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NASA TECHNICAL MEMORANDUM X- 64651

GRAVITY GRADIENT TORQUE PROFILES OVER AN ORBIT FOR
ARBITRARY MODULAR SPACE STATION CONFIGURATIONS IN

THE Y-POP AND INERTIAL HOLD MODES

INTRODUCTION

The modular space station is currently receiving a great deal of study
by NASA1 '2 and its co'ntrol is obviously a topic of considerable importance.

A major contributor to the control problem is the gravity gradient torque,
which is considerable for a large orbiting body and which, for that matter, 'can
cause instability of even very small satellites if they are improperly oriented
[1,2].

Prevention of the continual acquisition of angular momentum caused'by
such torques clearly requires some advance knowledge of the magnitudes of the
torques to be controlled. The objective of this report is to examine the gravity
gradient torque distribution acting on an arbitrary configuration of the modular
space station over any orbit. This is done for both the Y-POP configuration
(in which the space station moves with its longitudinal X-body axis always
directed along the velocity tangent and the Z-body axis along local vertical) and
for the station frozen into and remaining in any inertial hold configuration during
the above-mentioned Y-POP orbit.

The procedure used and described here allows for solar panel gimbaling
and for varying the values of the spatial and orbital parameters A , A , F ,

. <J J

and orbiting angle 9 . Any Initial Space Station (ISS) configuration may be
built up, and with modifications the procedure can be made "to accommodate the
Growth Space Station (GSS), as well as other orbital modes.

1. Space Station First Performance Review. MSFC-DPD-235/DR NO. MA-02,
MDC G2279, McDonnell-Douglas Astronautics Co., April 1971. :

2. Space Station Mass Property Status Report. MSFC-DPD-235/DR NO.
SE-07, MDC G2313 McDonnell-Douglas Astronautics Co., June 1971.



It is shown by examples that solar panel gimbaling can have a significant
effect on gravity gradient torque distribution and hence on momentum require-
ments. The examples also show wide variations in bias torque for various
stations examined.

OUTLINE OF THE GENERAL PROCEDURE

Before the details of this study are discussed, the general procedure
that was followed is outlined below for the convenience of the reader:

1. Give or vary the angles r , 0 , A. , \ , and Q of Figure 1.y z y z

2. Compute the quantities (Uj, U2, U3) from equations (21) through
(23).

3. Compute 17 and T)v (Fig. i) from equations (15) and (16).x y

4. Compute the gimbal angles dl and 62 (Fig. 2) which the solar
panels must turn through to face the sun [equations (30) and (33)].

5. Transform the solar panel inertia tensor to vehicle coordinates
(Fig. 2).

6. Given the configuration of the station, build it up, determine its
mass center C , and compute its composite inertia tensor with respect to C .
Perform this in two ways as a check.

7. If the vehicle is in inertia! hold, transform the inertial properties
to the orbiting coordinate system T (Fig. 3).

8. Compute the principal moments of inertia and their directions,
using a standard library routine.

9. Compute the gravity gradient torques acting on the vehicle.

10. Increment 6 (orbiting angle) and A (to account for orbital

regression) and repeat steps 7 and 9 for inertial hold and all but step 7 for
Y-POP, Continue for a complete orbit, and repeat the entire procedure for
various configurations and parameters of interest. (In the Y-POP mode, only
the solar panels' changing contribution to the inertia tensor is recomputed in
step 6.)
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Figure 1. Coordinate systems and parameters.

Figure 2. Solar panel gimbal angles.
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Figure 3. Orbiting coordinates.

VARYING INERTIAL PROPERTIES OF THE SOLAR PANELS

This section describes the gimbaling of the solar panels necessary in
order that they always face the sun. Once these angles are computed, they are
used to transform the solar panel inertia tensor to the vehicle axes.

The two gimbal angles for the panels are shown in Figure 2. The first
angle is a rotation about X of amount 61 . Note that (X , Y , Z ) are

faJr &P oP oP

axes parallel to the vehicle axes (X , Y , Z ), passing through the center of

mass of the panels. This first rotation brings the panel axes (frame SP) into
the primed axes (frame B1 ) shown at the upper right in Figure 2. The second
rotation is about the Y' axis, through the angle 62 > bringing the solar panel
symmetry axes into the (X" , Y" , Z" ) positions (frame B" ), shown at the
lower right of Figure 2.

