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NONPLANAR METHOD FOR PREDICTING INCOMPRESSIBLE
AFERODYNAMIC COEFFICIENTS OF RECTANGULAR
WINGS WITH CIRCULAR-ARC CAMBER
By

John Everett Lamar

ABSTRACT

The development of a nonplanar lifting surface method having a
continuous distribution of singularities and satisfying the tangent flow
boundary condition on the mean camber surface is given in this
dissertation. The method predicts some incompressible longitudinal
aerodynamic coefficients of rectangular wings which have circular-arc
camber. The solution method is of the integral-equation type and the
resulting surface integrals are evaluated by either using numerical or
analytical techniques, as are approprisate.

Applications of this method are made and the results compared
with those from an exact two-dimensional circular-arc camber solution,

a three-dimensional flat-wing solution which represents the camber by

a projected slope onto the flat surface, and a flat-wing experiment.

From these comparisons, the present method is found to predict well the
flat-wing experiment and limiting values, in additioﬁ.to tﬁe center

of pressure variation at an angle of attack of zero for any cémber. For
wings having camber ratios largér than about 1.25% and moderate to high
aspect ratios, the results of the present method dete?ioriate due to the

inadequacy of lifting pressure modes employed.
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VI. INTRODUCTION

Solutions for the steady aerodynamic characteristics of wings
began with Prandtl (ref. 1) and his famous "lifting line" conéept. In
this concept, the loading was concentrated along a straight line and
all induced effects on the wing came from the trailing vortex sheet.
The local effective angles of attack were composed of the geometric
angles and the induced angles along the lifting line. This concept
was useful in predicting ﬁhe characteristics of lifting systems
employing rectangular wings of high aspect ratio by representing the
span loading as either an averaged constant value or a semi-elliptical
variation. However, as the planforms became more complex, additional
improvements in the theory were neceésary in order to predict the
aerodynamic characteristics. The improvements can be classified in
three ways: (1) extensionﬁgf Prandtl's concept to other planforms,
(2) inclusion of the induced-ca@ber effects. in the 1lift distribution,

and (3) allowance for nonplanar lifting systems (other than biplanar).

Prandtl's "lifting line" method and the extensions employed té
allow for the consideration of other than rectangular planforms provided
span load distribution, and in somg instances, determined the induced
drag as well. For instance, Multhopp (ref. 2) deviéed a method for deter-
mining the span load distribution on any: wing that coula be represented
by a straight lifting line. Mutterperl (ref. 3) developed a metﬁod for
determining span loading on sweptback wings by‘using a bound vortéx
(that is, a lifting line of variable strength) lying along the quarter

" chord of each wing panel, as well as a sheeﬁ of trailing vorticity.



The strengths of the vortex system were constrained to give tangent -
flow on the wing‘three-quafter chord line. This rélationéhip betwéen
the bound-vortex position and the tangent-flow-boundary line is the
same as for the two-dimensional solution, which is one that develops
the correct 1ift value. Weissinger (ref. L) developed both lifting-
surface and 1lifting-line methods for sweptback wings, and used the
tangent flow constraint at the three-quarter-chord location to obtain
solutions. |
The inclusion of the induced-camber effects on three-dimen-

sional planar wings is seen in two important ways. One is the removal
of the constraint that the section center of pressure be at the
quarter chord, and the other is the improvement in predicting the
lifting-pressure (difference betwgen-lower and upper surface
pressures) distribution because of the increased amount of information.
All of this is.accomplished by either expanding ﬁhe number of chordwise
mode shapes or placihg additional bound-&ortex elements and éontrol
points along the chord, or, as Faulkner (ref. 5) did, with a combina-
tion of the two. The lifting surface method of Faulkner's is called
"vortex lattice theory" and is based on representing the induced
effects of the lifting system by using a lattice of horseshoe Vortices,l:
the strengths of which are determined by a series of modal functions.
»In this solution, there would be as many coefficients in the éefies as’
control points (points at which the tangent flow.ﬁoundary conditions
are satisfied), but not as many as there aré horseshoe vortices. Also,

Multhopp (ref. 6) developed a lifting surface method called "subsonic



lifting surface theory" which used two modes of pressure chofdwise and
two control points at several spanwise stations and could be gpplied to
arbitrary pianforms; |

Since reference 6, there have been many other lifting surface
methods published for steady subsonic flow. ZEach new method,'in
'>general, begins with ah already-developed fundamental method and seeks’
to improve its accuracy by (1) adding additional chordwise loading |
térms‘(refs. T and 8), (2) reformulating the solution (reff 9),"
(3) performing the integrations differently (ref. 10), or (k) extending
the original concepts. For example, extensions to Faulkner's work
can be made éasily by requiring that the distribution of vortex
strengths be individually determined (not expressed in a series) by a
solution to a set of iihear simultaneous equations employing as many
control points as_unknown vortex strengths. (See, for example,
references 11, 12, and 13.) Many of the latter-referenced methods
would not have been practical to usé before the advent of the high-
speed digital computer. |

Solutions for nonplanar lifting'surfaces, such.as_wings with
dihedral, have beeﬁ made with thé vortex-lattice ﬁéthod (refs. 11 and
14), kernel—functioh-integral equation (ref. 15), and an asymptotic-
expansion procedure (ref. 16 ). Other nonplanar solutions are. avail-
able_for intersecting téil surfaces; among them references 11, lT;
and.l8. In each.solution, theiboundary conditioné are:satisfiéd on -
the chordal plane. However, for wings which are nonplanar in thei

chordwise direction (that is, for ahcambered wing), simplifying



assumptions are usually made in order to effect a solution. The major
‘assumption ié that of satisfying the.bouhdary conditions of the cambered
wing on a lifting surface lying in a plane formed by the longitudinal
and spanwise variables of a wind axis system by projecting the wing
slopes onto the plane. (See sketch 1 and, for example solutions, see

references 8 and 1k.)

Cambered wing secfion/_\

Flat wing represention L L J

Sketch 1. Canmber representation in flat-wing solution.

By dding this, the effect of the vertical displacements between

. influencing and influenced points is not taken into account. Another
method (ref. 19), which satisfies the boundaxy conditions on the surface
of the cambered wing, does not satisfy the Kutta condition at the |
trailing edge because the sblution is based upon solving a serieé of
two-dimensional crﬁss-flow problems. The formulation of the vortex-
lattice method, as given in reference ll,‘appears to be general enough
to account for vertical displacements as well as to satisfy the boundary
conditions on the surface. However, constraints would have"té bg
imposed in order to guarantee that the traiiing Vértex syétem onl&
exited the wing at the trailing edge.

In consideration of the limitations of the methods just dis-



cussed, it seems appropriate to develop a solution for the cambered
wing problem which would (1) satisfy the boundary conditions on the
surface, (2) account for the vertical displacements betﬁeen influencing
and influenced points, and (3) satiéfy the Kutta condition.at the

' trailing edge. This dissertation describes such a solution for

rectangular wings having circular-arc camber (see sketch 2).

- | —
| \
/

I J N/

V,X V,X
Y <% | Z

Sketch 2. Representation of a rectanguler wing
having a constant circular-arc camber.

The solution developed herein uses a more general form of the subsonic
integral equation than the methods discussed for planar wings; because
it must relate the normal componént of pérturbation velocity - rather
than the downwash - to the lifting pfessure, and it muét include the
effects of vertical displacement. Furthermbre, the present method of
solution employs both numerical and analytical techniques. The latter
are applied in a small region (square box in the surface) surrounding
the control point, because it is at the control pqint that thé integral
equation has a singularity. This technique enconpasses expansibns in
small perameters, followed By analytic integrations over the_box.

Outside of the box, the integral equation is evaluated numerically,



Results obtained with the present method are compared with both
an exact two-dimensional circular-arc-camber solution and a three-
dimensional flat lifting surface which employs the slope-projection
procedure to account for camber. Due to the general unavailability of
experimental data for circular-arc-cambered wings, comparisons with .
experiment are only made for flat wings. From the comparisons made,
conclusions are drawn about the applicability of the present method
over the camber- and aspect-ratio and angle of attack ranges. In
addition to these applications, the present method may be extended to
certain wing-flap systems that approximate the circular-arc-camber
constraint.,

Three appendices are givenﬁ appendix A discusses some of the
integral types which must be integrated over the box surrounding the
control point; appendix B presents the equations used to compute somé
section and wing aerodynamic coefficients; and appendix C gives the
development of the aserodynamic characteristics of the two-dimensional

circular-arc airfoil, included herein for completeness.



