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ABSTRACT

^ A method is presented for designing optimal feedback controllers
£ for systems having subsystem sensitivity constraints. Such constraints
y reflect the presence of subsystem performance indices which are in con-

flict with the performance index of the overall system. The key to the
approach is the use of relative performance index sensitivity (a measure
of the deviation of a performance index from its optimum value). The
weighted sum of subsystem and/or operational mode relative perform-
ance index sensitivies is defined as an overall performance index. A
method is developed to handle linear systems with quadratic perform-
ance indices and either full or partial state feedback. The usefulness
of this method is demonstrated by applying it to the design of a stability
augmentation system (SAS) for a VTOL aircraft. A desirable VTOL SAS
design is one that produces good VTOL transient response both with and
without active pilot control. The system designed using the method in-
troduced in this paper is shown to effect a satisfactory compromise solu-

--' - tion to this problem.
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1.0 INTRODUCTION

The study of complex systems often involves an investigation into
the interconnection of many subsystems and the influence each subsys-
tem has in achieving a prespecified design objective. The optimization
of the composite system with respect to a set of adjustable parameters
relies upon a knowledge and understanding of the interconnecting struc-
ture. Individual subsystem optimization without concern for its cause
and effect relation to the composite system may yield an overall sys-
tem response which deviates substantially from the design specifica-
tions. Conversely, a composite system design satisfying the required
design objectives might dictate a need for increasingly sophisticated and
expensive subsystems. It is, therefore, in the interests of the system
designer to have the practical and analytical flexibility to properly
aline the priorities of competitive subsystems with composite system
objectives. A system typifying this design analysis is a pilot/vehicle
system.

In the process of designing and evaluating the suitability of a
pilot/vehicle system, it is necessary to solicit the pilot's comments
and opinion of the handling qualities as one facet of the design. This
subjective opinion forms an integral part of the ultimate evaluation of
the vehicle and is therefore considered seriously and continuously
.throughout the design? -Optimal performance-of the-airc-raft-including
the pilot may be in direct conflict with the optimal performance and ef-
ficiency of the aircraft when the aircraft is treated as a separate en-
tity. In this respect many studies have been conducted with the objec-
tive of mathematically modeling pilot-control characteristics (refs. 1
to 3) and from a practical engineering viewpoint, the development of
the quasi-linear model for human pilot dynamics have been one of the
beneficial results of these studies (ref, 1). These pilot models can
then be used in conjunction with airframe dynamic models in the design
of aircraft control systems.



Composite system design can best be achieved when the design
criterion includes the evaluations, requirements, and limitations of
each individual subsystem. To accomplish this, a generalized theory
and design technique is presented. The theory evolves from the con-
cepts and conditions imposed by optimal control theory supplemented by
subsystem sensitivity characteristics.

The objective of optimal control theory is to determine the control
signals that will cause a process to satisfy the physical constraints
and at the same time minimize some performance criterion. In the
case of feedback control, the parameters to be optimized are the feed-
back gains. Once the optimization has been completed, it is natural
to inquire into the relative effect of the system response and/or the
performance measure to a deviation of the feedback gains from their
optimal values. This area of concern is often referred to as "sensi-
tivity. "

The design and evaluation of dynamic control systems through the
utilization of sensitivity functions has been the subject of intensive
research during the past decade. Many different definitions of sensi-
tivity have evolved and system stability, controllability, and other
system characteristics have been directly related to these sensitivity
functions.

Many analysis, synthesis and optimization techniques used in con-
trol theory utilize the sensitivity functions of the state of the system
with respect to the system parameters (refs. 4 and 5). These param-
eter sensitivity functions are often generated by sensitivity models of
the system. However, the use of presently available techniques for
generating sensitivity functions for linear system containing many pa-
rameters results in the simulation of high order dynamic systems.
Similarly, control sensitivity (ref. 6), trajectory sensitivity (refs0

