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SUMMARY

In many optimal control problems, it is reasonable to neglect certain

of the terms in the system equations which are thought to have small effects

in order to make the solution of the problem more tractable. When this

results in a decrease in system order, however, the resulting approximation

will not in general be able to satisfy all of. the system boundary conditions

and thus the approximation will not be valid, at least in a small region.

In this case, the system is said to be singularly perturbed. Unfortunately

most of the results of singular perturbation theory to date have been

concerned with initial value problems whereas optimal control problems are

of two-point boundary value type. The portions of this theory applicable

to the open loop state regulator problem are reviewed in this paper.

For obtaining approximate solutions to the state regulator problem

the method of matched asymptotic expansions is employed. This method has

been developed in connection with certain fluid mechanics problems and

is applicable to nonlinear as well as linear problems. It has been found

in the past to be advantageous not to formulate this method generally but

to apply it to each individual problem and this approach is adopted here.

A general recipe for the method is given and its application is illustrated

by using the method to obtain an approximate solution to a simple, specific

state regulator problem;
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I. INTRODUCTION

In the state regulator problem, it is desired to keep the state of

a controlled, linear, dynamic system near zero without using excessive

control expenditure. It is well known that application of the necessary

conditions for optimal control to the state regulator problem results in

a two point boundary value problem for a system of linear ordinary differential

equations. This paper is concerned with obtaining approximate solutions

to such systems of equations by using singular perturbation methods.

Although the feedback solution of the state regulator problem is known ,

we do not take advantage of this fact since we desire a method which is

applicable to nonlinear as well as linear systems.

Since efficient algorithms are available for the solution of systems

of linear equations, the question arises as to why methods of obtaining

approximate solutions need be studied. Approximate methods may be desirable

or even necessary when computational speed or storage capacity is at a'

premium; for example in preliminary design in which a large number of trial

systems must be evaluated or for use in a system on board a flight vehicle.

Another important reason for studying linear systems is to gain insight

into techniques which may be later applied to nonlinear systems. The primary

factor determining computational requirements for solving state regulator

problems is system dimensionality. Thus approximate solutions based on

reduced order systems are often employed in practice.

A standard technique of obtaining approximate solutions of mathematical

problems is to introduce perturbations about a nominal solution. This

technique is particularly useful in problems in which there is a "small

parameter" present because in this case the nominal solution and the method

of introducing the perturbations are suggested in an obvious way. When
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the nominal solution is obtained from a reduced order system, it will not

in general meet all of the boundary conditions of the complete system and

thus the nominal solution will not approximate the solution of the complete

system uniformly. This loss of uniform convergence characterizes singular

perturbation theory. This theory is reviewed in references 2 and 3.

The purpose of this paper is to briefly review the singular perturbation

theory of ordinary differential equations as it applies to linear systems

with two point boundary values and to illustrate application of this theory

to optimal state regulator problems by solving a simple example. In this

example, the theory is implemented by using the technique of matched
4 5asymptotic expansions ' which has been used to solve boundary layer

problems in fluid mechanics. Use of singular perturbations and matched

asymptotic expansions in optimal control problems was suggested by
fi 7 RKelly ' , and has been studied most extensively by Hadlock .

In the recent literature, there have been two distinct methods (other

than that under consideration here) proposed to obtain approximate solutions

based on reduced order models of linear systems. In the first of these,

the existence of a small parameter is assumed and the control is expanded
910in a Taylor series in the small parameter and the first two terms retained '

The zero order term is the optimal control of the reduced order system

(obtained by setting the small parameter equal to zero) and the first

order term is used to account for the initial conditions. In the second

method, the characteristics of the model, including its order, are adjusted

to give the best agreement (integral norm) between the output of the model

and the output of the system using the model optimum control . Either

or both of these methods suffer from the following deficiencies:

(1) inadequate treatment of control variables, (2) lack of proof of uniform
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convergence to exact solution, (3) failure to deal directly with loss

of boundary conditions, and (4) inability to generate a sequence of successively

better approximations. The method of singular perturbations, using matched

asymptotic expansions, does not suffer from these shortcomings. Further,

as opposed to the methods of references 9, 10 and 11, it is applicable

to nonlinear systems.
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II. STATE REGULATOR PROBLEM

In this section the solution of the conventional state regulator

problem is first presented. The analysis follows that of reference 1,

but with the nomenclature and sign conventions of reference 12, and is

only summarized in this paper. Next, the problem is reformulated, in a

form suitable for application of singular perturbation theory, for systems

in which there is a small parameter, present.

Conventional Problem

The most general problem to be considered is as follows, It is desired

to minimize the cost functional

J = T \ [< *. (t). Q. (t) x. (t) > + < o. (t), R. (t) o. (t) >] dt (2.1)
* 0

for the following system

i (t) = A (t) x (t) + B (t) a (t) ; x (0) = ^ (2.2)

where x^ is an n dimensional state vector, a_ is an r dimensional control

vector, and <-, •> is the scalar product on Rn. It is assumed throughout

that (a) T is fixed, (b) £ is positive semi-definite on CUt^T, (c) R^ is

positive definite on 0^-W, (d) optimal control exists, and (e) o_(t) is

unconstrained. To formulate the necessary conditions for optimal control,

the 3f function is formed as*

*Hereafter functional dependence will be omitted when this does not result
in confusion.
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where X has been taken as -1. The adjoint vector ^_ is defined as

the solution of

i=-~; MT) =0 (2.4)

Since Q' = Q, this gives
=5= =

'- = £25. - A' i (2.5)

The optimal control _o is that which maximizes #*: since R^ is positive

definite (B/ = R_, |i| +0) this gives

I = - i £ - - R ' £ + B- A= 0

- = l" I'A (2 -6 )

That (2.6) maximizes # follows f rom -̂~- = - R and the positive definiteness
oO_oO =

of R. Putting (2.6) in (2.2) and adding (2.5) gives a 2n dimensional linear

homogeneous system with evenly split boundary values

x (t) = A (t) x. (t) + £ (t) x (t) ; x. (0) = ^

1 (t) = £ (t) x (t) - A' (t) A. (t) ; 1 (T) = 0 (2.7)

where

S = B R"1 B ' (2.8)

*The adjoint vector used here is the negative of the costate vector used
in reference 1; thus 3C is maximized to minimize J, whereas it is minimized
in reference 1. A further difference from reference 1 is in the handling
of the integrand of the cost functional.
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Integration of this system gives the (open loop) solution of the problem.

