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NONPLANAR METHOD FOR PREDICTING INCOMPRESSIBLE

AERODYNAMIC COEFFICIF.NTS OF RECTANGULAR

WINGS WITH CIRCULAR-ARC CAMBER

By

John Everett Lamar

ABSTRACT

The development of a nonplanar lifting surface method having a

continuous distribution of singularities and satisf'ying the tangent flow

boundary condition on the mean camber surface is given in this

dissertation. The method predicts some incompressible longitudinal

aerodynamic coefficients of rectangular wings which have circular-arc

camber. The solution method is of the integral-equation type and the

resulting surface integrals are evaluated by either using numerical or

analytical techniques, as are appropriate.

Applications of this method are made and the results compared

with those from an exact two-dimensional circular-arc camber solution,

a three-dimensional flat-wing solution which represents the camber by

a projected slope onto the flat surface, and a flat-wing experiment.

From these comparisons, the present method is found to predict well the

flat-wing experiment and limiting values, in addition to the center

of pressure variation at an angle of attack of zero for any camper. For

wings having camber ratios larger than about 1. 25% and moderate to high

aspect ratios, the results of the present method deterioriate due to the

inadequacy of lifting pressure modes employed.
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VI. INTRODUCTION

Solutions for the steady aerodynamic characteristics of wings

began with Prandtl (ref. 1) and his famous "lifting line" concept. In

this concept, the loading was concentrated along a straight line and

all induced effects on the wing came from the trailing vortex sheet.

The local effective angles of attack were composed of the geometric

angles and the induced angles along the lifting line. This concept

was useful in predicting the characteristics of lifting systems

employing rectangular wings of high aspect ratio by representing the

span loading as either an averaged constant value or a semi-elliptical

variation. However, as the planforms became more complex, additional

improvements in the theory were necessary in order to predict the

aerodynamic characteristics. The improvements can be classified in

three ways: (1) extension of Prandtl's concept to other planforms,

(2) inclusion of the induced-camber effects in the lift distribution,

and (3) allowance for nonplanar lifting systems (other than biplanar).

Prandtl's "lifting line" method and the extensions employed to

allow for the consideration of other than rectangular planforms provided

span load distribution, and in some instances, determined the induced

drag as well. For instance, Multhopp (ref. 2) devised a method for deter­

mining the span load distribution on any, wing that could be represented

by a straight lifting line. Mutterperl (ref. 3) developed a method for

determining span loading on sweptback wings by using a bound vortex

(that is, a lifting line of variable strength) lying along the quarter

chord of each wing panel, as well as a sheet of trailing vorticity.

1
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The strengths of the vortex system were constrained to give tangent

flow on the wing three-quarter chord line. This relationship between

the bound-vortex position and the·tangent-flow-boundary line is the

same as for the two-dimensional solution, which is one that develops

the correct lift value. Weissinger (ref. 4) developed both lifting­

surface and lifting-line methods for sweptback wings, and us~d the

tangent flow constraint at the three-quarter-chord location to obtain

solutions.

The inclusion of the induced-camber effects on three-dimen­

sional planar wings is seen in two important w~s. One is the removal

of the constraint that the section center of pressure be at the

quarter chord, and the other is the improvement in predicting the

lifting-pressure (difference between lower and upper surface

pressures) distribution because of the increased amount of information.

All of this is accomplished by either expanding the number of chordwise

mode shapes or placing additional bound-vortex elements and control

points .along the chord, or, as Faulkner (ref. 5) did, with a combina­

tion of the two. The lifting surface method of Faulkner l·S is called

"vortex lattice theory" and is based on representing the induced

effects of the lifting system by using a lattice of horseshoe vortices,

the strengths of which are determined by a serieS of modal functions.

In this solution, there would be as many coefficients in the series as

control points (points at which the tangent flow boundary conditions

are satisfied), but not as many as there are horseshoe vortices. Also,

Multhopp (ref. 6) developed a lifting surface method called "subsoni¢
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lifting surface theory" which used two modes of pressure chordwise and

two control points at several spanwise stations and could be applied to

arbitrary planforms.

Since reference 6, there have been many other lifting surface

methods published for steady subsonic flow. Each new method, in

general, begins witb an already-developed fundamental method and seeks'

to improve its accuracy by '(1) adding additional chordwise loading

terms (refs. 7 and ~), (2) reformulating the solution (~ef. 9),·

(3) performing the integrations differently (~ef. loL or (4.) extending

the original concepts. For example, extensions to Faulkner's work

can be made easily by requiring that the distribution of vortex

strengths be individually determined (not expressed in a series) by a

. solution to a set of linear simultaneous equations employing as many

control points as unknown vortex strengths. (See, for example,

references 11, 12, and 13.) Many of the latter-referenced methods

would not have been practical to use before the advent of the higb­

speed digital computer.

Solutions for nonplanar lifting surfaces, such as wings with

dihedral, have been made with the vortex-lattice method (refs. 11 and

14), kernel-function-integral equation (ref. 15), and an asymptotic­

expansion procedure (ref. 16 ). other nonplanar solutions are avail­

able for intersecting tail surfaces; among them references 11, 17,

and 18. In each solution, the boundary conditions are satisfied on

the chordal plane. However, for wings which are nonplanar in the

chordwise direction (that is, for a cambered wing), simplifying
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assumptions are usually made in order to effect a solution. The major

assumption is that of satisfying the boundary conditions of the cambered

wing on a lifting surface lying in a plane formed by the longitudinal

and spanwise variables of a wind axis system by projecting the wing

slopes onto the plane. (See sketch 1 and, for example solutions, see

references 8 and 14.. )

Combered wing sec t ion

Flo t wing re presen tlon ~>....I~~>>"""",c_- .:lI>....c,...;::aJ....,

Sketch 1. Camber representation in ~lat-~.ng ~nlution.

By doing this, the effect of the vertical displacements between

influencing and influenced points is not taken into account. Another

method (ref. 19), which satisfies the bound~ conditions on the surface

of the cambered wing, does not satisfy the Kutta condition at the

trailing edge because the solution is. based upon solving a series of

two-dimensional cross-flow problems. The formulation of the vortex-

lattice method, as given in reference 11, appears to be general enough

to account for vertical displacements as well as to satisfy the boundary .

conditions on the surface. However, constraints would have to be

imposed in order to guarantee that the trailing vortex system only

exited the wing at the trailing edge.

In consideration of the limitations of the methods just dis-
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cussed, it seems appropriate to develop a solution for the cambered

wing problem which would (1) satis:f;y the boundary conditions on the

surf~ce, (2) account for the vertical displacements between influencing

and influenced points, and (3) satisfy the Kutta condition at the

trailing edge. This dissertation describes such a solution for

rectangular wings having circular-arc camber (see sketch 2).

1__------
1 _

-

y4-----~~ z~---+-

Sketch 2. Representation of a rectangular wing
having a constant circular-arc camber.

The solution developed herein uses a more general form of the subsonic

integral equation than the methods discussed for planar wings, because

it must relate the normal component of perturbation velocity - rather

than the downwash - to the lifting pressure, and it must include the

effects of vertical displacement. Furthermore, the present method of

solution employs both numerical and analytical techniques. The latter

are applied in a small region (square box in the surface) surrounding

the control point, because it is at the control point that the integral

equation has a singularity. This technique encompasses expansions in

small parameters, followed by analytic integrations over the box.

Outside of the box, the integral equation is evaluated numerically.
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Results obtained with the present method are compared with both

an exact two-dimensional circular-are-camber solution and a three­

dimensional flat lifting surface which employs the slope-projection

procedure to accoilllt for camber. Due to the general unavailability of

experimental data for circular-are-cambered wings, comparisons with

experiment are only made for flat wings. From the comparisons made,

conclusions are drawn about the applicability of the present method

over the camber- and aspect-ratio and angle of attack ranges. In

addition to these applications, the present method may be extended to

certain wing-flap systems that approximate the circular-are-camber

constraint.

Three appendices are given: appendix A discusses some of the

integral types which must be integrated over the box surrounding the

control point; appendix B presents the equations used to compute some

section and wing aerodynamic coefficients; and appendix C gives the

development of the aerodynamic characteristics of the two-dimensional

circular-arc airfoil, included herein for completeness.