4 and 7), eigenvalue sensitivity (ref. 8) and output sensitivity with re-
spect to pole location (ref. 9) all require a simultaneous solution of
high order dynamic sensitivity expressions. These sensitivity meth-
ods, however, are only intended to account for very small perturbations



from some nominal (or optimal) position. For this reason, most of the
above sensitivity functions are not compatible with on-line design, but
are primarily used to evaluate the final design. Papers by Cadzow
(ref. 10), Dougherty, et al. (ref. 11) and others have applied perform-
ance index sensitivity methods to the problem of determining feedback
control laws when system parameters are subject to small variations.
For larger variations, authors such as Whitbeck (ref. 12), Zadicario
and Sivan (ref. 13), and Tuel (ref. 14) have discussed methods for de-
signing controllers which minimize the expected value of the cost func-
tional. All of these techniques are addressed to the plant parameter
variation problem as well as a single scalar performance measure,,

The emphasis in this paper is directed toward developing a method
for designing a practical feedback controller for multivariable linear
systems which may be stabilized by output feedback over the entire
range of feedback parameters. The distinguishing feature of the pro-
posed technique is the generation of a constant feedback control law
subject to the minimization of the performance index sensitivity func-
tions of the composite system and the individual subsystems. This is
accomplished by defining a performance index consisting of the sum of
relative sensitivity terms of each subsystem multiplied by scalar
weighting factors,,

Relative sensitivity is a measure of the deviation between the „
actual value of the performance index and that which would be obtained
if the control were optimal, L e. ,

SR(K) a
 J<K) - J < K > (1.1)

J(K°)

where 1 is the optimal set of feedback parameters

J(K°) = min J(K) "(1.2)
K°
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Note that the relative sensitivity is always positive, and thus system
performance is always compared with an attainable value.

The performance index of concern here is chosen to be of the form

N
J(K)= X K ) (1.3)

(1.4)

where N is the number of subsystems, Sp(K) is the relative sensitivity
"Hi

of the i system, and X. is a weighting factor (or probability factor)
J.V. 1

associated with the i subsystem. The performance index of equa-
tion (1. 3) reflects the interest and concerns of the individual subsystems
in the overall decision process. Clearly, small relative sensitivity
assures a design close to the optimum and, hence, a smaller influence
in the final optimization procedure. Furthermore, the performance
measure J^K) associated with subsystem i (i = 1, 2, . . . , N) heed
not be of the same form, i.e., quadratic, absolute value, uniform, etc.
This, therefore, greatly enhances the design capabilities for large scale
systems with subsystem design limitations.

The merit of the performance index of equations (1. 3) and (1. 4) in
the design of practical engineering systems is considered in the next
section. Here we restrict the discussion to linear systems with quad-
ratic performance criteria. This restriction enables the designer to
utilize the well-developed theory of the optimal linear regulator in es-
tablishing the sensitivity terms needed in equation (1. 3). The section is
then concluded with an example demonstrating the effectiveness of the
technique as a useful design tool.



2. 0 SENSITIVITY DESIGN FOR OPTIMAL

LINEAR REGULATORS

This investigation is concerned with the design of a feedback con-
trol law for a time invariant linear system subject to the minimization
of a prespecified scalar performance index. The performance index
is chosen in such a manner as to include sensitivity terms associated
with subsystems comprising the composite system. Initial considera-
tion is given to the optimization of an individual subsystem with respect
to a selected array of feedback parameters. The method is then ex-
tended to include several subsystems in the overall optimization proce-
dure using sensitivity concepts derived for the individual subsystem.

Subsystem Optimization

Consider a subsystem whose dynamic performance is character-
ized by a set of n first order linear time invariant differential equa-
tions.

x(t) - Ax(t) +. Bu(t) (2.1)

-where x(t) is the n dimensional state-vector, u(t) is-a vector consist-
ing of m control inputs, and A and B are nxn and nxm constant
matrices describing the system dynamics. The feedback control law

u(t) = -Lx(t) (2.2)

will be optimal if the feedback gain matrix L is chosen so as to mini-
mize a performance index which is quadratic in the state and control
variables



/~N°°
J(x, u) = 4 / (xT(t)Qx(t) + uT(t)Ru(t)}dt (2. 3)

