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ABSTRACT

• <M Tubular specimens were potted in metal grips to determine the feasi-
co
CO

T bility of this gripping method in applying multiaxial loads. Strain gage
w

rosettes were used to assess grip transitional strains, through thickness

strain variation, and strain variations along the tube length and circum-

ference. The investigation was limited to loading 0°, 45°, ±.45°, and 90°

graphite/epoxy and glass/epoxy tubes in axial tension. Results include

modifications made to the grips to reduce transitional strains, illustra-

tions of the tube failure modes, and some material properties. The grip-

ping concept shows promise as a satisfactory technique for applying multi-

axial loads to high-strength, high-modulus fiber composite tubes.

Keywords: fiber composite, tubular specimens, gripping, graphite/epoxy,

glass/epoxy, transition strains, mechanical properties, through-thickness

strain variations.

INTRODUCTION

For experimentally characterizing the mechanical behavior of fiber/

matrix composite materials, a tubular specimen offers a distinct advantage.

All the loads required to fully characterize a composite system can be
'v

applied to this single specimen type. However, transferring load into a

tube and keeping transitional stresses sufficiently low to avoid end fail-

ures can be a problem. Tube ends can be reinforced with tabs but this

significantly increases the cost of a tube. • The load transfer technique

investigated at the Lewis Research Center consisted of potting the tube
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ends into grips designed to reduce transitional stress to an acceptable

level.

In order to test the grips under a variety of conditions, two fiber/

matrix systems and four ply-lay-up configurations were used. High-mod-

, ulus graphite/epoxy and high :strength glass/epoxy circular cylindrical

tubes were tested with the fibers oriented at 0 , 45 , ±45 , and 90 with

respect to the tube longitudinal axis. The tubes were 8-plies (0.060-in.)

thick, 2 inches in diameter, and.12 inches long. They were instrumented

with single strain gages and strain gage rosettes to measure strain-.vari-

ation in the grip transition region, along the tube length, around the

tube circumference at the midlength, and through the tube thickness.

This paper describes the development of the grips and presents

strain gage results and composite properties obtained from testing tubes

in uniaxial tension.

EXPERIMENTAL APPARATUS.AND PROCEDURE

Grip Design

It was our desire) to grip composite tubes in a relatively simple

manner without going to the added expense of reinforcing the ends. The

concept we chose was to hold the tube ends in metal grips with an epoxy

potting ..material. The metal grips were bolted together so that following

a test .they could be readily disassembled and used over again. Two sets

of grips were.designed, one for a potting depth of one inch and the sec-

ond for two inches.

Initial concern was with the strength of the bond between the pot-

ting material and the tube. Therefore, a high strength epoxy (Epon 815

with curing agent Z) was chosen for the potting material.; To add addi-

tional gripping strength the grips were tapered (fig. l(a)) so that a



radial compressive force was exerted .on the ends when the tube was loaded

in tension. In initial tests of 0 tubes longitudinal cracking occurred,

so curing agent Z was replaced with T-l. This allowed curing to take

place at room temperature. The adverse effect of differential expansion

coefficients was eliminated at a sacrifice in epoxy,strength. Except

where otherwise noted, all results reported herein were obtained from

tests using grip configuration I (see fig. l(a)). This configuration .

produced satisfactory results except for the 0° graphite/epoxy tubes

which failed at the grips. Therefore, an effort to further reduce grip

transitional stresses was made by simply supporting the tube on the in̂ -

side and potting on the outside only (fig. l(b)). It would be,possible

to further reduce transitional stresses by slightly tapering the inside

support to allow unrestricted Poisson's contraction to take place.

Specimens, Instrumentation, and Testing

In order to test the,grips with.composite systems covering a wide

range of strength and stiffness properties, two systems were selected.

The systems were graphite (Modmore I)/epoxy (ERLA 4617) and S-glass/epoxy

(ERLA 4617). The tubes were made by a lay up procedure using broad

goods. Fiber volume content was 50 percent in both cases. The tube

dimensions were 12 inches long by 2 inches in diameter. They were 8 plies

thick. Ply layups were 0°, 45°, ±45°, and 90°. In the latter stages of

the program several 0 E-glass/epoxy (Scotch ply) tubes were tested to

study grip transitional strains. The tubes contained only the constitu-

ent materials mentioned above except the 0°, 45 , and 90 graphite/epoxy

tubes which had glass scrim cloth on the inner and outer surfaces. The

glass scrim was used to prevent cracking during the fabrication.process.



