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I. Introduction

The design of adaptive control systems based upon the application of

Liapunov theory has mainly been concerned with the idealized situtation in

which the system is free of disturbance [1-3]. The effect of parameter devia-

tions for the case in which the number of adaptive gains is less than the full

set required for complete adaption has also been ignored. Based on these

simplifications it can be shown that the tracking error of the adaptive system

is asymptotically stable.

In recent years efforts have been made to modify the Liapunov design in the

interests of practicality and generalization. The nain results have been to

reduce the number of derivatives of the output variable which need be measured,

and to generalize the synthesis procedure to permit more rapid convergence of

the tracking error [4]. At least one effort has been made to apply the

design to a practical problem [5]. However before the design can be considered

to have real engineering significance, the effects of incomplete adaption

disturbance and saturation must duly be considered.

The purpose of this paper is to consider the first two of these items

with respect to the particular adaptive configuration shown in Figure 1. In

order to obtain results which can be readily interpreted, the plant was assumed

to be of less general form than is required by the existing theory. However

it is evident from the results obtained that stability problems nay manifest

themselves in the presence of disturbance and adaption errors, and that these

problems should not be ignored.

-1-



-2-

First a sufficient condition for boundedness of the tracking error in

the presence of disturbance and adaption errors will be derived. From this

result it is shown that boundedness of the tracking error nay not in itself

guarantee boundedness of the adaptive gain parameters. Hence an independent

analysis is required to ascertain the effect of disturbance upon stability

of the adaptive gains. It is shown that the disturbance and the input signal

can be so related that the adaptive parameters will in fact be unbounded.

A simulation study is carried out with respect to a third-order plant.

It is shown in a practical situation that incomplete adaption can lead to a

reasonable result, as predicted by the derived error bound. It is further

demonstrated that instability due to the action of a disturbance can be brought

under control if the input to the system is properly chosen, and that the

frequency of the input signal has a significant effect upon the tracking errors.

II. Description of the Adaptive Control System

The tine-invariant linear plant to be considered is defined according to

the state equation

x = Ax + bu + c, r + d (1)- p- -p -p -

wherein the state vector x = [x. ] is of dimension n. A = [a..], b = [b.],
— i p ij -p i

c = [c ] contain constant unknown parameters, and d^ = [d.] is an unknown
'p n ~~~ j»

bounded disturbance. In assuming that the plant has but one (scalar) input,

the possibility of adjusting the plant coefficients [a.., b.] directly is

ruled out. Hence, as will be seen, adaption is to be obtained by the use of

adjustable gains whose outputs act through the control input u so as to cause

the plant output to track that of a model. As a consequence of this assumption

it can be shown [6] that the state variables in (1) must be chosen as phase
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var tables, i.e., = y., in which case the followin

forms for A , b and d are obtained;
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In the ensuing analysis only the sign of b must be known.

The stable tine-invariant model, which is assumed to have the same struc-

(2)
ture as the plant, is defined by, v '

i - V + V
where y_ = [ŷ ]. A = [a ], b = [3.] have a form simular to A , b above,

and r is a scalar input signal. If the error vector is now defined by

£ = Z. ~ 2L»

then the error differential equation can be cast in the form

e = A e + f— a— — (3)

where

f=(A - A ) x + (b - c ) r - b u - d = A x + 6 r - b u - d .— x m p — -m —p —p — — — —p —

Because of the phase-variable assumption, it can be seen that A,6 have the

form

nl nn
0

6
n

Therefore _f_ has only one non-zero element, namely

0

0

fn
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With reference to Figure 1 the objective is now to design an adaptive

controller so as to realize an asymptotic bound on the nom of the tracking

error, | | ej | , where £ is goverened by (3). Ideally it is desired that | | ej |

should go to zero. In general it is seen that this may require n+1 adaptive

gains, however, as will be seen in a case example, such an extravagance may

not always be justified because deviation in certain of the plant parameters

can have relatively small effect upon the system response, and each adaptive

gain increases the level of measurement noise entering the system. The first

objective is then to determine a bound on the tracking error when less than

n-fl adaptive gains are incorporated in the system, and then to show that a

disturbance d_ entering the system can cause instability.

