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ABSTRACT

A broad endeavor of solar physics is to determine from the observed

radiation the structure of the solar atmosphere and the nature of the en-

ergy balance which this structure implies. A basic feature of the solar

atmosphere which is still not well understood is the chromosphere-corona

transition region in which, in a height of a few thousand kilometers, the

4
temperature increases from about 10 K at the top of the chromosphere to

6
about 10 K at the bottom of the corona. The problem investigated in this

dissertation is that of the structure and heating (or energy balance) of

the transition region and the role of the transition region in the struc-

ture and heating of the atmosphere as a whole.

First, we define the problem by summarizing the well-established ob-

served features of the structure of the atmosphere and by reviewing the

observed radiative energy losses of the atmosphere. From this study of

the observations we find:

1. The atmosphere is approximately static and planar except

in active regions during their growth phase.

2. While the corona must be supplied with heat from the inner

layers by some nonthermal process such as the propagation

and dissipation of mechanical waves, the observations sug-

gest that the heating of the transition region is dominated

by conduction heating from the corona.

3. The dominant energy loss of the corona is due to downward
6 -2 -1

heat conduction and is of order 10 erg cm sec . This

requires the existence of a high-temperature corona and

the steep temperature rise in the transition region.

iii



We then consider a static, planar model of the solar atmosphere

which has a temperature profile representative of the actual solar

atmosphere. An analysis of wave propagation and dissipation in this

model leads to the following conclusions:

1. The corona is heated by nearly vertically propagating

compression waves. These waves pass upward to the

corona through the chromosphere and transition region

from the photosphere where they are generated by the

granulation convection cells bobbing to the top of the

convection layer.

2. The waves are probably dissipated in the corona by

thermal conduction and Landau damping rather than by

developing into shock waves.

Having obtained an overall picture of the structure and heating

of the atmosphere as a whole, we then develop a static, planar model

of the transition region which is heated by thermal conduction from

the corona and cooled by radiative losses. From the good agreement

between the model and the results of XUV emission-line observations

of the transition region, we conclude:

1. The transition region is heated primarily by thermal con-

duction from the corona rather than by wave dissipation.

2. The balance of conduction heating and radiative cooling

in the transition region determines the number density

in the transition region and lower corona.

A general conclusion to be drawn from our results is that the

temperature profile of the transition region and lower corona results

primarily from the energy balance of the corona, while the number

density is determined by the energy balance of the transition region.
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1. INTRODUCTION

The problem of the structure and heating of the chromosphere-corona

transition region is part of the general problem of the structure and

heating of the outer layers of the solar atmosphere. The heating of the

solar atmosphere has been recognized as one of the fundamental problems
»

of the solar atmosphere since about 1945 when it became generally accepted

that the temperature of the corona a short distance (a few hundredths of

C

the sun's radius) above the visible surface, or photosphere, is about 10 K,

more than a hundred times hotter than the photosphere. Due to its proxim-

ity to the photosphere, the tenuous, hot corona is essentially in thermal

contact with the massive, relatively cold surface layers of the sun. Con-

sequently, the corona would quickly cool to the temperature of the photo-

sphere if the thermal energy of the corona were not continually resupplied

by some form of heating. Since the heating causes the temperature of the

atmosphere to increase with height, it is clear that the heating of the

atmosphere and its structure (e.g., the run of temperature and density

with height) are inseparable parts of the same problem.

Our study of the structure and heating of the solar atmosphere has

led us to develop a model for the structure and heating of a limited re-

gion of the atmosphere, the layer called the chromosphere-corona transi-

tion region. The purpose of this dissertation is to present our study of

the structure and heating of the transition region by means of this model,

and to bring out the position and role of the transition region in the

overall structure and heating of the atmosphere. To this end we first

summarize the observed structure of the solar atmosphere in Chapter 2,

and then give a general discussion and summary of the heating problem in



Chapter 3. With this background, in Chapter 4 the model transition

region is developed and compared with observations, and the resulting

implications for the structure and heating of the transition region

and the atmosphere in general are discussed.



2. THE STRUCTURE OF THE SOIAR ATMOSPHERE

2.1 General Description

The solar atmosphere is the observable part of the sun which sur-

rounds the unobservable interior. The radius of the sun R , which
0

defines the surface df the sun, is defined to be the radius of the edge,

or limb, of the sun when observed in white light. The solar atmosphere

begins just below the surface at a depth of about 0.0005 R and extends
0

outward from the sun for hundreds of solar radii. However, we will be

almost exclusively concerned here with only the thin inner layer between

the bottom of the atmosphere and the level of the temperature maximum in

the low corona. The thickness of this layer is probably less than 0.3 R
0

and may be as little as 0.03 R .
©

The structural features of the atmosphere separate naturally into

two categories: vertical and horizontal. Vertically, the most general

feature of the atmosphere below the temperature maximum is the stratifi-

cation of the atmosphere into four observationally and structurally dif-

ferent layers. In order of position from bottom to top, these are the

photosphere, the chromosphere, the chromosphere-corona transition region,

and the low corona. Horizontally, the fundamental feature is the exis-

tence of active regions and quiet regions: the solar atmosphere consists

of a quiet, or undisturbed, relatively uniform background on which there

are superposed, like islands on a sea, enhanced, disturbed active regions.

The active regions may be thought of as enhancements of the background

atmosphere to the extent that the structure of active regions is similar

to the structure of quiet regions. Active regions are viewed as disrup-

tions of the background atmosphere to the extent that their structure



differs qualitatively from that of the background atmosphere. Therefore,

we will first consider the structure of the quiet solar atmosphere, and

then consider the modification of this structure in active regions.

2.2 The Quiet Solar Atmosphere

2.2.1 Average Vertical Structure

Figure 2.1 shows the relative thickness of the basic layers of

the quiet solar atmosphere. The approximate height, number density, and

temperature at the boundaries of the layers are indicated in the figure.

The photosphere is the surface layer of the sun which is observed

in white light. The top of the photosphere is taken to be the limb of

the sun in white light; that is, the top of the photosphere is defined

to be the surface of the sun. Hence, it is natural to measure the height

in the atmosphere from the top of the photosphere. The top of the photo-

sphere is defined more precisely as the level in the atmosphere which has

an optical depth of 1.0 when viewed tangentially on the limb in 5000 A

2 3
light. ' Viewed at the center of the disk, this level has an optical

2
depth of only 0.004, which demonstrates that deeper levels can be seen

at the center of the disk than at the limb. The optical depth increases

so rapidly with depth in the atmosphere that only an unobservably small

amount of the light emitted from levels below -400 km escapes from the

sun directly without being absorbed in the photosphere. Thus, in accor-

dance with the solar atmosphere being defined as the directly observable

4
part of the sun, -400 km may be taken as the bottom of the photosphere.

The radiant energy lost from the photosphere is continually sup-

plied by the conversion of hydrogen into helium near the center of the
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sun (within about the inner 0.5 R ). Within about 0.9 R from the
© 0

center, the sun is convectively stable, and the energy released in the

central core flows outward by radiative transfer through the stationary

gas. Approximately the outer 0.1 R of the sun is in a state of free
0

convection. In this convection layer radiative transfer is negligible,

and the energy is carried outward by the convective motion of the gas.

Just below the surface of the sun, at the base of the photosphere, the

sun again becomes stable against convection, so that in the deepest

100 km or so of the photosphere the primary energy flow process changes

c
back to radiative transfer. Thus, the energy which is radiated from

the photosphere is supplied to the photosphere from the interior by con-

vection. ^

During a total eclipse of the sun, a dark-red layer is seen just

above the photosphere. Due to its color, this layer is called the chro-

mosphere. Viewed at the limb, "the chromosphere seems composed of a more

7
or less homogeneous layer, from which emerge fine streaks or spikes".

These spikes are the spicules which will be discussed in Section 2.2.2.3.

Since our purpose here is to consider the average vertical structure of

the atmosphere, we define the chromosphere to be the "more or less homo-

geneous layer" from which the spicules emerge. The height of this layer

8,9
is about 2,000 km.

The outermost layer of the solar atmosphere is the corona. Due

to the scattering of the sunlight emitted from the photosphere as it

passes through the corona, the corona is visible during a total eclipse

as an irregular white envelope surrounding the sun and extending to

heights of 1 R or more above the limb. In addition to (1) scattering
©



photospheric light, the corona also emits observable amounts of radiation

in (2) optical emission lines from highly ionized atoms of heavy elements

(e.g., iron, calcium, and nickel), in (3) XUV (far-ultraviolet and X-ray)

resonance emission lines from highly ionized atoms of heavy elements, and

in (4) radio waves. Quantitative observations of the corona in each of

these four types of c'oronal radiation Indicate that the temperature of

the corona is between 1 and 2 x 10 K ' (within about 1 R from the
©

12
surface ). This is the single most important physical feature of the

corona.

The red light emitted by the chromosphere is the Balmer a line

(Ha) of the neutral hydrogen atom. Since hydrogen rapidly becomes ion-

4
ized as the temperature increases above 10 K, the temperature at the

4
top of the chromosphere cannot be much greater than 10 K, two orders

of magnitude below the temperature of the corona. Between the chromo-

sphere and the corona there is a transition region in which the temper-

ature increases from about 10 K to about 10 K. The transition region

is observed primarily in XUV resonance lines. The XUV-line observations

indicate that the thermal gas pressure in the transition region is about

-1 -2
10 dyne cm (see Section 4.3.2). Considering this result in conjunc-

13
tion with eclipse observations of the chromosphere, Athay concludes

4
that the 10 K level at the top of the chromosphere occurs in the vicin-

ity of 2,000 km. Therefore, it is compatible with our above definition

4
of the chromosphere to define the 10 K level to be the boundary between

the chromosphere and the transition region. We define the 10 K level

to be the boundary between the transition region and the corona. The

XUV-line data imply that the transition region, thus defined, has a

thickness of only a few thousand kilometers.



A representative temperature profile for the quiet solar atmosphere

is shown in Figure 2.2. This temperature profile was obtained as follows.

From the XUV-line data, the temperature gradient can be estimated as a

function of temperature in the transition region and low corona (see Sec-

tion 4.3.2). This allows an estimate of the heat flux flowing down through

the transition region' from the corona. The data indicate that there is a

6 -2 -1
downward heat flux of about 10 erg cm sec , which remains approximately

/? e

constant from about the 10 K level down to the 10 K level. On this basis,

the temperature profile above 10 K in Figure 2.2 was computed by assuming

6 —2 —1
a constant downward heat flux of 10 erg cm sec . As was pointed out

4
above, it is reasonable to assume a height of 2,000 km for the 10 K level.

The 10 K level was rather arbitrarily placed 500 km above the 10 K level.

4
(Some justification for adopting a thickness of this order for the 10 to

5
10 K temperature range is given in Appendix B.) The shape of the temper-

4 5
ature profile in the 10 to 10 K region was chosen to fit smoothly with

the temperature profile above and below this region. For the chromosphere

and photosphere, the temperature profile of the Bilderberg Continuum Atmo-

14 - 4
sphere (BCA) was adopted slightly modified to pass through 10 K at 2,000

km above the photosphere. The BCA temperature profile was chosen mainly

for its virtue of having to be only slightly modified near 2,000 km to

satisfy this condition. Below the photosphere, in the convection layer,

the temperature profile was drawn to pass through the point (-1000 km,

3
14,000 K) given by Allen and to fit smoothly with the temperature profile

in the photosphere.

In Figure 2.2, it is seen that each layer has its own characteristic

temperature structure. The temperature decreases with height in both the

convection layer and the photosphere, but the decrease is more rapid in the

8
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photosphere. At the top of the photosphere the temperature reaches a

minimum of 4,600 K and then rises slowly through the chromosphere. In

the transition region, the profile again steepens before becoming very

flat in the corona.

The steepness of the temperature profile in the transition region

and its flatness in the corona result from the constancy of the downward

heat flux above 10 K and the strong temperature dependence of the ther-

mal conductivity. The temperature gradient is given by

- - (21)
dz " K ' (2'1)

where F is the heat flux and K is the thermal conductivity. At tem-

4
peratures above 2 X 10 K, the thermal conductivity is given by (see

Section 4.2.3)

—c Q *5f? —1 ™"| —1
K = 6.6 X 10 T * erg sec K cm . (2.2)

This requires the temperature profile to be 230 times steeper at the

10 K level than at the 10 K level if the heat flux is to be the same
f*

at both levels. At 10 K and above, the thermal conductivity is so

large that only a slight temperature gradient is necessary in order to

6 -2 -1
conduct a heat flux of 10 erg cm sec . Hence, the corona is approx-

imately isothermal.

The average vertical density structure of the quiet solar atmo-

sphere is shown by the density profile in Figure 2.3. This profile is

based on the following considerations. From the XUV-line data, it is

fairly well 'established that in the transition region and the first sev-

eral thousand kilometers of the corona the thermal gas pressure nkT is

10
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approximately constant and that nT has a value of about 1Q15 cm"3 K.

This constant value of nT was adopted and used to obtain the number

density from the temperature profile above the 10 K level in Figure

2.2. The value of 2 x 10 cm" for the number density at the 10 K

level results from the plausible assumption (see Appendix B) that the

4
thermal gas pressure is a factor of two greater at the 10 K level than

at the 10 K level. For the chromosphere, a somewhat smoothed version

13
of the profile derived by Athay was adopted. This profile fits smoothly

with the profile in the transition region and with the BCA density pro-

file, which was adopted for the photosphere. The value of the density

3
in the convection zone at -1000 km was taken from Allen.

Although velocity oscillations and fluctuations with characteris-

tic periods of several minutes are observed in the photosphere and chro-

mosphere, on the average over longer periods of time, the quiet solar

atmosphere may be considered to be in hydrostatic equilibrium. For a

hydrostatic atmosphere supported against gravity by thermal gas pressure,

the number density gradient is given by

id£ = _ m£ _ 1 dT
n dz kT T dz '

where m is the mean particle mass and g is the acceleration of grav-

ity. This equation, in conjunction with the temperature profile in Fig-

ure 2.2, explains the general features of the density profile in Figure

2.3. The profile steepens with height in the photosphere because the

temperature is decreasing and the temperature gradient is negative and

increasing. In the chromosphere, the increasing temperature causes the

density profile to become increasingly less steep. The steepening of

12



the density profile in the transition region is due to the dominance of

the temperature-gradient term in equation (2.3) near the 10 K level.

At higher levels, the density profile becomes increasingly flatter be-

cause the temperature increases and the temperature gradient decreases.

The preceding explanation of the density profile is only qualita-

tively correct. In addition to thermal gas pressure, the atmosphere is

supported to some extent by the turbulent pressure of the velocity fluc-

tuations. This effect is probably most pronounced near the base of the

transition region, where we find (see Appendix B), in agreement with

13
Athay's model chromosphere which we adopted in Figure 2.3, that the

turbulent pressure may be comparable to the thermal gas pressure. There-

fore, the turbulent pressure probably contributes significantly to the

support of the gas in this region.

2.2.2 Horizontal Structure and Associated Fluid Motion

2.2.2.1 Photospheric Granulation and Oscillations in the Photosphere
and Low Chromosphere

The best high-resolution photographs of the photosphere show

that in normal, quiet regions the brightness of the photosphere is not

horizontally uniform. Instead, the photosphere appears as a mosaic of

irregular polygonally-shaped bright cells of various but not greatly

-t c 1C

different sizes. ' The bright cells are separated, or bounded, by

a network of narrow dark lanes. This pattern of bright cells with dark

boundaries is called the photospheric granulation. The diameter of a

16 17
bright cell, or granule, is typically 1000 to 2000 km, ' while the

16
dark boundaries have a width of about 350 km. Some granules are

brighter than others; the ratio of the intensity of the light from the

13



brighter granules to the intensity of the dark intergranule lanes is

1.3, corresponding to a temperature difference of 300 K, while the

root-mean-square intensity variation over many granules corresponds

17
to a temperature difference of about 100 K. The granulation pattern

is not stationary. Old granules are continually broken up and replaced

by new granules so that the average lifetime of a granule is about 6

• * 16
minutes.

Most of the light emitted from the photosphere comes from an

optical depth near 1.0. At the center of the disk optical depth 1.0

occurs about 300 km below the top of the photosphere. Since the con-

vection below the photosphere is believed to persist to about this level

r*
in the photosphere, the photospheric granulation is apparently the top

of the uppermost layer of convection, each individual granule being a

convection cell with hot, bright gas rising in the center and cool, dark

gas falling at the boundary. A new granule appears when a fresh blob of

hot gas rises to the top of the convection layer. The observed Doppler

shifts of absorption lines formed in the vicinity of the -300 km level

indicate convective motions consistent with this interpretation of the

6,18
granulation.

The convective motion in the convection layer arises spontane-

ously because the layer is convectively unstable. Thus, this layer of

the atmosphere naturally possesses a nonzero velocity field even though

the average velocity is zero and the layer is in overall hydrostatic

equilibrium. The convection terminates at about -300 km because at this

level and above the atmosphere is convectively stable. Although the up-

per photosphere and the chromosphere are convectively stable, Doppler

shifts in spectra of absorption lines formed in these layers show that

14



these layers also possess a fluctuating velocity field. However, as is

compatible with the convective stability, the basic character of the ve-

locity field in these layers is oscillatory rather than convective. The

observations also indicate that this oscillatory velocity field does not

arise spontaneously in the photosphere and chromosphere, but is excited

in these stable layers by the buffeting of the photosphere by the top of

the convection layer.