The primary form of instrumentation used was the 60° delta rosette

strain gage. Gage resistance was 120 ohms. Gage length was either 1/8

or 1/4 inch. Gages were placed along the length of the tube, around the

circumference of the tube at its midlength and inside the-, tube. The

smaller rosettes were used near the grip. Figure 2 shows a typically in-

strumented tube mounted in the grips. This tube had gages mounted on,the

inside and their alinement with respect to the gages on the ou.tside can

be seen in figure 3. Alinement was so close that the X-ray gives the

appearance of a single rosette at each location. Strip strain gages,

which were partially embedded by the.potting epoxy, were used to measure

both longitudinal and transverse (hoop) grip transitional strains.

The strain-gages were read out using a multichannel digital strain

recorder. The gage excitation voltage used was 1.4 volts, a voltage low

enough to prevent gage drift due to heat buildup. Strain gage and load

data.were.reduced to stress, structural axis strains, moduli, and Poisson's

ratios using the computer program described in reference 1. All the tubes

were tested in tension to failure using a 120 000 pound capacity ;universal

testing machine. Loading was held constant at convenient intervals for

taking strain gage data.

RESULTS:AND DISCUSSION

Grip Transitional Strain

Tube tests using grip configuration I were generally successful,

i.e., failures occurred away from the grips. This was true for all ex-

cept the 0 graphite/epoxy tubes which failed at the grips. Some typical

failed specimens are shown in figure 4. ~

Strain gage data showed that undesirable loads were being induced in
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the tube ends by grip.configuration I. Therefore, it was modified ,as

shown in,figure l(b) and described in,the previous section. The improve-

ment obtained by .this modification is illustrated in figure 5. An-E-glass/

epoxy tube with 0 fiber orientation was tested where one-end was gripped

using configuration I and the other end by configuration II. With. con-,

figuration II the .transverse strain in the transition region .was much

closer to that .at the.tube midlength... Gage C* shows that configuration I

induced sufficient transverse strain to cause the tube to crack and. relax,

the transverse strain. The transverse failure strain was about

2000 yin./in.

.Strain Along Tube Length

In order to determine the effect of gripping away from the grips,

rosettes were placed on.tubes 3/8, 7/8, and 2 inches from the grip (pot-

ting boundary) and at the.tube midlength. The results obtained from

testing these tubes are shown in figure 6. Strain, values were normalized

by dividing by the strain values obtained at the tube midlength. Strains

at two stress levels are plotted: stress equal to about half the failure

stress and the stress at which the last strain gage readings were taken

prior to failure.

In general, longitudinal strain varied slightly along the tube

length as one would expect from the restraint caused by the grips. Trans-

verse strain variation was more significant. The greatest variation in

transverse strain occurred in the 0 graphite/epoxy tube (fig. 6(a)).

The strain in the gage closest to the grip was tensile rather than the

compressive strain expected.from Poisson's effect. The transverse strain

obtained from the 90°.graphite/epoxy tube (fig. 6(d)) is not plotted be-
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cause these strain.readings were too small (less than 50 pin./in.) to be

considered meaningful. Transverse strain variation can be attributed

primarily to the radial force induced in the tubes by the grips.

With one exception stress level had little or no effect on the re-

sults. This exception was the ±45 S-glass/epoxy tube (fig. 6(g)) where

the grips had a significantly greater restraining effect at the higher

stress than at the lower stress. Grip restraining effects would be ex-

pected to show up prominently with this type of tube because of the very

high strain.levels induced by.interply.relative rotation (scissoring

effect).

Only one stress level is plotted for the.45 S-glass/epoxy tube

(fig. 6(f)). This tube failed at an unexpected low stress and only a

single set of strain gage data were obtained.

For the 45 .graphite/epoxy and 90 S-glass/epoxy tubes (figs. 6(b)

and (h), respectively), longitudinal strain for only the higher stress

level is plotted. In.these two cases, normalized longitudinal.strain

was the same for both stress levels.

Strain Around Tube Circumference

Strain rosettes were placed around the tube at its midlength at

-90 , 0 , and 90 to detect strain variation around the circumference.

The angle was measured from the meridian on which the rosettes along the

tube length were mounted. The 0° meridian was chosen arbitrarily. Re-

sults from these rosettes are shown in figure 7 where normalized strain

is plotted against angle. Strain was normalized by dividing by the

strain values obtained from the 0° rosette. Results from two ±45

graphite/epoxy tubes are. plotted in figure'7. No 45° graphite/epoxy

tube was instrumented around the circumference.



Longitudinal strain results showed that a significant amount of

bending was introduced into all but the 0 tubes. Both the 0 graphite

and S-glass tubes had an.inside diameter about 0.010-inch smaller - than..

the other tubes. This allowed a more precise centering of the 0 tubes

in the grips before they were potted and therefore eliminated any.bending

due to eccentric loading. Closer tolerances on the inside diameter of .

tubes tested in the future should eliminate this cause of bending.