VII. THEORETICAL DEVELOPMENT

Basic Formulation

Concepts

The method of solution for pressure loading over a wing
having circular-arc mean camber line (sketch 2) will begin with
Poisson's equation (see ref. 20), as does the flat-wing solution.
The basic concept hgre is that the general perturbation velocity
field will be the same for both wings, with differences occurring
primarily in the vicinity of and aft of the wihg. It is possible,
therefore, to make use of some of the solution techniques which have
been developed for the flat wing in seeking a solution to this
problem.,

From reference 20, the three-dimensional Poisson's equation
can be written for the perturbation velocity in the freestream direc-

tion as

s =k f f [ronavede ff[od (-1 2]e
v

S

By representing the wing surface with a sheet of pressure doublets, the
perturbation velocity can be related to a velocity potential. The

velocity potential due to each pressure doublet is of the form

-(z-27)
———~?l— and is a solution of Laplace's equation
r

vid(x,y,z) = 0 (2)



Upon relating u(x,y,z) to ¢ by
u(x,y,z) = ¢X (3)

substituting equation (3) into equation (2), and interchanging orders

or differentiation, it follows that
v?u = 0 (k)

Hence,
u(x,y,z) = —%‘-ﬂ— f{[u .8_2. (%) - ;_L'- _g_z;] 4s . )

The surface S includes both the upper and lower surfaces of
the wing, as well as the wake upper and lower surface area. Since
the flow is assumed to remain attached to the wing, only leaving at
the trailing edge and thereby satisfying the Kutta condition, the
perturbation velocity in the freestream direction on either side of
the wake surface must be the same. Consequently, the lifting pressure

is zero. Hence, upon examining the wake portion of equation (5),

/][ R PR Y

Wi

(L

it can be seen thaf, since Y, = 4, and 'g'ﬁ (%) on the upper surface

is opposite to the same term on the lower surface, the first terms in

each integral cancel. That is,

fj[[uu - uy] E'r-f (%—)]ds =0 (6)

Swy



Also, for wake shapes that are straight or circular arc, the normal
derivatives of wu are continuous across the wake because they are
related to the continuous streamwise derivatives of the normal velocity
components through irrotationality. This leads to cancellation of the

second terms in each integral. That is,

/[[_;?_‘E]ds+ [f_;f_u_l s = 0 -

Thus, the integral equation that remains to be evaluated is

! 9 1) _ 1wy 13111]
ulxoy,z) = H{[/[“u"a'ﬁ(? r 8n]ds+//[u1 m\r/ T n ds}
Su

(8)
The coordinate system chosen in which to solve this equation
is cylindrical polar because of the ease in applying the boundary
conditions. In this system, the mean camber surface lies on a surface
of constant radius. Hence, the normal direction is along a radius
vector R¥, the tangential direction is along ¢§ , and the spanwise

direction is along yy- This leads to

= 1 - 3 (1 1 oy ouy
seren) = e () - ) (7 - = s
R*:R R*:R R*:R
s (9)

From sketch 3,



10

Ut,
Vsing
Vcos ¢
Uy Vv
R a. Upper surface

b. Lower surface

Sketch 3. Velocity diagram on the surface
‘of a circular-arc section at R, d

‘it can be seen that

uu = Etu sing - En cosy (10a)

and
u, = ut1 sing -~ u, cosd (10b)

By differentiating equations (10a) and (10b) with respect to R¥, the

following equations are obtained:
ou, ou 31—1n
—u = sin'a u _ COS'8 In—

OR* oR¥ oR¥ (11a)
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and
Ju R
.ou
_ail_ = sj_n'8 __El - COS"3 1
OR¥ OR* OR¥* (11b)

with ﬁn being continuous across the plane of the wing, or along
R* [

The irrotationality condition, when written in cylindrical-
polar coordinates, gives the needed relationships between the per-

turbation velocities tangent and normal to the camber surface as

au-tu - _ L 3En _ u-tu
oR¥* R* 3¢ R¥ (12a)
and
dut, - 1 duy ug 1

TOR¥ ‘R 30 R¥* (12b)

Therefore, when the results of equations (1la), (11b), (12a), and (12b)

are substituted into equation (9), the result is

u(x,y,z) = %?r' //I:(Etu-gtl)sino 513_*(%
S

*:R

- Sin l’ <- utu + u‘tl ds (13)
rR¥
¥=

Let

Yo E (ug, - utl) (1ka)
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Then

wor) = gy [ () @) e o
~ R¥=R R¥=R

The velocity potential associated with this perturbation velocity can
be determined by .
¢(x,y,2) = _/‘xu(X' Y ,2z) dx' (15)
-
The minus infinity value is chosen as the lower limit because there

the velocity potential is zero.

- @ x',y,2) (x,y,2)

(0,y,0)

Sketch 4. Path of first level of
integration.

From sketch 4 it can be seen that
x' = R' cos@' (16a)

and hence

dx' = dR' cosB' + R' (-sin6'dad') (16b)
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The x' integration must take place at -a constant 2z elevation,

as in the flat-wing solution; therefore, by setting
z = R' sin®' = R sinh (17)

equation (16b) can be re-expressed in terms of the constant gz as

dx' =d(z/sinb') cosb' - zas' (18)
Since
dR' = dR' d9'>— d(z/sinb") (dev = _~zcogf’ 1
3" ST aer = g (o) ()
then
2
y - —zcos®f! ( ) _ -zde!
&' = —qpzer \d0')- 248" = oohev (20)
or
' = ~-R'd6' = -Rsinbdn’'
dx sinb' sin20@!’ (21)

and the limits of integration go from m to 6. Therefore,
0(R,0.9) = 1 [*ffy. sino[ 2 (L 1 _Rae"
s T ¢ =N\ 7 L v dS{ ——%5— )sinb
sin®6
m g R¥=R R¥=R

Once the velocity potential is known, differentiation with respect to

R will yield the perturbation normal velocity. Hence

o, (B.0y) = 2R (23a)

oR
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and so

1t

T, (R,0,3)

ea --chinﬁﬁsine 3 (l
R sino" OR¥® ?)

1
+ [ ———
(R*r

) J} a6'Ra ddy,
R¥=R R¥=

(23b)

After performing the indicated differentiation, equation (23b) can be

written as

s - [l 4 )

—ﬁchin‘ssiné 92 ( )
sin“@! OROR*

] } d6'Rd Y dy;
*¥=R
(24)

or

3

+ ﬁ(%‘i 5%-(%)) ) }}de'd ddy,
R¥=

(25)

The total normal velocity of a point lying on the wing surface (R =R)

must be zero in order for the flow to be tangent to the surface;
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hence,
lim Uy (R,8,y) + V cos® = 0 (26)
B+R
Since
\s
oe—te_,2v % (21)
¢ pVsind 2V 2sind

equation (25) can be re-expressed as

- 6
l‘im' Iln = _cote = lim 1 - .f_{_A_(_:.E 1 Y
E*R  Vsin® T BRI 2 sin?0

¥ 5 m
- 2
2@ (_;_) o g RN B
JR* ¥ R¥r dR3R* \Ir
R¥*=R IR*=R R¥=
ﬁ‘(iz-jig-(%)) }de'dddyl (28)
R*=R"

Now r (see sketch 5) is defined as the straight line distance
between a point on the pressure doublet sheet at (R¥,¢, yl) or (xl,yl,zl)

and a point on the path of integration (R',8',y) or (x',y,z)

r -_-\j(xl -x")2+(yy - y)? + (2 - 2)? (29a)
where

X, = R¥cosd (29b)

x'= R'cosO' = R sinfcoth’ . (29¢)
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¥y =¥y (294)
y=3y (298)
z, = R¥sind (29f)
z = R'sinB' = Rsin® (29g)
(x',y,2) Field point

Doublet sheet

Wing section

Sketch 5. Distance between point on pressure doublet

sheet and a point on the path‘of integratidn

For R¥ = R, the sheet of pressure doublets is coincident with the wing
surface, and for R-R, the field point moves to the surface since this
is where the boundary condition of téngent flow must be satisfied. By
performing the indicated partial differentiation and then taking the

limit as R»R, equation (28) becomes after simplification
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' )
1lim R JJ‘ (’.Yl - y)z o - 46’
cot6|y = RoR 8 SACP ) T czsin - r3sin?0’

0 6139 0 a6’
-2zcosﬁf c—c;s—%-— + 3z f T (Rzsin?d)
mw r sin’o' r°sin’g’

1

5

0
+ EQEQLQQL_[—2stin§cosﬂ + (yl - y)? cosﬁ]
r’sin’e’

0 '
+ -E—QQT—— [Rz(coszﬂ - sin?9) + (y; - y)? sinﬁ] aday, (30)
n T osin 6! .

First Level of Integration

Fach of the ©' integrals in equation (30) can be integrated

directly by employing the transformation
p = cotH' (31)

which results in

ae' _ 1 Rcosd - 2zcoth
, : > — -1
- r3sin2@’ z[ (Rsind - z)? + (yl - y)21 | /D + Beot® + Ccot?0
(32a)

f cosf'df’ _ -1 °
; T'sin®6'  z?[(Rsind - z)? + (Yl - y)?]

. Rzcosdeotd - R?2 + 2Rzsimd - z2 - (y; - ¥)?
VD + Bcot® + Ccot?®

+ Rcosﬂ] (32v)



0
J dg' _ 1 Rcosd-zcot® o
I r®sin?0' - 3z[(Rsind-z)? + (yl—y)z] vD+Bcot6+Ccot 28

1, 2 ) 2
° + -
(D+Bcot6+Ccot26 (Rsind-z)? + (yl—y)z (Rsind-z)2 + (yl-y)z]
(32¢)

cosf'de’' _ 1 + Rcosd de’ (324)
r3sindo’ 322 (D+Bcot6+Ccot?0)*/2 2 r°sin?g’ 3
™ il

and

6 0 )
ae" 1 ae" 1 [ R ] J‘ 6"
—_——— == ————— + —|-R*+2Rzsimd - (y,-y)? —_—
’I'r; rSsin"0’ sz r3sin?@’ z? "1 y) T r’sin?e!

