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I. Introduction

The design of adaptive control systems based upon the application of
Liapuno& theory has mainly been concerned with the idealized situtation in
which the system is free of disturbance [1-3]. The effect of parameter devia-
tions for the case in which the number of adaptive gains is less than the full
set required for complete adaption has also been ignored. Based on these
simplifications it can be shown that the tracking error éf the adaptive systen
is asymptotically stable.

In recent years efforts have been made to modify the Liapunov design in the
interests of practicality and generalization. The main results have been to
reduce the number of derivatives of the output variable which need be measured,
and to generalize the synthesis procedure to permit more rapid convergence of
the tracking error [ 4). At least one effort has been made to apply the
design to a practical problem [5]. However befeore the design can be considered
to have real engineering significance, the effects of incorplete zdaption
disturbance and saturation must duly be considered.

The purpose cf this paper is to consider the first two of these items
with respect to the particular adaptive configuration shown in Figure 1. 1In
order to obtain results which can be readily interpreted, the plant was assumed
to be of less general form than is required by the existing theory. However
it is evident from the results obtained that stability problems may manifest
themselves in the presence of dist;fbance and adaption errors, and that these

problens should not be ignored.
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First a sufficient condition for boundedness of the tracking error in
the presence of disturbance and adaption errors will be derived. Fronm this
result it is shown that boundedness of the tracking error nay not in itself
quarantee boundedness of the adaptive gain parameters. Hence an independent
analysis is required to ascertain the effect of disturbance upon stability
of the adaptive gains. . It is shown that the disturbance and the input signal
can be so related that the adaptive parameters will in fact be unbounded.
A sinmulation study is carried out with respect to a third-order plant,
It is shown in a practical situation that incomplete acdaption can lead to a
reasonable result, as predicted by the derived error bound. It is further
demonstrated that instability due to the action of a disturbance can be brought
under control if the input to the system is properly chosen, and that the

frequency of the input signal has a significant effect upon the tracking errors,

II. Description of the Adaptive Control System

The time-invariant linear plant to be considered is defined according to

the state equation

x=Ax+but+tcr+d (1)
- P~ TP P -
wherein the state vector x

= [xi] is of dimension n. Ap = [aij]’ Ep = [bi]’
E? = [cn] contain constant unknown paraneters, and d = [di] is an unknown
bounded disturbance. In assuming that the plant has but one (scalar) input,
the possibility of adjusting the plant coefficients [aij’ bi] directly is

ruled ocut. Hence, as will be seen, adaption is to be obtained'by the use of
adjustable gains whose outputs act through the control input u so as to cause
the plant output to track that of a uwodel. As a consequenice of this assumption

it can be shown [6] that the state variables in (1) must be chosen as phase
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In the ensuing analysis only the sign of bn must be known.

The stable time-invariant model, which is assumed to have the same struc~

ture as the plant, is defined ty, (2)
y = Amz + er
where y = [yi]. A.m = [aij], Pm = [Bi] have a form simular to AP, gp above,
and r is a scalar input signal. If the error vector is now defined by
=y~ X%
then the error differential equation can be cast in the form
e=Ae+f (3)
where
f=(QA -4)Yx+ (b -c)r-bu~d=48&+ 8 -t u-~d. 4)
= o P - - P P - - - P =

Because of the phase-variable assumption, it can be seen that 4,58 have the

form 0
A= 0 9 § = ) d
0
8.4 oo 8 e
| N

Therefore £ has only one non-zeroc element; namely

7

0
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With reference to Figure 1 the objective is now to'design an adaptive
controller so as to realize an asymptctic bound on the norr of the tracking
error, ||e||, where e is goverened by (3). Ideally it is desired that ||e]|
should go to zero. In general it is seen that this may require nt+l adaptive
gains, however, as will be seen in a case example, such an extravagance may
not always be justified because deviation in certain of the plant parameters
can have relatively small effect upon the system response, and each adaptive
gain increases the level of measurement noise entering the system. The first
objective is then to determine a bound on the tracking error when less than
n+l adaptive gains are incorporated in the systen, and then to show that a
disturbance d entering the system can cause instability.

