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DATA FROM EARTH RESOURCES SATELLITES

by

D. A. White, J. W. Rouse, Jr., and J. A. Schell

INTRODUCTION

In Spring 1972, the National Aeronautics and

Space Administration will launch the first of the earth

resource satellites, ERTS-A which will be followed.within

a year by ERTS-B and Skylab. One of the major purposes

of these satellites is to gather synoptic and time-lapse

multispectral data of the earth for broad dissemination

to be used in the advancement of earth resources manage­

ment. Of particular interest to many researchers is

data produced by multispectral scanner systems (MSS)

on board each of the earth resource satellites.

Multispectral scanners similar to the ones

proposed for the ERTS and Skylab satellites have become

common tools in earth resources research and a great

deal of effort has been expended to devise applicable

data analysis techniques to handle these data. It has

been generally assumed that extensions of these analysis
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techniques will be applicable to data obtained from

the ERTS and Skylab MSS systems.

The purpose of the research was to determine

to what extent the assumption of applicability is valid

through the simulation of ERTS and Sky lab data using

available data from aircraft scanner systems. The re­

search technique used compared aircraft multispectral

scanner data obtained under nominal conditions at low

altitudes with ERTS and Skylab simulations from air­

craft data obtained during the same time period over

the same terrain at higher altitudes. Maximum likeli­

hood decision criteria algorithms implemented on a

digital computer were used to classify training set

data as well as certain other test data. These are

common techniques used in the analysis of MSS data.

Comparisons between percentages of correct classifi­

cation were made and implications as to the applica­

bility of these techniques to the analysis of satellite

MSS data were drawn from these comparisons.
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MULTISPECTRAL SCANNER SYSTEMS

Certain fundamental operational principles

are common to each MSS system and a basic understanding

of these principles is necessary in the analysis of

scanner data. Among the principle sub-sections of

each scanner are the scanning mechanism, the spectral

resolvers, energy detectors and the recording instru­

mentation. These components and the basic scanning

principle are depicted in Figure 1.

The scanning mechanism consists of a rotating

mirror and the necessary optical lenses to focus sharply

on a resolution or data cell (which is defined by the

terrain in the instantaneous field of view of the scan­

ner). The rotation of the mirror causes the field of

view of the scanner to move across the flight path and

the forward motion of the aircraft produces a raster

survey of a swath beneath the sensor. Thus areal

measurements are obtained.

The radiant energy entering the aperture of

the sensor is focused on a defraction grating thus the

energy is spatially separated into its spectral com­

ponents. These separated energy bands are transmitted

generally via fiber optics bundles to semiconductor
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photodetectors where voltages are produced which are

proportional to the incident energy. These voltages

are suitably amplified and recorded on multichannel

analog magnetic tape. [In the ERTS MSS Systems the

data is digitized and transmitted to a ground station.]

The analog data is then digitized to provide a data

vector with elements proportional to the reflected

energy in various spectral bands from resolution cells

in the swath viewed by the scanner.

SPECTRAL SIGNATURES

Each object, by its peculiar absorption,

transmission and reflectance characteristics alters

radiation incident upon it. The spectral distribution

of the radiation is altered in a specific way for each

object and this distribution becomes a characteristic

signature of the object. It is this signature which is

measured by the MSS system. If a signature for a par­

ticular class of objects is sufficiently different from

signatures for other classes of objects, membership in

these data classes may be inferred by a comparison of

an unknown signatures to the individual class signatures.

This, in essence, is the principal objective of standard



MSS data analysis, i.e. the assignment of unknown data

resolution cells to specified data classes. Several

typical signatures of objects are shown in Figure 2 and

the MSS systems obtain discrete measurements of these

signatures.

SYSTEM STUDIES

General system comparisons point to major

differences between three MSS systems, the University

of Michigan M-S scanner, the ERTS-A system and the

Skylab MSS system (S-192). The several system dif­

ferences which exist between the three are operational

altitude, field of view, the resultant spatial resolu­

tion and varied spectral resolution.

The most obvious system difference between

the three MSS systems is the operational altitude.

The nominal operational altitude for the Michigan

scanner is 2000 feet. At this altitude, with an

angular resolution of approximately 0.003 radians,

the nominal resolution cell area is approximately

30 square feet. The operational altitude of the

ERTS-A satellite system is approximately 492 nauti­

cal miles. The instantaneous field of view of the

5
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scanner system is 230 x 230 feet or approximately

53,000 square feet (1.2 acres) causing a considerable

degredation in the spatial resolution over the aircraft

system. The Skylab S192 Multispectral Scanner system

has an operational altitude also near 492 nautical miles.