Since the inertia tensor with respect to reference frame B" is known,
we can thus transform these properties back through B1 to SP and finally to
the V-frame, where all the inertias are being collected.

The condition which must be fulfilled here is that unit vector k" (in the
Z" direction) is always pointing toward the sun; i. e., it is equal to k". which

is defined to be a unit vector in the Z direction. This then gives two addi-
K

tional equations stating that the components of k" in the X and Y direc-

tions be zero at all times. From these equations we will arrive at a solution for
the gimbal angles 6j and 62, as will be shown shortly.



We are thus ultimately seeking a transformation matrix n p ] which

will express the unit vectors of B" in terms of those of the solar reference
frame (X , Y_, Z ), which is labeled R . In steps, we haveR R R

t MB«R ] = [MB"01[MOR1 (1)

in which subscript O refers to the orbital plane frame (Fig. 1), having coord-
inates (X , Y , Z ).

Let us first compute matrix [M ]. Clearly, we have
B" O

and inspection shows that

[MB''B'] =

"cos 62

0

sin 62

1

[ MB'V J = °
0

0

1

0

0

COS 61

-sin 6i

-sin 62~

0

COS 62

0 '

sin 6j

cos 61

and

[Mvo> •

"cos 9

0

sin 9

0

1

0

-sin 9 '

0

cos 9

(2)

(3)

(4)

(5)

in which 9 is the orbiting angle shown in Figure 1, which locates the space
station in the orbital plane with respect to the ascending node.

Substituting equations (3) through (5) into equation (2) yields



MB«0

c. c -s c. sfl02 0 02 Oi 0

V*
S. CQ +C_ C S

62 Q GI 02 0

SK SKOi 02

C6,

-s. c
Oi 02

-c s -s c. c
62 9 02 Oi 6

Sx C
n5i 9

-s_ s +c c_ c
O2 0 Oi Q2 d

(6)

in which C_ means cos 62 , S means sin Q , etc.
02 0

The other matrix factor of equation (1) is [M ]. Rotating in the orbital
OR.

plane about Y through the angle TJ , and then rotating through TJ about the
o y x

rotated position of the axis which began coincident with X brings the Z-orbital

axis into alignment with the solar reference axis Z . Therefore,
R

[MOR' •

C S S S C
TJ T) T) T) TJ

y x 'y 'y 'x

0 C -S
T} 1}x 'x

-S C S C C
TJ TJ TJ TJ TJy y x x 'y

(7)

Substituting equations (6) and (7) into equation (l) yields the desired
result for [ M ] . We need only the third row here which, written in equa-13" R
tion. form, is

k" = (8)

in which the A. are functions of 61, 62, TJ , TJ , and 9 . If k" is to equal

kL , it follows that Aj = A2 - 0 and A3 = 1 . Written out, these three equations

respectively become as follows:



s* CA c + c cR s c + s_ s s -s c. cc c = o , ' (9)
62 & T) 61 62 0 T) 62 0 T) TJ 6j 62 0 v '

•7 •/ y y

S. C S S + C. C. SQ S S - S. C. C - S. S C S
62 ^ ^ l °2 ^ ^ * °2 ^ 2 ^ ^

s CB Cn C S =061 62 e 7j T) (10)

and

S. CS C + C - C . SS C +S. C.S -S. SC C
62 9 T) T) Ol 62 0 T) T) 6i 62 7) 62 0 7) T

+ c. c. cc c = i . (11)

Even though equations (9) through (11) are unwieldy, they can be solved
for 61 and 62 once we know rj and 77 in terms of the parameters r > "0 »

x y y z

A", and X . The value of Q will be incremented over an orbit but will remain
y z

constant through each incremental step, so it will be known whenever equations
(9) through (11) need to be solved. ;

Now consider Figure 4. Letting (U^ U2, U3) be the projections of

onto the axes of the orbital reference frame, it follows that

Ut = sin n cos

U = -si

(12)

(13)

and

U3 = cos T? cos TJ (14)

Inverting these yields

TJx =
-u (15)

, 1



and

TI = tan- (16)

ASCENDING
t NODE

aiin: Jlh- '

ORBITAL
PLANE

Figure 4. Relation between (TJ , TJ ) and (Uj, U2, U3)
•7

""•$ 'joltis seen from equations (15) !and (16) that it remains only to solve
for Uj, U2, and U3 in terms of r , <f> , A , and X to be able to solve

equations (9) through (11). We do this via the transformation

= [MRS][MSEHMEO] (17)

in which S refers to the ecliptic and E to the equatorial plane, as depicted
in Figure 1.