VII. THEORETICAL DEvELOPMENT

Basic Formulation

Concepts

The method of solution for pressure loading over a wing

having circular-arc mean camber line (sketch 2) will begin with

Poisson's equation (see ref. 20), as does the flat-wing solution.

The basic concept here is that the general perturbation velocity

field will be the same for both wings, with differences occurring

primarily in the vicinity of and aft of the wing. It is possible,

therefore, to make use of some of the solution techniques which have

been developed for the flat wing in seeking a solution to this

problem.

From reference 20, the three-dimensional Poisson's equation

can be written for the perturbation velocity in the freest ream direc-

tion as

u(x,y,z) =- t7T f f f~V2UdV + tr f f[ u ~n (~) - ;
V S

By representing the wing surface with a sheet of pressure doublets, the

perturbation velocity can be related to a velocity potential. The

velocity potential due to each pressure doublet is of the form

and is a solution of Laplace's equation

7
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Upon relating u(x,y,z) to ~ by

u(x,y,z) = ~x

substituting equation (3) into equation (2), and interchanging orders

or differentiation, it follows that

1

Hence,

u(x,y,z) 1= """41T au] dB
r an

(4)

The surface S includes both the upper and lower surfaces of.

the wing, as well as the wake upper and lower surface area. Since

the flow is assumed to remain attached to the wing, only leaving at

the trailing edge and thereby satisfying the 'Kutta condition, the

perturbation velocity in the freestream direction on either side of

the wake surface must be the same. Consequently, the lifting pressure

is zero. Hence, upon examining the wake portion of equation (5),

~]an dB

it can be seen that, since Uu = ~ and ~n (~) on the upper surface

is opposite to the same term on the lower surface, the first terms in

each integral cancel. That is,

(6)
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Also, for wake shapes that are straight or circular arc, the normal

derivatives of u are continuous across the wake because they are

related to the continuous streamwise derivatives of the normal velocity

components through irrotationality. This leads to cancellation of the

second terms in each integral. That is,

ff[-
Swu

ldS + = o

Thus, the integral equation that remains to be evaluated is

The coordinate system chosen in which to solve this equation

is cylindrical polar because of the ease in applying the boundary

conditions. In this system, the mean camber surface lies on a surface

of constant radius. Hence, the normal direction is along a radius

vector R*, the tangential direction is along ~ , and the spanwise

direction is along Ylo This leads to

(~)u(x,y,z) = 1
41T 0:* (~)

R*=R
(

01\1
oR*

R*=R
OU1~ ]oR* dS

R*=R

(9)

From sketch 3,
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Uu V
a. Upper surface

Uz V
b. Lower surface

Sketch 3. Velocity diagram on the surface
. of a circu1ar:"arc section at R,"

it can be seen that

~ = tl.t sin" - ~ cos"
u

and

(lOa)

(lOb)

By differentiating equations (lOa) and (lOb) with respect to R*, the

following equations are obtained:

au
u--=

aR*

au
t

• _<.I U
S1.n l1 -- -

aR*
cos-8

au
n

aR* (lla)
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and

d di\ au'
~ = sin-8 _,__' _ cos" n
dR* dR* dR* (llb)

-with un being continuous across the plane of the wing, or along

R* .

The irrotationality condition, when written in cylindrical-

polar coordinates, gives the needed relationships between the per-

turbation velocities tangent and normal to the camber surface as

dut
-.L dUn Utuu = -

aR* R* d" R* (12a)

and

aUt \ 1 a"iiu Ut
1=aR* - R* a" R* (12b)

Therefore, when the results of equations (lla), (llb), (12a), and (12b)

are substituted into equation (9), the result is

- sin"

Let

(14a)
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Then

u(x,y,z) (14b)

The velocity potential associated with this perturbation velocity can

be determined by

~(x,y,z) = ~U(x' ,y,z) dx'
-co

The minus infinity value is chosen as the lower limit because there

the velocity potential is zero.

-Q)

Sketch 4. Path of first level of
integration.

From sketch 4 it can be seen that

x' = R' cose'

and hence

dx' = dR' cose' + R' (-sine'de')

(16a)

(16b)
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The x' integration must take place at a constant z elevation,

as in the flat-wing solution; therefore, by setting

z = R' sinS' = R sinS

equation (16b) can be re-expressed in terms of the constant z as

dx' =d(z/sinS') cosS' - zdS'

Since

(18)

dR'

then

= dR'
dS'

d(z/sinS' )
dS'

( dS ,) = -zcof;1A'
sinZS'

or

dx' = -zcos 2S'
sin2 S' zdS' = (20)

dx' = -R'dS'
sinS' (21)

and the limits of integration go from n to S. Therefore,

<j>(R,S,y) = tnlSr{yc sint7 [a;* (~~ : (R;r ~ JdS( ;~~~~,)sins
nJJS IIR*_R 1R*=R

(22)

Once the velocity potential is known, differentiation with respect to

R will yield the perturbation normal velocity. Hence

~ (R,S,y) = a<j>(R,S.y;)
aR

(23a)
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and so

~ (R,e,y) =

1
41T JJ f~Rs 1T

[a:' WR':R(R;rt,=J} de'
RHd3'l
(23b)

After performing the indicated differentiation, equation (23b) can be

written as

~ (R,e,y) = 1. rr "'-YcSin" [_a (1)1 + 1)\ ]
rmJ~Jn \Sin

2
e' aR' r R'=R (R'r R'=R sine

-RYcSin-8Sine[ .a
2

.• (1) + (1:.-)
sin2e' aRaR* r . R*

R*=R

or

a.~
R*=R

de'Rd" dy1

(24)

~(R,e,y) (~) +
R*=R

R (~* a~ (~)~ ] } de' d '8dyl
II R*=R

(25)

The total normal velocity of a point lying on the wing surface (R =R)

must be zero in order for the flow to be tangent to the surface;
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hence,

lim un (R,8,y)' + V cos8 = a
R+R

Since

(26)

yc = _,;::;f!p",,--_. _2V_ =
pVsint7 2V

equation (25) can be re-expressed as

lim
R+R

-
Un

Vsin8

·[a:. m
R*=R R*=R

_d_
2 (rl )

aRaR* 1
R*=R

+

RG. :R (;)) ]}de'd~dyl
R*=R

(28)

Now r (see sketch 5) is defined as the straight line distance

between a point on the pressure doublet sheet at (R*,t7, Yl ) or (xl'Yl'Zl)

and a point on the path of integration (R' ,8' ,y) or (x' ,y,z)

where

x = R*cost7
1

x'= R'cos8' = R sin8co~8'

(29a)

(29b)

(29c)
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Yl = Yl (29d)

Y = Y (2ge)

z = R*sin'8 (29f)
1

z = R'sine' = Rsine (29g)

Field point
~E==::::::::::-----------'R

Sketch 5. Distance betw:een point on pressure doublet.... '

sheet and a point on the path of integration

For R* = R, the sheet of pressure doublets is coincident with the wing

surface, and for R+R, the field point moves to the surface since this

is where the boundary condition of tangent flow must be satisfied. By

performing the indicated partial differentiation and then taking the

limit as R+R, equation (28) becomes after simplification
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\

" e
lim R (Yl - y)2 . de'

cotely = R->R 81ff{ 6Cp [ R - 2ZS1n~IL r'sin'e'

i
e

( ecose'de' de'
-2zcos~ + 3z

1f r'sin'e' f. r'sin'e'
(Rzsin2-a )

+1e
cose'de' [-2Rzsin~cos-8 +(Yl - y)2 cos-8J
r 5sin 3e'

First Level of Integration

Each of the e' integrals in equation (30) can be integrated

directly by employing the transformation

p = cote'

which results in

1 [ Rcos-8 - zcote -1]
z[(Rsin-8 - z)2 +(Yl - y)2] Ib +Bcote +ccot 2e

f'IT

cose'de'
r 3sin 3e'

•
[
RZCos-acote - R2 + 2Rzsina _ z2 _ (Yl _ y)2 ]

+ Rcos-8
Ib + Bcote + Ccot 2 e

(32b)
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and

where

1 + Rcosil
3z2(D+BcotS+Ccot 2S)3!2 Z f

'IT

dS'

(32c)

(32d)

(32e)

and

r = Ib + BcotS' + Ccot2S' (33a)

B = -2Rzcos-8

With the substitution of equation (32) into equation (30) and the

resultant simplification of terms, the resulting equation is

(33b)

(33c)

(33d)
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cote Iy =~: ~uJi ACp([<Yl;Y)' -2Rsinesin~ + 3RSin~'

• 1 [ R(cos'l9-cos8) 1]
z[(Rsin~-z)2 + (Y1-y )2] I.b+Bcot8+CcotZ8-

+ 2cos~ [R2cos'l9 cos8-"R~-R2sin28+2R2sin8sin~-(Y1-Y) 2

z[(Rsin~-z)2 + (Y1-y )2] I.b+Bcot8+CcotZ8

+RCOS~]

+[2R2(sin8(cos~-sin2~) + sin (sin28-cos~)) + (Y1-y )2 •

• (sin~-' 8+COS2-ll\]~ 1 rR(cos~-cos8) •
S1n sin8 J~[(Rsin~-z)2 + (y1-y )2] [/.b+BcotS+ccotZ8

Pressure Functions

The unknown ~Cp distribution appearing in the surface integral

of equation (34) is prescribed herein (see sketch 6) to be composed of

up to five terms in the Birnbaum series chordwise with the undetermined

coefficients being functions of spanwise position.



