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NOTATION

a radius of spherical shell
E modulus of elasticity
g acceleration of gravity
Ho( ) differential operator defined as Hyo( ) = <§§E-+ cot ¢-§5> ()
Hi( ) differential operator defined as H;( ) = {Hy + (1 - v)}()
Hy () differential operator defined as Hy( ) = {Hp + 2}( )
h shell thickness
K Eh3
12(1 - v?)

m weight of shell per unit surface area

nn - 2) . . . 3x1 (n: odd)
n!! n(n - 2) . . . 4x2 (n: even)

oty = (-1t =1
P external force per unit surface area
Pi(cos %), Pi Legendre polynomial of <th order, first kind

Pin(cos %), Pin associated Legendre polynomial of <th order

u in-plane shell displacement
w deflection of shell
2
a 12(1 - v2) &
h2
Y viscous damping coefficient
h
E ——
a
¥ stress function defined in equations (2)
v Poisson ratio

iii
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[%] Gaussian symbol, the maximum integer not more than %

| Boundary

Sketch (a).- Geometry of spherical shell.
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NONLINEAR AXISYMMETRIC FLEXURAL VIBRATION OF SPHERICAL SHELLS*
Haruo Kunieda

Ames Research Center

SUMMARY

This report presents axisymmetric responses of a nonshallow thin-walled
spherical shell on the basis of nonlinear bending theory.

An ordinary differential equation with nonlinearity of quadratic as well
as cubic terms associated with variable time is derived. The derivation is
based on the assumption that the deflection mode is the sum of four Legendre
polynomials, and the Galerkin procedure is applied. The equation is solved by
asymptotic expansion, and a first approximate solution is adopted. Unstable
regions of this solution are discussed.

INTRODUCTION

The analysis of dynamic behavior is among the most important current
research bearing on engineering reliability for thin-walled shells. This
report is concerned with the forced and free axisymmetric nonlinear vibrations
of nonshallow thin spherical shells. It may be expected that for thin-walled
spherical shells, especially nonshallow ones, analysis on the basis of nonlin-
ear theory will reveal such phenomena of response that cannot be provided by
linear theory.

The few investigations that have been made concerning this problem of
spherical shells are limited to the shallow shells (refs. 1 and 2). Reference
3 has provided the solutions that apply to generalized variational equations
of motion with the substitution of spatial mode of the deflection derived by
linear theory. Since the deflection mode of linear vibration appears generally
as the sum of Legendre functions, with real fractional and complex conjugate
orders for nonshallow spherical shells, equations cannot be integrated easily
in variational procedure (ref. 3).

In this report the deflection is set as the sum of four Legendre
polynomials to satisfy the ordinary boundary conditions, and with the Galerkin
procedure an ordinary nonlinear equation with time as the independent variable
is derived.

Although the assumed deflection may not fit the response mode rigorously,
it appears to be sufficient by comparison with the expansion of the sinusoidal
function or of the Legendre function with fractional order with Legendre poly-
nomials. Of course, if the mode of exciting force is the same as that of
assumed deflection then a rigorous response mode results.

*This work was carried out while the author was pursuing a National
Research Council Resident Associateship supported by the National Aeronautics
and Space Administration.



The fundamental nonlinear equations and relations for spherical shells
used here are derived from reference 4 with the assumption of small rotations
and the neglect of longitudinal inertia terms and nonlinear terms in the
equilibrium equations of circumferential direction.

The ordinary differential equation that is finally derived is analogous
to a nonlinear, single-degree-of-freedom mass spring oscillator. This equa-
tion, however, has a nonlinearity of quadratic as well as cubic terms of depen-
dent variable, X(t), whereas only a cubic term appears for cylindrical shells
(refs. 5 and 6). Because of the quadratic term, the solution for X(t) can
exhibit the nonlinear property of both softening and hardening alternately as
X(t) changes sign. The range of X(t) over which this behavior occurs depends
on the deflection mode assumed, on the open angle of the shell, and on the
thickness-radius ratio. Consequently, it is found that an increase or decrease
in the amplitude of vibration with an increase in frequency does not necessar-
ily reflect the effect of a purely softening or hardening spring.