2^0

where weighting matrix Q is positive semidefinite and weighting ma-
trix R is positive definite. The minimization of equation (.2. 3) will
yield a set of constant feedback gains of the form

L* = R^B11?* (2.4)

where P* is a positive definite matrix which is the solution of the
steady-state Riccati equation

0 = ATP* + P*A + Q - P*BR~1BTP* • (2. 5)

-i . :

Combining equations (2. 4) and (2, 5), one obtains

0 - (A - BL*)TP* + P*(A - BL*) + Q + L*TRL* "(2. 6)

which is the well-known Lyapunov equation. The resulting value of
the performance index when the feedback gain matrix equation (2. 4) is
substituted into equation "(2.2)" f s " c " "* •• - -- ...... -

J * X ° P * X ° < 2 ' 7 >

The evaluation of P* from equation (2. 5) requires the solution of
n(n + l)/2 nonlinear simultaneous equations. Alternatively, one could
use equations (2. 6) and (2. 7) in conjunction with a gradient minimiza-
tion algorithm. For a nonoptimal set of feedback gains L, equa-
tion (2. 6) becomes

0 = (A - BL)TP + P(A - BL) + Q -f LTRL (.2. 8)



8

Here A, B, Q, R, and L are known and the nxn symmetric matrix P
can be easily obtained using any of the well-known Lyapunov solving
algorithms (refs. 16 and 19). The performance index is evaluated using

(2'9)

and can be minimized by adjusting the elements of the gain matrix using
a gradient minimization algorithm yielding L* and P*.

In most practical situations, the initial state of the system is un-
known and must be treated as a random vector. Taking the expected
value of equation (2. 9) yields

n
E{J} = J = y P (2.10)

where p.. are the diagonal elements of the P matrix and y.. is the
4-l-> H

covariance of the i component of the initial state vector with the
additional assumption that

y = E (Xi(0)x (0)} = 0 (2,11)
, - - .-: , -, -:. * ^ , , . - . , . = . . - . .

Note that the minimization of equation (20 10) subject to equation (2. 8)
will yield an "averaged" set of feedback gains independent of the statis-
tics of the initial state random vector.

The above analysis assumes that the feedback control law u(t) is a
linear combination of all the elements of the state vector. In the event
that only a select number of the state variables will comprise the feed-
back control law, equation (2. 8) must be modified. Let the p dimen-
sional vector

y(t) = Cx(t) (2. 12)



represent the state variables to be fed back. For a control law of the
form

u(t) = -Ky(t) = -KCx(t) (2.13)

equation (2. 8) becomes

0 = (A - BKC)TP + P(A - BKC) + Q + CTKTRKC (2. 14)

The minimization of equation (2. 10) subject to equation (2. 14) proceeds
as above with the additional restriction that the closed loop system
(A - BKC) be stable. This latter restriction is, of course, in effect in
the full state feedback system; however, it is well known that the op-
timal linear state regulator is always stable independent of the open
loop dynamics. Clearly, this is not true, in general, for the partial
state feedback system and thus one must be cognizant of the location of
the closed loop poles, since any solution to equation (2/4) yielding an
unstable closed loop system is meaningless.

Relations similar to those of equations (2= 8) and (2. 14) have been
obtained by Kleinman (ref „ 17) and Levine (reL 18), respectively.,
However, their results are predicated upon the existence of the first
partial derivative of equation .(2. 10) with respect.to the unknown feed-
back gain matrix. Setting this derivative to zero provides the relations
upon which their derivation and subsequent results ultimately rely.
Consequently, if the feedback gains are constrained in any manner,
then 3J/3L * 0 or 3J/9K * 0 at the optimum and the results of
(ref. 17) and (ref. 18) no longer apply. However, the constraint
boundaries can be incorporated into the gradient algorithm described
above and thus minimization of equation (2« 10) with respect to the
constrained gains can be achieved. The stabilization of (A - BL) for
full state feedback and (A - BKC) for partial state feedback is an addi-
tional restriction placed upon the feedback gains.
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Up to this point a technique has been presented for the optimiza-

tion of a single subsystem with respect to a set of feedback gains com-
prising a feedback control law. The method was shown applicable to
systems with full state feedback, partial state feedback and both full

and partial state feedback with gain constraints. The method will now
be extended to include several subsystems with conflicting objectives.