T
0
2Rzcosd cos0'dn!
Ao A £S5V BN 2
z _[ r3sinde! (32¢)
T
where
r = VD + Bcot®' + Ccot26' (33a)
and
D = R? - 2Rzsind + (yl -y)% + 22 (33b)
B = -2Rzcosd (33¢c)
C = z? (334d)

With the substitution of equation (32) into equation (30) and the

resultant simplification of terms, the resulting equation is
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tGI = 1im R AC Sz}:zli-—2RsinGSinﬂk+ 3Rsin?y ®
CO¥Ply = Rsr B . P R

1 R(cosd-cosb) ]
z[(Rsind-z)2 + (yl—y)z] YD+Bcot8+Ccot 0

2 m? p2 s 2 2 s 0 s 8 (o )2
peos?d [R cosd cos®-R°-R°sin®0+2R*sinBsind-(y,-y)

+

z[ (Rsind-z)? + (yl—y)z]l v/D+Bcot8+Ccot?H

+Rcos6]
+[2R2(sine(coszﬁ-sin2ﬂ) + sin (sinze—coszﬁ)) + (yl—y)20

° (sinﬁ—sine+ 09528)]\[ 1 R{cosd -cosh)
sind JI(RSinﬂ-Z)z + (y1-¥)2]|/D+Bcot8+Ccot“6

( 1 2 ) 2 ]

[} + -

D+Bcotf+Ccot?6  (Rsind-z)? + (y;-y)*/ (Rsind-z)? + (v1-5)2]
+[2R2sinﬂcos (sind-sind) + (yl-y)zcos§+

1
o dday 4
z(D+BcotB+Ceot20)3/2 1 (34)

Pressure Functions

The unknown ACP distribution appearing in the surface integral
of equation (34) is prescribed herein (see sketch 6) to be composed of
up to five terms in the Birnbaum series chordwise with the undetermined

coefficients being functions of spanwise position.
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4
3
I
Th 2o
2 n
2 T
zh
r
he lzth“ Ih
2 3
|
0
Spanwise mode shapes
-1
0 /2 T
€
Chordwise mode shapes
Sketch 6. Loading mode shapes.
Hence,
oy N-1 2 -
C (e,y ) = y m
p 1 c Y1 1 - (Y1 h_(e) .
nz; ; nm(b/2> (57z) ™ (352]

=0
even
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where

_2 ¢
ho(s) = = cot > ,n =0 (35b)

2 .
hn(e) = = sin ne , 1] <ngs5s (35c)

Sketch 7. Relationship between € and LI
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Final Form of Integral Equation

Since the chordwise pressure modes are defined in terms of a
variable, € , which goes from zero at the leading edge to m at the
trailing edge, it is necessary to change the chordwise variable used
in the surface integration fromd to € . Sketch T shows the
equivalent edge locations in the € and 9 coordinate variables.

The general expression relating € and 9 is

—

€ = cos ll - %B-[cos(ﬁ +a) - cos(60+-a)]l (36a)

and so

_ ¢ sin € de
a3 = -ZR Sin(d +a) (36v)

Hence, by combining equations (34), (35a), and (36b), the following

equation results:

b/2 0 +

N-1 2
cotg], = Lm R . en” Vi-n® [, ()} sincdedy;
y R+R B 2: nm 2R n “sin(d+a)
n=0 m=0 /2 o
even

(37a)

which can be written in a more convenient form as simply

ﬁ‘*R lg'ﬂ' nm sin(V+a

n=0 mz0, —b/2 0

_ b/2 i t
cotGIy - 1lim _c Si o T,'m /l_nzf hn(s){} sinededy;

(37v)

Tsee equation (34) for this expression.
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General Surface Integrations

Since the 8' integrals have been determined and the pressure
mode shapes specified, the surface integration can now be considered.
This is accomplished, in general, by means qf numerical quadrature.
The quadrature basically employed is Gaussian in both directions with

the exceptions (as shown in Sketch 8) over the spanwise range which

Number of Integration Steps
Region Chordwise Spanwise

I
Ir 50. Gauss 30 Gauss
II 100 Gauss 70 Gauss Vv
IV¥ 200 Gauss 51 Trapezoidal
I ——— ———
Y
b
20 b
% = ol 20
o |-

image point(R,180°-8,y)

' Control point
m / (Raety)

I

i

Sketch 8. Integration regions and number of integration
points used in each for. low-to-moderate camber.
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correspond to the width of the square boxes centered around the control

and its image point, the image point only occurring when

6 <180°-6<8, .
o) 1

In this spanwise range, 51 evenly spaced points are employed in the trape-
zoidal rule integration, and Gaussian quadraturé, which employs 200
steps divided according to arc length shead of and behind the boxes, is
used chordwise. The number of Gaussian steps and trapezoidal rule points
have been established by convergence studies for an aspect ratio 20
rectangular wing with a box length of .0l chord and a camber ratio of
.00125 at a = 50. This set of integration steps and box length have
also been found to be adequate for cambered wings of other aspect ratio.
Because numerical integration cannot be carried out across the

high-ordered singularity which exists at the control point, of the form

ZE?—%~Z§7 ;% , this area is split off from the genersl surface

integration and is treated separately. The image point, which is the

cambered wing equivalent of the flat wing singular strip, has a

singularity of the form 1 and [ 1 ]2 3 hence, the
Az7 + Ay? Az + Ay

box surrounding it must also be broken off and treated separately. The

procedures employed are described in the following sections.

Surface Integration Over the Control-Point Box

The surface integration over the box is accomplished by:

(1. establishing basic expansion variables for small spanwise and
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angular displacements away from the control point; (2. using these
expansions to approximate each fundamental form which appears inside
the braces in equation (34); and (3. using finite part concepts,

integrate the resulting combination of forms over the box.

Expansions

The expansion variables in which the expansion process is to be

conducted are

y, = yH+w (38)

d = 0 +0- ' (39)

where w and 0 are the small positive displacements in the spanwise
and angular directions, respectively. The angular displacement is
chosen in terms of 9 rather than € (the coordinate in which the

loading is specified) in order to simplify the expansion process.

Approximate Forms

By employing the above expansion variables, the following
approximate forms are obtained near the control point for the general

expressions given in equation (34). They are to O(w?) and O(o?):

2 2
(y1-y)* _ PRsinbsind + 3Rsin?d = %— + R(sin?0 - 20%sin?0 +
R .

302co0s%6 + LosinBeosh) (Loa)
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(Rsind - z)?2 + (yl—y)2 + R202co0s?6 + w? (Lob)
D + B cotB + C cot?6 = R%0? + w? (40¢)
52
R(cosd - cosf) = =R 5 cosb + Osinb (4oa)
52
cos™d = 1-3 cosB - osinb (koe)

R?cosd cos® - R? - R?sin?0 + 2R%sinBsind - (yl-y)2 =
- [R(0?/2)(1+sin?6) + w?® - R%0sinBcosh] (Lof)

2R?{sinB(cos?d -sin?9 ) + sind (cos?0 - cos?d )] =

(-ocosf + g-ozsine - o2sin®0) 2Rr? (ﬁOg)
29 2
)2 aind —ed cos - 2 cos“B
(yy-y)* sin? -sinb + =g @ T5ing (kon)
oR%sind cosd (sind - sinB) + (yl—y)zcosﬂ + 2R?[gsinBcos?H
+ 02(cosh - g-sinzecosﬁ)] + ®%cosb (Loi)

These apprbximate forms are generally applicable for all angular locations

of control points between 6y eand 6; . An exception to this is at

(o]

8 = 90° where the approximate form of (Rsind - z)2 + (y1 - y)? , that is,

R%0%cos?6 + wz, tends to simply w2 . If more terms are retained in the
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original expansion of the above expression a more accurate result is

obtained and it is
0“
Rzln—-sinze + 0%2cos?0 - 03sin6cose] + w2

It can be shown that this more general form tends toward the original
form for (%-— cotO)2 << 2cot?® and tends to RZ%::+ w2 for 6 - 90° s
a much different result than obtained previously.

Both approximate forms, when used, would appear in the
denominator and hence be singular in ¢ . However, the more general
form would be singular in O to an order higher than that encountered
with the original form (¢" vs. 02) and hence lead to new expressions
to be integrated. These integrations show that the box contribution to

© 1limit of the O not near 90° solution (original

be just the 6 = 90
approximate form) whose deﬁelopment follows.

Ffom a practical standpoint 6 = 90o should be avoided as a
control point location so that numerical difficulties outside the box
associated with the higher ordered singularities can be circumvented.

It has been found that in order to assure convergence of the numerical

integrations |6 - 90°| should be less than 1.5° .

Integrated Results

With these approximated forms substituted into equation (34),

the surface integration over the box becomes
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lim R w® 2 s . 2 s 2
R*R 8m ff ACp(e,y) {[R + R(sin®® - 20°sin®6 + 30%cos“H
-w -0

b

-1 [R[(02/2)c036 + osinf] . 1]

: l;cjs:mecose] z(R°0°cos?6 + w®) \/m

-(2 - 02)cos® + 20sind [R2(02/2)(l + sin%0) - R%0sinfBcosh + w?
z(R?0%cos’6 + w’) v R%0% + w®

+

R((l—cz/Q)cose - OSinG)]

+

[(~ocosB + %stine - 0%25in%0)2R? + w?cos?0/sinb] ®

o 1 |—R[(02/2)cose + 0sinB] 1 . 2
R“0°cos“0 + w* L /RZOZ P R%0* + w? chzcoszeﬂx)?)

2
R°0%cos?6 + w?

] ] + [2R2 (OSin6c0526 + 02(cosb - 5/2 sinzecose))

2 1 dodw (b1)
+(1)COSG] Z(ROJ' +wz)312}

where

RO = W (42)

This integral expression can be integrated+ with é.ny standard set of
integral tables, such as reference 22, and the result is to o(6°) (to

be read order of G to the zeroth power, i.e., 0 independent terms)

TSee appendix A for an example of the manner in which the
integrations must be conducted.
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L2 e
Lsin® [1 - Coz o . °°§ e .. ] ACp(B,y) (43)

where

1 2 ~-
ac (0,y) = Nzl: Z (%72)m\/ - (%2)2 h (e,) (k)

There are some interesting features of this box integration result. The
first is that the lowest ordered non-zero result does not depend on the
box size. The second is that, like the flat-wing solution (unpublished
analysis performed by Mr. P. J. Bobbitt), the leading term is determined
to be basically a hACp(B,Y)- Thirdly, the cosine terms can be

thought of as an ()(50) camber correction to the flat-wing solution

(6 = 900), which becomes more important as the camber increases.
Fourthly, the O(0) terms which are omitted can also become important'
for © angles near 0° and 180° becauss there the ()(30) terms
approach zero. However, since the effect of the @(0°) terms can be
controlled by selecting small values of o , and since some of the
O(0) terms were obtained by expanding sbout 6 = 90° , the results
presented herein are only accurate to ©(0°) . Hence, solutions for
very large camber ratios, which lead to 0 angles near 0° and 180° .

are attempted with caution - as should those employing the slope-

projection technigue.