It can be established for the system (2.7) that there exists a symmetric

matrix !L(t) such that

^ = Kx (2.9)

and this relation may be used to eliminate A in the first of (2.7) :

x. = (4 + £K) x ; x_ (0) = X0 (2.10)

The second of (2.7) is used to obtain a relation for J<; differentiating (2.9)

and using (2.5) and (2.10),

• •

^ = K, x. + K x

£ x. - A' ̂  x. = K x. + ̂  (A + £ £) x.

Since A^il*, this implies

i = 9= " i' =" = = " =1= ' - ^T^ =- (2.11)

where the boundary condition follows from (2.9) and A. (T) = 0_ provided

_x (T) +p_. Putting (2.9) in (2.6) gives the closed loop (feedback) control

as

£= R"1 B" K x (2.12)

Thus solution of the nonline'ar (Riccati) system (2.11) and then integration

of (2.10) gives the solution to the original problem; this is an alternate

procedure to solving (2.7) and has the advantage of giving closed loop control,

*The trivial case = 0 is excluded.
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Problem With a Small Parameter

In many systems, there is present a parameter which may be identified

as "small" based on physical reasoning. For example, in viscous fluid

flow, the viscous effects are small in many problems, at least in large

regions of the flow field. Thus the viscosity is often treated as a small

parameter in the Navier-Stokes equations ' . In other problems, however,

no such parameter appears from physical grounds and a parameter may be

artificially inserted to suppress terms in the equations which are expected

to have relatively small effects. There is nothing new in this procedure,

since this is in effect what the analyst does everytime he formulates a

problem in dynamics, i.e., decides which effects to account for and which

ones to ignore. In a flight mechanics problem for a manned vehicle, for

example, a complete set of equations of motion would consist of the coupled

system of the six equations of rigid body motion of the vehicle as a whole,

the equations describing the dynamics of the control systems, the equations

describing the dynamics of the pilot's arm and foot, etc. It is obvious

that many of these effects can be neglected if, say, the vehicle trajectory

is the only thing of interest. In what follows, it is assumed that the

small parameter in the system has either been identified or inserted in

a suitable manner.

Consider the problem of minimizing

J = 2 ^Q C < X. ( e. t) , ̂  ( e, t) X. ( e, t) > + <& ( e, t) , Me, t) o ( e, t) >] dt

(2.13)

where the system is given by

4 (e) ;< (e, t) = A (e, t) X. (e, t) + | (e, t) ± (e, t) ; X (0) = XQ (2.14)

with the same assumptions as before, and where e is a scalar parameter.
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Without loss of generality it may be assumed that ̂  is a diagonal matrix,

|l|fO» and that all matrices in (2.13) and (2.14) are of order zero or

higher in the parameter e, that is, for example,

e+oT - - •

We call this the singularly perturbed state regulator problem. The most

common form of 4 in applications is a matrix with the first m elements

equal to unity and the last n-m equal to e, i.e.

0
e = (2.15)

-i
Multiplying (2.14) by e_ results in

= J L A x + B a (2.16)

to which the results from the conventional system may be applied. Noting

that, for example, (i"1 i)' = A' ef1, (2.6), (2.7), (2.8) give

-1 -1 -1 ^
X — P * A v + F ^ F A • Y i 0 i = Y^_ O_ * ;== ^ === A,A \ VJI A

Kax - A' e-i^;^(T) =0 (2.17)

with

£ = R'1 B='ir
1 A (2.18)

where the adjoint vector is denoted by A, Making the change of variable

1 = & A (2-19)

gives

£(e) X. K t) = ̂ (e, t) X. (e» t) + S= (e, t) A (
e> t) ; X. (0) = X

i(e). j. (e, t) = Q (e, t) x (e, t) - A/ (e, t) A (e, t) ; X. (T) = 0 (2.20)
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with £ and 1 given by (2 .6) and (2.8). Equations (2.20) may be cal led

a s ingular ly perturbed l inear system; integration of this system gives

the open loop solution to the problem.

The closed loop solut ion may be obtained in the same manner as for

the conventional system. M u l t i p l y i n g (2 .9) by 4, d i f ferent ia t ing, and

us ing (2.20) gives

ii = g - A' K - 4 K^"1 A - ^ K j " 1 iK ; K (e, T) = Q (2.21)

which may be termed a s ingu la r ly perturbed Riccatti differential equation.

After (2 .21) has been solved for K» the state history may be found from

4 i a ( A + i £ ) x . ; x . ( ° ) = Xo (2.22}

and the feedback control from (2 .12) . An important special class of systems

are those for which (a) the system is controllable, (b) /\> JJ, Q_, g are

time-invariant, and (c) T -»• °°. In this case, K is not a funct ion of time

and (2 .21) reduces to an algebraic equation

£ = Q^ - A' K - £ £ ^l A - L K i"1 i K (2.23)

The analyses of references 9, 10 and 11 utilize the closed loop

solution to the problem as a starting point. In this paper, we use the

system (2.20) as a starting point since we desire a general technique;

closed loop solutions are not generally available for nonlinear systems.
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III. SINGULAR PERTURBATION THEORY AND THE

METHOD OF MATCHED ASYMPTOTIC EXPANSION

It is desired to review results of singular perturbation theory as

it applies to linear, two-point boundary value problems and to develop

the method of matched asymptotic expansions for the approximate solution

of such systems. Specifically, the system (2.20) is of interest; to

formulate this system more concisely, let

w =

C =

£.