The oscillatory velocity field in the photosphere and low chro-

mosphere has the following observed features:

1. The motions tend to be in phase over horizontal regions
or cells which are comparable in area to the granules.19

2. Near the level of the granulation (about -300 km) horizon-
tal velocities and vertical velocities are comparable: at

-i Q nr\
the top of the photosphere the motion is nearly vertical. » u

3. The rms velocity is about 0.2 km sec near the level of
the granulation, increases to about 0.4 km sec"1 near the
top of the photosphere, and reaches a value of about 1.6
km sec"1 at the level of the core of Ha in the chromo-
sphere.16'19

4. The lifetime of the oscillatory cells is comparable to the
lifetime of the granules.

5. The appearance of a new granule is followed by the onset
of oscillations above the granule. These oscillations are

9ninitiated by an upward motion. "

6. The period of the oscillation increases from about 200 sec
at the beginning of the oscillation to a steady period of
about 300 sec.19'21

7. The phase relation between the brightness and the Doppler
shift of the observed lines suggests that the oscillation
is initially that of a propagating wave and relaxes to that
of a standing wave.21

Each of these observations is compatible with the interpretation that

the oscillations in the photosphere and chromosphere result mainly from

15



hot new granules bobbing to the top of the convection layer and impinging

T6 22
on the overlying stable layers of the photosphere. '

2.2.2.2 Supergranulation and the Chromospheric Network

In addition to the convective motion in the granulation and the

associated oscillatory motion in the photosphere, a much larger scale

convective velocity field is revealed by the Doppler shifts in the pho-

Ifi 19
tospheric absorption lines. ' This velocity field has a pattern of

closely packed, roughly circular cells similar to the photospheric gran-

ulation, but with a scale some 15 to 20 times larger. By analogy, this

pattern is termed the supergranulation. A typical supergranule has a

diameter of about 30,000 km and a lifetime of about 20 hr. Gas flows

upward at the center, radially away from the center, and downward at

the boundary of the supergranule. The horizontal flow velocity is about

0.4 km sec , and the upward and downward velocities are 0.1 to 0.2 km

sec . Apparently, the supergranules are the tops of large convection

4 23
cells which extend deep (10 km or so) into the convection layer.

The supergranulation is not apparent on white-light photographs

of the photosphere. This indicates that the structure of the photosphere

is not much affected by the supergranulation. However, the supergranula-

tion noticeably influences the structure of the overlying chromosphere

in normal quiet regions. Observations of the chromosphere in the K line

of singly ionized calcium or the Ha line of hydrogen show a network of

enhanced emission in the chromosphere which coincides with the network

19
of supergranule boundaries in the photosphere. The enhanced emission

implies that the density and/or the temperature is enhanced in the chro-

mospheric network.
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The enhanced emission in the chromospheric network is believed

to be due to the enhanced magnetic field at the boundaries between the

Ifi 19
supergranules. ' The average (over areas larger than a supergranule)

strength of the magnetic field in the photosphere is observed to be about

24
1 gauss. The fact that the spicules spurt upward out of the chromo-

oe

sphere more or less vertically indicates that the magnetic field in

quiet regions is also approximately vertical since the spicules should

move along the magnetic field lines. Since the magnetic field is "fro-

zen in" the highly conducting gas of the photosphere, and since the mag-

netic pressure in the photosphere in quiet regions is much less than the

gas pressure, the horizontal flow in the supergranulation should tend to

sweep the field out of the interior of the supergranules and concentrate

23
it in the boundary network. Observations of the magnetic field in the

photosphere confirm that the magnetic field is concentrated in the super-

granule boundaries and indicate that the field strength is of the order

19
of 50 gauss in these regions.

2.2.2.3 Spicules

When the chromosphere in quiet regions is observed at the limb,

especially when it is observed in the Ha line, narrow columns, called

spicules, are seen to extend upward out of the relatively homogeneous

layer which we have defined as the chromosphere. The spicules are tran-

sient; they appear by rising out of the chromosphere and disappear by

fading away or by falling back to the chromosphere. Since spicules are

observed in chromospheric light and appear to be generated in the chro-

mosphere, they may be considered to be local, temporary extensions of
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the chromosphere into the overlying transition region and low corona.

19 25
Spicules observed on the limb have the following characteristics: '

1. The typical spicule diameter (about 1000 km) is comparable
to the typical photospheric granule diameter.

2. Spicules typically extend to heights from 5000 to 10,000 km.

3. The direction of spicules is predominantly vertical.

4. Upward velocities are typically in the range of 20 to 40 km
sec"-*-.

5. The average spicule lifetime is about 10 minutes.

6. The spicules are not distributed uniformly on the limb but
tend to occur in clumps or bushes.

7. Above a height of 2000 km, the spicules occupy less than 0.1
of the total surface area.

The spicules can also be identified on the disk of the sun:

narrowband Ha filtergrams of the chromosphere on the disk show elon-

gated features whose characteristics correspond to the above character-

istics for limb spicules. ' These disk observations show that the

spicules are related to the supergranulation. The spicule bushes are

found to occur predominantly in the chromospheric network, i.e., at the

boundaries of the supergranules. In addition, the spicules may be re-

26
lated to the photospheric granules. Beckers has found that the birth

rate of spicules in a spicule bush is approximately equal to the birth

rate of the granules in the area of the photosphere beneath the bush.

The fact that spicules are restricted to the chromospheric network sug-

gests that the enhanced (~ 50 gauss) vertical magnetic field at the su-

pergranule boundaries is a necessary condition for the formation of a

25
spicule. The approximate equality of the birth rates of spicules and
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underlying granules suggests that the granules cause or stimulate the

2fi
production of a spicule. These considerations suggest that the dis-

turbance produced in the chromosphere by each new granule may be consid-

ered to be a spicule embryo which develops into a full-fledged spicule

only in the presence of the special conditions at the supergranule bound-

aries .

The salient features of the horizontal structure of the quiet

solar atmosphere are summarized by the schematic sketch of the atmosphere

19
in Figure 2.4 (after Noyes ).

2.3 Active Regions

Photospheric, chromospheric, and coronal observations all show that

there are island areas, called active regions, in the atmosphere in which

the normal atmosphere is disrupted and enhanced. These regions are dis-

tributed randomly in longitude, but are normally found only in the equa-

torial region between the latitudes of +40 and -40 degrees. An active

region is not a permanent feature of the atmosphere, but typically has

a lifetime of several months during which it evolves through a rapid

growth phase and a slow decay phase. In the growth phase, the active

region arises in the normal atmosphere from a small area at the boundary

of a supergranule and grows in intensity, complexity and area for about

27 28
2 weeks or so. ' During the remaining several months, the area re-

mains more or less constant while the intensity and complexity decrease

27
until the active region dissolves into the surrounding normal atmosphere.

At the end of the growth phase, a typical active region may have linear

5 27
dimensions of the order of 10 km, and cover an area corresponding to
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29
about 10 supergranules, or a few thousandths of the sun's surface. A

very large active region may cover a few percent of the sun's surface.

An active region results from the eruption of magnetic fields from

below the surface of the sun. Within about a day after the eruption

begins, the magnetic field forms a bipolar magnetic region, two adjacent

areas of predominantly opposite polarity, which suggests that a kink or

loop in a magnetic flux tube is emerging through the surface. In the

growth phase of the active region, the flux tube is in the process of

emerging through the surface. During this time the magnetic field

strength near the center of each half of the bipolar region is of the

3
order of 10 gauss, and the average field strength over the area of the

2 31
active region is perhaps of the order of 10 gauss. In the decay phase

of the active region, the flux tube has completely emerged, and the mag-

netic field slowly diffuses out of the active region through the action

23
of the supergranulation convection. Since the field diffuses away into

the surrounding quiet region, the field strength remains strongest near

the center of the active region and decreases in strength toward the edge.

During the decay phase, a field strength of the order of 50 gauss is typ-

32 33
ical for the interior of the active region, ' while the field at the

34
edge of the active region is typically 10 gauss or greater.

During the growth phase, an active region is more aptly described

as a disruption, rather than an enhancement, of the normal background

atmosphere. In the central portion of each half of the bipolar region,

3
the 10 gauss magnetic field is sufficiently strong to impede the con-

35
vection at the top of the convection layer. This reduces the supply

of energy to the photosphere, and results in the formation of dark sun-

spots in these regions. Magnetic lines of force with a strong horizontal
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component run between these two groups of spots. This field depresses

the chromosphere and gives the chromosphere a filamentary pattern remi-

01 OC

niscent of iron filings in a bipolar magnetic field. ' Apparently,

due to the continuing emergence of the magnetic flux tube, there is a

complicated mix of magnetic fields of opposite polarity in the region

between the two sunspot groups of opposite polarity. During the growth

phase, the magnetic field relaxes to a simpler, more purely bipolar,

configuration through a series of sudden events, called flares, in which

the higher magnetic energy of the more complex field pattern is explo-

sively released. These explosions give rise to sudden enhancements

(flares) of chromospheric and coronal emission, and may result in the

violent ejection of matter outward from the active region. Also during

the growth phase, complex loops of magnetic field anchored in the spot

regions extend upward into the corona. These loops are observed on the

limb in enhanced chromospheric and coronal emission, and have a height

4 37
of the order of 6 X 10 km. Thus, due to the strong, complex, and

changing magnetic field during the growth phase of active regions, the

layered structure and steady nature of the quiet atmosphere is disrupted

at all levels.

During the decay phase, an active region is more aptly described

as an enhancement, rather than a disruption, of the normal background

atmosphere. Due to the decrease in the magnetic field strength, the

sunspots have disappeared. The deep layers of the photosphere are un-

affected, while the higher layers have somewhat enhanced emission. The

magnetic field of the active region has the general form of an arch (of

5 12
height of order 10 km) connecting the two regions of opposite polarity,

23
and near the surface the field is approximately vertical. Flaring
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activity occurs seldomly or not at all. The magnetic field strength

in the active region is comparable to the field strength in the chromo-

spheric network in quiet regions, and the chromospheric emission from

the active region is similarly enhanced. The low corona is rather uni-

formly enhanced over the active region. Thus, during the decay phase,

an active region is Characterized by a general enhancement in the mag-

netic field and in emission (and, hence, in density and temperature)

over that of the normal atmosphere, but retains a layered structure

similar to that of the normal atmosphere.

Since an active region is in the decay phase for all but a small

fraction of its life, at any one time the average active region on the

sun will be in the decay phase. XUV-line observations show (see sec-

tion 4.3.2) that, as in the normal atmosphere, the downward heat flux

is approximately constant in the transition region and low corona in

the average active region, and that the downward heat flux in active

regions is about five times larger than in quiet regions. At any par-

ticular temperature level in the active region the number density is

also enhanced by about a factor of five. The maximum temperature of

(!

the corona is found from the XUV-line data to be 2 X 10 K for quiet

6 11 38
regions and 2.5 X 10 K for the average active region. '
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3. THE HEATING PROBLEM

3.1 Introduction

Every layer of the sun, both in the atmosphere and in the interior,

continually loses thermal energy. In the interior, each layer loses en-

ergy to the adjacent cooler layer above it. In the atmosphere, part of

the energy lost from each layer is transferred to other layers, while

the remainder is radiated away directly into space. Excluding active

regions in their growth phase, all layers of the sun maintain an average

steady state on a time scale of weeks or longer. Since this requires

that the thermal energy of each layer remains constant, each layer must

be continually resupplied with the thermal energy that it loses. More

succinctly, the energy equilibrium of each layer demands that the cool-

ing of each layer be balanced by heating. Thus, the heating problem for

any layer of the sun is merely half of the problem of the energy balance

of the layer.

The heating problem for any layer may be stated in the form of the

following two simple but general questions:

1. How much heating is required, i.e., what is the rate at which
thermal energy must be supplied?

2. How is the energy supplied?

The first question asks, "What, quantitatively, needs to be explained?",

while the second question asks, "What is the explanation?" The first

question is more closely connected with observations than with theory;

its answer should be sought from quantitative observations of the energy

losses of the sun. The second question is basically theoretical; it asks
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for a theoretical explanation or solution of the quantitatively defined

heating problem requested by the first question.

The answers to the above questions are well established for the

interior of the sun. The energy emitted from the photosphere is con-

tinually resupplied from the uppermost layer of the interior. This

layer, in turn, gains- an equal amount of energy from the adjacent in-

terior layer, and so on down to the central core where the energy is

released by nuclear fusion. Thus, for any layer of the interior out-

side of the fusion core, the answer to the first question is trivial:

each layer is heated from below and cooled from above at a rate just

equal to the total luminosity of the sun. If the layer is convectively

unstable, i.e., if the layer is in the convection zone, it can be shown

theoretically that the heating is accomplished by convective transfer.

If the layer is in the convectively stable region below the convection

i
zone, the heating can be explained on the basis of radiative transfer.

Thus, in the general sense of our defining questions, the heating of

these interior layers is well understood.

The heating of the convectively stable photosphere is also well

understood in terms of radiative equilibrium, each layer of the photo-

sphere being heated by absorption of radiation from below and cooled

by the emission of radiation. Hence, the heating of the photosphere

is similar to that of the interior layers.

The purpose of the next section is to define observationally the

heating problem for the outer layers of the atmosphere by presenting

and discussing observational results which bear on our two defining

questions. Although there are uncertainties in the observational data

so that the heating of the chromosphere, transition region, and corona
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cannot be as well defined as for the photosphere and interior, the

observations show that the nature of the heating of the outer atmosphere

departs radically from that of the photosphere and interior of the sun.

3.2 Observational Requirements

3.2.1 Amount of Heating

3.2.1.1 Chromosphere

Although spicules may represent a conversion of thermal energy

into kinetic energy at the top of the chromosphere (Section 4.4), by far

the dominant process by which thermal energy is lost from the chromosphere

is the emission of radiation. However, the amount of radiation emitted

by the chromosphere cannot be measured by direct observation because,

even when -the photosphere is covered during an eclipse, most of the light

observed from the chromosphere is only photospheric light which has been

scattered by the chromosphere, and which, therefore, does not represent

39,40
a true loss of thermal energy from the chromospheric gas. Conse-

quently, the rate of emission of radiation must be computed theoretically

from the physical conditions in the chromosphere (such as temperature,

density, radiation intensities, and the variation of these quantities

with height) implied by the observations. That is, the rate of radiative

cooling must be estimated from a model of the chromosphere derived from

40
observations. Using this approach, Athay concludes that in the lower

chromosphere, where the temperature is less than 6000 K, the radiative

losses are dominated by continuum radiation from the negative hydrogen

ion, while in the temperature range 6000 to 10,000 K, the losses are due

mainly to the Balmer lines and Balmer continuum of neutral hydrogen.
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The radiative loss rates are estimated to be 4 x 10 erg cm sec" for

6 —2 —1
the emission from the negative hydrogen ion, and 1 X 10 erg cm sec

for the Balmer lines and continuum. According to Athay, these values

estimate the total radiative loss rate from the atmosphere between the

4
temperature minimum and the 10 K level (i.e., the region which we de-

fine to be the chromosphere) within a factor of 2 or 3.

3.2.1.2 Transition Region and Corona

A key source of observational information pertaining to the

heating of the outer layers of the solar atmosphere is the solar XUV

spectrum of far-ultraviolet and X-ray radiation in the wavelength range

3000 > A > 1 A. Since this portion of the solar spectrum is completely

absorbed in the earth's atmosphere, detailed knowledge of the XUV spec-

trum has been obtained only in the past ten years or so by means of rock-

ets and satellites. In the range 3000 to 2000 A, the character of the

XUV spectrum is similar to that at visible wavelengths in that it con-

sists of a continuum punctuated by absorption lines. Shortward of 2000 A

there are emission lines in the spectrum, but longward of 1400 A these

are weak, and most of the energy in the spectrum is contained in the

continuum. However, shortward of 1400 A, the spectrum rather abruptly

changes over to an emission-line spectrum, so that almost all of the

energy in the range 1400 to 1 A is contained in emission lines.

The fact that the emission lines shortward of 1400 A are strong,

i.e., much more intense than the background continuum, requires that most

of the energy in these lines is supplied from the thermal kinetic energy

of the atmosphere through collisional excitations rather than by scatter-

ing from the continuum. The collisional excitation of most of the lines
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shortward of 1400 A requires electron temperatures in excess of

4 41 42
10 K, ' which implies that the XUV spectrum shortward of 1400 A

is emitted predominantly from the transition region and corona. The

XUV spectrum longward of 1400 A can be explained by reasonable models

43
of the chromosphere, and there is no evidence for appreciable energy

loss from the transition region and corona at these longer wavelengths.

Therefore, it is reasonable to estimate the total radiative energy loss

rate for the transition region and corona from the XUV spectrum short-

ward of 1400 A.