III. Description of the Control Law

According to Parks [1], the design objective will be realized by

synthesizing a Liapunov function. Thus starting with the scalar function

V = £T P e. + $*& (5)

in which P = [p̂ jl is to be positive definite symmetric, and _<£_ = [fy.] is a

parameter dependent vector to be defined, we form the time derivative

which together with (3) can be written as

V = eT (AT P +. P A ) e + 2(eT P f + *T _4) . (7)— n m — — — j. j.

Using the well-known Liapunov theorem [7], we obtain for any positive-definite

symmetric Q, and any stability matrix A , a positive-definite symmetric P
HI

as a unique solution to the equation

-Q •» AT P + P A . (8)
m m

T T
The solution proposed by Parks [1] was to select ĵ (t) so that £ P f_ + £ _$ =0,
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Thereupon it follows from Liapunov's direct nethod that V is a Liapunov

function, and that the equilibrium at ̂  = JO is asymptotically stable. This

result does not, however, allow for certain imperfections and disturbance.

Hence in order to define the problem which concerns us here, we write

f = f, + f0, and require that * be chosen so that_ —^ — 2. ^ ->-

.§T P LI + <f>T * = 0. (9)

Then (7) together with (8) and (9) becomes

V = -ĵ Qe + 2eT P £2 . (10)

Here t* is that part of £ which by choice or of necessity is not nullified by

_£. It should be noted that V is now indefinite because the sign of jf_ is not

known. To find a bound on | | ej | , a spherical region R in e_ space must be

determined such that V < 0 for | |e_| j > R . The derivation for R will be

deferred to the following section.

At this point it is advantageous to obtain an explicit form for J2 and <£,

For this purpose (10) will be rewritten taking into account that £ contains

only one non-zero element, f .

Thus with f = f - + f 0, (10) becomesn nl nz

V = -e_TQe + 2yfn2S (11)

n
in which Y - I P. e. and, according to (9), <£_ has been chosen so that

i=l in 1

yf , + <f)Ti = 0. (12)nl --

From (4) is is seen that
n

f = [ 6,x. + 6 r - b u - d . (13)
n .f;, ni i n n n

If the control input is now written as

n
u k.x. + k r (14)
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then (13) together with (14) can be written as

n
f = I (6 . - b k.) x. + (<5 - b k ..) r - d . (15)n .f; v ni nil n n n+1 n

We shall now assume that certain elements of the set of gains [k., k , ]i n-ri

are adaptive, and that the remainder are identically zero. In order to satisfy

(12) , all the terns of f in (15) which contain adaptive gains are used to

comprise f ... It follows that (12) is valid if for each k 2 0 there is

an element <J> . of _£ such that

=0 (16)

This result will be obtained if

$.» = ,̂. (6ni ni'
(17)

where A . is an arbitrary non-zero constant , and

k± = xiY/A^bn. (18)

For the case in which k , is adaptive it follows similarly that

(14), (18), (19) represent the adaptive control law as derived in [1] . The

point of departure fron previous work is found in (10) wherein an additional
a

tern due to f_ appears in the expression for V.

IV. Derivation of an Error Bound

As a consequence of inperfect adaption and disturbance, boundedness rather

than asyaptotic stability needs to be investigated. Towards this end, a

sp herical region R is to be found such that V < 0 for ||e|| > R . We are now

able to write an explicit f orn for (11) . Recognizing that f „ contains those
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parameters which were not identified with adaptive gains, (11) becomes