0 4

A i

(3.1)

a -A-
The resulting problem is called PE:

PE: E (e) w (e, t) = C (e, t) w (e, t) ; R (t) w (t, 0) + S (e) w (e, T)=k.(e)

(3.2)

where the boundary conditions have been generalized by -all owing "mixing"

and dependence on e. The reduced (or degenerate) problem associated with

(3.2), PQ, is obtained by setting e = 0:

Pn : £ (0) w (0, t) = C (0, t) w (0, t) ; R (0) w (0, 0) + 4 (0) w (0, T) = Jc (0)

(3.3)

Of particular importance is the case when ^ has the form given by

(2.15). Let
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x =

A =

' ^1
z

=====1 ====2

A3 A,

"2

. a.

' I =
Sl =§2

=3 .̂

; Q =
£1 £2

Qs £4

(3.4)

(3.5)

where y_ and £ have dimension m, z_ and £ have dimension n-m, matrices

subscripted 1 are mxm, and those subscripted 4 are (n-m)x(n-m). Then the

system (2.20) assumes the following form, called the P problem,

ei = A3 y_ + A^ z_ + S=3 ; i (o) - !„

A = Qj y_ + 0^ z_ - A{ £ - Ag £ ; £ (T) = 0_

4 = 0==3 ; a en = p_

As before, the reduced problem associated with (3.6) is denoted P

(3.6)

P :
o

£ = Qi

= Q

(3.7)

Q2 L - 4i £ ' is R J £. (T) = 0

Q^ i - £2 £. - ii a

where the matrices are evaluated at e = 0.

An even more concise statement of this system is obtained as follows;

let
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u =

F =

; v_ =
£ J
Ai ii

£1 -arj
"is S 3

Qs -M

2_

3.

; D =

; £ =

(3.8)

^2 ^2

£2 -is.

.a«f -AJ^.

(3.9)

where u^ and v_ are 2m and 2n-2m dimensionaly, respectively; then (3.6) may

be written:

d u. (e, t)

dt
= £ (E, t) U. (e, t) +£ (e, t) 1 (e, t)

u, (e, 0) = x ; i = 1, •-, m
i

u. (e , T) = 0 ; i = m + 1, ", 2m

d V (e , t)
e = Ji (e , t) JJ (e , t) + G (e , t) V. (e , t)

dt

v. (e, 0) = x ; i = 1, ", n-m
i+m

v . (e , T) = 0 ; i = n - m + 1 , - , 2n-2m

(3.10)

with associated reduced problem

d u (0, t)

dt
= £ (0, t) £ (0, t) + g ( 0, t) v_ (0, t)

P_ = H (0, t) u (0, t) + g (0, t) v. (0, t)

ui (0, 0) = XQ ; i = 1, ", m

ui (0, T) = 0 ; i = m + 1, ",2m

(3.11)



- 14 -

Relation of Solution of Full Problem to That of Reduced Problem

If e is a small parameter, it is natural to attempt to approximate

the solution to P£ or to Pe by solving the associated P * However, a

fundamental difficulty is encountered at once, since the P solution will

in general satisfy only 2m of the 2n boundary conditions of PE or P£,

and thus convergence of the solutions of the reduced problems to the

solutions of PE and P£ will be non-uniform at best.

Unfortunately, almost all of the theoretical work in singular perturba-

tion theory has dealt with either boundary value problems for finite order

scalar differential equations or with initial value problems for first

order systems, either linear or nonlinear; this work is reviewed in refs.

2 and 3. Two authors have, however, considered two point boundary value
g I O

problems for first order systems ', and the following result gives the

relation of the solution of P to that of P .

Theorem 1: For P , suppose that there exists an e such that on the

domain D = { (e , t) | 0 ± e IE , 0 l t £T} we have 1) A> Ji» .Q» J* are continuous
U — —

in both arguments, 2) g is nonsingular, and 3) n-m of the eigenvalues of

g have negative real parts. Then, 1) a unique solution to P£ exists, denoted

ij (e, t), v_ (e, t), 2) a unique solution to P exists, denoted i[ (0, t),

v (0, t), 3) lim, u (e, t) = u (0, t) uniformly on 0 it IT, and
e->0 ~

4) lim v_ (e, t) = v (0, t) uniformly on any closed subinterval of
e+0

0 <t <T. Hypotheses 1 and 2 are sufficient to arrive at conclusions 1

and 2; 3 is a stability condition and its significance will become

apparent subsequently.
13The theorem may be generalized in several important ways. Harris

has considered systems of the type P£ except that his form of ^is somewhat

*In what follows, the context will make it clear whether (3.3) or (3.11)
are to be used for P .
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more restricted than that in P^. It is found that several complications

occur. First, with boundary conditions of the mixed type as in P£ it is

not immediately clear which boundary conditions should be cancelled for

the reduced problem P . Thus a "cancellation law ' must be formulated

and an additional hypothesis added to the theorem to the effect that this

law is satisfied unambiguously. Also, hypothesis 2 of Theorem 1 must be

reformulated in such a way that all matrices which must be inverted to

solve P are nonsingular. Another important generalization is to the time

independent case discussed previously for which T-* °°. This case has

been studied by Hoppensteadt for the initial value problem and a result

similar to Theorem 1 has been obtained.

