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SUMMARY

To gain experience in simulating a large multiprocessor
complex, a deterministic throughput model of the MSFC UNIVAC 1108
has been developed. The model simulates the MSFC UNIVAC 1108 when
processing a stream of programs under the EXEC 8 operating system.

As well as determining the system throughput for a given
load, the simulator allows the interaction between the various user
programs and the executive operating algorithms to be examined in
detail. Hence, bottlenecks and hardware/software mismatches can be
identified and experimentally resolved.

The simulator input is a stream of tasks generated from
the system accounting tape and the console log. These tasks re-
presented by attributes such as priority, core and central process-
ing unit (CPU) time requirements, are used to construct an input
runstream having the same characteristics as the actual runstream.
This runstream is stored on a tape (JOBTAPE) and is used as the
driving mechanism for the simulator.

The simulation model is coded in the general purpose
simulation language, GPSS, and FORTRAN. GPSS was chosen for its
suitability to throughput-type investigations.

The milestones of each run's life cycle, as it moves
through the UNIVAC 1108/EXEC 8 (U-1108/8) system, involve input,
facility acquisition, core allocation, processor access, and finally
program generated output. These milestones are achieved via the vari-
ous EXEC 8 components: Card Read Symbiont, Coarse Scheduler, Dynamic
Allocator, Dispatcher, and the Print and/or Punch Symbionts.

Each of these modules has been implemented in the simulator
and interconnected to form a deterministic model of the overall U-1108/8
system.

An important component of the model is the load imposed upon
the system by the execution of EXECUTIVE tasks. This represents the
collection of all tasks which EXEC 8 must perform during the course of
processing a given stream of user tasks. Since neither the Accounting
Log Tape nor the THRPUT program collects sufficient data to provide
precise inputs for the simulator in this area, it was arbitrarily de-
cided to create one EXEC task for each of the user tasks within a
given runstream. The primary function of such EXEC tasks is to place
an additional load upon the CPU's and I/O subsystems within the model,
thereby delaying the execution of user tasks as in the actual system.

For each run processed by the simulator, two times are
recorded: (a) The run-entered-system-time, Te, which is the time the
run card is read by a card-reader, and (b) the termination time, Tt,
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the time at which the run completes execution. Both these times are
recorded on the system log. The run-entered-system-time may be used
as the parameter which provides the arrival pattern of runs to the
simulator. Tt is then determined for each run processed by the simu-
lator and can be compared with the times logged on the system accounting
tape.

The simulator may also be monitored at many internal points
to give such system parameters as core utilization, CPU utilization,
channel utilization, channel waiting times, etc.

The model was verified by comparing its measured performance
with that of the actual U-1108/8 system as recorded oh the accounting
tape.

Using a generalized job-mix, a series of experiments was
carried out on the simulator. These experiments were designed to
locate system bottlenecks and also to test the sensitivity of system
throughput with respect to perturbation of the various Exec 8 scheduling
algorithms. A major system bottleneck was located, and two different
solutions for its removal are identified.
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SECTION I. INTRODUCTION

To gain experience in simulating a large multiprogramming/
multiprocessor computer environment, a deterministic throughput model
of the MSFC UNIVAC 1108 system has been developed. This model simu-
lates the MSFC UNIVAC 1108 when processing a stream of runs under the
EXEC 8 operating system.

The simulator allows the interaction between the various
user programs, the executive scheduling algorithms, and the configur-
ation hardware elements to be examined in detail. Because of this
capability, algorithm and/or hardware changes may be studied and evalu-
ated with the simulator and not require actual system implementation.

The simulator input is a stream of runs sampled from actual
installation accounting data. This input-stream is defined in terms of
attributes such as run priority, number of tapes, task core requirements,
task CPU time requirements, and the number of task I/O references (see
Figure 3).

The simulation model, presently implemented on the UNIVAC 1108,
is coded in the general purpose simulation language, GPSS, and FORTRAN.

Figure 1 describes the MSFC UNIVAC 1108 hardware configuration.

A. Overall Flow of Exec 8

Figure 2 depicts the abbreviated logic flow for a run as it
moves through the UNIVAC 1108/EXEC 8 (U-1108/8) system. The milestones
of each run's life cycle involve run card-deck input, facility acquisi-
tion, core allocation, and processor utilization. These milestones are
achieved via the various EXEC 8 components: Input Symbionts, Coarse
Scheduler, Dynamic Allocator and Dispatcher, respectively. EXEC 8 also
supervises all I/O requests to and from the peripheral subsystems. Each
run arrives in the form of a punched card deck, the card images being
transferred to a run file on mass storage as the deck is input on either
the Communications Terminal Module Controller (CTMC) or Central Site
Card Reader. The runs are ordered in a run queue according to run
priority.

The run having the earliest Run Entered System Time (R.E.S.T.)
within the highest priority class of the run queue is examined for the
purpose of acquiring the necessary mass storage and tape drives which
will be required during execution. This examination is provided by the
Coarse Scheduler, assignment being made only when all such facility
requirements can be met simultaneously. If this condition cannot be
met the next run within that priority class is considered by the
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Coarse Scheduler. No run from a lower priority class can request
facilities until the higher priority class has been satisfied. When
the required facilities are assigned the run becomes eligible to
enter the active state. This active state is entered only if one of
the following criteria can be satisfied:

1) a. The active state limit (MAXOPEN)
has not been exceeded, and

b. no tasks are in the core queue.