III. Description of the Control Law

According to Parke [1], the design objective will be realized by

synthesizing a Liapunov function. Thus starting with the scalar function

efpe+g’s (5)

]

\
in which P = [pij] is to be positive definite syometric, and ¢ = [¢i] is a
paraneter dependent vector to be defined, we form the time derivative

V=2l Pe+ el PE+200 § (6>
which together with (3) can be written as

T=e (A P+Pa)e+2(e’ PE+Y 9. )
Using the well-known Liapunov thecrem [7], we obtain for any positive-definite
symmnetric Q, and any stability matrix Am’ a positive-definite symmetric P
as a unique solution to the equation

-Q=A:;P+PAm. (8)

The solution proposed by Parks [1] was to select ¢(t) so that g? Pf+ Q?¢ =0,
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Thereupon it follows from Liapunov's direct method that V is a Liapunov
function, and that the equilibrium at e = 0 is asymptotically stable. This
result does not, however, allow for certain imperfections and disturbance.
Hence in order to define the problem which concerns us here, we write

f = §1 + f£f,, and require that ¢ be chosen so that

_gTP_f_l+¢)Tc.bEO. 9
Then (7) together with (8) and (9) becomes
V= -elge+ 2P £,. (10)

Here 52 is that part of f which by choice or of necessity is not nullified by
$. It should be noted that V is now indefinite because the sign of 22 is not
known. To find a bound on ||SJ|, a spherical region Re in e space must be
determined such that V < 0 for [lell > Re. The derivation for Re will be
deferred to the following section.

At this point it is advantageous to obtain an explicit form for 52 and §,
For this purpose (10) will be rewritten taking into account that f contains
only one non-zero element, fn.

(10) becomes

Thus with fn = fnl + fnZ’
V= —eTQg + 2yf ) (11)
- n27
n
in which Y = Z Pinei and, according to (9), ¢ has been chosen so that
i=1
yf . + ¢Tfp = 0. (12)
nl _—

From (4) is is seen that

n
£ = 121 6§ yx; +68r-bu-d. (13)
If the control input is now written as

n
u = z k

L x; + kh+1r (14)

i
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then (13) tcgether with (14) can be written as

n
£ =i£l (8 ;- bk)x, + (8 -bk )r-d. (15)
We shall now assume that certain elements of the set of gains [ki’ kn+1]

are adaptive, and that the remainder are identically zero. In order to satisfy
(12), all the terms of fn in (15) which contain adaptive gains are used to
comprise fnl' It follows that (12) is valid if for each ki Z 0 there is

an element ¢, of ¢ such that

y(ani - bnki) + 9,6, =0 (16)

This result will be obtained if

93 = A gy~ Bky)
. . 17)
05 = Aboky
where Ai is an arbitrary non-zero constant, and
k, = x Y/AZb . (18)
i i i™n
For the case in which kn+1 is adaptive it follows gimilarly that
. 2
k = ry/A° . .b . (19)

(14), (18), (19) represent the adaptive control law as derived in [1]. The
point of departure from previous work is found in (10) wherein en additional

tern due to f2 appears in the expression for V.

IV. Derivation of an Error Bound

As a ccnsequence of imperfect adaption and disturbance, boundedness rather
than asymptotic stability needs tc be investigated. Towards this end, a
® herical region Re is to be found such that V < 0 for IISJI > Re. We are now

able to write an explicit forrm for (11). Recognizing that fn2 contains those
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paraneters which were not identified with adaptive gains, (11) becomes

. )|
T -

o V=-EQS+¢Y[261xi+6r-dnJ. (20)
Here Z signifies the sum of m terms, but not necessarily in a sequence of
successive integers, Thus if w=0, there is an adaptive ki for every state X
If in addition there is an'adaptive gain kh+1’ then the term Gnr does not
appear in fn2' It is noted that dn must always appear in fn2'

It is clear that V < 0 if g?Qg > 2yfn2° Thus, choosing Q = I and using

X; = e; -y, 2 spherical region R is sought such that, for llel] > R,

n o
T
ee> Zizl Pin® [ z Gni (ei - yi) + Gnr - dnA] . (21)