The Skylab MSS system has an instantaneous field of view

of approximately 260 x 260 feet which is an area of

approximately 74,900 square feet (1.6 acres). In Figure

3 is shown the relative sizes of the resolution elements

and the comparative resolution is readily apparent.

The increased operational altitude of the

satellite systems also permits a greater intervening

atmosphere. This produces greater signal degredation

in the ERTS and Skylab systems from the additional

atmospheric attenuation and scattering having a possi­

ble detremental effect upon the quality of the data.

A third major area of difference in the three

systems is spectral resolution. The Michigan M-5 sys­

tem has 12 spectral bands, the ERTS-A, 4 spectral bands

and the Skylab system has 13 spectral bands. The loca­

tion and bandwidths of the common spectral bands con­

sidered are shown in Tables 1-3 and in Figure 4. Thus

each system obtains a varying number of measurements

of the cell signal.
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Based on the three system comparison, the simu­

lation procedure was determined. Atmospheric degredation

would be accounted for by using the high altitude Michigan

scanner data in simulating the satellite system measure­

ments since a major portion of the atmosphere is below

10,000 feet. Simulation of the satellite systems reduced

spatial resolution accomplished by averaging M-S measure­

ments over an area comparable to the satellite resolution

cell. Spectral channels for the satellite systems would

be approximated by computing a weighted sum of the M-S

channels where the weights would be determined by the

spectral characteristics of the Michigan and satellite

scanner systems.

With these procedures outlined, available

Michigan M-S data were surveyed to identify suitable

data sets for the simulation. Nearly simultaneous data

from two altitudes, acquired over a well documented

test site, were desired. Such a data set was flown

at Weslaco, Texas in May 1966 when flights were made

at 2000 feet and 10,000 feet altitudes. A well docu­

mented ground truth summary was also available. In

Figures 5 and 6 photographs of the flight line are

shown. The digital data was obtained in magnetic

tape format from LARS at Purdue through the coopera­

tion of the USDA-ARS at Weslaco, Texas.



8

ANALYSIS

In the preliminary analysis, grey scale print­

outs were made of the flight' lines, photo mosaics were

produced and ground truth, photographs, and data were

correlated. During this analysis phase it was deter­

mined that the data was degraded in spots by partial

cloud cover of the flight lines. A survey of published

preprocessing technique was made and a technique re­

ported by Krieglar et al. [1969] was selected to re­

move the shadow effects in the data without severely

affecting the channel spectral characteristics. All

data were subsequently processed according to the

Krieglar algorithm in which the value of each resolu­

tion cell channel was divided by the sum of the values

of the channels for that data cell. This was in

essence a normalization procedure and tended to com­

pensate for varying levels of illumination along the

flight line. Corrections for varying scanner amplifier

gains were also made at this time.

The simulated satellite data was computed

from this preprocessed data. A satellite scanner resolu­

tion cell was determined from the average of aircraft

scanner resolution cells over a satellite cell area.
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The number of M-S scanner cells included in a satellite

scanner cell was determined by a ground comparison of

known ground distances with grey scale computer maps of

M-S data cells. Each aircraft scanner channel was summed

and divided by the total number of resolution cells pro­

viding a twelve channel data vector for each satellite

resolution cell. No attempt was made to select data so

that satellite cells fell within specific terrain boun­

daries. Once this computation was made, simulation of

the spatial degredation of the satellite data was completed.

The bandpass characteristics of the aircraft

scanner channels were removed from the data by dividing

the data value of each channel by the area beneath the

bandwidth characteristic curves for that channel, thus

calculating the normalized energy within each M-S channel

bandwidth. The contribution of the M-S channels for each

ERTS channel was determined by integrating the normalized

energy wi thin the M-S channel bandwidths over the ERTS

channel characteristics. The normalized energy for each

of the M-S channels was weighted by the computed contri­

bution and these values for appropriate channels were

summed to provide the simulated ERTS data. The Skylab

scanner spectral characteris tics were not generally

available therefore a triangular bandpass function sim­

ilar to the M-S system characterization·was assumed for
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the specular integration. These procedures in essence

provided the simulation study data for ERTS and Sky lab

comparisons.