2) The run is of demand status.

Once active, the facilities are allocated to the run and task 1
enters the core queue, where the Dynamic Allocator attempts to
assign the I-bank and D-bank core requirements. Since tasks of
multiple runs exist in the core queue concurrently, tasks are con-
sidered by the Dynamic Alloca; ;;: in order of their priority. Upon
allocation of core the task proceeds to the CPU queue. However, if
core requirements cannot be met, the task remains in the core queue
pending the release of core by the termination of an active task.
The functions of the Dynamic Allocator are illustrated in Figure 7.

The Dispatcher is the routine through which EXEC 8 accompli-
shes its time-sharing processes. The Dispatcher uses an eight-level
switch list (see Figure 8) to coordinate the activities of all the
tasks which are resident in core. This mechanism allows CPU's to be
assigned to and released from specific task execution as various
events and contingencies arise (e.g., I/O initiations).

A task will lose control of a CPU in favor of another task
at the currently lowest switch list level either upon expiration of
a set time quantum, completion of the task's CPU requirements, or by
voluntarily releasing control of a CPU while awaiting completion of
an I/O request. On completion of the I/O request the task will enter
the CPU queue at the lowest switch list level for which it is eligible.

The Dispatcher switches control according to the current
structure of the list, always yielding to a task at the currently
lowest switch list level.

The CPU time quantum has a value of 8 milliseconds for
level 1, and is doubled for each subsequent level up to a maximum of
1.024 seconds at level 8.

Batch-type runs enter the list at level 2.

1-2
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FIGURE 2. UNIVAC 1108/EXEC 8 - LOGIC FLOW
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SECTION II. SIMULATION OF THE U-1108/8 SYSTEM

The preceding section summarized the U-1108/8 system and
the remainder of the report describes how this system was modelled
in order to obtain a statistical measure of system throughput,,

In order to illustrate the level of detail of the simu-
lation it is appropriate at this point to describe the method of
synthesizing a mix of jobs which form the workload to be processed
by the simulated system,

A. The User Programs

Actual data collected from the MSFC U-1108 accounting tapes
and the corresponding console typewriter facility assignment records
are used to fabricate realistic runstream inputs to the simulation
modelo This section describes the construction of this runstream.
A computerized procedure has been developed to digest accounting
tapes and create run tables over preselected time intervals corres-
ponding to the three shifts operated at MSFC. The runstream is then
constructed by randomly sampling the run table corresponding to a
particular shift. The set of run attributes includes:

1) Priority
2) Number of input cards
3) Number of tasks
4) Input mode (on-site or remote)
5) Number of tapes
6) Demand status

The set of task attributes includes:

1) I-bank core requirements
2) D-bank core requirements
3) CPU time requirements
4) Number of I/O references

These attributes differ markedly from shift to shift due to the differ-
ent nature of the data processing performed and hence three run tables
are necessary.

The runstream information is contained in an input file to
the model and the tasks of each run are represented by records of the
file. At run "creation time" the run and task attributes are stored
in the parameters of the GPSS transaction which will represent the
task in the model.

Figure 3 describes the task parameter set.
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PARAMETER DESCRIPTION

1 Run Identification Number

2 Task Identification Number

3 Number of Tapes Required

4 Total Number of Tasks in Run

5 Run Priority

6 Demand Status:

1 =^ Demand, 0 =^ Not Demand

7 Number of Input Cards to Run

8 Run's Input Mode:

0 =^ Central Site, 1 =^ Remote Terminal

9 Task I-Bank Core Requirements

10 Task D-Bank Core Requirements

11 Number of I/O References

13,14 Task CPU Time (in milliseconds)

FIGURE 3. TASK PARAMETER SET
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B. Executive Overhead

An important component of the simulator is the load imposed
upon the system by the execution of Executive system tasks. For
convenience, this will be referred to as EXEC overhead" and represents
the collection of all tasks which EXEC 8 must perform during the course
of processing a given stream of user tasks. Since insufficient system
data is recorded to provide precise inputs to the simulation in this area
it was arbitrarily decided to create one EXEC task for each of the user
tasks within a given runstream. The CPU time required by the EXEC tasks
is a variable which may be adjusted to represent various EXEC-to-user ratios,
For the simulation work described in this report this ratio was fixed at
0.5. The primary effect of such EXEC tasks is to place an additional load
upon the CPU's and I/O channels, thereby delaying the execution of user
tasks. The core required by the Executive system consists of two reserved
blocks, one at the low address area of the I-bank region and the other
at the high address end of the D-bank section (see Section III-B).

C. Input/Output

The MSFC U-1108 configuration has six dual-channel I/O
control units as shown on the site schematic of Figure 1. These con-
trol data transmission to and from the mass storage devices (drums
and tapes).

Utilization statistics for each of these control units were
obtained from UNIVAC's THRPUT program and are input to the model. When
an I/O request is dispatched to one of these dual channel control units,
it enters a FIFO queue for that control unit; and when the request is
serviced, it is assigned to one of the two channels.