The solutions of this nonlinear differential equation use the asymptotic
expansion of this equation, with the expansions in power of thickness-radius
ratio. The region of the frequency for unstable response is discussed numeri-
cally as are the effects of thickness-radius ratio, exciting force, boundary
conditions, and viscous damping.

GOVERNING EQUATIONS

The following assumptions may be applicable in the derivation of
governing equations for thin-walled nonshallow spherical shells.

Large deflection and small strain

Extremely large radius-thickness ratio in comparison with unity
Small rotations

Negligible rotary inertia and transverse shear deformations

RO I ST

Then, if the angle of rotation is approximated as

0 o)
W¢ = {(u+w)/a=zw/a
and the longitudinal inertia terms and nonlinear term in equilibrium equations
in circumferential directions are neglected, the following equation can be
derived from reference 4 as a governing equation for axisymmetric vibration of
spherical shells.

HoHy (W) - %Hz(‘{’) - %[WOOHZ(\P) - EHZ (W)Ho (w) + YHo(w) + ¥OOHy(¥) - 2v°%°°

-lo_k{ﬁ (w)}°]+3iv'v'+ o200
a 2 g Kk YW ox T

The stress resultants N, and N¢ are related to w and the Airy-type stress
function VY as follows:

2 A-4076



_ 1 oo k
Ne == [W + ¥ - §~H2(w)]
a
(2)
;L-Ecot ¢)W° + Y - E-Hz(w)]
¢ 42 a
The compatibility condition (in terms of w and ¥) is
k 00 00, 2 0,2
HoHp (¥) - (1 - v) E‘Hzﬂz(w) + aBhHy (w) + Eh|HogWw ~ - (w ) - (w) |=0
(3)

Equation (3) is derived from the middle surface strain-displacement relations
1 o} 1 0,2
e, = 5—[ﬁ - W+ Eg-(w ) ]
(4)

o = = [(cot 9) () - w]

(¢}
Il

in conjunction with equations (2).
SOLUTIONS

In the axisymmetric linear problem, the purely torsional motion of shells
can be solved (ref. 3); then the torsionless mode shape of vibration is consti-
tuted by three fundamental mode shapes represented as Legendre functions with
small real fractional order and complex conjugate orders, or two Legendre
functions with real fractional orders of small and extremely large value and a
Kegelfunction (ref. 3). The mode shape represented by Legendre functions with
real (usually fractional) order determines the mode shape of the overall shell
vibration as shown in reference 3. 1In low frequency vibration, the mode shape
corresponding to small order is dominant; whereas at higher frequencies, the
mode shape corresponding to large order becomes dominant. These modes can be
expanded in the series of Legendre polynomials.

Each shell discussed here has a closed apex and one edge (see sketch (a)).
For convenience of calculation and to satisfy ordinary boundary conditions, the
deflection of the following form will be adopted:

=
)

W($) - X(t)

3
P h - X = A.P. h - X(t 5
(Ao, + AP, + AP+ AP Db X(¥) = D A u B X 5)

1=0



where

Pui = Pui(cos ¢)

Ag a given constant

Ay d# 0 unknown constant that can be determined with the consideration of
boundary conditions

arbitrary integers that specify the particular modes selected

Stress function V¥ can be obtained by substitution of equation (5) into
equation (3) as follows.