The observed energy flux in the XUV spectrum of the quiet sun

has been tabulated for each interval of about 20 A from 1775 to 1 A by

Hinteregger et al. The total energy flux in the range 1400 to 1 A is

5 -2 -1
4.5 X 10 erg cm sec . This value is probably accurate to within a

43 45
factor of 2. ' Therefore, making the reasonable assumption that the

transition region and corona radiate as much inward, toward the photo-

sphere, as outward, we conclude that in quiet regions the total radia-

tive cooling rate for the transition region and corona is of the order

^ ,~6 -2 -1
of 10 erg cm sec

In addition to radiative losses, there are two other obvious

energy losses from the outer atmosphere above the chromosphere: the

outward energy loss due to the solar wind, and the inward energy loss

due to heat conduction to the chromosphere. At the orbit of the earth,

the energy carried by the solar wind is in the form of kinetic energy,

due to the flow velocity, and gravitational potential energy, due to

the fact that the gas carried by the wind has been lifted through the

gravitational field of the sun. Since the solar wind is highly super-

sonic at the orbit of the earth, the thermal energy density is negligible
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compared to the kinetic energy density of the streaming motion. The

energy flux of the solar wind can therefore be estimated from the mass

density p and velocity v of the solar wind observed at the orbit
a E

of the earth. The energy flux F at the surface of the sun necessarysw
to maintain the solar wind is given by

1 2*
where GM /R is (very nearly) the gravitational potential energy per

0 ©
unit mass at the orbit of the earth, and R., is the radius of the earth's

orbit. The average number density of ions (mostly protons) at the earth

-3
is about 5 cm , and the average velocity is not greater than 500 km

sec . These values give F = 6 X 10 erg cm sec , more than
SW

an order of magnitude less than the radiative loss rate.

At any point in the atmosphere, the heat flux F carried by

thermal conduction is given by

(3-2)

where K. is the thermal conductivity. At the base of the transition

5 -1 -1
region, the thermal conductivity is approximately 3 x 10 erg sec K

cm (see Section 4.2.3), and from Figure 2.2 we estimate the tempera-

—4 —3
ture gradient to be about 2 x 10 K cm . These values give a downward

-2 -1
heat flux of only 60 erg cm sec

We conclude that the overall energy loss from the transition

region and corona is completely dominated by radiative cooling, and that

6 -2 -1
the amount of the energy loss is of the order of 10 erg cm sec
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Most of the radiation from the atmosphere above the chromosphere

is emitted from the transition region rather than from the corona. From

identifications of the ions and transitions which produce the lines in

the XUV spectrum and from estimates of the temperature at which these

47
lines are most likely to be excited, Nikolsky concludes that less than

5 -2 -1
10 erg cm sec is emitted from the corona. As is shown in Section

4.3.2, the temperature gradient, deduced from XUV line data, at the base

6 -2 -1
of the corona requires that of the order of 10 erg cm sec is lost

from the corona by heat conduction to the transition region. Thus, while

radiative cooling is the dominant cooling process for the transition re-

gion and corona as a whole, conduction cooling is the dominant process

for the corona alone.

3.2.2 Source of Heating

A plausible source for the heating of the low chromosphere is the

photospheric radiation. ' ' In both the photosphere and the low

chromosphere, the absorption and emission of radiation is dominated by

49
the negative hydrogen ion. Using this fact, Cayrel has shown that if

the low chromosphere is in radiative equilibrium, then as the number

16 —3
density decreases with height from 10 cm at the top of the photo-

sphere, the temperature should increase to about 5600 K. This estimate

40is in good agreement with Athay's finding, from eclipse continuum ob-

servations, that the continuum emission, presumably from the negative

hydrogen ion, dominates the cooling of the chromosphere below the 6000

K level. Thus, we may reasonably assume that the low chromosphere, be-

tween the temperature minimum and the 6000 K level, is heated primarily

by radiative transfer from the photosphere.
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In the temperature range 6000 to 10,000 K the chromosphere radi-

ates mainly in hydrogen Balmer lines and continuum. Since the wavelength

of this emission is in the visible and near ultraviolet, and since a gas

is a good absorber at the same wavelengths that it is a good emitter,

some thermal energy should be supplied to the chromosphere in the 6000

to 10,000 K range by absorption of photospheric radiation at these wave-

lengths. But it seems unlikely that this could be the dominant energy

supply since the effective temperature of the photospheric radiation is

only 5800 K. However, the chromosphere receives of the order of 5 x 10

-2 -1
erg cm sec in the form of XUV radiation from the transition region

6 —2 —1
and corona. This is of the same order as the 10 erg cm sec esti-

40
mated by Athay for the energy loss of the 6000 to 10,000 K region..

Therefore, the observations indicate that a significant, and possibly

dominant, portion of the heating of the chromosphere is due to radiative

transfer from above and below.

In Section 3.2.1.2 we saw that the observations of the transition

region and corona indicate that the rate of radiative cooling of the

transition region and the rate at which heat is supplied to the transi-
C

tion region by conduction from the corona are each of the order of 10

-2 -1
erg cm sec . From this we may conclude that much, and possibly most,

of the energy lost from the transition region is supplied by heat conduc-

tion from the corona. Thus, the observations admit the possibility that

the heating of the chromosphere and transition region can be understood

in terms of ordinary heat transfer processes, namely radiative transfer

and heat conduction, and that the dominant source of the energy supplied

to the upper chromosphere and transition region is the thermal energy of

the corona. On the other hand, the corona obviously cannot be heated by
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ordinary heat transfer from the other layers of the atmosphere simply

because the temperature is higher in the corona than in any other layer.

Therefore, the fundamental question posed by the observations with re-

spect to the heating of the outer solar atmosphere is "How is the corona

heated?"

3.3 Theory

3.3.1 Introduction

The fundamental question of the heating problem for the outer

solar atmosphere, "How is the corona heated?", is answered by the fun-

damental hypothesis of the heating theory for these layers: the corona

is heated by the dissipation of mechanical energy which is supplied to

the corona in the form of mechanical waves, e.g., sound waves, which are

emitted from the top of the convection layer. The function of the con-

vection layer is to transport the total energy lost from the sun [(6.41±

0.04) x 10 erg cm sec at the surface] from the inner, convectively

stable, layers to the surface layers of the sun. At the top of the con-

vection layer almost all of the convective energy flux is converted into

the flux of radiation which is emitted from the photosphere. The basic

idea of the heating of the corona is that a minute fraction of the con-

vective energy flux (less than 0.1 percent) goes into mechanical waves

which propagate into the outer layers of the atmosphere. Some fraction

of this mechanical energy flux reaches the corona where it is dissipated

into thermal energy. Thus, the mechanical energy flux emitted from the

top of the convection layer is the added ingredient which makes the heat-

ing of the outer layers of the solar atmosphere essentially different

from the heating of the photosphere and interior.
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The problem of the heating of the atmosphere by mechanical waves

divides naturally into three main aspects: the generation, the propaga-

tion, and the dissipation of the waves. The generation of the mechani-

cal waves by the "turbulent" motion at the top of the convection zone

determines the magnitude of the mechanical energy flux entering the base

of the atmosphere and* the energy spectrum of the waves which carry this

energy flux. The wave-propagation properties of the atmosphere govern

the flow of the mechanical energy through the atmosphere. In particular,

the propagation properties determine which waves are reflected in the

atmosphere below the corona and which waves are passed to the corona.

The dissipation process transforms the mechanical energy into thermal

energy and determines how and where the wave energy is deposited in the

atmosphere. The three aspects of the problem are not completely inde-

pendent. For example, the dissipation in the corona depends on the type

of wave to be dissipated, and the type of wave which reaches the corona,

in turn, depends on the nature of the generation and propagation.

The structure of the atmosphere is the configuration assumed by

the atmosphere in response to the heating. Two of the most outstanding

features of the structure are the high temperature of the corona and the

sharp inward drop of the temperature in the transition region. The exis-

tence of both of these features can be broadly understood by considering

the response of the atmosphere to the mechanical-wave heating outlined

above.

Although heat conduction is important for the transfer of thermal

energy from the corona to the transition region, the heating of the atmo-

sphere is ultimately balanced by radiative cooling; the thermal energy

of the atmosphere is converted to radiation through inelastic collisions.
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The collision rate is proportional to the product of the number densities

of the colliding particles and to the relative velocity of the particles

(assuming for simplicity that the collision cross-section is velocity-

independent). Therefore, for a given mass of gas at a given temperature,

the rate at which the gas can radiate is limited by the number density

as well as by the tot'al number of particles, or the quantity of the gas.

On the other hand, the rate of emission of radiation should increase

without limit if the temperature is increased without limit. In an iso-

thermal atmosphere, the number density and the total number of particles

above a given level decrease exponentially with height. All of this im-

plies that the basic reason that the temperature of the corona is much

higher than the temperature of the photosphere is that the mechanical

waves supply thermal energy to the outer fringes of the atmosphere at a

greater rate than the limited number of available atoms could balance

by radiative cooling if the temperature of the outer atmosphere was com-

parable to that of the photosphere. As a result, the temperature rises

until the heating can be balanced by radiative cooling or by some other

cooling process. In the case of the corona, there are two cooling pro-

cesses in addition to radiative cooling: cooling by downward heat con-

duction and cooling due to energy lost to the solar wind. As was pointed

out in Section 3.2.1.2, conduction cooling is the dominant process. Thus,

6
the temperature of the outer atmosphere rises to the vicinity of 10 K at

6
which temperature the thermal conductivity becomes so high that the 10

-2 -1
erg cm sec supplied by the mechanical waves can be removed by heat

conduction back to the cooler layers which contain enough material and

are dense enough to radiate away an energy input of this magnitude.
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The sharp inward drop of the temperature in the transition region

results from the approximate constancy of the downward heat flux in the

transition region above the 10 K level (see Section 2.2.1). This im-

plies that the density and the total amount of material above the 10 K

level are too small to radiate away the thermal energy supplied to the

atmosphere above this level. Thus, it appears that the existence of

both the high-temperature corona and the narrow transition region result

from the inability of the outer atmosphere to radiate away the energy

supplied to it by the mechanical waves.

The preceding discussion shows that the structure of the atmo-

sphere is a result of the heating. On the other hand, as we shall see

in Section 3.3.2, the increase of the temperature with height in the

atmosphere causes some waves (depending on the initial direction of the

wave and its period) to be refracted toward the vertical while others

are refracted away from the vertical and reflected back toward the pho-

tosphere and convection layer. Also, the manner in which the density

decreases and the temperature increases with height governs the ampli-

tude of the waves as they propagate through the atmosphere, and the

amplitude of the waves is directly connected with their dissipation.

In the transition region, where conduction heating is important, the

heating, locally, depends on the shape of the temperature profile.

Thus, although the structure of the atmosphere is appropriately con-

sidered to be a result of the heating, the heating of the atmosphere

is not independent of the structure.
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3.3.2 Propagation

3.3.2.1 General Considerations and Formulation

Before either the emission or the dissipation of the mechanical

energy flux can be studied quantitatively, or even qualitatively, it is

necessary to have some knowledge of the nature of the waves being emitted

or dissipated. The possible types of waves are determined by the propa-

gation properties of the atmosphere. Hence, of the three basic processes

of generation, propagation and dissipation, the propagation plays a cen-

tral role and is fundamental to the other two processes.

The manner in which a disturbance is propagated in a mass of gas

depends on what forces act on the gas. In the solar atmosphere the forces

are due to the sun's gravity, the gas pressure, and the magnetic field.

(Order of magnitude estimates of the viscosity and the velocity gradients

in the fluctuating velocity field in the solar atmosphere show that vis-

cous forces should be negligible.) The curve in Figure 3.1 gives the mag-

netic field strength for which the magnetic pressure would be equal to the

gas pressure, i.e., for which

2
= nkT , (3.3)

as a function of height in the solar atmosphere. The height dependence

of the gas pressure was obtained from Figures 2.2 and 2.3. Figure 3.1

shows that for the average magnetic field strength of about 1 gauss for

quiet regions, the magnetic pressure is much less than the gas pressure

below the transition region. Therefore, in quiet regions, the magnetic

field should have only a minor effect on motions below the transition
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region, and neglecting the magnetic field in the equations of motion

should not affect the basic character of the propagation in the chro-

mosphere .

In the absence of magnetic forces and viscous forces, or when

these forces are negligibly small, the force equation governing the

motions in the atmosphere is

+ pg , (3.4)

where p is the mass density, v* is the velocity, and p is the gas

pressure. The acceleration of gravity g may be assumed to be constant

with height since the thickness of the atmosphere between the photosphere

-2 ->
and corona is only about 10 R . p, v, and p are functions of the

0

space coordinates x, y, z and time t. dv/dt is the total time rate

of change of the velocity of a fluid particle:

dv civ _» _>
dt =St + (V'V) V ' (3'5)

Equation (3.4) represents three equations which connect the

five variables p, p, v , v , v . Hence, we need two more equations in

order to have a complete set of equations for the motions of the atmo-

sphere. One additional equation is provided by the conservation of mass,

which is expressed by

= 0 . (3.6)

We now proceed to obtain a final equation connecting p, p, and v

which represents the compressibility of the flow.
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By the first law of thermodynamics, the rate of change of the

internal energy of a fluid particle is given by

where e is the internal energy per unit mass, q is the rate of heat

transfer to the fluid particle per unit mass, and the term -(p/p)V •v

is the rate of work done on the fluid particle per unit mass due to the

compression of the fluid particle by the surrounding fluid. The general

situation which we wish to consider is that of an atmosphere which is

perturbed from equilibrium by mechanical disturbances at its base. In

the unperturbed atmosphere each term of the energy equation (3.6.1) is

zero. Perturbations in the internal energy e are produced through the
i

work term in the energy equation by compressions and expansions in the

fluid motions produced in the atmosphere by the disturbances. Since,

for a perfect gas, the internal energy is proportional to the tempera-

ture, a fluid particle in which the internal energy is perturbed from

its equilibrium value will be hotter or colder than required for equi-

librium. If the atmosphere is thermally stable, which we assume it is,

the heat transfer will act to smooth out the internal energy perturba-

tions produced by the compressions and expansions.

In the limiting case in which the time scale for heat transfer

is much longer than the time scale of the compressions and expansions,

there is negligible heat transfer. That is, the motions become adiabatic

(q = 0) and the energy equation becomes

= - v v (3.6.2)
dt p
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In the opposite extreme, in which the time scale for smoothing the

temperature perturbations is much shorter than the time scale of the

motion, the heat transfer completely cancels the effect of the com-

pressions and expansions on the internal energy, so that the motion

is isothermal and

~ = 0 . (3.6.3)

The equation of state for a perfect gas may be written

p = (7 - 1) pe , (3.6.4)

where 7 is the ratio of specific heats (7=0/0 ) and has a value

greater than 1 (7 = 5/3 for monatomic gas). In the adiabatic limit,

the energy equation can be combined with the equation of state to yield

- -v (3 6 5}dt ~ 7 p dt ' (3.6.5)

This equation expresses the compressibility of the flow; it specifies

the density change which results from a pressure change. In the iso-

thermal limit, the energy equation and the equation of state give

dp p dp .-~ = — -Tr- . (0.6.6;

Since 7 > 1, we see that in rendering the flow isothermal, the heat

transfer also results in the flow being more compressible.

In general, in addition to affecting the compressibility of the

flow, the heat transfer results in dissipation of the fluid motion. In

the limit of adiabatic flow, there is no dissipation because there is
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no heat transfer. In the opposite limit of isothermal flow there is no

dissipation because the heat transfer takes place isothermally and, hence,

reversibly. However, for intermediate cases in which the heat-transfer

time is comparable to the compression time, there is dissipation because

the flow is not isothermal and the heat transfer is not reversible. (In

Section 3.3.3 the manner in which the dissipation of sound waves varies

with the ratio of the compression time to the heat-transfer time is shown

in detail for the case of heat transfer by thermal conduction.)

Our present purpose is to study the propagation of disturbances

in the solar atmosphere rather than their dissipation. As we can see

from the limiting cases of adiabatic motion and isothermal motion, the

propagation depends on the compressibility of the atmosphere. Hence, in

our governing equations we would like to ignore the dissipation resulting

from the heat transfer, but take account of the effect of the heat trans-

fer on the compressibility. We can accomplish this aim to a certain ex-

tent by adopting the following polytrope law connecting the pressure and

density :

where the polytrope index is assumed to be constant throughout the flow.

This equation, along with the force equation and the continuity equation,

forms a complete set of equations for the motions of the atmosphere.

When a = 1 or a = 7, we have isothermal or adiabatic flow, respec-

tively, and the polytrope law is exact. Since there is no dissipation

in these limits, there will be no dissipation in the flow computed from

the governing equations using the polytrope law with any other constant
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value of a since the form of the equation is not changed. For flows

in which there is irreversible heat transfer, the ratio (p/p)(dp/dp)

defined by a in the polytrope law will not actually be constant

throughout the flow. For these flows, a constant value of a in the

polytrope law is taken to represent an "average value" of this ratio

in the flow. For these flows, which are intermediate between adiabatic

and isothermal, it is reasonable to expect this average value of (p/p)-

(dp/dp) to be intermediate between 1 and 7, as we have assumed in

writing the polytrope law. It should be emphasized that for intermedi-

ate flows, the polytrope law is only an approximate, reasonable repre-

sentation of the effect of the heat transfer on the compressibility.

However, in the following we will be mainly concerned with the limiting

cases of adiabatic and isothermal propagation in which cases the poly-

trope law is exact.