, r Q -i

V - -e Qe + 2Y £ 6 v + 6 r - d . (20)
[^ ni l n nj

Here £ signifies the sun of n terras, but not necessarily in a sequence of

successive integers, Thus if n=0, there is an adaptive k for every state x.,

If in addition there is an adaptive gain k .,, then the tena 6 r does notn+1 n

appear in f *. It is noted that d must always appear in f -•
• T*

It is clear that V < 0 if e_ Qe > 2yf ~. Thus, choosing Q = I and using

x. = e - y , a spherical region R is sought such that, for ||ej| > R :i x x e ~ e

e e > 2 7 PJ e. / 6. (e. -y.) + 6 r - d . (21)
._, in i L n^- ^ l n n J

(21) will be satisfied if it is required that

eTe > 2 I p. |ej f f |6 J | e ,| 4- f J6 .| |yj + |6 | |r| + |d,L - *̂ in 'i1 I ̂  ' n i 1 1 ! 1 L 'ni'^i1 ' n 1 1 1 'ni=l k

(22)

Denoting max |g.| = |g,| , and max |h' (t)|= |h | a stronger condition than

(22) is given by

D a i _ - ,. -I
L ie^i i \y^\ J I ni iri i nij •

Using the inequalities [8]

jej |«| |e + |y| + |T |r| + (d . (23)

ra n

L > ±> — ^ i,
i=l i=l

I lej < Oaf e? )1/2 1 (m f ej)1/2
1 1 1

a stronger inequality than (23) can be written as

I Id I2 > 2 ^ P i n I lej I [l«nll (« He) I +m ly j ) + |«J |r| + |dn | ]. (

If

(1 - 2v^pin |6nl|) > 0, (25)
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it follows that V < 0 for | |ej | > R where

R .
 ;i, <° 1'J iTjl + I'J M + I«J> . {26)

i-2,E5ln|«j

The condition (25) is a test for the existence of a region R < <*>, and is a

sufficiency condition for stability (boundedness) of the tracking error if,

Tas has been assumed, ei P e^ in (5) is positive definite. Using the notion that

T
an ultimate bound for js must be determined by a contour £ P £ = constant

circumscribing the sphere of radius R , where P is determined by (8) with

Q = I, it can le shewn that £ must ultimately reside within a sphere of radius

I R (27)
X . 1 emm '

where X , X are the max, nin eigenvalues, respectively, of the P matrix.max nin B » r J >

Since P is positive definite, X /X . is a finite positive real number, andv max min *

R' is finite if R is finite.e e

If there is complete adaption (m=0, and 6 r does not appear in f „) an<* if

there is no disturbance (d =0), then it is seen that R =0, and the system

is asymptotically stable in £ space.

Example of Incomplete Adaption

A case example is introduced here to illustrate how the bound R' can be

applied to a meaningful problem. Suppose that the model is defined by the

transfer function

Yl , ̂  1 10
R (s + I)2 (|TT +1) s3 + 12s2 + 21s + 10 (28)



and the plant is defined according to

(29)

3 2 2 2s + (2u- + U)»)s 4- (a) + 2{i).a),))s + co-au

The parameters u> , w_ are assumed to lie within the ranges of 0.5 < u > - < 1.5,

9 < co_ < 11. It is clear that the coefficient (2w + u>_) has a snail

percentage variation, although a), can vary by ± 50%. Hence it is reasonable

to require that k.. and k~ should be adaptive gains, but to assume that k. = 0

will not lead to excessive tracking errors. In this example the plant

paraneters were chosen to have the extreme values o>1 = 1.5, u>_ = 11.

Assuming phase variable form, it follows in (2) that

A =
n

0 1 0

0 0 1

-10 -21 -12

W-ith Q = I in (8), the solution for P yields coefficients p . = 0.05, p2~ =

0.077, p_, = 0.048, to be used in generating y =.|-, P.»oej *n (18). For use

in calculating the bound R' in (27), the eigenvalues of P are determined to be

A = 0.045, 0.926, 2.507. The adaptive gains were chosen to be

An input signal r(t) was chosen to be a square wave of unit amplitude and 1/2

sec. period. The disturbance in this case v/as zero (d^ = Q),

The simulation results shown in Figure 2 portray the resulting errors

in e (t), e2(t), e-(t). The untimate bound on | \ e \ \ for this case is seen
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to be R? (actual) = l.g.

The computed bound is found from (26), (27). Thus in this example

(27) reduces to

5. (m 6 .