(21) will be satisfied if it is required that

n o
T
e > ziglp legl [T Bogl gl + 3 dol Iyl + le,l Ixl + o] |
(22)
Denoting max |81| = IE;] , andiT?x |hi€t)|= |ﬁi+ a stronger condition than
(22) 1s given by
T _ n n o _ ~ -
e 2oy, L el [Iénil (1 degl+ D vyl ]+ B0 1el+ 13,1]- @
Using the inequalities [8]
m n
2 \1/2
I legl < @] el
i=1 T i=1 1
n n
22 2 1/2
I lels @] )Y <z /
a stronger inequality than (23) can be written as
2 - ~ - - N
lel1? > 2/ By Hell [I15,4] ¢ llell + 13D + [3] 171 + 13, | ]+ @&
1f
1 - 2vam pyy 1651 > 0, (25)
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it follcws that V < 0 for llell > Re where
2 b, @8] Iy, + 15| Ix] + 3D

R, = . . (26)
1-2+/m Py 184!

The condition (25) is a test for the existence of a region Re <®, and is a
sufficiency condition for stability (boundedness) of the tracking error if,

as has been assuned, g? P e in (5) is positive definite. Using the nofion that
an ultimate bound for e must be determined by a contour g? P e = constant
circumscribing the sphereof radius Re’ where P is determined by (8) with

Q = I, it can le shown that e must ultimately reside within a sphere of radius

1/2

A
R' = ( ;Eéz R 27)
nin €

where xmax’ Amin are the max, nin eigenvalues, respectively, of the P matrix.
Since P is positive definite, A /A, is a finite positive real number, and
nax' mwin
Ré is finite if Re is finite.
If there is complete adaption (m=0, and Gnr does not appear in fn2) and if
there is no disturbance (dn = 0), then it is seen that Re = 0, and the systen

is asymptotically stable in e space.

Example of Incomplete Adeption

A case example is introduced here to illustrate how the bound Ré can be
applied to a meaningful problem. Suppose that the model is defined by the

transfer function

1 N 1 10
r (&= 2 s -3 2
(s + 1) (TG + 1) s~ + 12s° + 21s + 10 (28)
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and the plant is defined according to

X
1
5 (8) = L
. s 2 s
1l 2
2 (29)
. “1%2
s3 + (Zwl + wz)s2 + (wi + 2w1w2)s + wiwz

The parameters wy, Wy are assuned to lie within the ranges of 0.5 < w, < 1.5,

1
9 < w, < 11. It is clear that the ccefficient (Zwl + wz) has a small
percentage variation, although w; can vary by + 50%. Hence it is reasonable
to require that k1 and kz should be adaptive gains, but tc assume that k3 =0
will not lead to excessive tracking errors. Imn this exanmple Fhe plant
paranecters were chosen to have the extreme values W, = 1.5, w
Assuning phase variable form, it follows in (2) that

2 = 11.

0 1 0

A 0 0] 1 .

-10 =21 -12
With Q = I in (8), the solution for P yields coefficients P13y = 0.05, Pyy =
3

if1 P13%

in calculating the bound Ré in (27), the eigenvalues of P are determined to be

0.077, Py3 = 0.048, to be used in generating vy = in (18). For use

A = 0,045, 0.926, 2.507. The adaptive gains were chosen to be

= lO'YX k. =0

2 2° 73

An input signal r(t) was chosen to be a sqQuare wave of unit arplitude and 1/2

kl = 10yxl, k

sec. period. The disturbance in this case was zerc (d = 0).
The simulation results shown in Figure 2 portray the resulting errors

in el(t), ez(t), e3(t). The untimate bound on ILEII for this case is seen
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to beRé(actua1)= 1.8. -
The computed bound is found from (26), (27). Thus in this example

(27) "reduces to
2/ py @ f8 1 lyyD

1-2/hmp, |6 |

R =
e

withn=3,n=1, Ein = Pyq = 0.077. Since Gni = 633 is the only parameter-

deviation term included in £ the value for |6ni| in this case becomes

n2’

= [6..] = |12 - 20, - 0w
33

Ianil 1 2l

3 3

As is to bLe expected the computed bound offers a conservative estimate.

