables to be assigned values in the
same statement in which they are being used. For example:

A=B+C=D

assigns the value of D to C; then adds the value of B and assigns the result to A.

Exchange assignment statements are of the form:

variable, •.• variable==variable, ••• variable

and each variable on the right exchanges values with the corresponding varia­
ble on the left.

CLASP

The basic assignment statement is id~ntical to SPL except that the number of
variables cannot exceed the number of formulas. Arrays may be assigned ele­
ment by element from array formulas or may be assigned from a single-ele­
ment for.mula (each element of the array gets assigned the same value).

Implicit conversions are made among all data types except that textual form­
ulas may be assigned only to textual variables.

Exchange assignment is the same as SPL, but nested assignment is not avail­
able.
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C8 Scaling of Intermediate Results

HAL

HAL code automatically scales the intermediate results of scalar expressions
according to the declared scale factors of the operands and of the ultimate re­
suIt. The programmer may force a different scaling on an intermediate result
by subscripting the intermediate portion of the expression with @ followed by
the desired precision expres sion. Either single or double precision can be spe­
cified along with the placing of the binary point.

By including the name of another variable in the precision expression, the pro­
grammer can place the binary point relative to the scaling of the named varia­
ble.

If scalars are floating point, the precision expression is simply a number spe­
cifying the total number of decimal digits to be allocated.

CMS-2

The CMS-2 scaling operator is of the form •• p where p is an integer literal or
a tag (Item G4). It specifies the number of fractional bits to be allocated in the
intermediate result, but cannot respecify the total number of bits,

SPL

The SPL scaling operator is of the form SCL or SCLR ("scale and round")
followed by a precision expression which specifies either absolute placement of
the binary point or the name of a fixed point variable whose scaling is to be
used. The scaling operator can be applied to any numeric or logical expres­
sion and converts it to fixed point.

CLASP

The CLASP scaling operator is of the form. S followed by a precision expres­
sion. The capability is the same as SPL1s SCL except that:

- The precision expression can be a variable name
only if the scaling operator is belng applied to a
TEMPorary (Item B3) variable.

- The scaling operator can be applied only to fixed
point expressions.
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D 1 Direct Unconditional Transfers

HAL

IIGO TO label" causes direct transfer to the destination statement "label". The
destination statement may be within the same program or subroutine as the GO
TO statement, or it may be in its Ilouter block II (see Item E 1). The GO TO
statement may not branch into the interior of a nested subroutine.

CMS-2

"GOTO label II has the same characteristics as the HAL GO TO, but the destin-
ation statement must be within the same subroutineo Additional uses of the I
GOTO are described in Item D2.

SPL

IIGOTO label ll has the same characteristics as the HAL GO TO, when the label
is a simple statement label. Additional uses, of the GOTO are described in Item
D2.

CLASP

IIGOTO label" will transfer directly to any labelled statement in the program
regardless of where it is located. Additional uses of the GOTO are described in
Item D2.
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D2 Variable Transfers

HAL

The DO CASE (case expression) statement executes a single statement from the
group of statements following it, based on the value of the arithmetic Ilcase ex­
pression" . If the selected statement is a GO TO, control is transferred to the
indicated label. Otherwise control resumes at the end of the group of state­
ments following the DO CASE. The "selected statement" may be any executa­
ble statement including a "DO group" (Item D7). A NULL statement is included
in HAL so that Ilno response II can be assigned to certain values of the "case ex­
pression".

CMS-2

The switched GOTO is equivalent to SPL's, but the switch list is always de­
clared separate from the GOTO. The switched GOTO is the only way to branch
to a 'statement label outside a subroutine.

SPL

Two separate capabilities are provided for transferring control to one of sever­
al places from the same statement. The first is an indirect GOTO, where the
argument is the name of a location variable (Item B3). The value currently
stored in the named location variable is treated as a memory address and con­
trol is transferred to that address.

The second is a "switched" GOTO, where the argu:n::ent is a list of statement
labels, location variables (indirect addresses), or Close names,- followed by­
an index formula. The items in the switch list are numbered consecutively in
the order they appear, and the current value of the index determines which item
will be used as the argument of the GOTO. Blank entries in the switch list re­
fer to the statement following the GOTO (i. eo, do not branch). The index is
normally limit checked during execution to insure the value corresponds to a
switch list item. Out of limit index values do not cause a branch. However,
this limit check can be overridden by terminating the switch list with an aster­
isk (>:<). A switch list may be declared once and then referenced by name in
many GOTO statements.

CLASP

The switched GOTO is the same as SPL but the switch-list must be defined in
the GOTO statement, and the index formula must be a simple integer formula
(Item B12). CLASP has no indirect addressing.
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D3 Conditional Statements

HAL

The conditional statement is of the general form:

IF logical-condition THEN statement ELSE statement

It evaluates the logical-condition and performs the THEN statement if true and
the ELSE statement if false. The THEN and ELSE statements may be IF state­
ments or DO groups, as well as simple statements. The keyword ELSE and
the ELSE statement are optional. If ELSE is included, the THEN statement
cannot be an IF statement. (However the THEN statement may be a DO group
with IF statements embedded in it).

CMS-2

The IF statement has no ELSE statement and the THEN statement cannot be a
conditional or iterative statement. If the true response has multiple statements
each is preceded by THEN. (They are all executed if the condition is true):

IF logical-condition THEN statement 1
THEN statement 2,

THEN statement n$

Two special cases of the logical-condition are defined. IF DATA FOUND (or IF
DATA NOTFOUND) can be used following a FIND statement (Item D6), to deter­
mine if a table search was successful. Table-element VALID (or table-ele­
ment INVALID) may be used to validity check subscript values in a table refer­
ence. If any subscript in the table element reference is out of range of the de­
clared table dimensions, the reference is INVALID.
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D3 (continued)

SPL

The basic form. of SPL's conditional statem.ent is the sam.e as HAL's except
that the statem.ent m.ust be concluded with an END:

IF logical-condition THEN statem.ent ELSE statem.ent END

The THEN and ELSE statem.ents m.ay be IF statem.ents or statem.ent groups as
well as any single statem.ent. The ELSE is optional, but the END is required.
A sim.pler version has the form.:

IF logical-condition single -statem.ent

Because the true response is a single statem.ent, and there is no false response,
the primitives THEN, ELSE, and END are not required. (HAL still requires
the THEN keyword in this case.)

Separate conditions and true responses m.ay be concatenated with an ORIF
clause:

IF logical-condition 1
ORIF logical-condition 2
ORIF logical-condition 3,

ELSE default-response
END

THEN response 1
THEN response 2
THEN response 3,

Only the response for the first true condition encountered is executed. If none
of the conditions are true, the (optional) default-response is executed.

An ENDALL delimiter is discussed in Item. D70

CLASP

Sam.e basic form. as SPL. The sim.pler version (no THEN) and the ORIF are not
provided in CLASP.
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D4 Decision Tables

HAL

No capability.

CMS-2

No capability.

SPL

Decision tables are of the form:
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Q)
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o
p..,
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Q)

D:: 'Action n

Condition m
ACTIONS

Action 1
Action 2,

CONDITIONS
Condition 1
Condition 2

ELSE
END

Default-Response

Each condition is a logical-condition aJ;ld each rule is a column of Y (the corres­
ponding condition must be true), N (the corresponding condition must not be
true), or blank (don't care) entries. Each action is a statement (restricted pri­
marily to simple assignment and GOTO statement), and each response is a col- I

umn of Y (this action is part of the response) or blank (this action is not part of I
the response) entries. The rules are tested sequentially from left to right, and
the first rule for which all conditions meet the indicated (Y, N, blank) states
determines the response to be taken. The response is all the actions (executed
sequentially) which have a Y indication in the response column corresponding to
the valid rule. If any executed action branches out of the table, the remaining
actions are not executed. The default - response (required in every decision
table) is executed if the conditions do not meet any of the stated rules.

CLASP

No capability.
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D5 Iterative Loop Control

HAL

HAL's unconditional iterative loop control statement has the form:

DO FOR a =b TO c BY d, x TO y BY z, ..• ;
1

END;

This statement causes repetitive execution of the statements between the DO
FOR and the END. The loop variable (a) is assigned a new value at the begin­
ning of each iteration. The values are assigned from the "for-list ll of assign­
ment values. In the example above, (a) starts at value (b) and increases by
increments of (d) to the value (c). It then takes on the value (x) and is incre­
mented by (z) to the value (y). Any of the terms (b, c, d, x, y, z) may be any
integer or scalar formulas, and may take on positive or negative values, and
the list of loop-variable values may be of any length. If the BY -expression is
omitted, +1 is assumed for an incremento If the TO-expression is also omit­
ted, the value (b) is used once and not incremented.

Any type of statement may appear in the iterated loop including nested loops.

CMS-2

CMS -2 1 s unconditional iterative loop control statement has the form:

label VARY a FROM b THRU c BY d $
1

END label $

Iterations are performed in the same manner as in HAL. The loop variable (a)
takes on only integer values. The FROM-expression is optional with a default
value of zero, and the BY-expression is optional with a default value of +1.
Parallel loops (as in SPL) are provided through the phrase:

AND w FROM x THRU Y TO z $

which follows the VARY statement.

IF THRU c is replaced by WITHIN table-name, the final value of the loop vari­
able is the number of items defined in the named table.
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D5 (continued)

SPL

SPLI s unconditional iterative loop control statem.ent is of the form.:

FOR a = b BY d UNTIL c

END

Besides the slight difference in appearance, it has the following differences
from. HAL:

The loop is not iterated for the case a=c; it is only iterated if a is less
than c (or "greater than c", if b is also greater than c)o

If the BY -expression is om.itted, the default increm.ent is zero (i. e.,
no increm.ent) rather than +1.

The BY -expression can be included without the UNTIL-expression, in
which case the loop variable is increm.ented indefinitely and iteration
m.ust be term.inated by a branch from. within the loop to a statem.ent
outside the loop.

Only one set of loop variable values (b BY d UNTIL c) m.ay follow the
FOR.

SPL provides for parallel loops as well as nested loopso The ALSO-expres­
sion is used to establish parallel loop variables. If the above FOR statem.e:n.t
had been followed im.m.ediately by:

ALSO w = x BY z UNTIL y

then each loop variable (a and w) would be increm.ented for each iteration. The
first loop variable to reach its lim.it (c and y, respectively), would stop the
iteration for both.