Separate control unit utilization functions are allowable
within the model for the user and the Executive I/0's, respectively.
However, the common utilization distribution shown in Figure 4 is
currently used for both user and Executive I/0's.

I/O subsystem service times (access time plus transmission
time) are also input to the model for each control unit. These service
time statistics, available from the THRPUT programs, are in the form
of an average value for each control unit.

The Dispatcher section (see Section III-C) is used to control
the mechanism which results in the I/O initiation.

Frequency of initiation for the user I/0's is determined as
follows:

II-3



20% 20% 15% 15% 15% 15%

FH-432 FH-1782 FASTRAND FASTRAND TAPE DRIVES TAPE DRIVES
(BANK1) (BANK 2) (BANK 1) (BANK 2)

PERCENTAGE OF I/O'S TO U-1108 SUBSYSTEMS

FIGURE 4. I/O DISTRIBUTION FUNCTION
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Each task has associated with it a number of I/O references
obtained from accounting tape statistics. This number of I/O initia-
tions will occur during the life of the task and are assumed to be
periodic with respect to the task's CPU time. Hence, if a task has
n I/0's and requires m milliseconds of CPU time, an I/O period
p = m/n milliseconds is computed. For the cases where p<l, p is
set to 1, since the model's basic time unit is 1 millisecond.

Frequency of initiation for Executive I/0's, however, is
handled in a different manner; at the model user's option an arrival
function may be specified and all Executive tasks will conform to this
initiation pattern. Current implementation utilizes an average EXEC
I/O initiation rate whose value was determined by experiment with the
simulator. The EXEC I/O initiation rate selected was that which made
the simulated CPU utilization figure match that of the actual system as
given by the THRPUT program.

The "number of I/O references" mentioned above is a measure
of physical I/O activity on the mass storage devices. Since, however,
the periodic frequency of the I/0's is determined by the executing
programs, a blocking factor on the physical I/0's is allowed to convert
them to program-oriented or logical I/0's.
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SECTION III. DETAILED SIMULATOR MODULES

A. Coarse Scheduler

The Coarse Scheduler is an executive function responsible
for the assignment of peripheral devices and the introduction of new
runs into the operating environment. The only peripheral devices
which the simulator is concerned with, for purposes of allocation,
are the tape drives. Figure 6 presents the logic flow for the
Coarse Scheduler. According to run type there are two paths through
the Coarse Scheduler. Those runs of demand status which enter the
run queue are allowed to enter the active state immediately if their
facilities are available. Runs of batch status must satisfy the two
conditions:

1) The Maxopen limit would not be exceeded, and

2) the core queue must be empty.

That batch run with the earliest Run Entered System Time (R.E.S.T.) in
the highest priority class is selected. If its facility requirements
can be met it enters the active state and its facilities are allocated.
If its facility requirements cannot be met, it returns to the run queue
and the run with the next earliest R.E.S.T. within the highest priority
class attempts to procure its facilities. This procedure goes on until
a run is able to satisfy'its facility requirements.

B; Dynamic Allocator

Memory is acquired on a per task basis according to R.E.S.T.
within a priority class. The Dynamic Allocator has the function of
efficiently assigning core space and maintaining a memory map. This in-
cludes the tasks of allocating available memory when requested and making
it available for reallocation when released.

Main storage on the U-1108 is configured as shown in Figure 5.
There are four banks of memory, each consisting of 65,536 words. These
banks, although subdivided into odd/even storage locations to facilitate
interleaving operations, constitute contiguous storage of instructions
(I-bank) from location 0 upward, and storage of data (D-bank) from
location 262,143 downward. Core is allocated from these extremities
toward the middle by a "collision" process. EXEC 8 operating system
routines reside in locations 0 up to 24,590 (I-bank) and from 217,111 up
to 262,143 (D-bank). The Dynamic Allocator insures orderly utilization
of the "gap" from 24,591 through 217,110.
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BANK #1 BANK #2 BANK #3 BANK #4

065,534 065,535
• •

o - •

• - •

• •

2 3
0 1

131,070 131,071
• 0

o •

* •

065°, 538 065 ',539
065,536 065,537

196,606 196,607
•

•

•

131*,074 131,075
131,072 131,073

262,142 262,143
o o

• - •

• o

196,610 196,611
196,608 196,609

I-Bank D-Bank

FIGURE 5. U-1108 STORAGE CONFIGURATION

Figure 7 shows the abbreviated logic flow for the Dynamic
Allocator,, Basically, tests are made to determine if both the I- and
D-bank requirements can be met simultaneously. If so, the requested
core is allocated, and the core map updated.

Following completion of a task on the CPU, its core is re-
leased via the Dynamic Allocator, and the core map is updated.

To facilitate precise discussion of the dynamic allocation
of memory, consider the following representation for the 262,144 words
of memory.

IE

—k-

L

•iy/m
/CFNTER''
GAP/,/

T
IB
T
DB

Tin
JJ\JO / J

t2M
DGi&ii DE

t\

H 262,143

where,

IE: I-bank requirements of resident executive.

1^: I-bank core requirements for some task.

