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ABSTRACT

During the course of a study of space shuttle navigation
capabilities and requirements, it became necessary to construct a
digital simulation of the continuous error of the localizer beam of a
conventional instrument landing system. A discrete mathematical model
has been developed which is easy to use on a digital computer. This
model is a system of difference equations driven by a zero-mean
gaussian random sequence. The model generates an output random sequence
which is equivalent, for simulation purposes, to the desired random
process. The equivalence is created by requiring that the first and
second order statistics of the discrete model be equal to the corre-
sponding expectations of the random process to be simulated at all
instants of time which occur in the simulation.
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DIGITAL SIMULATION OF CONTINUOUS ERROR MODELS WITH APPLICATION
TO AN INSTRUMENT LANDING SYSTEM ERROR

Robert B. Merrick and Gerald L. Smith
Ames Research Center

SUMMARY

During the course of a study of space shuttle navigation capabilities
and requirements, it became necessary to construct a digital simulation of
the continuous error of the localizer beam of a conventional instrument
landing system. A discrete mathematical model has been developed which is
easy to use on a digital computer. This model is a system of difference
equations driven by a zero-mean gaussian random sequence. The model
generates an output random sequence which is equivalent, for simulation
purposes, to the desired random process. The equivalence is created by
requiring that the first and second order statistics of the discrete
model be equal to the corresponding expectations of the random process
to be simulated at all instants of time which occur in the simulation.

The theory is presented in several distinct sections. Then the
details of a localizer beam numerical example are given using the same
format.

INTRODUCTION

While participating in a study of space shuttle navigation
capabilities and requirements, it became necessary to construct a mathe-
matical model for the digital simulation of the continuous random error
of the localizer beam of a conventional instrument landing system. The
localizer beam error random process is nonstationary since the rms error
decreases with range; however, it has been assumed (ref. 6) that the
frequency distribution characteristics of this error are described by a
rational power spectral density function which does not change with time.
Although a method is well-known (e.g., ref. 1) for obtaining a continuous-
time representation of a stationary markovian random process from a given
rational power spectral density function, it is not so obvious how to
obtain a suitable discrete-time representation for easy digital computer
implementation. The purpose of this paper is to present a straightforward
computationally efficient method for constructing such a model and show
that it may be used for the practical problem at hand. The general
approach is one suggested by Dr. Stanley F. Schmidt.
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NOTATION
/

COLUMN VECTORS (lower case, underlined)

XG an n component differential system response, the state vector

xj a random sequence which is statistically equivalent to ><c
at the discrete time points t^

y_ m elements, a linear function of x, y = Hx.

u_ r elements—each element is a white noise random sequence

w n elements--each element is a white noise process

MATRICES (capital 'leLersj

B n x n, symmetric

F n x n, a known function of time

G n x n, a known function of time

H m x n, a known function of time

PXc the expected value of the matrix, xc xj, the covariance
matrix of x^,

Pxd the expected value of the matrix, Xd x^

R the expected value of the matrix, w wj

$(t:to) the matrix which transitions the state vector from one time
to another

Y n x r, to be determined

( )T the transpose of the matrix ( )

GENERAL

a a constant

s the laplace operator
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t time

T a particular time

AT time interval, t - t0 or

SUBSCRIPTS

c continuous

d discrete

k an integer

s steady state
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THEORY

1. Preliminary Considerations

The motivation for this theoretical development was the need for a
digital computer algorithm to model the continuous error of an instrument
landing system localizer beam. It was desired that the algorithm be
capable of generating a random sequence statistically equivalent to the
random process to be simulated, and that the algorithm be reasonably simple.

Unless the given random process happens to be gauss-markov, or some
other type completely characterized by only a few parameters, the objec-
tives stated above tend to be mutually contradictory. Therefore, a
compromise was employed which is common in engineering applications;
namely, that only first- and second-order statistical equivalence would
be required. Specifically, at each time point for which the random
sequence 1s defined, Its first- and second-order statistics were required
to be equal to those of the random process being simulated:

• E{xc(tk)>, E{Xd(tk)xJ(t!)} = E{xc(tk)xj(ti)>

The justifications for this compromise are:

(1) The description of a physical random process if often limited
to approximating its first- and second-order statistics (such
is the case with the example used here).

(2) First- and second-order statistics are commonly the most
significant probabilistic attributes of the process.

(3) The well -developed theory of gauss-markov processes and sequences
can be applied readily.

These principles and assumptions are applied in the sequel to develop
the desired algorithm, the steps in the development being summarized as
follows:

(a) From a given rational power spectral density function which
represents (in the frequency domain) the second-order statistics
of the error random process, develop a differential equation with
zero-mean white noise input whose solution would produce elements
of the desired random process.