The following considerations suggest that it is physically

permissible to facilitate the analysis of the propagation by first

linearizing the above equations of motion. Since the atmosphere is

compressible, one type of wave to be expected is a compression wave

or sound wave. If the compressions and expansions in the sound waves

obey the polytrope law [equation (3.7)], then the sound speed a is

given by

\l/2
a = (a £ , (3.8)

or, from the equation of state,

P = p | T , (3.9)

43



1/2
a = [a r TV . (3.10)

3
In the solar atmosphere, T > 4.6 X 10 K, and the mass of the hydrogen

atom is an approximate upper bound on the mean particle mass m < m =
~ H

-24
1.66 X 10 g; so

5 -1
a > 6 X 10 cm sec (3.11)

throughout the solar atmosphere, where the approximate equality holds

only near the top of the photosphere. The mechanical energy flux F

carried, by one-dimensional sound waves is

F = pv2 a , (3.12)
m

2
where v is the mean square velocity in the compressions and expansions

of the waves. As we saw in Section 3.2, the total rate of heating re-

7
quired for the entire atmosphere above the photosphere is of order 10

_o _]^ 7 _2 —1
erg cm sec . For a sound-wave energy flux of 10 erg cm sec at

the top of the photosphere, equation (3.12) gives

4 -1
v = 2.5 X 10 cm sec , (3.13)
rms

which is of the order of the observed rms velocity at the top of the

photosphere (Section 2.2.2.1) and more than an order of magnitude less

than the sound velocity. On this basis, it appears that the motions in

the photosphere and chromosphere should be fairly well characterized by

the linearized equations of motion.
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The unperturbed atmosphere is in hydrostatic equilibrium:

= 0 , (3.14.1)

p = PQ(z) , (3.14.2)

p = pQ(z) , (3.14.3)

~-Pg . (3.14.4)

In the perturbed atmosphere,

v = v(x,y,z,t) , (3.15.1)

p = PQ(z) + 5p(x,y,z,t) , (3.15.2)

p = p (z) + 5p(x,y,z,t) . (3.15.3)

We linearize the equations of motion in the standard way by expressing

them in terms of the perturbation quantities v, 5p, and 5p, and then

removing all terms which are of second or higher order in these quanti-

ties and their space and time derivatives. The resulting linearized

equations of motion are:

linearized force equation:

Po T = ~V(5p) + 5pg* ' (3.16)
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linearized mass equation:

d(5p) = _-+ ̂
Vpo "

(3.17)

linearized polytrope law:

d(5p) 2 d(5p) 2d(5p) 2 d(5p) 2 -»
s. = a i K + a v . Vp -
dt o dt o Ko

where

2 Po

(3.18)

(3.18.1)

Upon combining the linearized mass equation and the linearized polytrope

law with the linearized force equation to eliminate Sp and 5p, we

obtain the following linear equation for the velocity field,

v
— - a VWv; + (,u: i^g\.v-v; -I- vvv • g/ . (,o.J-3^

dt2 °

In the absence of gravity, equation (3.19) reduces to the wave equation

for ordinary sound waves.

The components of equation (3.19) are:

d v^ 2

^2 ~ ao

-,2

y 2

at2 = a°

^Vz - a2

dt2 " °

d v d v d v

dx2 dxdy dxdz

S v d v d v
x + y z

dydx ^ 2 dydz
dy '

a v a v a v
x y z

dzdx dzdy > 2
dz

dv
z

g dx '

dvz

_g|i_ to_i)gfei+^y + ̂£.oz ox dy dz

" (3.19.1)
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3.3.2.2 Propagation in an Isothermal Atmosphere

In the solar atmosphere, the temperature, and hence the sound

speed, varies with height in the atmosphere. However, much can be

learned about wave propagation in the solar atmosphere by considering

wave propagation in an isothermal atmosphere. In this case, the sound

speed is constant, and the partial differential equations (3.19.1) may

be Fourier transformed in x, y, z, and t to obtain an algebraic

dispersion relation connecting the wave numbers k , k , k , and the

radian frequency to. That is, any velocity field obeying equations

(3.19.1) can be considered to be made up of a distribution of sinusoi-

dal plane waves of the form

i ( k x + k y
x y

the distribution being given by the Fourier transform of the velocity

field. The dispersion relation given by the transformed version of

equations (3.19.1) prescribes the possible waves permitted by the equa-

tions of motion, i.e., the possible waves permitted by the propagation

properties of the atmosphere.

The following equations are obtained by Fourier transforming

equations (3.19.1):

ak - to ] v + a k k V + [a2k k + igk I V = 0 ,
o x I x o x y y V o x z x / z

a2k k V + {a2k2 - w2 | v + (a2k k + igk ) V =0 ,
o y x x yoy J y ^ o. y z y^ z

|a2k k +i(a- l)gk Iv + |a2k k +i(a-Dgk V + I a2k2 - u2 + iogk V =0
L O Z X xj x |_ o z y yj y L ° z zjz

(3.20)
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where V , V and V are the Fourier transforms of v , v and v ,
x y z x y z

respectively. In order for these three homogeneous equations to have a

solution for V , V , V other than V = V = V =0, the determinant
x y z x y z

of the coefficient matrix must be zero:

1
2 2 2\ 2 / 2 '

a k - or] ' a k k [a k k + igk
ox / oxy \ o x z x

k (A2 - u2
o y x V o y

\ ' (2 \[a k k + igk 1
/ \ o y z B y/

t 2 n r 2 "i r 2 2 2 ^
a k k + i(o;-l)gk a k k + i(a-l)gk la k -w + iogk
o z x 6 x J | _ o z y 6 y J L o z z -

= 0

(3.21)

Expansion of the determinant gives

2 2 \ T 2 2
+ (a - 1) gk = 0 , (3.22)

where k, is the horizontal wavenumber.
h

^ = k2 + k2 . (3.23)
h x y

Equation (3.22) is the dispersion relation.

In general, the wave numbers k , k , k and the radian fre-
x y z

quency w of a sinusoidal plane wave may be complex, in which case the

amplitude of the wave grows or decays exponentially in space and time.

Since we have ignored dissipation in deriving the equation of motion

(3.19), the plane waves permitted by this equation should have constant

amplitude at a given point in space. Therefore, w is real in the dis-

persion relation (3.22). In addition, since the physical quantities in
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the atmosphere are constant on horizontal planes, the amplitude of a

given plane wave should be independent of x and y. Hence, k is

real in equation (3.22). On the other hand, since the mass density

decreases exponentially with height z, we expect the wave amplitude

to increase exponentially with z in order that the energy flux of the

wave remain constant.' Hence, k should have an imaginary component.
z

Therefore, in the dispersion relation (3.22) we set

k = k + ik . , (3.24)
z zr zi

and require k and w to be real. The real part of the dispersion

relation is

•L2 ,2 \k - k . )
>y zr zil

4 2 2 2 2 2 / 2 2 \ 2 2 2
u> - w a k. - w a [k - k . + ogw k . + (a -1) g k. = 0 , (3.25)

oh o\ zr zi/ zi h

and the imaginary part is

Qg

where H is the density scale height in the isothermal atmosphere:

P = fpL_n^ e"Z/H . (3-27>

H = — . (3.28)
mg

Thus, we see that for all plane waves of the form

x
e
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permitted by the equation of motion (3.19) in an isothermal atmosphere,

the velocity increases exponentially with height, so that the kinetic

2
energy density (1/2) pv remains constant.

Additional physical insight about the propagation properties

2 2
of an isothermal atmosphere can be gained by considering the w ,k

diagram of the dispersion relation. If we use equation (3.26) to re-

place k . in equation (3.25) and drop the subscript r on k , we
zi zr

obtain for the dispersion relation

(3.29)(2Hk ) = - - l(2Hk T + -= ~ 1 ,

where

222

- '

and

4(q - 1) 2 .. ., .^ . (3.31)
a.

Any sinusoidal plane wave is specified by its values of w, k and k .n z

We see from the dispersion relation (3.29) that in order to specify a

particular wave which propagates in an isothermal atmosphere it is enough

to specify w and k . For if w and k are given, then the value

of k is dictated by the dispersion relation. In other words, there
z

is a one-to-one correspondence between the waves permitted by the dis-

2
h

2 2
persion relation and the points in the w , k plane.
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2 2
The <*> , k diagram obtained from the dispersion relation

(3.29) is shown in Figure 3.2. Here we have assumed the wave motions

to be adiabatic, i.e., a = y = 5/3. The diagram is valid for any

temperature, the scale of the axes being determined by the temperature.

2
In the unshaded region separating the two shaded areas, k < 0, so

z

that k is imaginary. Therefore, since the real part of k is zero,
Z Z

the direction of propagation is purely horizontal for all waves having

combinations of w and k which fall in the unshaded region. Any

wave which propagates upward (or downward) in the atmosphere has its

2 2 2
(<*> , k_) point in the shaded regions where k > 0. In connection with

h z

the heating of the solar atmosphere, we are mainly interested in waves

which propagate upward.

In the high-frequency limit, the dispersion relation becomes

k2 = a2"2 , (3.32)

where k is the total wave number,

k2 = k2 + k2 . (3.33)
h z

Equation (3.32) is the dispersion relation for ordinary sound waves.

This means that high frequency disturbances propagate as sound waves in

the atmosphere. Hence, a pressure pulse will propagate at the sound

speed a , which is constant throughout the atmosphere. With this in
o

mind, for each wave period P = 2JT/", we define a length

A = a P , (3.34)
s o
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Fig. 3.2. u, k DIAGRAM FOR WAVES IN AN ISOTHERMAL ATMOSPHERE.
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which is the distance traveled by sound in time P. A is roughly the
S

distance in the atmosphere over which pressure perturbations are smoothed

out in time P. That is, a pressure difference can exist across distances

much shorter than A only for times much shorter than P, while pres-
S

sure differences can be maintained across distances much longer than A
S

for times much longer' than P. The pressure differences referred to here

are due to local compressions and rarefactions in the atmosphere and are

in addition to the pressure differences due to the decrease in pressure

with height in the undisturbed atmosphere.

Now consider the upward-propagation region below w = GO in the
£

2 2
w , k diagram, Figure 3.2. The dispersion relation (3.29) shows that

in this region, for any given k , the frequency w increases to w

as k, increases without limit. The curve for the particular case of
h

k = 0 is shown in Figure 3.2. From the definition of the wave number
z

(k = 2rt/A), we know that the wavelength A goes to zero as k in-

creases without limit. Since w remains finite while A approaches

zero, we see that

for waves with large k in the region of upward-propagation below

00 = u> . This means that each fluid element remains in pressure equi-

^

librium with its surroundings (i.e., the ambient atmosphere) as it un-

dergoes the oscillatory motions of these waves. This is borne out by

the fact that the limiting frequency w of these waves is just the
A

natural frequency of oscillation of a fluid element which remains in

pressure equilibrium with the ambient atmosphere as it oscillates about

its equilibrium position. The restoring force for these oscillations
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is completely due to buoyancy rather than to pressure forces due to

compression. Since the buoyancy force results from the stratification

of the atmosphere due to the presence of gravity, the waves having

A « A in the upward-propagation region below w = w are called
S £i

52
gravity waves.

From the dispersion relation (3.29) it can be shown that

A < A
S

throughout the upward-propagation region below to = w . Therefore,
£

buoyancy forces are important throughout this region, but compression

forces are not completely negligible for the longer wavelengths. Hence,

52
the waves in this region are gravity waves modified by compression.

Throughout the upward-propagation region above w = w we

find that

A > A g

Therefore, compression forces are important throughout this region. As

w increases without limit the waves become sound waves with A = A •
S

For these waves the restoring force is entirely due to compression and

the presence of gravity does not affect the oscillations. If gravity

were absent, the waves would be sound waves at all frequencies. Hence,

A is greater than A in the upward-propagation region above u = to
8 -1-

due to the presence of gravity, and the waves in this region are compres-

sion waves (sound waves) modified by gravity. The dispersion relation

shows that A/A increases as co decreases until at to = w , A/A =<»
s 1 J. s

and upward propagation of compression waves is no longer possible.

54



3.3.2.3 Refraction in an Atmosphere in which the Temperature Varies
Slowly with Height

Since to , u and H depend on temperature, the value of k
l £ z

determined by the dispersion relation (3.29) for given w and k^ de-
li

pends on the temperature of the atmosphere. This means that the wave-

length and the direction of propagation of a given (to k ) wave in an
h

isothermal atmosphere depends on the temperature of the atmosphere. By

definition, the temperature varies spatially in a nonisothermal atmosphere,

If the temperature variations are gradual enough, then the isothermal

dispersion relation may be used at each point in the nonisothermal atmo-

sphere. That is, the wavelength and direction of a wave as it propagates

through the nonisothermal atmosphere is given at each point by the iso-

thermal dispersion relation for the temperature at that point in the

nonisothermal atmosphere. This is a good approximation if the wavelength

changes slowly enough as the wave propagates through the atmosphere. The

53
wavelength (and hence the temperature) varies slowly enough if

1^1 « 1 , (3.35)

where s is the space coordinate in the direction in which the wave is

propagating. In this case, the dispersion relation (3.29) governs the

refraction of waves in the nonisothermal atmosphere.

In an atmosphere in which the temperature varies slowly with

height but remains constant on horizontal planes, the frequency to and

horizontal wavenumber k. of a wave remain constant, and only the ver-
h

54
tical wavenumber k varies as the wave propagates. Hence, the re-

Z

fraction of the wave results from the temperature dependence of k
Z
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given by the dispersion relation (3.29). To bring out the temperature

dependence of k , we rewrite the dispersion relation as follows:z

a

where T is the temperature at which w = co

T = , (3.37)

and JL is the scale height at T ,

kT
a, = —- . (3.38)1 mg

The dispersion relation (3.36) shows that each wave remains on a curve

2
of constant (w, k ) in the k , 1/T plane as the wave propagatesn. z

through the atmosphere.

2
The k , 1/T diagram for the dispersion relation (3.36) is

z

shown in Figure 3.3 for the case of adiabatic wave motions (a = 7=5/3).

The scale of the axes is determined by the choice of w, so that the

diagram is valid for any ^. Each of the representative curves of con-

2
stant (^fkj) is labeled with its value of (2Hikh) • !*

 is seen that

the value of k. increases counter-clockwise from curve to curve fromh

0 (vertical waves) to oo (horizontal.waves). If the temperature T is

greater than T , then (*> is greater than u , and if T is less

2
than [4(a-l)/a ]T- = (24/25 )T,, then w is less than w . Hence,

1 1 £

in the high-temperature region defined by T-/T < 1, the waves are
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compression waves, and in the low-temperature region defined by T /T >

25/24, the waves are gravity waves. As a wave propagates upward through

an atmosphere with increasing temperature with height, the point in the

2
k , 1/T diagram corresponding to the wave moves to the left along itsz

curve of constant (u,k ). If the temperature continues to increase,

then at a particular value of the temperature, determined by <J and k, ,
h

the curve intersects the k =0 axis, and the wave is reflected. Thus,z
2

the k , 1/T diagram conveniently demonstrates the refraction of waves
Z

in an atmosphere with slowly increasing temperature with height. We will

use this diagram to examine the refraction properties of the chromosphere.

3.3.2.4 Propagation in the Solar Atmosphere

The oscillatory motions observed in the photosphere and low

chromosphere provide direct evidence for the existence of mechanical

waves in the solar atmosphere. The observed characteristics of these

oscillations are listed in Section 2.2.2.1. An obvious and important
i

question bearing on the mechanical-wave heating of the solar atmosphere

is whether these oscillations represent compression waves or gravity

waves or some combination of the two. The following considerations

indicate that these oscillations are composed predominantly of com-

pression modes rather than gravity modes.

The short-period cut-off P0 = 2«/
w
0 below which gravity waves

£t £

cannot propagate is given by equations (3.30) and (3.31). In the photo-

4 —2 —24
sphere and chromosphere (g = 2.74 X 10 cm sec , m«m = 1.66 X 10

n

gm), these equations give

—1/2 1/2
P = 2.1 (a - 1) T sec . (3.39)

£t
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Since the polytrope index a is not greater than 7 = 5/3,

1/2
P_ > 2.6 T sec . (3.40)

™—

At the temperature minimum at the top of the photosphere, T = 4,600 K,

and condition (3.40) gives

P > 177 sec . (3.41)

Hence, no gravity wave of period shorter than 177 sec can propagate in

the solar atmosphere.

We recall that the cut-off period P is the natural period

of oscillation of a fluid element which remains in pressure equilibrium

with the ambient atmosphere as it oscillates up and down about its equi-

librium position. The restoring force which sustains the oscillation is

the buoyancy force which results from the fact that the mass density of

the fluid element is either higher or lower than that of the surrounding

gas when the fluid element is respectively either above or below its

equilibrium position. However, if the motion of the fluid element takes

place isothermally, then T as well as p are the same inside and out-

side of the fluid element throughout the motion. In this case, from the

equation of state (3.9), the mass density p remains the same inside

and outside, and there is no buoyancy force on the fluid element. Thus,

we see that in the limit of isothermal motions, i.e., as a approaches

1, the buoyancy restoring force goes to zero, and gravity waves are no

longer possible. This is the physical reason why w goes to zero as

a goes to 1 in equation (3.31).
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In the photosphere, radiative transfer tends to maintain each

level at a certain uniform temperature. If the temperature is perturbed

locally, by the passage of a wave for example, then the temperature at

this point relaxes back to the background temperature through exchange

of radiation with the surroundings. For optically thin temperature per-

turbations, the radia'tive relaxation time in the photosphere is of the

55
order of 10 sec. Therefore, oscillations in the photosphere with pe-

2
riods of the order of 10 sec or longer should occur very nearly iso-

thermally. On the other hand, we found above that gravity waves would

have to have periods longer than 177 sec in order to propagate in the

photosphere even if the oscillations were adiabatic. Since oscillations

of such long periods should take place isothermally in the photosphere,

it appears that gravity waves are not possible in the photosphere. This

implies that the oscillations observed in the photosphere are compression

modes.