L: Lowest assignable address for user tasks.

IGj: Unassigned core. Right contiguous to Ij. (iO)

IB: Current upper bound of I-bank.

DB; Current lower bound of D-bank.
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D.: D-bank core requirements for some task.

DG.= : Unassigned core. Left contiguous to D.. (>0)

H: Highest assignable address for user tasks.

DE: EXEC 8 variable data space and permanent data
storage.

a) IB is either coincident with or has a value less than
that of DB.

b) A center gap exists if IB<DB. This area would be
available for assignment as either I-bank or D-bank.

c) From their definitions, IB and DB are obviously
floating boundaries. . ,

The allocation/release algorithm is coded in FORTRAN and is
accessible to GPSS through the GPSS HELP block.

A search is made for the smallest IG such that I. < IG. If
such an IG cannot be found, the allocator rejects the request, sets the
appropriate flag, and returns.

The smallest DG such that D. < DG is then searched for. If
such a DG cannot be found, the allocator rejects the request, sets the
appropriate flag, and returns.

Once it is determined that the request can be satisfied, the
core is allocated to that task and the core map is updated.

C. Dispatcher

The Dispatcher is the routine through which EXEC 8 accomplishes
its time-sharing processes. It allows CPU's to be assigned to and released
from specific task execution as various events and contingencies arise
(e.g., I/0-initiations). CPU priority is computed on the basis of task
switch list level (see Figure 8).

A task will lose control of a CPU in favor of another task at
the currently lowest switch list level either upon expiration of a set
time quantum, completion of the task's CPU requirements, or by voluntarily
releasing control while awaiting completion of an I/O request.

The CPU time quantum has a value of 8 milliseconds for level 1,
and is doubled for each subsequent level up to a maximum of 1.024 seconds
at level 8.
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Batch-type runs enter the list at level 2.

The Dispatcher module in the simulator performs a triple
function in determining:

1) which CPU will be allocated to a particular task,

2) which of three events will terminate the task's current
tenure on the CPU, and

3) the duration of the time slice.

The three events that can terminate a time slice are:

(a) completion of a time quantum,

(b) initiation of an I/O request by the task, or

(c) completion of the task's CPU time requirements.

If (a) is the case, the task will utilize the assigned CPU for
the appropriate time quantum, and then reenter the CPU queue at a switch
list level one greater than before (up to a maximum level of 8). In the
case of event (b) the task will remain in execution until the I/O initiation
and then enter a statistically determined I/O subsystem queue. Upon access
to the subsystem the task utilizes it for a statistically determined
amount of service time, and then reenters the CPU queue at the lowest
switch list level for which it is eligible. In the case of event (c), the
task will rui-lut its r; ' •v.ng time on the selected CPU, release the core
associated with it, and Q^ -ch the next task of the run to the core
queue. When the last task of a run completes, the facilities for that run
are released and the run terminates.

The Dispatcher logic flow is illustrated in Figure 9.
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YES
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LEVEL

1

2

3

4

5

6

7

8

TIME QUANTUM
(MILLISECONDS)

8

16

32

64

128

256

512

1024

FIGURES DISPATCHER SWITCH LIST
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SECTION IV. MODEL VERIFICATION

A. Initial Verification

In order to verify the simulator it was considered necessary
to compare simulation results with known actual results.

Hence, the accounting tape associated with a specific first
shift period was used to produce a jobtape as input to the model.
This tape consisted of approximately 150 runs and represented almost
two hours of system elapsed time.

For the purpose of verifying the simulator throughput
performance, the following method is used.

A value, Vr, is maintained for each run, r, which
has entered the system (i.e., had its run card read).
If the run has not terminated,

Vr = (Current Time) - (R.E.S.T.)

If the run has terminated,

Vr = (Run Termination Time ) - (R.E.S.T.)

The quantity,

/NO.RSYS(NOESYS \
£ Vr 1/NOESYS,
r-1 /

where NOESYS is the number of runs which have entered the system, is
computed and stored at the end of every simulated minute.

Figure 10 shows the system throughput performance as measured
for the verification of the simulator.

B. Further Verification

Because of certain assumptions which have been made with regard
to such statistics areas as I/O blocking factor, I/O initiation pattern
of EXEC tasks, task I/O subsystem distribution, and tape mount time, a
more controlled verification is desired. Currently in progress is an
attempt at this verification. A benchmark runstream representative of an
actual MSFC U-1108/8 runstream is being constructed. This synthetic
runstream will have the same statistical qualities as the actual run-
stream selected. (On a run basis: the I/O subsystem distribution for
physical I/O's, number of tape drives, and number of lines output; and
on a task basis: I-bank/D-bank core requirements, number of physical
I/O's, and CPU time requirements.) Using this synthetic runstream, two
experiments will be performed on the captive MSFC U-1108/8:
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1. Normal System

2. Degraded System (one FASTRAND controller will be disabled)

In each case a simulator jobtape will be constructed from the
system accounting tape statistics accumulated during the experiment and
the experiment simulated. Successful duplication of results will then
constitute the sought after verification.
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SECTION V. SIMULATOR APPLICATIONS

A. Introduction

The simulator has been used to analyze the performance of the
MSFC UNIVAC 1108. This was done by performing a series of tests which
(a) systematically perturbed each part of the Executive System whose func-
tion is the allocation of the various 1108 resources, and (b) varied the
existing hardware configuration. Resource allocation is performed by
three separate parts of the Executive System, viz., the Coarse Scheduler,
the Dynamic Allocator and the Dispatcher which are responsible for the
allocation of tapes, core and CPU time, respectively.