•> The matrices of equation (17) which must be multiplied are



and

tMEo' '

^SE1 '

C O f\
O V/

d) (h

0 0
Z Z

0 0 1

y z

(18)

(19)

(20)

In equation (18), $ is the angle about Z that must be rotated to bring
R

the X-axis into the orbital plane where X_ is defined. This angle is of no con-i t . . .
sequence, however, as we need only the third row of [ ]VL ]. After multiplying,

then, the required components of k_ become

j" 'i ' -wd- i H . i i. jf j i v.'

C - •C' f~*R'll'!i£iiQ<l ,Gt '»IC I fil Q" • /"" I 91 IO. L-x •1|+"Dv, o»,"Oi -( l^ (I OfiC".,.." •-- • V"-1-/• ^AA r 0 A r A i x '-*w#jti} •^5"-.«.-^A *>--•• . •
y z y z y z z y y z -

(X - component)



+ c r S A S * <2 2>
y z y z y z z y y z

(Y - component)

and

~~ = U, = Sr A r xy z y y y

(Z - component)

Thus we may determine: (1) the U. from equations (21) through (23),

(2) TJ and TJ from equations (15) and (16), and (3) 6j and 62 from

equations (9) through (11). This last step goes as follows: Equations (9)
through (11) may be represented by (with S2= sin 62 , etc.):

S V _i_ f~* f V — f\ I O/1 \OrSti T \s 11^ OJ\.0 — U , I tit I
Ci i i f, u ' \ t

Ooi\.o *i~ ^/jV/0-1^4 ~t~ O-jOoX\c =: U , I ^5)

and

in which the K. are constants for any position being examined, listed in

Table 1 for completeness, fii Table 1, A is 9- TJ , which is the lead angle
Jf

of the space station past the sunline' s projection into the orbital plane.

Equation (24) yields

S2 = -

and substituting equation (27) into equation (25) yields

CiC^o + SjCjjKg = 0 ' (28)

10



TABLE 1. CONSTANTS USED IN EQUATIONS (24) THROUGH (29),

i

1

2

3

4

5

6

7

8

9

10

K.
i

CA

SA

-S SAT]X A

VA

-C
"x

-C S
TJ A'x

/™1 /""<

TJ A
X

S

T [used in equation (27)]

S /C [used in equation (28)]
x

so that, if C2+ 0 ,

61 = tan" (29)

which turns out to be, when the constants are evaluated,

61 = tan-i
tanrj

cos A
(30)

11



If cos 62= 0 , it can be seen from equations (24) through (26) that
gimbal angle 61 drops out of the equations. We are then left with the following
resulting trivial cases (after evaluating various possibilities):

7T 7T
= 0, TJ = e--, and 62 = -^ (31)

or

n 37T 7T
= 0- —, and 62 = -5- (32)

(30),

Returning to the nontrivial case, equation (24) yields, with equation

62 = tan 1 (- tan A cos 61) ± TT (33)

There are thus four pairs (61, 62) given by equations (30) and (33),
which satisfy equations (24) and (25). However, only two of these pairs also
satisfy equation (26), the other two answers representing solar panels pointing
away from the sun.

The results of an investigation of the proper quadrants which should be
used to avoid more than 180-deg traverse in either direction are shown in
Table 2.

TABLE 2. GIMBAL ANGLE QUADRANTS

A
Quadrant

1

2

3

4-

For TI between'x
0 and Tr/2

(8j, 62)
Quadrants

(1. 4)

(2, 4)

(2, 1)

(1. 1)

For T? between'x
0 and -7T/2

(61. 62)
Quadrants

(4, 4)

(3 ,4)

(3, 1)

(4, 1)

12



It is now a simple matter to transform the inertial properties from the
B" frame to the SP frame by the standard tensor transformation

SP
(34)

in which a is the direction cosine of the angle between the X " axis andSP pq * p
the X axis. The computer program performs the transformation given in

q
equation (34).

INERTIA TENSOR FOR THE SPACE STATION

/.
The computation of the gravity gradient torque depends upon a knowledge

of the inertial properties of the body referred to its mass center. Therefore,
this section briefly describes how the inertia tensor is computed for the space
station.

The last section described how inertial properties of the solar panel
could be obtained with respect to axes through its center of mass parallel to
the vehicle axes. This can be done even more easily for those modules whose
inertial properties are known with respect to axes parallel to those of the
vehicle; these are the modules attached to ports numbered 1 or 4 in Figure 5.