-
]

—\{‘1+\¥2

3

k

v = X Z_: B, A;P, hX(t) | 6)
1=0

21
¥, =Eh D bja P h?X2(t) (5 # 1)

J=0

where

.- (1 -v{z - wy (uy * DD} -«

i =

(1-v) - i oy + 1)
bj = 1 -
2 -50G+DH;G+1D -0 -v)}

U maximum of Hy
a; see appendix A, equation (AS5)

Longitudinal displacement u can be obtained from the following equation
deduced from equations (2), (4), and (6).

o _ 1 (1 - v)k 1042 (1 + v) oo
u” = E’ﬁ{“l(‘” - Ha () - Ehaw} S i = e
1 1 2 1
- Hy (¥,) - — (wO)* - %)_ (¥, + lyz)oo

Eha



Then

3
@ +v) k 1 1 2v2
U= S o BiAiPuihx(t) - 23 d,9h“X<(t)
i=0
24
1 E Jlp2y2
iy {(1 + v)bjaj + dj}PJ h<X<(t) (7)
j=2
where
a c
dmz_l_[ m _.ﬂ], do= (ao+Co)
m2 Lm(m + 1) - 2 2
Cm see appendix A, equation (A2)

Equations (5), (6), and (7) allow the satisfaction of any ordinary boundary
conditions. After the boundary conditions are satisfied, the only unknown
value in the above relations is X(t). Galerkin's procedure applied to equa-
tion (1) yields an ordinary nonlinear differential equation in X(t). The sub-
stitution of equations (5) and (6) into equation (1) and integration of
equation (1) for overall shell surface after multiplication of w sin ¢/[hX(t)]
will result in the equation

X"(T) + 2kX'(T) + X(T) + eB,X?(1) + e2B3X3(1) = P (8)

where the dimensionless independent variable t is defined as 1 = wot, and
the prime (') means differentiation with t. Other constants are as follows.

23 woQug + 1) - 2 €2
Bl = - S 1 + — ui(ui + 1)[ui(ui + 1) = 2]
S iy e D - =) 12(1 - v?)



2u 3
B = - o D D PiAEG )

j=0 i=0

+ € L ww® sin ¢[W1° cot ¢ + ¥; - g-Hz(w)]}‘

Eh® =0,

MYy 2)2 E i3 [0y - DB+ 2 - wiluy + D] E(,ui300)
12(1 - v

j=0 i=o0
[i/2]
+ Z [2(u; - 2q) + 11BiE(j,ui - 29;90)
q=1
g, = - L 1 [ sin ¢ (¥,° cot ¢ + ¥2)1],_,
81 \12(1 - v2)ERS
2u [i/2]
E > edsa G- VBRI ¢ > 120G - 200+ 1IEK,T - 2638)
j=0 k=0 g=1
3
i’j=0
w2 = F1 Eng
0 B0 a2
o g32 Bo
© T “Ehm 81
P = B f E sin ¢ d¢
1 2
Eh vprs

and E(i,j;¢0) is given in appendix B.
6



Equation (8) contains the nonlinearity of both quadratic and cubic terms, but
as the coefficients of these nonlinear terms are expected to be very small com-
pared to the coefficients of linear terms in thin shells, the solutions utilize
the expansion of this equation in power of the nonlinearity parameter e = k/a.
Note that B85, B3, and the sign and magnitude of X(t) determine whether the
structure acts like a hardening or softening spring.

Applied surface load is assumed to be harmonic in time and is fixed in a
mode spatially as in the form

p

i}

p cos wt = p cos Qrt (9)

= w/wg
Then a first approximate solution of equation (8) is obtained
X(t) = €dg + ®; cos & + €d, cos 26 + €203 cos 3E (10)

where

€ - 2 - 29 g2 -
01 = A+ 5 BpA? - 5 eBoPA + gy e2B,2A% - 37 B3A’
1 - 2 - . -
<D2 = -6— 82A2 + §- szA + —g— 622A3
1/1 - 1 -
0 = g (5 B2 + § Bo)a’
_ B, _ 8 - D
82 = R 83 = 3 R p =
1 - k2 1 - «2 1 - k2

and amplitude parameter A included in those coefficients can be determined
from

3 = 5 - £ = - Q? -
€2<Z~B3 - 3-622)A3 + <1 + = B2D - I"t—;E>A -p=20 (11)

The following relations give the angle of phase difference that is due to the
viscous damping term «.

p cos 6 = —@192 + & + 5262®1(2<I>0 + @2) + 8283(1)13 -3—-

p sin 8 = -2«®;Q



Note that the solutions given by equation (10) are not symmetrical; that is,
nonlinear vibration of spherical shells is physically nonsymmetrical with
regard to the middle surface. Therefore, the amplitude parameter A tends to
increase or decrease with frequency depending on the value of 8, and Bj3; it
does not necessarily mean a hardening or softening of this structure. Neither
does the increase or decrease of amplitude of X(t) with frequency necessarily
mean a hardening or softening structure.