(b) Develop from this differential equation a general relationship
for the steady-state covariance matrix of the state of this
continuous system, expressed in terms of the coefficients of
the differential equation.
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(c) Develop a general expression for the steady-state covariance
matrix of the state of a discrete system with a zero-mean white
noise random sequence input in terms of the system coefficients.

(d) Equate the covariance expressions for the continuous and discrete
systems and solve for the coefficients of the required discrete
system.

The discrete system (i.e., digital computer algorithm) designed by this
procedure produces a zero-mean random sequence having the desired second-
order statistical properties. Usually, as in the example considered herein,
the process to be simulated is a zero-mean process, or by proper problem
definition can be made so. However, if not, the desired first-order
statistical properties can be achieved simply by adding to the generated
random sequence, a sequence which is the mean of the given error random
process at the defined time points.

A certain degree of added generality is obtained automatically in the
development inasmuch as generally an n-state system must be devised in
order to model a random process of anything more than rudimentary complexity.
Since the n-state system has n outputs, and since an infinite variety of
combinations of these outputs is possible, one can model not only the desired
random process, but at the same time many other related random processes with
little additional computation. In particular, it will be noted that a
variety of non-stationary random processes can be modeled simply by multi-
plying the system output by an arbitrary time-varying factor. That is, if
Xfj is the n-component state vector of the system, and H is an (m x n)
matrix of time-varying coefficients, then

£d = H*d

is a vector random sequence whose m components may have arbitrary
variances at any given time.
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2. The Covariance Matrix for a Continuous Error Model (a gauss-markov
random process)

A state vector formulation of a linear differential system response is

Xc = F(t)xc + 6(t)w (2)

where XG 1S an n element state vector, w is an n element noise
vector, and the n x n matrices, F and G, are known functions of time. In
order that we may apply the useful theory that exists for gauss-markov
random processes, we now require:

a) w is zero-mean gaussian white noise

b) -;:c(o) has a zero-mean gaussian distribution

c) E[w xj(o)] = 0

Then x^ is a representation of a zero-mean gauss-markov random process
and

E{w(t)w_T(T)} = R6(t - T)

where R is a positive semi-definite n x n matrix and 6 is the Dirac
delta function.

For this application, we also require that w be stationary so that
R is a constant. Tho associated covariance propagation equation is
(ref. 2 and 3)

f'x (0 - FPX + Px FT + GRG
T (3)

v- L. v*

The solution of the state equation is

Xc(t) = *(t:to)xc(t0) + /* *(t:u)G(u)w(u)du (4)
ô

where $(t:t0) is the transition matrix (refs. 4, 5) and the expected
value of the integral is zero. Equation (4) is a continuous representation
for the-state vector at any time t in terms of initial conditions at any
time t0, the transition matrix, and the disturbing functions. The
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transition matrix for a linear constant coefficient differential system
(F = constant) is a function only of the time difference, t - t0; it is
not a function of time, t.

It is readily determined that

Px (t) = <Kt:t0)PXr(t0)$
T(t:t0) + B (5)

\* w

where B is a symmetric n x n matrix and

B = £{/* aUriOGdOwdOduC/* $( t :v)G(v)w(v)dv)T } (6)
t0 <-o

It is ordinarily also true (ref. 3) that

B = /* * ( t :v)G(v)RGT (v)$T ( t :v)dv (7)
*o

Here the integrand is positive semi-definite. Consequently, the integral
B is also positive semi-definite.

In any application, the covariance matrix of the continuous random
process must be explicitly determined. Accordingly, an expression for
the integral B is needed. The integration is tedious and may be avoided
if, as in most applications, the random process to be modeled is independent
of time. When this is true the stable system, which generates the process,
is in a steady-state condition; the matrices GRG^ and F are constant, and
the transition matrix is a function of the time interval At. In the
steady-state condition, equations (3) and (5) become:

0 = FPXc(ts) + PXc(ts)FT + GRGT (8)

PXc(ts)
 = *(At)PXc(ts)$

T(At) + B (9)

where the notation ts means any time such that the system is in a
steady-state condition.

We see that equation (8) determines the elements of the steady-state
continuous covariance matrix in terms of known constants and equation (9)
defines B in terms of the P matrix and the transition matrix. Thus,
B has been determined without integration.

Continuing the general development and using equations (1), (2), and
(5), we write;
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E(yJ = 0 (10)

Pyc(t) = H(t)PXc(t)H
T(t) (11)

Pyc(t) = H(t)$(t:to)PXc(t0)$THT + HBH
T (12)

where Pyc(t) is defined by

Pyc(t) - ElJkCttyCt)] (13)

Equations (5), (7), and (12), present the statistical description of the
random process which is to be simulated with difference equations and
discrete random variables.