CLASP

The only loop control statem.ent is of the form.:

FOR a = b BY d TO c

and operates like the HAL statem.ent except that:

The loop variable (a) m.ust be an integer variable and b, c, d m.ust all
be integer data item.s (no form.ulas).

Control m.ay not be transferred directly into the interior of a loop from.
outside the loop.

Only one "for-list" (b BY d TO c) is perm.itted.
The value of the loop variable (b) is undefined when the loop is exited.
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Db Conditional Loop Control

HAL

The DO FOR statement (Item D5) may have a logical-condition appended to it:

DO FOR a =b TO c BY d, .•• WHILE logical-condition

Iteration proceeds as in the DO FOR statement so long as the logical-condition
is true. The first time it is false at the beginning of a pass through the loop,
that pas s is not taken and iteration stops 0

If there is no need for a loop variable, the statement can be shortened:

DO WHILE logical-condition

and iteration is stopped only by the logical-condition.

CMS-2

A limited conditional iteration is provided to search a table. The form is:

label FIND logical-condition VARYING a FROM b THR U c BY d $

The first term of the logical-condition must be a subscripted table-name, and
the loop control variable (a) must be one of the subs cripts. The table is
searched as specified by b, c, and d, or until the condition is satisfied by one
of the elements found. The IF DATA statement (Item D3) is used to determine
the success of the search.

SPL

The full conditional loop control statement is much like HALl s:

DO FOR a = b BY d~~;I~} logical-condition

Differences are that there is no loop variable limit (c) and UNTIL may be used
instead of WHILE if it is de sired to stop iteration when the condition goe s
false.

As in HAL, short forms are available:

LOOP WHILE logical..-condition
LOOP UNTIL logical-condition

CLASP

No cap3.bility.
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D7 Statement Groups

HAL

There are several cases where multiple statements need to be treated as a sin­
gle group. Statements in iterative loops and multiple-statement THEN clauses
and ELSE clauses are examples. The DO ••. END construction is used ex­
clusively to delimit these groups. The iterative control statements (DO FOR,
DO WfllLE) and the DO CASE all delimit their statement groups with END.

CMS-2

The only CMS -2 statement which starts a statement group is the labelled VARY
statement (Item D5). The group is concluded by:

END label $

where the req uired label references the VARY statemento

SPL

Statement groups in SPL may be started by THEN, ELSE, FOR, LOOP WHILE,
LOOP UNTIL, or DIRECT 0

The END delimiter may be used to conclude a group started by any of these. In
an SPL conditional statement, END delimits the entire IF statement rather than
THEN and ELSE groups.

Where nested loops and conditional statements imply multiple ENDs, a single
ENDALL delimiter may be used to simultaneously conclude all open groups.

CLASP

Statement groups are started by THEN, ELSE, FOR and DIRECT, and conclud­
ed by END or ENDALL as in SPL. Also as in SPL, the entire IF statement is
delimited rather than the THEN and ELSE groups.
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D8 Stop Execution

HAL

No capability.

CMS-2

STOP specifies a suspension of program execution. DetaUs are implementa­
tion dependent.

I
!
I SPL

i The following statement halts the computer when it is executed:

STOP (label)

When the computer is restarted execution will proceed at the statement identi­
fied by the label or, if there is no label, at the statement following the STOP.

CLASP

Same as SPLo
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EI Overall Program. Organization

HAL

An overall program. organization consists of one or m.ore independently com.pil­
able PROGRAMs and a com.m.on data pool (Item. FI). Each PROGRAM can con­
tain, in addition to its own statem.ents, subroutines in the form. of PROCED­
UREs, real tim.e TASKs and FUNCTIONs. TASKs m.ay be defined only at the
program. level (i. e., they cannot be nested), but PROCEDUREs and FUNC­
TIONs m.ay be defined at the program. level or within other TASKs, PROCED­
UREs, and FUNCTIONs, to any level of nesting.

A "block') of code is any program. or subroutine and all blocks declared (nested)
within it. Any given subroutine, at any level, has an "outer block" which in­
cludes all code in the direct line of subroutines in which it is nested (back to,
and including, the p,rogram. level).

Within any program. block the statem.ents m.ust be ordered as follows:

Declaration statem.ents

Im.perative (executable) statem.ents

All nested blocks (in any order)

CMS-2

An overall program. organization consists of one or m.ore separately com.pilable
System. Data Designs (SYS -DD), which define system. level (Com.poo1) data, and
System. Procedures (SYS-PROC), which are at the sam.e organizationa11eve1 as
HAL and SPL PROGRAMS. Each System. Procedure can contain Local Data
Designs (LOC-DD), local PROCEDUREs, and local FUNCTIONs. As in SPL
PROCEDUREs and FUNCTIONs m.ay be declared only at the SYS-PROC level.
Data is declared only within Data Designs, not within FUNCTIONs or PROCED­
UREs.

FUNCTIONs, PROCEDUREs, and Local Data Designs m.ay appear in any order
within a SYS-PROC, but data m.ust be declared prior to its use.
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El (continued)

SPL

Like HAL, an overall program consists of one or more independently compil­
able programs and a Compool (Item Fl)o PROCEDUREs and FUNCTIONs may
be defined only at the PROGRAM level; they may not be nestedo CLOSEs may
be nested indefinitely. Data may be declared within procedures and functions,
but not within CLOSEs. Declarative statements, imperative statements, and
nested subroutines may be mixed in any order.

CLASP

A CLASP program organization consists of a single main program and, option­
ally, one or more PROCedures, functions, and CLOSEs. As in SPL, proced­
ures and functions may be defined only at the program level and may declare
local data. CLOSEs may be nested to any level but may not declare data. An
entire program organization must be compiled together. The statements must
be in the following order:

Main program declarations

Main program imperative statements

Procedures and functions (in any order)

Closes may be declared anywhere in the source programo
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E2 Prograrn.s

HAL

A PROGRAM is the sm.allest separately com.pilable unit in the HAL organiza­
tion. It has only one entry point through which it can be entered by other PRO­
GRAMs. Param.eters cannot be passed from. one PROGRAM to another, so the
only form. of corn.rn.unication is through the Com.pool. A PROGRAM is declared
and invoked as follows:

Declaration

label: PROGRAM;,

CLOSE label;

The label on the CLOSE statem.ent is optional.

Calling Sequence

CALL label;

PROGRAMs are also subject to real-tim.e scheduling as are TASKs (Item. E4)o

CMS-2

A System. Procedure (SYS-PROC) is the sm.allest separately com.pilable pro­
gram. unit. (A System. Data Definition is separately com.pilable to generate a
Com.pool, but does not produce executable code.) Unlike SPL and HAL, there
are no executable statem.ents at the SYS-PROC level. There are only declara­
tions of PROCEDUREs, FUNCTIONs, and Local Data Definitions. Every SYS­
PROC contains a prim.e PROCEDURE, which has the sam.e label as the SYS­
PROC and which is an external entry point. Other PROCEDUREs and FUNC­
TIoNs m.ay be explicitly declared external. A SYS-PROC is declared as fol­
lows:

label SYS -PROC $,

END-SYS-PROC label $

The label on the END-SYS-PROC statem.ent is optional.
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E2 (continued)

SPL

A PROGRAM is the sITlallest separately cOITlpilabl~.unitin the SPL organiza­
tion. A single PROGRAM can have ITlultiple entry points accessible by other
PROGRAMs. Both input and output paraITleters (IteITl E8) can be transferred
between PROGRAMs. In addition, all PROGRAMs ITlay access the COITlpool.
Both RECURSIVE and REENTRANT prograITls can be declaredo A prograITl is
declared and invoked as follows:

Declaration

START • label (input-paraITleters = output-paraITleters) attributes

TERM label

Calling Sequence

• label (input-arguITlents = output-argUITlents)

A prograITl ITlay also ,be declared with the data type and return forITlula of a
function (IteITl E5), and then ITlay be either called as above or invoked like a
function by appearance of the label in an expression. In this case, values are
returned for all defined output paraITleters and a separate value (the return
forITlula) is returned for the appearance of the label in the expression where the
function was invoked.

CLASP

A CLASP prograITl organization consists of one and only one prograITl.
arately cOITlpiled prograITls within one organization are not perITlitted.
graITl is declared as follows:

START

TERM
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E3 Procedures

HAL

A PROCEDURE is very similar to a PROGRAM in definition and calling se­
quence, but a PROCEDURE is not separately compilable and parameters can be
passed between a calling module and a PROCEDURE. PROCEDUREs are not
subject to real-time scheduling. PROCEDUREs are declared and invoked as
follows (The label on the CLOSE statement is optional.):

Declaration

label: PROCEDURE (input-parameters) ASSIGN (output-parameters);

CLOSE label;

Calling Sequence

CALL label (input-arguments) ASSIGN (output-arguments);

CMS-2

PROCEDUREs are very similar to HAL procedures with the primary differ­
ence that alternate return statement labels can be passed when the PROCEDURE
is called. The PROCEDURE may return either irnrnediately after the calling
statement or to a named alternate return. PROCEDUREs are declared and in­
voked as follows:

Declaration

PROCEDURE label INPUT input-parameters OUTPUT output­
parameters EXIT alternate-returns $

END -PROC label $

Calling Sequence

label INPUT input-arguments OUTPUT output-arguments EXIT
alternate-returns $

PROCEDUREs may also be invoked through a procedure switch, which is a list
of PROCEDURES. The current value of an index determines which PROCED­
URE in the list will be invoked. All procedures must have identical number and
type of formal parameters, and alternate returns may not be specified. The
switched call may include an error branch to be taken if the index value is be­
yond the range of the switch list (see Item D2).
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E3 (continued)

SPL

PROCEDUREs are very similar to HAL procedures with the following differ­
ences:

RECURSIVE and REENTRANT procedures may be declaredo

A procedure can be declared INLINE, in which case the compiler dup­
licates the object code when the procedure is invoked rather than gener­
ating a branch to common object code.

Like an SPL program, the SPL procedure can be declared with the at­
tributes of a function and can then be either called or invoked like a
function (Item E5).

An SPL procedure may have alternate entry points.

Labels of CLOSEs (Item E6) may be passed as input parameters and
the procedure may execute a CLOSE whose label is passed.

Alternate exit statement labels may be passed as output parameters,
and the procedure may return to an alternate exit.

Procedures m.ay not be nested.

