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ABSTRACT

The effects of stress ratio, prestress cycling and plate thickness on

the fatigue crack propagation rate are studied on 2024-T351 aluminum alloy.

Fatigue--crack propagation rate increases with the plate thickness and .

the stress ratio. - Prestress cycling below the: static yield strength

has no noticeable effect on the fatigue crack propagation rate. How-

ever, prestress cycling above the static yield strength causes the

material to strain harden and increases the fatigue crack propagation rate.

Crack tip deformation is used to.:study the'fatigue crack propagation. .

The crack tip strains and the crack opening displacements were measured from

moire fringe patterns. The moire fringe patterns were obtained by a double

exposure technique, using a very high density master grille (13,400 lines

per inch).

-1/2
The cyclic strain range, Ae, was found to be proportional to r

At intermediate AK values,i.e. region II, the measured Ae values are very

close to those obtained by theoretical elastic calculations. At the high

AK values, region III, due to the crack tip necking, the measured Ae is

larger than that obtained by elastic calculation: the higher the AK value,

the larger the difference between the measured and the calculated values.

2
Plastic zone size, r , was found to be proportional to AK in region

4 ' 2
II and proportional to AK in region HI. If da/dN is proportional to AK

4
in region II and proportional to AK in region III, then da/dN is proportional

to r , i.e. da/dN = r /N ,. where N , a constant, is the number of cycles to

propagate a crack through r .



The measured crack opening displacement range, A6, was found to be

1/2
proportional to r . In the range of measurements, A6 is proportional to

2
AK in region II, and proportional to AK in region III. The data of A<5

were compared with those predicted by the Dugdale model and the elastic

calculations. The differences in A6, obtained by these two calculations,

are small in the range of the measurements. However, the data seem to agree

better with the .elastic calculations because there was no tendency for the

plot of A6 versus T to level off as r approaches the crack tip, as predicted

by the Dugdale model.
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I. INTRODUCTION

A. Fatigue Crack Propagation

Fatigue crack propagation has been studied quite extensively both

from the crack length measurements on specimen surfaces and from stiriation

spacings on fracture surfaces. The first fatigue crack propagation law

which drew wide attention was the one derived by Head in 1953 . After

(2)
substantial calculations and deductions, the law was given as

da ...

where C is a constant,which depends on the strain-hardening modulus,

Young's modulus, the yield stress a and fracture stress of a material;

Aa is the applied stress range; a is the half crack length and r is the

plastic zone size ahead of the crack tip,which was assumed to be constant

during crack propagation. However,in 1958, Frost and Dugdale noticed

that the plastic zone size increases with crack length.

Based on dimensional analysis, both Frost and Dugdale and Liu

concluded that crack propagation rate should be directly proportional to

the crack length,if crack length was the only pertinent length .parameter.

Their'equation"was given as

f - f(to). ' (2)
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' (3) ' 3
Frost and Dugdale observed empirically that f(Aa).= C_(Aa) , therefore

their equation becomes

f

On the other hand, Liu used the concept of total hysteresis energy

absorption to failure and emphasized the damage caused by cumulative

(6) 2
cyclic strain at a crack tip . He found that f(Aa) = C (Aa)

which led ->to

The quantity (Aa) a is the square of the stress intensity factor range,

2
AK , for a centrally cracked infinite plate.

Paris noted that the stress intensity factor at a crack -tip should

be the factor controlling the rate of crack extension. Crack tip stress

and strain will be reviewed later in this section. Later on, Paris, Gomez
/ o \

and Anderson proposed that crack propagation rate should be determined

by the maximum stress intensity f actor ,K . Subsequently ,Paris and

(2)Erdogan used the stress intensity factor range, rather than maximum stress

intensity factor, to correlate data on fatigue crack propagation rate.
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Since then, the concept of crack tip stress intensity factor has been

used to analyze the experimental data and a large amount of data have

been collected on the correlation between fatigue crack propagation rate

and stress intensity factor range. Based on experimental data, Paris

(2)and Erdogan proposed that fatigue crack propagation rate should be- pro-

portional to the fourth power of AK. Their equation was therefore given

as

< 5>
Ever since, the fourth power relation has been observed by a-number

of investigators. However, other values of the exponents, from 2 to 7

have "also been observed.

(o )
McClintock used Manson-Coffin's low cycle fatigue equation and

derived the fourth power relation by a model including a material struc-

tural size p. His equation is

O O

2
By replacing r = ( I/ 2ir ) ( AK/o ) and e = a /E one obtains

V
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where e is the true fracture strain for monotonic fracture; EV is the
r I

yield strain and" E is Young's modulus.

Rice ' also derived the fourth power relation from a rigid

plastic strip model ,vhich assumed that plastic deformation is limited to

a strip of material ahead of a crack tip. His equation is

o
5ir(l-v )ev

avda _ x Y

where v is the Poisson's ratio and U* is the postulated:'.critical energy to

create a new surface. A realistic physical explanation of Rice's rigid

plastic strip model was the model of localized necking at a crack tip as

suggested by Liu

(12)
Krafft assumed that fatigue crack propagation rate has a fourth

power dependence on AK. On the "basis of an empirical correlation between

the plane strain fracture toughness and the plastic flow property of a

material, he proposed an equation for fatigue crack propagation rate

da _ l6xlO~f(y) 4 _ 4 —o. . „
•777 — oo K- — ^/-"- • \oa;dN vr,3v2 roax o maxn

4 2
where f ( y ) = (l+y) [l-(l-y) ] , Y = l-(K

min/K
max)

n = strain hardening exponent. Later on the equation was modified

V"

da r-i^8 HT 2, max\4 , / Q, \- = [10 f]Y (I—) ^ (8b)
J.O
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o
where d_ = (K /En) /2ir, which is the process zone size.

Frost and Dixon assumed that crack propagation rate is equal to

the increase in crack length of the ellipse perimeter between the loading

and the unloading conditions. They gave the equation as

da _ (Ac) a , UE
dN ~ 2 Un Aa ~ 1

Bibly, Cottrell and Swinden used a continuous dislocation model

to calculate the crack tip plastic displacement, 6 . In their model, flow

occurs only in a narrow strip ahead of a crack tip. The crack tip opening

displacement was given as

o a .
6 = — i- In(-) (10)
o Try a

where..y is the shear modulus and £ is the sum of the crack length and

the length of the plastic zone. This dislocation model is equivalent to

the Dugdale's strip necking model. The equations for crack opening dis-

(17)
placement, 5 were given by Gocdier and Field , using the Dugdale's .strip

necking model:
2a A sin: (9 -6)

6 = 2V(x,a) = —=- [cos 6 log ̂ —~ +

2
(sin 92+sin 6)

dos 92 log 2] (lla)
(sin 92~sin 6)
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where cos 6p = a/fc

cos 9 = X./H for | x | < £ , - i r < e < i r

and by Rice as

(<+l)avr
. 2VU,o> . _JL

the crack tip opening displacement, 6 is given as

p

p

where 0 < x < r and r = (ir/8)(K /CT ) (lib)
P P I Y

r
6 = 2V(0,0) = - - i-E- = (zr1-) K^ for plane stress (lie)
o Try &a

/-, o\
Weertman applied the Bibly, Cottrell and Swinden's crack tip

plastic displacement to the problem of fatigue crack propagation. He

adopted a fracture criterion vhich stated that a crack will grow when-

ever the sum of all the cyclic plastic displacements at°the crack tip

exceed the critical value 6*, and a..growing crack:'will stop at a point

where the total plastic displacement at the crack tip is less than 6*.

The equation was given as

da _ O.MAo fa)
dN ~ / X»N 2(o ^S*)ya
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(19)McEvily and Johnston also proposed the following empirical

equation,which is similar to Equation (12)

* ^ 2£m)au

where a is the 0.2 percent offset yield strength, a is the ultimate

tensile strength and e is the engineering strain at maximum load.

Lardner also applied the theory of Bibly, Cottrell and'Swinden's

to derive a .fatigue .crack propagation Taw. He •assumed that a. crack".can

propagate during,the unloading and the equation was given as

' ' (21)
'McClintbck . suggested that if the fatigue crack propagation rate

is related to the crack opening displacement by a proportionality constant

CL, one can write

dN T Ea

(22)Tomkins assumed that during the tensile half of the cycle,

plastic flow occurred in two narrow shear bands of length .D,radiating

at .- 1*5° from the crack plane at the crack tip. Because of the shear
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strain concentrated in these two narrow bands, the Dugdale model of plastic

cohesive .forces can be applied to the fatigue problem. He further assumed

that the rate of fatigue crack propagation is equal to the crack tip

opening displacement, i.e.

f = 6 = DAe (I6a)
dN o p

where Ae is the applied plastic strain range, which is related to the

cyclic stress by a power relationship. Using the plastic zone size

(23)
equation for D , Tomkins derived a fatigue crack propagation equation

for low stress region,

f = C8(Aa)\ a (I6b)

where a is the applied mean stress.