3. The Covariance Matrix for a Discrete Error Model (a gauss-markov random
sequence)

We wish to generate an xd(tk) such that PxdUk) = PXC^) at a^ times
tk, occurring in the digital simulation. We start with the continuous
equation (4) which has the following discrete analog

x^) = *(tk:tkM)xd(tkM) + Y(tk)u_(tk) (14)

where x^ is an n component vector whose elements are random sequences
with an initial gaussian distribution. Here u_ is an r component
vector of gaussian-random sequences with the following characteristics:

= 0 = E [ui(tk)xd(tk.1)]

E[uf (tk)] = 1 for i = 1 to r, r >. 1

E[ui(tk)uj(tk)] = 0 if i f j

Consequently,

E[u_(tk)u_
T(tk)] = I (15)

The vector u_(tk) is easily obtained from a unit variance gaussian-random
number generator.



Now x^ is a representation of a gauss -markov sequence and

PxdUk) = »PXd(tk-i)»
T + Y(tk)Y

T(tk) (16)

which is the discrete covariance relationship corresponding to the
continuous relationship expressed in equation (5).

If we wish to model a random process, which is a. linear function of
a differential equation response as suggested in equation (!)• we
introduce:

= HUJxjtt) (17)

Pyd(t) = H(t)PXd(t)HT-(t) (18)

and find that

Pyd(t) = H$PXd(t0)$THT + HYYTHT (19)

4. Requirements for the Equivalence of the Continuous and Discrete
Covariance Matrices

The two equations which define the manner in which the covariance
matrices propagate, are repeated here:

PXc(t) = *(t:t0)PXc(t0)<I>
T(t:t0) + B (5)

- pxd(tk) = *(tk:tk.1)PXd(tk-1)$
T(tk:tk.1) + Y(tk)Y

T(tk) (16)

An inspection of these relationships shows that the discrete variable
will be statistically equivalent to the continuous quantity if the
following three conditions are met:

(a) $(tk:tk_1) = <Kt:t0)

(b) The discrete variable can be initialized such that

Pxd(tk-!) = Pxc(t0)

(c) A matrix y can be found such that YY
T = B (20)
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The example to be presented will illustrate, in detail, how these conditions
are satisfied in a particular case.

The other covariance relationships of equation (19) and equation (12)
are also seen to be statistically equivalent 1f the preceding three
conditions are satisified.

EXAMPLE

1. Preliminary Discussion

A signal whose power spectral density approximates that of the localizer
noise (ref. 6) can be generated by passing gaussian white noise through a
filter as indicated below:

whi te
noise

S
1 + 3. OS + 2.25S2

k
y = local izer

noise

It is assumed that initial transients have disappeared so that the
statistical expectation of the output of the transfer function is not
time dependent. The gain k is adjusted as a function of range so that
the variance of the localizer noise representation, y, is appropriate.

When white noise is passed through a filter of the form

1
(2/a)S + (l/a)2S2

then when a = 2/3 the derivative of the output has the statistical
distribution we desire though its magnitude must be adjusted.

2. An Explicit Presentation of the B Matrix

A state vector form of the differential equations which represent the
localizer system is

(21)

(22)

X

X

0 1

-a2 -2a

y = [o k]
X

X

X

X

0 0
0 a2

0
W2
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where w2 is a gaussian white noise process of zero-mean and unit variance
and the system of equations is analogous to equations (1) and (2). In this
example the vector of noise sources, w_, is characterized by

E[w(t)wT(T)] =

so that

0
6(t - T)

R =

(23)

If we define

Pl2 P22

<f>21 $22

then equation (8) may be applied to this example to get

Pi2 = 0

P22 =

Pll = P22/32 (24)

Next, applying equation (9) we have

- <)>22(l'12a2]

b22 = (a/4)[a2 - (25)
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In Appendix A, the transition matrix for this application is determined
to be

and we may find

$12 =

$22 ~

(1 + aAt)e~a A t

Ate-aAt

-a2Ate-aAt

(1 - aAt)e-aAt

bn = (a/4) - (a/4)e'2aAt[l + 2aAt + 2a2(At)2]

b12 = (a/4)e-2aAt[+2a3(At)2]

b22 = (a/4)a2 - (a/4)a2e-2aAt[i . 2aAt+2a 2 (At ) 2 ]

(26)

(27)

(28)

(29)

3. Determination and Existence of y

The components of B have been explicity presented; for a given a
and At the numerical values of the elements of B can be calculated.
The next step in obtaining a solution to equation (14) is to determine
a y such that

YYT= B (17)

A lower triangular form for y is sufficient here

Yll 0 -

Y21 Y22

YYT =

r 2
Yll

Y11Y21

Y11Y21

2 . 2
Y21 + Y22

=

"bii

_b!2

b12

b22_ (30)