The declaration and calling sequence differ in format.

Declaration

PROC • label (input-parameters = output-parameters) attributes,

EXIT

Calling Sequence

• label (input-arguments = output-arguments)

CLASP

Identical to SPL except:

No RECURSIVE or REENTRANT capabilityo

Cannot be invoked like a function.

No alternate entry points.
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E4 Real-Time Tasks

HAL

A TASK is a subroutine which is intended to be executed in real-time through an
executive system. Although it can be called directly like a PROCEDURE, it
can also be SCHEDULEd to be invoked in the future as a result of:

A specific time
An increment of time from now
An external EVENT such as an interrupt
An internal EVENT which is defined and SIGNALled by pro­
gram statements. .

While in execution, a TASK may suspend its own execution (WAIT) until anyone
of the above four types of occurrences. Upon the specified occurrence, execu­
tion res urnes at the statement following the WAIT statement.

CMS-2

No capability.
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E4 (continued)

SPL

Real time task control is provided through a chronic statement which assigns a
sequence of statements to be executed in response to an interrupt occurring or
a Boolean-formula corning true. The formats are:

ON interrupt-name,

END

ON Boolean-formula,

END

When such a sequence is encountered in program execution, the statements
between "ON'I and "END'I are bypassed, but assigned to be executed when the
named condition occurs. Interrupts can be separately inhibited and enabled

. (Item EIO)o The Boolean-formula is a simple relational expression (Item C3)
and is checked whenever the first operand changes value. It is also possible
for a routine to coordinate its execution in real time with another routine. The
WArT statement can be appended to a conditional (IF) statement or to a LOOP
statement. So long as the stated condition is true, program execution: will be
held up by the WAIT statement. Execution will proceed sequentially when the
condition (presumably changed by another routine) becomes false.

CLASP

CLASP has the same chronic statement capability as SPL but it applies only to
interrupts. The same interrupt control ca.pability is also provided.
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E5 Functions

HAL

A FUNCTION is similar to a PROCEDURE with the primary difference that it
returns only one parameter rather than the multiple parameters which can be
returned by a PROCEDURE. The FUNCTION name (label) is used directly in an
expression, rather than through a CALL statement. The declaration and calling
sequence are as follows:

Declaration

label: FUNCTION (input-parameters)
I data-type-attributes;
I

CLOSE label;

CMS-2

Calling Seq uence

Invoked by appearance of
"label (input-arguments)"
in a statement.

FUNCTIONs are similar to HAL functions, but may have only one input parame­
ter. The data type of the FUNCTION is not explicitly declared, and the method
for returning the res ult is implementation dependent. The declaration and cal­
ling sequence are as follows:

Declaration

FUNCTION label (input-parameter) $
I

t

END -FUNCTION label $

SPL

Calling Sequence

Invoked by appearance of
"label (input-argument )"
in a statement.

Function declarations are identical to SPL PROCedure declarations with the ad­
dition of a data type and attributes for the function name and a formula in the
RETURN and EXIT statements (Item E7). A PROCedure which has these addi­
tions may be called either as a procedure (.label) or as a function (label with
input-arguments appears in a statement). All output parameters are calculated,
in addition to the return formula, for a function call.

CLASP

Function declarations are identical to CLASP PROCedure declarations except
that there are no output parameters and the function label is declared as a data
item within the function. Functions are invoked by appearance of the function
label with input-arguments in a statement.
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E6 Closes

HAL

No capability.

CMS-2

No capability.

SPL

A CLOSE is a subroutine which has no input or output parameters and which
cannot declare data items or statement labels internal to itself. It can be de­
clared anywhere among the imperative statements of the program. It is invok­
ed by a GO TO statement. CLOSEs may not be used recursively.

CLASP

De claration

CLOSE • label
I

I

EXIT

Calling Sequence

GOTO label

Same as SPL except that the calling sequence is the same as for a PROCedure
(.labe1) instead of GOTO label.
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E7 Program and Subroutine Returns

HAL

All programs and subroutines in HAL are delimited by a CLOSE statement.
The CLOSE statement may include the label of the program or subroutine being
delimited, in which case the compiler will verify that other CLOSE statements
have not been left out or extraneously included. Except in the case of a function,
where execution of the CLOSE is an error, the CLOSE statement returns con­
trol to the caller at the statement following the CALL. In addition, RETURN
statements may be included anywhere in the program or subroutine to return
control to the caller. In a function, each RETURN statement includes a formu­
la which represents the value to be assigned to the function.

CMS-Z

System procedures, procedures, and functions are delimited by END-SYS­
PROC, END-PROC, and END-FUNCTION, respectively. The END-PROC and
END-FUNCTION statements must include the label of the unit being delimited.
These delimiters never return control to the calling routine; the RETURN
statement is used exclusively for this purpose. In a procedure, the RETURN
statement may indicate an alternate return label, passed in the calling se-
q uence (Item E3).

Functions do not have return formulas; techniques for returning results from
functions are implementation dependent.
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E7 (continued)

SPL

An SPL program is delimited by a TERM statement and subroutines are delim­
ited by an EXIT statement. In all cases, even for functions, the delimiter re­
turns control to the caller. The only delimiter which references another state­
ment's label is the TERM statement; the label identifies the primary entry
point of the procedure (default is the first executable statement). The primary
entry point label need not be the procedure name. As in HAL, RETURN state­
ments can be used anywhere in the program or subroutine to return control to
the caller. Unlike HAL, SPL subroutines may be passed alternate exit labels
and may, therefore, return control to some point other than immediately fol­
lowing the calling sequenceo As in HAL, function RETURNs include formulas
which represent the function value. (For SPL, the function EXIT statement
also includes a formula. )

CLASP

Identical to SPL with the following exceptions:

No RETURN statements; only the delimiting EXIT statement returns
control following the calling sequence. (The alternate exit capability
is provided. )

Function names are assigned values by assignment statements
rather than formulas in EXIT statements.
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E8 Subroutine Param.eters

HAL

Param.eters cannot be passed to or returned by Program.s or Tasks. All proc­
edure and function param.eters are "call-by-nam.e". That is, input and output
param.eters occupy m.em.ory locations nam.ed by the calling program. and the sub­
routine com.m.unicates with those m.em.ory locations rather than physically pas­
sing data from. the calling program. to the subroutine and back. Argum.ents spe­
cified by the calling program. m.ust be identical in data type and attributes as the
form.al (dum.m.y) par am.ete rs in the function or procedure declaration, with one
exception: the length or dim.ensions of bit-strings, arrays, etc. can be declar­
ed variable for the form.al param.eter and have specific values for these attri­
butes supplied by the calling program.s.

CMS-2

Input data param.eters and alternate return labels m.ay be passed to Procedures,
and output data param.eters m.ay be returned. Only a single input param.eter
m.ay be passed to a function and only one value is returned. All param.eters are
call-by-value but a special core address (CORAD) operator allows tables to be
passed by nam.e.

SPL

Param.eters m.ay be passed to and returned by program.s, procedures, and func­
tions but not closes. Tables, arrays, and long character-strings ("long ' • is an
im.plem.entation dependent quantity) are llcall_by_nam.e 'l param.eters. Short
character-strings and other sim.ple data item.s are .lcall-by-value 11 param.eters,
which m.eans that data is physically passed between the caller and the called pro
gram. or subroutine. In addition to data param.eters, close nam.es m.ay be pas­
sed as input param.eters and statem.ent labels m.ay be passed for alternate exits
(Item. E3).

Im.plicit conversion is m.ade between data types
argum.ents (except for textual and non-textual).
m.al param.eter arrays m.ay be variable.

CLASP

of form.al param.eter s and actual
As in HAL, dim.ensions of for-

Sam.e as SPL, with the exception that tables do not exist in the language and pro­
gram.s are never called.
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E9 Priority Assignm.ents

HAL

Priorities m.ay be assigned to real-tim.e TASKs and PROGRAMs at the tim.e they
are SCHEDULEd or m.odified through a PRIOCHANGE statem.ent after they have
been scheduled.

CMS-2

No capability.

SPL

No explicit capability, but interrupts can be inhibited and enabled to dynam.ical­
ly control which program. segm.ents can interrupt other program. segm.ents.
(Item. EIO)

CLASP

Sam.e as SPL.
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EIO Exclusive Subroutines and Interrupt Controls

HAL

The multiple priority levels associated with HAL create the possibility of a pro­
gram or subroutine being re -entered on one level while it is concurrently in
execution (suspended) on a lower leveL Since some program designs do not
execute properly if re-entered, HAL procides an EXCLUSIVE attribute. 1£ any
program or subroutine is declared EXCLUSIVE, it is protected from re-ent­
ranee. A higher priority task which calls it will be stalled, if necessary, until
the lower priority concurrent execution is completed.

CMS-2

No capability.

SPL

Subroutines may not be declared exclusive, but any routine may LOCK (inhibit)
any or all interrupts to prevent an interrupt response (Item E4) from occurring
and using the routine. Similarly, an UNLOCK statement selectively enables
interrupts. Each interrupt must be explicitly named in LOCK and UNLOCK
statements.

In addition, SPL can declare a routine to be REENTRANT (Item E2), or
INLINE as in CLASPo

CLASP

CLASP has the same LOCK and UNLOCK capability as SPL. There is no RE­
ENTRANT capability, but an INLINE procedure (Item E3) can be declared so

I
that separate inline coding can be generated for each calling sequence. This
avoids multiple use of the same object code by two different calls.
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Ell Error Recovery

HAL

Error conditions such as underflow, overflow, and division by zero are assum- I

ed to be detected by the system and it is assumed that each has a standard sys­
tem response. The ON ERRORx statement allows the prograrn.rn.er to specify a
particular response to the error condition identified by the subs cript x. For
any error (or group of errors) he may specify either the SYSTEM response or a
transfer (GO TO) to his own defined response. The response is assigned when
the ON ERRORx statement is encountered in execution and the assignment re­
mains for the scope of the statement (that is, for the block in which it is speci­
fied and any nested blocks which do not modify it).

In addition to the system detected error conditions, the prograrn.rn.er can define
his own error conditions, assign responses, and then announce their occurrence
through a SEND ERRORx statement which invokes the response assigned to
ERRORxo

CMS-2

An error branch can be specified to occur on a divide overflow.

SPL

No c..apability except for target computers where the error generates an inter­
rupt to which a chronic statement (Item E4) can be attached.