Consider a composite system ^Q which contains a definable sub-

system of interest cT^. Two quadratic performance indices, JQ and

Jy are defined for C^Q and cf^, respectively. Each index has been
suitably averaged over the initial conditions (as was done in eq, (2. 10)).
For ease of discussion, assume the system is structured as follows

(see figs. 1 and 2).

System

All ! A12
0 ' A22

0

0

0 0

K1'K2

min J0(x2, Up u2) i JQ
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Subsystem o/!̂  (System O/^Q with C-, = 0)

X2 ~ A22X2 + B2U2

y2 - C2x2

U2 = -

16)

mm
K2

Note that both Jg and J2 are functions of subsystem states (x2) only.

Let K* and K2 be the values of K., and K2 that minimize JQ, and
2 • - ~let K2 be the value of K2 that minimizes 3*° In most physical

situations K2 + Kr,. This fact reflects a degradation in the perform-
ance of subsystem cT2 when the gains K2 that optimize system cf?g
are used, This degradation can be measured using relative sensitivity,
i. e.,

(2.17)

where j| is the value of the performance index for subsystem
when the feedback gains K2 are employed. A similar expression for

^, \ .
the relative sensitivity of JQ is

T*J0

(2. 18)
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where Jj is the value of JQ at K^, K^. Clearly, 8^=0 if
P R o o

K0 = K0, and S;v = 0 if K. = K« . and K0 = K0. Consequently, a
£i £ \J ^ ^ & fa

composite performance index can be defined which incorporates equa-
tions (2. 17) and (2. 18).

J. = XS?(K) + (1 - X)S?(K) (2.19)
O Lt U

where X is a weighting (or probability) factor 0 < X < 1. For X = 0,

the minimization of equation (2. 18) will yield the gains ICJ and K0,
2while for X = 1 the gains K« will result and K^ will have no effect

in the minimization. Thus, for X in the range of zero to one the
minimization of equation (2. 18) will result in a tradeoff between the

design objectives of subsystem cfg and system C?Q. The appropriate
value of X will depend entirely upon the physical, as well as design, '
requirements of both the individual subsystem and the composite sys-

tem.

To generalize the above technique, consider a composite system
C£Q, and N definable subsystems <*?., i = 1, 2, „ . „, N, which may

be coupled either through state or through control. For each subsys-

tem, define a relative sensitivity of the form

"*J - J*
5 =JL.—L - ~ ' - - (2.20)^

J*

where J? is the value of the performance index when (sub)system i is

optimized independent of the rest of the system. The relative perform-

ance index can then be formulated as a linear combination of the sub-

system sensitivity functions

N



13

N
= 1 (2. 22)

where X. is the weighting factor associated with the i (sub)system.
The minimization of equation (2. 21) will yield a set of feedback gains
for the composite system which will provide satisfactory overall per-
formance, while maintaining subsystem response within the design (and
economic) specifications. To demonstrate the effectiveness of the pro-
posed technique as a suitable design tool, as well as to illustrate the
approach, an example is now presented.

3.0 EXAMPLE

Consider the problem of designing the stability augmentation sys-
tem (SAS) for a turbojet/lift fan powered VTOL aircraft. Figure 3
is the block diagram for a linearized pitch axis model of a typical
VTOL being controlled by a pilot in the hover mode. The states con-
sidered in the VTOL model are pitch angle, pitch rate, and accelera-
tion produced by the moment generated by the lift fans. To be designed
are SAS gains K^ K^, and K^ such that pitch angle Q is kept close
to zero using reasonable amounts of control, u. The complete system
is similar in form to the one depicted in figure 2, where the VTOL
pitch dynamics comprise the primary subsystem of interest In this
example, C^ reflects the fact that only one pilot state (6) is measur-
able; and for simplicity,, the gain Kg associated with this state was
fixed. .