Analyzing the effect of stress ratio, R, to the fatigue crack pro-

( 2 U )pagation rate, Broek and Schijve proposed an exponential equation

for the.case .of a centrally cracked aluminum plate. Their equation has

the form of

(-C10R)

where K1 = a /atl+Uo^)2]1 , and W is the width of the specimen.max max W ^
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Equation (iTa) can also be written in terms of the stress intensity

factor range as

(-CIOR)

(25)
Forman, Kearney and Engle , considering the instability of the

crack growth when the stress intensity factor approaches the fracture

toughness, K , proposed an equation for fatigue crack propagation rate as

a Cin(AK)
n

da _ 11 /, o\
dN ~ (l-R)K -AK U0; '

c

/ i~,f \
Hudson and Scardina also studied the effect of stress ratio on

fatigue crack propagation in 70T5-T6 aluminum alloy sheet. They found

that all the data from tests at negative R values fell into a relatively

narrow scatter band with the data from the R = 0 tests, which indicates

that the compression portion of the loading cycle did not significantly

affect the crack propagation rate. On the other hand, for a positive R,

they found the higher the stress ratio at a given value of AK, the higher

the fatigue-crack-propagation rate. This spread in rates was small at

the lower AK value, but became progressively larger as the AK value was

(25)increased. They also concluded that the equation of Forman et al.

gave the best fit to their data.

Both striation spacings and specimen surface crack propagation

(27)
rates have been studied on the same specimens by Pelloux , Hertzberg
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(28)- (20.) (??}
and Paris ... and Kershaw and Liu^ . Pelloux^ '' and Kershaw and Liu

found that the fatigue crack propagation rates observed on the specimen

surface was faster than the fatigue crack propagation rates measured

from the striation spacings. Pelloux has attributed this difference to

the extensive cracking of brittle second phase particles ahead of the

main crack. The effect of these brittle second phase particles has

(9 20)been analyzed by McClintock * . On the other hand, Hertzberg and
/ r)Q \

Paris have not found a significant difference between propagation

rates based upon striation spacing and those based upon surface measure

ments.

Applying notch fracture analysis to a sharp crack and considering

that cyclic process of a fatigue crack as a continuing re-initiation of

fracture, Weiss derived a crack propagation equation for strain con

trolled fatigue as

- (19)
FF

where e is nominal net section strain; e is equal to a /E-. a is
Jjl r r r r r r

equal 'to'-or at 'least related -to the endurance limit'. n"i'S,.Neuber' s :.

'e'qui'vaieh-'ti'̂ pa'riicle 'size' .for̂ sh'a'rp''notches -and rr:isostr.ain hardening';

exponeritv ? ' ':-' '; - "' • • '•'"••• -;- ' ' . . . ' . :..•• •:';:• :'.:. :" . .•:•... .-'. ' . ' ' . ,

This equatiQh was /obtained,'.-based--!on'i-.-f5he.';as'sump.tdi.6n''-that "da/M

was'equal "to the distance'''beybnd the crack "tip, b'verr.which the .stress.

exceeded a .
r r
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Typical fatigue crack propagation data which correlate da/cLN with

AK can be divided into three regions as shown by Liu and lino . . In

region I ,the low AK region, the slope of the curve is around k and the

crack propagation rate is usually less than a 'few '.micro—inches per cycle.

In region III, the high AK region, the slope of the curve is greater

than U. The fracture mode in this region has been changed from normal

flat mode to shear mode. Therefore .the';fatigue--crackoprop.agatipn'-,rate is

strongly affected by specimen thickness and necking process. Region III

is a region close to the final failure of the specimen. As a consequence,

it is less important than other regions.

In region :iis the intermediate AK region, the slope of the curve is

close to 2. Crack propagation in this region is under the normal fracture

mode and is not complicated by a shear or necking process. Most of the in-

vestigation in this report concerns this region. Only part of the in-

vestigations are extended to region III or region I.

B. Stresses and Strains Near a Crack Tip

In the paper of "Analysis of Stresses and Strains Near the End of
..

a Crack Traversing a Plate," Irwin""" derived a group of equations which

(33)were identical to those of Williams .except that he emphasized only

the''.'firs't:.'t'erfn of an infinite' series:! 'The' 'equations were :giveri as •:
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. 9 ,_ . e , .
°y = 2i' COS 2" (l+sin 2 sin

,EjKl/2 . 9 ,. . 6 . 3
°x = 2̂7?r' Cos 2" (1-sin 2" sin

6 . 6 39
Txy = C°S 2 Sin 2 COS 2~

for plane stress, (20b)

where r is the distance from crack tip, 9 is the angle from x axis, 6 is

the crack opening displacement . and -^ is the strain energy release rate.

The coordinates of the crack '.tip are shown in Figure! (la). Equation (20a)

shows that the ̂ stresses:. .ah'ead:.'6f ..af.cr.ack -tip.iare inversely -proportional

to the'' square .root of the distance from ; the crack tip, while the crack.

opening displacement is proportional, to the square root of r.- ••

1/2
By defining (E ̂  ) = K as the stress intensity factor, Equation

(20) becomes

K 9 f . Q 3B,
cos — (l+;sin -% sin -5-)

d *

K 9 ,. . 6 39v
= Cos 2 (l-sin 2 sin 2~) (21a)

K _ 9.9 36cos sin °OB ~
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Thus the stress distribution at the vicinity of a crack tip are completely

described by the nev term Kj the .stress .intensity;.'? -actor.... The. stress in-

tensity factor, which describes the stress fields near the crack tip, is

a function of applied stress, crack length and overall' specimen- geometry.

The: 'general formula for the stress intensity factor range can be written

as

AK = Aa'(Tra)1/2 f(a) (22-J

*
where Aa is the applied stress range, a is the half crack length and

f(ct) is the dimensionless functio'n of geometry, which is a stress field

(3'U)correction factor for the finite geometry. In the literature , one

easily find various formulas for K for various specimen geometry

and loading conditions.

A number of analytical solutions to the problems of crack tip

plasticity have been giveni.'in'i-the. -past ''years.. Some of these results

will be compared and discussed with the moire strain measurements in

acsubsequent section of this investigation.

Hult and McClintock introduced the mode III plasticity analysis.
\

They calculated the strain distributions around; a crack -tip.---.-for

the anti~plane shear loading. For non-strain hardening materials, they

found that plastic strain was inversely proportional to the distance, r,

from a crack tip. The relation was given as
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R

where TY is the yield stress in shear, u is the shear modulus of

elasticity and R is the size of plastic zone.

Equation (23) showed that strain singularity within plastic region

was inversely proportional to the distance from crack tip. Through-

out the whole plastic region ,T was taken to be equal to the shear

yeild stress.

The material of the above analysis is perfectly plastic. The

strain distribution ahead of a crack tip was proportional to r

-1/2instead of r which was derived from the linear elastic model.

Most of the metallic materials behaved neither perfectly plastic nor

perfectly elastic. They exhibit a certain degree of strain hardening.

If the stress-strain relationship in the plastic region follows the

well known power law as

a = Ci2 e
n (210

and.'.applying Neuber's notch stress'analysis to."analyze the plastic flow,

Weiss obtained stress and strain distributions in front of a

sharp notch

- 3

N

(25)
>-n/n+1

where x is the distance from notch root, a and e are the stress and strain
»y «/

at x respectively, and a and e^ are the net section stress and ne:t..- section

strain respectively.
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(37)Hutchinson studied the tensile crack in a hardening material under

both plane strain and plane stress conditions. He found that the mag-

nitude of the tensile stress ahead of the crack in plane strain is

larger than the magnitude of that in plane--stress. Using a stress-

strain relation as e = a + C-,. a , suggested by Ramberg and Osgood

to describe the plastic flow around a crack tip, Hutchinson also ob-

tained two equations for stress and strain similar to those of Weiss.
( oB1)

Almost at the same time, Rice and Rosengren investigated the

plane strain deformation near a crack tip in a power law hardening

material. They also found the same crack tip strain singularity as

that of Weiss and Hutchinson. The product of stress and strain ex-

hibits a singularity of 1/r for all materials.

'(39) (1*0)Swedlow and Swedlow, Williams and Yang used the finite

element method to analyze the stress-strain distributions around a" .

crack tip in a plate under plane stress condition. They observed

that, in the early stage of loading, both stress and strain are pro-

-1/2•portional to the same singularity of r as predicted by the linear

elastic analysis. However, the stress and strain singularities

-1/2changed their character and deviated from the value of r as loading

progressed. At a later stage of loading, the strain singularity

gradually levels off toward some stable value of r as predicted
/ T/T \ / oy \ I oO \

by Weiss , Hutchinson and Rice and Rosengren while the stress

singularity becomes less severe and levels off toward some stable value

which is slighlty above the value of r~
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"'""'• On" examining" the stress- and'̂ strain-:1 singular!ty results'- ' " ' ' • '

presented above, one finds that within a plastic zone, strain is a more

meaningful and easily measurable quantity; and the strain singularity

at a crack tip depends strongly on the stress-strain relation. An

-1/2
elastic model gives the strain singularity of r , a perfectly

plastic model gives the strain singularity of r , while a strain harden-

ing model gives the strain singularity of r .To verify these

analytical models, strain measurements ahead of but close to a crack tip

are needed. Moire strain measurements with very high density grille

seem capable to provide such information.