For nonlinear problems, extensive modification of the theorem is

required. In this case, it must be assumed that there exists an isolated

root of the reduced system (3.lib), that this root is asymptotically stable

in the sense of Liapunov, and that the boundary conditions are in the domain

of influence of this root. For nonlinear initial value problems this theory

was developed by Tihonov and is reviewed in ref. 2. An interesting geometrical

interpretation of Tihonov's theory is contained in ref. 15 where it is seen

to include the phenomenon of relaxation oscillation. A preliminary extension

of these results to the two-point boundary value problem is contained in

ref. 8.

For the feedback solution to the state regulator problem, there is

a result analogous to Theorem 1; under suitable hypotheses it can be shown

that the limiting form of the gain matrix ^ (e, t) obtained by setting e = 0

in (2.21) is the same as the gain matrix of the reduced system.
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Boundary Layer Equations

Theorem 1 indicates that v_ (e,t) will change very rapidly from its

boundary values at t = 0 and t = T given by (3.10) to values approximating

y_ (0, 0) and y_ (0, T), respectively. These rapid changes are called "boundary

layers," a term which comes from fluid mechanics in connection with certain

problems of viscous flow past a solid body. In these problems, the viscosity

is a small parameter multiplying the highest derivatives in the Navier-Stokes

equations. If this parameter is set to zero, the hydrodynamic system of

equations results (reduced system); the solution of this system violates

the no-slip boundary condition at the body surface. Thus in a thin layer

of fluid near the surface of the body, the boundary layer, the velocity

varies rapidly from zero on the surface of the body to the value given by

the hydrodynamic solution. The boundary layer is characterized by high

velocity gradients and high viscous forces. It is interesting to note that

if the hydrodynamic solution is used without accounting for the boundary

layer, the erroneous result that there is no streamwise force (D'Alembert's

paradox) is obtained, even though the flow field is accurately described in

all but a small region. This is indicative of the caution which must be

exercised when drawing conclusions form reduced order systems.

The phenomenon of boundary layers occurs in all singular perturbation

problems. For the system (3.10) there will be boundary layers at both

t = 0 and t = T; in these layers v^ (e, t) will change rapidly from its "inviscid"

value v^ (0, t) to its boundary values y_ (e, 0) and v^ (e, T) in a time of order e.

To study this rapid change, we "stretch" the time scale by introducing the

transformations
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-T

t.
e (3.12)
T - tT r~

Using (3.12) in (3.6) the boundary layer equations associated with P

at the initial point are found to be

a/ ^ i< 'X-

il = e Aj y_! + e /b Zj + e S ! £.! + e S^ £l ; ^ (0) = ^

a« % <\< 'v

li = A3 y_j + A4 zj + S3 ̂ i + 1^ li J li (0) =

(3.13)

y. _

ii = £3 y_i + £4 ii - ^2 £1 - & g.i

In these equations, the independent variable is T , for example
To

and £j (e, T ) = A} (e, £T )• The boundary layer system at the final point,

Pm , is the same as (3.13) except that the boundary conditions are replaced

by £2(0) = P.. £2 (0) = 0^ and the independent variable is Tj. The abbreviated

forms of these equations are

dTo
L i ( £ > T ) ^ ( £ > T ^ + e = 1 ̂ e > T ^ - i

ul ^e' °) = xo. ' i = lj "' m

PR, : 1 1 (3.14).
1 d y^ (e,T )

- — = Hi (e. T ) Mi (e.T0) + G! (e ,T0) Vj (e,T())
dTo

vl (e» °) = X
Q » i = 1» ". n-m

i i+m
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"2 (e, TT)

— = <= Fg
dT,

U2 (e, 0) = 0 ; i = m + 1,-, 2m

V d * ( ' , (3J5)
LT'i _ u / ^ i i ^ } + r ( } v (

T

V2 (e , 0) =0 ; i = n - m + 1, -, 2n - 2m
i

where, for example, JEi (e, T ) = f (e, GT ) and f, (e, TT) = F (e, T - £TT) .o — o =*c i = i

Matched Asymptotic Expansions

It is natural to attempt the solution of (3.10) by asymptotic expansion

in the small parameter e. Asymptotic methods for both regular and singular

problems are reviewed in refs. 4 and 17. Before proceeding, some definitions

are needed. Given functions f (e) and g(e), we write f(e) = 0 (g(e)) if f(e)/

g(e) is bounded as e + 0+ and f(e) = o (g(e)) if S|l- -»• 0 as e -»• 0+.

The sequence fn (e) is an asymptotic sequence if f.+1 (e) = o (f.(e)) as

e ->- 0+; fj(e) is an asymptotic expansion of the function F(e) if it is

an asymptotic sequence and if
n

|F(e) - £0 a.f.(e) | = o (fn

which implies
n

- A a,f,i I =0(fn+l ^

We call 2-i a-jf-j(e) tne nth order approximation of F(e). It should be
i=0

noted that different asymptotic sequences may lead to different asymptotic

expansions for the same function but that the expansion in terms of a given
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sequence is unique. If the sequence is infinite, we write

a.f.(e)
i = 0

and say that the series a.f.(e) is asymptotically convergent to F(e). The

series need not be convergent in the ordinary sense. The only asymptotic

sequence which will be used in this paper is the power series, e1.

There is at present no theoretically justifiable technique of obtaining

an asymptotic solution to (3.10). The most general result available is due
18to Vasileva and deals with the Cauchy problem for nonlinear first order

systems. In her method a solution is sought in the form of a sum of two

asymptotic expansions, one which approximates the solution "inside" the

boundary layer and one "outside," and an explicit method for obtaining the

terms in these expansions is obtained. This method is not used in the present

paper, but the following result of ref. 18 is of interest in motivating the

use of asymptotic methods in singular perturbation problems.