20

4

Spanwise mode shapes

:0.11-".,2

".,2011- '1]2 I

2

- I
o "'/2

E

Chordwise mode shapes

3

.".-hn2

Sketch 6. Loading mode shapes.

Hence,

t,c (e:,v
1

)p • h (E)
n



where

and

h (e:)
o
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2 £= - cot -
7T 2 ,n = 0

,1 ~ n ~ 5 (35c)

E=O I__~--r---L
LE

E=1T
TE

Sketch 7. Relationship between £ and -6 •
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Final Form of Integral Equation

Since the chordwise pressure modes are defined in terms of a

variable, £, which goes from zero at the leading edge to ~ at the

trailing edge, it is necessary to change the chordwise variable used

in the surface integration from ~ to £ Sketch 7 shows the

equivalent edge locations in the £ and ~ coordinate variables.

The general expression relating £ and ~ is

and so

= c sin £ d£
-2R" sin(~ + ex) (36b)

Hence, by combining equations (34), (35a), and (36b), the following

equation results:

lim= R+R

N-l 2 b/2 mOt

-R ~ ~ c I cn ~Jh (£) {} sin£d£dYl
8~ L..J L..J nm 2R n sin(~+ex)

n=O m=O - /2even ~

(37a)

which can be written in a more convenient form as simply

t See equation (34) for this expression.

cote IY =
lim
R+R ~l:t

n=O m=Oeven

b/2 ~ t
c f nmjl-n21h (£){} sin£d£dYl

nm n sin('8+ex)

-b/2 0
(3Th)
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General Surface Integrations

Since the e' integrals have been determined and the pressure

mode shapes specified, the surface integration can now be considered.

This is accomplished, in general, by means of numerical quadrature.

The quadrature basically employed is Gaussian in both directions with

the exceptions (as shown in Sketch 8) over the spanwise range which

v
Gauss
Gauss
TrapelOidal

30
70
51

Gauss
Gauss
Gauss

Number of In tegration Steps

Region Chordwise Spanwise
I
lI' 50.
m 100
:nr 200
'3Z:

Image point(R,180o-8,yl--...l..--+-......r;;iiOf

II

Control point
(R.8.y)

1I

Sketch 8. Integration regions and number of integration
points used in each for low-to-moderate camber.
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correspond to the width of the square boxes centered around the control

and its image point, the image point only occurring when

In this spanwise range, 51 evenly spaced points are employed in the trape-

zoidal rule integration, and Gaussian quadrature, which em-ploys 200

steps divided according to arc length ahead of and behind the boxes, is

used chordwise. The number of Gaussian steps and trapezoidal rule points

have been established by convergence studies for an aspect ratio 20

rectangular wing with a box length of .01 chord and a camber ratio of

. 00125 at o
ex = 5 . This set of integration steps and box length have

also been found to be adequate for cambered wings of other aspect ratio.

Because numerical integration cannot be carried out across the

high-ordered singularity which exists at the control point, of the form

1 1
?" this area is split off from the general surface

integration and is treated separately. The image point, which is the

cambered wing eqUivalent of the flat wing singular strip, has a

singularity of the form 1 and I 1 ]2; hence, the
6.z 2 + 6.y 2

box surrounding it must also be broken off and treated separately. The

procedures employed are described in the following sections.

Surface Integration Over the Control-Point Box

The surface integration over the box is accomplished by:

(1. establishing basic expansion variables for small spanwise and
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angular displacements away from the control point; (2. using these

expansions to approximate each fundan.ental form which appears inside

the braces in equation (34); and (3. using finite part concepts,

integrate the resulting combination of forms over the box.

Expansions

The expansion variables in which the expansion process is to be

conducted are

and

'19= 8+0

where w and 0 are the small positive displacements in the spanwise

and angular directions, respectively. The angular displacement is

chosen in terms of -a rather than £ (the coordinate in which the

loading is specified) in order to s.implify the expansion process.

Approximate Forms

By employing the above expansion variables, the following

approximate forms are obtained near the control point for the general

expressions given in equation (34). They are to ()(w 2
) and ()(02):

- 2Rsin8sin~ + 3Rsin2-a -

(40a)
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(Rsin'8 (40b)

D + B cote + C cot 2 e (40c)

R(cos'8 - cose) - R 0 2
2 cose + osine (40d)

cos ''8 (1 _~2) cose _ osine (40e)

(40f)

(40g)

(40h)

(40i)

These approximate forms are generally applicable for all angular locations

of control points between eo and el An exception to this is at

e = 900 where the approximate form of (Rsin'8 -- z) 2 + (Yl - y) 2 , that is,

R20 2 Cos 2 e + w2 , tends to simply w2
• If more terms are retained in the



27

original expansion of the above expression a more accurate result is

obtained and it is

form for

It can be shown that this more general form tends toward

(~ - cote)2« 2cot 2e and tends to R2~+W2

a much different result than obtained previously.

the original

for e .. 900
,

Both approximate forms, when used, would appear in the

denominator and hence be singular in O. However, the more general

form would be singular in 0 to an order higher than that encountered

with the original form (0 4 vs. 02) and hence lead to new expressions

. to be integrated. These integrations show that the box contribution to

be just the e = 900 limit of the e not near 900 solution (original

approximate form) whose de~elopment follows.

From a practical standpoint e = 900 should be avoided as a

control point location so that numerical difficulties outside the box

associated with the higher ordered singularities can be circumvented.

It has been found that in order to assure convergence of the numerical

integrations Ie - 9001 should be less than 1.50 .

Integrated Results

With these approximated forms substituted into equation (34),

the surface integration over the box becomes
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lim
R+R

+ 4asinecoseJ
- 1

+
-(2 - a 2 )cose + 2asine

z(R 2a 2 cos 2 e + w2
)

where

+ w' CDSe J z(RO' \ w')' /,} dodw

Ra = w (42)

This integral expression can be integratedt with any standard set of

integral tables, such as reference 22, and the result is to 0 (00) (to

be read order of cr to the zeroth power, i.e., a independent terms)

tSee appendix A for an example of the manner in which the
integrations must be conducted.
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cos'+e
+ 5
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f1C (e ,y)
p

N-I 2

f1Cp (e,y) = L L
n=O m=Oeven

(44)

There are some interesting features of this box integration result. The

first is that the lowest ordered non-zero result does not depend on the

box size. The second is that, like the flat-wing solution (unpublished

analysis performed by Mr. P. J. Bobbitt), the leading term is determined

to be basically a

thought of as an

4f1C (e,y). Thirdly, the cosine terms can bep

O(-VO ) camber correction to the flat-wing solution

(e =900
), which becomes more important as the camber increases.

Fourthly, the 0(0) terms which are omitted can also become important

for e angles near 00 and 1800 because there the 0(00) terms

approach zero. However, since the effect of the 0(00) terms can be

controlled by selecting small values of a and since some of the

0(0) terms were obtained by expanding about e = 90
0

,the results

presented herein are only accurate to 0(00) Hence, solutions for

very large camber ratios, which lead to e angles near 00 and 1800

are attempted with caution - as should those employing the slope-

projection technique.