In..this investigation, the effects of stress ratio, plate thickness

and prestress on the fatigue crack propagation rate in 202̂ -T351 alumi-

num alloys were studied. Here the effect of stress ratio on the fatigue

crack propagation rate,as well as the low cycle fatigue data and the

cyclic stress-strain curve for 7075-T6 aluminum alloy are also reported.

The data on 7075-T6 aluminum alloy were .analyzedl.in'.terms -of'.the--cyclic

fracture ductility. On the other hand, based on the results of pre-

stress effect on the fatigue crack propagation rate for 202U-T351

aluminum alloy, a simple equation for fatigue crack propagation rate

expressed in terms of plastic zone size., is 'formulated. The validity

of this equation was substantiated by the plastic zone size obtained

from the moire strain measurements at the tip of a fatigue crack.

Moire strain measurements were made on the plates of 202̂ -T351

aluminum alloy. Moire fringes were obtained by double exposure
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technique. Strain distribution ahead of a crack tip as veil as crack

opening displacements behind a crack tip vere measured from these

fringe patterns. Plastic zone size, r , and crack opening displace-

ments, 6, were determined for each stress intensity factor K. The

data of r and 6 were correlated with fatigue crack propagation rate.
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II. FATIGUE CRACK PROPAGATION

Fatigue crack propagation has been studied on 202ii-T351 and 70T5-T6

aluminum alloys. Centrally cracked plate specimens either ^ inches or 6

inches wide were tested. A jeweler's saw cut of 0.25 to 0.50 inches long

served as a crack starter. The specimen geometry is shown in Figure (ib).

For 202̂ -T351 aluminum alloy, the effects of stress ratio, plate thickness

and prestress-cycling on fatigue crack propagation rate were investigated.

The results will be compared and correlated with the crack tip plastic zone

size, r , which was measured from the moire fringe patterns. For 70T5-T6

aluminum alloy, the effect of stress ratio on the rate of fatigue crack propa-

gation, as well as the low cycle fatigue data and cyclic stress-strain curve

are reported. The data will be analyzed in terms of the cyclic fracture
3

ductility.

(31)It has been shown that fatigue crack propagation rate data can be

correlated by thr.ee line segments. In the low AK region, i.e. region I,

the slope of the line is approximately k to 5 ; in the intermediate AK region,

i.e. region II, the slope is close to 2; and in the high AK region, i.e.

region III, the slope is equal to or larger than U. Figure (2a) shows the

plot of da/ON versus AK for 7075-To aluminum alloy in region"! and region '

II. The data were collected from five specimens. The applied stress ranges

and specimen dimensions are indicated in the figure. All the specimens were

tested under an applied stress ration, R = 1/10. The slopes are 5 and 2.1 in :

region I and region II, respectively. The transition from region I to region

II takes place at AK = 6ksi /Ln~, where da/dN is equal to k micro-inches per cycle.

A. The Effect of Stress Ratio on Fatigue Crack Propagation

A study of stress ratio effect on fatigue crack propagation was con-

ducted on both 202H-T351 and 7075-T6 aluminum alloys. Two stress ratios,
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R = 1/10 and 1/3, were tested on 202*1-1351 aluminum alloy; and three stress

ratios, 1/10, 1/3 and 1/2, were tested on TOT5-T6 aluminum alloy. Two speci-

men thicknesses, 0.050 inches and 0.25 inches of 202U-T351 aluminum alloy

were used,while only one specimen thickness, 0.125 inches, was used for
*̂

TOT5-T6 aluminum alloy. In Figures (2b), (2c) and (2d), fatigue crack

propagation rate, da/dN versus stress intensity factor range, AK, were plotted.

The applied stress ratios and applied stress ranges were all indicated in the

figures. Figures (2"b) and (2c) are the plots of 202U-T351 aluminum alloy

for 0.050 inches thick and 0.25 inches thick specimens respectively. Figure

(2d) is the plot of 70T5-T6 aluminum alloy. The data shown in the figure

fall in region II and region III. They indicate the following:

(a) The slopes of the lines, which correlated da/dN with AK, increase

with stress ratios. In region II, the values of the slopes are 2.0 and 2.7

for R = 1/10 and 1/3 respectively for both 202U-T351 and 7075-T6 aluminum

alloys; and 3.^ for R = 1/2 for 7075-T6 aluminum alloy. In region III, the

slopes of the 202U-T351 aluminum alloy data are ^ and 5.^ for R = 1/10 and.

1/3 respectively; they are twice the values of the slopes in region II.

• (b) The higher the stress ratio at a given value of AK, the higher

the rate.of fatigue crack propagation. This spread in rates is smaller at

lower AK values but it becomes progressively larger as the AK value in-

creases. For instance, at AK = 7-3 ksi /in in Figure (2c), daAdN is 5.^

micro-inches per cycle for all three values of R. However, at AK = 15 ksi \/~in,

the da/dN values are 25, ^0 and 72 micro-inches per cycle for R = 1/10, 1/3

and 1/2, repectively. This phenomenon was also observed by Hudson and
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Scardina . The increase in da/dN as R increases is caused by the increase

in K .At the same value of AK, K at R = 1/3 is 1.35 times the value
max max

at R = 1/10, and K at R = 1/2 is 1.8 times the value at R = 1/10.
max

(c) All the lines for region II converge at AK - 7-3 ksi /in". Therefore,

one can write an empirical equation that correlates the data as

£§. - P r AK

dN ~ C16 (7

where n are the values of slopes, which depend on the stress ratio R, i.e.

2.0, 2.7 and 3.U for R = 1/10, 1/3 and 1/2 respectively. C g is the value

of da/dN at AK = 7.3 ksi /in". The values of C ? are 2.8 and b.6 micro-

inches per cycle for 0.050 inches and 0.25 inches thick 202̂ -T351 aluminum

alloy, respectively; and 5.^ micro-inches per cycle for the 0.125" thick

7075-T6 aluminum alloy.

(d) Comparing the data of 202H-T351 aluminum alloy of Figures (2b)

and (2c) for the same stress ratio, one found that the thicker the specimen

is ,the faster a crack will propagate. This was also observed by Broek and

Schijve and Barsom . At the same AK value and the same Revalue, the - -

da/dN value of the thicker 202*l-T351 aluminum specimen is 1.61* times that' of

the thinner specimen. The value of 1.6U is the ratio of the C.. , values for

thick and thin specimens in the Equation (26). This is explained "by the fact

that the stresses and strains near a crack tip in the thick specimen are

closer to the plane strain condition than in the thin one. As pointed out by

(37)Hutchinson , the magnitude of the tensile stress at a crack tip is higher

in the plane strain case than in the plane stress case. This high tensile
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stress in a thick specimen enhances crack propagation.

• - t
(e) The transition point from region TI to region III takes place at

AK = 21 ksi /in" for 202l*-T351 aluminum alloy. The thickness does not seem

to have any significant effect on the transition point. Clark and Wessel

found that the transition point for their WOL specimen of 5̂ 56-H321 aluminum

alloy was AK = 25 ksi

B. Effect of Prestress-Cycling on Fatigue Crack Propagation

the effects of prestress-cycling on fatigue crack propagation have been

studied on 202l|-T351 aluminum alloy. Each specimen was cyclically prestressed,

at certain stress range for a given number of cycles. After the prestress

cycling, a slot was introduced into the specimen and the effect on subsequent

fatigue crack propagation rate was investigated. The specimen geometry is shown
\ • -

in Figure (3a). Due to the load limit of our fatigue machine (20,000 Its), a re-

duced test ̂section was necessary in order to apply a meaningful prestress range,

Aa . Two thicknesses, 0.10 inches and 0.08 inches, were tested. Four pre-

stress ranges were used in this investigation. They were 22,000±l8,000 psi,

27,500±22,500 psi, 33,000±2T,000 p'si and 35,750129,250. The corresponding

fatigue lives at these four prestress ranges were found to be 220,000, U6,000,

12,000 and 5,500 cycles respectively. The first two prestress ranges were

below the static yield strength of the materials, while the last two exceeded

it. The maximum stress levels and the stress ranges have to be reset frequently,

during the process of setting-up the prestress levels, in order to reach the

desired levels. This was especially true f<6'r the prestress tests above the static

yield strength. After the initial setting, the prestress levels were checked and

adjusted if necessary. The number of prestress cycles at the prestress level were

also shown for each test in the figure. At the two lower prestress levels,

both below the static yield strength of the material, very slight plastic
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deformation occurred and the material was not hardened,, On the other hand,

at the two high pres.tress levels, the static yield strength was exceeded,

plastic defoliations were accumulated and the-material was cyclically strain

hardened. Figure (3b) shows the recording of the ••load^str-airr1 curve for

prestress at 35,750 ± 29,250 psi. The specimen started to yield and strain,

hardened at the first cycle, when the stress reached the static yield strength.