The results of tests performed on;the functions of the Coarse
Scheduler and Dynamic Allocator pointed to the inordinately long delays
being encountered by I/O requests to the FASTRAND drums as the major
factor limiting system throughput. Hence, another series of tests was
initiated which investigated the effect of (a) increasing the number of
FASTRAND dual channel controllers from two to three, and (b) replacing
the FASTRAND drums by 8440 type disks while maintaining the same volume
of mass storage. This set of experiments showed that either of the
above strategies would relieve the I/O channel bottleneck. In order to
investigate the sensitivity of the system throughput to perturbation of
the Dispatcher algorithm, all experiments with .CPU time slicing were
carried out on a system having three FASTRAND dual-channel controllers
and whose core allocation was optimized by compaction. Selected experi-
ments were re-run on a third-shift job mix.

The complete set of experiments performed is shown in Table 1.

Experiments

Shift

1
1
1
1
1
1
1
1
1
1
1
1

No.

1
2
3
4
5
6
7
8
9
10
11
12

Description

Baseline Configuration
Zero Tape-Mount Time
Tapes Mounted Before Run Opened
MAXOPEN = 20
Assiging Core Nearest Edge
Flip-Flop Core Assignment Algorithm
Core Compaction
Core Compaction with MAXOPEN = 20
Re -Entrant FORTRAN Compiler
Three FASTRAND Controllers
Two 8440 Disk Controllers
Three 8440 Disk Controllers

Results
Summary

Table

2
3
4
5
6
7
8
9
10
11
12
13

Figure

12
12
12
12
13
13
13
13
13
14
14
14

Table 1. Experiments Summary
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Experiment

Shift

1

1

1

1

1

1

1

1

3
3
3
3

No.

13

14

15

16

17

18

19

20

21
22
23
24

Description

Core Compaction and Three FASTRAND
Controllers

Core Compaction, Three FASTRAND
Controllers and MAXOPEN = 20

Core Compaction and Two 8440 Disk
Controllers

Core Compaction and Three 8440 Disk
Controllers

Core Compaction, Three FASTRAND Con-
trollers and Double-Time Quantum

Core Compaction, Three FASTRAND Con-
trollers and Half-Time Quantum

Core Compaction, Three FASTRAND Con-
trollers and Time Quantum Termination
on an I/O Operation

Core Compaction, Three FASTRAND Con-
trollers and CPU Priority as a Func-
tion of I/O Frequency

Baseline Configuration
Zero Tape-Mount Time
Core Compaction
Three FASTRAND Controllers

Results
Summary

Table

14

15

16

17

18

19

20

21

22
23
24
25

Figure

15

15

15

15

16

16

16

16

17
17
17
17

Table 1 (cont.). Experiments Summary

The results of all the experiments are summarized in Tables
2 through 25 and Figures 11 through 17 which show the amounts of total
system time spent by the work load components queueing for the use of
system resources (tapes, core, CPU's, and I/O channels) together with
the percentage utilization of core and CPU's. The net effect on system
throughput is represented by the change in total elapsed time taken by
the system to process the fixed work load. Experiment #1 represents
the 1108 baseline configuration as verified in Figure 10. The results
of the baseline performance are given in each of Figures 12 through 16
for ease of comparison with all other simulator predictions.

All experiments were performed using a common job mix for
each shift. The first shift mix consisted of 150 runs selected at
random from a total of approximately 1,000 runs which had been extracted
from five different accounting tapes produced over a five-day period.
The third shift mix was made up of 60 runs randomly selected from a
total of approximately 800 runs taken from five accounting tapes which
had been recorded over a five-day period.

The run arrival rate was determined by the MAXOPEN parameter,
in that the total work load was entered into the simulated run queue and
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runs were extracted from there by the system under the constraint that
the MAXOPEN limit (held constant at 10) was not exceeded.

The elapsed time given in Tables 2 through 25 refers to the
time which elapses between the total work load entering the simulated
run queue and the last run terminating.
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Results Summary for Experiment # ^

BASELINE CONFIGURATION - FIRST SHIFT

Total Elapsed Time (min:sec)

Time in Tape Mount Queue (sec)

Time in Core Queue (sec)

Time in CPU Queue (sec)

Time in Channel Queues (sec)

CPU Utilization (7o)

Core Utilization (78)

100:54

3995

7896

1382

30,049

52.76

75.00

Table 2 - Results Summary For Experiment #1

Results Summary for Experiment # 2

ZERO TAPE MOUNT TIME - FIRST SHIFT

Total Elapsed Time (minrsec)

Time in Tape Mount Queue (sec)

Time in Core Queue (sec)

Time in CPU Queue (sec)

Time in Channel Queues (sec)

CPU Utilization (%)

Core Utilization (%)