Equations (8) and (10) indicate that nonlinearity of softening and
hardening appears alternatively according to the change of sign of X(t) (in
some region of that value) in relation to the values of B, and 83, when the
shell is considered a mass.

STABILITY OF THE SOLUTIONS IN STEADY STATE

If small disturbances are added to A and £ in such forms as

A=A+ ne>‘T

and

g

T

£+ et =+ gy

the solutions of equation (8) can be given as

X(1) = e(@g + 8g) + (81 + ¥1)cos £ + e(®p + &)cos 2

+ €2(¢3 + ®3)cos 3E (12)

Since the values of n and £ can be assumed to be very small and X 1is con-
siderably smaller, the high order terms of n and ¢ can be negligible against
n and ¢, and the next approximation will be applicable.

cos 31 =1 , sin 35 = 3&; (A" = 0, £{'= 0)

Then equation (12) can be rewritten

X(T) = XO(T) + % Xo'(’[‘)gl + Xl(T) (123)

where Xg(t) satisfies equation (10) and X;(t) is of the form

X1(1) = €3y + &) cos € + €3, cos 2& + €233 cos 3¢

Substituting equation (12a) into equation (8), and neglecting the high order
terms of X; and &; gives the following equation



. 2
X" o+ 2kXyM + Xy + 2eBoXpXp + 36263)(02 X1 - p(sin Q1) &1 +§ (X" + «Xp")g1' = 0
From this equation the following two relations can be deduced.

—9261 + 2K>\61 + 61 + 28262(‘?061 + 60@1 + 514’2 —1— + —1—- 52(1)1)

2 2
+ 38233(2?—' @12 + %— 62(1322)51 +p sin ¢ &; - 2>\Q¢1€1 =0
20019 + 2x81Q + plcos ®)&; + 2kdAE; = 0
where
do-
- i AT = AT
¢, = gz ne’ = %;(ne’ )

To determine n and ¢ from these two equations, the determinant of the
coefficients of n and ¢ must be zero, and A 1is given as the root of this
determinant in the following form:

XA2 + YA +2=0

where
X = 4(k2 + 02)
= 2 2 3 143
Y = 4]l + Q° + Boe“\ 20y + 25 + 80y + > §3,
+ g- 8382<®12 + % E@zz)]
Z=|1-02 + 22 3 1 L3
= - + 832@0+¢06+§-©2+7‘b25
3:20.(3 6.2 + L o242 2 2
+ 3eB3lz 217+ 5 €79y 1 - Q% + €985\ 20y + 25
3 2 3 202
+ 7 €“B3®, + 44
¢
§ = —
3}



If a root A of this equation has a real part of positive value, the oscilla-
tion is divergent. This condition occurs if

Y20 and Z<0
or (13)
Y <0

Then it is concluded that the oscillation concerning an amplitude parameter A
that satisfies conditions (13) with associated Q is unstable.

NUMERICAL RESULTS AND CONCLUSION

A few numerical calculations will be shown for hinged (w = M¢ = u = 0)
and clamped boundary conditions,

Since a part of plane displacement u contains quadratic terms of A;,
coefficients A; are determined as solutions of three simultaneous nonlinear
equations associated with boundary conditions. These quadratic terms with the
multiplying factor € can, however, be assumed to be smaller than linear ones.
Therefore, only the linear part of u will be considered here, and A; can
be given approximately from linear equations. Numerical results have shown the
propriety of this assumption.