Also |yil = max y4(t) = 2. It follows that Ry = 2.29 and R} = 17.

V. Effect of pisturbance upon Stability

Although the results of the previous section guarantee a bound on the
tracking errcr, the indefiniteness of V in (10) due to the presence ofi2
means that stability in terms of ¢ is no longer assured, even thcugh e is
beunded. To illustrate this point, consider the case in which e and ¢ are
scalars. In Figure 3a is depicted the solution which reesults if 22 = 0. Here
V is semidefinite, and ¢ is bounded. In Fipure 3b is depicted the case in
which £2 is nonzero. Although e is bounded by Rl’ it is possible that I¢!*®
as shown. From (17) it is clear that lki|+w if |¢il*® , a condition which 1is
unacceptable.

We shall consider the case of complete adaption but in which a disturbance

is present. The equation (1) for the plant can then be written as
n

X, = ) Ry, +cr+d (30)
i=1
where Ki =a, + ki’ and from (18)
. n
k; = ¢ ) pjnejxi (31)

=1
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where ¢ is an arbitrary positive constant.

Since the purpose here is simply to demonstrate that instability can
occur, we shall arbitrarily choose r(t) and d(t) as step functions. With
these inputs we see that y+ const as t»>», and that stability of (30), (31)
will result if &*0 and K»0 (i.e. k»0). But K+0 requires either e>0 or x>0.
‘The solution x+0 is unacceptable since this requires |L§]|+w. Therefore we
exanine the conditions which must prevail so that e>0. The equilibrium
condition for (30) states that

;';n =0=Kx +cr+d. (32)

However a necessary condition for stability at the equilibrium is that all Ki

are negative. Therefore it is required from (32) that

(cr+d)
lin K, = - L a

too 1 X

<0 ‘ (33)

Let us consider the case in which the model output converges to r, i.e.

y»>r as t-», Then with c, = 1, (33) yields

EE > -1. (34)
r
If the sign of d_ is not known, (34) can be satisfied if x| > Idn!. For
|| < Idnl instability can result, in the sense that|K1+»® 1£(34) is not
satisfied. This result is gignificant in that it illustrates the danger of
oversimplification when analyzing systems of a complex nature.

Since the results stated above were tased on the assumption of constant
values for r and dn’ it is worthwhile investigating the behavior of the
systenn with disturbance when r(t) is a time varying function. Then the
condition'g =0 will no longer represent an asymptotic solution to (31),

and it is possible that stability will no longer depend upon the amplitudes

of 4 and r.
n
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Exanple the Adaption with Disturbance

The system used in the previous example, as defined Ly (28), (29) will
be used in this example to show that the stability probLlem nentioned above
can be avoided if the input signal is time varying. In this case there
was ccmplete adaption, i.e. all ki's were adaptive, dn was a step function,
and the signal r(t) was a square wave. The results in Figure 4 show the
variations in kl(t) for various amplitudes of disturbance, and various
squarc-wave frequencies.. The observation is made that kl(t) is always
bounded and that the deviations in kl(t) become progressively smaller in
prcportion to the frequency of the square wave input.

The stability prollen discussed in this section is considered to be
important nainly because it has been ignored. Results [9] have been reported
recently which circumvent this problem by constructing V so that it is negative
definite in e and ¢. For this case it is clear that btoth ¢ and e will be
tounded in presence of disturbance, and for this reason [9] is an important
contribution.

VI. Conclusions

The nmain purpose of this investigation has been to bring to attention
the fact that the synthesis of adaptive-control systems has often been
discussed in the framework of idealizations which may represent over simplifica~-
tions. A4 condition for boundedness of the tracking errcr has been derived
for the case in which inccuplete adaption and disturbance are present. However
when using Farks'design it is shown that instability of the adaptive
gains can result due to the presence of disturlance. The theory has been
applied to a non-trivial example in order to illustrate the concepts involved.
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Adaptive System Configuration
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Figure 2

Tracking Errors with Incomplete Adaption



(a) Example of Stability

(b) Example of Instability

Figure 3




AU \J i

Mg

N

Figure 4

Adaptive-Gain Variation with Disturbance