Pilot dynamics are described by the third order model shown in
the diagram (ref. 20). Pilot parameters are pilot gain K , lead time
constant TT , muscle lag r*/r, sensor lag TO, and pilot dead time TT-V
(as a Pade approximation). Aircraft handling qualitites studies have
shown that if the parameters the pilot adaptively adjusts (K and r -^) -
are not too large, the pilot will give the aircraft a high rating. For
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this example, KL was fixed at 13. 5 cm/rad and TL
 was fixed at

0. 5 sec. These are relatively low values; hence the resulting design
should get a good pilot rating. Fixed pilot parameters were assumed
to be TO - 0. 062 sec, TM - 0- 36 sec, and TD

 s 0. 35 sec. As indi-
cated previously, stick sensitivity K,. was not optimized, but was

O ^

chosen to be 0. 6 rad/sec /in. 9 based on typical pilot preferences.
The VTOL dynamic model includes parameter T^ which repre-

sents the lag between stick deflection and pitching moment produced
by the engine/lift fan combination. r-\ was assumed to be (X 3 second
in this study, since experience has shown that pilot may have diffi-
culty in controlling the system is the actuation lag is greater than this
amount. Conversely, it is desirable, as far as lift fan/ engine design
is concerned, to have TJ as large as possible.

The VTOL can be operated in either of three modes° (1) pilot-in-
the-loop (PIL) where both pilot and SAS contribute to stabilization
(K * 0), and (2) pilot-out-of-the-loop (POL) where 1C = 0 and all
stabilization derives from the SAS, and (3) SAS-failed mode, where
the pilot provides all stabilization Because of these three modes of
possible operation, a conflict arises in designing the SAS and stick
sensitivity Kg. It was decided that Kg would not be optimized in
this study, hence, the SAS-failed mode has been ignored. For the PIL
and POL modes, SAS optimized fo_r the POL mode may produce a sys-
tem too insensitive to the pilot's control during PIL mode operation.
On the other hand, a SAS which is designed to be optimal when the pilot
is in the loop may not sufficiently stabilize the aircraft in the fixed-
stick (POL) mode. For this example, the problem of conflicting per-
formance objectives was solved by using a composite performance index

5.1)

Here, ^ is an index of performance for POL operation, JQ corre-
sponds. to PIL operation, and X is a weighting factor. Lambda could
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be, for example, the probability of the aircraft being flown in the POL
mode. The starred J values are those that are obtained when optimiz-
ing for PIL or POL mode operation separately.

The form of the performance index chosen to be minimized in each
mode of operation is

r°° / 2
Jo V ' H" V2 + "VSAS}*J - E { J } - E / (0 +V +VsAs)dt (3°2)

/O ^ - _

where kfi and k are scalar weighting constants and J is to be
averaged over the initial states. The three terms in this performance
index were selected in accordance with the following considerations:
(1) 9 should be driven to zero as rapidly as possible, (2) required pilot
stick deflection should not be excessive, (3) a control moment command,
UgA g, generated by the SAS should not cause the lift fans to exceed
their rated thrust. For POL operation, the aircraft performance index
can be written in the form of equation (2. 10) as

(3'3)

where the P matrix" for the aircraft subsystem is obtained by solving
a third order equation of the form of equation (2. 14). Similarly, for
the pilot-in-the-loop,

Here P is the solution of equation (2. 14) for the complete sixth order
system with the stipulation that y. . - 0 for the three pilot states
(initial pilot states are assumed to have zero mean and variance). For
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both modes,, initial states are assumed to be uncorrelated (y. . = 0,

i * j ) .
Solutions were obtained (optimal SAS gains) for various values

of X, Powell's method (ref0 21) of function minimization was used
along with the Lyapunov equation solution technique of reference 16 for
evaluation J. Covariances y^, y^ and y^o were all assumed to
be 1. 0, and weighting factors kg and k were chosen as 0. 0015
and 0. 15, respectively. Figure 4 graphically presents the results of
the optimization of the composite performance index, Jo, as a func-
tion of SAS pitch gain Kg for a selection of X values. Each curve
is a section through the performance surface with K^ and Kg held
constant at the optimum values obtained for that particular X value,
Optimal Kg's (which occur at the minima) range from 2, 19 to 3. 69;
however, their magnitudes are quite similar for the extreme cases
(X = 0 and 1), The design trade-off is evidenced by the fact that Jg
increases as X moves away from 0 or 1, up to a maximum of about
0.04 for the X = 0. 6 curve.

