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TECHNICAL MEMORANDUM X- 64654

ITERATIVE COMPUTATION OF GENERALIZED INVERSES
WITH AN APPLICATION TO CMC STEERING LAWS

INTRODUCTION

; The equation

Ax = b

will possess a solution if, and only if, b lies in the coordinate space spanned by
the columns of A, i.e., the range space R(A), and in this case every solution
can be put in the form

x = A+b + (I - A + A)Z
6

where z is some N x 1 column. That solution with z =0, denoted by x., has

the property that for all z,

MX, n < n x ii •
D - g

i.e., x^ is the minimum-norm solution. If no solution exists, then there is

some vector in R(A) which is closest to b in the least-square sense; this vector
is just x, = A+b so that for all x

lib - Ax,ii < nb - Axil
t> — • • . '

These properties establish the importance of the generalized inverse for
applications. Unfortunately, there is no truly convenient generally applicable
formula for its computation. Various elimination algorithms based upon the
defining.equation, i.e.,

AXA = A
XAX = X
(AX)* = AX
(XA)*= XA



have been devised, but these are sensitive to the preliminary computation of the
rank of A. This report describes an iterative scheme for computation of the
generalized inverse and incorporates the scheme into a FORTRAN subroutine
which may also be used for computing the inverses of nonsingular square matrices.

FORTRAN SUBROUTINE DESCRIPTION

The Fortran subroutine listed below is called by the following statement:

CALL GNVERS (YO, T, R, M, N, A, BD, AP)

where A is an M x N matrix; BD is any number not less than ̂ (AA*); and
AP, the output, is the N x M generalized inverse of A. YO, T, R are matrices
used by GNVERS and need not be defined by the user. A convenient value for
BD is

M
max v>

1 < i < M H
J=l

where

B =

The calling program must contain the following statement:

DIMENSION Y0( ) , T( ), R( )

The arguments in the dimension statement must not be less than the following
numbers: N*M, M*M, M*M, respectively. It is assumed that M ̂  N. If
M > N, the generalized inverse of A* should be computed: This stratagem is
adopted to keep the dimensions of certain intermediate matrices small
(thereby reducing the number of arithmetical operations and computation

time) and is acceptable since (A*) = (A )*

The algorithm implemented via this subroutine forms successive

iterates Yt, Y2, ... which will converge to A : The maximum number of



iterations is denoted by ITERS, and is set to 20 in the listing below. The
iterations cease when

(n) (n - 1)
y.. - y..i] u

< TOL (n = 2, 3, ... )

where TOL is set to 10~ in the listing below. If convergence does not occur
in ITERS iterations, an error statement is printed and the subroutine returns
the last iterate to the calling program.

GNVERS makes use of a matrix-multiply subroutine whose calling
statement is

CALL FMXMT (M, N, IP, A, B, AB)

which forms the M x IP product AB of the M x N matrix A and the NX IP
matrix B. A listing of this subroutine is also given.

The accuracy of the GNVERS subroutine is illustrated by the following
example. The 3x4 matrix A was defined as

A = 4.604359873-01 6.981586633-01 1.637202877-01 7.932543322-01
8.176181213-01 -5.241646385-01 9.788190850-01 5.955607116-01
3.456868410-01 -4.876741769-01 -1.229181702-01 -1.267093084-01

A careful computation using an electronic desk calculator gave the following
result:

7.030320327-01
5.203275028-01
6.275139883-01
5.241249280-01

-6.471307646-02
-2.903730234-01
8.483851012-01
1.180262294-01

while the subroutine GNVERS gave

7.03032032-01
5.20327502-01
-6.27513987-01
5.24124927-01

-6.47130762-02
-2.90373023-01
8.48385101-01
1.18026230-01

1.493286880+00
5.949098340-01
1.552037349+00
2.284458009-02

1.49328688+00
5.94909835-01
1.55203735+00
2.28445806-02



PROGRAM LISTING

The main subroutine listing is given below.