We now have three algebraic equations in three unknowns which are
readily solvable. If the matrices, y and B, had n rows and columns,
then there would be n(n + 1)/2 equations in the same number of unknowns
to solve but their solution is straightforward. Appendix B presents the
details for matrices with three rows and columns.
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For the present example:

Y21 = bi2/Yll

Y22 = (b22 -

(31)

(32)

(33)

It is clear that the elements of y do exist if

0 and

The matrix B is positive semi-definite, which implies that:

0,

If = o it follows that b12 is also equal to zero and in this
case

Y =

0 0

0 22

When the matrix B is less than full rank, then the vector u_ may
be constructed with fewer elements.

4. Initialization of the Discrete Variable

All of the major elements necessary for solving equation (14) have now
been discussed. The random vector u^ is easily obtainable, a transition
matrix can be calculated, and the matrix y has been presented for the
example problem.

The remaining requirement is to determine an initializing vector
This is simple in the given example since the cross correlation term of
the covariance matrix, Pi2» is zero. We wish to construct initial values
xd(o) and x,j(o) such that
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E[x2(o)] = PH = a/4

)] = P22 = a
3/4

E[xd(o)xd(o}] = 0

Take an output from a unit variance gaussian zero-mean random number
generator (uncorrelated) and multiply this number by Pj{2; this is xd(o).
Take a different element from this same gaussian sequence and multiply it
by P^2; this is xd(o). These elements form the initial state vector.

CONCLUDING REMARKS

In summary, the example random process is modeled for computation by
programming the following equations

d(tk-i} + Y(tk)u.(tk). (34)

y(tk) = [0 K]xd(tk) (35)

where $(At) is given by equation (26), and y(t|<) is obtained from
equations (27) through (29) and (31) through (33). Initial conditions for
equations (34) and (35) are

x^o) = (a/4)iA Q

and u.(tk) is a 2-component vector whose elements are obtained from a
gaussian unit-variance random number generator.

The problem of simulating a statistically defined continuous error on
a digital computer has been discussed, A technique for creating difference
equations which fulfil this purpose has been presented. This mathematical
model is easy to mechanize and it is accurate in the sense that the vector
of random sequences obtained from it is statistically equivalent, at the
discrete times, t|<, to the vector of random processes being modeled. A
digital simulation has been constructed for the random process which describes
the random error of a conventional instrument landing system localizer beam.
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APPENDIX A

A DERIVATION OF THE TRANSITION MATRIX FOR THE EXAMPLE APPLICATION

N(t)'
(2/a)S + 0/a2)S

x(t)

The corresponding equation is

(S2 + 2aS + a2)L{x(t)> = a2L{N(t)> (AT)

When N(t) is identically zero in the equation above, the solution vector
x_(tn) is related to the same vector at an earlier time, xtt^), by a
multiplying matrix as below

(A2)

This appendix will explicitly present the transition matrix, $, used
in this application.

The unforced portion of the solution of equation (Al) is

x(t) = e-«xQ * te-a'(x0 + ax0) ^ _^

x(t) = e-«x0 + te-at(-ax0-a
2x0)

x(t2r
x(t2)_

s
"l + a(t2 - ti

-a2(t2 - ti)

) (t2 - tj)

1 - a(t2 - ti) X(tj)

This is a continuous solution of the homogeneous equation (N
It is valid at any time t2 given the initial conditions at t^
Accordingly, the general transition matrix is

= 0).
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x(tn)

x(tn)

=
DO + aZ)

-Da2Z D

DZ

(1 - aZ)

where Z = tn - tn and D = e~aZ
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APPENDIX B

SHOWING THAT THE SYMMETRIC THREE BY THREE MATRIX, B, CAN BE EXPRESSED

AS YYT WHERE Y IS LOWER TRIANGULAR

The relation to be examined here is

Yii 0 0

Y21 Y22 0

Y31 Y32 Y33

Yll Y21 Y31

0 Y22 Y32

0 0 Y33

b13

22

where there are six unknown elements, Y-JJ. After matrix multiplication,
the necessary six independent equations may be found by equating corresponding
matrix elements of the symmetric matricies.

Y11Y21 YllY3i

Y11Y21 Y21 + Y22 Y21Y31 + Y22Y32

YllY3l(Y2lY31
 +.Y22Y32)Y3l + Y32 +.Y33

2
Y21

2
Y22

i2 bi

33

and we find that

Yll = n Y22 = [b22 - Y2l]
1/2

Y21 = b!2/Yll Y32 = [t»23 ' Y2lY3ll/Y22

Y31 = bis/Yll Y33 = Cb33 - Y31 - Y32]1/2
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