In contrast to the case of gravity waves, the ability of an at-

mosphere to support compression waves is not essentially changed by the

condition of isothermal oscillations. For isothermal oscillations (a=l)

-1/2
the sound speed is merely reduced by a factor of 7 from that for

the adiabatic case (a = 7). Likewise, the low-frequency cut-off a>

-1/2
for compression waves is reduced by a factor of 7 .In the photo-

sphere, the corresponding cut-off period P is

P± = 4.2 T
1/2 sec . (3.42)

We recall that waves with periods P > P1 have a purely imaginary k ;
^ -L Z

this means that the phase of these waves is constant with height. Hence,
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these waves are evanescent or standing waves. Conversely, waves having

P < P are propagating waves.

The photospheric oscillations are observed above the granula-

tion cells, which stop at about -300 km in the photosphere. The tem-

perature decreases outward through the photosphere and passes through

5000 K at about -150 km. If, in equation (3.42), we adopt 5000 K as a

representative temperature for the layer in which the photospheric os-

cillations occur, we obtain P = 296 sec. In good agreement with the

observed photospheric oscillations, this shows that waves with periods

in the vicinity of 200 sec should be propagating waves, and waves with

periods of about 300 sec should be standing waves. Again, this indi-

cates that the oscillations in the photosphere are compression modes.

Since the photospheric velocity field above the granulation

cells is composed primarily of compression-mode oscillations, we con-

clude that the bulk of the mechanical energy flux emitted from the top

of the convection layer enters the base of the chromosphere in the form

of compression waves. In the following paragraphs we consider the pro-

pagation of these waves in the chromosphere and transition region. Our

chief aim is to understand the effect of these regions on the transmis-

sion of mechanical energy flux to the corona.

The propagation problem in the chromosphere is that of propaga-

tion of compression waves in an atmosphere with increasing temperature

with height. The temperature increases slowly enough in the chromosphere

2
that we may use the k , 1/T diagram discussed in Section 3.3.2.3 to

z

obtain a qualitative understanding of the wave propagation in this layer

of the atmosphere. This can be shown by using the dispersion relation

(3.36) in conjunction with the temperature profile in the chromosphere
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to evaluate |dA/ds| in the chromosphere. For wave periods in the

range 100 to 300 sec, we find that the condition |dA/ds| « 1 [con-

2
dition (3.35)] is sufficiently well satisfied for the k , 1/T diagram

z

to be qualitatively valid.

2
The k , 1/T diagram for compression waves in the chromosphere

Z •

is shown in Figure 3.4. This diagram is the same as the compression-wave

part of Figure 3.3, except that here the curves of constant (w,k, ) have
h

2
been extended below k = 0 in order to include evanescent waves. Above

z
2 2
k =0 the waves are propagating waves; below k =0 the waves are ev-

anescent. In computing the curves in Figure 3.4, we have assumed the

wave motions to be adiabatic in the chromosphere rather than isothermal

as in the photosphere. This is reasonable because the radiative relaxa-

tion time for temperature perturbations increases with height in the so-

lar atmosphere, reaching a value of about 400 sec at a height of 1000 km

55
in the chromosphere. For wave periods in the range 100 to 300 sec,

this indicates that the propagation in the chromosphere should be more

2
nearly adiabatic than isothermal. We therefore adopt the k , 1/T dia-

Z

gram for the case a = 7 = 5/3. For any other possible value of a,

1 < CC < 5/3, the diagram would not be qualitatively different.

The temperature T is determined by the wave period P:

T = ̂- P2 = 1.0 X 1C'1 P2 K . (3.43)

So, for a given temperature range, different wave periods define differ-

2
ent T /T ranges in the k , 1/T diagram. In the chromosphere, the

1 z

temperature increases from 4,600 to 10,000 K. The shaded regions in

Figure 3.4 are the corresponding T /T ranges for the representative

wave periods of 100, 200, and 300 sec.
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From equation (3.43) and Figure 3.4 we see that the chromosphere

has the following propagation properties:

1. Waves with periods longer than 316 sec are evanescent throughout
the chromosphere.

2. Waves having

(2H.k )2 > 0.64 (3.44)
1 h

are evanescent throughout the chromosphere. In terms of wave
period P and horizontal wavelength V» condition (3.44) is

A. < 5.0 X 103 P2 cm . (3.45)
h

Hence, for a wave period of 200 sec only waves having horizontal
wavelength longer than 2000 km can propagate in the chromosphere.

3. Waves not satisfying condition (3.44) and having periods less
than 214 sec propagate throughout the chromosphere, provided kh
is sufficiently small. If kh is not sufficiently small, i.e.,
if the wave does not enter the chromosphere propagating suffi-
ciently vertically, the wave is reflected before reaching the
top of the chromosphere.

4. Waves not satisfying condition (3.44) and with periods in the
range 214 to 316 sec are evanescent at the bottom of the chro-
mosphere but become propagating waves above some temperature
level in the chromosphere.

5. Waves with periods far below cut-off (periods in the vicinity of
100 sec and below) are refracted away from the vertical.

6. Waves with periods near cut-off (periods in the range 200 to 300
sec) are refracted toward the vertical.

7. The farther below cut-off the wave period, the smaller k^ must
be in order that the wave not be reflected in the chromosphere.
Thus, the chromosphere preferentially passes waves with periods
near cut-off.

The observed oscillations at the bottom of the chromosphere are

nearly vertical and have periods in the range 200 to 300 sec. Comparing

these properties with the above propagation properties of the chromosphere,
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we see that conditions are favorable for the transmission of mechanical

energy flux through the chromosphere to the transition region.

Next, we consider the transmission through the transition region

of the compression waves passed by the chromosphere. The temperature

rises steeply at the base of the transition region so that the tempera-

4
ture is much greater than 10 K throughout most of the transition region.

4
From equation (3.42) we see that for temperatures much greater than 10 K,

the cut-off period P for compression waves is much greater than 300 sec.

Hence, since the compression waves which pass through the chromosphere

should have periods in the range 200 to 300 sec, these waves should be-

have like sound waves in the transition region.

In the transition region, sound waves of period greater than 200

sec have wavelengths longer than 3000 km, which is about the thickness of

2
the transition region. Since the temperature increases by a factor of 10

1/2
through the transition region, the sound speed (a <x T ) increases by

a factor of 10. Therefore, it should be a good approximation to treat the

transition region as a temperature discontinuity, or interface, between

the chromosphere and corona in estimating the transmission of compression

waves through the transition region.

Consider a plane interface across which the temperature increases

from T., to T . Let 6 be the angle between the normal to the inter-
X £

face and the direction of propagation of a sound wave incident on the in-

terface from the T side. There is a critical angle B for which

if 6 > 9 , there is total reflection of the wave. The critical angle
crit
, 56

is given by
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9 .,= arcsin
crit

(3.46)

For the transition region T = 10 K and T = 10 K, giving
1 £

9 = 5.7° .
crit

Hence, the waves transmitted to the corona must be propagating very

nearly vertically when they reach the base of the transition region.

This requirement is compatible with the fact that the oscillations at

the base of the chromosphere are nearly vertical, and with our above

finding that these waves have periods favorable for the refraction of

these waves toward the vertical in the chromosphere.

For 6 < 6 , a wave incident on an interface is partially
crit

transmitted and partially reflected. For normal incidence (6 = 0),

the ratio of the transmitted energy flux F to the 'incident energy
A

flux is given by
57

P2a2
piai P2a2

piaU

(3.47)

where p is the mass density and a is the sound speed. Since the gas

pressure remains nearly constant through the transition region while the

2
temperature increases by a factor of 10 , the density decreases by a fac-

2
tor of 10 while the sound speed increases by a factor of 10. Hence, for

the transition region,
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Since the observations require that a mechanical energy flux of about

6 -2 -1
10 erg cm sec reach the corona, the above estimate indicates that

a mechanical energy flux of at least a few times this amount enters

the base of the chromosphere in the form of wave modes which can pass

through the chromosphere.

To obtain an order of magnitude estimate of the energy flux

F carried by the waves composing the nearly vertical oscillations at

the base of the chromosphere, we may use equation (3.12),

2
F = pv a .m

At the base of the chromosphere, the observed rms velocity of the ver-

tical oscillations is about 0.4 km sec , which with equation (3.12)

gives

7 -2 -1
F z» 2.5 X 10 erg cm sec
m

This estimate is probably somewhat high since some of the waves repre-

sented by the photospheric oscillations are evanescent rather than prop-

agating as equation (3.12) assumes. However, if this estimate is accurate

to order of magnitude, it appears that the waves which make up the photo-

spheric oscillations carry enough energy to heat the corona.

In summary, the considerations of this section lead us to two

main conclusions:
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1. The chromosphere and transition region act as a filter which
passes only nearly vertically propagating waves to the corona,

2. The observed amplitude, orientation and period range of the
photospheric oscillations indicate the presence of sufficient
energy flux in the appropriate wave modes to provide the heat-
ing of the corona.

At the beginning of our discussion of propagation (Section

3.3.2,1) we suggested that by understanding the propagation properties

of the solar atmosphere, we might gain some insight into the generation

and dissipation of waves which heat the atmosphere. From the results

of the present section, we see that the propagation properties of the

atmosphere, in conjunction with the observed properties of the photo-

spheric oscillations, essentially resolve the generation problem for

the heating of the corona. Since the observations indicate that the

photospheric oscillations result primarily from the buffeting of the

base of the photosphere by rising granules, it appears that this is the

!

basic process which generates the waves which heat the corona. With

regard to the dissipation problem for the heating of the corona, we

have found that the waves to be considered are upward propagating com-

pression waves with periods in the range 200 to 300 sec. It remains

to consider the dissipation of these waves in the corona.

3.3.3 Wave Dissipation in the Corona

The conclusion of the preceding section that the corona is heated

by upward propagating compression waves with periods in the range 200 to

5 8—62
300 sec is well accepted in the literature. However, three differ-

ent mechanisms have been proposed for the dissipation of these waves:
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59
1. Dissipation by thermal conduction.

2. Landau damping.

3. Shock-wave dissipation following the steepening of the compres-
sion waves to form shock fronts. »®

In this section we consider the dissipation of compression waves in the

corona by these mechanisms. Our results indicate that the waves which

heat the corona are dissipated by conduction damping and Landau damping

rather than by forming shock fronts.

The energy balance of the transition region provides a basic re-

quirement which must be met by the mechanism which dissipates the waves

in the corona. In Chapter 4, we find that the dominant source of heat-
I

ing for the transition region is heat conduction from the corona. This

requires that the total rate of wave dissipation in the transition re-

gion is small compared to the rate of conduction cooling of the corona.

Hence, since the conduction cooling of the corona is balanced by heating

of the corona by wave dissipation, the waves which pass through the tran-

sition region to heat the corona dissipate only a small fraction of their

energy flux in the transition region. Therefore, a necessary condition

which must be satisfied by the mechanism which dissipates the waves in

the corona is that in the transition region the damping length L of

the waves be longer than the thickness of the transition region, which

is about 3000 km.

> 3 X 108 cm . (3.48)

L is the distance in which the amplitude of the wave is decreased by a

factor of e by the damping mechanism.
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The conduction damping of the waves can be examined by means of

the dispersion relation for sound waves in a uniform medium with thermal

59
conductivity K,

2 ^V 2\ 2 Kk2 / 2 V 2\u,L2 §_ k2\ 2 ^c_ / 2 _ _B_k2

\ / 3 V \ m /

where k is the wave number, k is Boltzmann's constant, and i is

the imaginary unit. Analysis of this dispersion relation shows that the

conduction damping depends only on the dimensionless parameter

where P is the wave period and 7\ is the wavelength. The damping

parameter 5 can be interpreted physically as follows. The temperature

T in a sinusoidal sound wave is given by !

T = T + AT , (3.51)
o

where T is the ambient temperature and AT is the temperature per-
o

turbation given by

x - ̂ t ) .
A P /

AT = (AT) sin x - t . (3.52)
max

The perturbation A(pe) in the thermal energy density is

^

A(pe) = | nk AT , (3.53)
£i O

and the rate of conduction cooling per unit volume is
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v2

~ = K\^-) AT . (3.54)
dx

Hence, the conduction cooling time T defined by the ratio of the per-

turbation thermal energy density to the rate of conduction cooling per

unit volume,

(3.55)

2
x

is given by

T = £ -^ ITH:) • (3.56)

Comparison of this expression for T with the defining expression (3.50)

for 5, shows that

' (3'57)

The time P/2rt is the characteristic time for the compressions and ex-

pansions which produce the temperature perturbation AT in the sound

wave. Thus, we see that the damping parameter S is the ratio of the

compression time in the wave to the conduction cooling time.

The strength of the damping is characterized by the ratio of the

wavelength \ to the damping length L ; the larger A/Iv,» the stronger

the damping. From the dispersion relation (3.49) we obtain the following

relation between A/Iv, and the damping parameter 6 for conduction

damping :

71



2jt\

!_
2

5X
1 = 0 .

(3.58)

For the case of 7 = 5/3 (fully ionized plasma) this equation gives the

curve of A/Iv. vs S shown in Figure 3.5. We see from this curve that

the damping is strongest when 6 « 1, in which case L « A.

For very small or very large values of 5, the damping is negli-

gible, and the dispersion relation (3.49) may be approximated by

m
k .k = -

2 V 2
2 _ _B_ k

2

m
(3.59)

For the limiting case of 6 = 0 , the dispersion relation is

a2 _ IV
m

(3.60)

which is the dispersion relation for adiabatic sound waves. In the limit

as 5 approaches infinity, the dispersion relation is

2 kRT 2j2 = _§_ k
2

m
(3.61)

which is the dispersion relation for isothermal sound waves. Hence, as

is reasonable from the physical meaning of 5, for 5 « 1 or 6 » 1,

the waves propagate at the adiabatic or isothermal sound speed, respec-

tively, and have negligible dissipation.

For the purpose of examining conduction damping in the transition

region and corona, it is convenient to rewrite expression (3.50) for the

damping parameter 6 in terms of n, T and P. In the corona and at
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4
temperatures above 2 X 10 K in the transition region, the thermal

conductivity K is given to a close approximation (see Appendix A) by

_c 5/2 —1 —1 —1
K = 1.0 X 10 T erg sec K cm . (3.62)

In terms of T and P, the wavelength ~\ is

•[" rA = |a -jjj- I P , (3.63)

1/2
where [a(k T/m)] is the sound speed.

B

For the value of the polytrope index a we adopt 4/3, the mean

between the isothermal value of 1 and the adiabatic value of 5/3. In

the transition region and corona, the mean particle mass m is approx-

imately half the mass of the hydrogen atom. These values give

4 1/2
= 1.5 X 10 T P cm . (3.64)

Finally, substitution of equations (3.62) and (3.64) into equation (3.50)

gives the following expression for the damping parameter in the transi-

tion region and corona:

9 —1 1/9 -1
5 = 1.4 X 10 n T ' P . (3.65)

We may now proceed to check conduction damping against the neces-

sary condition (3.48) that in the transition region the damping length

of the waves which heat the corona be longer than the thickness of the

1 5 - 3
transition region. In the transition region nT ~ const = 10 cm K,

so that the equation for the damping parameter becomes
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& - 1.4 X 10"13 T5/2 P"1 . (3.66)

Hence, for a wave of a given period, the damping parameter of the wave

5/2
increases as T as the wave propagates upward through the transition

region. Maximum damping occurs where 5 ~ 1, at which point L « "\.

From these conditions and equations (3.66) and (3.64), we have at maxi-

mum damping in the transition region,

T ~ 1.4 X 105 P2/5 K , (3.67)

and

» 5.5 X 106 P6/5 cm . (3.68)

/?

Since T < 10 K in the transition region, we see from equation (3.67)

that if P > 140 sec, the wave does not reach maximum damping until it

reaches some point in the corona. From equation (3.68) it follows that

the necessary condition (3.48) on the damping length is satisfied by

conduction damping if P > 30 sec. Since the waves which heat the co-

rona are expected to have periods in the range 200 to 300 sec, we con-

clude that condition (3.48) is well satisfied by the dissipation mecha-

nism of conduction damping.

We can also estimate the conduction damping length near the base

of the corona from equation (3.68). In the transition region and corona

the pressure scale height H is given by

H = 6.0 X 10 T cm . (3.69)

c
So, the scale height H at the base of the corona (defined by T = 10

K) is
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H = 60,000 km .

Therefore, the condition of constant pressure and the resulting equations

(3.67) and (3.68) remain valid for the first several thousand kilometers

in the corona. For the period range 200 to 300 sec, equation (3.67) gives

1.15 X 106 < T < 1.35 X 106 K

for the temperature range for which maximum damping of these waves occurs.