After the first cycle, the specimen showed no noticeable cyclic deformation up

to ten cycles, The specimen was then put into the fatigue machine, and pre-

stressed up to 3,300 cycles. After prestress-eyeling, a central slot of 2a -

0.20 inches was machined into each specimen, and all the specimens were set

at the applied stress range of 11,000 ± 9,000 psi. The stress ratios of the

prestress cycling and for the fatigue crack propagation tests were all kept

at 1/2.0; Specimens 1, 2 and 3 were 0.100 inches thick and specimens ^, 5* 6

and 7 were 0.080 inches thick.

Fatigue crack propagation in these specimens were measured. Since the

specimen thickness affects fatigue crack propagation, the data of these two

groups of specimens were plotted in separate figures. In Figures (ka) and

(Vb), the half crack length, a, was plotted versus the difference of the

number of cycles of load and the number of cycles of load at a - 0=23 inches, N. .

In this way, the change of crack, propagation rates caused by cyclic pre-r-

stressing can be easily observed.

In Figure (Ua) specimen No. 1 was1 not prestressed,, It served as a

reference to detect the effect of prestress on fatigue crack propagation

rate. Specimens No. 2 and 3 are-both prestressed at 22,000 ± 18,000 psi
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at 160,000 and 200,000 cycles respectively. This prestress is below the

static yield strength. The data of specimens No. 1 and 3 coicide with »

each other,while the crack in specimen No. 2 propagated more slowly than

in specimen No. 1. The irregularity could be caused by the scatter of

the material property. The average fatigue crack propagation rate of

specimen No. 2 was 10 percent lower than that of specimen No. 1. The

deviation is well within the scatter band of fatigue crack propagation

data. The effect of a low prestress level, if any, must be small.

Figure (4o) shows the data of da/dN versus AK of these three specimens.

All the data points fall pretty well within a band.

Figure (Ub) shows the data of specimens ky 5» 6 and 7. Specimen h

was not prestressed. Specimen 5, 6 and 7 were prestressed at 27,500 -

22,500 psi, 33,000 - 27,000 psi and 35,750 - 29,250 psi, respectively.

The number of prestress cycles are listed in the figure. The data indicate

that the prestress at 27,500 - 22,500 psi has a negligible effect on

fatigue crack propagation rate. The prestress at 33,000 - 27,000 psi in-,

creases the average fatigue crack propagation rate by one third while

prestress at 35,750 - 29,250 psi increases the-average*fatigue crack pro-

pagation rate by one,half. In Figure (^d) the data of da/dN versus AK

were plotted. In region II the data of specimen U and 5 shows a slope

of 2, but that of specimen 6 has a slope of 2.6. Specimen 7 shows a

much steeper ;slope. The data clearly show that the two lower prestress

levels, which are below the static yield strength have negligible effects

on the fatigue crack propagation rate. However, prestress above static
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yield strength increases fatigue crack propagation rate considerably.

These observations lead one to conclude that cyclic deformation at very

low levels makes a negligible contribution to fatigue damage of a

material element. The high strain cycles, when a material element moves

close to a crack tip, cause much severer damage. Therefore, the damage

caused strain cycles, when a material element was outside of r , can be

neglected.

(Ii3)
Based on the blunting model for fatigue crack propagation and with

the suggestion that the crack opening displacement, 6, given by the Dugdale

>del^

(21)

(IT)model , is a measure of bluntness, the crack propagation rate was written

as

ff = D7 6 = lvCTAK
2/EaY (15)

Accordingly, if prestress-cycles. increase 0Y, as in the case of 202*i-T351

aluminum alloy, the da/dN should be decreased. But the experimental data

shows the contrary. Both da/dN and o,, were increased by prestress cycling.

This contradiction suggests that blunting mechanism alone' cannot be

attributed as the only cause of fatigue crack propagation.

C. Low Cycle Fatigue Data for 7075-T6 Aluminum Alloy

Low cycle fatigue data for k3kO fully annealed steel and 202l|-T351

aluminum alloy were collected by Liu and lino . Based on their data,

the rate of fatigue crack propagation was given in terms of ductility,

M, cyclic yield stress and cyclic yield strain,
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c ( , < ) <27)
IT Aav/ N M

where C,_ is a proportional constant equal to 1.15.

In this report, the work was extended to TOT5-T6 aluminum alloy.

Smooth specimens , with a diameter of 0.2̂ 7 inches i were used. The gauge

length was 0.3 inches. Figure (5a) shows the plot of total strain

range, Ae_, versus the number of cycles to fracture, N . The slope,

was found to be - 0.̂ 5.. The slopes for the curves of 202H-T351 aluminum

alloy and iiSUo fully annealed steel are - 0.^9- By the extrapolation of

the line in Figure (5a), the cyclic fracture ductility for 70T5-T6 aluminum

alloy was found to be 0.25. Figure (5b) shows the curve of total cyclic

stress range, Aa^, versus total longitudinal. cyclic strain range, Ae

for both 7075-T6 and 202^_T35l aluminum alloys. The cyclic yield

strength range, Ao /. \ and the cyclic yield strain range, Ae,,/ \, for

7075-T6 aluminum alloy were found to be 170,000 psi and 0.015 respectively.

By putting all the values of C n_, Aov, s, Aev/ \ . , .J ^ e 17 Y(c) Y(c), and M into Equation

(27), an empirical equation of fatigue crack propagation rate for 7075-T6

aluminum alloy was obtained.

da , ,c / AK N2 /0.015\2 n n)o ,ri-6AT^2 , . , ,
dJ = '15 (170,OQO^ ^0.250^ = O-^-^SxlO AK micro inch/ cycle

(28)

By comparing the values of da/dN, obtained from the substitution of AK

values into Equation (28), with the experimental values as shown in

Figure (2a), the correlation is surprisingly good in the intermediate
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AK region, region II, where the slope of the line is 2. For instance,

at AK = 10 ksi \fin, Equation (28) predicts that da/dN is equal to lh.3

micro-inches per cycle, while the average experimental value is 10.5

micro-inches per cycle. The predicted values fall into the upper band

of the measured values.

\
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III. CRACK TIP DEFORMATION

A. Experimental Procedures

Cyclic deformations, both strains ahead of a crack tip and crack

opening displacements behind a crack tip were measured. The material

used in this investigation was 202i|-T351 aluminum alloy. Two stress

ratios, R = 1/10 and 1/3, were studied. Four inch wide centrally

cracked plate specimens, 0.25 inches or 0.050 inches thick, were tested.

The as received plate was 0.25 inches thick. The 0.05 inches thick speci-

mens were thinned down on one side. All the specimens were made from the

same plate. The geometry of specimens is shown in Figure (6).

The specimens were carefully polished, cleaned and dried. A coat

of photo-resist was sprayed on these cleaned and dried surfaces. A

high density master grille of 13,UOO lines per inch was used. Moire
(j+M

patterns were obtained by the double exposure technique . Both

total maximum strain, e , and strain amplitude, Ae, were measured.ni six

As the crack propagated toward a point, the strain at the point

increased because of the decrease in r. If plastic deformation took

place, a cyclically induced creep strain, e occurred. The total
c s

maximum strain e is the sum of the cvclicallv induced creeu strain.max * " - -. = - -

e and the strain range, Ae. To measure the total maximum strain,cs

the photo-resist coating was first exposed to a grille master at zero

load. In order to avoid the residual strains caused by the earlier

cycles, the crack was allowed to grow more than five times the plastic

zpne.size estimated by the Irwin's formula, r = (l/2ir) (AK/a,,) .
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Then the second exposure was made at the maximum load. The moire pattern

gave the sum of the accumulated strains, as the crack propagated-into

the region where the measurements were made, as well as the strain caused

by the last loading cycle. After the measurements of the total maximum

strains were made,the moire pattern was erased. The specimen surface

was cleaned, dried and coated with photo-resist again. At the same crack

length and at same values of AK and K , the strain ranges were measured.
IHclX

The first exposure was made at a . and the second one at a . Thereforemm . max

at each set of values of K and AK, the total maximum strains, e ,max . max

and the strain ranges, Ae were measured. All the measurements were made

along the crack line. Figure (?a) shows a set of fringe pictures to

measure e and Ae., max ^

Figure (Tb) shows the definition of the strain quantities, e . is

the difference "between e and Ae. It corresponds to the strains atmax

K . including the accumulated strains caused by the earlier cycles,
mm

When the specimen was completely unloaded, i.e. K = 0, the residual '

strain was the accumulated strain e , caused by all the previous stress

cycles. Therefore e . is the sum of e and the strain cuased by K .17 mm ace -. , mm

of the last cycle alone, e can also be viewed as the'cyclically in-acc

duced creep strain, ecs

The basic principle of moire strain analysis can be found else-

(U5 46)where ' . "Knowing the pitch, p, of the master grille and the moire

fringe spacing, d , in the y-direction (see Figure (l) for reference
«7

system), the average tensile strain, e , over the fringe spacing is cal-
«7

culated from
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For small strain and high density grille, i.e. d » p, Equation (29a)

can be simplified as

e = _ , Ny d (29b)

Note'that moire strain measurement is basically a displacement measure-

ment method. It measures the average strain over a finite gauge length

equal to the inter-fringe spacing. The resolution of the method is directly de-

^endsnt^on^the ̂grille ' density;!:̂ Thê  .high. grille'1 density"1 .used' -•can''-, easily resolve

a strain of -0.1 percent. Because of the small fringe spacing, the gauge

lengths are much shorter. Therefore the measurements in an area of

high strain gradient are much'more accurate.