Determination of relative data worth between

the data sets was based on the number of correct classi­

fication percentages. Identification procedures were

based on the maximum likelihood decision algorithm which

is commonly used in the analysis of multispectral scanner

data. Data samples of known classification are determined,

then statistical characteristics are estimated and these

parameter estimates are used to define probability density

functions by which data vectors are compared in digital

computer implementation.

The first step in this analysis is the iden­

tification of data samples (training sets) where the

characteristics of the terrain viewed are known suffi­

ciently well so that the mean value and the covariance

of the data vectors in each category may be determined.

Great care was taken in the selection of the data sets

to assure that these data sets were selected only from

well identified, homogeneous areas to minimize the effects

of crop signature variability within the data training

sample. In Table 4 is shown the classes into which

the data was divided. Particular crops, where several
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divisions existed in size and age were subdivided into

separate classes to insure maximum homogenity in the

training samples. Histograms of these sets of care­

fully selected data were produced to insure that multi­

modal distributions were excluded. Fields where only

crop type was identified and which were not specifi-

cally documented as to size or age, were used as test

areas for comparison. Each data set, the Michigan M-S,

the ERTS and the Skylab simulations, were examined in

exactly the same way consistant within each set. Train-

ing samples were selected from homogeneous areas within

each data set with reference only to the ground truth

summary and not to the other data sets.

The classification training algorithms were

implemented on the digital computer and training was

accomplished on each of the selected data training sets.

The sample means were computed by

I
~-

N

and the sample covariances were determined from
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where: M· is the sample mean vector in the ith class
l.

N is the number of data cells in the class

X. is the jth data vector
J
K is the total number of classes

V. is the covariance matrix of the ith sample
l.

( )T indicates a matrix transpose operation

In order to make the classification analysis

consistant between the three data set formats, a subset

of the dimensions of each data cell was selected. A

subset of four features was chosen from the M-S and

Sky lab simulation data sets to reduce the number of

dimensions processed in the classification algorithms

and to make the processing consistant with that of the

ERTS simulation. The subset was chosen to maximize the

average of a defined separability functional over the

data classes. The separability between two classes,

wi and wj was defined as
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Admittedly this particular definition of

separability is largely heuristic in the multidimen­

sional case but is intuitively appealing in the deter­

mination of separability. That is, it is "good" when

the mean vectors of the data classes are widely separ­

ated or the squared distance between them is large;

however, it is "not good" when the variance of the

classes about their mean vectors is large. Hence, the

separability varies directly as the separation between

the means [Mi-Mj ] and inversely as the sum of their

covariances. In addition, Fu (1970) indicates that

the selection of any four channels from among the

total number available in a similar data set did not

appreciably affect the correct classification obtain­

able from the data. Thus, the heuristic separability

criteria provides, at worst, a better subset of channels

from among the subsets of channels which are sub­

optimal in the sense of correct classification results.

The channels selected for each of the M-S scanner data

were channels 2, 3, 10, and 11 and the Skylab channels

selected were channels 1, 3, 6, and 7.

The data were classified using a maximum

likelihood decision criteria implementation. This

procedure assigns the data cell Xo to the class wi
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for which the likelihood function p(Xlwi ) (the proba­

bility density function of the wi class evaluated at

the vector X) is maximum or equivalently the class w.
J

for which the discriminant function

where: Iv. I is the determinant of V.
1 1

V.- 1 is the inverse of V.
1 1

is maximum.

It is generally impractical, if not impossible

to define all the classes appearing in a scene and to

train the classifier on these classes. It is therefore

desirable to define a class "everything else", in which

those points not "properly" belonging to the selected

classes may be placed. This class can be readily es­

tablished by defining a threshold T. for each class.
1

All points placed in the class wi by the classifier

for which the discriminant function g.(X) is greater
1

than the threshold would be classified as belonging

to that class. All other points for which gi(X) is

less than the threshold would be assigned to the class

"eve rything e Is e" .
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The setting of the appropriate threshold

depends on the criterion used. The specific criteria

used here sets a threshold so that at least 95% of the

sample vectors from class wi would not be rejected by

the threshold setting.