Figure 2.2 shows that this temperature range occurs within the first sev-

eral thousand kilometers of the corona, which shows that the use of equa-

tions (3.67) and (3.68) is valid for periods of 200 to 300 sec. Using

the representative period 250 sec in equation (3.68), we obtain

9
L « 4.2 X 10 cm
0

for the value of the damping length due to conduction damping near the

base of the corona.

fifi

As has been pointed out by D'Angelo, Landau damping may also

contribute to the dissipation of the waves in the corona. It has been

established experimentally that Landau damping of ion-acoustic waves

60,
occurs when

f >2^ • (3'70)

where, for hydrogen plasma, 7\ is the proton mean free path. Hence,

Landau damping occurs when the wavelength J\ is comparable to or shorter

than the proton mean free path. At longer wavelengths Landau damping
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60
does not occur. When condition (3.70) is satisfied, the damping

length due to Landau damping is observed to be about 0.5 A, which is

shorter than the damping length due to thermal conduction at maximum

damping. So, when Landau damping occurs, it dominates conduction

damping.

To examine the' relative importance of conduction damping and

Landau damping in the corona, expression (3.65) for the conduction

damping parameter 5 can be put into a more convenient form. Combin-

ing equations (3.64) and (3.65), we obtain

& = 2.1 X 106 n"1 T2 A"1 . (3.71)

63
Since the proton mean free path A is given by

A = 8.0 X 103 n"1 T2 cm , (3.72)

we have

2
5 = 2.6 X 10 T* . (3.73)

A

With this expression for 5, we see that the condition (3.70) for

Landau damping may be written

5 > 42.0 . (3.74)
r̂ f

When this condition is satisfied, Landau damping dominates conduction

damping.

As can be seen from equation (3.65), for a wave of given period

P, the damping parameter 5 increases with height in the corona.

When the critical value of 6 = 42 is reached, the remaining energy
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of the wave is dissipated by Landau damping. Landau damping is important

in the dissipation of the wave in the corona only if 6 = 42 is reached

before most of the energy of the wave is lost by conduction damping.

Therefore, a condition for Landau damping to be important is

5T > 42 , (3.75)

V
where §T is the value of 5 at one damping length above the base of

the corona.

To estimate the value of 6L , we rewrite equation (3.65) as
U0

follows:

Q —1 "l/2 — 1

5 = 1.4 X 10 (nT) T ' P . (3.76)

Since the low corona is in hydrostatic equilibrium, the value of nT at

one damping length above the base of the corona is given approximately

by

(nT) = (nT)rt exp|- -^—| . (3.77)

0

By definition of the damping length, most of the wave energy is deposited

below one damping length above the base. Since most of this energy is

conducted back to the transition region, the temperature at one damping

length above the base should be nearly the maximum temperature of the

corona:

T « T . (3.78)
L max

78



6 9 - 3
For quiet regions, T = 1.0 x 10 K, nrt w 1.0 X 10 cm , T «

0 0 max
6 3 9

2.0 X 10 K, H= 6.0 X 10 T = 6.0 X 10 cm and, as found above,
9

Lp w 4.2 x 10 cm. Using these values in equations (3.77) and (3.76),

we obtain

3 -1
5T ~ 1.5 X 10 P . (3.79)

\

Therefore, Landau damping is important (5^ > 42) in the corona only
ruO ~

for waves with P < 35 sec. Since the waves which carry energy into the

corona have periods of order 250 sec, it appears that Landau damping is

not important in the corona.

However, Landau damping is important if an appreciable amount of

energy in the P ~ 250 sec waves is transferred to P < 35 sec waves
r+s

as the waves propagate from the base of the corona to LQ above the

base. Transfer to shorter period waves occurs when the wave form steep-

ens due to the finite amplitude wave crest overtaking the wave trough.

Whether this steepening effect is important can be estimated as follows.

The energy flux of a sinusoidal compression wave with velocity amplitude

V is given by

F = i- nmM2a3 , (3.80)
m 2

where M s V/a is the Mach number of the wave, and a is the speed of

propagation given by equation (3.10):

1/2
a = (a - T\ • (3.10)
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Substitution of equation (3.10) into equation (3.80) gives

—12 3/2 2 —2 —1
F = 1.3 X 10 nT M erg cm sec , (3.81)
m

where we have adopted a. = 4/3. At the base of the corona, T = 1.0 X

10 K, n « 1.0 X 10 • cm and F « 1.0 X 10 erg cm" sec" ,, giving

M()~0.9

Since for M = 1.0, the crest overtakes the trough after propagating

only half a wavelength, it appears that there should be a sizeable

transfer of energy to short-period waves. Therefore, we conclude that,

in addition to conduction damping, Landau damping should contribute

significantly to the wave dissipation in the corona.

O Q C -I f?-t CO

It has often been assumed in the literature, ' ' ' that the

above steepening process leads to the formation of shock fronts which

account for the dissipation of the waves. However, our results for

conduction damping and Landau damping suggest that the waves do not

form shock fronts in the transition region and corona. If the waves

have shock fronts, then much of the energy of the waves is carried in

short-period components. On the other hand, as pointed out above, the

waves which heat the corona dissipate only a small fraction of their

energy in the transition region. For the dissipation process of ther-

mal conduction, we found that the waves should have periods longer than

30 sec for this to be true. This implies that short-period (P<30sec)

components are absent in the transition region and hence that there are

no shock waves in this region. In the corona, where transfer to shorter
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period (P < 35 sec) components probably does occur, these short-period

waves will be quickly damped by Landau damping, which indicates that

shock fronts do not form in the corona either.
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4. A MODEL OF THE CHROMOSPHERE-CORONA TRANSITION REGION

4.1 Introduction

In this chapter we examine the extent to which a static, planar

model, heated by thermal conduction from the corona and cooled by ra-

diative losses, describes and explains the structure and energy balance

of the chromosphere-corona transition region. In this section we briefly

review the salient features of the transition region which motivate such

a s tudy.

Observed energy fluxes of XUV resonance lines emitted from the outer

solar atmosphere imply (see Section 4.3.2.1) that above the 10 K level

the atmosphere is approximately planar, and that the flux of heat flowing

downward through the transition region from the corona remains roughly

6 5
constant from the 10 K level down to the 10 K level. In addition (see

Section 3.2.1.2), the rate of radiative cooling of the transition region

and the rate at which heat is supplied to the transition region by con-

duction from the corona are observed to be of the same order (10 erg

—2 -1
cm sec ). These results are the observational basis for adopting a

static, planar model for the transition region, and for suspecting that

the dominant processes in the energy balance of the transition region

are conduction heating and radiative cooling.

We term the upper part of the transition region, defined by the

temperature range 10 to 10 K, the "constant-heat-flux region". The

part of the transition region below the constant-heat-flux region (i.e.,

with T < 10 K), we call the "base region". This schematic picture

of the transition region is summarized in Figure 4.1.
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Figure 4.1. SCHEMATIC REPRESENTATION OF THE TRANSITION REGION.
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A major function of the base region is to absorb the downward flow-

ing heat which passes through the constant-heat-flux region. The value

of this heat flux which enters the base region is not accurately deter-

mined by the ultraviolet line data, but a value greater than 10 erg

-2 -1 4
cm sec is indicated (see Section 4.3.2.1). At the 10 K level and

below, the heat conductivity and the temperature gradient are so small

2 - 2 - 1
that less than 10 erg cm sec can be conducted out of the bottom of

the transition region. Therefore, the heat entering the base region

from the constant-heat-flux region must be absorbed in the base region.

Optical eclipse spectra indicate that spicule-like inhomogeneities

9
begin to appear in the chromosphere at heights above about 1,500 km,

and spicules often extend to heights of 10,000 km or more. Thus, some

spicules extend through the height range of the chromosphere-corona tran-

sition region. Since spicules are transient and must have a temperature

5 25
well below 10 K, the constant-heat-flux region cannot be completely

static and horizontally uniform. However, above 3,000 km spicules oc-

17 25
cupy less than a few percent of the horizontal surface area. ' This

suggests that the static, planar constant-heat-flux region implied by

the ultraviolet emission-line data corresponds to a hot, static back-

ground atmosphere which is penetrated here and there by the cooler

spicules. Thus, although the constant-heat-flux region appears to be

inhomogeneous and fluctuating when viewed optically at the limb in a

chromospheric emission line, in terms of overall structure and average

heat flow from the corona to the chromosphere, a static, planar model

is still reasonable.

In view of the static, planar nature of the constant-heat-flux

region (despite the presence of spicules), it is reasonable to consider
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a static, planar model for the base region which absorbs the heat which

passes through the constant-heat-flux region. A static, planar model of

the base region is "possible" if the downward heat flux passing the 10

4
K level can be radiated away above the 10 K level. However, Kuperus

and Athay have suggested that the base region is so thin that the in-

flowing heat cannot be balanced by radiation alone, and that the excess

energy goes into the kinetic energy of spicules. Hence, a quantitative

study of a static, planar model of the transition region may be relevant

to the origin of spicules, and their role and importance in the energy

balance of the base region.

4.2 Model and Formulation

4.2.1 Basic Physical Assumptions

The model of the transition region which we propose is based on

the following assumed physical conditions and approximations.

1. The model is horizontally uniform.

2. The magnetic field is assumed to be vertical.

3. The model transition region is assumed to be in hydrostatic
equilibrium.

4. The "turbulent pressure" in the transition region, due to
velocity fluctuations (part of which are produced by the
mechanical waves which pass through the transition region
to heat the corona), is neglected; the model atmosphere is
assumed to be supported against gravity entirely by the
thermal gas pressure.

5. There is no dissipation of the mechanical waves within the
model transition region.

6. The condition of ionization equilibrium is satisfied (for
each stage of ionization of each element) at each point in
the model.
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7. All excitations and ionizations are collisional, and all
recombinations and de-excitations are radiative.

8. The presence of elements other than hydrogen is ignored
except for their contribution to the radiative losses.

The aim of each of the above adopted conditions is to simplify

the mathematical model while hopefully retaining the essential physics

involved in the structure and energy balance of the actual transition

region. In particular, approximation 4 simplifies the force equation,

approximation 5 simplifies the energy equation, while approximations 7

and 8 simplify the ionization equation as well as the force and energy

equations. The degree to which the model resulting from our simplify-

ing assumptions retains the essential physics of the transition region

is to be judged, in part, from the comparison of the model with obser-

vations .

It should be noted that approximations 5 and 7 optimize the re-

moval of heat flux by radiation. In general, the energy radiated from

each volume element of the atmosphere may come from three sources: (i)

mechanical energy dissipated in the volume, (ii) radiation absorbed in

the volume, (iii) heat flux absorbed in the volume. Approximations 5

and 7 require that all of the energy radiated from each volume element

be supplied by the absorption of heat flux.

4.2.2 Governing Equations

The equation which expresses condition 6, the condition of ioni-

zation equilibrium, is

3 = 31 , (4.1)
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where 5 is the rate of ionization per unit volume, and ft is the

rate of recombination per unit volume. If the vertical coordinate z

is taken to be positive upward, the condition of hydrostatic equilib-

rium requires that

(4.2)

where p is the thermal gas pressure, p is the mass density of the

gas and g is the acceleration of gravity. Conditions 3, 5, and 7 and

the conservation of energy demand that there be a balance of heat con-

duction and radiation. This is expressed by

-T = * , (4.3)dz r

where F is the heat flux (positive upward) and £ is the radiative

power output per unit volume. We now proceed to express equations

(4.1), (4.2) and (4.3) in terms of the total number density n, the

electron number density n , the temperature T, and their derivatives

with respect to the vertical coordinate z, to obtain three equations

in three unknowns with which to compute the structure of the model.

Under approximations 7 and 8, equation (4.1) can be written as

n n I = n n R , (4.4)
e H H e p H

where n is the number density of neutral hydrogen, n is the number
H p

density of ionized hydrogen, I is the collisional ionization coeffi-
H

cient for hydrogen, and R is the radiative recombination coefficient
H

for hydrogen. Now with the simple relations for pure hydrogen,
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= "„ + n + n (4.5)
II p 6

and

n = n , (4.6)
P e

the ionization equilibrium equation may be solved for n /n:
* 6

- '

For pure hydrogen, the mass density of the gas is

= I1 - f) nmH ' (4'8)

From this expression and the equation of state,

p = nkT , (4.9)

the equation of hydrostatic equilibrium can be written in terms of n,

n and T :
e

- "e/n) V
' (4*10)kT

The heat flux F is proportional to the temperature gradient:

F = -K . (4.11)
dz

where K is the thermal conductivity. Thus, the left hand side of the

energy equation, equation (4.3), may be expressed as
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• <4-12)dz dz

For the radiative power output density £ , we adopt the results of Cox
r

42
and Tucker. For the physical situation specified by conditions 6 and

7, they have computed the radiative cooling coefficient L , which is

related to £ by
r

£ = n (n + n ) L , (4.13)
r e H p r

4 8
as a function of temperature in the range 10 K to 10 K. In addition

to hydrogen, Cox and Tucker have included cosmic abundances of the next

eight most abundant elements: He, C, N, O, Ne, Mg, Si and S, in their

4
calculation of L . At temperatures above a few times 10 K, these ad-

r

ditional elements dominate the radiative cooling. Thus, with regard to

L , we relax our assumption of a pure hydrogen atmosphere. However,
r

since hydrogen is the major component of the solar atmosphere, the ele-

ments other than hydrogen may be neglected in the equation of hydrostatic

equilibrium, in determining the heat flux and thermal conductivity, and

in the ionization equation, which determines the electron, proton and

hydrogen number densities in equation (4.13). The expression of the

energy equation in terms of n, n and T is then

£ («I) - =? f - f) -\ -

4.2.3 Specification of the Model

The coefficients I and R in equation (4.7), and K and L
H H r

in equation (4.14) are functions of temperature which we now specify.
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The ionization and recombination coefficients for hydrogen are

42taken from Cox and Tucker:

—8 —1/2 —R 3 —1
I = 2.34 X 10 ft e p cm sec , (4.15)

H

and

RH = 5.20X10~
14 fi1/210.4288 + ~ + 0.4698 R 3| cm3 sec"1 , (4.16)

where

ft = 158,000/T (4.17)

Figure 4.2 shows the radiative cooling coefficient curve computed

by Cox and Tucker for the temperature range 10 K to 10 K. We have

adopted the following straight-line-segment fit for our model:

4.0 < log T < 4.2: log L = 8.00 log T - 55.6

4.2 < log T < 4.5: log L = -22.0

4.5 < log T < 4.87: log L =2.44 log T - 33.0

4.87 < log T < 5.5: log L = -21.1

5.5 < log T < 6.0: log L = -1.86 log T - 10.9

(4.18)

Figure 4.3 shows the thermal conductivity curve which we have

65 66
obtained from the results of Devoto and Delcroix and Lemaire (see

Appendix A). The curve is closely fit by three straight line segments

given by
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Figure 4.2. RADIATIVE COOLING COEFFICIENT CURVE COMPUTED
BY COX AND TUCKER (1969) AND THE STRAIGHT-LINE SEGMENT
FIT ADOPTED FOR OUR MODEL.
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Figure 4.3. THERMAL CONDUCTIVITY CURVE DERIVED FROM THE RESULTS
OF DEVOTO (1968) AND DELCROIX AND LEMAIRE (1969) AND THE STRAIGHT
LINE FIT ADOPTED FOR OUR MODEL.
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4.0 < log T < 4.05: log K = log T + 1.49

4.05 < log T < 4.26: log K = -3.19 log T + 18.47

4.26 < log T < 6.00: log K = 2.36 log T - 5.18 )

(4.19)

This straight-line-segment fit is the conductivity curve used in comput-

ing the structure of -the model.

With the above coefficient formulas, we have now completely spe-

cified our model. The structure of the model is completely determined

by appropriate boundary values of n, T, and F. We choose to specify

the values of these quantities at the upper boundary of the model tran-

sition region because the value of the number density is best known at

13
the top of the observed transition region. We define the upper bound-

/?
ary of the model to be the 10 K level. We therefore fix the temperature

£•

T of the upper boundary of the model at 10 K and study the model by

varying the boundary values of n and F, which are denoted by n and

V

4.3 Results

4.3.1 Numerical Results

To study the behavior of the model with variations in n and

F , we computed the run of temperature and heat flux with height in the

model for several values of n and F by numerically solving the

governing equations (4.7), (4.10), and (4.14). Examples of the temper-

ature profiles are shown in Figure 4.4, where F is fixed at -1.0 X

106 erg cm"2 sec" and n takes the values 1.00, 1.92, 2.24, and 2.82

9 —3times 10 cm . Curves of the heat flux versus the logarithm of the

temperature for the same cases are shown in Figure 4.5.
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The curves in Figures 4.4 and 4.5 may be qualitatively understood

o
as follows. The radiative power output density is proportional to n .

On the other hand, if there were no radiative losses, the thickness of

the transition region would be inversely proportional to the (constant)

downward heat flux. Consequently, we expect that for sufficiently large

values of the number density n and sufficiently small values of the

heat flux F at the upper boundary, the model will radiate away all of

the downward heat flux. That is, the heat flux will decrease to zero at

4
some temperature T > 10 K. Figures 4.4 and 4.5 bear this out: if

ZF
9 —3

n is large enough (n > 1.92 X 10 cm ) the temperature gradient

4
and the heat flux pass through zero at the minimum temperature (> 10 K)

9
reached by the curve, but if n is too small (e.g., n = 1.00 X 10

_2
cm ), no temperature minimum occurs because the model is unable to ra-

diate away all of the heat flux.

