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ABSTRACT

The control of a single input-single output plant with parameter

uncertainty has been approached using a minimax technique, A linear

time invariant controller results which requires only partial state

feedback and is optimal in the sense that it minimizes a quadratic

criterion involving tracking error, control, and parameter uncertainty.

Bounded input-bounded output stability is guaranteed provided the transfer

function has only left half plane zeros. If uncertainties are bounded,

it is always possible to stabilize the system when sufficient control

amplitude is available. The number of states required to generate the

control is equal to the system order less the number of zeros.
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I, INTRODUCTION

Control of a dynamic single input-single output system having parameter

uncertainty and unknown process nonlinearity has been considered using a

minimax technique. Specifically, we intend to show that a controller can be

designed using a nominal model to insure a satisfactory performance of the

system inspite of ignorance of system parameters. The problem is posed with

the additional constraint that the controller is linear and that it requires

only partial state feedback.
11,2,3]

Lyapunov type synthesis techniques may be applied to control this

class of plants. The resulting controller is highly nonlinear. The limitation

of this approach is not only the complexity of the controller structure, but
:

also the lack of any insight as how to determine the control signal amplitude,

It is sometimes possible to obtain a design for this class of plant using

141Stochastic Control Theory. The general problem here is to determine the

least favourable distribution for the uncertain parameter vector jj_. Another

alternate approach is to use minimax control rule .

In this paper, the problem has been approached by minimizing and maximizing

a quadratic performance index involving the tracking error, the control, and

the "uncertainty signal". The resulting controller is linear and is optimal

in the sense that it minimizes the above performance criteria. The number of

states required to generate the control is equal to the system order less the

number of zeros. Bounded input-bounded output stability is guaranteed provided

the transfer function is of minimum-phase type. If the uncertainties are

bounded, it is always possible to stabilize the system, irrespective of the

location of open loop poles of the system, if sufficient control is available.

These results also apply for systems with rather general nonlinearities that

do not involve the control. It has also been shown that the tracking error
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vector admits an upper bound and that the bound can be made arbitrarily

small.

II. MOTIVATION OF THE PROBLEM

We consider the single-input-single output system described as in

b sm + b ns
m~1+ . . . . + b.s + b_ „, ,m _ m-1 _ 1 _ 0 N(s)X.(s)1

U(s) n , n-1 . . . D(s)
s + a ,s + ....+ a.s + a_

(1)

where X-(s) and U(s) represents the Laplace transforms of output x, (t) and

input u(t) respectively. The equation (1) may be reproduced in the state

variable form

x <= Ax + hu «
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where N .(s), k=0,l, , . . ,m, are polynomials In s. Consider now the use ofti~K

a linear feedback law

Tu = - kn [k-x, + k»x0 + . , . . + k x ] = - k~k xO i l 2 2 n - m n - m ( P —

Twhere k = Ik. ,k0 ...... k , 0, ....0] is a constant vector,
~~ l £. n-m

The eigenvalues of the closed loop system are then solutions of

0 = | si - A + khk = |sI-A || I + kQ

= |sI-A| (1 + k̂ 1 (sI-A)"1]!) (5)

where |AJ is the determinate of matrix A.

The last equality of (5) is obtained using the identity

| I + C D | = 1 + DTC. (6)

£, I) being vectors of compatible dimensions. Furthermore, combining (4) and

the definition of k with (5) yields

T N(s)(k. + k s + . . . . + k
SI-A + k.- D(s) [ 1 + k - 1 - 2

(7)

(7) can also be obtained using Figure 1 which illustrates the system with

feedback. The characteristic equation of the closed loop system is

1 - Loop Gain = 1 + k-k1 (sI-A)'1^ = 0,

which agrees with (5) and (7). We know as kn"*00. that zeros of (7) approach

the n-1 finite zeros of N(s)-k(s) and one zero at -<*>. Hence if N(s), k(s) are

Hurwitz polynomials with b , k > 0, the system is stable for kn sufficientlyi m n~m u

large - regardless of the zeros of D(s) = |sI-A|. Furthermore, response to any

bounded input R(s) will be bounded. The problem is to choose the nonzero
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elements of Jc so that in addition to stability the system exhibits behavior

which is in some sense good. Furthermore we should like a design procedure

which can yield this good behavior despite uncertainties in the system parameters.