CLASP

Same as SPL.
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E 12 Library Subprograms

HAL

HAL provides an extensive library of "Built-In" FUNCTIONs such as trigono­
metric and hyperbolic functions, matrix inverse and transpose, and a variety
of string manipulations.

CMS-2

A limited set of library functions includes absolute value, remainder, and sel­
ected input/ output controls 0

SPL

These built-in functions are provided: absolute value, remainder, and integer
quotient with remainder (a procedure).

CLASP

CLASP provides the three SPL built-in functions and procedures, plus six
others.
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El3 Scope of Names and Labels

HAL

A data item name is declared through a DECLARE statement, or implicitly
through the first appearance of the name in the coding. That declaration is
recognized throughout the block (PROGRAM, TASK, PROCEDURE, FUNCTION)
in which it appears and throughout any nested blocks within that block. How­
ever, it is not recognized in an Ilouter block " (io e., one in which the block
where it is declared is nested). A declared name may be re -declared in a nes­
ted block, overriding the earlier declaration only within that block and its nes­
ted blocks.

Duplicate names in separate scopes have no connection. Compool data (Item
F 1) is declared outside any program and is recognized in any block.

An OUTER statement is provided which isolates a nested block from all dec­
larations made in an Ilouter block ll

, including Compool. Only those declared
names explicitly listed as parameters of the OUTER statement are recognized.

Statement labels follow the same scope rules as data item nameso

CMS-2

A CMS-2 program organization has two levels of name scope:
I
I

System Data (SYS-DD) which is equivalent to a Compool !
I

Local Data (LOC-DD) which is declared within a System I
Procedure '

System Data is recognized throughout the program organization. Local data is I
recognized only by Procedures and Functions within the System Procedure !
where it is declared. Data may not be declared within a Procedure or Function. I
A name declared at the System Data level may not be re -declared at a local lev- I
el, but duplicate names may be used locally in different System Procedures.

Several features are provided to override the nominal name scope, and can se­
lectively make any local declaration available to any other System Procedure•. I
Each System Procedure has one primary Procedure whose label is recognized
throughout the program organizationo In addition, any procedure may be ex­
plicitly declared external, making its label also known to the entire organiza­
tion. Statement labels may be declared external only through a GOTO switch
(Item D2).
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E 13 (continued)

SPL

An SPL prograITl organization has three levels of naITle and label scope:

COITlpool (IteITl F 1)
PrograITl
Procedure or Function

COITlpool declarations are recognized throughout the prograITl organization.
Each (separately cOITlpilable) prograITl is a separate block and each procedure
or function is a nested block within the prograITl in which it is declared. Since
procedures and functions ITlust all be declared at the prograITl level, there are
no further nested blockso Declarations within blocks and nested blocks follow
the saITle scope rules as for HAL.

There is no OUTER stateITlent in SPL. A DECLARE LOCAL stateITlent allows
a prograITl to declare a separate data iteITl for each of its procedures and func­
tions as if each had declared its owno Each iteITl has the saITle naITle and attri­
butes, but they are entirely independent data iteITls.

An external procedure declaration is provided to declare naITles of routines
which are not part of the prograITl being cOITlpiled. The declaration has the
saITle forITlat and data as a norITlal PROCedure declaration (IteITl E3) and in­
cludes the attribute EXTERNALo The cOITlpiler prepares a linkage for later
resolutiono

CLASP

There are only two levels of scope for data iteITl naITles in CLASP:

Main PrograITl
Procedure or Function

Since there is only one ITlain prograITl in an overall prograITl organization,
there is no need for a separate COITlpool level. The two available levels are
treated in the saITle ITlanner as their SPL counterparts, but there is no DE­
CLARE LOCAL capability in CLASP.

There is only one level of label scope; any stateITlent label is recognized
throughout the prograITl.
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F 1 Common Data

HAL

Any data which is declared outside of PROGRAM block and prior to that block
is considered Compool (cornmon data pool) data and can be shared with other,
separately compiled programs. A symbolic library is available in which cen­
trally defined and maintained Compool declarations, as well as other commonly
used source code, can be stored. An INCLUDE statement allows the program­
mer to select a Compool or any other identified group of statements and have it
inserted anywhere in his program.

CMS-2

CMS-2 1s System Data Designs (SYS-DD) define Compool data. A special com­
piler directive (CMP) is provided to create a Compool from a group of Sys­
tern Data Designs.

SPL

SPL has the same Compool capability as HAL, but no INCLUDE statement.

CLASP

No capability, and no separately compilable programs.
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F2 Compile Time Data Protection Features

HAL

Compool variables may be assigned ACCESS rights as they are DECLAREd.
Each PROGRAM can be assigned a unique InCODE number, and each Compool
data item can authorize access to any number of PROGRAMs by listing their
IDCODEs in an ACCESS clause. A data declaration without the ACCESS clause
is available to any PROGRAM. ACCESS rights can be assigned only to Com­
pool declarations and they do not distinguish between read acces ses and write
accesses.

CMS-2

No capability.

SPL

No capability.

CLASP

No capability.
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F3 Execution Time Data Protection Features

HAL

Data declared at the PROGRAM or COMPOOL level may be assigned either one
of two LOCKTYPEs. LOCKTYPE (2) data is protected against two independent
tasks attempting to update the data concurrently. LOCKTYPE(l) data provides
the above protection and also protects the reader of multiple data elements
(e. g. a vector) from an intervening update which causes him to get flold ' ! values
for some of his data elements and "new ll values for the rest. This protection
is accomplished through UPDATE blocks which are delimited by an UPDATE
and a CLOSE statement. All accesses to LOCKTYPE data must be made within
these blocks and they are protected by a system of real-time locks which hold
up (stall) a conflicting access until the current one is completed.

CMS-2

No capability.

SPL

A LOCK statement prevents any writing into a specified portion of memory un­
til a subsequent UNLOCK statement frees it upo This protects data from being
written while it is being read. It is intended to be implemented only if the tar­
get computer has a memory protect capability. There is no equivalent to
HALls LOCKTYPE in a data declaration, and therefore no capability for the
compiler to flag data accesses which should be LOCKed but are not.

SPL also provides the ability to inhibit interrupts (Item ElO). This capability
can be used during shared data accesses to temporarily prevent execution of
programs which might cause a conflict.

CLASP

Same capability as SPL.
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F4 Conventional Input/Output

HAL

HAL provides a device -oriented input/ output capability which identifies a device
and record number, card-column, print line or other physical device charac­
teristic. A FILE statement is used for record-oriented devices, READ and
WRITE are used for formatted character-strings, and READALL reads any
character-strings. SKIP, TAB, COLUMN, PAGE, and LINE are controls
which can be included with READ and WRITE statements to position devices.

Data conversion between character-strings and other data types is performed
by the READ and WRITE statements. The declared data types of the internal
variables determine what type of conversion takes place.

CMS-2

Like SPL, CMS-2 provides a file oriented input/output capability. A FILE
statement declares files; OPEN and CLOSE activate and deactivate them. IN­
PUT and OUTPUT transmit data. File positioning is performed by a statement
of the form:

SET POS (file-name) TO position

The position may be an absolute record location or it may be relative to the
current position.

Data conversion is performed by the INPUT or OUTPUT statement which (op­
tionally) identifies a FORMAT statement. The FORMAT statement describes
the conversions to be made between character-strings and internal data types.
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F4 (continued)

SPL

SPL provides a FILE-oriented, input/output capability, where FILE declara­
tions identify a device, data storage m.ode, record length, label of statem.ent
sequence to be executed when end-of-file is encountered, and other im.plem.en­
tation-dependent information. Input/ output then take s place between internal
core buffers and declared data FILES, using READ and WRITE statements.
OPEN and SHUT statements activate and deactivate files. Files are positioned
by BACKSPACE, SKIP and REWIND statem.ents.

Data is transmitted between files and buffers without conversion. The conver­
sion is performed implicitly as the data items from. internal buffer s are used
in formulas and assignment statements (see Item C7).

To aid in this conversion, the buffers may be declared as TEXTual (character­
string) data with. a secondary data type .(integer, floating point, status, etc.)o
This secondary data type determines how character -strings are interpreted
when they are converted to other data type s.

CLASP

No capability.

-177-



F5 Real-Time Input/Output

HAL

No capability other than Item F4. If the system implementation assigns de­
vice names to external avionics equipment, the FILE statement would be capa­
ble of describing the transfer of data between internal data items and external
equipment. However, no explicit features beyond those described in Item F4
are defined.

CMS-2

Same adaptability as SPL, but no explicit description of a capability.

SPL

The FILE declaration capability could be used to declare file-names for exter­
nal avionics equipment, and READ/WRITE statements could be used to perform
I/O. However, no explicit features beyond those described in Item F4 are de­
fined.

CLASP

No capability.
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G 1 Optimization Directives

HAL

HAL's optimization-related directives are m.em.ory allocation controls (Item.
G2).

CMS-2

Optimization is supported through m.em.ory allocation controls (Item. G2) and
the ability to access index registers directly (Item. B14)o

SPL

SPL's optimization-related directives are m.em.ory allocation controls (Item.
G2) and a DECLARE INDEX statem.ent.

The DECLARE INDEX statem.ent is used to identify a particular integer varia­
ble as a frequently used subscript. The com.piler can then generate object
code which keeps the value in an index register or other suitable register when­
ever practical to increase execution efficiency.

CLASP

In addition to the m.em.ory allocation controls (Item. G2), CLASP provides
OPTIMIZE TIME(n) and OPTIMIZE SPACE(n) directives. The integer n in
each case indicates the degree to which one optimization criterion (space or
tim.e) will be sacrificed to optimize the other. The closing delimiters are
UNSPACE and UNTIMEo Wi~hin a group of statem.ents being optimized, the
statem.ents SIC and UNSIC delim.it a subgroup to be exem.pted from. the directed
optimization.

CLASP also has the DECLARE INDEX statem.ent as in SPLo
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G2 Mem.ory Allocation Controls

HAL

Mem.ory allocation controls are provided through two data declaration attri­
butes. One is the storage class attribute of STATIC or AUTOMATIC. Storage
is allocated to STATIC data when a program. is loaded, but AUTOMATIC data
item.s are allocated storage only when the subprogram. in which they are de­
fined is actually entered for execution. This storage is released when the sub­
program. returns control to the calling program. or the system..