For a given F , the value of n determines the temperature

T at which F = 0. Thus, from sets of cases such as that represented
ZF

in Figure 4.5, we may obtain the sets of (n , T ) points shown in Fig-
L) At

ure 4.6 for constant values of F . A smooth curve has been fitted

through each set of points with a common value of F . From these curves

we then obtain sets of (n-.F,.) at constant T__ which we have plotted
0 O ZF

logarithmically in Figure 4.7. Each set of points for constant T lies
£r

along a curve with slope increasing from about 0.9 at log n = 9.0 to

about 1.0 at log n,. = 10.0. Thus, for constant T , F is approxi-
0 £r U

mately proportional to n .

The fact that F is approximately proportional to n for con-

stant T_ is readily understood from the governing equations and the
ZF

fact that the pressure is nearly constant in the model transition region.
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Figure 4.6. CURVES OF Log n0 VS TZF FOR CONSTANT VALUES OF FQ.
Each curve is labeled with its value of -FQ in units of 106 erg
cm-2 sec"1.
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With the aid of the heat conduction law, equation (4.11), the energy

equation (4.14) may be written as

FdF = — 1 - (nT) dT . (4.20)

Equation (4.7) shows that the quantity in square brackets is a function

of the temperature alone:

n n \ L
-- (1 - --1 — K = f (T)
D \ V T2 (T> *

(4.21)

In conjunction with the heat conduction law, the equation of hydrostatic

equilibrium yields the integral

nT = Vo exp[- ̂ T° £dT (4.22)

where H is the pressure scale height,

H =
kT

1
-L

(4.23)

m

The quantity -/ K/HF dT is positive due to the fact that F is

negative (heat flux downward). Even though F goes to zero, so that

-K/HF goes to infinity, as T approaches T , it was found that

/-Tf U /x

Jrri "*

(4.24)

ZF
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in all cases for which the model was computed. That is, in the ranges

of n and F in Figure 4,6, the pressure remains nearly constant

through the model.

Equation (4.20) may therefore be written

FdF « n̂ T̂ f(T) dT . (4.25)

Integration of equation (4.25) from T to T gives
ZF 0

• T

\ FQ « nV I ° f (T) dT , (4.26)
Jrf

ZF

which shows that for constant T and T , F is approximately pro-
U £*£ U

portional to n . We note that this results from three physical proper-

ties of the model: (1) the rate of radiative cooling per unit volume is

given by the square of the number density times a function of temperature

alone, (2) the thermal conductivity is a function of temperature alone,

and (3) the pressure is nearly constant throughout the model.

Integration of equation (4.25) from T to T shows that for
r̂

constant n , T , and T , F is approximately a function of tempera-
0 0 ZF

ture alone. This is the reason why the curves in Figures 4.4 and 4.5

are symmetrical about T .
ZF

4.3.2 Comparison of the Model with XUV-Resonance-Line Data

4.3.2.1 Observational Evidence for a Planar Constant-Heat-Flux Region

67 68
The analyses of Athay and Dupree and Goldberg of the emis-

sion of XUV resonance lines from a planar transition region, in conjunc-

tion with the observed energy fluxes of several XUV resonance lines,
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provide the empirical evidence for a planar constant-heat-flux region

5 e
in the temperature range 10 K to 10 K. In these analyses the energy

flux E observed at the earth in an XUV resonance line is related to
Li

the structure of the transition region by

ET = CTAP
2G~1 . (4.27)

LJ LJ 6

Here P and G are "representative" values of the electron pressure
e

divided by Boltzmann's constant (P = n T) and of the temperature gra-

dient, respectively, in the layer of the transition region in which the

line is formed. A is the abundance (element:hydrogen ratio) of the el-

ement which emits the line. C is a constant of proportionality, which
Li

is evaluated for each line by integrating a function of temperature (pro-

portional to the number density of the ion which emits the line and the

t
rate of excitation of the line) over the temperature range in which the

ion is produced. This integrand is a sharply peaked function of temper-

ature, contributing significantly to C only at temperatures within
Li

about a factor of two or less from the temperature T at which it
max, L

is maximum. Hence, equation (4.27) may be used to obtain an estimate of

2 —i
A(n T) (dT/dz) at T T from the observed energy flux E_ .

e max, L L

The data points in Figure 4.8 (cf. Figure 3 of Dupree and Gold-

berg) were obtained in this way from the values of C and T com-
L max,Li

puted by Dupree and Goldberg. We used the observed values of E adopted

by them for several XUV resonance lines emitted from oxygen ions and sil-

icon ions formed in the temperature range of the transition region. The

2 —1
value of (nT) (dT/dz) for each data point was obtained by assuming

that the abundances of oxygen and silicon are the photospheric abundances

102



5.0 6.0

Log|0T(K)

7.0

Figure 4.8. REDUCED XUV-RESONANCE-LINE DATA FROM DUPREE AND GOLDBERG
(1967). in the temperature range 105 K to 106 K, the straight lines
correspond to constant downward heat flux. The dashed lines show
that the data scatter around the "best-fit" solid line by a factor
of two.
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fi Q —4 *^of Goldberg et al, A = 9.3 X 10~ , A = 3.2 x 10~ , and by taking
u . oi

n = 2ne. Since the pressure remains nearly constant, the straight lines

of slope 2.36 in Figure 4.8 correspond to constant downward heat fluxes

5 6 5
between 10 K and 10 K, since above 10 K the heat conductivity is pro-

2 36
portional to T . The solid line is the best visual fit to the data

5 6
in the range 10 K to 10 K, while the dashed lines show that the data

scatter about the solid line by a factor of two. The data thus imply

5 6
that, between 10 K and 10 K, the transition region is approximately

planar, and that in this region the heat flux varies by less than a fac-

tor of four. We see that although the heat flux need not stay completely

constant in the constant-heat-flux region, a sizable fraction (25 percent

or more) of the heat flux at the top of the transition region should reach

the 10 K level.

4.3.2.2 Deduction of Values of n and F from the Line Data

The energy fluxes analyzed by Dupree and Goldberg were composed

of radiation from all areas of the observable solar hemisphere, including

some active regions. However, Withbroe concludes from OSO-IV XUV-reso-

nance-line observations (with spatial resolution of one minute of arc)

„ 6
that ... for XUV lines formed at temperatures less than about 10 K the

flux radiated by the entire solar disk is characteristic of the equato-
C

rial quiet area." On this basis we assume that at 10 K and below the

data in Figure 4.8 represent the quiet solar atmosphere. We then obtain
g

from Figure 4.8 (at T = T = 10 K) the following constraint on nQ

and F for quiet regions :

log r\n = log (-F ) + 6.06 ± 0.15 . (4.28)
0 « v)
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Withbroe has studied the limb brightening of several XUV

lines observed by OSO-IV in the quiet equatorial region. He finds good

agreement between the observed limb brightening and that computed for a

planar model transition region and lower corona having constant downward

c
heat flux in the region below the 2 x 10 K level. Withbroe's analysis

of the limb brightening data allows an estimate of the downward heat flux

independent of the number density. Withbroe finds

log Ŷ L- = -12.0 ± 0.3 , (4.29)

where F is the constant downward heat flux and a is the coefficient

in the thermal conductivity used in his model:

c/o
K = OT' . (4.30)

-6
For our adopted thermal conductivity, a has the value 1.0 X 10 (cgs

C

units) at the 10 K temperature of the upper boundary. Using this value

in equation (4.29), we obtain the value of F which we adopt for the

quiet regions:

log (-FQ) = 6.0 ± 0.3 . (4.31)

Equations (4.28) and (4.31) define the (n0«
F0) re&ior required by the

data for quiet regions. From equation (4.28), for log (~FO) = 6.0,

log n = 9.06 ± 0.15 (4.32)

which is a reasonable value for the number density at the base of the

quiet corona.
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11 38
Using the model of Withbroe, Noyes et al have compared the

observed XUV resonance line emission from quiet regions with that from

active regions. They find that, for a fixed temperature, the total num-

ber density and the downward heat flux in active regions are each about

five times larger than in quiet regions. For active regions we there-

fore adopt, in place 'of equations (4.28) and (4.31),

log n = log (-F ) + 6.76 ± 0.15 (4.33)
\) & \J

and

log (-F ) = 6.7 ± 0.3 . (4.34)

In Figure 4.9, the two (log n , log F ) regions adopted above

for quiet regions and active regions of the sun are compared with the

lines of constant T for the model. The data of Figure 4.8 require
ZF

that T < 1 X 10 K in quiet regions, and the results of Noyes et al
AT

imply that T,,_ < 2 X 10 K in active regions. Hence, in the shaded
ZF

areas of Figure 4.9, the model is compatible with the XUV-resonance-line

observations.

4.4 Discussion

Given that T < 2 x 10 K in both quiet regions and active re-
ZF

gions, our model yields the observational finding that F and n in-

crease by the same factor from quiet regions to active regions. Moreover,

although there is some discrepancy, the model is compatible with the mag-

nitudes of F and n required by the XUV observations of quiet regions

and active regions. These two favorable results imply that, in a first

106



'o
CO

<VJ
I

7.0

6.5

o

o>

~06.0

O

o

5.5

5.0

ACTIVE
REG I ON

8.5 9.0 9.5

Log|Q n0 (cm'3)

10.0
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approximation, the model is a valid description of the structure and the

energy balance of the transition region. That is, these results imply

that the dominant process in the energy balance of the transition region

is the removal of heat flux by radiation, and that, with respect to the

overall balance of energy, the transition region may be considered to be

static and planar.

Since the,downward heat flux F , which leaves the base of the co-

rona and enters the top of the transition region, is the dominant energy

loss of the corona, the dominant processes in the energy balance of the

corona are heating by mechanical wave dissipation and cooling by downward

heat conduction. Hence, the value of F is determined by the amount

of mechanical-wave heating in the corona. The fact that the model agrees

with both quiet regions and active regions implies that when the downward

heat flux (and hence the upward mechanical-wave energy flux) increases,

the density of the atmosphere automatically increases just enough to ra-

diate away the larger heat flux. The fact that the model ignores the

presence of mechanical waves and their dissipation in the transition

region implies that the direct cause of an enhancement of the density

in the transition region is an increased downward heat flux rather than

the presence in the transition region of an increased upward mechanical

wave flux. Therefore, it is appropriate to consider the magnitude of

the density in the transition region to be the result of the downward

heat flux F entering the transition region, rather than considering

the density in the transition region to be the cause of F .

The preceding paragraphs interpret the agreement between the model

and the data. It is also instructive to consider the disagreement be-

tween the model and the data. It was found in Section 4.3.2.1 that the
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data required that 25$ or more of the heat flux which flows into the

transition region from the corona be absorbed in the base region. But,

as can be seen in Figure 4.5, the model base region is capable of ab-

sorbing only about 20$ or less of the heat flux F which enters the

model transition region. This is the cause of the discrepancy between

the model and the data in Figure 4.9. For there would be much better

agreement between the model and the data in Figure 4.9, if, for -F =

1.0X10 erg cm sec , T = 10 K were given by n0~1.0 X10 cm"
ii]t 0

O _o

instead of by n ~ 2.0 X 10 cm . In Figure 4.5, we see that this

would occur if about 40$ (instead of 20$) of F were absorbed by the

model base region. That is, for the best observational values of F

and n , the fraction of F which the model transmits to the base

region is in agreement with the observations, but the model base region

absorbs only about half of the heat flux which enters it. Thus, we con-

clude that the discrepancy between the model and the data in Figure 4.9

implies that the base region of the model absorbs only about half as

much heat flux as the base region of the actual transition region.

We expect the actual base region to radiate away more heat than

the planar model base region (see Appendix B). In Figure 4.4 we see

that for T__ = 1.5 X 10 K, the layer between 10 K and T is only
ZF Zr

3
10 or 20 km thick. One effect of oscillations (of scale w 10 km) in the

base region, due in part to the passage of the compression waves which

heat the corona, should be to increase the surface area (and hence the

5 4
volume) of the thin layer between 10 K and 10 K over that of the pla-

nar model, thus making the base of the transition region a more efficient

radiator than if it were strictly planar. Another effect of the velocity

fluctuations is to increase the number density in the base region, which
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increases the radiative power output density. A factor of two increase

in the amount of heat flux radiated away in the base region by these two

mechanisms is quite plausible (see Appendix B). These considerations

suggest, first, that the dominant process in the energy balance of the

base region is the removal of heat flux by radiation and, second, that

with respect to the energy balance, the base region is inherently non-

static and/or nonplanar.

The preceding discussion suggests that the energy lost from the

base of the transition region in the form of spicule kinetic energy is

secondary to that lost by radiation. However, the spicule kinetic en-

ergy may still be derived from the downward heat flux as suggested by

Kuperus and Athay. If, for a given heat flux F , the number density

n is too low, the point (nn»
F
n)

 in Figure 4.9 will lie to the left

4
of the T =10 K line where the model is unable to radiate away all

of F . In this case, due to our understanding of the cause of the den-

sity enhancement in active regions, we expect the atmosphere to react by

increasing n until F can be radiated away. This suggests that the

excess heat flux would go into raising material at the base of the tran-

sition region to higher levels. Spicules occur over the boundaries of

the supergranulation cells where the convective motion of the cells has

concentrated the magnetic field. The magnetic field fans out above the

boundaries and funnels the downward flowing heat into regions over the

cell boundaries, giving the supergranule boundary region heat flux F

70
which is larger than the average value for quiet regions. This sug-

gests that spicules are the manifestation of the atmosphere attempting

to maintain an increased density over the supergranule boundary regions.

110



The transient character of spicules suggests an overstable situation in

which the density is alternately higher or lower than the value required

to balance the inflowing heat with radiative losses.

Ill



5. SUMMARY

The general problem which we have studied in this dissertation is

the structure and heating (or energy balance) of the solar atmosphere.

The general aim of our investigation has been to determine and under-

stand the interdependence between the structure of the atmosphere and

the heating of the atmosphere. The basic and widely accepted hypothe-

sis underlying our study is that the fundamental source of heating for

the outer layers of the atmosphere is the dissipation of mechanical

waves which are emitted into the atmosphere from the top of the convec-

tion layer below the photosphere.

The solar atmosphere has the following salient observed features

which are directly relevant to the structure and heating of the atmo-

sphere. These features have been deduced primarily from observations

at visible and XUV wavelengths.

1. In quiet regions and in active regions during their decay
phase, the atmosphere appears to be approximately static
and planar. The atmosphere appears to be most inhomogene-
ous (nonplanar) and nonstatic (fluctuating) at the base of
the chromosphere-corona transition region.

2. Vertical oscillations with periods in the range 200 to 300
sec are observed in the photosphere and low chromosphere.
The observations indicate that these oscillations are ex-
cited by the buffeting of the base of the photosphere by
rising granulation convection cells at the top of the con-
vection layer.

3. The corona, having a. temperature in the range of 1 to 2 X
106 K, is the hottest layer of the atmosphere. This re-
quires that the energy transfer to the corona from the in-
ner layers is by some nonthermal process such as the prop-
agation and dissipation of mechanical waves, rather than
by thermal mechanisms such as thermal conduction or radia-
tive transfer.
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4. The temperature increases slowly through the chromosphere
from about 4,600 K at the top of the photosphere to about
10,000 K at the top of the chromosphere at a height of
about 2000 km. The temperature then increases very steeply
through the chromosphere-corona transition region, passing
from 104 K to 106 K in a vertical distance of about 3000
km. In the corona, the temperature again increases slowly
with height from 10 K at the top of the transition region
to the temperature maximum of about 2 x 10^ K some tens of
thousands of kilometers above the transition region.

5. The major energy loss of the corona (dominating losses due
to radiative cooling and the solar wind) is downward heat
conduction to the transition region, and is of order 10*>
erg cm~2 sec . The corona must be continually resupplied
with energy at this rate.

6. In the average active region, the downward heat flux and
the number density at the base of the corona are both about
five times larger than in quiet regions.

7. In the transition region, the downward heat flux remains
approximately constant between the levels of 10^ K and 10^
K.

8. The total rate of radiative cooling of the transition region
is of the same order as the rate of conduction heating (10
erg cm~2 sec ).

9. The entire atmosphere above the photosphere radiates away
about 10^ erg cm~^ sec . Some of this energy may be sup-
plied by radiative transfer from the photosphere. Hence,
10^ erg cm~2 sec~l is an upper bound on the total rate of
heating of the atmosphere by mechanical waves.

10. In the transition region and low corona, the magnetic field
is more or less vertical both in quiet regions and in ac-
tive regions during their decay phase. Therefore, the mag-
netic field does not strongly affect the downward flow of
heat from the corona to the transition region. The average
field strength is of order 1 gauss in quiet regions and of
order 50 gauss in active regions during their decay phase.
In quiet regions, the gas pressure dominates the magnetic
pressure in the photosphere and chromosphere, while in the
transition region and low corona, the magnetic pressure is
comparable to the gas pressure. In active regions in their
decay phase, the magnetic pressure is dominated by the gas
pressure in the photosphere, but is greater than the gas
pressure above the first few hundred kilometers of the chro-
mosphere .
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Since, in the first approximation, the solar atmosphere appears to"

be static and planar, our basic approach to the structure and heating

problem has been to study the average (over horizontal area) vertical

structure and heating of the atmosphere by means of a static, planar

model. The model is assumed to be in hydrostatic equilibrium and to

have a temperature profile representative of the actual solar atmosphere.