SUBROUTINE GNVERS(YO,T,R,M,N,A, BD, AP)
DIMENSION A(1),YO(1),Y1(1),T(1),R(1)

ITERS=20
TOL=1.E-07

. . MN=M*N
' MSQR=M*M

ALF=1.6/BD
DO1I=1,N
DO1 J=1,M
INDEX1=(J_1)*N+I
INDEX2=(I-1)*M+J

1 YO(INDEX1)=ALF*A(INDEX2)
DO2 L = l, ITERS
CALL FMXMT(M,N,M,A,YO,R)
DOS 1=1, MSQR

3 R(I)=-R(I)
DO4I=1,M
INDEX1=(J-1)*M+I .

4 R(INDEX1)=1.0+R(INDEX1)
DOS 1=1, MSQR

5 Y1(I)=R(I)
DO6I=1,M
INDEX1=(I-1)*M+I

6 Y1(INDEX1)=1.0+Y1(INDEX1)
CALL FMXMT(M,M,M,Y1,R,T)
DO7I=1,M
INDEX1=(I-1)*M+I

7 T(INDEX1)=1.0+T(INDEX1)
CALL FMXMT(N,M,M,YO,T,Y1)
E = 0.0
DO8I=1,MN
Y=ABSF(Y1(I)-YO(I))
IF(Y.GT.E)9,8

9 E=Y
8 CONTINUE

1F(E.LT.TOL)99,10



10 DO2I=1,MN
2 YO(I)=Y1(I)

PRINT ll.ITERS
11 FORMAT(IX, 28HGNVERS DOES NOT CONVERGE IN, 13,11H ITERATIONS)
99 CONTINUE

RETURN
END'' ' ' •', '

The FMXMT listing is

SUBROUTINE FMXMT(M,N,IP,A,B,AB)
DIMENSION A(l) ,B(1) ,AB(l)
DO1I=1,M
DO1 J=1,IP
L=(J-1)*M+J
AB(L)=0.0
DO1 K=1,N
K1=(K-1)*M+I
K2=(J-1)*N+K

1 AB(L)=AB(L)+A(K1)*B(K2)
RETURN
END

DERI VAT I ON OF THE ALGORITHM

The Schulz method for inversion of a nonsingular matrix is discussed
in Reference 1 and 2. The generalized form of this algorithm, called the
hyperpower method of degree m, is defined by

R = I - AX
n n

X = X [1 + R + R + ... + R
n + 1 n\ n n n

n = 0, 1, 2,

In Reference 1 it is shown that the hyperpower method of degree 3 is optimum
in a certain sense, and convergence bounds are given. References 3, 4, and
5 discuss the hyperpower method of degree 2 (the usual form of Schulz's
algorithm) applied to the problem of computing the generalized inverse of a
matrix A. Convergence bounds and optimal initialization values are investi-
gated in References 1 and 5. Following the techniques in Reference 4
Lemma 1 and Corollary 1 establish the hyperpower method of degree m for
generalized inversion.



Lemma 1; The sequence of matrices defined by

R - P., / Av - AXn R(A) n

X = X ( P
T , /A\ + R + R + ... + Rn+1 n\ R(A) n n n

where

(1)

n= 0,1,2,..

(2)

X = A*B (B is some nonsingular M x M matrix) ,

X = C A* (C is some nonsingular N x N matrix)
o o v o

R(A)

and

R(A*)*\ - X A|| < 1
o

(3)

(4)

(5)

(6)

converges to A as n -» <P .

Proof: Since A is the unique solution of the equations

AX = P.
R(A) (7)

and

~ PR(A*)

it sufficies to prove that

(8)

lim
n —• 03 n p.