Theorem 2: Consider the system

fly

= f(x,y,e,t) ; x(o) =

e -$ = g(x,y,e,t) ; y(0) = yQ

with associated reduced system,

= f(x,y,0,t) ; x(0) =

0 = g(x,y,o,t)
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and associated boundary layer system (t = et),

•£ = ef(x,y,E,ET) ; x(0) = XQ

^ = g(x,y,E,ET) ; y(0) = yQ

and suppose that: 1) f and g are n + 1 times continuously differentiate

in x, y, and e in some domain n and continuous in t for 0 < t s T, 2) the

full system and the reduced system both have unique solutions in n, 3) there

exists in isolated root y = $ (x,t) of the reduced problem 0 = g(x,y,0,t) in

fi, and 4) the root y = <j> (x,t) is an asymptotically stable equilibrium point

of the boundary layer system. Let the asymptotic sequences x.ftje1, ̂.(tje1,

y,-(t)e , y,-(t)e be those discussed in ref. 18. Then these sequences are

asymptotic expansions of the solution the full system, x(e,t) and y(e,t), that

is
n n

,t) - 2, x.Uh1' - 2 X,(t)ei| = 0(E
R)

e»t; -
1=1 ' 1=1 '

in n for Ox t i. T.
Q

Hadlock formally applies Vasi leva 's method to two-point boundary value

problems and it appears that the method is applicable to this class of

problems as well. The method to be used in this paper was originally developed

in fluid mechanics and is called the method of matched asymptotic expansions

(or the method of inner and outer expansions) ' . The method was first conceived

by Prandtl and has been formalized by Kaplun, Lagerstrom and others. In this

method it has been found to be advantageous not to give an explicit general
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formulation of the required expansions but to formulate only a general recipe

and then treat each new problem individually, and this approach will be used

here. This is due to the large diversity of behavior which may be encountered

in even the most elementary problems as well to the great algebraic complexity

generally involved. Theoretical justification of the method is not of great

importance since it becomes readily apparent in the course of a solution whether

or not the method is working. However, it seems likely that the hypotheses of

Theorem 1 plus increased restrictions on the smoothness of the system matrices

in the domain of interest are required. Specifically, hypothesis 1) will be

replaced by: /\» JL> £, Rare of class C°° in t and have asymptotic expansions in

e in domain D.

In the method of matched asymptotic expansions we proceed as follows:

1) solve the "outer" system (3.10) asymptotically, leaving the boundary

conditions free, 2) solve the "inner" or boundary layer systems (3.14) and

(3.15) asymptotically subject to the appropriate boundary conditions, and 3)

determine the remaining constants of integration by invoking a "matching

principle."

To solve the outer system set

00 00

U(e,t) * ̂  u.(i)(t)e1 ; v(e,t) 'v S 1 '
1=0 i=0

i=0
CO

CO

H(e,t) * S i^dOe1 ; G(e,t) * 2. G=
(1

i=0 ~ 1=0
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Putting (3.16) in (3.10) gives

1=0 dt \i=0 / \1=0 / \i=0 = / \i=0

2 u<
i>e'• '-' £ <\,

1=0 dt \i=0 ~ / \i=0 ~ / \i=0 = / \1=0

Equating the coefficients of successive orders of e of these series in the

usual way results in a sequence of linear problems, each of which is of

order 2m and hence 2m arbitrary constants will appear at each order. If it is

assumed that G/°' is nonsingular these problems will have unique solutions. Note

that the zeroth order problem is homogeneous while the higher order ones are

inhomogeneous.

To solve Pm , setBL1
oo

00 ^

UI(*.TO> - Su/^^X ; v̂ .-g , I v/1'̂ )̂  (3.18)

in (3.14) to get

i=0 dT \i=0

l=0

1=0

. (3.19)
1-0 i=0 ' /
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where, for example,

oo

£, < « . , „ > * 2 E/^V'11=0

The zeroth order terms in these expansions must satisfy the initial conditions

since these conditions are of zeroth order in e and the higher order terms

must vanish at t = 0, that is

(i) _ ,
i
'j

0) - .i
'j

x if i = 0
«

0 if i >_ 1

x if i = 0
Vm
0 if i >_ 1

. ; j = 1» .., m

; j = 1, •., n-m

(3.20)

The system (3.19) is of ordinary perturbation type and has 2n constants of

integration at each order; imposing the n conditions (3.20) leaves n arbitrary

constants. Note that 2m of the equations (3.19) are simple quadratures.

Similarly for Pp. we set

(1)

1=0

(T_)e
1 ; v2

' ~*

so that

i=0
I
i=0

(3.21)

I • \ °° °°
HN (""' /^ \ / T*

^2— e1', I^}A I U (̂ s1

i=0 dTT \i=0 / \i=0 2
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(i)
^L_ei

i=0 di-r

(3.22)

subject to

(i)
"2 (°) = ° 5 i 1 °> J = m+1, .., 2m

J

= 0 ; i >_ 0, j = n-m+1, .., 2n-2m (3.23)
J

where, for example,

1=0

The unknown constants in the outer and boundary layer expansions are

determined by a matching principle. This principle assumes that there

exist two overlap regions, one near t=0 and one near t=T such that in the

first of these both the outer and the Pm expansions are valid and agree,BL1
and in the second of these both the outer and Pg. expansions are valid and

agree. In the limit, this leads to the matching conditions:

(3.24)
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These conditions are to hold for all orders i of e. It is evident that

asymptotic stability of the boundary layer solutions is required. If it is

assumed that n-m of the eigenvalues of £ are negative this stability is

insured since n-m of the n constants appearing at each order of the boundary

layer solutions may be chosen to suppress the unstable solutions, leaving m

undetermined constants. The m constants in Pm , the m in PDI and the 2m
bL-j BL,j

of P are determined by the matching conditions. It will be shown later

that the matching conditions associated with z_ and £ are redundant.