Surface Integration Over the Image-Point Box

The same procedures used in arriving at the expanded form of the
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general expression are employed about the image point, with the exception

that, instead of expanding about e, the angular expansions take place

about 1800
- e. This only changes the signs on the cos8 terms

which result from the terms sin(1800
- e + a) and cos(18o

o
- e + a).

\fuen these changes are followed through the simplified integral equation,

integrands which yield the 0(00) terms are determined to be identical

to those for the control point box, but they do have slightly different

coefficients. Thus, the image point contribution to the normal induced

velocity at the control point is to 0(00)

~ + cose \

\ TCOO8TJ
4sin8 [1 -cos 2 e

3
cosl+e

+ 5 . . .J ~c (180
0

_8 ,y)
p

This is an interesting result in that for control points in the first

quadrant (image point ahead of control point) the term (1 + l~~:~r)

becomes 2, and for control points in the second quadrant (image point

behind control point) the term (1 + l~~:~-r) is zero. rhe behavior

of this term is identical to that of the modified kernel function in

the flat-wing solution at the spanwise location of the singularity.

Solution Technique

The solution of· the subsonic integral equation given in

equation (34) is made by requiring that the flow be tangent to the

surface at a number of control points. There are as many control

points as there are pressure mode-shape combinations. For each control

point, the surface integrals are evaluated either numerically or

analytically for each mode-shape combination. The sum of these
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int.egrat.ions is stored along a row of matrix A. The unknown coefficients

c ,are determined afternm

both the boundary condition value and influence coefficient matricies

are filled by solving the matrix equation

(46)



VIII. RESULTS AND DISCUSSION

General

In this chapter the results of calculations made using the

present method with various box sizes, control point locations

and number of control points are analyzed followed by a discussion of

results for specific wings. The first wing results presented are for

a flat rectangular planform for which experimental data are available

and are of interest primarily for the check it provides of the present

method. Cambered wing comparisons are only made on a theoretical basis

because an extensive literature search uncovered only one paper (ref.

22) containing experimental data for cambered wings of the type

considered herein. Unfortunately most of these data were obtained with

the wing having some regions of separated flow. This happened because

the airfoil shapes used were developed from thin plates which had only

simple rounding at the leading edge and hence did not promote flow

attachment. The present method is developed for attached flow conditions

and hence not applicable to these data.

The theoretical results used to compare with those of the

present method come from methods which account for camber by the slope­

projection technique with the lifting surface constrained to the X-Y

plane; in particular, the methods of Scholz (ref. 23) and MUlthopp (ref.

8). Comparisons are made for rectangular wings over an aspect ratio,

camber ratio and a: range.

Applications to rectangular wings of aspect ratio less than four

are not attempted with the present method because only two spanwise

32
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loading modes are employed. These two modes provide for only two

spanwise rows of control points on a panel and are insufficient to

insure tangent flow when the induced effects are large across the span.

The use of additional spanwise modes from the same series (eq. (35a))

would allow for more spanwise rows of control points and hence provide

better solutions. However, this is not attempted herein because of

the substantial increase required in computer time.

A study is also conducted using two-dimensional theory for a

highly cambered section to: (1) provide limiting values for the three­

dimensional results, and (2) establish relationships between the

results at two different angles of attack which can be compared with

those of the three-dimensional analysis.

Variation of Results With-

Box Size

The integrations over the box of the approximated singular and

nonsingular terms have yielded a result which is independent of the

box size to ()(aO). However, the size of the box can still have an

effect on the answers by being either too large or too small. If the

box is too large, it will include those portions of the wing which are

outside the valid range of the functions approximating the singular

part of the integrands. If, however, the box is too small the numerical

integrations outside the box will suffer a loss in accuracy, unless

substantially more integration stations are used, because of the close

proximity of the edge of the box to the singularities. These two

extremes are illustrated in Table I.
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TABLE I.

Number of Integration Stations Required for Different Box Sizes
and Effect of Box Size on Aerodynamic Characteristics for an

A = 20, h/c = .00125 Rectangular Wing at a = 50 .
Control Points at x/c = .345, .905.

!

IBox Size
Integration Steps in

Box Strip Aerodynamic Characteristics

Chordwise Spanwise CL x
cP CD . CD ..

,1 ,11

.1 200 51 .5332 .2524 .0048 -.0008
.01 200 51 .4959 .2559 .0042 .0034

.001 300 151 .5121 .2544 .0044 .0017
.0001 500 201 .4450 .3212 .0034 .0212

Spanwise Control Point Locations

Only two spanwise rows of control points are utilized along a

semispan because only two spanwise loading modes are employed in the

present analysis. A limited study of the effects on the aerodynamic

characteristics of varying the location of these rows was made and the

results, presented in Table II, show only slight variation with row

location set. However, the 0.25, 0.75 set was chosen to be used

TABLE II.

Effect of Spanwise Location of Control Point Rows
on Aerodynamic Characteristics of an

A = 20, h/c = .00125 Rectangular
Wing at a = 50. Control
Points at x/c =.345, .905

2y/b CL xcp CD . CD ..
,1 ,11

0, .7070 .4950 .2562 .0041 .0031
.25, .75 .4961 .2561 .0042 .0035
0, .8165 .5125 .2557 .0045 .0024
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subsequently because it (1) resulted in the closest agreement between

the two induced drag values and (2) because of sYmmetry represents a

solution which constrains the flow at two additional control points on

the left half of the wing as opposed to the total of three which

result for a set with zero as one of the spanwise locations.

The induced drag terms ·CD,i and CD ..,11
are called the far-

field and near-field results, respectively. CD . is determined by the
,1

method of reference 6, and CD ..,11 from the combination of the

distributed camber drag and the leading-edge suction as seen in appendix

B. Exact numerical agreement between these two drag terms is taken to

mean that the chord loading is correct and hence the best solution has

been reached. In practice, exact agreement is seldom achieved, hence

chordwise control point patterns which yield reasonably close agreement

between the two drag terms are chosen subsequently (as above for the

spanwise sets) as the ones to be used.

Chordwise Control Point Locations

For two control points, many placement patterns were investi-

gated, as shown in Table III. From the table, it is evident that, for

the first control point near x/c = 0.35, the variations of the aero-

dynamic characteristics for the A = 5 , h/c = 0.00125 rectangular

wing at a = 50 are reduced, especially those of the induced drag

coefficient. By comparing the two induced drag terms in the table the

closest agreement is seen to occur when the second control point is at

x/c = 0.80 or 0.95. These locations are so near those prescribed by

Multhopp in reference 6 for a two chordal loading solution, that is,

x/c = 0.345 and 0.905 that his are used in the present method for
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the two chordal loading solution. For higher camber ratios additional

chordwise control points and loading functions are needed to effect a

best solution as seen in the next section.

'l'ABLE III

Effect of Locating Two Control Points on the Aerodynamic
Characteristics of an A = 5, hlc = .00125

Rectangular Wing at a = 50

I

Control Point Locations Aerodynamic Characteristics

, First Second CL x
CD CD i CD ..

I .11

I
I .1 .9 .3839 .2398 .0095 .0060 Ii
i .15 .80 .3766 .2433 .0092 .0070
I .20 .80 .3764 .2446 .0092 .0071

I .20 .90 .3803 .2462 .0094 .0073

I
.25 .75 .3739 I .2440 .0090 .0071
.25 .95 .3823 .2479 .0095 .0075

I .35 .65 .3724 .2463 .0090 .0076

I
.35 .75 .3740 .2474 .0090 .0076
.35 .80 .3759 .2485 .0091 .0078
.35 .85 .3774 .2495 ! .0092 .0078
.35 .90 .3784 .2500 .0093 I .0079

I
.35 .95 .3801 .2511 .0094 .0081

Number of Chordal Control Points

The number of control points must increase with camber in order

that the flow might be constrained to approximate better the normal

velocity distribution or camber shape. If only two chordwise control

points, hence loading functions are used, the aerodynamic characteristics

which result would lose accuracy, especially those involving the

pitching moment, because it depends more heavily on the third and higher

modes than do the lift and leading-edge suction.
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The effect of number and locations of control points on the

aerodynamic characteristics is tabu1'3.ted in Table IV for a typical wing.