III. SYSTEM DESCRIPTION, DEVELOPMENT AND PROBLEM FORMULATION

Define a stable model
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and a system

a xan-lxl
(n-1) _ ,01 b um b ,um-1

(8)

b,u1 bnu0

where y_ and r are the model output and reference input respectively, and

f(xn, x0. . .x ,t) is a nonlinear function,i i. n—m

If

m m-1(1) b >3*0 and b s + b ,s + . . . +b1s + bn Hurwitz, and ifm— m m-1 1 U

(2) f (xn ,x0. . . , x ,t) is a bounded continuous nonlinear function,1 / n— m

we wish to show that the error

(10)

can be bounded with an arbitrarily small bound, despite imperfect knowledge of

a., b. , i = 0, 1 n, k = 0, 1, . . . m. This will be achieved by a

linear feedback law which requires only partial state feedback and is in a

sense optimal. Furthermore u will be similar in form to (4) with k(s) Hurwitz.
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Remark 1.

a) n,m, are integers which may be unknown but the difference (n-m) is

assumed to be known. Also a lower bound of the highest order derivative

coefficient of u is available.

b) Note that (9) is identical to the linear system (1) except for

addition of the nonlinear term,

c) When a regulator is being designed it is admissable to let r=yj=0.

We proceed by rewriting (9)

„ (n) j. ~ „ (n-1) . . _ „ (m) 0 m _ r , (i) . ,. „•> ..m,+ a
n-m-1 1

n-1
+ J a, x (j)

n-1
- I
J-0

ajXl
(j)

f(xr..., (11)

Integrating each side m times, gives

(n-m) ,x, + a n x,1 n-m-1 1 (12)

where 5(t) is the m fold integral of the right side of (11) together with

Initial condition terms. In state variable form ,(12) may be written

*
X =

r 0 1 0 ... 0 "

0 0 1 ... 0

t

0 0 0 ... 1

—a - . . , . . ~°-f\n-m-1 0

x +

'o

0

*

0

B.

u +

0

0

9

0

5<t).

where x corresponds to the first n-m elements of 3£ as in (10)

JL / —-/ttt 1 \ T

i.e. i» xi»* ' *' xi
,

'-"» xn-m
j '

(13)

(14)
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Consequently subtracting (8) £jrpjn (13) yields

* B

1 - (x - £) - Afte + B (u + O. u - (u- •£• r) ,1 = £ £. (15)0 6 6

, of course, generates differences between the model and x.-/ 5 ™ 0 = u, ̂

approaches zero asymptotically since AQ has negative eigenvalues. Furthermore,

even if u = 0, £ 1* 0, _e will be bounded for |(t) bounded. The problem is to
a

realize a u which will not only retain stability but allow/bound on _e to be

made arbitrarily small.

IV. CONTROLLER DESIGN

For the purpose of controller design consider the criterion
00

1 f T -2 -2
J = y (e/Qe + u R - 5 L) dt (16)

0

with R, L > 0 and Q positive definite, u, C will be chosen to minimize and
17] * *

maximize J respectively. It is readily shown that the optimum u, E, are given

by
** IT - _i T

where P is the symmetric matrix satisfying

PAQ + A^P + Q - PBB_
TP (5 - l> - 0 . (18)

1 TFurthermore, (i) A- - — 3$ P has negative eigenvalues
U i\

(ii) P is the unique positive definite steady state

solution of -P = PAn + A^P + Q - P33
TP & - f) , R<L.

U .U K Li —
* *

(ill) Jle-.; u, C ] = min max J[e«; u,£ ] = max min Jle_; u, C ]—vJ ~ - ^J z ~ "HI
U § f, U

= i eTP e2 —0 -k)

(17) will, in one sense, yield a conservative design since £ is assumed to act

in the most perverse manner. In another sense, however, £ need not abide

by the rules of the game and may be using a smaller L than "agreed upon". This

may require that R in turn be decreased.
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Remark 2.

It should be noted that a unique positive definite solution P of (18)

[81
exists J if R<L. In case, R<L the implication is that we are trying to balance

the effect of the "uncertainty signal" with a larger amplitude of control

signal than what is needed with R = L. Consequently for much of the rest of

the paper, we shall restrict ourselves to the case R = L. In case R<L,

it is still possible to show that proposition 1 (mentioned below) is true.

In case R>L, nonuniqueness of solution P of (18) poses some problems in the

subsequence analysis of the error bound and will be discussed in a future

paper.