B.. Crack Tip Strain

The cyclic strain ranges, Ae, and the maximum strains e , ahead ofnicix

a crack tip were measured and plotted against the distance from the crack

tip on a log-log scale. Figures v8a, 8b) and (9a, 9b) show the' strain= — =

measurements at stress ratios R = 1/10 and 1/3 respectively. The speci-

men thickness is 0.05 inches. Figures (lOa, lOb) and (lla, lib) are the

ones for a specimen thickness, t = 0.25 inches,and at stress ratios

R = 1/10 and 1/3 respectively. Close to a crack tip, the data at a

given- AK/or K value" can be correlated-by a stright line. All the linesmax

for Ae have the slope of - 0.5, regardless of the stress ratio and
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specimen thickness. The cyclic strain range at a point is the change of

the strain at the point, as the applied stress changes from minimum to

maximum values. The measurements in Figure (8a) were made on three speci-
:>

mens. The applied maximum stresses are in the neighborhood of 15,000 psi.

The'stress ratio is 1/10. Since the applied stresses are considerably

below the yield strength of the materials, the plastic zone sizes must

be quite small in comparison to their'corresponding crack lengths. In

this case, the deformations are close to the values given by the elastic

solution. One can write the strain in y-direction, e along the crack
\j

line, for the plane stress model as

e = (a - va )/E = a (l - v)/E
»y *x */

(30)

= K (1 - v)/E (2Trr)1/2

where K is.the stress intensity factor, E is the elastic modulus, v

is Poisson's ratio and r is the distance from the crack tip. The ex-

pression of a and a. are given by Equation (21a) with 9 = 0. Inx y • = ̂ = =. --

order to calculate Ae, AK instead of K, should be used-in Equation (30).

In the lower AK range, i.e. below 23 ksi /in, the measured strains

agree closely with the strains calculated from the elastic solution of

Equation (30), with E = 10.1 x 10 psi and v = 0.3. On the average,

the measured values are approximately 10 percent higher than the cal-

culated ones. As AK increases beyond this value, the deviation of
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the measured and the calculated values increases rapidly. At AK=34.2 ksi Jin,

the measured values are 1.33 times the calculated elastic strains as

shown in Figure (12). The solid lines are the measured strains replotted

from Figure (8a). The dashed lines are the calculated ones. These high

measured strains are caused by crack tip necking.

Figure (8b) shows the maximum strain, e , measured at five K6 max ' max

values. The slopes of the lines decrease as the values of K increase.max

They are all less than - 0.5 and vary from - 0.66 to - 0.78, as listed

in the figure. The average value is - 0.71. This variation of the slopes

of the lines agrees qualitatively with the analysis given by Swedlow,

Williams and Yang . However it should be pointed out that the cal-

culation by Swedlow et al. was made for :a monotonic loading and the

measured strains were the accumulated strains under a cyclic load, with

a positive mean load.

Figure (13) shows two sets of the measured accumulated maximum

strains, e ,• which were replotted from Figure (8b) as the solid lines.
Itt£lX

The dashed lines are the elastic strains calculated from Equation (30)

for the same K values of the measured lines. For K = 13*U.ksi -/inmax max *

at r =0.01 inches, the measured E is 1.3 times the calculated value.

The deviation decreases as r increases. At r = 0.03 inches, the measured

e is less than 1.1 times the calculated value. At the higher valuesmax

of K , the deviation is much larger. For K = 25.k ksi \Jin,atmax' max v

r = 0.01 inches, the e is 2.9 times the calculated value.•- • max

Figure (iH) shows the plot of strain versus the distance from a
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crack tip. Two pairs of e and Ae curves were plotted. The data

were obtained from Figures (8a) and (8b). For each pair, the values

of AK and K are nearly the same. They are approximately ±3.h ksi Jin

and 20.7 ksi \Jin. The difference is less than 2 percent. The values

of AK and K are listed in the figure. The differences betweenmax &

these two curves of each pair are the accumulated residual strains,

e , as a specimen is unloaded. It is expected that e will in-acc r r ace

crease as R increases. As r increases and strain decreases, the two

curves of each pair converge. Both of these two pairs of curves,

converge at e - 0.0021. At this level of strain, there is no accumu-

lation of plastic deformation, even i'f the mean load is positive.

If the stress-strain characteristics of the material are symmetrical

in tension and compression, one can conclude that for a completely

reversed stress cycle, if the strain amplitude is less than 0.0021,

there is no noticeable cyclic plastic deformation. If fatigue damage

nucleation is caused by repeated cyclic plastic deformation, this

strain amplitude must correspond to the endurance limit of the

materials i.e. 21,000 psi. The measured endurance limit of 202it-T3

aluminum alloy for a completely reversed stress cycle is 20,000 psi,

as given in the Alcoa Aluminum Handbook of 1959.. If this correspondence•

is valid, a convenient•and quick means to measure endurance limit-

can be-developed. However, additional data are needed to substantiate

this conclusion, especially the investigation of effects of the residual

stresses near a crack tip on the strain distribution.
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For a K value equal to 20.7 ksi \]in, these two curves converge

at r = O.lH inches. At any point further away, the deformation is

elastic. At .a point, where r is slightly less than O.lH inches,

plastic deformation takes place, even though the local stress at the

point is less than one half of the static yield strength of the

material. The deviation of the actual strain from the linear elastic

relation is so minute that it is very difficult to . detect whether

or not -the load is monotonic- At r=0.01 inches, e is 2.3 times

Ae. For the case K = 13.̂  ksi \J in , the difference between e andv max

Ae is much smaller. These two curves converge at a distance r = O.Oh

inches. The larger difference in e and Ae, at a high K value is
nicuC

caused by crack tip necking.

Figure (15) shows the plot of e and Ae versus r in linear
HI SIX

scale. Both were measured at the same crack length. The value of

K is 25.5 ksi /in" while AK is 22 = 8 ksî in". The upper solid curve

is the measured e curve. It is the maximum strain of the cyclicmax

deformation. The dashed curve is Ae. The lower solid curve is the

difference between e ____ and Ae, therefore.it is the minimum strain. s =max

e . , curve. If the crack length is very long in ̂ comparison with

the distance to a point ahead of a crack tip, the K value does not

change much as the crack propagates toward the point. Therefore

the decrease in r is linearly proportional to the number of cycles of

loading. Consequently, the abscissa axis can be considered as a

time scale. For the point at r =0.1 inches, one can view r = (O'.l inches



as time zero. The time scale moves tovard the left of the figure.

The figure indicates clearly that as time goes on e , Ae and e .

increase rapidly.

Near a crack tip, both e and Ae curves can "be plotted asm&x

straight lines on a log-log scale, with different slopes. The data

can be :fitted by the empirical equations as,

e n,max _ / r \ 1
e Y ( s ) rmax(s)

(31)

A £ Y ( c ) rp(c)

The strain at any time can be written as,

= emean + T~ sin (2irN) (32a)

and

_ Ae_
mean max 2

After substitution, one obtains

- :sin(2lrN)] (33)

Equation (33) is the cyclic strain history ahead of a crack tip in Figure (15)
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Figures (9a) and (9b) show the plots of Ae and e for R = 1/3max

and t = 0.05 inches. The slopes of the lines in Figure (9a) for Ae

are all equal to - 0.5. The measured strains in this case are about

20 percent higher than the calculated elastic strains. This increase

in the measured strains are much higher than those of R = 1/10, i.e.

10 percent. This increased deviation is caused "by crack tip neck-

ing enhanced "by the high stress ratio. At higher values of R, the

e is much higher than Ae . In other words, at the same value ofmax

AK, the e for R = 1/3 is much higher than the e for R = 1/10.max & max

For example, at AK = 22.8 ksi /in" for R = 1/10, at r = 0.05 inches,

e is twice Ae, i.e. 0.006 and 0.003 respectively. For the case
IU90C

of R = 1/3, at AK = 22.5 ksi Jin, e = 0.0135 and Ae = 0.0032,

that is e = 4.2 Ae . This higher value of e enhances neckingmax max

for the higher value of R. The slopes of the lines in Figure (9t>)

for e vary from - 0.65 to - 0.8. The average slope is - 0.77-nicix

Figure (lOa) and (lOb) are the plotted data for specimens

tested at R = 1/10 and t = 0.25 inches. On the average, the measured

values of Ae are approximately 25 percent higher than the calculated

elastic strains. The measured values of Ae for 0.25 inches thick

specimens are 15 percent higher than the 0.050 inches thick specimens

at the same corresponding AK values. This agrees with the finding

that fatigue crack propagation rate is faster in thick specimens than

in thin ones.