The representation of the solution obtained by the method outlined above

has the undesirable feature that different representations are required for

different values of the independent variable. It is desirable to obtain a

single expansion valid uniformly for 0 <_ t <_ T and this may be accomplished

by adding the two boundary layer expansions to the outer expansion and sub-

tracting out the common parts, i.e., the terms which cancel out in the matching,

This expansion is

u(e,t) .
1=0 ~ 1=0 i=0

<JU UU

\r^ . . s~»
Iim 7 (i)/T \ i 1im >

"T^-o Zrf U.1 ' O' e ~ T - « o / J £'
o 1=0 T 1=0

v(e,t) ̂
1=0 ~ 1=0 1=0

_ Iim V (i)/T v 1 _ lim Y (i),T
?~° A-l ( o)e T -KC f-̂ 2 (

o i-0
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To summarize the results of this section, we state the following:

Theorem 3: Consider the system P as given by (3.6) or (3.10) and suppose

that there exists an eQ such that on D = {(e,t) |0<e<_e , 0<t<T} we have 1) A. JL,

^, JR are of class C°° in t and have asymptotic expansions in e, 2) G;0' is non-

singular, and 3) n-m of the eigenvalues of Ĝ 0' are negative. Then the method

of matched asymptotic expansions leads to a unique asymptotic representation of

the solution of P .e
It should be noted that the theorem does not state that the resulting

asymptotic sequences converge to the solution of P . The theorem will be proved

explicitly for the zeroth order in the following section (extension to higher

orders is similar) where it is also shown that the zeroth order outer problem

is precisely the reduced problem P .

Zeroth Order Approximation

To illustrate the method of matched asymptotic expansions, the zeroth

order approximation will be worked out in detail. Retention of only zeroth

order terms in the expansions gives a sufficiently good approximation for

many applications. From (3.17)

d-° - F(o) u(o) + D(o) (o)
dt ~ = - = -

0 = H(o) u(o) +G(o) V(o) (3.26)
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The solution of (3.26) is, referring to (3.8),

y_
i

-1
= ex=

(o)
= - G^1 H<°>

y_
E1

(3.27)

where C_ is a vector of 2m constants of integration.

From (3.19) the zeroth order term in the Pm expansion satisfies

dv

' = 0 ; u,
ro - ]i

(o)
; v,

i i+m
i = l, .., n-m (3.28)

The solution to this system may be written

(o)

(or

-1

(3.29)

where Mr' is the modal matrix of G and
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where the C, are the n-m constants of integration associated with the
i .(o)eigenvalues S. of G/ ' which have negative real parts. The solutions

associated with eigenvalues which have positive or zero real parts have

been suppressed by setting their associated constants of integration to zero.

The constants C, and C_, are related by

Vo)(o)
(o) (3.30)

so that only m of their components are independent. The zeroth order term

in PD, satisfiesBL2

o(o)

r-
°T

dv (o)

= 0. ; U9 (Q} = 0 ; i = m+1 , . . , 2m

U2
(0) + V2

(0)(0)

(3.31)

= n-m+1, .., 2n-2m

with solution

(o)>

(o)->
"(o)

(o)./^

where

(3.32)
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with

2̂

0 _

(3.33)

First consider the matching of yj°' at the initial point. From (3.24)

lim (o) _ lim
T -x>

0

(o)

y_(o)(o) -

Similarly, the matching of at the final condition gives

E(0)(T)=0

These conditions together with (3.26) imply that the zeroth order outer

solution is just the solution to the reduced problem (3.7). The constants

£ have now been determined. The matching of £/' at t = 0 and yj°' at

t = T gives the constants Cn and C,,:

= c

H(o))T

The matching conditions for z/°' and <' at the initial and final points are

then satisfied identically as may be seen from (3.27b), (3.29b), and (3.30b).
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An Alternate Procedure

In the preceding development, the necessary conditions were applied

to the full system and the resulting two point boundary value problem was

solved by the method of matched asymptotic expansions. It is natural to

ask whether or not the reverse procedure is valid, that is, is it permissible

to first expand the state equations asymptotically and then to apply the

necessary conditions to each order of the expansions? This latter procedure

is attractive since it may be expected to result in less algebraic manipulation

for a given problem. To pursue this question, we partition (2.14) in the

manner of (3.6)

where Jj is m x r, B^ 1S (n-m) x r and the other quantities are as defined

by (3.4) and (3.5). The following result gives the conditions for equivalence

of procedures for the zeroth order.

Theorem 4: Let the first two hypotheses of Theorem 1 apply and further

suppose that the matrix A^ jj has maximum rank (i.e., rank n-m) in a

neighborhood of the extremal. Then the reduced problem obtained by setting

e = o in the necessary conditions of the full problem is the same as the

problem obtained by setting e = 0 in the state equations and applying the

necessary conditions to the result.

The significance of the additional hypothesis is clear; in either

procedure, if it is satisfied n-m of the components of (z_, g) may be eliminated

from the problem. When e is set to zero in the state equations, _z_ becomes

effectively a control variable and the two control variables z_ and a. are constrained
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by a set of state dependent algebraic equations. The adjoint variables as-

sociated with the state variables whose derivatives are neglected correspond

formally to the ordinary Lagrange multipliers arising in the maximization of

the JC function in the second procedure. The proof of the theorem follows

from section 3.6 of ref. 12. A more restrictive equivalence of procedures

result than Theorem 4 is given in ref. 8 where it is shown that a sufficient

condition for equivalence is the non-singularity of Aj*- If °ne takes the

viewpoint that a control variable is a variaole which may be changed instan-

taneously*, it may be concluded that, for problems in which a small parameter

is to be inserted, the parameter should be inserted in such a way as to make

the relatively "fast" variables behave as control variables in low order

approximations.