For convenience, define Jk as the last row or column of P. Then

p£T= I*!* £2' ' ' '-VJ
10'0" ' ''^ = e£n-m * & •

from (17), u is given by

Accordingly

8(s) = - kTls,. . . s11"*"1]1 E(s)= -

where

(s) = - kIl,s,. . ., s"] E(s)= - k(s)E(s) (1%)
K.

i / \ T r. 2 n-m-l,Tk(s) = 2n_ffl [l,s,s . . ., s ] .

Now it will be helpful, at this stage, to establish an important property

of this control signal u that is outlined in the following proposition:

Pr opo s it ion . 1

With A_ stable and as defined in (13) , k(s) is a stable polynomial for

R=L.

Proof ;

Consider the system defined by (15) and represented in Figure 2. The

open loop transfer function, z(s) , between 5(s) and u(s) t is given by
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where D-(s) = |sI-AQ| is a stable polynomial and k(s) is as defined in (19b)

Now using (18), we obtain

2Re[2(s)]=z(s) + z(s) = | [/(sI-Aj)"1 PB.

)"1 [P(s+s) + Pj!T (

= 2{Res} UCsI-A)" P̂ I-Ag)"!] +

for R = L.
*

Here s denotes the complex conjugate of s. Since P, Q are positive definite,

Re[z(s)] is nonnegative- for Re(s)>0. Therefore the transfer

T91
function z(s) is positive real .which implies from (20)

that k(s) is Hurwitz.

V. DERIVATION OF A BOUND ON IHE ERROR

In order to determine a bound on e_ when u satisfies (17) but £(t) is

arbitrary, let

V(e) = |eTPe (21)

where P is the positive definite matrix satisfying (18). e_ must now satisfy

the differential equation (15) with u as in (19a) ; that is

e= [A0-| 0
T
P] e +1 C(t). (22)

The time derivative of (21) is

V(e) - feT[A0 - I 16
Tp)T p + p <A0 ~ |;ll

Tp)el £ + I (t)lTPe

- - |eTQe - | B2(kTe)2(£ + |) + 5 (t)3 (kT£) (23)

where (18),(jL9a), and (22) have been used to refine the result. Clearly if

|i(t)| is bounded ,(23) will be negative for | |ej (sufficiently large and admit

an upper bound | |e| | . First we must examine £(t), however, by considering

the behavior of the full system described by (9), (10), (21). We shall return

to complete our examination of (23) .
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VI. STABILITY OF THE OVERALL SYSTEM

Turning now to the total system, (9) may be written in state form,

basically as in (2),

x = Ax + hu + f_ (x, t) (25)

withf. (I»t) = 10, 0 0, f(x,t)]T,

If we now define

x = [-], A =
~~ A . A

v* (26)

z = t vi , v- (Yr
 V
2, . . . \r

and combined (25), (8) and (10), to eliminate x, the result is

K -Ao
Z = AZ + hu +

V
+1 (§ + y, t)

- AZ + hu + v (27)

where n— m n-m
2- 10,0,. . ., 0, I ot± y - B r, 0, 0, ., f (y_ + e, t) - a± y ]'

/ \th(n-m) entry
(28)

_v is bounded if the model input r, is bounded as assumed. If the

"optimal" u given by (19a)is used in (27), the closed loop system satisfies

a *m Pn

- h k] Z + v' (29)

with

, 0, 0, . . . 0]

(30)
r 10, 0, . . . 0, v . . vn]
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The characteristic equation of the closed loop system is obtained as

in (5)-(7), i.e.

0 = IsI-A + | h kT| = Isl-A| |l + (sI-A)"1 |- h kT| = |sI-A| (1 + |
K ~~ K K

= D(s) + | N(s) k(s) (31)

Now as R-K), (n-1) roots of (31) approach zeros of N(s)k(s) , and the last root

goes to infinity along the negative real axis. Since N(s), k(s) are "stable

polynomials", then (30) is stable for R adequately small.

Consequently as the penalty R on control is reduced, permitting larger

control amplitudes, the system (1) - (2) or (27) is stable for the feedback

law (19). provided N(S) is a stable polynomial with b »0.

Now since (29) yields a bounded "L_ with a bounded input v\, all the elements

of £ are bounded. In fact, bounds on v_' do not depend on 2-_ but are determined

mainly on jr. From (29) - (31) it can be seen, in a straightforward manner, that

£(O=E.,(s)= ^ I fi(s) v'(s) 1-1,2 (n-m-1)
1 * D(s) +£ N(s)k(s) J-n-m J J

D(s) + |N(s) fc(s) j=n-m
K

m,

where f̂ s), g.(s) and Si1. (s) are polynomials in s, independent of R, and of

order _< (n-1).