The quantity CX-Mi)TVi-lCX-Mi) has a X2 dis­

tribution Cn Cx 2 ) of N degrees of freedom. Therefore,

for a given threshold setting, the percentage of samples

from class wi being rejected can be determined from the

percentage tabulation of the X2 distribution. Thus ln

this case

or

and the classification of a point X into w· requires
1

jointly that
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and

RESULTS

Classification maps from the Michigan low

altitude, the ERTS MSS simulation and the Sky1ab MSS

simulation are shown in Figures 7-9. In Table 5 is

compiled the classification results from the training

sets. Training sets consisting of varieties within a

general grouping have been compiled under that grouping

for presentation in the table. Thus, for example, the

fields of cotton having varying percentages of ground

cover have been grouped under their common class, cotton.

In Table 6 is shown the classification results for the

tes t fields.

Generally the classification results for the

training fields, which were carefully chosen homogeneous

areas, do not show the strong bias toward the M-S system

with its increased spectral and spatial resolution which

might at first be suspected. Rather each system classifies
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well in some areas and less well in others. However, on

the test fields, which were not necessarily homogeneous

in the subclasses of general categories although they were

the same crop throughout, there appears to be consistant

bias in favor of the M-S system. This bias is strong in

the two classes "sorghum" and "cotton" where variabili ty

wi th the class would be reduced. In the class "fallow"

where the variability of points would necessarily be large,

the percentage of correct recognition is consistantly low.

The results of this study show that for care­

fully chosen homogeneous data training classes, where

data variability within classes is low, classification

results are generally equivalent among data sets from

varying altitudes and that the spectral and spatial

degredations do not appreciably affect the classifica­

tion results. However, it also appears that the vari­

ability in the data produced jointly by class uncer­

tainty, spectral averaging and spatial averaging de­

termines some unspecified variability threshold beyond

which classification is seriously impaired.

This study points to the need for the increased

investigation of this threshold phenomena through rigid

comparisons of data sets similar to those described and

for the development of methods to effectively reduce the

impact of this threshold of degredation.
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TABLE 1

SPECTRAL BANDS OF THE MICHIGAN M-5 MULTISPECTRAL SCANNER

Channe 1 Spectral Response
Range Number (Microns)

ultraviolet 0 0.32 to 0.38

visible (violet) 1 0.40 to 0.44

visible (blue) 2 0.44 to 0.46

visible 3 0.46 to 0.48

visible (b lue - green) 4 0.48 to 0~50

visible 5 0.50 to 0.52

visible (green) 6 0.52 to 0.55

visible 7 0.55 to 0.58

visible (ye 11 ow) 8 0.58 to 0.62

visible (red) 9 0.62 to 0.66

visible (red) 10 0.66 to O~· 72

near infrared (reflective) 11 0.72 to 0.80

near infrared (reflecti ve) 12 O. 80 to 1. 00

near infrared (reflective) 13 1. 50 to 1. 80

near infrared (reflective) 14 2.00 to 2.60

middle infrared (thermal) 15 3.00 to 4.. 10

middle infra-rcd (thermal) 16 4.50 to 5.50

far infrared (thermal) 17 8.00 to 14.0
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TABLE 2

SPECTRAL BANDS OF THE ERTS-A MULTISPECTRAL SCANNER

Channel Spectral Response
Range Number (Microns)

visible 1 0.50 to 0.60

visible (red) 2 0.60 to O. 70

near infrared ere flective) 3 0.70 to 0.80

near infrared (reflective) 4 0.80 to 1.10

far infrared (thermal) 5 10.4 to 12.6
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TABLE 3

SPECTRAL BANDS OF THE SKYLAB MULTISPECTRAL SCANNER

Channe 1 Spectral Response
Range Number (Microns)

visible (blue-violet) 1 0.410 to 0.460

visible (blue-green) 2 0.460 to 0.510

visible (green) 3 0.520 to 0.556

visible (yellow) 4 0.565 to 0.609

visible (red) 5 0.620 to 0.670

visible (red) 6 0.680 to 0.762

near infrared (reflec.tive) 7 0.783 to 0.880

near infrared (reflective) 8 0.980 to 1.080

near infrared (reflecti ve) 9 1.090 to 1.190

near infrared ( re fIe c t i ve ) 10 1. 200 to 1. 300

near infrared (reflecti ve) 11 1. 550 to 1. 750

near infrared (reflective) 12 2.100 to 2.350

far infrared (thermal) 13 10.20 to 12.50



TABLE 4

DATA TRAINING CLASSES AND KEY

KEY

Class 2000 ' ERTS Sky1ab

Water 1 1 1

Sorghum (25 %) 2 2 2

Corn 3 3 3

Cotton 17-38% A 4 4

Cabbage 5 5 5

Cotton 50-63% 9 6 6

Weeds B 7 7

Sorghum 30-50% 6, 8 8 8

Cotton 70 - 85% 7 9 9

Trees A A

Fallow C B B

Sorghum 96% 4

22



Water

Sorghum

Cotton

Fallow

Corn

Cabbage

Trees

TABLE 5

DATA TRAINING SETS

Weslaco 5/66

2,000'