The second is the data packing attribute of DENSE or ALIGNED. DENSE data
is packed to conserve storage at the expense of additional execution tim.e to
pack and unpack in real tim.e. Aligned data is aligned on full-word (or other
unit) boundaries for m.ore efficient retrieval. DENSE and ALIGNED attri- I

butes m.ay be applied to individual data elem.ents as well as data organizations. I

CMS-2

Three packing attributes, NONE, MEDIUM, and DENSE apply to one-dim.en­
sional tables. An EQUALS (Item. G4) statem.ent perform.s the sam.e function as
SPL's OVERLAY. In addition, it can assign data to specific (absolute or rela­
ti.ve) m.em.ory locations.

SPL

Four data packing attributes are provided: NONE, MEDIUM, DENSE, and
TIGHT. They have the sam.e objective as HAL's ALIGNED and DENSE, but
they apply only to tables and arrays.

An additional capability is provided by the OVERLAY directive, which can be
used to cause different data item.s to occupy the sam.e m.em.ory locations,
thereby reducing overall m.em.ory requirem.ents. For exam.ple, several differ­
ent input/output buffers with different declared data attributes can occupy the
sam.e m.em.ory locationso The OVERLAY statem.ent can also be used to allocate
separate data item.s and organizations contiguously in core m.em.ory.

CLASP

The SPL OVERLAY capability is provided but there are no packing attribute s.
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G3 Program Debug Aids

HAL

No specific aids.

CMS-2

The following debug facilities are available:

TRACE and END-TRACE as in SPL. SNAP is used to
print data values.

PTRACE traces all procedure calls.

Numeric items can be RANGE tested and a message is
printed each time the value goes out of the specified range.

DISPLAY is an executable statement which prints current
value of its arguments (data items and hardware registers)
whenever it is encountered.

A DEBUG declarative is used to enable the debug statements; otherwise, they
are ignored by the compiler.

SPL

A program declaration may include a maximum limit for size of the object
codeo A diagnostic message is generated by the compiler if the limit is ex­
ceeded.

TRACE and ENDTRACE delimiters cause the compiler to generate code which
will print, in sequence, all statement labels encountered during execution be­
tween the delimiters. Data names may also be specified and values of the varia­
bles named will also be printed.

TIME and ENDTIME delimiters create object code which will calculate the
amount of time elapsed in execution between the delimiters.

CLASP

TRACE and UNTRACE perform the same function as the SPL counterparts.

COUNT (n) and UNCOUNT (n) perform the same function as SPL's TIME and
ENDTIME, but allow the user to specify separate timers (the integer n), so
that overlapping sections of code can be timed.
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G4 C om.pile - Tim.e Identifie r s

HAL

REPLACE identifier BY character -string causes the defined identifier, when­
ever it appears in the coding, to be replaced by the assigned character-string
before c om.pilation. The scope of a REPLACE statem.ent is the sam.e as that
for a DECLARE statem.ent (Item. EI3). That is, the replacem.ent is in effect
throughout the block in which the REPLACE occurs and throughout any nested
blocks.

CMS-2

The statem.ent, identifier MEANS character -string, perform.s the sam.e func­
tion as HAL's REPLACE. The scope is that of the Data Design in which it
appears.

A different type of statem.ent, tag EQUALS arithrnetic-form.ula, assigns the
value of the arithm.etic -form.ula to the tag nam.ed in the statem.ent. The tag can
them. be use~ for exam.ple, to preset data constants or to represent a literal
value in an executable as signm.ent statem.ent. If the tag is declared elsewhere
as a data item. nam.e, the EQUALS statem.ent can be used to assign a m.em.ory
location for the item.o The location can be relative to the beginning of the com.­
pilation or relative to som.e other data item.o

SPL

DEFINE identifier BY character -string perform.s the sam.e function as HAL's
REPLACE. However, its scope is from. the point of appearance, sequentially
through the source program. statem.ents to the end.

CLASP

No capability.
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G5 Macro StateITlents

HAL

No capability

CMS-2

SaITle as SPL

SPL

There is no explicit capability to define ITlacro stateITlents. However, the
prograITlITler has the capability to insert as seITlbly language code into his
source prograITl (!teITl A3), and could use an asseITlbler ITlacro capability
if it were available.

CLASP

SaITle as SPL
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8. FLIGHT PROGRAM KERNEL CODING

A large part of the language evaluation discussion of Para­
graph 6 is based on the flight program kernel coding, which was a
major task performed during Phase II of the study. The kernels
coded were those selected during Phase I, and the basis for their
selection is described in the Introduction. Descriptions of the
kernels, and the unique language characteristics required for them,
are provided in Appendix A of this report. Source card listings of
the kernel coding are provided in Appendix B.

The AS- 509 Saturn Flight Program Equation Defining Docu­
ment was the design basis for all but one of the kernels coded. ATM
Task K eying was taken from the Equation Defining Document fo r the
Skylab Apollo Telescope Mount Digital Computer Flight Program.
An actual Saturn flight program listing was used to reflect detailed
implementation of the Saturn kernels. In general, the ke rnels were
coded to duplicate the functions of the corresponding modules of the
Saturn flight program. However, certain deviations were made where
language features permitted more efficient coding of a function or
where a certain function served merely to handle unique hardware
features of the Saturn computer. For example, loop capabilities have
been used to eliminate the duplication of code for each of the three
vehicle axes in the Minor Loop and in Accelerometer Processing.

Program symbology was also based to a large degree on the
symbology of the Saturn flight program. Symbolic names for sub­
program entry points and program data were obtained from the refer­
enced program listing where applicable and were used with only slight
modification. Such alterations include the deletion of the period from
most program symbols and the grouping of ve ctor component symbols
into a composite vector symbol. For example, the subprogram name
M. APOO was changed to MAPOO and the three symbols D. VFX, D. VFY,
and D. VFZ were replaced with array DVF. Saturn flight program
names were used wherever possible to assure kernel fidelity and to
provide a means for correlating the kernels with the actual flight pro­
gram. In cases where additional or more appropriate symbols were
required, they were designed to be as descripti~e as possible. The
Iterative Guidance Mode (IGM) ke rnel, in particular, was coded with­
out using the original program symbols since many of the terms in
the equations had been assigned to temporary storage. Thus the entire
IGM kernel was coded using symbolic names derived from the Equa­
tion Defining Document.
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Saturn flight program. nam.ing conventions were utilized to
organize the data base for the kernels. Specifically, symbolic data
nam.es beginning with a liD", which were used in the original pro­
gram. to denote item.s acce s sed by m.ore than one subprogram., were
assigned to a com.m.on data pool. Those item.s beginning with som.e­
thing other than 'ID" were generally local in nature and were defined
within the program. in which they were used. Other item.s which did
not follow the Saturn flight program. nam.ing convention were assigned
to the com.m.on data pool or defined locally depending on whether or
not they were referenced by m.ore than one kernel.

Program. organization is centered around the program. kernel.
That is, each kernel is declared at the highest level of program. or
subprogram. provided by the language. Where perm.itted by the lan­
guage, each kernel was declared as a separately com.pilable unit.
Except where specifically called out in Appendix A, the internal
structure of each kernel was retained.

The above groundrules were m.odified or extended uniquely
for each of the four languages. These language peculiar considera­
tions are discus sed individually with each language.

The following paragraphs describe, for each language, the
groundrules and assum.ptions m.ade before and during the coding, the
peculiar problem.s encountered with the language, and the features
of the language which proved particularly useful to this coding effort.

8. 1 Space Program.m.ing Language (SPL)

8.1.1 Groundrules and Assum.ptions

Each kernel was coded in SPL as a separately com.pilable pro­
gram.. Utility program.s were as sum.ed to be included in an SPL Com.­
pool so that no special external declarations were required for com.­
m.unicating with them..

Floating-point data declarations were employed for the m.ajority
of the num.erical operations. Those com.putations perform.ed with
fixed-point arithm.etic were only the processing of input and output
data, where tim.ing efficiency could not be sacrificed for the conver­
sion to or from. floating-'point o

The coding of input/output functions was perform.ed using
READ and WRITE statem.ents and associated FILE declarations under
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the assumption that these would be implemented for real time input/
output processing. If they are not provided, the program would have
to lapse into another language to issue input/output commands to
real time device s.

A set of device names was established to allow symbolic
reference to hardware input/output registers and interrupts (see
Paragraph A. 12). Such names would ordinarily be generated when
the compiler is implemented and would then be made available for
programming purposes. In cases where a hardware input was to
be used immediately and not saved for future reference, the data
was read into a CONTEXTUAL item used for temporary storage.
The assumption was made that the CONTEXTUAL item would take
on LOGICAL attributes.

A problem arose concerning activation of chronic statements
for the processing of interrupts. The documentation did not make
clear whether or not a given interrupt can be specified in more than
one chronic statement. This is desirable in a mission such as Saturn's
where the response to a given interrupt varies in time. Since dynamic
reassignment of interrupt responses was required, the assumption
was made that multiple chronic statements could reference a single
interrupt for purposes of altering the response to the interrupt.

SPL allows a procedure or a program to have multiple entry
points. It was assumed to be legal to transfer control directly to
any of these entry points from any other point within the same pro­
cedure or program without destroying information required for return­
ing control to the caller who originally invoked it. Strict interpreta­
tion of the specification allows this, but its implementation requires
special attention by the compiler which was not mentioned.

SPL specifications require a fixed-point constant to be coded
with an accompanying scale factor. In the case of a simple assign­
ment statement, however, where a literal constant is assigned to a
data item, it was felt that such a requirement was an unneces sary
burden. Therefore, it was assumed that the compiler would scale
the constant automatically based on the scaling of the receiving data
item. Likewise, it was assumed that a literal constant "zero" does
not require the specification of a scale factor since scaling has no
meaning for a value of zero.
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8. 1. 2 Significant Problems Encountered

One of the primary problems encountered in coding the
kernels was that of interrupt control. SPL facilities for inhibiting
interrupts were not designed for inhibiting a large number of inter­
rupts simultaneously. It is a burden to have to list a long string of
interrupts every time it is necessary to inhibit them. For example,
the statement:

LOCK TlINT, T2INT, EX2INT, EX3INT, EX4INT,
EX5INT, EX6INT, EX7INT, EX8INT, EX9INT

is required to inhibit the ten interrupts listed. A 'LOCK ALL' capa­
bility or 'LOCK GROUP' capability would be useful,because frequently
the initial response to an interrupt is to lock all or nearly all of the
interrupts for a brief period.