Shell With Hinged Edge

Deflection mode shape depends not only on the selection of orders of
Legendre polynomials but also on the open angle of shells and boundary condi-
tions. Deflection shapes will be shown for various sets of Hy with the
parameter of open angle ¢g in figure 1.

Case (a) (0,1,2,3)
Case (b) (0,1,2,4) for (up, W1, M2, H3)
Case (c) (0,2,3,4)

The case of ¢ = 120° will be discussed here. Figure 2 with regard to W(¢)
and U(¢) shows that the inertia term of u may not be negligible compared

with that of w in low order mode shape, despite its neglect in this analysis.
Figure 3 gives relations between amplitude parameter |A| and modified frequency
Q.1 The case p = 0 means free vibration. Tendency of increase or decrease of
|A| with increasing £ depends only on the sign of the term

[(3/4)B3] - [(5/6)B22] (see eq. (11)) and this does not indicate the stiffness

of hardening or softening of this system as easily recognized from equation (8).
Relations between nonlinearity and the inverse of multiplying parameter 1/e=a/h

INote that @ = w/w, depends on the ratio 8;/Bp. Values for B, (and
A;) are given in table 1. ' .

10



will be given in figure 4 in free vibration. The linear state is € = 0, and
nonlinearity increases rapidly with increasing €. Figure 5 also shows

|A| ~ @ relations of p = 0.1 with the parameter of viscous damping «.

Large values of |A| decrease with increasing «. When three kinds of |A| exist,
the smallest |A| increases with increasing k. Simultaneously, the stability
zone will be indicated on figure 5 for the case of x = 0. Oscillation for
positive A 1is unstable in the domain bounded by +UL and +LL. Similarly,
oscillation for negative A is unstable in the domain bounded by -UL and -LL.
Figure 5(a) reveals that in the range of Q shown in this figure the follow-
ing cases appear in turn with increasing Q.

S stable oscillation

(25,1U) » (1S,2U) - (2s,1U) = (1S)

U unstable oscillation

Variation of the instability zone with «k will be given in figure 6. The
existence of « makes the unstable region of |A| small. Figure 7 shows the
angle of phase difference according to « in relation with Q. Finally, time-
dependent function X(t) will be shown in figure 8 for some fixed . Note
that the maximum IAI of an Q does not necessarily correspond to the one of
three X(t) that has maximum amplitude, and the term ©¢; cos & 1is dominant in
X(t). Also figure 8 indicates that shell surface does not vibrate symmetri-
cally with respect to midsurface. There is a slight difference in lA[ of
p=0.1 and p = -0.1 in figure 3, but figure 8 shows that in the final results
for X(t) only a difference of phase angle appears.

All B3 are positive, in these examples, B> > 0 in cases (a) and (b), and
B> < 0 in (¢). In all cases X(t) satisfies the condition

€

3
Then it can be concluded from equation (8) that the effect of softening

and hardening appears alternately according to the change of sign of X(t).

|X(t) ] <

Cases (a) and (b) Case (c)
X(t) positive hardening softening
X(t) negative softening hardening

The deflection shape W(¢) in case (a) is similar to that in case (b) but
has a different magnitude (figs. 2(a) and 2(b)). However, the final results
for w(¢,t) differ only slightly.

Similar figures are shown in figures 9 through 14 for the clamped edge
condition.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., 94035, Sept. 24, 1971
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APPENDIX A
DETERMINATION OF a; AND Cj

The expressions for the stress function ¢ and the longitudinal
displacement u contain the terms aj and C; (see eqs. (6) and (7)). These
terms are evaluated as follows. From equation (5),

e

A;P, hX(t) (A1)
i=0 1

33
02 _ 't 1 0v2
W) Z Z AjAPL P! X2 (e) (A2)
1=0 j=0 173
If equation (A2) is set as
24
w®)? = E C Pph2X2 () (A3)
k=0

the coefficients of this finite series are determined with Legendre polynomials.
From the expansion (ref. 7),

n+m

PnPp = Z n,mcrpr

r=|n-m|

it follows by differentiation with respect to ¢ that

n+m
plpl = E D_P
n m n,mzrr
r=|n-m|
where
1 ... s
1,jDk - ? {1(1 + 1) + J(J + 1) - k(k + 1)} i,_’]Ck