Surface Integration Cver the Image-Point Box

The same procedures used in arriving &t the expanded form of the
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general expression are employed about the image point, with the exception
that, instead of expanding about 6 , the angular expansions take place
about 180° - 8 . This only changes the signs on the cosf terms

which result from the terms sin(180° - 6 + o) and cos(180° - 6 + o).
When these changes are.followed through the simplified integral equation,
integrands which yield the O(c°) terms are determined to be identical
to those for the control point box, but they do have slightly different
coefficients. Thus, the image point contribution to the normal induced

velocity at the control point is to O(5°)

cosH . cos?H cos"0 o
1+T<§>?6T> bsin® |1 - 3 = Acp(18o -0,y) (Ls)

This is an interesting result in that for control points in the first
. . . cosf

: ] +
quadrant (image point ahead of control point) the term (l TEBEET)
becomes 2 , and for control points in the second quadrant (image point

. . cos . .

+ zero.

behind control point) the term (l ngggT) is zero. The behavior
of this term is identical to that of the modified kernel function in

the flat-wing solution at the spanwise location of the singularity.

Solution Technique

The solution of the subsonic integral equation given in
equation (34) is made by requiring that the flow be tangent to the
surface at a number of control points. There are as many control
points as there are pressure mode-shape combinations. For each control
point, the surface integrals are evaluated either numerically or

analytically for each mode-shape combination. The sum of these
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integrations is stored along a row of matrix A. The unknown coefficients
of the pressure mode-shape combinations, Chm * Y€ determined after
both the boundary condition value and influence coefficient matricies

are filled by solving the matrix equation

{cotely} = [A] {Cnm} (L6)



VIII. RESULTS AND DISCUSSION

General

In this chapter the results of calculations made using the
present method with various box sizes, control point locations
and number of control points are analyzed followed by a discussion of
results for specific wings. The first wing results presented are for
a flat rectangular planform for which experimental data are available
and are of interest primarily for the check it provides of the present
method. Cambered wing comparisons are only made on a theoretical basis
because an extensive literature search uncovered only one paper (ref.
22) containing experimental data for cambered wings of the type
considered herein. Unfortunately most of these data were obtained with
the wing having some regions of separated flow. This happened because
the airfoil shapes used were developed from thin plates which had only
simple rounding at the leading edge and hence did not promote flow
attachment. The present method is developed for attached flow conditions
and hence not applicable to these data.

The theoretical results used to compare with those of the
present method come from methods which account for camber by the slope-
projection technique with the lifting surface constrained to the X-Y
plane; in particular, the methods of Scholz (ref. 23)and Multhopp (ref.
8). Comparisons are made for rectangular wings over an aspect ratio,
camber ratio and «a range.

Applications to rectangular wings of aspect ratio less than four

are not attempted with the present method because only two spanwise

32
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loading modes are eﬁployed. These two modes.providévfor only two
spanwise rows of control points on a panel and are insufficient to
insure tangent flow when the induced effects are large across the span.
The use of additional spanwise modes from the same series (eq. (35a))
would alléw for more spanwise rows of control points and hence provide
better solutions. However, this is not attempted herein because of
the substantial increase required in computer time.

A study is also conducted using two-dimensional theory for a
highly cambered section to: (1) provide limiting values for the three-
dimensional results, and (2) establish relationships between the
results at two different angles of attack which can be cbmpared with

those of the three-~dimensional analysis.

Variation of Results With-

Box Size

The integrations over the box of the approximated singular and
nonsingular terms have yielded a result which is independent of the
box size to ©(g’) . However, the size.of the box can still have an
effect on the answers by being either too large or too small. If the
box is too large, it wiil include those portions of the wiﬁg which are
outside the valid range of the functions approximating the singular
part of the integrands. If, however, the box is too small the ﬁumerical
integrations outside the box will suffer a loss in accuracy, unless
substantially more integration stations are used, because of the close
proximity of the edge of the box to the singularities. These two

extremes are illustrated in Table I.
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TABLE TI.

Number of Integration Stations Required for Different Box Sizes
and Effect of Box Size on Aerodynamic Characteristics for an
A = 20, h/c = .00125 Rectangular Wing at «a = 5° .
Control Points at x/c = .345, .905.

Integration Steps in
Box Size Box Strip Aerodynamic Characteristics
Chordwise Spanwise CL XEP CD,i CD,ii
.1 200 51 .5332 .2524 .0048 |-.0008
.01 200 51 4959 | L2559 | .ook2 | 003k
.001 300 151 .5121 | .2skh 1 .ookk | o017
.0001 500 201 .4hs50 .3212 .003k4 .0212

Spanwise Control Point Locations

Only two spanwise rows of control points are utilized along a
semispan because only two spanwise loading modes are employed in the
present analysis. A limited study of the effects on the aerodynamic
characteristics of varying the location of these rows was made and the
results, presented in Table II, show only slight variation with row

location set. However, the 0.25, 0.75 set was chocen to be used

TABLE II.

Effect of Spanwise Location of Control Point Rows
on Aerodynamic Characteristics of an
A = 20, h/c = .00125 Rectangular
Wing at a = 5° . Control
Points at x/c =.345, .905

2y/b Cy, Xep Cp,i Cp,is
0, .7070 .1950 .2562 .0041 .0031
.25, .75 .ho61 L2561 .00k2 . 0035
0, .8165 .5125 .2557 .00ks .0024
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subsequently because it (1) resulted in the closest agreement between
the two induced drag values and (2) because of symmetry represents a
solution which constrains the flow at two additional control points on
the left half of the wing as opposed to the total of three which
result for a set with zero as one of the spanwise locations.

The induced drag terms ‘CD,i and Cp j; are called the far-
field and near-field results, respectively. Cp ; is determined by the
method of reference 6, and CD,ii from the combination of the
distributed camber drag and the leading-edge suction as seen in appendix
B. Exact numerical agreement between these two drag terms is takeﬁ to
mean that the chord loading is correct and hence the best solution has
been reached. In practice, exact agreement is seldom achieved, hence
chordwise control point patterqs which yield reasonably close agreement
between the two drag terms are chosen subsequently (as above for the
spanwise sets) as the ones to be used.

Chordwise Control Point Locations

For two control points, many placement patterns were investi-
gated, as shown in Table III. From the table, it is evident that, for
the first control point near x/e¢ = 0.35, the variations of the aero-
dynemic characteristics for the A =5 , h/c ; 0.00125 rectangular
wing at a = 50 are reduced, especially those of the induced drag
coefficient. By comparing the two induced drag terms in the table the
closest agreement is seen to occur when.the second control point is at
x/c = 0.80 or 0.95. These locations are so near those prescribed by
Multhopp in reference 6 for a two chordal loading solution, that is,

x/c = 0.345 and 0.905 that his are used in the present method for
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the two chordal loading solution. For higher camber ratios additional
chordwise control points and loading functions are needed to effect a

best solution as seen in the next section.

TABLE IIT

Effect of Locating Two Control Points on the Aerodynamic
Characteristics of an A = 5, h/c = .00125
Rectangular Wing at o = S°©

Control Point Locations Aerodynamic Characteristics

First Second CL xcp CD,i CD,ii

: .1 .9 .3839 .2398 .0095 .0060
.15 .80 .3766 .24k33 .0092 L0070
.20 .80 L3764 .2kl .0092 L0071
.20 .90 .3803 .2h62 .009k .0073
.25 .75 .3739 .2hko .0090 .0071
.25 .95 .3823 .2k79 .0095 .0075
.35 .65 L3724 2463 .0090 .0076
.35 75 .37h0 2hTh .0090 .0076
.35 .80 .3759 .2485 .0091 .0078
.35 .85 37Tk .2k9s5 .0092 .0078
.35 .90 .3784 .2500 .0093 .0079

.35 .95 .3801 .2511 .0094 .0081

Number of Chordal Control Points

The number of control points must increase with camber in order
that the flow might be constrained to approximate better the normal

velocity distribution or camber shape. If only two chordwise control

points, hence loading functions are used, the aerodynamic characteristics

which result would lose accuracy, especially those involving the
pitching moment, because it depends more heavily on the third and higher

modes than do the 1lift and leading-edge suction.
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The effect of number and locations of control points on the

aerodynamic characteristics is tabulated in Table IV for a typical wing.

From this table it can be seen that there are several patterns which

would appear to do equally as well from a best solution check.

TABLE IV

Effect of Number and Locations of Control Points on the

Aerodynamic Characteristics of an A
Rectangular Wing at «

5, h/c = 0.031k
50

Control Point Locations Aerodynamic Characteristics
First Second | Third |Fourth | Fifth CL xCp CD i CD,ii
. 345 .905 .8798 L3761 .0498 .00TT|
.05 .35 .95 .9936 .3865 | .0633 .0580
1 .32 .8 - .0028 | 13.6321] .0000} - .2656
.1 .32 .9 .5202 .5531| .0176}] - 5.696L
A7 b .95 .5939 0773 .0229| - 2.0950
.19 .615 .95 3877 1.3917] .0101| - .9160
s T .95 .7685 .Lgg9s | .0382 L0504
.52 .78 .98 . 8482 4038 ] .ok6k .0361
.05 .35 .65 .95 .8363 4215 | .obsi .0561
.05 .35 .75 .95 .8334 L4223 .okus L0561
1 .2 .8 .9 .5T76 .5334| .0218 .0398
1 .32 .6 .97 - .3227 817k} .0510f - 1.5160
.116 Lk .75 97 -3.1421 |- .3092] .6342| -68.5122
.2 b .6 .8 .1356 |- 2.5608| .0016| - 2.2h2kL
.05 .32 .55 .75 .95 .8517 L2961 .oL68 .0583
.08 .29 .57 .83 .98 .8098 h756 | .okol .0653
.J .32 .5 T .9 -3.8451 L0277 1 1.0037{ -71.4019
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In order to try and determine if there was a preferential set of
‘chordwise control points, a separate computer program was developed
which solved equation (46) for the left-hand side using the previously
determined {e, }. Hence, the variations from the tangency flow condition
for points in between the control points could be examined and some
indication of the best control point patterns obtained. From this

study the pattern of x/c = 0.05, 0.35, 0.65, 0.95 was determined to be
the best choice. It should be noted that this set may not be usable
throughout the angle—of—attack range, for if one of these control points
falls within the range 88.5° < 8 <91.5° a new point must be selected

to avoid the numerical integration problems.discussed in Chapter VII.