A bigger problem was enabling interrupts following a momen­
tary inhibit. While SPL' s UNLOCK feature allows interrupts to be
selectively enabled, it does not permit the selection to vary during
real time execution as is required. The problem could be solved by
maintaining a status word for interrupt control and testing it each
time a momentary inhibit is to be released. Such a method would be
cumbersome and inefficient at best. A better solution would be to
have the language provide an indirect UNLOCK capability. No attempt
was m.ade to solve the problem in coding of the kernels; a simple
UNLOCK statement with an appropriate comment was used whenever
such a release was required.

The requirement for the ELSE clause in a decision table was
a minor annoyance. There were times when it was not needed,
because the decision table itself specified all pos sible conditions.

In programs which must activate other subprograms (examples
include the Interrupt Processor and the Events Processor), an in­
dexed or indirect I!calll! capability would be very useful. Capabilities
exist for transferring control via an indexed or indirect GO TO but
this does not provide the neces sary linkage for a return from the in­
voked subprogram. The problem is illustrated by the following ex­
ample selected from the Interrupt Processor.
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GOTO (EGP12, GP21, GP22, GP23, GP24, GP25, GP26, GP27,
GP28, GP29, GP30, GP31) DGST2

GP21.
GP22.
GP23.
GP24.
GP25.
GP26.
GP270
GP28.
GP29.
GP30.
GP31.
EGP12 0

• MUMOO
• MLR 10
• MEPOO
• MTTIO
• MNUOO
• MEEOO
• MCMOO
• MCMIO
• MCM20
.MEPWM
.MEROO
• EGP18

GOTO EGP12
GO TO EGP12
GOTO EGP12
GOTO EGP12
GOTO EGP12
GOTO EGP12
GOTO EGP12
GOTO EGP12
GOTO EGP12
GOTO EGP12

The value of DGST2 determines which statement gets control from the
switched GOTOo Provision for an indexed or indirect call, such as
CMS-2' s switched CALL, could replace the above series of statements
with two statements o

An indirect input/output capability would eliminate the need for
making explicit decisions concerning which type of input/output is to
be performed. For example, in the Minor Loop it is necessary to
test a flag to determine whether the fine or backup gimbals from the
platform are to be read o An indirect or indexed capability could
reduce the logic required for each reado In future applications where
a significant amount of system reconfiguration may be encountered,
the utility of such a capability should be even greater.

Restrictions on the definition of constants are inconsistent with
the flexibility provided elsewhere in SPL. Program maintenance and
readability would be greatly enhanced by permitting constants to be
defined in terms of expressions containing other constants, as is pro­
vided in CLASP.

The use of fixed-point data is difficult from the standpoint
that the programmer loses sight and control of the intermediate scal­
ings and intermediate operations in the evaluation of a complicated
expression. The scaling aids are useful in that they save the program­
mer some bookkeeping in many operations. However, they tend to
obscure the scaling of intermediate results in an expres sion and make
it difficult for the programmer to determine where he might be losing
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preCISIon. Special features are available to specify scaling of inter­
ITlediate results, but it is difficult for the prograITlITler to deterITline
when they are needed because the nOITlina1 scaling is obscured.

SPL does not provide facilities for specifying a short tiITle
delay such as that required by the Switch Selector Processor. When
such a delay was needed in the kernels, it was coded by using a
dUITlITly loop. If such a technique were required in actual practice,
the prograITlITler would need to adjust the loop control pas s count
in a trial-and-error fashion to achieve the desired delay, or know
precisely the cOITlpiler expansion of his stateITlents and the instruction
execution tiITles of the cOITlputer. While tiITle delay facilities are
sOITletiITles provided by an operating systeITl, stringent hardware
tiITling requireITlents, as in Minor Loop, ITlake it desirable to per­
forITl the delay under control of the application prograITl.

8. 1. 3 Desirable Characteristics

The general flexibility of SPL is reflected in the essentially
free forITl of individual prograITl stateITlents. In the coding process,
the prograITlITler need not be .concerned with requireITlents for position­
ing the stateITlent within an eighty character line, for specifying
punctuation to deliITlit stateITlents, or for coding any other stateITlent
descriptor for the cOITlpiler. Multiple stateITlents can be coded on a
single line, or a single stateITlent can be extended over several lines.
The flexibility of SPL is best exeITlplified by its ability to handle ex­
pres sions containing ITlixed data types. The language perforITls the
required conversions and scaling adjustITlents autoITlatically, thus
providing the prograITlITler with considerable freedoITl in forITlu1ating
expressions.

The ITlore useful features of SPL include decision tables,
status variable and indirect addressing capabilities discussed in Para­
graph 6. 1. The data organization capabilities are also very power­
ful. Multip1e-iteITl data aggregates are handled in SPL via arrays
and tables. Arrays are ITlulti-diITlensiona1 data organizations which
contain data e1eITlents all having the saITle attributes. Arrays can be
used to represent vectors and ITlatrices and can be cOITlbined with
powerful ITlatrix and vector operations. Individual array e1eITlents,
denoted via subscripts, can be used as simple data iteITls l in virtually
any context.

Tables are used to organize aggregates of ITlixed data types
in a variety of ways. They provide sufficient flexibility to enable the
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programmer to tailor the organization of his data to suit individual
applications in an efficient manner. A table entry can be subdivided
into individual elements each of which can be independently declaredo
Furthermore, the manner in which these elements are combined to
form an entry can be specified to either conserve core or minimize
access time. While individual table elements can be used as simple
data items in any context, the entire table or a multiple-element
table entry can be referenced only in selected assignment, compar­
ison, or exchange statements.

Contextual variables were very useful for temporarily storing
intermediate results. They help conserve memory requirements
and elimina:te the need for the programmer to define many different
variables for storing such data. Besides providing temporary
storage, contextual variables also take on the attributes of the data
currently stored in them. The attributes are utilized by the com­
piler in subsequent references to the temporary data.

Facilities for controlling (inhibiting/enabling) and responding
to interrupts are also provided by SPL. The former satisfies the
requirements of certain flight program functions which require direct
control of hardware interrupts. The latter is also neces sary if the
operating system functions are to be implemented in a high-level
language.

Other SPL features make it possible to implement a flight
program with a modular organization. Programs can be compiled
separately and combined for execution through use of a program
loader capable of resolving inter-program linkages. Included in the
language is the concept of a Compool designed to contain common
data acces sed by more than one program and common, frequently
used subroutineso Ass ociated with program structure, the multiple
entry-point feature was found to be useful. It allows the programmer
greater flexibility in organizing program elements 0

8.2 Computer Language for Aerospace Programming (CLASP)

8.2.1 Groundrules and Assumptions

Due to the many common features between the two languages,
most of the assumptions and groundrules of SPL (Paragraph 8.1. 1)
also apply to CLASP. The exceptions are described below.

Since CLASP does not provide for separately compilable pro­
gram modules, the individual kernels were coded as procedures within
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one program.. The Com.pool data of SPL was sim.ply declared at the
program. level in CLASP so it could be accessed by all the procedures.
Utility program.s pres ented no acces s problem., because the entire
program. organization m.ust be com.piled together, anyway.

All arithm.etic was perform.ed with fixed-point data to illus­
trate the differences between fixed-point and floating-point coding
for num.erical operations via com.parison with the SPL kernels. The
prim.ary difference is the additional scaling inform.ation required for
the fixed-point data declaration. Because the scaling had already
been determ.ined for the flight program. and docum.ented in the avail­
able listings, writing them. down in the data declarations was not a
significant burden. However, if it had been neces sary to derive the
scaling data, the effort would have been greatly increased over the
equivalent floating-point coding. The scaling factor on a fixed-point
constant is optional in CLASP, so it was not necessary to m.ake the
SPL as sum.ption that the com.piler would scale by im.plication on a
sim.ple as signm.ent.

Since CLASP does not provide any input/output facilities,
input/output m.ust be handled through direct code. Wherever input/
output was· required in the kernels, direct code directives were used
along with a com.m.ent indicating the input/output operation to be per­
form.ed. No actual assem.bly language statem.ents were coded.

CLASP docum.entation specifies that several constants used
in an expression will be com.bined into a single constant by the com.­
piler, rather than generating object code to com.bine them. at execu­
tion tim.e. While location constants present a unique problem. in that
they are relocatable, it was assum.ed that an absolute expression con­
taining location constants would be evaluated by the com.piler and re­
placed with a single constant.

8. 2. 2 Significant Problem.s Encountered

Since CLASP and SPL are quite sim.ilar, m.any of the problem.s
encountered in SPL were also encountered in CLASP. In particular,
the problem.s concerned with interrupt control (LOCK, UNLOCK,
chronic statem.ents), indirect Il callll, and fixed-point interm.ediate
scaling discussed in Paragraph 8. 1. 2 are com.m.on to SPL and CLASP.
Additional problem.s, unique to CLASP, are discussed below.

CLASP allows preset constants· to be defined in term.s of ex­
pres sions involving other, previously defined, constants (Paragraph
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8.2.3). It does not, however, provide a cOITlpile-tiITle substitution
facility siITlilar to that of the other three languages. Such facilities
allow syITlbolic naITles to be defined as equivalent to literal values
which are used by the cOITlpiler for substitution whenever the syITl­
bolic naITles are subsequently encountered in the source code. COITl­
pile-tiITle facilities help reduce storage requireITlents since the
definition of the syITlbolic naITle doe s not utilize a ITleITlory location
of execution tiITle to store the iteITl. They are also desirable frOITl
the viewpoint of iITlproving ITlaintainability and readability. An ex­
aITlple is provided in Paragraph 6. 1. 1. 4.

CLASP requires all prograITl code to be cOITlpiled at one tiITle;
there is no provision for link-editing separately cOITlbined prograITls
or for utilization of a COMPOOL containing COITlITlon data and sub­
routines as in SPL. This ITlakes overall prograITl generation ITlore
difficult.

Another probleITl associated with prograITl structure is the
restriction that procedures can have only one entry point. This re­
quired certain kernels to be divided into several procedures where
such division was convenient. In other kernels, where the inter­
relationship of the prograITl logic was too cOITlplex to allow splitting
the kernel into several procedures, slight ITlodifications were ITlade
to the prograITl logic to accoITlITlodate a single entry point. A good
exaITlple of this is the Switch Selector Processor kernel whose entry
logic is shown here.