101:44

0

8729

1774

35,526

52.50

77.13

Table 3 - Results Summary for Experiment #2
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Results Summary for Experiment # 3

TAPES MOUNTED BEFORE RUN OPENED - FIRST SHIFT

Total Elapsed Time (min:sec)

Time in Tape Mount Queue (sec)

Time in Core Queue (sec)

Time in CPU Queue (sec)

Time in Channel Queues (sec)

CPU Utilization (%)

Core Utilization (%)

100.57

6,420

8903

1323

33,344

53.01

76.63

Table 4 - Results Summary For Experiment #3

Results Summary for Experiment # 4

MAXOPEN EQUALS 20 - FIRST SHIFT

Total Elapsed Time (min:sec)

Time in Tape Mount Queue (sec)

Time in Core Queue (sec)

Time in CPU Queue (sec)

Time in Channel Queues (sec)

CPU Utilization (%)

Core Utilization (%)

98.56

6055

13,059

1490

33,501

53.83

78.30

Table 5 - Results Summary for Experiment #4
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Results Summary for Experiment # 5

ASSIGNING CORE NEAREST EDGE - FIRST SHIFT

Total Elapsed Time (rain:sec)

Time in Tape Mount Queue (sec)

Time in Core Queue (sec)

Time in CPU Queue (sec)

Time in Channel Queues (sec)

CPU Utilization (%)

Core Utilization (%)

100:03

3482

7804

1459

34,849

53,36

77.33

Table 6 - Results Summary For Experiment #5

Results Summary for Experiment # 6

FLIP-FLOP CORE ASSIGNMENT ALGORITHM - FIRST SHIFT

Total Elapsed Time (minrsec)

Time in Tape Mount Queue (sec)

Time in Core Queue (sec)

Time in CPU Queue (sec)

Time in Channel Queues (sec)1"

CPU Utilization (%)

Core Utilization (%)

98:10

3240

7657

1588

40,500

54.30

82.12

Table 7 - Results Summary for Experiment #6
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Results Summary for Experiment # 7

CORE COMPACTION - FIRST SHIFT

Total Elapsed Time (minisec)

Time in Tape Mount Queue (sec)

Time in Core Queue (sec)

Time in CPU Queue (sec)

Time in Channel Queues (sec)

CPU Utilization (%)

Core Utilization

96.51

2731

6102

1877

49,200

54.97

87.86

Table 8 - Results Summary For Experiment #7

Results Summary for Experiment #8

CORE COMPACTION AND MAXOPEN EQUALS 20 - FIRST SHIFT

Total Elapsed Time (min:sec)

Time in Tape Mount Queue (sec)

Time in Core Queue (sec)

Time in CPU Queue (sec)

Time in Channel Queues (sec)

CPU Utilization (%)

Core Utilization (%)

96:7

7036

10726

1881

53,761

55.47

90.79

Table 9 -Results Summary for Experiment #8
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Results Summary for Experiment # 9

RE-ENTRANT FORTRAN COMPILER - FIRST SHIFT

Total .Elapsed Time (min:sec)

Time in Tape Mount Queue, (sec)

Time in Core Queue (sec)

Time in CPU Queue (sec)

Time in Channel Queues (sec)

CPU Utilization (%)

Core Utilization

104:00

3931

10,421

1388

29,713

51.24

74.08

Table 10- Results Summary For Experiment #9

Results Summary for Experiment # 10

THREE FASTRAND CONTROLLERS - FIRST SHIFT

Total Elapsed Time (min:sec)

Time in Tape Mount Queue (sec)

Time in Core Queue (sec)

Time in CPU Queue (sec)

Time in Channel Queues (sec)

CPU Utilization (%) :

Core Utilization (70)

81:55

3981

6586

2488

13,893

65.03

77.62

Table n- Results Summary for Experiment #10
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Results Summary for Experiment #11

TWO 8440 DISK CONTROLLERS - 'FIRST SHIFT

Total Elapsed Time (min:sec)

Time.in Tape Mount Queue (sec)

Time in Core Queue (sec)

Time in CPU Queue (sec)

Time in Channel Queues (sec)

CPU Utilization (%)

Core Utilization (%)

80:37

4444

6530

2530

.9535

66.56

70.45

Table 12- Results Summary For Experiment : #11

Results Summary for Experiment # 12

THREE 8440 DISK CONTROLLERS - FIRST SHIFT

Total Elapsed Time (minrsec)

Time in Tape Mount Queue (sec)

Time in Core Queue (sec)

Time in CPU Queue (sec)

Time in Channel Queues (sec)

CPU Utilisation (%)

Core Utilization (%)

73:52

4560

6300

3842

4688

72.48

73.10

Table 13- Results Summary for Experiment #12
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Results Summary for "Experiment #13

CORE COMPACTION AND THREE FASTRAND CONTROLLERS - FIRST SHIFT

Total Elapsed Time (min:sec)

Time in Tape Mount Queue (sec)

Time in Core Queue (sec)

Time in CPU Queue (sec)

Time in Channel Queues (sec)

CPU Utilization (%)

Core Utilization (%)