Variation in transverse strain.around the circumference even when

no bending was .present (fig. 7(a)), was probably due to slight gage and/or

fiber misalinement with respect to the longitudinal axis. The.rosettes

were mounted so that longitudinal strain .was measured directly while a

transformation was necessary to obtain transverse strain. The calculated

transverse strain was more sensitive to the effect of gage and/or fiber

misalinement.

Through-Thickness Strain Variation

2
An analysis by Pagano and Whitney showed that a stress variation

through the thickness would.occur in the gage section of nonsymmetrical

composite tubes loaded in axial tension. Of the tubes tested in this

program, the greatest through-thickness stress variation would be ex-

pected to occur in the 45 graphite/epoxy tubes. To determine strain

variation through the thickness, one of these tubes was instrumented

with back to back rosettes at 3/8, 7/8, and 5 inches from the grip and

loaded to failure. Stress-strain curves for these locations are.plotted

in figure 8.

At the tube midlength (fig. 8(a)) there was no difference in

longitudinal strain through the thickness. As can be seen in figure 3,
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the inside and outside elements measuring longitudinal strain were^pre-

cisely alined. The variation in shear and transverse strain through.the

thickness is the only indication of a possible through-thickness stress

variation.

Near the grip (fig. 8(b) and (c)) there was a difference in the

longitudinal strain. However, this could be due to local bending. ..-The

variation in shear and transverse strain could be due to a combination

of bending and through-thickness stress variation.

Composite Material Properties

The properties obtained from the tube tests are shown in figure 9

for graphite/epoxy.and figure 10 for S-glass/epoxy. The data points rep-

resent an average of results from either 2 or 3 rosettes mounted around,

the circumference of the tube at its midlength. Two or three tubes were

tested for each type of fiber orientation. In general the results show

the extreme anisotropy.of unidirectional .composites and the effect on

strength and stiffness obtained by cross plying.

Graphite/epoxy tube test results (fig. 9) were affected by the

gripping method and by the glass scrim on the 0 , 45 , and 90 tubes.

Strength and failure strain values of 0 tubes were reduced by having

grip failures. The presence of the glass scrim no doubt affected all the

.results, some negligibly (0 strength and modulus) and others more sig-

nificantly (45 and 90 strength). The 0 Poisson's ratio was higher

than what was expected for a 50 percent fiber volume graphite composite.

The glass scrim and/or.excess resin on the tube outer surface could ac-

count for.this discrepancy. The dashed line in figures 9(d) and 10(d)

gives the curve shape predicted in reference 3.
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S-glass/epoxy tube test results (fig. 10) were affected by the

gripping method; however, no glass scrim was present to confuse the re-

sults. The 0..tubes failed by longitudinal separations forming at a

point on the circumference. Under continued loading the separations pro-

ceeded around the circumference until the specimen looked more like a.

broom than a tube. These separations probably formed as a result of

transverse and shear loads introduced into the tube by the grips. The

stress-strain curve for the ±45 tubes was nonlinear and modulus and

Poisson's ratio values plotted are for initial conditions. The failure

strain of the ±45 tubes exceeded the measurement capability of the

strain rosettes.

SUMMARY OF RESULTS

A method for gripping fiber composite tubes was devised that does

not require specimen end reinforcement. Initial strain gage data showed

high transverse strain near .the grip. However, failure occurred away

from the grips in all but the 0 tubes. Modification of the grip design

reduced the transverse strain to a level much closer to that at the middle

of the tube.

Strain gages around the circumference of the tubes showed that

bending was introduced into some of the tubes by the gripping technique.

Holding a closer tolerance on the tube inside diameter to allow ..more, pre-

cise centering in.the grips should eliminate most bending.

Analysis of the data from back to back gages showed that a stress

variation through the tube wall thickness was possible in the 45 graphite/

epoxy tubes.

The material properties obtained from these tests were, for the most
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part, what would be expected for the materials'and fiber volumes tested.

The high degree of anisotropy of these materials is shown as well as the

effect of cross plying. The major Poisson's ratio obtained from the 0°

graphite/epoxy tubes was higher than expected. This may result from

having a layer of glass.scrim cloth on the surface of the tube.
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(a) CONFIGURATION I.

(b) CONFIGURATION II.

Figure 1. - Tubular specimen grip configurations.

Figure 2. - Instrumented tube mounted in grips.



Figure 3. -X-ray
outside gages.

showing alignment of inside and
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