Figure (l6) shows the comparison of e for t = 0.25 inchesmax
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and 0.050 inches specimens at three K values, and at R = 1/10. Them six •

K values of each pair of lines are nearly equal to each other. Themax *

data are taken from Figures (8b) and (lOb). The solid lines represent

the thick specimens and the dashed lines represent the thin ones. The

values of K are shown in the figure . At lower K values ,-the measuredmax B

strains, e , are close to each other. As K is increased to 20 ksi Jinmax max v

the e. of thin specimens is nearly 1.2 times that of thick one. The
'

e values at K = 25.5 ksi J±n for thin specimens is nearly 1.5 timesmax max *

that of the thick ones at K = 23.7 ksi </in~, even though the difference

in K is only 1.6 percent. The data indicate that the e valuesmax max

increase much more rapidly for thin specimens as K values increase.
ffl£LX

This is another indication of crack tip necking. At high K value,
m£LX

the thicker specimen, i.e. t = 0..25 inches, has more constraint and

less tendency to neck than the thinner one. Therefore it has lower

values of emax

Figures (lla) and (lib) show Ae and e for specimens tested at

R = 1/3 and t = 0.25 inches. In Figure (lla), the slopes of the lines

are - 0.5. On the average, the measured values of AE are 33 percent

higher than the calculated elastic strains. In Figure (lib), the slopes

of the lines vary from - 0.5 for the low values of K to - 0.8 atJ max

higher values of K . The deviation of the measured strains from the
max

calculated -elastic strains increases with Kmax

C. Plastic Zone Size

As a crack propagates toward a point, the strain at the point
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increases. If a point is far away from a crack tip, the deformation is

elastic. As .a point moves to r , -., permanent plastic deformation .be-

gins to accumulate. Plastic deformation occurs only during the loading

half cycle, if the maximum cyclic effective stress exceeds the static

yield strength, 0y/ \. Plastic deformation will take place during the

unloading half cycle, if the cyclic effective stress range, Ao / •. ,

exceeds the cyclic yield strength range, Aa / <, . The cyclic stress-

strain curve of 202U-T351 aluminum alloy is shown in- Figure (5b). The

cyclic yield strength range, Aa,,./ N, is 13̂ ,000 psi, which is more

than two times higher than the static yield strength, 0y/ v, i.e.

52,000 psi.

The stress a at a point along a crack line can be calculated from

Equation (30) if e is known. Assuming 0=0 and 0,, = 0, the effectivey x y L

stress is

"eft - - + CTy - °Z
 + CT, - CTx

(3k)

= 0 • .•
y

With av/ \ •= 52,000 psi, E = 10.1 x 10 psi and v = 0.3, .the static

yield strain, ey/ \ was calculated from Equation (30) as

e , , = Il^ia , = (l-°'3)/ x 52,000 = 3,6 x 10~3 (35a)
Y ( s ) E Y ( s ) lO.lxlO6
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Similarly, the cyclic yield strain range, Ae,,/ \, was 'calculated vith
i \c;

ACT , x = 13̂ ,000 psi, E = 10.1 x 10 psi and v = 0.3.

AeY(c) = %^ACTY(c) = 9.3X10'3 (35b)

Using GY/ \ = 3.6 x 10 ,AeY/ ̂  =.9.3 x 10~ and the data of strain dis-

tribution curves in Figures (8a) to (lib), both static plastic zone size,

r / \ and cyclic plastic zone size, r / x can be obtained experimentally

for each stress intensity value. Figure (l?a) shows the plot of static

plastic,zone size, r / \ versus stress intensity range, AK for the thin

specimen of 0.050 inches thick. The dashed line is the calculated

value. For the case of R = 1/10, at AK = 11.6 ksi /in, the measured

r , , is equal to 0.0085 inches. At AK = 22.8 ksi \Jin, measured r , .
p(s; p(s)

is equal to 0.037 inches.

Wihtin the range of AK = 11.6 ksi /in to 22.8 ksi Jin, the average

value of r / x is 12 percent higher than the calculated one. As the

value of AK becomes larger than 22.8 ksi ̂ in, the measured values of

r / v start to deviate from the line having a slope of 2 to :the line
P \ s /

with a slope of k. At AK = 3̂ .2 ksi /in", the measured r / \ is about

8l percent higher than the calculated one. The empirical equations

for these two line segments can be.written as

I2 = 66.56 x 10~6 AK2

for region II (36a)
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and

" 4K" mlcro-inoh

for region III (36b).

For the case of R = 1/3, the measured r / % is about 38 percent higher

than the calculated value. The difference between R = 1/10 and 1/3 is

23 percent.

Figures (ifb) shows the plot of cyclic plastic zone size, r / ̂

versus stress intensity range, AK. The data was obtained from

Figures(8a) and (9a). At lower AK values, the lines in Figures (8a)

and (9a) have to be extrapolated to determine the cyclic plastic

zone size. The characteristics of both lines for R = 1/10 and 1/3

are the same as those in Figure (iTa) as expected. The slopes of

the lines for R = 1/10 also change from 2 to k at AK = 2U ksi /in.

On the average the values of r / \ are about 6.7 times lower than

those of r / >,. The empirical equations for these two line segments

of R = 1/10 can also be written as

2 _ . AK
- °-12(

p (c) - 2 o a o - - i 3 U , o o o

6 2
= 6.68xlO~ AK micro-inch

for region II (37a)
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AK NU ,., AK vlt
p(c) " "21VA0V, / * 'V13MOO'

-lU it
1-55 x 10 AK micro—inch

for region III (37b).

Figure (l8) shovs the plot of static plastic zone size, r / \

versus stress intensity range AK for 0.25 inches thick specimens.

Only the data for region II vere shown. The slopes for both lines

of R = 1/10 and 1/3»are also 2. For the case of R = 1/10, the measured

r / \ is 1.55 times higher than the calculated one, while the r / \pis; p(s)

for R = 1/3 is also 23 percent higher than that of R = 1/10. Comparing

Figure (l8) with Figure (l7a) for the same stress ratio R, one finds

that the values of r / \ for the thick specimens are 35 percent higher

than that of thin ones. However, the differences between the values

of r / % for R =1/10 and 1/3 are the same for both thick and thinpis;

specimens, i.e. 23 percent. This observation leads one to formulate

an empirical equation for r as

where C^ is a constant dependent on thickness.

Figure (19) shows the maximum static plastic zone size, r / \
Iii£lX \ S /

versus the maximum stress intensity factor K . The data were ob-max

tained from the maximum strain distribution in Figures (8b) , (9b),
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(lOb) and (lib) with ey/ •, = 3.6 x 10~ . The specimen cross-sectional

area and the applied stress ratios are all shown in the figure. The

overall slope for all of the data is 2.6. However, if one examines'

more closely, it seems that every individual set of data can be cor-

related by a line segment with a slope of 2, except the one with the

cross sectional area, A = V x 0.050" and R = 1/10, which were ob-

tained from three different specimens. In toto»the data indicate

that-the effects of thickness and stress ratio to the maximum plastic

zone size is not severe.

D. Crack Opening Displacement

The relative crack opening displacement between two points, one on

the upper and the other on the lower crack surfaces, can be'measured

from the moire fringe pattern and calculated as

6 = pN (39)

where p is the pitch of the master grille, which is equal to 1/13,̂ 00

inches. N is the total number of fringes along the crack surface be-

tween these two points.

There are two models to calculate the crack opening displacement

i.e. linear elastic model and Dugdale's strip necking model. The

linear elastic model gives

& = 2K(̂ -)1'2 ~ for plane stress. (21b)
dv Ji f
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On the other hand, Dugdale model predicts that crack tip open-

ing displacement, 6 , is proportional to the square.of the stress

intensity factor as shown in Equation (lie). The crack opening dis-

(17)
placement, 6, is given by Goodier and Field as

2oyA sin2(0 -9)
6 = 2V(x,a) = —=- [cos 9 log . +

"* sin2(92+9)

/ s2
(.sin 6 +.sin 9)

cos 92 log
 :

 2] (lla)
(sin 9,,-sin 9)

Figures (20a) and (20b) show the plots of the crack opening dis-

placement range, A<5, versus the distances from a crack tip for 0.050

inches thick specimen. A6 was measured as the applied stress was

increased from a . to a . Therefore the measured A6 corresponds
nun max *

to the stress intensity factor range, AK. Figure (20a.) is for R = 1/10

and Figure (20b) is for R = 1/3. Each line in the figures corresponds

to one AK value. All the lines have a slope of 0.5- This means that

crack opening displacement is proportional to the square,root of the

distance from a crack tip»which is predicted by the linear elastic

model shown in Equation (21b).

Figure (20c) shows the plot of A6 at r = O.OU inches versus AK

for both cases of R = 1/10 and R = 1/3. The data were obtained from

Figures (20a) and (20b). With E =,10.1 x 10 psi, the dashed line

was calculated using the elastic model of Equation (21b). The slope

of the dashed line is one. In region II, i.e. the intermediate AK
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values, the lines, correlating A6 with AK, have a slope of one for

both R = 1/10 and R = 1/3. This agrees with the prediction of the
i

linear elastic model. On the average, the measured values of A6 for

R = 1/3 are 6 percent less than the calculated ones; and those for

R = 1/10, the measured values of A6 are 2\ percent below the calculated

ones. In region III, i.e. high AK values, the data of R = 1/10 can be

correlated with a straight line having a slope of two.