In addition, the magnetic field is neglected or assumed to be vertical,

and the wave propagation is assumed to be governed by the linearized

equations of motion. With these simplifying approximations, we have

studied wave propagation, wave dissipation, heat conduction and radia-

tive cooling in the model, and the connection between these processes

and the structure of the model. We have found that the properties of

this model are compatible with and aid the physical interpretation of

the above observed properties of the solar atmosphere.

The following picture of the structure and heating of the solar

atmosphere has emerged from the study of our model in conjunction with

the above features of the observed atmosphere. In this picture, the

central role is played by the chromosphere-corona transition region,

both as the most outstanding feature of the structure and in providing

the basic mechanism which connects the structure and the heating of the

atmosphere.

1. The photospheric oscillations excited by the granules are
composed of a spectrum of compression waves. The oscilla-
tions with periods near 200 sec are due to upward propagat-
ing waves . The longer period oscillations are due to waves
which are evanescent in the photosphere and lower levels of
the chromosphere, but which become upward propagating waves
higher in the chromosphere.
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2. Due to the temperature profile of the chromosphere and
transition region, only the components of the photospheric
oscillations with very nearly vertical wave-vectors are
passed to the corona. Other components are reflected back
toward the photosphere by the chromosphere and transition
region.

3. The observed amplitude, orientation and period range of
the photospheric oscillations indicate the presence of
sufficient energy flux in the appropriate wave modes to
provide the heating of the outer atmosphere.

4. The vertically propagating compression waves which are
passed to the corona are dissipated in the corona by
thermal conduction and Landau damping rather than by
developing into shock waves.

5. The existence of a high-temperature corona and a narrow
transition region is due to the fact that the radiative
cooling capacity of the corona is insufficient to balance
the mechanical heating. Hence, the temperature of the
corona rises until downward conduction cooling balances
the heating.

6. Within the transition region, in both quiet regions and
active regions, the dominant processes in the energy
balance are radiative cooling and heating by thermal
conduction from the corona. In particular, conduction
heating dominates heating by wave dissipation.

7. The balance of conduction heating and radiative cooling
in the transition region determines the number density
at the base of the corona. The number density at the
base of the corona is approximately proportional to the
downward heat flux leaving the corona. Thus, in active
regions increased heating of the corona results in in-
creased downward heat flux which, in turn, causes the
density enhancement in the transition region and corona
in active regions. Spicules may be the manifestation
of the atmosphere attempting to maintain an enhanced
density over the supergranule boundary regions.

8. The base of the transition region is inherently nonplanar
and fluctuating.
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Appendix A

THERMAL CONDUCTIVITY IN THE TRANSITION REGION

For the purposes of our model, we need an estimate of the thermal

conductivity as a function of temperature which differs from the actual

conductivity by less than a factor of two. The temperature range of the

4
transition region is from 10 K, where hydrogen is nearly completely neu-

g
tral, to 10 K, where hydrogen is essentially completely ionized. Since

the solar atmosphere is composed of about 90$, hydrogen by number, the

thermal conductivity of the transition region is approximated with suf-

ficient accuracy by the thermal conductivity of partially ionized hydro-

4 6
gen in the temperature range from 10 K to 10 K.

It was assumed, in computing the radiative energy losses and the

degree of lonization in the model, that all excitations and ionizations

of the hydrogen atoms are collisional, and all recombinations and deexci-

tations are radiative. We also assume this condition in estimating the

thermal conductivity. Under this condition, only the thermal kinetic

energy of the electrons, protons, and hydrogen atoms contributes to the

heat conduction; the energy of excitation and ionization of the hydrogen

atoms does not contribute.

The thermal conductivity of partially ionized hydrogen due to the

transport of thermal kinetic energy has been computed by Devoto from

accurate but rather complicated kinetic theory. It appears that his com-

puted values should approximate the actual conductivity with an accuracy

of the order of 10$. The curves of Figure A.I have been obtained from

Devoto's table of the conductivity as a function of temperature at con-

stant pressures of 10 , 10 , 10 , and 10 times 1.013 dyne cm (1.013

—2 —fi
dyne cm =10 atm). None of these curves can be taken for the thermal
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Figure A.I . CONDUCTIVITY CURVES OBTAINED FROM DEVOTO'S (1968)
TABLE FOR PARTIALLY IONIZED HYDROGEN AT CONSTANT PRESSURE. Each
curve is labeled with its value of the pressure in units of
1.013 dyne cm"2.
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conductivity of the transition region for the following two reasons.

First, the conductivity computed by Devoto obviously depends on the

pressure, and the pressures adopted in Devotofs computations are much

-213
larger than the pressure of about 0.2 dyne cm in the transition

region. Second, the conductivity depends on the degree of ionization.

In computing the degree of ionization, Devoto assumed local thermody-

namic equilibrium. In this case, the degree of ionization depends on

the pressure; an increase of pressure at constant temperature causes a

decrease in the degree of ionization. But in the transition region,

under the condition of collisional excitation and ionization, and ra-

diative recombination and de-excitation, the plasma is not in local

thermodynamic equilibrium; the degree of ionization depends only on

the temperature and not on the pressure [see equations (4.7), (4.15),

and (4.16)]. Thus, we would not be justified in adopting Devoto's

published values of the thermal conductivity of partially ionized

hydrogen for the thermal conductivity of the transition region.

However, instead of repeating Devoto's involved and lengthy cal-

culations for the case of the transition region, we can estimate the

conductivity of the transition region with sufficient accuracy from

Devoto's values by deriving from simple kinetic theory the manner in

which the conductivity scales with pressure and degree of ionization.

71
Using simple kinetic theory, we can derive the following formula for

the thermal conductivity of partially ionized hydrogen:

_ 9
K ~ 4 "T?2 HH Hm HH p H Hp

H
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Here a and a are "collision cross-sections" for energy exchange

between neutral hydrogen atoms, and between neutral hydrogen atoms and

protons, respectively. Since u and a are of the nature of
HH tip

cross-sections for binary collisions, we expect them to depend on the

temperature but not on the number densities. K in equation (A.I) is
e

the thermal conductivity of fully ionized hydrogen, which may be com-

fifi

puted from the formula given by Delcroix and Lemaire:

5/2
K = 1.890 X 10~5 ^—- erg sec"1 K"1 cm'1 , (A.2)
e J.n A

where

<2 T2 5
A = -^ % -J75 for T < 4.2 X 10 K

e p

(A.3)

5\V2

A = — =3- -477T ("•- : ^ 1 for T > 4.2 X 1Q5 K
3 k T /4.2 X 10 \
Z^^ *^ 1 /O I rp Irr o j./ ^ \ i /

V2Jt e D V '

Here e is the electron charge is esu and p is the pressure. Equation

(A.I), in conjunction with equations (A.2) and (A.3), gives explicitly

the dependence of the conductivity on the ion-neutral ratio n /n and
p H

on the pressure p. We use this property of equation (A.I) to estimate

the conductivity of the transition region from Devoto's results shown in

Figure A.I.

The estimate of the conductivity in the transition region is ob-

tained as follows. First, Devoto's results are used to determine func-

tions of temperature representing a and a such that equation
rln Hp

(A.I) approximately reproduces Devoto's conductivity. This is done by
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fitting equation (A.I) to the curves in Figure A.I, using Devoto's

values of n /n and p. The good fit shown in Figure A.2 is given
P H

by

and

—14 -1 /9 9
= 9-12 X 10 T ' cm (A.4)

a = 7.95 X 10"11 T-1 cm2 . (A.5)
Hp

with these functions of temperature for a and a , equation (A.I)
HH Hp

reproduces Devoto's conductivity with an error of not more than about

10$. The thermal conductivity for the transition region is then com-

puted from equation (A.I), keeping these functions of temperature for

airr and a , but using values of n /n and p appropriate for the
HH Hp p H

_2
transition region. We assumed 0.2 dyne cm for p, and n /n was

P H

calculated as a function of temperature from equations (4.7), (4.15),

and (4.16). The resulting conductivity curve is shown in Figure 4.3.
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Figure A.2. COMPARISON OF THE CONDUCTIVITY GIVEN BY EQUATION (A.I)
(DASHED CURVES) WITH DEVOTO'S CONDUCTIVITY (SOLID CURVES) FOR
uuHH

= 9.12 X 10~14 T"1/2 cm2 and
Hp

= 7.95 X 10"11 T"1 cm2
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Appendix B

ENERGY BAIANCE IN THE BASE REGION

There are three physically distinct energy fluxes which enter into

the energy balance of the solar atmosphere: mechanical energy flux F* ,
m

radiative energy flux F* , and heat flux F* due to thermal conduction.
r . c

We assume that, on the average over a sufficiently large area and over a

sufficiently long time, each of these fluxes is vertical and steady. In

other words, we assume that on the scale of sufficiently large horizon-

tal lengths and sufficiently long times, the structure and energy balance

of the solar atmosphere may be considered to be horizontally uniform and

steady in time. Each of the energy fluxes may vary with height in the

atmosphere by depositing thermal energy in the atmosphere or removing

thermal energy from the atmosphere. The general form of the steady-state

energy equation in terms of the energy fluxes is

dF dF dF
^!L.r + _<l = o . (B.I)
dz dz dz

In our model transition region we have assumed that F is constant,
Dl

dF
~ = 0 , (B.2)
dz

and that there is no absorption of radiation,

dF
~>0 . (B.3)
dz
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Under these two conditions, the energy equation requires that the down-

ward heat flux in the model transition region be absorbed by radiative

losses.

However, the comparison of our model with XUV-resonance-line data

indicates that the actual base region absorbs about twice as much heat

flux as the model base region (see Section 4.4). This requires that

C /dF

/ . br*-ijdz, - . \ — dz /base region \ /

for the actual base region be larger than that for the model base region,

An equivalent statement is that one or any combination of the following

statements is true of the actual base region with respect to the model

base region:

1. The actual base region is thicker than the model base region,
i.e., the volume of the actual base region is larger than that
of the model base region.

2. dF /dz is larger in the actual base region than in the model
base region, i.e., the radiative power output per unit volume
is larger in the actual base region than in the model base re-
gion.

3. dF /dz is larger in the actual base region than in the model
base region, i.e., dF /dz > 0 in the actual base region.

Each of these statements names a possible mechanism by which the actual

base region is able to absorb more heat flux than the model base region.

The basic nature of the energy balance of the base region depends upon

which of these mechanisms, if any, is dominant in the actual base region.

If either of the first two mechanisms is dominant, the dominant process

in the energy balance is the removal of heat flux by radiative losses as
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is assumed in the model. If the third mechanism is dominant, the domi-

nant process in the energy balance is the conversion of thermal energy

to mechanical energy.

The presence of the mechanical energy flux has been neglected in

the model transition region. In the following paragraphs we estimate

the effect of the mechanical energy flux on the structure of the base

region. We find that the presence of the mechanical energy flux can

reasonably increase the absorption of heat flux in the base region

through mechanisms 1 and 2 sufficiently to account for the amount of

heat flux absorbed by the actual base region. This suggests that the

dominant process in the energy balance of the base region is the ab-

sorption of heat flux by radiation.

Most of the mechanical energy flux in the transition region is

carried by upward propagating compression waves. We can estimate the

velocity fluctuations produced in the base region by these compression

waves from the formula for the energy flux carried by one-dimensional

sound waves,

2
F = pv a . (3.12)
m

In terms of the temperature T and the pressure p = nkT, equation

(3.12) is

M V2PT"
1/2 . (B.4)

6 -2 -1
At the base of the transition region F « 10 erg cm sec , p ̂  0.2

m
—!? 4 -23 78

dyne cm~ , T « 10 K, m « m. = 10 ' gm, and 7 ~ 5/3. So, from
H
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equation (B.4), the rms velocity fluctuation produced in the.base region

by the compression waves is

6 —T
Vrms ** 2*° X 10 cm Sec ' (B.5)

This estimate should be accurate to order of magnitude.

The vertical displacement Az resulting from the velocity oscilla-

tions of a wave of period P is approximately

(B.6)

The compression waves which carry energy to the corona are expected to

2
have periods of the order of 10 sec. We therefore expect that vertical

3
displacements of the order of 10 km are produced at the base of the

transition region by the upward propagating compression waves. Assuming

that the compression waves are generated by the motions of the photo-

spheric granules, the horizontal scale of the velocity fluctuations at

the base of the transition should be comparable to the distance between

centers of adjacent granules. The average distance between centers of

adjacent granules is about 2,000 km, which length is also representative

of the horizontal dimension of vertical oscillations observed in the
T

16
chromosphere. Thus, it appears that the base region cannot be consid-

3
ered to be horizontally uniform on a scale of 10 km or less.

We are now in a position to estimate the effect of the vertical os-

cillations on the radiative capacity of the base region through mechanism

1. That is, we may now estimate the factor by which the vertical oscil-

lations increase the volume of the actual base region over that of the

planar model base region. We have found from our model transition region
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that the thickness of the base region (the distance between the 10 K

4
level and the 10 K level) is of the order of 10 km. Therefore, the

actual base region may be thought of as a thin surface layer coating the

4
10 K "level" which is distorted into a wavy surface by the vertical dis-

placements of the compression waves. The volume of the base region is

the product of its surface area and thickness. The thickness is approx-

imately inversely proportional to the heat flux entering the base region,

and the heat flux entering the base region is inversely proportional to

the surface area of the base region. Hence, the fractional increase

V /V of the volume of the actual base region over that of the planar

model transition region is approximately the square of the fractional

increase A /A of the surface area of the actual base region over that
a p

of the planar model:

V /A \2

vHr)- • (B-7)p \ p/

To estimate A /A , we consider the hexagonal arrangement of oscil-
a p

lating cells shown in Figure B.I. Each +, -, or 0 marks the center of a

cell. The distance between adjacent centers is assumed to be 2,000 km.

One third of the centers, those marked +, are assumed to be displaced

4
1,000 km above the mean level of the 10 K surface; another third of the

centers, marked -, are assumed to be 1,000 km below the mean level; and

the remaining third of the centers, marked 0, are assumed to have no dis-

4 4
placement from the mean level of the 10 K surface. The 10 K surface

is assumed to pass smoothly through all of the cell centers. The frac-

4
tional increase in the surface area of this 10 K surface is conserva-

tively estimated by the ratio of the area of the triangle formed by the
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Figure B.I. CONFIGURATION OF CENTERS OF OSCILLATING
CELLS ADOPTED TO ESTIMATE THE INCREASE IN THE SUR-
FACE AREA OF THE 104 K LEVEL DUE TO THE VERTICAL
DISPLACEMENTS OF THE OSCILLATIONS.
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centers of any three adjacent +, -, and 0 cells to the projected area of

this triangle on the horizontal plane. An example of such a triangle,

viewed from above, is shown in Figure B.I. This estimate gives

A
j-̂ - = *& , (B.8)
P

and

V
^ « 2 . (B.9)
P

Thus, the nonplanar nature of the actual base region may reasonably be

expected to increase the radiative capacity of the actual base region

over that of the planar model by a factor of 2, which is sufficient to

explain the discrepancy between the model and the XUV-resonance-line

data.

We next consider the increase in the radiative capacity of the base

region due to the effect of the mechanical energy flux through mechanism

2, i.e., due to the increase in the radiative power output density re-

sulting from the presence of the mechanical energy flux. Under the ap-

proximation of collisional excitation and ionization, and radiative

recombination and de-excitation, the radiative power output density is

proportional to the square of the number density. Hence, we can esti-

mate the increase in the radiative power output density by estimating

the increase in the number density in the base region due to the pres-

ence of the mechanical flux.
1

We assume that on the average over a sufficiently long time the

base region is in hydrostatic equilibrium, so that
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dp
— .= -nmg •.,,. (B.10)

where dp/dz is the total pressure gradient and n is the total number

density. The total pressure p is the sum of the thermal pressure

p = nkT and the turbulent pressure p due to the velocity fluc-

tuations in the base .region. Therefore,

dpth dpturb
-ar+ -55-

and we may estimate the increase in the number density An over what it

would be if p were absent by setting

dp
™ = -Anrng . (B.12)

The gradient of the turbulent pressure may be estimated as follows,

Assuming that the velocity fluctuations are isotropic, the turbulent

pressure is given by

P* v = Pyturb 3 rms

Assuming that v is-related to F by equation (3.12), we have
rms m

•W5T "

The condition dF /dz = 0, which we have assumed for the base region,
m

then gives
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dp F
turb m_dT
dz ~ 6aT dz '

We may now estimate An. From equations (B.12) and (B.15),

Here,

dT AT

where AT is the temperature change in the base region (AT « 10 K)

and Az is the vertical extent of the region of the atmosphere in which

this temperature change occurs. Due to the vertical displacements of

3
the upward propagating compression waves, Az is of the order of 10 km

A C . Q

for the temperature range of 10 K to 10 K. Adopting Az = 10 km,

AT = T = 10 K, and F =10 erg cm sec in equations (B.16) and

(B.17), we obtain

10 —3
An « 1.4 x 10 cm . (B.18)

This estimate is accurate only to order of magnitude, but it indicates

that the increase in the number density in the base region due to the

turbulent pressure is of the same order as the density in our model base

region (n =» 10 cm at T = 10 K) which has no turbulent pressure.

Therefore, it appears that the presence of the velocity fluctuations

could easily increase the radiative capacity of the base region as much

through density increase (mechanism 2) as through volume increase (mech-

anism 1). Again, this suggests that most of the heat flux entering the

base region is converted into radiation rather than into mechanical energy flux.
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