From this table it can be seen that there are several patterns which

1-TOuld appear to do equally as well from a best soJ.ution check.

TABLE IV

Effect of Number and Locations of Control Points on the
Aerodynamic Characteristics of an A = 5, hlc = 0.0314

Rectangular Wing at a = 50

Control Point Locations Aerodynamic Characteristics

!First Second Third Fourth Fifth CL xcp Cn . Cn ..
,J. ,J. J.

.345 .905 .8798 .3761 .0498 .0077

.05 .35 .95 .9936 .3865 .0633 .0580

.1 .32 .8 - .0028 13.6321 .0000 - .2656

.1 .32 .9 .5202 .5531 .0176 - 5.6964

.17 .4 .95 .5939 .0773 .0229 - 2.0950

.19 .615 .95 .3877 1. 3917 .0101 - .9160

.45 .7 .95 .7685 .4995 .0382 .0504

.52 .78 .98 .8482 .4038 .0464 .0361

.05 .35 .65 .95 .8363 .4215 .0451 .0561

.05 .35 .75 .95 .8334 .4223 .0448 .0561

.1 .2 .8 .9 .5776 .5334 .0218 .0398

.1 .32 .6 .97 - .3227 .8174 .0510 - 1. 5160

.116 .414 .75 .97 -3.1421 - .3092 .6342 -68.5122

.2 .4 .6 .8 .1356 - 2.5608 .0016 - 2.2424

.05 .32 .55 .75 .95 .8517 .4296 .0468 .0583

.08 .29 .57 .83 .98 .8098 .)+756 .0424 .0653.] .32 .5 . i .9 -3.8451 .0277 1.0037 -71. 4019
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In order to try and determine if there was a preferential set of

chordwise control points, a separate computer program was developed

which solved equation (46) for the left-hand side using the previously

determined {cnm}. Hence, the variations from the tangency flow condition

for points in between the control points could be examined and some

indication of the best control point patterns obtained. From this

study the pattern of xlc = 0.05, 0.35, 0.65, 0.95 was determined to be

the best choice. It should be noted that this set may not be usable

throughout the angle-of-attack range, for if one of these control points

falls within the range 88.50 < e <91.50 a new point must be selected

to avoid the numerical integration problems discussed in Chapter VII.

In addition, this pattern may not be appropriate for wings of other

camber or aspect ratio.

Experimental Data Comparison

Since the only reliable data available with which to compare

was for flat rectangular wings, the present method, which is only valid

for cambered wings, was studied numerically to determine what value of

hlc would adequately represent a flat wing. A value of hlc = 0.000013

was determined to be sufficiently small, as further small reductions in

hlc didn't change the numerical results. Two chordal loading modes

with the associated control points already established were employed in

obtaining solutions. The results of the computations, along with those

of the modified Multhopp method (ref. 8), are presented in Table V and

compared with those from the experiment on both a section and wing basis.
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Further, all three lifting pressure distributions are given in figure 1

at the plane of symmetry for an A = 4 rectangular wing at a = 4.350
.

TABLE V

Experimental and Theoretical Aerodynamic
Characteristics for an A = 4 Flat

Rectangular Wing

2y/b = 0 : a = 4.350

I
Type

c
1

x CL x
I cp a cp

Experiment (ref. 24) .323 .244 .060 .235

Present Method (N=2) .346 .242 .067 .237
(2 semispan stations)

Modified Multhopp Method (N=4) .331 .240 .063 .230

I(19 semispan stations)

Both the table and the figure show that the present method

produces results which agree reasonably well with the experiment and

the modified Multhopp method. Thus, having shown that the present

method yields reliable results for flat wings, it is of interest to

determine its efficacy for cambered wings. Because of the lack of

reliable cambered wing data obtained for rectangular planforms

meeting the camber constraint of the present method, as mentioned

in the Introduction, cambered wing correlations are made with

results obtained with the exact two-dimensional method given in

appendix C.
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Theoretical Comparisons

Two- and Three-Dimensional Lifting Pressures

The lifting pressures for the two-dimensional transformed

solution (appendix C) are compared with those of the present method

and modified Multhopp method at the plane of symmetry of an aspect

ratio 20 rectangular wing, with all having hlc = 0.00125 and at

a = 50. The results are graphed in figure 2(a) and show that the

present method for N = 2 agrees better with the two-dimensional

than N = 3 for the present method or N = 2 for the modified

MUlthopp method. A similar graph is presented in figure 2(b) for

hlc = 0.0314 and a = 50 with N = 4 for the present method and

N = 4 for the modified Multhopp method. A comparison of the three

sets of data shows that the present method predicts better the two­

dimensional c1 value, whereas the modified Multhopp predicts better

the xcp value and lifting pressure distribution. The poor

quality of the lifting pressure distribution predicted by the present

method is serious and is discussed later.

Two-Dimensional Cambered Wings

The prediction of the aerodynamic characteristics for two­

dimensional circular-arc-cambered wings can be accomplished in either

of two ways. The first is in the classic manner of transforming a

circle into the airfoil shape and arriving at the moment and forces by

Blasius' theorems as given in appendix C (referred to herein as the
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3.6

3.2

2.8

24

2.0

1.2

.8

---- Two-dimensional
---- Modified Multhopp method (N=2)
----- Present method (N =2)
---- Present method (N=3)

Cz
.563
.522
.542
.522

XCp

.258

.254

.257

.273

OL-..-------------~o .2 4 .6 .8 1.0
X/C

(a) hlc = 0.00125
Figu re 2. - lifting pressu re coefficient distribution for th ree-dimens ional methods

at A = 20 and 2y/b = 0 and two-dimensional exact method, all
at a = 5°.
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3 . --- Present method (N =4)
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.941 .355

.762 .363

.833 .315
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transform method~) The second is based on thin airfoil theory (small

a and hlc approximations) and employs the Birnbaum series to

represent the chord loading and from which the moment and forces are

determined (Reference 25 has examples of the procedures.). When the

results of these two methods are compared in Table VI for hlc = 0.50

and a values of 00 and 50 , remarkable agreement is noted for

both the xcp and c t values. In order to understand this

agreement, the chord loading predicted by each method at a = 50 is

graphed and appears in figure 3. An examination of this figure shows

noticeable disagreement in lifting pressures along the chord; however,

the integrated effect of these differences is seen from Table VI to be

small because of the compensating behavior of the disagreements.

TABLE VI

Circular-Arc Lift and Center of Pressure

!

I Method c Equation x Equation
I t cp

I sina cosa
- cosa(~h), Transform - sina2TI[sina + 2(h/c)cosa] - 2

I c/TI

I
Thin airfoil (aTI h) 1 + TI(h/c)

2TI 180 + 2 C '4 c
t
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---Transform
--- Thin airfoil

10

8

6

2

oo~----:---------_---J
.2 ~ .6 .8 1.0

x/c

Figure 3. - Two-dimensional lifting pressure coefficient distribution
for hlc = 0.5 at a = 5°.
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TABLE VI continued

hlc = .5

Method a = 00
a = 50

c
1

x c x
cp 1 Cp

I
6.2832 6.8069 .4800Transform .50

Thin airfoil 6.2832 .50 6.8315 .4799

Note, in particular, that the center-of-pressure predictions by both

procedures yield the same results at both angles of attack; whe~eas, the

thin airfoil theory predicts a higher lift than the transform method

only at a = 50. This relationship for the lift at a > 00 between

the solution on the surface (transform) and along the chord (thin

airfoil) will be useful later.

Over an Aspect Ratio Range

The effects of aspect ratio on the center of pressure can be

seen in figure 4 for both cambered and flat wings. It is interest­

ing to note that for decreasing aspect ratio the predicted flat wing

centers of pressure move forward as expected; whereas, for cambered

wings at a = 00 the centers of pressure progress rearward when

computed by all three theoretical methods. A comparison of the curves

shows that the present method and the modified Multhopp cambered-wing­

xcp results agree well and tend toward the two-dimensional limit. They

both also show a more rearward location of xcp at all aspect ratios



.8

.7

.6

.3

)(

.2

.I

''-­

----/' ~
// ~

// ~

/~/

~<-
""-- CAMBERED WINGS

x Two-dimensional
---- Present method
----- Modified Multhopp method (ref.8)
-- Scholz (ref.23)r FLAT WINGS

-- -.-: --~"'::'----- --
.--. ------ ---- ---- -- ----

0 ......---------------o .2 !4 .6 .8 1.0
IIA

Figure 4. - Effect of camber on center of pressure. Cambered wing
results are at a = 00

•
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than those predicted by Scholz. For the flat wings the present method

results tend toward the two-dimensioLal value of slightly faster

than the other two methods with increasing aspect ratio. At o
ex = 0 ,

the effect of camber cannot be seen at a given aspect ratio because the

different camber curves tend to collapse upon one another. Hence, these

effects are discussed in the next section at a given aspect ratio and

positive angle of attack.