*I.e., controls may be piecewise continuous or even just measurable.
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IV. AN EXAMPLE

Problem Formulation

Consider a forced two degree of freedom spring-mass-damper constant

coefficient system with specified initial conditions.

ay + by + cy = a ; y(0) = yQ, y(0) = yQ

It is desired to select the control a(t) to minimize

t- Ra2)dt

/ i \

In state variable form (let x± = y, x2 = y, x_ = ( j)

Xi = X2 ; Xj(O) = XIQ

ax2 = - bx2 - cxj + a ; x2(o) = x20

1 r° r 1J =Ii | < x _ , Q x > + Ra2]dt

If b or c is "small" this is a regular perturbation problem and if a is "small"

it is a singular perturbation problem. Suppose a is small and qn = q12 = 0.

Without loss of generality, let q22 = q2, R = 1 and a = e so that

i = x2 ; xO = x10

eX2 = - bx2 - cxx + a ; x2(o) = x20

(q2x2
2 + a2)dt
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The system matrices are

0 1

HO
From (2.8)

From (3.5) and (3.9)

AI = (0) ; 42 = (i.)

Si = (0) ; iz = (0)

2,1 = (0) ; £2 = (o) ; 2=3 = (o) ; gk = (q2)

" F =

Since £ is nonsingular with eigenvalues + /q2
2+b2 and -vq2

2+b2 , Theorems

1 and 3 hold (G = G*°'), and it may be expected that the method of matched

asymptotic expansions will work on this problem. Further, [Â , B^] = '(-b 1) has maxi

mum rank (in fact Ajt is nonsingular) so that Theorem 4 holds and the alternate
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procedure may be used, that is we may set e = 0 in the state equations, treat

x2 and a as control variables, and apply necessary conditions to obtain the

reduced problem. This equivalence may be verified by direct computation for

this simple example.

In the following, both the exact and zeroth order asymptotic solutions

for the case of no damping (b = 0) will be obtained. Consideration of this

case exhibits the essential elements of the method while minimizing algebraic

complexity. Note that now

A,= (0)

/O 1\
£ =

W O/

and [A^ Jbl = (0 1) so that Theorems 1, 3 and 4 still hold. However' the

alternate procedure will not be used in the following.

Exact Solution

The system to be solved is (see 2.20)

Xi <= x2 ; xi(0) = x10

eX2 = -CXi + A2 ' X2(°) = X20

A! = cx2 ; AI(°°) = 0

eA2 = q2x2 - A! ; A2(°°) = 0

Set

to get

= Aie
St, x2 = A2e

St, A! = A3e
St, A2 = A4e

St

Ais = A2

eA2S = -cAi + Ai

A3S = cA4

= q2A2- A3
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Let

11 = A /A = — (r^ 4- r^y^ HO/ M* c \ fc-O * ^ /
O o J. o

y4 = A4/A1 = eS2 + C

The characteristic equation is

? 4 ? ?
t - c ' i / O /•• — \O^ i ^^ AE S + (2eC - q,JS + c = 0

with solution

The exact solution is represented as

The A,^1^ are determined by the boundary conditions; this leads to

= 0

- 0

x „ xX y Xx „ x(3) =
 X20 y2 X10
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(3)
y2 X10

where

S3
For future purposes, we expand the solution for small e and retain

only the first terms. For S.,:

S
2 C £ 4 C £

• '3

"3<3> = o

For S4:

c \q2 cq2VTT - i~e 4e e

1 ,/c2 2
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(4)

'H2

J3 4 ~ ' °

a4 * C

Thus

A 0)~ ^_ /JL v + v«i ~ ,— I — X10 20

A (4) - xHl X10

so that the zeroth order approximation is

xio e

/ C \ e Cx2 ». [ -— XIQ + x2Q ) e - —- XIQ e

xio e 2

= a «- cx1Q+ yq^ x2Q ) e
 e +cx1Q e
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t
Terms with factor e will be important only for small t (t = 0(e) or

less) and appear only in the expressions for the variables (K^, A^) which lose

their boundary conditions at e = 0. It may thus be anticipated that these

terms are the zeroth order terms in the boundary layer expansions; and that
- c//qu t

terms with factor e are the zeroth order terms of the outer expansion.

This will now be shown by obtaining these expansions.

Solution by Matched Asymptotic Expansions

The zeroth order outer system is just the reduced problem, as has been

shown earlier.

x, = x? ; x, (0) = xinLQ 0 10

X, = c\ ; x (.) = 0
X0 0 X0

0 = - cxj + \2

0 •= q2 X2 - A1

Solution of this simple system is

c

X1Q
 X10 e

C t

X106
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C t

X10e

c

°0 " X10 e

These functions do not satisfy the initial conditions but do satisfy the

terminal conditions and hence a boundary layer will be needed at the initial

point only.

The zeroth order boundary layer (inner) system is obtained by using

transformation (3.12) and then setting e = 0:

x{ = 0 ; x, (0) = x1nl l IU

\: = 0

= - c x, + Xy ; x? (0) =
Ll dl *l

- -i

I I

where ( )' = -j— - . Of the four constants of integration for this system, two

are determined by the boundary conditions, one is needed to suppress the

unstable root of the characteristic equation, and the fourth, say K, is to be

determined by the matching conditions. The solution is

X10

= K e ^ ° + (x2Q - K)
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j = q2 (X20 - K)

= C X10

The inner and outer solutions are now matched according to (3.24)

xl : X10 = X10

X2 : " X10 " X20 " K

- K)

: c

These conditions are satisfied unambiguously by the unique value

K = X20 + q X10

(In the previous section it was shown that the matching of x2 and x^ is

redundant.) Thus the zeroth order inner expansion is

" X10
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= c X10 ~C X10 + 2 X20 e

Finally, the zeroth order of the uniform expansion obtained according

to (3.25) is

xiu ~
 xio e

+x io e
C t

\ = - C 2 X10

X10+ V^2X20 e +C X10 e

which agrees with the first term expansion of the exact solution. A useful

approximation to the solution has thus been easily obtained.