12




Ri_j+kRy-iekRivj-k
2

2k + 1 2 2
i,i% =7 R
>J i+j+k+1 i+j+k
2
R = (2s - 1!
[ s!
for integer values of s,
(1)t = 01! =1
and if Ii - j| is even, then i jDk =0 (k is odd)

li - j| is odd, then

i,jDk 0 (k is even)

Then the coefficients Cyx of equation (A3) can be determined as

3 3
= AL D Ad
Cx Z ZAlAJ HioHs Kk (A)
i=0 j:O J
At cos ¢ =1,

P =0, P =1 (m is arbitrary integer)

These coefficients then satisfy the relation

2u 2 2
E Ck = E Ck = E Ck =0 (A5)
k=0 k=0,2,4,. . . k=1,3,5,. ..

The nonlinear terms of compatibility of equation (3) can be expanded in a
series of Legendre polynomials.

VAT
2
How)w®® - (0% - w®)" =) ap, (A6)
i=p
The left term of equation (A6) can be represented by substitution of equation
(A3)
13



cos ¢ 1
- 2 :Ckpk T 2 sin ¢ C.Pyr

k=0 =0
Then
T 21
_ 21 + 1 1
a; = -Ci —-——z——-J. E CrPr Pi cos ¢ do
0 T
2
_i-1 2i+1§: i+r+l
- 2 Cl + ———4——— Cr{ ("1) - 1} (A7)
r=i
because
(
0 r+1°%i
m™
1 B 21 .
Pr Pi cos ¢ do = | T T r=1i
0 .
\1 _ (_1)1+r+1 r> i

From equations (AS5) and (A7)

i
o

az

14



APPENDIX B

DETERMINATION OF E(i,j;¢q)

The coefficients appearing in equation (8) depend on the quantity

E(i,j;%g) that is evaluated below.

%0
J; Pin sin ¢ d¢

E(1:J;¢O) =
- 1 [%in s(p.lp, - P.1p )]¢0
i@ +1) -3iG + 1) i j i'do
= . : 1 _ 1
G+ -3G+D [5“‘"’“’1 Py = F; P) \q» %0
¢0
E(i,i;¢q) =f PiPi sin ¢ d¢

1 1 1
= 172 > - 5 {P;P; cos¢}\
$=dg
[i/2]*
- E [2G - 2p) + 1]E(i,1 - 2p;5¢o)
p=1
by using the following expansion

4 [i/2]
Ty Pi_1 = (-1) E {2(1i - 2p) + 1}Pi—2p sin ¢

p=1

*[i/2]: gaussian symbol

(1 #3)

15
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TABLE 1.- NUMERICAL VALUES FOR CONSTANTS USED IN

EXAMPLE CALCULATIONS

Hinged edge Clzzpzd
(MosH15H2,13) Case (a) Case (b) Case (c) (0,1 g 3)
(0,1,2,3) (0,1,2,4) (0,2,3,4) 2T

Ag -0.2 -0.2 -0.2 -0.2
Aq -.42379 -.35341 .73030 .035121
Ao -1.19505 -.87531 1.85114 .15909
Aj -.36864 .29794 1.79404 .54274
8o .74510 .43495 1.93892 .00310
B1 .72470 .78662 .94502 36.67234
B2 4.35677 2.78319 -6.08482 2.40445
B3 4,23661 2,25442 54.60953 1.35567
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(a) Ui = (0,1,2:3)

Figure 1.- Deflection shapes for various open angles; a/h = 100, hinged edge.
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(®) 1, = (0,1,2,4)

Figure 1.- Continued.
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() by = (0,2,3,4)

Figure 1.- Concluded.
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bf‘ 60° 120°

(a) vy = (0,1,2,3)

Figure 2.- Deflection and in-plane displacement shapes for a shell of open
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