DOCK
PORT 2

DOCK
PORT 1

DOCK
PORT 4

Figure 5. Dock port labeling convention.

13



For the modules attached to docking ports 2 or 3, one lateral axis is
considered pointed parallel to X . Then, Mohr1 s circle is utilized to trans-

form the inertial properties, known with respect to the other two axes, to axes
through the mass center of the module parallel to Y and Z . This is done

within the computer program; no transformations need be performed externally.

At this stage, we then have the inertial properties of panels and all
modules with respect to their individual centers of mass. One by one, these
are then transferred to the origin of the vehicle coordinate frame V by
standard transfer theorems, such as

• <35>c c

*XZ = ^ z -mac, etc. , (36)
c c

i

in which (X, Y, Z) are axes parallel to the mass center axes (X , Y , Z );
C C .C

m is the body* s mass; d is the distance between X and X , and a and c
1 C

are the X and Z coordinates of the origin of (X, Y, Z) with respect to
C C

(X , Y , Z ). In this application, (X, Y, Z) = (X , Y , Z ).

At the same time that the inertias are being transferred, sums are being
kept of the systems' mass and of the mass moments with respect to (X , Y , Z ).

When all modules have been covered in this way, the mass center of the
station is then determined simply by dividing the mass moments by the total mass.
Then a transfer of the composite inertial properties from the V origin to the
mass center of the station yields the inertias needed for the gravity gradient
computations.

Before we proceed to these computations, however, the inertia tensor
is checked by going back and transferring each panel and module' s inertial
properties directly to the now-known mass center. This will furnish a check
not only on the inertia tensor but also on the mass center position calculations.
This follows from the fact that if the mass center is incorrectly computed, the
original inertia transfer from the V origin to this erroneous mass center will
be incorrect because the formula used therein requires correct mass center
coordinates.

14



If the station is orbiting in the Y-POP mode, the solar panel inertial
properties are transformed and transferred in the manner just described at;^
each station of the orbit. However, the modules' inertial properties are com-
puted only once since they are fixed with respect to the vehicle.

When an inertial hold mode is called for, the inertial properties of the
entire station are then frozen with respect to the vehicle axes. However, these
combined properties must be transformed to the T-frame, or orbiting frame,
of Figure 3, because it is with respect to T that gravity gradient torque com-
putations become rather simple, as described in a later section. Hence, the
computer is taught to perform this inertia transformation, which depends upon
the orbiting angle 0 .

PRINCIPAL MOMENTS OF INERTIA AND CORRESPONDING
PRINCIPAL DIRECTIONS

' This part of the procedure is concerned with determining principal
moments of inertia which, along with their corresponding principal directions,
are required for determining gravity gradient torques.

; Beginning with an inertia tensor now computed with respect to axes
through the space station's mass center, the computer program then calls on
the UNIVAC 1108 MATH-PACK subroutine JACMX [ 3]. This subroutine com-
putes the eigenvalues of the matrix of inertial properties; further, the corre-
sponding eigenvectors are precisely the direction cosines (between the orbiting
coordinates of Figure 3 and the principal axes) required in the gravity gradient
torque computations to follow. It is noted that in the inertial hold mode, the
inertia tensor must be transformed, to be in accordance with this procedure,
to the orbiting coordinates; however, the Y-POP models tensor is already
computed with respect to the orbiting T reference frame.

The method used by JACMX is a modified Jacobian method in which the
matrix is diagonalized. This is accomplished by using elementary orthogonal
transformations to annihilate successive off-diagonal elements. ^The matrix
of eigenvectors is the product of all the transformation matrices.

GRAVITY GRADIENT TORQUE

It is well known that the gravity gradient torque acting on a rigid body
is solely a function of its mass distribution, once its position in space is known.
One commonly used form for this torque [ 4] is '

15



M = 3c^[(7.~I) (k-7) (I3 - Ii) + (7-7) (k- 7) (I3 - I2)~|7
L

r
 J (37)
[(T.I) (T.7) (I, - ii) + (7.7) (k. 15 (i3 - i2)l 7 ,

in which, in the nomenclature of the present work,

to = orbital speed of the space station for a circular orbit,
which is 27T over the orbital period r ;

( i, j, k) = unit vectors in the T-frame of Figure 3, which are the
same as those of frame V for the Y-POP mode;

(T, 7, !§ = unit vectors in the principal directions;

(Ij, I2, I3) = principal moments^ofjnertia with respect to the mass
center, about (I, J, K), respectively;

M = gravity gradient torque vector with respect to the
body' s mass center.