R(A) (9)

lim

PB(A*) -V
= 0 (10)



To do this, consider the sequences of matrices

/ 2 m-l\
( P T 3 / A \ + P + P + ... + P\^ R(A) n n n /13 „ — -*^ I -1- -r-k / » \ ' f ' f

n+1 n\ R(A) n n

C = C / P / v + Q + Q + . . . + Q m

n+1 n^ R(A) n n n

where

"D — "D A A^R
n ~ R(A) - A* B

n -

Qn = PR(A*) - A*A°n •

and (n= 0, 1, 2, ... ). Then it is obvious that

X = A*B . (11)
n n v '

Moreover,

X - C A* (12)
n n v '

because if we let

Y ' = C ,A*
n+1 n+1

and note that

~ ~ - AY

since

VA* = A*]

n)



then

Y = Y I PT, / A \ + (? / » \ - AY \ + /P_ ... - AY \n R(A) ^ R(A) n/ \ R(A) a/

so that Y satisfies equation ( 2) . Since X = Y , X = Y for all n,
n o o n n

which establishes equation (12) .

Since

AX = ?„, .» AX = AX P /AN ,n R(A) n n R(A)

we have by an easy induction that
/ k-1

R = P T W A \ - AX ( P r W A \ + R + R + ... + Rn R(A) nV R(A) n n n

(k = 0, 1, 2, ...)

Setting k= m gives R = R , so that

I |PR(A) - ^n+l" S »PR(A) - n

which with equation (5) proves equation (9) . The proof of equation (10) is
analogous.

Corollary 1: Let

• \i(AA*) 2: As(AA*) 2: ... 2: \ (AA*)

denote the nonzero eigenvalues of AA* . If

then the sequence defined by

Y = a A* (14)o v '



R = I - AY
n n

Y = Yn + i ( l + R + R
n\ n n n

(15)

n= 0, 1, 2, ...

(16)

converges to A as n -* « .

Proof: Since

PR /*\AA* = AA^AA* = AA* = AA*AA+ = AA*P , .

P , . and AA* are commuting hermitian matrices with the same range

space, so that the eigenvalues of P R / . v - AY are

l-a\.(AA*) (i = 1, 2, ..., r)

0 (i = r + 1 m)

hence, by equation (13)

\]< 1 . (18)

(17)

Similarly

R(A*)
< 1

Now the process ( 2) , begun with equation ( 14) , retains the form
of equation ( 12) , so

x fe,/A\ + R
n\ R(A) n n

= x p _ / A Xn R(A)
(R + ... + R m"1

n\ n n

= C A*AA+ + X (. R + . . . + R m"1 )
n n\ n n ./

+ R + . . . + R
n\. n n

Thus, the convergence of equation (16) follows from that of equation (12)



Corollary 2: The process (18) is convergent if o> satisfies the inequality

0 < a < max M

where B =

. 1 =S i < M

M

b._. | = AA*.
1 ,

Proof: By Gershgorin' s theorem [ 2 ] ,

V --) *
M
V

2
3=1

Note that it is immaterial whether we take B as AA* or A* A since the
nonzero eigenvalues of these two matrices are the same.

APPLICATION TO REDUNDANT CMC ASSEMBLIES

The instantaneous torque output of a single -gimbal CMC is given by

*

h = a e x he = hae
X i. £

where a. is the instantaneous gimbal rate, h is the CMC momentum magnitude
(determined by the wheel speed) , and e and e are unit vectors along the

1 i

gimbal axis and in the direction of the momentum vector, respectively. Then
e is a unit vector along the instantaneous torque vector h. The torque output
of N such CMGs is then

h = h + + ... +

where at. denotes the gimbal rate of the ith CMC and e. now denotes the unit

vector in the direction of its instantaneous torque vector. This last equation
can be put in the following form:

h = Cce

10



where C is the 3 x N matrix whose columns are h e , he,
a; is the column of gimbal rates. Then, we have that

B = A*A =

Vl

i vr
h e and

so

N
J •*•

N
i. h. < Nh2

since | e.*e. | s 1 for each i and j; h is the nominal momentum of the CMGs

used.

•

If T is a commanded torque output, we wish to ensure that h = T by
C • C

choosing a; the procedure by which this choice is made is called a steering
law. One such law, which is optimum in a certain sense, is

a = C+Tc

While this steering law has exhibited satisfactory performance in a
number of simulations, a number of complicating factors must be considered
before the law can be considered for implementation. Discussion of these,
which have mainly to do with situations in which the columns e. become' i
coplanar (a hangup condition), is beyond the scope of this report.

11
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