In addition, this pattern may not be appropriate for wings of other

camber or aspect ratio.

Experimental Data Comparison

Since the only reliable data available with which to compare
was for flat rectangular wings, the present method, which is only valid
for cambered wings, was studied numerically to determine what value of
h/c would adequately represent a flat wing. A value of h/c = 0.000013
was determined to be sufficiently small, as further small reductions in
h/c didn't change the numerical results. Two chordal loading modes
with the associated control points already established were empldyed in
obtaining solutions. The results of the computations, along with those
of the modified Multhopp method (ref. 8), are presented in Table V and

compared with those from the experiment on both a section and wing basis.
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Further, all three lifting pressure distributions are given in figure 1

at the plane of symmetry for an A = 4 rectangular wing at a = h.35°.

TABLE V

Experimental and Theoretical Aerodynamic
Characteristics for an A = 4 Flat
Rectangular Wing

oy/b =0 : a = 4.35°

Type
c1 xcp CL xcp
[0
Experiment (ref. 2L) .323 .24y .060 .235
Present Method (N=2) .346 2ho .067 .237

(2 semispan stations)

Modified Multhopp Method (N=U4) .331 .2ko .063 .230
(19 semispan stations)

Both the table and the figure show that the present method
produces results which agree reasonably well with the experiment and
the modified Multhopp method. Thus, having shown that the presént
method yields reliable results for flat wings, it is of interest to
determine its efficacy for cambered wings. Because of the lack of
reliable cambered wing data obtained for rectangular planforms
meeting the camber constraint of the present method, as mentioned
in the Introduction, cambered wing correlations are made with
results obtained with the exact two-dimensional method given in

appendix C.
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Theoretical Comparisons

Two- and Three-Dimensional Lifting Pressures

The 1lifting pressures for the two-dimensional transformed
solution (appendix C) are compared with those of the present method
and modified Multhopp method at the plane of symmetry of an aspect
ratio 20 rectangular wing, with all having h/c = 0.00125 and at
o = 50. The results are graphed in figure 2(a) and show that the
present method for N = 2 agrees better with the two-dimensional
than N = 3 for the present method or N = 2 for the modified
Multhopp method. A similar graph is presented in figure 2(b) for
h/c = 0.031h and o = 5° with N = 4 for the present method and
N = 4 for the modified Multhopp method. A comparison of the three
sets of data shows that the present method predicts better the two-
dimensional ¢, value, whereas the modified Multhopp predicts better
the Xep value and lifting pressure distribution. The poor
quality of the lifting pressure distribution predicted by the present

method is serious and is discussed later.

Two-Dimensional Cambered Wings

The prediction of the aerodynamic characteristics for two-
dimensional circular-arc-cambered wings can be accomplished in either
of two ways. The first is in the classic manner of transforming a

circle into the airfoil shape and arriving at the moment and forces by

Blasius' theorems as given in appendix C (referred to herein as the
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36
32
28
24
Two-dimensional
20| —— —— Modified Multhopp method (N=2)
AC ————— Present method (N=2)
P \ ———— Present method (N=3)

1.6
|

X/c '
{a) hlc = Q. 00125

Cy

563
522

542
522

xCp

258
254
257
273

Figure 2.~ Lifting pressure coefficient distribution for three-dimensional methods
at A =20 and 2y/b = O and two-dimensional exact method, all

at a=5",
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Cy xCp
Two dimensional 94| 355
Modified Multhopp method (N=4) 762 363
Present method (N=4) 833 315

7N

(b) hlc = 0.0314 \\J/
Figure 2. - Concluded.
21
(b) h/c = 0.031k

Figure 2. - Concluded.
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transform method.) The second is based on thin airfoilvtheory (small
@ and h/c approximations) and employs the Birnbaum series to
represent the chord loading and from which the moment and forces are
determined (Reference 25 has examples of the procedures.). When the
results of these two methods are compared in Table VI for h/ec = 0.50
and «a values of 0° and 50 , remarkable agreement is noted for
both the Xep and c,; values. In order to understand this
agreement, the chord loading predicted by each method at a = 59 is
graphed and appears in figure 3. An examination of this figure shows
noticeable disagreement in lifting pressures along the chord; however,

the integrated effect of these differences is seen from Table VI to be

small because of the compensating behavior of the disagreements.

TABLE VI

Circular-Arc Lift and Center of Pressure

Method . Equation xcp Equation
sina cosa . 2h
Transform om{sina + 2(h/c)cosa] - P - sina - cosa(c >
cl/n
e aT h 1, w(h/e)
Thin airfoil 2n(I§6-+ 2 c) E—+ —
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Transform
——— Thin airfoil

10

0 2 4 6 8 10
X/c _

Figure 3. - Two-dimensional 1lifting pressure coefficient distribution
for h/ec = 0.5 at a =59,
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TABLE VI continued

h/c = .5
Method a = 0° a = 5°
‘ CI ch cl xcp
Transform 6.2832 .50 6.8069 .4800
Thin airfoil 6.2832 .50 6.8315 .b799

Note, in particular, that the center-of-pressure predictions by both
procedures yield the same results at both angles of attack; whereas, the
thin ajrfoil theory predicts a higher 1lift than the transform method
only at a = 50. This relationship for the 1lift at o > 0° between
the solution on the surface (transform) and along the chord (thin

airfoil) will be useful later.

Over an Aspect Ratio Range

The effects of aspect ratio on the center of pressure can be
seen in figure 4 for both cambered and flat wings. It is interest-
ing to note that for decreasing aspect ratio the predicted flat wing

centers of pressure move forward as expected; whereas, for cambered

\ o
wings at a =0 the centers of pressure progress rearward when

computed by all three theoretical mefhods. A comparison of the curves
shows that the present method and the modified Multhopp cambered-wing-

Xa, results agree well and tend toward the two-dimensional limit. They

cp

both also show a more rearward location of x at all aspect ratios

cp
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5% CAMBERED WINGS
X Two-dimensional
Present method
Xcp 4 — ———— Modified Multhopp method (ref 8)

———— Scholz (ref.23)

3 /—~ FLAT WINGS
x \\
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0]
0) 2 4 .6 8 1.0
I/7A
Figure 4. - Effect of camber on center of pressure. Cambered wing

results are at o = 0°.
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than those predicted by Scholz. For the flat wings the present method
results tend toward the two-dimensioral value of Xep slightly faster
than the other two methods with increasing aspect ratio. At a = 0° s
the effect of camber cannot be seen at a given aspect ratio because the
different camber curves tend to collapse upon one another. Hence, these

effects are discussed in the next section at a given aspect ratio and

positive angle of attack.

Typical
two - dimensional
camber loading

Two -dimensional
angle of at tack
loading

ACp
Induced loadings Induced loadings
L 1 ) L 1 J
0] .5 1.0 o) .5 1.0

Sketch 9. Loading composition for finite-aspect ratio
flat and cambered wings

The abové cénter—of-pressuré trends can best be understood by
examining the preceding sketches. The effects of finite aspect ratio are
seen to induce both a negative cot €/2 1load and a negative sin € 1load
with these induced loads becoming larger as the aspect ratio decreases.

For flat wings, the induced cot €/2 load does not change the load
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center but does decrease the 1lift at a given a«a ; however, not only does
the sin € load decrease lift, it also imposes a nose-up moment about
the two-dimensional lift center as well as the leading edge. These
effects lead to a forward movement of the center of pressure with de-
creasing aspect ratio. For symmetrically cambered wings (in particular,
circular-arc wings at a = OO), the induced sin £ load reduces the 1lift
at a given o without distrubing the center of pressure; whereas the
induced cot €/2 load decreases the lift and produces a nose-up moment
about the leading'edge or a nose-down moment about the two-dimensional
lift center. These two effects cause the center of pressure on cam-
bered wings to move increasingly rearward with decreasing aspect ratio.
The trend of center of pressure with aspect ratio is well
known for flat wings; however, the corresponding trend for cambered

wings is not as well known, even though documented by Scholz in

reference 23 .

Over a Camber Ratio Range

The effects of camber ratio on X, and Cp are seen in
figures 5(a) and 5(b), respectively, for an aspect ratio 5 rectangular
wing at o = 50 . As expected, the predicted results show an increase
in CL and rearward movement of Xop with increasing h/c . Further-
more, comparisons made between the modified Multhopp method and the
present method indicate that the centers of pressure agree reasonably well
up to h/c of .013; whereas, the CL predicted by the present method

exceed those of the modified Multhopp method for all camber and increases

at a faster rate.
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Figure 5. - Effect of camber on some aerodynamic characteristics of an
A = 5 rectangular wing at a = 5°.
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Over an Angle-of-Attack Range

The varigtion of CL with « at an aspect ratio of 5 and
camber ratio of 0.0314 are computed for both the modified Multhopp and
present methods, and the results presented in figure 6. The curves
show that the present method predicts a higher value of Cy at all

angles of attack and yields a higher lift-curve slope.