To further demonstrate the influence of X on control system
behavior, typical transient responses for fixed initial conditions were
computed. Figures 5(a) and (b) showp respectively., PIL and POL
responses of pitch angle 9, moment command due to the pilot u ,
moment command due to the SAS UQAC!, and the resulting VTOL pitch

' '
B() . _

acceleration 0. Transients are displayed for four X values (0, 0. 2,
0. 8, and 1. 0) for zero pilot initial conditions and VTOL initial condi-
tions of 0. 1, 0. 1, and 0. 1.

Comparing the pitch angle transients, it can be seen that for PIL
operation (fig. 5(a)), the best transient occurs for the system optimized
for X = 0. Conversely, the best POL transient (fastest response)
occurs in figure 5(a) for the system optimized for X - 1. As an ex-
ample, consider the case when the VTOL is in the POL mode 80 percent
of the time, i. e. , X = 0. 8. The 9 curve for X • = 0. 8 in figure 5(a)
shows performance is somewhat degraded (higher overshoot, poorer
damping) over the X = 0 case, .but is not nearly so poor as the highly
underdamped X = 1 case. In figure 5(b) it can be seen that the X = 0. 8 .
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design is very nearly as fast responding as the X - \ design, and much
faster than the system designed for PIL operation (\ = 0)..

Similar comparisons can be made for u , U o A j an(* 9 transients.
For instance, pilot control excursion is high in figure 5(a) for the X = 1
case, (PIL operation with POL feedback gains). However, using these
same gains in POL operation gives the best transient performance.
Note that u is zero in figure 5(b), since the pilot is not exercising
control. Pitch acceleration histories are included to demonstrate that
all of the optimal controllers give rise to VTOL accelerations which
are "reasonable" in magnitude. The rather anomalous behavior of u
in PIL operation (fig. 5(a)) at t = 0 is due to the fact that in the analysis
and transient calculation,, pilot dead time has been approximated by a
first order Pade approximation. What appears to be the pilot initially
attempting to increasj? the error in .9 is actually due to the inaccuracy
in modeling his dead time with a Pade.

In the preceeding example, no constraints were imposed on the SAS
gains. One obvious constraint that could be considered is one on K^.
As K^ becomes large, the lift fan/engine eigenvalue increases,, such
that eventually saturation will certainly occur. Thus, for a reasonable
solution, KA° must be bounded. Another problem, mentioned in Sec-
tion 2, is system stability. The system in this example was open loop
stable such that even though not jill states were fed back, a set of (op-
timal) gains were found which produced a stable system. This will not
be the case, in general, so that periodic stability checks must be made
during the optimization to insure each set of (sub -optimal) gains corre-
sponds to a stable system.

4.0 CONCLUSIONS

An approach has been formulated to the problem of designing a con-
trol for a system with conflicting subsystem performance indices. Use
was made of relative sensitivity by introducing it into the system's per-
formance index. A method was developed for handling linear systems
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with quadratic subsystem performance indices, for either full or
partial state feedback. The approach was demonstrated by using it
to design the pitch axis SAS for a piloted VTOL, where the main sub-
system of interest was the VTOL aircraft A design was obtained,
consisting of a fixed set of SAS gains., which gave acceptable perform-
ance both with and without pilot control. The methods developed could
be extended to include nonlinear plants, state variable constraints,
and nonquadratic performance indices. They could also be applied to
designing the complete three axis SAS for a VTOL, capable of operat-
ing throughout the hover, transition and cruise modes.
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