M-5 ERTS-A

376 93.4% 4 0%

3077 62. 7% 82 63.4%

2679 82.3% 63 66.7%

1950 67. 7% 52 63.5%

408 83.8% 22 86.4%

1000 82.2% 21 81.0%

23

SKYLAB

4 0%

82 68.3%

63 73.0%

52 67.3%

22 63.6%

21 85. 7%

10,000'

M-5 ERTS-A SKY LAB

Water 203 56.2% 18 44.4% 18 55.6%
Sorghum 707 69.3% 79 84.8% 79 79.8%
Cotton 1649 71.4% 141 60.3% 141 70.2%
Fallow 751 34.1% 59 71. 2% 59 57.6%
Corn 101 91.1% 5 100.0% 5 100.0%
Cabbage 207 88.9% 24 79.2% 24 83.3%
Trees 1000 97.8% 174 94.2% 174 93.1%
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TABLE 6

DATA TEST SETS

Weslaco 5/66

2,000'

ERTS -A

24

SKYLAB

Water
Sorghum

Cotton
Fallow
Corn
Cabbage
Trees

169
480

3056
1458

72.2%
76.9%

66.8%
42.4%

12

86
24

58.3%

67.4%
33.3%

12

86
24

66. 7%

62.8%
33.3%

10,000'

M-5 ERTS-A SKY LAB

Water
Sorghum 707 59.3% 21 38.1% 21 38.1%
Cotton 1920 54.11% 175 40.6% 175 56.57%
Fallow 1035 19.23% 101 40.6% 101 37.6%
Corn
Cabbage
Trees 1360 61. 4% 130 94.6% 130 86.2%
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M-S Scanner (2000 ft. alt.)

0-100 sq. ft.

Skylab S-192

ERTS -A MSS

Figure 3. Relative Size of MSS Resolution Elements.
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Figure 7. Classification Map 2,000' Weslaco

Data, May, 1966.
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GROUND TRUTH SUMMARY

WESLACO, TEXAS

5/31/66

(White, 1971)

35

Field Crop Maturity Color % Cover Ht (cm) RO\~ Remarks

42 sorghum headout Lg 25 100 N:..S
milk

44A cotton prebloom Lg 17/31 87/72 N-S

44B cotton early g 17 75 N-S

45 corn preharvest dg 100 250 N-S soil very wet
i rriga te d veT)
recently

47 cotton prebloom Lg-g 33 65/55 E-W

47A cotton early g 38 58 E-W

52 sorghum headout, dg 96 136 W-SE irrigate d
dough

53 sorghum headout, g-dg 96 110 E-W irrigated
milky

54 cotton prebloom Lg 40 50 N-S being i rriga tE
water s tandini

58 cotton prebloom Lg 50 14 E-W dry

60 sorghum preboot g 30 68 E-W north of site
much younger
sorghum

61 cotton prebloom Lg 70 30 N-S cuI ti va te d anc
insecticides
added

63 cotton prebloom Lg 50 40 N-S

66 cotton prebloom Lg 50 44 N-S cultivation ar
fertilizer

69 sorghum preboot Lg 29 70 N-S prob. i rrigatj
and fertilizat

71 cotton prebloom Lg 50 40 N-S



.,. ,.-
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Field Crop Maturity Color % Cover Ht(cm) Row Remarks-
78 cotton prebloom Lg 63 32 N-S young and

uniform

83 cotton prebloom Lg 70 28 N-S
87 sorghum preboot Lg 50 50 N-S very young, clea

and cuI tivate d
89 cotton prebloom Lg 85 24 N-S
92A cotton preb100m Lg 70 24 N-S cultivated.
92B cotton prebloom Lg 65 36 N-S
96A mustard new flush gg 26 33 N-S

green
97A cotton prebloom Lg 10 17 N-S poor stand
97B cotton preb~oom Lg 65 36 N-S good stand
104 cotton preb100m Lg 60 37 N-S
105 cotton preb100m Lg 50 45/56 N-S
112 cotton preb100m Lg 80 16/20 N-S
118 cotton preb100m Lg 66 24 . N-S
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WESLACO 2000' (WF1)