».- . in -

with n = 3, n = I, p = p = 0.077. Since 6 = 6 is the only parameter

deviation tern included in f ~, the value for 16 .1 in this case becomesn2 ' ni'

Also |y.| = max y~(t) =2. It follows that R_ - 2.29 and R^ = 17.

As is to be expected the computed bound offers a conservative estimate.

V. Effect of Disturbance upon Stability

Although the results of the previous section guarantee a bound on the

tracking error, the indefiniteness of V in (10) due to the presence of J^

means that stability in terms of _<£ is no longer assured, even though e_ is

bounded. To illustrate this point, consider the case in which e: and _£ are

scalars. In Figure 3a is depicted the solution which results if £_ = (K Here

V is seinidefinite, and <j> is bounded. In Figure 3b is depicted the case in

which f_ is nonzero. Although e is bounded by IL , it is possible that l^l"*50

as shown. From (17) it is clear that |k. |-*» if l^.)-*30 , a condition which is

unacceptable.

We shall consider the case of complete adaption but in which a disturbance

is present. The equation (1) for the plant can then be written as
n

x = J K.x. + c r + d (30)
n .^, i i n n

where K. = a . + k., and from (18)i ni i

n
k. = c £ p e.x. (31)1 -4=1 Jn 3 •*•
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where c is an arbitrary positive constant.

Since the purpose here is simply to demonstrate that instability can

occur, we shall arbitrarily choose r(t) and d(t) as step functions. With

these inputs we see that y->- const as t-*», and that stability of (30) , (31)

will result if &*0 and K-K) (i.e. k-*0). But K-+0 requires either e+0 or x>O.

The solution x-+Q is unacceptable since this requires IlKJl-*30. Therefore we

examine the conditions which must prevail so that e+0. The equilibrium

condition for (30) states that

x - 0 = K.x, + c r + d . (32)
•n 1 1 n n

However a necessary condition for stability at the equilibrium is that all K.

are negative. Therefore it is required from (32) that

(c r + d )
lin K = — < 0 (33)
t̂ » *- xl

Let us consider the case in which the model output converges to r, i.e.

y+r as t-*». Then with c =1, (33) yieldsn

d
~ > -1. (34)

If the sign of d is not known, (34) can be satisfied if |r| > |d |. For

|r| < |d | instability can result, in the sense that) K--}-*>° if(34) is not

satisfied. This result is significant in that it illustrates the danger of

oversimplification when analyzing systems of a complex nature.

Since the results stated above were based on the assumption of constant

values for r and d , it is worthwhile investigating the behavior of the

system with disturbance when r(t) is a time varying function. Then the

condition JL = 0 will no longer represent an asymptotic solution to (31),

and it is possible that stability will no longer depend upon the amplitudes

of d and r.n
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Example the Adaption with Disturbance

The system used in the previous example, as defined by (28), (29) will

be used in this example to show that the stability problem mentioned above

can be avoided if the input signal is tine varying. In this case there

was complete adaption, i.e. all k.'s were adaptive, d was a step function,

and the signal r(t) was a square wave. The results in Figure 4 show the

variations in k.. (t) for various amplitudes of disturbance, and various

square-wave frequencies. The observation is made that k.. (t) is always

bounded and that the deviations in k. (t) become progressively smaller in

proportion to the frequency of the square wave input.

The stability problem discussed in this section is considered to be

important mainly because it has been ignored. Results [9] have been reported
0

recently which circumvent this problem by constructing V so that it is negative

definite in ja and _<•>_. For this case it is clear that both £ and j; will be

bounded in presence of disturbance, and for this reason [9] is an important

contribution.

VI. Conclusions

The main purpose of this investigation has been to bring to attention

the fact that the synthesis of adaptive-control systems has often been

discussed in the framework of idealizations which may represent over simplifica-

tions. A condition for boundedness of the tracking error has been derived

for the case in which incomplete adaption and disturbance are present. However

when using Parks'design it is shown that instability of the adaptive

gains can result due to the presence of disturbance. The theory has been

applied to a non-trivial example in order to illustrate the concepts involved.
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