~Cp

Two -d imenslonal
angle of attock

loading

~Cp

Typical
two- dimensional
comber loading

o

Induced load ings
I

.5 1.0
x/c

o

Induced
I

.5

xtc

load ings
I

1.0

Sketch 9. Loading composition for finite-aspect ratio
flat and cambered wings

The above center-of-pressure trends can best be understood by

examining the preceding sketches. The effects of finite aspect ratio are

seen to induce both a negative cot E/2 load and a negative sin E load

with these induced loads becoming larger as the aspect ratio decreases.

For flat wings, the induced cot E/2 load does not change the load



49

center but does decrease the lift at a given a however, not only does

the sin E load decrease lift, it also imposes a nose-up moment about

the two-dimensional lift center as well as the leading edge. These

effects lead to a forward movement of the center of pressure with de-

creasing aspect ratio. For sYmmetrically cambered wings (in particular,

circular-arc wings at a = 00
), the induced sin E load reduces the lift

at a given a without distrubing the center of pressure; whereas the

induced cot £/2 load decreases the lift and produces a nose-up moment

about the leading edge or a nose-down moment about the two-dimensional

lift center. These two effects cause the center of pressure on cam-

bered wings to move increasingly rearward with decreasing aspect ratio.

The trend of center of pressure with aspect ratio is well

known for flat wings; however, the corresponding trend for cambered

wings is not as well known, even though documented by Scholz in

reference 23 .

Over a Camber Ratio Range

The effects of camber ratio on xcp and CL are seen in

figures 5(a) and 5(b), respectively, for an aspect ratio 5 rectangular

wing at o
a = 5 . As expected, the predicted results show an increase

Further-in CL and rearward movement of xcp with increasing hlc

more, comparisons made between the modified MUlthopp method and the

present method indicate that the centers of pressure agree reasonably well

up to hlc of .013; whereas, the CL predicted by the present method

exceed those of the modified Multhopp method for all camber and increases

at a faster rate.
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.5

.4

..3

~---
(a) xcp

.2 . - . ·1

------ Modified Multhopp method (N=4)

----- Present method (N=4)

1.2

.8

CL

.4
(b) Cl

0
0 .004 .008 .012 .016 .020 .024 .028 .032

hIe

Figure 5. - Effect of camber on some aerodynamic characteristics of an
A = 5 rectangular wing at ex = 50.
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Over an Angle-of-Attack Range

The variation of CL with a at an aspect ratio of 5 and

camber ratio of 0.0314 are computed for both the modified Multhopp and

present methods, and the results presented in figure 6. The curves

show that the present method predicts a higher value of CL at all

angles of attack and yields a higher lift-curve slope.

Discussion

From the preceding studies of the present method and the

subsequent applications, much has been learned:

(1) Number and Locations of Control Points

Two control points (loading functions) are sufficient to

describe adequately the wing having only small amounts of camber

<(h/c - ~.00125), and the results with different locations indicate a

low sensitivity to position. This happens because the first two

lifting pressure functions are adequate to describe the pressure

loading and also satisfy the tangent flow boundary condition all along

the arc. For higher camber ratios, more than two control points are

required to constrain the flow SUfficiently to meet the solution

criteria. The number and location of these control points depend

upon wing aspect ratio, and angle of attack because of the few control

points constraining the flow. Numerical studies indicate that two

additional terms in the Birnbaum pressure loading series are still not

adequate to describe the loading distribution for wings with cambers in

excess of 1.25%; therefore, a larger number of terms are required.
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------ Modified Multhopp method (N=4)

----- Present method (N=4)

1.6

1.2

.8

o~------------o 4 8 12

aideg

Figure 6. - Effect of wlg1e of attack on CL for an A = 5,
hlc = 0.0314 rectangular wing.
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This is not a very practical solution since it necessitates an excessive

amount of computer time. For example, with two spanwise stations and four

chordwise loading functions, computer time on the CDC 6600 of 15 minutes

is required, and for six chordwise modes, time in excess of 30 minutes

would be needed. Ideally then one would utilize a better set of modal

functions. The problem is the determination of this better set. One

procedure for doing this would be to obtain them from the local pressure

equation given in appendix C for the exact two-dimensional solution.

Another would be to obtain them from the two-dimensional integral

equation relating the downwash ratio or local slope to the pressure

distribution over 6x Still a third procedure would be to express the

series of loading functions in terms of distance along the arc having the

appropriate singularity as the first term with the other terms having

the first term multiplied by distance along the arc to a power.

The first procedure would be very difficult, as an examination

of equations C-23 and c-24 will easily show. The second procedure

leads to another series solution which is as yet undetermined. It is

likely, however, that many terms would be required. The third procedure

has been programmed, with only slight improvements obtained.

(2) Limiting Values

The present solution tends to the correct two-dimensional value

of xcp for both the flat wing and at a = 00 for the cambered wing.

The present method also predicts a CL which tends to the two-dimen­

sional value for hlc 2 0.0314 and a = 50. It is interesting to note

that, whereas the two-dimensional solution along the chord (thin airfoil)



predicts a higher c t than the solution along the surface (transform),

the reverse is true for the two three·-dimensional solutions at both

A = 20 and A = 5 .

(3) Moderate Aspect Ratio Comparison

The present method appears to predict reasonably well the

aerodynamic characteristics of wings with small camber (h/c ~ 0.0125).

This is demonstrated by comparison with the experiment and the modified

Multhopp method. The fact that at hlc = 0.0314 the present method yields

a higher CL at any a , a higher CL , and a more rearward xcpa

than the modified Multhopp method can be attributed to both the modal

functions employed in the present method and the limitations inherent

in the planar approach. It should be noted that even with the modal

functions employed satisfying the solution criteria, poor results can be

obtained because of the limited number of terms used.



IX. CONCLUSIONS

The development of a nonplanar lifting surface method having a

continuous distribution of singularities and satisfying the tangent flow

boundary condition on the mean camber surface is given in this

dissertation. The method predicts some incompressible longitudinal

aerodynamic coefficients of rectangular wings which have circular-arc

camber. After some preliminary sensitivity studies are conducted with

this method, applications are made over an aspect- and camber-ratio and

angle-of-attack range and the results compared herein with other

theoretical methods and flat-wing experimental data. From these studies

and comparisons, several conclusions emerge. They are: (1) The present

method is able to predict with good accuracy some longitudinal aerodynamic

characteristics for camber ratios not greater than 0.00125 at both high

and moderate aspect ratio by employing only two control points (with

little sensitivity of results to control point locations) and without

the singular strip encountered in the flat-wing theoretical solutions.

(2) For higher camber ratios, more control points are required, but even

with their locations yielding results which give reasonable agreement

between the far-field and near-field induced drag values (the solution

criteria), the lifting pressure distributions can be poor. The poor

distributions and high sensitivity of results to control point location

indicate that the pressure mode functions chosen are not the most

appropriate for wihgs having cambers in excess of 1.25%. Other lifting

pressure functions were investigated without obtaining any significant

improvement in the results. (3) The control point locations are
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dependent upon aspect ratio (because of the few control points used),

camber ratio, and angle of attack, be.-::ause of the inadequacy of the modal

functions chosen. (4) The present method is also able to predict

reasonably well the lift coefficient and center of pressure for moderate

aspect ratio (aspect ratio 5 illustrated) at an angle of attack of 50

up to a camber ratio of about 1.25%. (5) The present method's

predictions at a moderate aspect ratio of lift coefficient at any angle

of attack and lift-curve slope, as well as center of pressure, are larger

than those of the modified Multhopp method for all camber ratios. The

over-prediction of the lift coefficient by the present method when

compared with the modified Multhopp method is the reverse of that found

in comparison of the two-dimensional surface (transformed) and chordal

(thin airfoil) solutions. This indicates that the modified Multhopp

results are low for certain configurations and that for others the

lifting pressure functions of the present method are not appropriate.



x. RECOMMENDATIONS

The work reported herein could serve as a model for lifting

surface solutions of other basic camber shapes such as elliptic,

parabolic, or those represented by some other general function.