5/30/66

(Training Fields, White, 8/71)

38

Row Co1unm
Field Class Starr- End Start· End

Water

1 198 260 23 29

1 410 448 159 169

1 540 544 103 133

1 556 594 49 55

Sorghum 25% Headout Milk

42 2 1385 1448 121 181

Corn

45 3 1504 1550 79 III

Cotton (Young) 17-38%

43B 4 1454 1472 31 57
43A 4 1474 1498 99 143

47 4 1572 1593 133 211

Sorghum 96% Headout (Milk & Dough)

53 5 1634 1650 III 167
52 5 1652 1676 181 205

Fallow

55 6 1764 1789 105 181
• 64 6 2060 2082 7 83
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Row Column
Field Class Star-t- End Start End

Cotton 70%

-61 7 1990 2040 7 65

Sorghum 30%

·60 8 1918 1976 9 69

Sorghum 30%

69 9 2266 2322 39 87

Cotton 50-63%

-58 10 1872 1894 19 59

. 66 10 2204 2238 113 143

71 10 2348 2376 105 133

78 10 2548 2576 113 145

Cabbage

. 56 11 1808 1846 107 205

Weeds

-57 12 1904 1928 105 181

- 62 12 2004 2026 105 181
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WESLACO 10,000' (WAF)

5/31/66

(Training Fields, ERTS-SKYLAB Simulation, White, 8/71)

Row Column
Field Class Star-t- End Start End

Water

1 9 13 3S 3S

1 18 18 44 44
1 66 69 35 35

1 8 81 42 45
1 83 85 36 3S

1 95 9S 43 43

Sorghum 25% Headout Milk

42 2 101 105 29 34

Corn

45 3 108 108 2S 26
45 3 109 111 28 29

Cotton 17-38%

47 4 114 114 32 36

Cabbage

S6 5 128 130 32 39
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Row Column
Field Class Star-t- End Start End

Cotton 50 -6 3%

58 6 133 134 24 28

65 6 149 150 32 35

66 6 152 157 29 35

71 6 164 167 31 31

78 . 6 178 179 33 38

Weeds

57 7 135 136 30 35
62 7 143 143 31 38
79 7 183 186 28 31

Sorghum 30 - 50 %

60 8 138 140 26 28
69 8 160 163 25 28
87 8 202 205 35 40

Cotton 70-85%

83 9 193 196· 31 33
89 9 213 214 36 40
92A .9 223 228 30 34
97B 9 231 232 37 40

Trees

998 10 236 241 46 74

Fallmv-----
53 11 125 126 29 38
64 11 148 150 28 29



WESLACO 2000' (WFl)

5/30/66

(Test Fields, White, 8/71)

42

~ Column
Field Class Start End Start End

199 . 1 30 56 89 99
199 1 686 694 147 179

38 2 1234 1264 119 177

39A 12 1288 1314 81 145
41 10 1362 1426 1 55

46 10 1544 1558 147 197
54 4 1758 1856 63 85
59 10 1942 1966 105 197
59A 6 1974 1994 105 199
76 10 2508 2528 51 75
80 7 2596 2624 83 157
79 12 2600 2624 1 71

..



WESLACO 10,000' (WAF)

5/31/66

43

(Test Fields, ERTS-SKYLAB Simulation, White, 8/71)

Row Column
Field Class Star-t- End Start End

59 6 138 139 30 36

59A 11 140 141 30 36

59B 6 138 141 38 40

63 6 145 147 31 39

80 9 182 185 34 37

82 11 188 190 35 37

83A 2 194 196 27 29

62A 2 142 147 40 41

98 7 203 209 29 33

90 9 216 218 36 40

99 11 236 238 30 34

98 11 235 238 37 40

100 6 240 243 31 34

101 9 240 243 37 40
105 9 247 250 38 39
112 9 268 272 39 41
113 11 269 270 32 37
999 10 230 234 49 74
117 6 276 279 34 42



The REMOTE SENSING CENTER was established by authority of the Board of Directors of
the Texas A&M University System on February 27, 1968. The CENTER is a consortium of four
colleges of the University; Agriculture, Engineering, Geosciences, and Science. This unique
organization concentrates on the development and utilization of remote sensing techniques and
technology for a broad range ofapplications to the betterment ofmankind.