76: 22

3588

4011

3734

20,652

70.00

86.86

Table 14- Results Summary For Experiment #13

Results Summary for Experiment #14

COMPACTION, THREE FASTRAND CONTROLLERS AND MAXOPEN
EQUALS 20 - FIRST SHIFT

Total Elapsed Time (min:sec)

Time in Tape Mount Queue (sec)

Time in Core Queue (sec)

Time in CPU Queue (sec)

Time in Channel Queues (sec)

CPU Utilization (%)

Core Utilization (%)

74:17

10,633

7043

4966

21,768

71.98

90.19

Table 15- Results Summary for Experiment #14
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Results Summary for Experiment # 15

CORE COMPACTION AND TWO 8440 DISK CONTROLLERS - FIRST SHIFT

Total Elapsed Time (min:sec)

Time in Tape Mount Queue (sec)

Time in Core Queue (sec)

Time in CPU Queue (sec)

Time in Channel Queues (sec) .

CPU Utilization (%)

Core Utilization (%)

69:36

3783

4119

4727

16,422

76.71

85.81

Table 16- Results Summary For Experiment #15

Results Summary for Experiment # 16

CORE COMPACTION AND THREE 8440 DISK CONTROLLERS - FIRST SHIFT

Total Elapsed Time (minrsec)

Time in Tape Mount Queue (sec)

Time in Core Queue (sec)

Time in CPU Queue (sec)

Time in Channel Queues (sec)

CPU Utilization (%)

Core Utilization (%)

65:00

4494

3631

6066

7338

82.31

83.94

Table 17- Results Summary for Experiment
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Results Summary for Experiment # 17

CORE COMPACTION, THREE FASTRAND CONTROLLERS AND DOUBLE TIME
QUANTUM - FIRST SHIFT

Total Elapsed Time (min:sec)

Time in Tape Mount Queue (sec)

Time in Core Queue (sec)

Time in CPU Queue (sec)

Time in Channel Queues (sec)

CPU Utilization (%)

Core Utilization (7.)

76:56

4223

3799

2590

19,496

69,99

85.96

Table 18- Results Summary For Experiment #17

Results Summary for Experiment # 18

CORE COMPACTION, THREE FASTRAND CONTROLLERS AND HALF TIME
QUANTUM - FIRST SHIFT

Total Elapsed Time (min:sec)

Time in Tape Mount Queue (sec)

Time in Core Queue (sec)

Time in CPU Queue (sec)

Time in Channel Queues (sec)

CPU Utilization (%)

Core Utilization (7.)

75.59

3444

4055

2906

19,753

70.46

87.04

Table 19- Results Summary for Experiment #18
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Results Summary for Experiment # 19

CORE COMPACTION, THREE FASTRAND CONTROLLERS AND TIME QUANTUM
TERMINATING ON AN I/O OPERATION - FIRST SHIFT

Total Elapsed Time (min:sec)

Time in Tape Mount Queue (sec)

Time in Core Queue (sec)

Time in CPU Queue (sec)

Time in Channel Queues (sec)

CPU Utilization (70)

Core Utilization

76:39

3800

4239

5108

21,718

69.82

86.18

Table 20 - Results Summary For Experiment #19

Results Summary for Experiment #20 •

CORE COMPACTION, THREE FASTRAND CONTROLLERS AND CPU PRIORITY AS
A FUNCTION OF I/O FREQUENCY - FIRST SHIFT

Total Elapsed Time (min:sec)

Time in Tape Mount Queue (sec)

Time in Core Queue (sec)

Time in CPU Queue (sec)

Time in Channel Queues (sec)

CPU Utilization (%)

Core Utilization (%)

75:46

3588

3875

5881

23,210

70.45

86.60

Table 21 - Results Summary for Experiment #20
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Results Summary for Experiment # 21

BASELINE CONFIGURATION - THIRD SHIFT

Total Elapsed Time (minrsec)

Time in Tape Mount Queue (sec)

Time in Core Queue (sec)

Time in CPU Queue (sec)

Time in Channel Queues (sec)

CPU Utilization (%)

Core Utilization (%)

125:40

2413

7464

1119

29,471

50.95

70.48

Table 22 - Results Summary For Experiment #21

Results Summary for Experiment .# 22

ZERO TAPE MOUNT TIME - THIRD SHIFT

Total Elapsed Time (min:sec)

Time in Tape Mount Queue (sec)

Time in Core Queue (sec)

Time in CPU Queue (sec)

Time in Channel Queues (sec)

CPU Utilization (%)

Core Utilization (%)

127:9

0

9689

959

28,628

50.39

69.54

Table 23 - Results Summary for Experiment #22
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Results Summary for Experiment # 23

CORE COMPACTION - THIRD SHIFT

Total Elapsed Time (rain:sec)

Time in Tape Mount Queue (sec)

Time in Core Queue (sec)

Time in CPU Queue (sec)

Time in Channel Queues (sec)

CPU Utilization (%)

Core Utilization (%)

121:9

1963

5015

1615

39,620

53.00

77.64

Table 24- Results Summary For Experiment #23

Results Summary for Experiment# 24

THREE FASTRAND CONTROLLERS - THIRD SHIFT

Total Elapsed Time (min:sec)