Discussion

From the preceding studies of the present method and the
subsequent applications, much has been learned:
(1) Number and Locations of Control Points

Two control points (loading functions) are sufficient to
describe adequately the wing having only small amounts of camber
(h/clf 0.00125), and the results with different locations indicate a
low sensitivity to position. This happens because the first two
lifting pressure functions are adequate to describe the pressure
loading and also satisfy the fangent flow boundary condition all along
the arc. For higher camber ratios, more than two control points are
required to constrain the flow sufficiently to meet the solution
criteria. The number and location of these control points depend
upon wing aspect ratio, and angle of attack because of the few control
points constraining the flow. Numerical studies indicate that two
additional terms in the Birnbaum pressure loading series are stili not
adeduate to describe the loading distribution for wings with cambers in

excess of 1.25%; therefore, a larger number of terms are required.
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Modified Multhopp method (N=4)
Present method (N=4)

1.6y

o) 4q 8 12
a,deg

Figure 6. - Effect of angle of attack on Cj; for an A = 5,
h/c = 0.0314 rectangular wing.
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This is not a very practical solution since it necessitates an excessive
amount of computer time. For example, with two spanwise stations and four
chordwise loading functions, computer time on the CDC 6600 of 15 minutes
is required, and for six chordwise modes, time in excesé of 30 minutes
would be needed. Ideally then one would utilize a better set of modal
functions. The problem is the determination of this better set. One
procedure for doing this would be to obtain them from the locsal pressure
equation given in appendix C for the exgcf two-dimensional solution.
Another would be to obtain them from the two-dimensional integral
equation relating the downwash ratio or local slope to the pressure
distribution over Ax . Still a third procedure would be to express the
series of loading functions in terms of distance along the arc having the
appropriate singularity as the first term with the other terms having
the first term multiplied by distance along the arc to a power.

The first procedure would be very difficult, as an examination
of equations C-23 and C-24 will easily show. The second procedure
leads to another series solution which is as yet undetermined. It is
likely, however, that many terms would be required. The third procedure
has been programmed, with only slight improvements obtained.
(2) Limiting Values

The present solution tends to the correct two-dimensional value
of Xep for both the flat wing and at o = 0° for the cambered wing.
The present method also predicts a Cp which tends to the two-dimen-
sional value for h/c £ 0.031k and o« = 5° . It is interesting to note

that, whereas the two-dimensional solution along the chord (thin airfoil)
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predicts a higher ¢, than the solution along the surface (transform),
the reverse is true for the two three-dimensional solutions at both
A=20 and A =5,
(3) Moderate Aspect Ratio Comparison

The present method appears to predict reasonably well the
aerodynamic characteristics of wings with small camber (h/c < 0.0125).
This is demonstrated by comparison with the experiment and the modified
Multhopp method. The fact that at h/c = 0.0314 the present method yields
a higher CL at any a , a higher CLa , and a more rearward Xcé
than the modified Multhopp method can be attributed to both the modal
functions employed in the present method and the limitations inherent
in the planar approach. It.should be noted that even with the modal

functions employed satisfying the solution criteria, poor results can be

obtained because of the limited number of terms used.



IX. CONCLUSIONS

The development of a nonplanar lifting surface method having a
continuous distribution of singularities and satisfying the tangent flow
boundary condition on the mean camber surface is given in this
dissertation. The method predicts some incompressible longitudinal
aerodynamic coefficients of rectangular wings which have circular-arc
camber. After some preliminary sensitivity studies are conducted with
this method, applications are made over an aspect- and camber-ratio and
angle-of-attack range and the results compared herein with other
theoretical methods and flat-wing experimental data. From these studies
and comparisons, several conclusions emerge. They are: (1) The present
method is able to predict with good accuracy some longitudinal aerodynamic
characteristics for camber ratios not greater than 0.00125 at both high
and moderate aspect ratio by employing only two control points {(with
little sensitivity of results to control point locations) and without
the singular strip encountered in the flat-wing theoretical solutions.
(2) For higher camber ratios, more control points are required, but even
with their locations yielding results which give reasonable agreement
between the far-field and near-field induced drag values (the solution
criteria), the lifting pressure distributions can be poor. The poor
distributions and high sensitivity of results to control point location
indicate that the pressure mode functions chosen are not the most
appropriate for wihgs having cambers in excess of 1.25% . Other lifting
pressure functions were investigated without obtaining any significant

improvement in the results. (3) The control point locations are

55
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dependent upon aspect ratio (becauée of the few control points used),
camber ratio, and angle of attack, because of the inadequacy of the modal
functions chosen. (U4) The present method is also able to predict
reasonably well the 1ift coefficient and center of pressure for moderate
aspect ratio (aspect ratio 5 illustrated) at an angle of attack of 5°
up to a camber ratio of about 1.25% . (5) The present method's
predictions at a moderate aspect ratio of lift coefficient at any angle
of atfack and lift-curve slope, as well as center of pressure, are larger
than those of the modified Multhopp method for all camber ratios. The
over-prediction of the 1lift coefficient by the present method when
compared with the modified Multhopp method is the reverse of that found
in comparison of the two-dimensional surface (transformed) and chordal
(thin airfoil) solutions. This indicates that the modified Multhopp
results are low for certain configurations and that for others the

lifting pressure functions of the present method are not appropriate.



X. RECOMMENDATIONS

The work reported herein could serve as a model for lifting
surface solutions of other basic camber shapes such as elliptic,
parabolic, or those fepresented by some other general function.
However, it should be kept in mind that each of these other camber
shapes has a different set of appropriate chordal loading functions
which must be determined in order to yield acceptable results in a
reasonable amount of computer time. Another way to save computer
time would be to perform the general spanwise integration analytically
first, leaving only the chordwise integration to be done numerically.

Extensions to the present work could be undertaken to include
both the effects of sweepback, without introducing reversed twist,

and variable dihedral.

5T



10.

11.

12.

XI. REFERENCES

Prandtl, L.: Applications of Modern Hydrodynamics to Aeronautics.
NACA TR 116, 1921.

Multhopp, Hans: The Calculation of the Lift Distribution of
Aerofoils. RTP Translation 3292. Durand Reprinting
Committee.

Mutterperl, William: The Calculation of Span-Load Distributions
on Sweptback Wings. NACA TN 834, 1941,

Weissinger, J.: The Lift Distribution of Swept-Back Wings.
NACA TN 1120, 1947.

Faulkner, V. M.: The Calculation of Aerodynamic Loading on
Surfaces of Any Shape. R&M, 1910, 1943,

Multhopp, Hans: Methods for Calculating the Lift Distributibn
of Wings (Subsonic Lifting-Surface Theory). R&M 288L,
Brit. A.R.C., 1950.

Van Spiegel, E.; and Wouters, J. G.: Modifications of Multhopp's
Lifting-Surface Theory With a View to Automatic Computation.
NLR - TN W.2, Nat. Lucht-Ruimtevaartlab (Amsterdam), 1962.

Lamar, John E.: A Modified Multhopp Approach for Predicting
Lifting Pressures and Camber Shape for Composite Planforms
in Subsonic Flow. NASA TN D-4k27, 1968.

Wagner, Siegfried: On the Singularity Method of Subsonic
Lifting-Surface Theory. AIAA Paper No. 69-37. Jan., 1969.

van de Vooren, A. I.: BSome Modifications to Lifting-Surface
Theory. Journal of Engineering Mathematics (Dutch), Vol. 1,
No. 1, pp. 87-101, Jan., 196T.

Rupert, Paul E: Theoretical Characteristics of Arbitrary Wings
by a Non-Planar Vortex Lattice Method. Doc. No. D6-92kl,
" Boeing Co., Feb., 196L4.

Belotserkovskii, S. M.: Special Features of Subsonic Flow Past
Wings of Complex Plan-Form. Libr. Transl. 1297, British
R.A.E., April, 1968.

58



13.

1k,

15.

16.

1T.

18.

19.

20.

21.

22,

23.

2.

25.

>9

Hedman, Sven G.: Vortex-Lattice Method for Calculation of
Quasi Steady State Loadings on Thin Elastic Wings in Subsonic
Flow. FFA Rep. 105, Aeronautical Research Institute of
Sweden, 1966.

Margason, Richard J.: and Lamar, John E.: Vortex-Lattice
Fortran Program for Estimating Subsonic Aerodynamic Character-
istics of Complex Planforms. NASA TND-61k42, 1971.

Vivian, H. T.; and Andrews, L. V.: Unsteady Aerodynamics for
Advanced Configurations; Part I - Application of the Subsonic
Kernel Function to Nonplanar Lifting Surfaces. FDL - TDl2-
64-152, May, 1965.

Rotta, Nicholas R.: The Non-Planar, Moderate Aspect Ratio,
Subsonic Wing. Ph.D. Thesis. New York University, School
of Engineering and Science, 1968.

Kalman, T. P.; Rodden, W. P.; and Giesing, J. P.: Application
of the Doublet-Lattice Method to Nonplanar Configurations in
Subsonic Flow. AIAA Paper No. 70-539, May, 1970.

Stark, V. J. E.: Aerodynamic Forces on a Combination of a Wing
and a Fin Oscillating in Subsonic Flow. Report TNSh, Saab
Aircraft Company, Linkoping, Sweden, 196L,

Nielson, J. N.; Spangler, S. B.; Stahara, S.5.; and Lee, A. L.:
An Exploratory Aerodynamic and Structural Investigation of
All Flexible Parawings. NASA CR—l67h, December, 1970.

Ashley, Holt; and Landahl, Marten: Aerodynamics of Wings and
Bodies. Addison-Wesley Publishing Co., Inc., Reading,
Mass., 1965.

Peirce, B. 0.: A Short Table of Integrals. Third Revised Edition,
Ginn and Company, Boston, 1929.

Flachsbart, O.: Messungen an ebenen und gewdlbten Platten.
Ergebnisse der Aerodynamischen Versuchsanstalt zu Gdttingen.
Vol. IV, pp. 96-100, 1932.