As R-*0, |E1(s)|-> 0, 1-1,2 ..... (n-m-1)

and

j=n-m
v'(8)

N(s)k(s)
i=l,2,..,m. Thus an ultimate
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bound on V exists and Is Independent of R as R-K). Furthermore the error

bound, i.e. the bound on ||ej | goes to zero as R-K). We explore this further.

VII. FURTHER RESULTS ON THE BOUND OF THE ERROR

Let us now examine 5(t). From (22)
«2 T

i-lei + f &

= e
1 vfYl

i=l

T . V1 „ . , B0

From (29) , on the otherhand

Z = e = v 1 - | - b k
Ae + } a. Ty. - Bftr + bn-m n-m 1 R m .^_ i-l i 0 m

Thus
n-m b 6 T

(̂t) = v + £ [a. e. 4- a y ] 4- BO( -r= -1) r + ̂  (g-b )k. e^

= ^1 + R ̂ ~bm̂ -
T- ^32^

where

°V r i m

has an upper bound which is independent of R and exists as R-K).

Returning to (23) with (32) replacing

^ + i)* 5/e

1 eTqe - i (kTe)2 S
2(i + 1) + | || k. | (33)
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The last inequality above is obtained by maximizing the last two previous

T
terms with respect to |]c _e | . It is possible to show in a straight forward

manner that W(e) and hence V(e) is negative for all

where (A ) denotes the minimum eigenvalue of Q. This, of course, is con-

servative since we have permitted _e to both maximize certain terms in (33)

and to maximize | |e| | subject to W(e) _>_ 0.

The bound on ||e|| can now be found in standard fashion;

(1) Determine V = maximum V(e) subject to | |.e| | £ R
\) €L

(2) Determine R, = maximum ||e|| subject to V(e) <_ VQ

_e must asymptotically approach the region defined by V(e) _<_ V_.

R, represents an ultimate bound on ||e|| since e_ asymptotically approaches

the region defined by V(e) _< V_ but V(e) may be indefinite therein. Thus

||e|| is bounded by R. where

(Vmin

J

>

(Vmax

as shown in the Figure 4. This bound can be made arbitrarily small by relaxing

the penalty R on the control u since | fj admits on upper bound as can be
J_ IZ133C

seen from previous section and (32) .
VII EXAMPLE

To illustrate the preceeding analysis, consider the following open-

loop unstable plant described by

x+x - x + x - Sinx + x2 = u + 2u + u (34)
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with an arbitrary first order model described by

y + 2y = r

where r is a step input. It is to be noted that the minimum order of the

model is specified by the difference between the number of poles and zeros

of the plant. This is, in this example, one. With little manipulation

as shown in the analysis and integrating (34) twice, the error equation can

be expressed as

e + 2e = £ + u (35)

u = u-r

*
It is desired to find an optimal control u by maximizing w.r.t. £ and

minimizing w.r.t. u the performance criterion

j = I (4e2 + Ru2 - U2) dt, R=L (36)

0

subject to (35)..

The resulting control is given by

0 = - R"1e (37)

and is applied to the original system (34).

The outputs of the plant and model are shown in Figure (5 ) for different

values of R. It can be seen that the error decrease's monotonically with

the decrease of penalty R. Also plotted are che remaining states

x_ = x, x= x for different values of R.. These are bounded as

can be seen in figure (8) and (9). The control signal characteristics are

shown in Figure (7),
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IX. CONCLUSION

A linear time invariant controller has been designed for a single input-

single output system with parameter uncertainty. The number of states

required to generate the control signal is equal to the system order less the

number of zeros. This is obtained by minimizing a quadratic performance

index involving the tracking error, the control signal and the "uncertainty

signal". This however, yields a conservative design since the "uncertainty

signal" is assumed to act in the most unfavourable manner. Bounded input-

bounded output stability is guaranteed provided the transfer function is

of minimum-phase type. If the uncertainties are bounded, it has been shown

that the system can always be stabilized if sufficient control amplitude is

available. These results also apply for systems with rather general nonlinear-

itiea that do not involve the control. We have also shown that the tracking

error admits an upper bound and that the bound can be made arbitrarily small.

Extension of this result to multivariable systems is not immediate and is

currently under investigation.
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