However, it should be kept in mind that each of these other camber

shapes has a different set of appropriate chordal loading functions

which must be determined in order to yield acceptable results in a

reasonable amount of computer time. Another way to save computer

time would be to perform the general spanwise integration analytically

first, leaving only the chordwise integration to be done numerically.

Extensions to the present work could be undertaken to include

both the effects of sweepback, without introducing reversed twist,

and variable dihedral.
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XIII. APPENDIX A

Certain Integrals Over The Box

Some of the integrals presented in equation (41) for integration

over the box contain in the integrand the term ( 1 ) The
a 2cos 2e+(W/R)2 .

solution for these definite integrals can be analytically formulated;

however, obtaining correct results from the numerical evaluation of

these formulations may be difficult. The difficulty is evident for e

near TI/2, because there the numerical evaluation of the general formu-

lation does not tend smoothly to the same numerical result as would

be obtained by a direct integration of the original integrals for

e = n/2. The numerical difficulty arises because of the general

occurrence of (l/cose) as an overall multiplier, as can be seen in

the following example.

Example:

Consider the surface integration of

W

(a (R a2d(w/R)dcr
R 1cr .ti [a 2cos 2e + (W/R)2p

R

Integrating expression (A-I) with respect to w/R and imposing the limits

leads to

-+ (A-2)

The first integral of expression (A-2) can be evaluated readily; how-

ever, a change of variable is needed in the second. These steps
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-Racose
or

lead to

where

+

RCfcos8

w

f JTI/2 - tan-1(x)J_
x dx] (A-3a)

x == ROcose/w (A-3b)

The first term in the remaining integral integrates to zero because

it is odd over the integration range. The second term has to be

integrated term by term after expanding tan-1(x) into

x 3 x S x 7= X - --+--_--+
357

(A-4 )

Hence, upon performing the above integrations and letting

Ro == w (A-5 )

leads to

co='S [2tan-1(CosSl 2 (COSS - + cos
7
e )]- 49· + .••

(A-6)

This expression could be considered as the general formulation

of the evaluated definite integral appearing in expression (A-I.). Note

that, in expression (A-6), values of 8 near TI/2 produce large results

for the (l/cos 3 e) multiplier and small results for the terms inside

the braces. Now, upon performing the indicated multiplications,

there result some terms which are still small and tend to zero as e

goes to TI/2; whereas, other products, 2Rtan- 1( cos 8)
cos 3e

and -2Rcos8
cos 3 e

produce numerical indeterminancies or, at best, infinities of opposite

sign. In either case, the answer or finite part of the surface
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integral is not determinable.

This problem can be circumvented by expanding in e:x;pression

(A-6) the term tan-1(cos8) according to equation (A-4) and combining

like terms inside the braces. After simplifying, the result is

4
9

+ ... )

Now, for e = TI/2, the expression, instead of producing indeterminancies,

gives a value of - ~ R. This result agrees with the direct integration
9

of expression (A-I) for 8 = TI!2.

Another integral which must be integrated in the same manner

as the preceding is

and results in

4( 12 I 4 )
- R I - rOs e + 25cOS 8•..

(A-B)

(A-9)



XIV. APPENDIX B

Determination of Aerodynamic Coefficients

The determination of some section and wing aerodynamic

coefficients for wings with circular-arc camber is accomplished by using

the c set computed from equation (46) and the equations given in the
nm

following paragraphs.

Section Coefficients

The computational equations for the section lift (including the

contribution due to leading-edge suction) pitching moment, distributed

camber drag and leading-edge suction coefficients are given below.

Section lift coefficient:

Section pitChing-moment coefficient:

(B-1)

2 N-l

=~~~ ~
m=o n=o
even

[
hn(£)Sin( ~ - 80 )Sin£d£!:L'iV(:J_)'

cnm
0 sin( -8 + cd \b/21 1- b/2

(B-2)

Section distributed camber drag coefficient:

cd (y.)
c J

2 N-l

=~L ~
m=o n=o
even
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Section leading-edge suction coefficient:

2

=~
m=o
even

(B-4)

where

1[(1 - COSE) c ]~ = cos- 2 R+ cos(8
0

+ a) -a

Wing Coefficients

(B-5)

The equations used to determine the wing lift, pitching moment,

distributed camber drag, leading-edge suction and near-field induced-drag

coefficients were determined by Multhopp quadrature and are given as

follows for symmetrical span loadings.

Wing lift coefficient:
J.,.l

CL =Cav(J\ 1) (~ c, (Yj) c(Yj) sin$j + ~ c, (YJ;l) C(YJ ;l))

(B-6)

Wing pitching-moment coefficient:
J-l

CmLE = c c '( J + 1) (f em (y j)
av ref .~ LE

C'(y j) sin$ j + ~ CmLEf ";1) c' (YJ;l))

(B-7)
Wing distributed camber drag coef~icient:

J -1

Cn = C (J"+ 1) ('p cd (Yj) c(Yj) sin$j
c av =1 c

+ 1 c ( )2' dc YJ;l
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Wing near-field induced-drag coefficient:

C(Y3;1))
(B-9)

where

CD •• = CD
J.J. c

C sineosLE

jrr
J + 1

(B-lO)

(B-11)

Wing far-field induced-drag coefficients:

(B-12)



XV. APPENDIX C

Two-Dimensional Circular-Arc Airfoil

Aerodynamic Characteristics

It is well known (see refs. 26 to 29) that a circle in the complex

~-plane can be mapped into a circular-arc airfoil in the complex z-plane

by selecting the origin of the circle to lie at ih/2 and then applying

the Kutta-Joukowski transform

z = (C-l)

to points on the perimeter of the circle (see sketcheslO and 11). The

I'T'/JIY

SketchlO.- Geometrical relationships between generating
circle and circular-arc airfoil.
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2

Sketch 11.- Additional geometrical relationships between
generating circle and circular-arc airfoil.

points from Bl counterclockwise to HI will lie on the upper surface

and those from HI counterclockwise to Bl will lie on the lower

surface. The local velocity, and hence pressure, can be determined over

the airfoil by making use of the complex potential (w) of the circle of

an angle of attack and the Kutta-Joukowski transformation as follows:

where

u - iv = dw dw dl;
- dz = - dl; dz (C-2)

2 -iaia Va e
w =Vl;e + I; _ s + 2aiVsin~ In(1; - s) (C-3)
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s location of the center of the circle in s-plane

the angle L CHl Al ' where Hl is the point on the

circle that transforms into the trailing edge of the

airfoil (point H).

The angle ~ must be such that the velocity at the point H remains

finite. To solve for the required ~ relationship, the procedure

given in reference 26 will be followed. Begin with

2 -iexdw Veiex _ Va e + 2aiVsin~

ds = (s - S)2 S - S

or re-express it as

( i~)( -i(ex + ~))dw = V eiex +~ 1 _ ~a...;;..e _
ds s- s S - s

and the differential of equation (C-l)

(C-4a)

(C-4b)

(C-5)

Upon sUbstituting equations (C-4b) and ~-5) into (C-2), it follows that

dw = v(eiex + aei~)(l _ ae-Hex + ~))( S2·)
dz s - s . S - S S2 _ k 2 .

(c-6)

The point Hl on the circle can be seen in sketch 11 (ref. 27) and.

corresponds to s = -k. In order to keep the velocity from taking on

an infinite value at the transformed point H, the point H
l

must be

made a stagnation point (dw/ds = 0) so that dw/dz will assume
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the indeterminant form of 0/0, which can be shown to yield a finite

velocity at the trailing edge.

Next, the angle ~ must be related to other known quantities.