Scholz, N.: Beitrage zur Theorie der Tragenden Flache. Ing. Arch.
Vol. 18, pp. 84-105, 1950.

Brebner, G. G.; Wyatt, L. A.; and Tlot, Gladys P.: Low-Speed
Wind-Tunnel Test on a Series of Rectangular Wings of Varying
Aspect Ratio and Aerofoil Section. C. P. 916, Brit. A.R.C.,
1967.

Kuthe, A. M.; and Schetzer, J. D.: Foundations of Aerodynamics.
Second Edition, John Wiley & Sons, Inc., New York, 1964,



26.

27,

28.

29.

60

Pope, Alan: Basic Wing and Airfoil Theory. First Edition,
McGraw-Hill, New York, 1951.

Milne-Thompson, L. M.: Theoretical Aerodynamics. Sécond Edition,
MacMillan & Co., Ltd., London, 1952.

Rauscher, Manfred: Introduction to Aeronautical Dynamics.
John Wily & Sons, Inc., New York, 1953,

Durand, William Frederick (Editor): Aerodynamic Theory.
Vol. IT. Div. E. Dover Publications, Inc., New York,

1963.



XII. VITA

The suthor was vorn in [

- and attended local elementary and high schools. He entered the

| University of Alabama in September, 1957, and completed the require-
ments for a Bachelor of Science degree in bbth Aerospace and Mechanical
Engineering in January, 1962. At that time, he received a Research
Assistantship and began his Master §f Science program in Aerospace
Engineering. He completed the requirements for that degree in
February, 1963, and subse@uently became an Aerospace Technologist
with the NASA at the Langley Reséarch Center. 1In Septemﬁer, 1963,
he commenced his academic course work at.Virginia Polytechnic Institute
leading toward the present degree.

The author's major field of interest is the prediction of

pressure distribution on lifting wings and wing-body combinations at

subsonic speeds.

61



XIIT. APPENDIX A

Certain Integrals Over The Box

Some of the integrals presented in equation (L1) for integration

o . ' 1
over the box contain in the integrand the term . The
(07c0528+(w/R)2)

solution for these definite integrals can be analytically formulated;
however, obtaining correct results from the numerical evaluation of
these formulations may be difficult. The difficulty is evident for 6
near m/2, because there the numerical evaluation of the_general formu-
iation does not tend smoothly to the same numerical result as would
be obtained by a direct integration of the original integrals for

® = m/2. The numerical difficulty arises because of the general
occurrence of (1/cosb) as an overall multiplier, as can be seen in

the following example.

Example:

Consider the surface integration of

o d (w/R)do
[0 cos?0 + w/R)z]2 (A-1)

Integrating expression (A—l) with respect to w/R and imposing the limits

TIE|

leads to
o _
o W
R (6/R)do tan~*\ RocosH
cos’6 cosf _/r 6%c0s%8 + (/M) % _ o do (a-2)

-0 -0

The first integral of expression (A-2) can be evaluated readily; how-

ever, a>change of variable is needed in the second. These steps
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lead to

RﬁbosQ

' w
—-&3— [ 2tan™! <ljg=_c_<vs_6> + / [n/2 - tan~}(x)] dax (A-3a)
cos’B © "
-RocosH
(0]

where

x = Rocosf/w : (A-3Db)

The first term in the remaining integral integrates to zero because
it is odd over the integration range. The second term has to be

integrated term by term after expanding tan~!(x) into

tan"(x) = x - X, X X ... (A-4)

Hence, upon performing the above integrations and letting

RO = w (A-5)

leads to .
R ~1 *g e 79 A-6
7 [2tan (cosb) - 2 (?ose - co; + cg; _ Cﬁ;‘ o (A-6)

This expression could be considered as the general formulation
- of the evaluated definite integral appearing in expression (A-1.). Note
that, in expression (A-6), values of 8 near m/2 produce large results
for the (1/cos®6) multiélier and small results for thé terms inside
the braces. Now, upon performing the indicated multiplications,

there result some terms which are still small and tend to zero as

-1
goes to m/2; whereas, other products, 2Rtan~"(cosf) and .—2RcosB
cos”6 cos°9

produce numerical indeterminancies or, at best, infinities of opposite

sign. In either case, the answer or finite part of the surface
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integral is not determinable.
This problem can be circumvented by expanding in expression
(A-6) the term tan™!(cosB) according to equation (A-L) and combining

like terms inside the braces. After simplifying, the result is

R ( - —% + gg cos?p - %g- cosg + ‘- ) (a-7)
Now, for 6 = w/2, the expression, instead of producing indeterminancies,
gives a value of - E.R. This result agrees with the direct integration
qf expressiqn (A—l).fqr 6 =m/2.

Another integral which must be integrated in the same manner

as the preceding is

¢ (&/R) ‘ |
Rf d(w/R)go
_5)_(%/r) O°cos®0 + (w/R)? (a-8)
and results in
MR(1 - Zeos?6 + Zreos'6. ..) (2-9)
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XIVv. APPENDIX B

Determination of Aerodynamic Coefficients

The determination of some section and wing aerodynamic
coefficients for wings with circular-arc camber is accomplished by using
the c = set computed from equation (46) and the equations given in the

following paragraphs.

Section Coefficients

The computational equations for the section 1lift (including the
contribution due to leading-edge suction) pitching moment, distributed

camber drag and leading-edge suction coefficients are given below.

Section lift coefficient:

C(y)-—zz

m=0 L n=0

even
. Y.
+ C(zjm coseo yJ \/ _ _:J__) (B—l)
in?6 si 60+a) b/2 b/2

o1 sin 6051n(

N-L h (e)simdsinede
sin(d + a)

Section pitching—moment coefficient:

)sin( 9 -0 )51n€d€/&

1R
cm (y) FEZ 2 cnf sin(d + a) kb/2

Section distributed camber drag coefficient:

l 2 005651n€d€/y
. = = 1 -
cdc(yJ) T cnm sin(9d + ) \P/2

m—o n—O
even
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Section leading-edge suction coefficient:

2 2 o -
_ Com 1 ﬁ’j _ X_vj_ o

even

where

d = cos-l[il;:éffﬁﬁﬁ-§-+ dos(eo + a)] -a (B-5)

Wing Coefficients

The equations used to determine the wing 1lift, pitching moment,
distributed camber drag, leading-edge suction and near-field induced-drag
coefficients were determined by Multhopp quadrature and are given as

foliows for symmetrical span loadings.

Wing 1ift coefficient:

J-1
T 2
= :E: i L Y, efY
L= G+1 c(yy) clyy) sindy + 3 cl( ..._.J-*l) ( J.+1)
av J=1 2 o
(B-6)
Wing pitching-moment coefficient:
J-1
( 2
C m 2 . 1
m. ., = c (ys) c(y,) sind, + = ¢ y .-\ e?fy
LE  c,c  p(J+1) ; mop J 2 mLE( J_+1) J+1\
: 2 2/
(B-7)

Wing distributed camber drag coefficient:
J-1

. 2
= m . 1
Cp =T TEFIT 21 “a,lvy) clyy) sindy + 3 °dc(yJ+1) c .1+1))
= 2/ \77.

(B-8)
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Wing leading-edge suction coefficient:

J-1
2 .
Co T T | O, ) o) sindy + Feg (ri0) efvy
LE av i=1 LE ° J J LE '
: J 2 2
(B-9)
Wing near-field induced-drag coefficient:
C =Cn - C 5inb B-10
Di; = Pe T TSiE ° (B-10)
where
S L
¢j J+ 1 (3-11)
Wing far-field induced-drag coefficients:
1
_ cq,C
CD = A ‘2?— Olid]'] (B 12)



XV. APPENDIX C

Two-Dimensional Circular-Arc Airfoil

Aerodynamic Characteristics

It is well known (see refs. 26 to 29) that a circle in the complex
C-plane can be mapped into a circular-arc airfoil in the complex z-plane
by selecting the origin of the circle to lie at ih/2 and then applying

the Kutta-Joukowski transform
z =7+ — (c-1)

to points on the perimeter of the circle (see sketches10 and 11). The

in,iy
a E £
C
TE 7 LE X
: m & T B » ¢,
(0]
A
R v

Sketch 10.- Geometrical felationships between generating
¢circle and circular-arc airfoil.
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TE »f,x

Sketch 11.- Additional geometrical relationships between
generating circle and circular-arc airfoil.

points from Bl counterclockwise to Hl will lie on the upper surface
and those from Hl counterclockwise to Bl will lie on the lower

surface. The local velocity, and hence pressure, can be determined over
the airfoil by making use of the complex potential (w) of the circle of

an angle of attack and the Kutta-Joukowski transformation as follows:
U=-1ivsem= o =2 (c-2)

where

. -ia
io Va2e

-5+ 2aiVsing In(z - s) (c-3)

w = VZe



T0
s location of the center of the circle in r-plane

B the angle ‘LCHlAl , where Hl is the point on the
circle that transforms into the trailing edge of the

airfoil (point H ).

The angle B must be such that the velocity at the point H remains
finite. To solve for the required B relationship, the procedure
given in reference 26 will be followed. Begin with

1o 2aiVsinfB

%%_= velo _ Yzzf's)z e (C-La)
or re-express it as
%:_;f_'___ V(eia N z_é_i[:_)( _ ae_Z(f ;' B)) (C-kb)
and the differential of equation (C-1)
g | (c-5)

dz Cz - kz

Upon substituting equations (C-U4b) and €-5) into (C-2), it follows that

: iB -i(a + B) 2
aw _ i | ae _ ae 4 _
e V(e + —————E_S)(l. TS )(c2 = kz) (c-6)

The point H, on the circle can be seen in sketch 11 (ref. 27) and

1
corresponds to = -k . In order to keep the velocity from taking on

an infinite value at the transformed point H , the point Hl ‘must be

made a stagnation point (dw/dz = 0) so that dw/dz will assume



4l

the indeterminant form of 0/0 , which can be shown to yield a finite
velocity ét the trailing edge.