Figures (20d) and (20e) are another two sets of data of A6 versus

r for 0.25 inches thick specimens. Figure (20d) is for R = 1/10 and

Figure (20e) is for R = 1/3. The slopes of the lines in both figures

are all 0.5. This indicates that-crack opening displacement is pro-

portional to the square root of. distance'from the crack tip, regardless

of the effects of specimen thickness and applied stress ratio. Figure

(20f) shows the plot of A6 at r = Q.Ok inches versus their correspond-

ing AK values for both R = 1/10 and R = 1/3. the data were obtained

from Figures (20d) and (20e). The dashed line in the figure was

'calculated from the elastic model using Equation (21b). Similar to

thin specimens, the lines, correlating A6 with AK in region II, can

be correlated with a straight line having a slope equal to one. On

the average, the measured A6 values for R = 1/10 are 10 percent below

the calculated ones; and those for R = 1/3 are 8 percent higher than

the calculated ones. In toto,the measured A6 for R = 1/3 is 18 percent

higher than those at R = 1/10. This difference is the same as in the case

of 0.050 inches thick specimens. Comparing Figures (20c) and (20f)

for the effect of thickness on the values of A<$ at the same stress
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ratio, one finds that A6 of the thicker specimens, t = 0.25 inches,

is ]A percent higher than that of thinner specimens for both R = 1/10

and R = 1/3.

Figure (21a) shows the relative maximum crack opening displacement,

6 , versus the distance from the crack tip for the specimens 0.050msix

inches thick at R = 1/10. Figure (21b) are those for R = 1/3. The

values of 6 vere measured from the same pictures of moire fringe

patterns which were used to measure the e . The corresponding K
^ max ^ e max

values for each line are indicated in the figures. The slopes of

these lines are close to 0.5. They vary from 0.5 to 0.6. Figures

(22a) and (22b) are another two .sets .of data which show 6 versusmax

r for 0.25 inches thick specimens. The values of K and R are also
max

shown in the figures. For the case of R = 1/10, all the slopes of the

lines are equal to or very close to 0.5- While in the case of R = 1/3.

the slopes of the lines vary from 0.5 to 0.6.

Figure (22c) is the plot of 6 at r = O.Clk inches vers'us
max

K for both thin and thick specimens. The data are obtained from
max

Figures (21a). (21b). (22a). and (22bh The applied stress ratios and

specimen thicknesses are shown in the figure. The dashed line is the

calculated line using Equation (21b) of elastic model. The data for

both thin and thick specimens can be correlated with a straight line

having a slope equal to one regardless of the stress ratio.

Figures (22d) and (22e) show the comparison of A6 predicted by

elastic model and Dugdale model with the measured values. Figure
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(22d) is for thin specimen and Figure (22e) is for thick one. The

measured data for two AK values are shown in each figure. The solid

and the dashed lines are calculated using Dugdale model and elastic

model respectively. The cyclic yield stress range, Aa / *, is used for

Dugdale's model.

The experimental points seem to agree better with the calculated

displacements of the elastic crack. However the differences in dis-

placements calculated "by these two models are small in the range of

the measurements. A straight line correlates well with the measured

displacements. There is no tendency to level off as r approaches the

crack tip.
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IV, DISCUSSION

A. Crack Tip Deformation and Fatigue Crack Propagation

Based on dimensional analysis, Frost and Dugdale and Liu have

pointed out that fatigue crack propagation is proportional to the crack

length if the crack .length is the only pertinent length parameter.

Subsequently, Liu has shovn that if the plastic zone size is very

small or if the ratio Aa/o is low, the crack tip stresses and strains

can be characterized by AK and R. This conclusion is correct, if the

crack tip stress and strain distributions are not affected by crack

2
tip necking. In this case, r is proportional to AK , if R remains

constant. The crack tip region can be scaled by r so that at the

homologous points, i.e. at the geometrically similar points, the

stresses and strains are identical. If a crack increment is propor-

tional to r , the stresses and strains within the area of the crack

increment must be the same regardless of the value of AK or the size

of r . If .crack propagation is caused by the stresses and.strains,

da/dN must be proportional to r . That•is

By applying the cumulative damage rule within the plastic : region

(31)
ahead of a crack tip, Lehr and Liu and Liu and lino derived a

fatigue crack propagation equation for a cracked- plate. They showed

that. fatigue crack propagation rate was proportional to the plastic

zone size as
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fe" - Col,(-̂ —r" r (39b)

where C?^ is a proportional-constant, M is the strain range correspond-

ing to the fatigue life of one cycle, Z is the slope of log AeT versus

log N,. and e / * is the cyclic yield strength found from the strain con-

trolled fatigue test.

Assuming''that the true mechanical conditions around a crack tip

are represented-by the plastic deformations, Erdogan and Roberts

proposed a model of fatigue crack propagation as'

where C?1_ and a are constants for a given material, and r is a

characteristic length of the plastic zone at the crack tip.

(kg)
Later on, Roberts and Erdogan , studying the effect of mean

stress on-fatigue crack propagation, generalized the above equation to

where C26'
 ai an<^ a2 are cons't'ants for a given material and r and.

r are the maximum and range values of the plastic zone size, re-

spectively, as measured along the prolongation of.the crack.
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Now, let us assume that fatigue damage occurs only inside of the

plastic region. As we have shown prestress cycling below the static

yield strength has a negligible effect on the rate of fatigue crack

propagation. In'other words, fatigue damage occurs mainly after an

element enters the plastic zone boundary. Before the elements enter

the plastic zone.boundary, there is only negligible fatigue damage to

the elements. If r « a, AK is essentially constant during the time

period after a material element enters r and before it arrives the

crack tip. Therefore, one can assume da/dN, within r , is essentially

constant.

If

23 p (39a)

then

/ a+rPda = C,,r .70
NrdNa 23 p o

or

C23 = l/Nr

therefore

j_ r_ „. ,
LLCI _ p // 1 \

dN ~ N • ( ±}

r

where N , a constant, is the .number of cycles to propagate a crack through

the length of r . The validity of Equation (41) will be discussed and clarified

by r values obtained from the moire strain measurements ahead of a crack tip
P

and da/dN, measured on the specimen surfaces.

Figure (23a) shows the plot of da/dN versus AK, as well as r , . v r .
p \s)

versus AK for 0.050 inches thick specimens at R = 1/10.- The data were

obtained from Figures (2b) and (17a). In the lower AK region the data." :

give a slope of'two for both lines, Awhile the data in the higher AK :'.

region give a slope of.four. The transitions take place at AK equal to
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21 ksi /in and 2k ksi /Tn for da/dN and r respectively. The data in

Figure (23a) give the empirical constant N for region II.

N = r / J(da/dN) = 1.08 x 103 cycles
r p(s)

or C(— )2

da ,„ °K 0.18 , AK .2
- r 'p<s) r - Nr -

-9 2
= 6l.6 x 10 AK micro-inch/cycle

For'the data in region III, the empirical constant N is

= r (JUa/dN) = 0.75 x 103 cycles

da /M = y _ 0.8 , AK k
dN - rp(s)/Nr - N -

-I7 k
= lU.6 x 10 """'AK^ micro-inch/cycle

Similar data for 0.25 inches thick specimens at R = 1/10 are shown

in Figure (23"b). The data give the empirical constant N for region II.

N = r /)/(da/dN) = 1.0 x 103 cycles

da
d¥ = rp(s)/Nr 1.

—9 2
= 96.2 x 10 AK micro-inch/cycle
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The values of N for thick and thin specimens in region II are
o "3

found to be 1.0 x 10 cycles and 1.08 x 10 cycles respectively. They

have only an.8 percent difference. This amount of difference is well

.within the experimental error. Therefore;, one can conclude that the

number of cycles, N , to propagate a'crack through the plastic zone

size, r , is a material constant.

The data for R = 1/3 are plotted in Figures (2ka) and (2i*b). The

slopes of the line that correlate da/dN with AK and the line that cor-

relates r. / \ with AK do not agree. The slope of the former line is

.2.6 and that of the latter is 2, for both 0.050 inches and 0.25 inches

thick specimens.

In Figure (2Ua) the dashed line is the fatigue crack propagation

rate predicted from Equation (̂ 2). The measured.and predicted lines

intersect at AK = 11.5 ksi /in", where the crack propagation rate is

equal to 10 micro-inches per cycle. At AK = 20 ksi \/in", the da/dN

are 30 micro-inches per cycle and Ho micro-inches per cycle for pre-

dicted and measured values respectively. In Figure .(2Ub), the measured

da/dN deviates from that, given by .'Equation (MO. At.AK =7 ksi /in "

the predicted value of da/dN' is'l.U times the measured one. While

at AK = 18 ksi /in", the measured value of da/dN is l.U times the

predicted one.

The correlation of da/dN with r will be examined in terms of
P

the characterization of crack tip stresses and strains by AK and R.

As we have pointed out earlier, the crack tip cyclic deformation is
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characterized "by AK and R, if the deformation is not affected by

necking. In this case, the region ahead of a crack tip can be scaled

by the characteristic length r , so that as a crack grows, the de-

formation at geometrically similar points is identical.