This is accomplished by examining the geometry of the generating circle

in sketchll~From it the distance along s from HI to the

horizontal projection of the circle center is determined to be

k + S - acos(~ - a) + a = acos8S -

Furthermore, the vertical distance along in is found to be

sn = asin(~ - a) = asin8

These can be written as

(C-7a)

( C-7b)

k + is = a[cos(~ - a) + isin(~ - a)]
n

or

i(~ - a)= ae ( C-8a)

iae (C-8b)

By making use of equation (C-Bb) in the first group of terms in equation

(C~6), the following result can be obtained:

dw = v(eia + (k + S )eia)(l
dz s - s

which after some simplification can also be given as

(C-IO)



With the addition and subtraction of k to the bracketed term, and upon

using the result of equation (C-8b), equation (C-lO) can be recast as

dw V ia(r + k i([3 - a) -i(a + (3)) z:::2- = e., - ae - ae
dz (l; - s)2(l; - k)

By expanding the exponent terms, equation (C-ll) becomes

(C-ll)

(C-12 )

An examination of the velocity at the point H (or where l; = -k) yields

or

= dw Veia(Ou
H

- iV
H

- - =
dz

(C-13)

Vkcos[3
- - -1'-;'("';;';2;';;"[3';::';-~2-a""")

ae
(C-14)

In order to obtain the conjugate of uH - iVH the angle 2[3 - 2a can

be rotated TI radians. That is

+ . Vkcos[3 i(2[3 - 2a + TI)
uH 1VH = - a e (C-15)

Hence, if the angle that a tangent to the cusp at the trailing edge makes

with the x-axis is 2[3 - 2a, finite velocities are obtained.

From sketch 11, it can be seen that

(c-16 )



and
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k = cf4 (C-·17 )

When these are used in combination with equation (C-8b), the following

can be written:

c - i(3 = (,g. + 2ih ) eia"4 sec(3 e 4

Therefore,

(

c + ih)i(3 4" 2 ia
e = e

c -:4 sec(3

Taking the natural log of both sides leads to

(C-lBa)

(C-lBb)

I - i2h -)i(3 = In\cos(3 + --c- cos(3

or

+ ia (C-19a)

+ itan- 1 (;h) + ia (C-19b)

which yields

(C-20)

In order to determine the pressures on the airfoil, it is more

convenient to specify locations on the circle and then determine the

corresponding point on the airfoil rather than conversely. Hence, by

defining



T4

(C- 21)

and by substituting this along with equations (c-16),(C-17) and (C-20)

into equation (C-12), the following equation can be written:

dw veia(aeiY + ih + ~ _ ..1L e-ia coseS + a)\.
dz = 2 ~ cose ~

• ( iYY( iy + ih c)ae ae 2 - "4
(C-22)

After all the multiplications and simplifications have been carried out,

the velocities are determined from

where

u - iv
dw

- - dz = -
vcosi3{[cosaP1 - sinaP2]~[cosaP2

(~)[ I - cos (y - .i3)]

(C-23 )

PI = -acos(y + i3) + [a WRcosS + hsini3 + wI sini3]

[
h2 _ h~sini3 hWI ]

+ cosy WR + 4a cose + a + 7 cosi3

+ siny[wr + h:r sinj3 + h + ~ sinj3 _ h~ cosi3]

[
2 2]h WI _ hWR h WR _

+ sin2y -- cose + -- + -- sine
4a2 a 4a2

(C-23a)
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P2 = -asin(y + ~) + [-wIcos~ - hcos~

(
hWI _ h 2 _

+ cosy wI + a sin!3 + h + ~ sin!3

- ~sin~]

~cos~]
a

and

Hence

[
h2 _ hw hW-]

-siny W
R

+ ~ cos!3 + aR sin~ + a I cos!3

2 2]h WI _ hWR h WR _
+ COS2Y[-- cos I' + -- + -- sin!3

4a2 a 4a2

. [h2 h~ _ hWI h 2WI _]
-sin2y - r- + -- cos I' - -- - -- sin!3

4a 4a2 a 4a2

+ COS3Y[- h
2
WI ] _ Sin3Y[- h

2
WR ]

4a2 4a2

~ = - ~ sec~ cosa cos(~ + a) + fr

WI = ~ + ~ sec~ sina cos(~ + a)

(C-23b)

(C-23c)

(C-23d)

(C-24a)

(C-24b)

The location on the airfoil which corresponds to the points on the circle

at which the velocities are determined can be computed by substituting

equation (C-2l) into equation (C-l) and simplifying the resulting
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expression. The result is

z = ~((secs cosS cosa )cosy + ---~~~:...:;.;~---

1 + 2siny sinS + sin2S

+ i(secS siny + tanS _ cose(siny + sine) )]
1 + 2siny sine + sin28

(C-25)

These equations have been programmed and the lifting pressure results

are compared with the three-dimensional solution at the mid-span of a

rectangular wing with a very large aspect ratio in the Results and

Discussion chapter of the dissertation.

The forces and pitching moment which are developed over the circular

arc airfoil can be determined by direct integration of the pressures and

the moment of the pressure over the airfoil or by employing the analogous

integrations which result from Blasius' theorems. The Blasius' Theorem

for forces (ref. 26) can be expressed as

x 'y 1. ,c(dW)2 dz- ~ = '2 ~p ?1 dz

or,

x - iY = - ¥ J(~~f(~~) ds

(c-26)

(C-278,)

By using equations (C-4b) and (C-5), equation (C-27a) can be written as

• [(1'; _ s) _ ae-i(a + 13)] 2 s2ds

(s - s)~(s2 - k2 )

(C-27b)
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After expanding all of the terms and employing the Residue Theorem, the

result is

Hence

and

X 0y °8 ° Q ia- 1 = -1 ~q aS1n~e

x = q 8na sinS sina

Y = q 8na sinScosa

(C..28 )

(C-29a)

(C-29b)

With the substitutions for a, equation (C-16), and S, equation (C-20),

the coefficients of forces in the x and y directions can be written as

or

and

or

Since

Cx = 2~(sine cosa + cose sina) sece sina

cy = 2~(sine cosa + cose sina) sece cosa

(C-30a)

(C-30b)

(C-30c)

("C-30d)

CC-31)

The resulting equation obtained by sUbstituting in for Cx and cy the

equations (C-30b) and (C-30d), respectively, is

c 1 = 2~[Sina + cosa(~h)] (C-32a)
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Also,

(C-32b)

and for the same substitutions as before leads to

(C-32c)

The Blasius Theorem for pitching moment from reference 26 about the

center of the generating circle is simply

(C-33a)

After sUbstituting in it the results of equation (C-l) and sketch 11,

this equation becomes

(C-33b)

and with the inclusion of the results of equations (C-4b) and (C-5),

equation (C-33b) can be written as

(C-33c)

Upon expanding these terms, combining, simplifying and integrating each

set of terms by the Residue Theorem, the following equation results:

(C-34a)
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or

1T . 2cM = '4 sJ.n ex
c

(c- 34b)

After expressing ex in a manner similar to reference 28, that is,

ex = ~ + (ex - 6)

making use of the identity that

(C-35 )

sin2ex = sin2[S + (ex - i3)] = -sin2i3 + 2cos(ex - 6)sin(ex + i3)(C-36)

and re-expressing (.C-32a) in terms of i3 ,

c = 21TseQ~[sin(ex + B)]
1

or

(C-37a)

sin(ex + B)

equation (C-34b) can be rewritten as

= c)cosi3
21T (C-37b )

or

1T[ -cM = '4 -sin2l3 +
c

2cos(ex - B)C 1 cosB ]

21T (C-38a)

1T _ C _

cM = - '4 sin2f3 + ~ cosl3 cos (ex - 6)
c

The first term is split off and defined by

1T . ­
c~ = - '4 sJ.n2l3 ,

(C-38b)

(C-39)
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which is the pitching moment about the focus and is independent of a .

The pitching-moment coefficient about the leading edge is obtained by

transferring the moment about the center of the circle to the leading

edge. Hence

or

7T • 2 2 [ . (2h~(%)C
MLE

=4 Sln a - 7T Slna + cosa C-~

[
sinacosa (2h~

c~ = 7T 2 - sina - cosa c-A

(c-40a)

(C-40b)

As a consequence of equation (C-40b) and equation (C-32a), x can becp

written as

xcp
siB~cosa _ sina - cosa(~)

=
-2[sina + cosa(~h~

(C-4l)

These equations have also been programmed and results are compared with

the three-dimensional solution in its limit in the Results and

Discussion chapter of the dissertation.