Next, the angle B must be related to other known quantities.
This is accomplished by examining the géometry of the generating circle
in sketch 11. ‘From it the'distancé'alqng £ from Hl to thé '

horizontal projection of the circle center is determined to be

k + s, = acos(B - a) + O = acosB (c-Ta)

£

Furthermore, the vertical distance along in is found to be

s, = asin(B ~ a) = asinf (C-Yb)
These can be written as
k + is_ = afcos(B - a) + isin(g - a)] = aei(B - o) (c-8a)
or
aelP = (k +5) &1® (c-8b)

’

By making use of equation (C-8b) in the first group of terms in equation

(C-6), the following result can be obtained:

aw o (k + s)eia) ge-ila +B) r2
az-"(e T T s (' z - s >(c—k)(c_+k)

(C-9)

which after some simplification can also be given as

aw _ o dal, .y -i(a +8) 2 -
T, = Ve BC s)- ae ](C ST E— (C-10)
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With the addition and subtraction of k to the bracketed term, and upon

using the result of equation (C-8b), equation (C-10) can be recast as

dw ia i(p - a) ~ifa + B)) r? ‘
== = Ve Z + k - ae - ae c-11
dz ( C -9z -wm o
By expanding the exponent terms, equation (C-11) becomes
. . 2 '
%% = vel® (C + k - 2ae” ¢ cosB) - & (c-12)
(¢ - s)?(g - k)
An examination of the velocity at the point H (or where ¢ = -k) yields
oo Gw _ o dag, _ -ia X '
uy = ivg = - == Ve (0 - e cosB) IO (c-13)
ae
or
. _ Vkcosf
"R YE T T TE(28 - 20) (c-1%)
. ae
In order to obtain the conjugate of Uy - iVH the angle 28 - 2a can
be rotated radians. That is
. _  Vkcosp i(28 - 2a + ™)
ug tivp = - ——"e (C-15)

Hence, if the angle that a tangent to the cusp at the trailing edge makes
with the x-axis is 2B - 2o, finite velocities are obtained.

From sketch 11, it can be seen that

a? = k? sec’B | (c-16)
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and

k = c/b

When these are used in combination with equation (C-8b),

can be written:

(c-17)

the following

% secB e " = (E + 5—) e (C-18a)
Therefore,
¢, in
e'B = Ic‘_ 2 ) i (C-18b)
i ecP
Taking the natural log of both sides leads to
ip = ln(&osﬁ + l%E-cosﬁ) + ig (c-19a)
or
2
ln(coszﬁ + %g—-coszﬁ) _ {2n
ip = > + itan”! (c—) + ia (C-19v)
which yields
B = tan_1 (%E) +a=8+a (C-20)

In order to determine the pressures on the airfoil, it is more

convenient to specify locations on the circle and then determine the

corresponding point on the airfoil rather than conversely.

defining

Hence, by
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-1 ih (o
C = aeY+-,—)-— ( 21)

o~

and by substituting this along with equations (C-16),(C-17) and (C-20)

into equation (C-12), the following equation can be written:

dw _ ia( iy . ih . ¢ 2k -ia =
an - Ve ae + > + T P e cos(B + oz))o

ae
T E -

After all the multiplications and simplifications have been carried out,

the velocities are determined from

. v - aw _ VcosB{lcosaPl - s1naP2] + 1[coso¢P2 + sinaP]J}
dz 3 = '
(B - s (-5
(c-23)
where
P, = -acos(y + B) + [a - chosE + hsinf + wIsinEI
2 hw_sinf  hw
+ cosylwR + zl—a- cosB + wRa + aI cosﬁ]

hw _ 2 _ h _]

+ 51nY[wI + = sinf + h + Ia sinp - = cosfB

o [ B2 wh® _ hep h%w _
+ cos Y[—)_E+'raz—cosﬂ __a—-ﬂ_aTSInB

hw hw hsz ]
+ sin2yl cosp + — + sinB
g2 a La?
hsz hzmI :
+ cos3y —[ ] + sin3y [— ] (C-23a)
haz . haz
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P, = -asin(y + 8) + [-w

5 cosf - hcosB - szinE]

I
hw. 2 hwRCOS-B.]
I . = h .=
+ cosylwI + py sinB + h + E;-51n8 -

a
hw hw -
. h? - R . = T cosB]
-31nY[wR_+ E;'COSB + —;7-51n6 + o
h2w _ o h2w _
+ cos2y cosp + = + sinf
La? La?
. 2
) h2 h _ th h wI e
-sin2y |- Hg-+ —— cosf - = sinB
Lig? Lg?
hzwI hsz
+ cosBY[- ] - sin3y (c-23b)
hg? Lhg?
and i
we = - %-secﬁ cosa cos(B + a) + %‘ (c-23c)
w, = 24 £ secB sina cos(B + a) (c-234)
I 2 2
Hence
P-7p 2 2
c, I S [_u_+_2v__]. (C-2ka)
local 1.2 Ve
§pV
2z 15 2 2
cos B[f + P ] .
=1 - L1 2 (C-24b)

(%)2[1 - cos(y + E)]2

The location on the airfoil which corresponds to the points on the circle
at which the velocities are determined can be computed by substituting

equation (C-21) into equation (C-1) and simplifying the resulting
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expression. The result is

7z = %{(secﬁ cosy + cosp cosa )

1 + 2siny sinf + sin?B

(c-25)

cosB(siny + sinf) )]

+ i(secﬁ siny + tanf - — —
1 + 2siny sinB + sin®B

These equations have been programmed and the lifting pressure results
are compared with the three-dimensional solution at the mid-span of a
rectangular wing with a very large aspect ratio in the Results and
Discussion chapter of the dissertation.

The forces and pitching moment which are developed over the circular
arc airfoil can be determined by direct integration of the pressures and
the moment of the pressure over the airfoil or by.employing the analogous
" integrations which result from Blasius' theorems., The Blasius' Theorem

for forces (ref. 26) can be expressed as

X - iY = Z ip j(%)z az (c-26)
or,
X - i¥ = - %95(3—2)2(%—2-) az (c-274)

By using equations (C-bb) and (C-5), equation (C-27a) can be written as

. 2 . . 2
X - iY = _}_Qg_.j‘ [(c _ s)e1a+ae16] [ ]

° [(C _ S) _ ae—i(a + B)]Z ‘ Ede (C—27b)
(C - S)Q(Cz _ k2)
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After expanding all of the terms and employing the Residue Theorem, the

result is
X - iY = -i8mq asinBeia (C-28)
Hence
X = q 8ma sinf sina (c-29a)
and
Y = q 8ma sinB cosa (Cc-29b)

With the substitutions for a , equation (C-16), and B , equation (C-20),

the coefficients of forces in the x and y directions can be written as

cy = 2n(sinB cosa + cosB sina) secB sina (C-30a)
or
c, = 2ﬂ[sin2a + sina 00&16?9] | (C-30Db)
ahd
c, = 2m(sinf cosa + cosB sina) secB cosa (C-30c)
or
¢, = 2ﬂ[sin§ cosa + cosza(gh)] (C-304)
Since
¢, T o sina + ¢y cosa (t-31)

The resulting equation obtained by substituting in for ¢y and Cy the

equations (C-30b) and (C-30d4), respectively, is

e, = 2w[sina + cosa(§£>] (C=32a)
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Also,
cg = ¢, cosa - cy sina (C-32p)
and for the same substitutions as before leads to

cg =0 (c-32¢)

The Blasius Theorem for pitching moment from reference 26 about the

center of the generating circle is simply

n, = R[- 3o §(e - =) (&) ] (0-330)

After substituting in it the results of equation (C-1) and sketch 11,

this equation becomes
_ 1 . k2 ih)dw2
ve = R[- 20 fe + - 2)(F)

and with the inclusion of the results of equations (C-4b) ana (C-5),

&) dc] - (C-33b)

equation(C-33b) can be written as

2

M = Rl" %pvz § ['sz_k'z" %E][(C - s)el® + aeiB] .

oo - o) caetle - B ( r2az ]

z - s)*(g? - x?) (c-33¢)

Upon expanding these terms, combining, simplifying and integrating each
set of terms by the Residue Theorem, the following equation results:

2
M, = q n,‘j— sin2a (c-3ka)
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or

cMc = E—sinQa _ (C-34b)
After expressing o in a manner similar to reference 28, that is,

a=8+ (a-B) (c-35)
making use of the identity that

sin?a = sin2{f + (a - B)] = -sin2B + 2cos(a - B)sin(a + 8) (C=36)

and re-expressing (C-32a) in terms of B ,

c, = 2nsecB[sin(a + B)] (C-37a)
or
_. ¢ B
sin(a + B) = —l%%i— s (C-37b)

equation (C-34b) can be rewritten as

T _ 2cos(a - B)c1 cosp ]
cMc = H{-51n26 + 5 (C-38a)
or
T . = . C - -
cMc = - E-51n2B + Hl-cosB cos(a - B) (C-38b)
The first term is split off and defined by
T . o=
¢y = - sin2B , _ (C~39)

My
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which is the pitching moment about the focus and is independent of « .
The pitching-moment coefficient about the leading edge is obtained by
transferring the moment about the center of the circle to the leading

edge. Hence

(E)
c = T sin2a - 2W[sina + cosa(ghﬂ—g—- (c-koa)
M In c c
LE
or
ey = “[§52%29§g__ sina - cosa(%hﬂ (C-bob)

As a consequence of equation (C-4Ob) and equation (C-32a), X,p cen be

written as

2 -

simacosa _ sina - cosa(gh)
X - _
cp
-2[sina + cosa(%hﬂ

(c-41)

These equations have also been programmed and results are compared with
the three-dimensional solution in its limit in the Results and

Discussion chapter of the dissertation.