Cyclic deformation can be specified by Ae and e . In Figures
m&x

(25a to 25d), both Ae and e are plotted against r/r / «. The datamax p \ s)

are obtained from Figures (8a to lib). The r , N is the distance r forp(s)

cv/ \ = 3.6 x 10 . For each pair of Ae and e curves, the same valueY(s) max

of r / % is used. Since all the lines for Ae have the same slope, i.e.

- 0.5, all the data are consolidated into a single line. In Figure

(25a), the data for 0.050 inches thick specimens at R = 1/10 are shown.

The three lines of e data at AK = 16.2, 13.3 and 11.6 ksi \finmax

fall into a narrow band. This indicates clearly that the region ahead

of a crack tip can be scaled by r / % so that at geometrically similar

points, the cyclic strains, i.e. Ae as well as e , are identical.max

As discussed earlier, if r can be used to scale the region near a
2

crack tip, da/dN should be proportional to r and K . As indicated
P

by the crack growth data in Figure (2b) all these three values of

2
AK are in region II,and da/dN is indeed.proportional to AK . For the

line at K =25-5 ksi \/Tn~, the e curve is considerably above themax max

other three. This K value is above the transition point of themax f

da/dN curve in Figure (23a). Because the e is higher than themax °̂

value given by the scaling law, it is reasonable to expect that da/dN

is faster than that given by Equation (kk), i.e. da/dN proportional
2

to AK . Figure (25b) shows similar data for 0.25 inches thick specimens
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at R = 1/10. All the lines of e data fall into a narrow band, too.max

This is another indication that the region ahead of a crack tip can

be scaled by r / \>so that at geometrically similar points the cyclic

strains are identical.

Figures -(25c) and (25d) show the data of R = 1/3 for 0.050 inches

and 0.25 inches thick specimens,respectively. Unlike the data of.

R = 1/10, the data of R = 1/3 do not fall into a narrow band. The

data indicate that at geometrically similar points ahead of. a crack

tip, the maximum cyclic strains, e , are not identical, due to theniQjX

effect of higher stress ratios. The higher the value of K , the
lUcwC

higher the value of e at geometrically similar points. As a con-m&x

sequence, one would expect that the measured values of da/dN for

R = 1/3 would increase more rapidly than those of R = 1/10, and that

the slope of da/dN versus AK would deviate from two.

This deviation is also illustrated in Figure (25e), which shows

the plot of (da/dN)/r / ..versus r / \. The values of da/dN are ob-f p\s; max\s;

tained from Figures (2b) and (2c), while the values of r / s and

r / s are obtained from Figures (8a) to (lib),with e,,/ \ = 3.6 x 10~ .
max(s) i(sr '"

The values of (da/dN)/r / \ at R = 1/10 are almost constant for both thickp(s) '
_3

and thin•specimens. The average values are 1=02 x 10 per cycle and
_3

0.85 x 10 per cycle,for thick and thin specimens respectively. How-

ever, at R = 1/3, the values of (da/dN)/r / N increase with increasing

r / \. The slopes of the lines, correlating (da/dN)/r / * with

r , \, are O.kl and 0.62 for thick and thin specimens respectively.
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Based on these experimental data, one can write an empirical equation

as

or

($£.) • 1 = c r IvdN' r / N 23 max(s)
p(s)

da l
dW 23 rp(s) rmax(s)

vhere C?_ is the proportional constant, a is the slope in Figure (25e),

vhich is zero at R = 1/10 and 0.̂ 1 and 0.62 for thick and thin specimens

respectively.at R = 1/3.

Equation (U5) is similar to Equation (UOb), which was proposed by

(Uo)
Roberts and Erdogan

B. Crack Opening Displacement and Fatigue Crack Propagation

In this investigation, it has "been shown that crack opening dis-

placement range, A6,is proportional to the square root of the distance

from a crack tip, and it---is linearly proportional to the "stress in-

tensity factor range. The measured values agree better with the cal-

culated elastic displacements of the crack surfaces. Schaeffer, Liu

(MOand Ke have shown that the crack opening displacements given by the

Dugdale model agree well with the measured values in a thin steel

specimen. In a thin specimen, necking takes place at a crack tip and

the crack tip necking causes a thin narrow strip of extensive plastic
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deformation. The strip necking, zone agrees -with the main feature of

the Dugdale model. As specimen thickness increases, the size of the

strip necking zone decreases. For a thick -specimen, the region of

extensive plastic deformation must be diffused rather than a thin

narrow strip. Therefore, even if crack opening displacement exists

at a crack tip, its value must be much smaller than that given by

the Dugdale model.

(21)Laird proposed a crack tip blunting model for fatigue crack

propagation. The crack tip opening displacement, 6 , given by the

Dugdale model or by the Wells calculation is often used as

a measure of the crack tip "blunting". In either calculation, the

crack tip opening displacement is inversely proportional to the yield

strength, a , of a material. According to the model, an increase

in a reduces crack tip opening displacement and da/dF. The study of

the effects of pre-stress clearly indicates the contrary. The static

yield strength of the 2024-T351 aluminum alloy is 52,000 psi, and the

cyclic yield strength range, ACT / %, is. 13̂ ,000 psi. The material

cyclically strain hardens. As the prestress level increases, Ac?Y/ }

increases. Yet this increase in Aa / ,, causes an increase in da/dN.i(c)

Furthermore according to the model, the crack tip opening displacement

should be less in the interior of a specimen than on the specimen sur-

face. If da/dN is linearly proportional to crack tip opening dis-

placement, the crack should advance faster on the surface than in the

interior. All the observations indicate otherwise. This contradiction

certainly warrants additional studies in this important area of fatigue

crack propagation research.
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V. SUMMARY MD CONCLUSIONS

• 1. Fatigue crack propagation rate is proportional to AK , if the region

ahead of a crack tip can be scaled by the characteristic length, r •,

so that as a crack grows, the deformation at.geometrically similar points

is identical.

2. . Fatigue crack propagation rate is affected by thickness and stress

ratio. The larger the plate thickness or stress ratio is, the faster the

crack .propagation rate will be. This spread in rate, due to the stress

ratio effect, is small at lower AK values but becomes progressively

larger as AK is increased. This means that the slopes of the crack

propagation rate increase with increasing stress ratio. In these

studies, the slopes in region II are found to be 2.0, 2.7 and 3A for

R = 1/10, 1/3 and 1/2,respectively.

3. For 202l*-T351 aluminum alloy, prestress cycling below the static

yield strength has no noticeable effect on the fatigue crack propagation

rate. However, prestress cycling above the static yield strength

causes hardening and increases the.fatigue crack propagation rate* =

This .observation leads one to conclude that fatigue-,damage occurs

mainly after the material elements ahead of a crack have entered the

plastic region. Before the material elements enter the plastic

boundary, there is negligible damage to the.elements. Therefore,

fatigue crack propagation rate can be written as

S. = -£ (Ul)dN N. ^ X;r
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where N is the number of cycles to propagate a crack through r .

k. Under the plane stress condition, the cyclic strain distribution

ahead of a crack tip, measured by moire method, agrees very veil vith

the calculation from linear elastic theory, when the values of AK are

small. This indicates that the high.density grille moire technique

is a very useful tool for the measurements of surface strains around

a crack tip.

5. The measured crack tip strains can be correlated with a straight

line in a log-log'plot.The slopes of these lines for Ae are all equal

to -0.5, while those for e are varied from -0.5 to -0.8. Themax.

cyclic strain history ahead of a crack tip can be written as

= e + sin (27rN)
mean 2

:Y(s)
max(s)

(33)

p(c)
- sin(2TrN)]

where e is the cyclic mean strain, sv/- -, is the static yield strain,mean i^s;

Ae / x is the cyclic yield strain range, r
x \ c /

/ •>\ s / is the static maximum

•plastic zone size, r / \ is the cyclic plastic zone size, n varies

from -0.5 to-0.8, and n is -0.5.

6. The plastic zone size, r is found to be proportional to AK in

region II for all the cases investigated. In region III, it is found

li
to be proportional to AK for the case of 0.050 inches at R = 1/10.
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If da/cLN is proportional to r , one obtains the following two equations

AK2 for region II (U)

If = ^ • c k A K for
dN N 4

The last equation is the fourth power law of fatigue .crack propagation,

(2)
proposed "by Paris and Erdogan

7- The effect of stress ratio on the fatigue crack propagation rate

can also be written as

§ • C23 rp

where a, is a constant which is equal to or larger than zero. This is

the equation proposed by Roberts and Erdogan

8. The crack opening displacement range,A6, is found-to be proportional

to the square root of the distance from a crack tip. At a fixed dis-

tance near a crack tip, A6 is linearly proportional to AK in region II

2
for all the cases investigated, and is proportional to AK in region

III for the case of 0.050 inches thick at R = 1/10.

9. In the region investigated, i.e. between 0.01 inches and 0.1 inches

from a crack tip, the predicted A6 by the Dugdale model and the elastic
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model is very close. However, the experimental points seem to agree

better with the calculated A<5 by the elastic model.because there is

no tendency to level off as r approaches the crack tip.
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