PROC • MSSOO "SWITCH SELECTOR PROCESSINGI'

GOTO (, MSS05, MSSIO, MSS20, MSS30, MSS40, X
MSS50, MSS55, MSS60, MSS70, MSS80) DGSSM

The caller ITlust set the index DGSSM to the proper value before cal­
ling MSSOO in order to execute the desired sections of logic. In SPL,
each of the MSSxx entry points could be called directly.

CLASP does not provide an indirect addressing capability.
Location constants (pointers) are available but, without indirect addres­
sing, have liITlited utility. The lack of indirect addressing required
alterations in prograITl logic in several kernels. Access to the Switch
Selector Tables, as discussed in Paragraph 8. 3. 2, is a good exaITlple
of this restriction.

Facilities for ITlultiple-eleITlent data aggregates are too restrictive
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in that all elements must have the same attributes. While this is
acceptable for vectors and matrices, it limits the manner in which
data tables can be structured.

CLASP restricts data item names and statement labels to
eight characters or less. Since existing Saturn flight program names
and labels were adopted directly in most cases and were already
limited, this was not a widespread shortcoming. However, in the
Iterative Guidance Mode kernel more descriptive names had been
generated for SPL coding, and some of these names had to be short­
ened to fit the CLASP restriction. This, of course, made them less
descriptive in certain areas.

8.2.3 Desirable Characteristics

Some of the SPL features discussed in Paragraph 8.1. 3 are
available in CLASP also. Most of them, however, are limited in
capability and, as a result, provide less .programming power and
flexibility. These com.m.on facilities are discussed first, followed
by unique CLASP feature s.

The ~ormat of a CLASP statement is a good example of the
limited flexibility of the language as compared to SPL. Statements
are free form except for being limited to columns 1-72. Column 73
must be used to indicate continuation for a statement which must be
continued on the following line. Columns 74-80 can be used only for
sequencing. Statement delimiters are not required unless multiple
statements are coded on the same line, in which case the statements
are separated by a dollar sign.

SPL ' s location constants are available, but location variables
and indirect addres sing are not. Contextual variables exist only as
an attribute of a fixed-point variable rather than as a separate data
type. CLASP facilities for handling mixed p.ata types are, in general,
similar to those of SPL. However, the CLASP method for combining
logical terms with numeric is more restricted in that the logical terms
are treated as integers and scaled accordingly, whereas logical terms
in SPL are used unscaled.

There are two additional features provided exclusively by
CLASP. Preset values for declared data items can be expressed in
terms of previously declared constant values. This facilitates pro­
gram maintenance functions since updat~ng a key value will automatic­
ally update all other values dependent upon it. Readability can also
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be improved by expressing derived values in terms of their more
meaningful components.

CLASP permits the programmer to specify how object code
optimization is to be handled. In addition to the normal optimization
performed by the compiler, the programmer can request that object
code efficiency be emphasized for execution time, core requirements,
or a weighted combination of time and core.

8.3 HAL

8.3.1 Groundrules and Assumptions

Most of the groundrules and assumptions made for SPL were
also made for the HAL coding. Each kernel was separately com­
pilable and utility routines were in the Compool. The same inter­
rupt and input/output register names were used. However, the real
time task control in HAL clarified the question of changing interrupt
responses, so the SPL assumption about multiple chronic statements
was not required.

As in SPL, READ and WRITE statements were used to per­
form real time input/output functions even though they were not
specifically adapted for such purpose s in the specification. The

. HAL specification indicates that application-oriented input/output
capabilities are to be supplied for each compiler implementation.

No fixed-point arithmetic operations were performed, because
HAL does not allow fixed- and floating- point data in the same compiler
implementation. All non-floating-point operations had to be integer
operations.

HAL allows the break character C) to be used in names and
labels. Some of the names and labels generated for the SPL coding
were modified by inserting the break character at meaningful points
to make the name or label more descriptive.

8. 3. 2 Significant Problems Encountered

Generally speaking, HAL is more difficult to code than either
SPL or CLASP. The programmer is forced to be more explicit and,
as a result, more aware of the ramifications of each statement coded.
For example, in SPL a tremendous amount of flexibility was built into
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the language to allow coding of expres sions containing mixed data
types. Implicit data conversions were performed automatically by
the language. In HAL the programmer is required to use explicit
built-in conversion functions in certain areas (notably for perform­
ing logical operations on numeric data). Another example of lan­
guage explicitness is the statement format which requires a line
descriptor coded in column one of subs cript and exponent lines and
a semi-colon to delimit the statement. Some of this writing burden
is beneficial to process reliability (Paragraph 8.3), but it still
makes coding more difficult.

Perhaps the largest single problem area in HAL is that re­
lated to the operating system. Certain features are provided for
interfacing with an operating system while other features, such as
those provided by SPL and CLASP for controlling interrupts, are
not available in HAL. Apparently it is intended that HAL is not to
be used for programming operating system functions such as pro­
cessing interrupts. As a result, the kernels could not be coded
realistically with regard to such functions. In particular, appropriate
comments were inserted into the program wherever it was necessary
to inhibit or enable interrupts, because the capability was not pro­
vided.

The CALL statement provided by HAL for invoking another
program does not allow the pas sage of parameters between the pro­
grams or tasks. All interprogram communication must be accom­
plished via common data storage. A procedure CALL does permit
parameters to be passed but does not permit the address of an error
exit to be passed as a parameter. Control must always be returned
to the statement following the CALL where potential error indicators
or conditions must be examined by the calling program.

HAL does not provide for both fixed-point and floating-point
arithmetic data in a given compiler implementation. Either one or
the other is implemented and is the only basic arithmetic data type
besides the integer. Floating-point data was employed in coding the
sample kernels. Integer data had to be utilized where timing efficiency
was required, and the requirement to represent everything in integer
units was a significant burden.

HAL does not have a contextual data type, as SPL does, for
temporary storage of intermediate results. Since this capability was
not available in HAL, it was necessary to define a separate temporary
data item for each data type, and then to select the proper data item
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in coding the kernels.

Indirect addressing and location constants and variables
(pointers) are not available in HAL. While techniques can be employed
which circumvent the need for pointers and indirect addressing, such
techniques are sometimes undesirable themselves. To illustrate the
problems, consider the Switch Selector Proces sor kernel which re­
quired data retrieval from a number of individual Switch Selector
Tables. The manner in which it accessed data from these tables is
shown below for SPL, CLASP and HAL.

In SPL:

SSTlPTR = LOC 'SUB TABLEl'

SSTIME = IND (SSTlPTR)

In CLASP:

SSTlINDX = LOC'SUBTABLEl' - LOC'SSTABLE'

SSTIME = SSTABLE(O, SSTlINDX)

In HAL:

KSUBTABLEI =279;

SSTlINDX = KSUBTABLEl;

SSTIME = SSTABLE
1, SSTlINDX

In SPL, the individual subtables could be independently defined and
indirectly addressed via the location variable SSTlPTR. Each sub­
table could be of any length and could be located anywhere in memory.

CLASP required all of the subtables to be organized into a
compound, all-inclusive master table (SSTABLE) through use of an
overlay. A specific subtable could then be addres sed by referencing

-197-



SSTABLE and specifying an index. The index, SSTlINDX, was as­
signed a value, which was the difference between two location con­
stants. The two location constants addressed the beginning locations
of the subtable and of the master. table.

HAL also required the subtables to be organized into one
large table from which they were accessed through an indexed address.
However, without the capability of generating location constants to
address the subtables, the index values could not be generated auto­
matically by the compiler. Instead, the index values had to be com­
puted manually by the programmer counting table entries. Such
manual computations are error prone, and reduce maintainability
because each added table entry requires manual modification of all
index values below it in the table.

In conjunction with the indirect addres sing /location constant
problem, the multiple copy capability for structures could have been
used in HAL for the Switch Selector Table by making each subtable a
copy of a structure. However, since the number of entries varied
considerably from table to table, a prohibitive amount of memory
would have been wasted because each copy of a structure must be the
same size. This fact, combined with the initiation problem discussed
in the following paragraph, eliminated the use of a structure for the
Switch Selector Table. It was, instead, declared an integer array.

HAL features for organizing tabular data are quite compre­
hensive. Structures provide capabilities for organizing complex
groups of data and, for many applications, should be sufficient. The
manner in which constants or initial values are specified for structures,
however, was undesirable for the Switch Selector and Events Tables.
For example, if the Events Table of the Events Processor module had
been declared as a structure, the event times would have been made
one array substructure and the event identifications would have been
another array substructure. In such a case, the format for presetting
constant values would require that all time values be specified together
in one list followed by the values for all the identifications. Such an
arrangement would not provide a convenient means for correlating
the times with the identifications, as indicated by:

DECLARE 1 EPTABLE
2 EPID ARRAY(13) INTEGER INITIAL

(1, 4#0, 2, 3, 0, 4, 5, 0, 6, 0);
2 EPTIME ARRAY(13') SCALAR INITIAL

(0 , 16 , 17, 17 • 5, 2 #0, 1, 6 , 9, 10 , 14, 134. 7, 0);
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Thus, it was decided to declare the Events Table as a simple array
where the two items could be specified side-by- side to provide the
means for correlating an event with its associated time.

DECLARE EPTABLE ARRAY(2,13) INTEGER INITIAL

(1, 0, /':'START OF TIME BASE 0 TABLE':'/
0, 160,
0, 170,
0, 175,
0, 0,
2, 0, /':'STAR T OF TIME BASE 1 TABLE':'/
3, 10,
0, 60,
4, 90,
5, 100,
0, 140,
6, 1347,
0, 0);

An array organization, however, is not completely adequate either,
since all elements in an array must have the same attributes. In the
Events Table just discussed, the event identifications were integers
and thus required that the event times be integers also. Since times

. had to be specified to the nearest tenth of a second, all times had to
be multiplied by a factor of ten, so they would be integer values with
measurement units of one-tenth second.

HAL,in general, does not permit multiple expres sions to appear
on the right-hand side of an equal sign in an assignment statement.
Exceptions occur with the VECTOR and MATRIX built-in functions
where multiple expressions are enclosed within parentheses for assign­
ment to vectors, matrices, and one or two dimensional arrays. Such
capability is useful in assigning values to a number of related items.