Nothing more need be said here except that the computer is programed
to automatically compute the eight required dot products in equation (37) as
soon as the eigenvalues (principal moments of inertia) and eigenvectors
(principal directions) are found via the library program described in the pre-
ceding section.

After performing the arithmetic required in equation (37), the computer
program yields the two gravity gradient torque components and their resultant.

Following the printing of these results, the program then increments
9 and repeats the procedure until an orbit of Y-POP or inertial hold has been
completed. The results obtained for several examples will now be presented
and discussed.

RESULTS, CONCLUSIONS,AND RECOMMENDATIONS

The first computer run made was for a space station consisting only of
a power module and solar panels. The angles were set simply to 0 = X = rz z y
= A = 0 , thereby placing everything in the same plane for convenient checking.

J

16



The program was then debugged successfully by checking the masses, inertial
properties, and gimbal angles over Y-POP and inertial hold orbits. Then the
parameters were changed to <j> = 23. 5 deg , \ = 35 deg , T = 90 deg , andz z - y
A = 0 , and the results for the same station indicated a rise in gravity torque

J

magnitude from zero at 0 = 0 to as much as 0.19 N-m in Y-POP and 0. 28 N-m
in inertial hold. The Y-POP change is caused solely by solar panel gimbaling,
showing its importance for symmetric stations.

The space stations sketched in Figure 6 were then run for two reasons:
(1) to further insure that the procedure and the entire program work correctly,
and (2) to investigate such effects as solar panel gimbaling and asymmetry of
the configuration in station buildups of practical importance.

The magnitudes of the gravity gradient torque on No. 12 for Y-POP and
inertial hold modes are shown in Figure 7, along with the orbital parameters
used and other data of interest, ft is immediately observed again from the
Y-POP curve that solar panel gimbaling has a definite effect on the torque.
This follows from the observation that the station in the Y-POP mode would feel
the gravity torque value at 9 = 0 throughout the orbit if the panels were not
allowed to gimbal. However, with gimbaling, there is a spread in gravity torque
magnitude of about 10 percent over the entire orbit of station No. 12. It is
observed that the gimbaling has an even greater effect on station No. 18
(Fig. 8), the spread in torque being about ±15 percent over its orbit. Note
from Figure 9 that the largest changes in Y-POP torque correspond closely to
the largest changes in the gimbal angles, as expected. Hence, we conclude that
solar panel gimbaling is a significant factor to be considered in sizing control
moment gyros to meet momentum requirements.

Figures 7 and 8 also indicate interesting results for the inertial hold
modes for these two stations. (Note that both curves indicate the periodicity
with respect to n that was expected. The torque should indeed be periodic,
with twice orbital frequency.) A very important result that can be seen in
these figures is that there is about a threefold increase in the bias, or noncyclic,
portion of the torque when going from station No. 12 to station No. 18. A run
made for an even more unsymmetrical station (No. 47, not shown) showed an
even higher bias torque than No. 18, having peak-to-peak magnitudes of 0.15
to 11. 52 N-m. A run was also made in which stations Nos. 12 and 18 were
locked into inertial hold modes at another orbital angle, with similar results.
Thus, a reasonable conclusion seems to be that each proposed asymmetric sta-
tion configuration should be separately examined and that "average geometry"
cases should be avoided.

17
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Figure 8. Gravity gradient torques on No. 18.

Some recommendations for extensions of this work are now tabulated.
In future work, we wish to include:

1. The capability to trim the axes

2. The computation of angular momentum requirements

3. The ability to feather the solar panels so as to minimize angular
momentum buildup during loss of sunlight
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4. The forming of the GSS station by adding a second power module
and solar panels

5. The capability to directly feed in_the beta angle (TJ ) instead of the
A.

parameters used by the writer; also to feed in_a precalculated inertia tensor
or to feed out the internally computed inertia! properties and/or gimbal angles
for other uses

6. The writing of the differential equations of rigid body motion of the
station (possibly including aerodynamic torques) and their examination for
stability.

Most importantly, we wish to be able to rotate the station through any
angle at any point in its' orbit and have it remain fixed in that position for a
given time, during which torque and momentum would be computed.
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