This example shows that application of the method of matched asymptotic

expansions in effect "splits up" a given problem into relatively easier

problems, and it is this characteristic which makes the method attractive for

complex problems. The method may be continued to obtain first order and

higher approximations.

Numerical Example

To gain insight into the ability of the uniform zeroth approximation

of the example to approximate the exact solution, consider the specific case
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c = 1, /q2 1» xio ~ X20' e ~ 10

so that e is only one order of magnitude smaller than the other system

parameters. For this case, the exact solution is

= - .2746 e-8'873t + 1.2746 e'1'127*
X10

X10

X10

= 2.436 e-8'873t - 1.436 e'1'127*

= - 2.436 e-8'873t + 1.436 e'1'1271

the outer solution is

xl

X10

X2Jo = _e-t
X10

X10

the inner solution is

X10
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X10

X10

- 2 e-10t - 1

- 1 - 2 e-10t

and the uniform solution is

xl
X10

10
2e-10t

- 2e-10t
10

The various solutions are plotted on Figures 1, 2, 3. Semi-log paper

is used to amplify the behavior at small t (boundary layer). The figures show

that agreement between the exact and the approximate 'solutions is best at

very small t and at very large t and worst in the overlap region e <_ t <_ 10e.

It appears that the inner solution is better than the uniform solution at small

t and that the outer solution is better at large t. It is seen, however, that

the uniform solution gives a reasonable approximation to the exact solution;

for smaller orders of e this approximation would, of course, be improved.

The cost is computed from

J =
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~/x \

• / UH0 \ x'°/
dt

so that

= 0.3364

Thus the approximate solutions are unconservative (underestimate the cost)

with the outer solution giving a better value than the uniform one.

A Special Case

To illustrate that for singular perturbation problems a slight

modification of the system may lead to dramatic differences in the solution

characteristics, the special case of x,0 = 0, c = 0 is now considered. The

zeroth, first, and second order terms of the uniform asymptotic expansions will

be obtained. In this case A, = 0 so that the system to be solved is

x-L = x2 ; Xjto) = 0

e*2 = a ; x2(o) =

ea = qx ; a(°°) = 0

The exact solution is
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X2 ~ X20 e

0 = -

To solve the outer problem asymptotically, to second order, set

OO

,,2,
1 1=0 1

; X y/ f p •
1=0 1

; a

oo

I a
1=0 i

in the system equations and retain only second order terms and lower:

ao + ale

= o a,

To zeroth order:

a -
0

0 = O.

0 =

where C is an undetermined constant. The first order terms areo

al =

°o =

al = Cl

3j_ = 0

O = 0
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The second order terms are

62 = 0

Oo = 0

The outer solution to second order is then

X10
 = Co + Cle + C2e

x? = 0 ; a = 0

The boundary layer equations are

X, = ex2 = 0

= a ; x0(o) = x20

where ( )' = -\ ' and t = et. To solve these to second order setdr

; X
1=0

W OO

I M * - * S M '^—» n ^ V T / e , a 'v- Z-< V , - V T ; E
1=0

in the boundary layer equations and retain terms up to and including second

order:



- 47 -

n2e = vo V e

To zeroth order:

6- = 0
0

n - = v
0 0

o 2 o
« (0) = 00

V °> - X20

6 = 0
0

n ~
/o~ T

(Ko +N/^2 X20^e 2 " Koe

•
/Q~ T - fo

v = (K + f f \ ~ x } p + K p
o ^ o v^2 20' o

The first order terms are

•v

6i = no
nf = vj
v ' ~ a1 " H2'nl

6^0) = 0

, (o) = 0

1
61 ~ q2

^

' - "" - -. Klni y^
v = K /

-1)

The second order terms are

62

= V

Vn ~

«2(°)
0

n2(o) = 0

• 'z'¥
T\ 2Kj

- e

-/s?
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The boundary layer solution to second order is

= no + V

The constants G , Cj, C2, K , K,, K2 are now determined from matching. Since

all orders of the boundary layer expansions must remain finite as

Ko = ~ ̂2 X20 ; Kl = ° ; K2 =

so that

=

h

X20 e

°I = - ̂2 X20 e

Matching with the outer solution gives
x?0 • r = n' 2 u

so that

= 0
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The uniformly valid expansions are

X20 e

_ _ , e
Oil "" "" x/Qo ^ O A C

Thus the boundary layer expansions are the same as the uniform expansions

and the outer expansion has contributed nothing. Also note that the second

order terms are all zero so that higher order terms will be zero also,

that is

Qj = 3.j = c^. = 5. = n.. = v. =0 V 1

This is verified by noting that the uniform expansions above are precisely

the exact solutions. It may be concluded that for this special case, the

method of matched asymptotic expansions has not resulted in, computational

simplification.
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CONCLUDING REMARKS

Singular perturbation theory and the method of matched asymptotic

expansions have been applied to the state regulator problem of optimal control

theory. Conditions have been stated under which the method is applicable.

The method is illustrated by using it to obtain an approximate solution of a

simple, specific, singularly perturbed state regulator problem. It is found

that the method is easy to apply and results in a uniform approximation

which gives good agreement with the exact solution in the entire range of

interest.
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