The logical operators AND and OR can be used only for string
type data and no implicit conversions are made for arithmetic data.
If it is desired to mask an arithmetic data item, the built-in conver­
sion function BI T must be used to convert the item to a bit- string
before the masking operation can be performed.

8. 3. 3 Desirable Characteristics

Except for the restrictions of line descriptors in column 1 and
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semicolons to delimit statements, HAL I s statement format has the
same free-form as SPL's. That is, statements can be positioned in
any colunm, and multiple statements can be coded on a single line
or a single statement can be continued on multiple consecutive lines.

HAL provides a greater selection of methods for organizing
multiple-item data aggregates than SPL, CLASP, or CMS-2. Vectors
and matrices are handled as unique data types and, along with a more
comprehensive group of associated vector and matrix operations,
provide greater mathematical expression capability. Arrays and
structures are provided which have capabilities similar to those of
SPL arrays and tables. HAL I S capabilities are more general, how­
ever, in that arrays can contain vectors and matrices, and structures
can contain arrays as well as vectors and matrices. Structures and
substructures may also have multiple copies, accessed through sub­
scripts.

The ability to handle mixed data types m expressions and as­
s ignment statements exists in HAL, but it is not quite as flexible as
in SPL or CLASP. A sample restriction is the inability to perform
logical operations on numeric data items without the explicitly coded
conversion of the numeric item to a bit- string. In general, the lan­
guage will handle mixed expressions adequately but frequently re­
quires explicit conversion specifications to be coded into the expres­
sion rather than performing the conversions implicitly.

Although interrupt inhibit and enable capabilities were not
provided, the real time task scheduling capabilities of HAL were
fully capable of declaring interrupt responses and assigning them
to interrupts.

The Compool concept provided by SPL is also available in
HAL. It serves as the only means for communicating data among
tasks and programs, since parameter lists are not available in the
program and task CALL statements.

8.4 Compiler Monitor System-2 (CMS-2)

8.4. 1 Groundrules and Assumptions

Some of the groundrules and as sumptions made for SPL were
also made for the CMS-2 coding. Each kernel was a separately com­
pilable unit and utility routines were implicitly available to all the
kernels. Interrupt interfaces were not provided by the language, so

-200-



all interrupt controls and real time responses were indicated by com­
ments, and no special groundrules or assumptions needed to be es­
tablished. Real time input/output operations were also indicated by
comments. Arithmetic operations were coded in floating-point,
except where fixed- point operations were dictated by execution time
efficiency requirements in the Minor Loop.

Some of the kernels were not coded in CMS-2. Experience
gained in coding with SPL, CLASP, and HAL indicated that for CMS-2,
the characteristics demonstrated by these kernels are adequately
illustrated by the remaining kernels. The kernels omitted are:

o Interrupt Processor

o Non-Interrupt Sequencer

o Periodic Proces s or

o Events Proce s sor

o Accelerometer Processor

o Initialization

8.4.2 General Problems Encountered

The CMS-2 programming language is designed to produce
object code which executes under control of an operating system and,
as a result, does not provide facilities for controlling or responding
to interrupts. Comments were used in the kernels to indicate where
interrupt inhibiting or enabling was required.

Several features of the language are unnatural. The most
flagrant example is the requirement to append a "D" to decimal num­
bers to distinguish them from octal. This applies not only to program
literal constants but also to compiler control constants such as a
number describing a fixed-point scaling or a field length. Most lan­
guages distinguish between octal and decimal by considering decimal
the natural form and by tagging octal constants in some fashion o The
CMS-2 technique is abnormal and, therefore, error-prone from the
programmer standpoint, as well as unnatural to the reader. CMS-Z
uses NOT to mean ('not equal toll in relational expressions and "CaMP"
to specify a Boolean "not" function. This also is unconventional.

-201-



While not neces sarily unnatural, the specification of the
starting bit position for a FIELD is inconsistent with other such
specifications within the language. It references bits within a word
by numbering them from right to left rather than left to right as is
done in all other bit or word references.

Certain capabilities in the area of data declarations which are
provided by the other languages are not available in CMS-2. For
instance, data items cannot be declared constant and, consequently,
there can be no checking by the compiler to detect accidental attempts
to modify constant data. This omission also prevents the compiler
from optimizing object code based on the fact that a data item is a
constant. There is no contextual data type for use as temporary
storage. Data declarations cannot be factored unless all data items
in the declaration have identical attributes. The factoring capa­
bility provided by the other languages permits data items with only
some attributes in common to be defined in a single statement. The
common attributes are specified only once and apply to each item
defined in the statement, unless overriden for a given item by ex­
plicitly specifying different attributes uniquely for that item.

Tables cannot be preset within a declaration statement. In-
s tead a separate "DATA" statement must be coded for each individual
entry in the table. There is no repetition factor or list facility for
presetting multiple elements.

Limitations were also found in the dynamic statements of the
language. The IF statement, for example, is quite restricted. It
has no ELSE clause and requires the programmer to code a GOTO
statement to transfer control around what would ordinarily be ex­
pressed as an ELSE clause. The THEN clause is restricted to a
single statement, requiring the programmer to code a compound
statement consisting of individual statements concatenated by the
THEN primitive whenever a number of functions must be performed
within a THEN clause. For example:

IF DVASW (0, TB6C)

THEN SET DVASW(O, TB6C) TO 0
THEN SET VASPI (0, TB6C) TO 1
THEN SET DVMC6 (0, TB6B) TO 1
THEN SET SSTlPTR TO CORAD (SSTTB6C)
THEN SSTUPD OUTPUT· VATRR
THEN GOTO SS1050 $
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IF statements cannot be nested.

Logical operations can be performed only on Boolean data.
There is no bit- string capability in general. Thus, it is difficult
to perform bit manipulation. The built-in function BIT or special
FIELD definitions can be used for such purposes but in certain cases
they are ineffective. For example, if it is neces sary to mask an
input data item such as a gimbal reading, either BIT or a FIELD
can be used because the bits that are to be masked are always the
same. However, if the bits to be masked change during real time
execution, neither of these techniques can be applied and the pro­
grammer is forced to use a prohibitively expensive loop which con­
siders one bit each pass.

There are no vector matrix facilities in CMS-2. Such func­
tions as vector dot and cross products, vector rotations, and
matrix multiplication must be coded in long form or performed via
subroutine s.

In general, no padding is provided when a small item is
ass igned to a large item. This is true of Hollerith character-strings
and also for tableso The exces s data of the large receptacle is left
unchanged. Of course, if the item being assigned is larger than the
receiving item, the exces s data is truncated and losto

Procedures are restricted to a single entry point as was true
for HAL and CLASP, so procedures had to be subdivided or additional
logic provided (Paragraph 8.2.2)0

CMS-2 appears to severely restrict combinations of mixed
data types in expres sions, because the specification makes very little
mention of the topic. The only mixed expression discussed at all is
the combination of fixed-point and floating-point data. Nothing is
specified, for instance, about how integer arithmetic is performed
or about combining arithmetic terms with Boolean or Hollerith terms o
The same restrictions seem to apply to assignment statements. The
data type of the receptacle must generally agree· with that of the data
being as signed to it.

No input/output facilities are provided for real time data.
Comments were coded at points in the kernels where input/output was
required o a

No facilities are available for the programmer to specify small
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tim.e delays such as those required by the Minor Loop and Switch
Selector Processing kernels. Com.m.ents were inserted in the coding
where delays were required.

8.4. 3 De sirable Characteristics

Except for the reservation of the first ten colum.ns of a line
for card identification/sequencing purposes and the requirem.ent for
coding a dollar sign to delim.it statem.ents, the CMS-2 statem.ent
form.at is free. Statem.ents can be coded anywhere between colum.ns
11 through 80 of one or m.ore lines or m.ultiple statem.ents can be
coded on a single line.

Several significant declarative -type features are provided by
CMS-2. In addition to facilities for the standard data-types, the
language also has status constants and variables like those provided
by SPL (Paragraph 6. 1. 2). Multiple-item. data aggregates are handled
via tables, also sim.ilar to those of SPL. Arrays exist as a type of
table rather than as a separately defined type of data organization.

Mem.ory addres s constants (pointer s) are provided which are
sim.ilar to those of SPL and CLASP (Paragraph 6. 1. 1). They are
designed prim.arily to pass data table locations to subroutines, so
that the entire table need not be passed. The other languages inherently
pass only the location when a table or array is a subroutine argum.ent.
Therefore, they do not need to m.ake this distinction.

With respect to dynam.ic statem.ents which generate executable
code, the indexed call capability provided exclusively by CMS-2 was
found to be quite useful. It utilizes a list of procedure nam.es and
an as sociated index which can be referenced by special call state­
m.ents. Any procedure in the list can be invoked with a single call
statem.ent by setting the index to the proper value. Such a capab­
bility is desirable for use in contr·ol applications where real tim.e
decisions m.ust be m.ade to determ.ine which of a num.ber of tasks is
to execute. Input and output param.eters can be passed but m.ust be
identical in data type and attributes for all procedures in the list.
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Data iteITl

Literal

Constant

Variable

Data eleITlent

Scalar

Bit:- string data

Logical data

Boolean data

ForITlula

{ }
Logical Condition

Boolean forITlula

GLOSSARY

any eleITlent or organization (array, table,
etc. ) of data including literal, constant,
and variable data.

a literal representation of a value.

a data iteITl which always contains the saITle
value.

a data item which ITlay contain different
values at different tiITles.

a single valued data iteITl (as opposed to an
array or table of ITlany eleITlents).

saITle as a data eleITlent (note that HAL I S

key word SCALAR has a ITlore restricted
d efinition than thi s).

a group of individual data bits in which each
bit, or sITlall groups of bits, have individual
meanings or values.

bit- string data.

a bit - string of length one.

any literal, constant, variable or valid
cOITlbination of theITl with operator s.

indicates that alternatives froITl within the
braces ITlay be selected.

a Boolean forITlula

any forITlula of any cOITlplexity which results
in a Boolean (true/false) value. In SPL
(only), any value is considered true if non­
zero and false if zero, when used in a
Boolean context.
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Identifier

Name

Entry- point label

Statement label

Routine

a character-string which is created by the
programmer and assigned to a data item or
statement.

an identifier which is assigned to a data
item and by which it is referenced in the
coding.

an identifier which is as signed to a routine
or external entry-point to a routine and by
which it is referenced in the coding.

an identifier assigned to an internal state­
ment of a routine.

any program, procedure or function.
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