Time in Tape Mount Queue (sec)

Time in Core Queue (sec)

Time in CPU Queue (sec)

Time in Channel Queues (sec)

CPU Utilization (%)

Core Utilization

109:30

2,827

9532

3028

9264

58.46

69.41

Table 25- Results Summary for Experiment #24
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TAPE MOUNT QUEUE TIME

CORE QUEUE TIME

CPU QUEUE TIME

I/O CHANNEL QUEUE TIME

FIGURE 11. KEY TO FIGURES 12-17
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ELAPSED
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TOTAL QUEUE
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A-BASELINE C-TAPES MOUNTED BEFORE RUN OPENED

B-ZERO TAPE MOUNT TIME D-MAX OPEN = 20

FIGURE 12. TAPE AND SYSTEM RELATED EXPERIMENTS

V-17



ELAPSED
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TO BASELINE

-5

80,000

60,000

TOTAL QUEUE
TIME (SEC)

40,000

20,000

A - BASELINE
B - ASSIGNING CORE NEAREST EDGE
C - FLIP-FLOP CORE ASSIGNMENT ALGORITHM

D - CORE COMPACTION
E - CORE COMPACTION WITH MAX OPEN = 20
F - RE-ENTRANT FORTRAN COMPILER

FIGURE 13. CORE RELATED EXPERIMENTS
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ELAPSED
TIME RELATIVE

TO BASELINE

TOTALJJUEUE
TIMES (SEC)

60,000-

40,000-

20,000

A - BASELINE

B-3 FR CONTROLLERS

C - 2,8440 DISK CONTROLLERS

D - 3,8440 DISK CONTROLLERS

FIGURE 14. I/O RELATED EXPERIMENTS

V-19



ELAPSED TIME
RELATIVE TO
BASELINE (%)
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40,000

TOTAL QUEUE
TIMES (SEC)

20,000

A - BASELINE
B - CORE COMPACTION AND 3 FR CONTROLLERS
C - CORE COMPACTION, 3 FR CONTROLLERS AND MAX OPEN
D - CORE COMPACTION AND 2,8440 DISK CONTROLLERS
E - CORE COMPACTION AND 3,8440 DISK CONTROLLERS

= 20

FIGURE 15. THROUGHPUT MAXIMIZATION EXPERIMENTS
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TOTAL QUEUE
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A - BASELINE
B - CORE COMPACTION WITH 3 FR CONTROLLERS
C - CORE COMPACTION, 3 FR CONTROLLERS AND DOUBLE TIME QUANTUM
D - CORE COMPACTION, 3 FR CONTROLLERS AND HALF TIME QUANTUM '
E - CORE COMPACTION, 3 FR CONTROLLERS AND TIME QUANTUM TERMINATING .ON I/O
F - CORE COMPACTION, 3 FR CONTROLLERS AND CPU PRIORITY AS FUNCTION OF I/O FREQ.

FIGURE 16, CPU TIME QUANTUM SENSITIVITY EXPERIMENTS
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D - 3 FR CONTROLLERS

FIGURE 17. THIRD SHIFT EXPERIMENTS
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B. Discussion of Results

TAPE AND SYSTEM REIATED EXPERIMENTS

Experiment #1; Baseline Configuration - First Shift (Ref: Table 2
and Figure 12) . "

The total queueing time in the baseline was 43,321 sec;
this compares to a total CPU time of 9,582 sec.

Experiment #2; Zero Tape Mount Time (Ref: Table 3 and Figure 12)

This experiment simulated the ultimate in efficiency in
mounting tapes, viz., zero time spent in the actual mounting procedure.
It can be seen from Figure 12 that although the time spent in the tape
mount queue was eliminated, the overall processing time increased because
.of the limiting effect of the increased time spent in the channel queues.

r-

Experiment #3; Tapes Mounted Before Run Opened (Ref: Table 4 and
Figure 12)

In the operation of the baseline EXEC 8 .operating system, when
a run is opened it contributes to the MAXOPEN count. However, if such
a run has a requirement for one or more tape drives, time is required
to locate and mount the necessary tapes. It can be argued that in such -
a situation the total system is not being fully utilized because until
a run has its tapes mounted it cannot vie for other system resources
such as core and CPU time.

The above experiment simulates the effect of premounting a run's
tapes before the run is opened. In this case when a run enters the system
by virtue of satisfying the MAXOPEN criterion, it can immediately become
a candidate for core allocation. This procedure virtually eliminates the
effect of the time spent waiting in the tape mount queue since this activity
occurs in parallel with the processing of core-resident tasks under condi-
tions of a fully loaded system with respect to the MAXOPEN criterion.

Although core and CPU utilization increase'd-marginally, throughput
was almost unaffected due to an increase in I/O channel queue time.

Experiment #4; MAXOPEN = 20 (Ref: Table 5 and Figure 12)

The MAXOPEN limit was raised from 10 to 20, reducing the total
elapsed time by almost 2 percent. The degree of improvement was limited,
however, by an increase in both the core and I/O channel queue times. .
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CORE RELATED EXPERIMENTS

Experiment #5; Assigning Core Nearest Edge (Ref: Table 6 and Figure 13)

In this experiment the "best fit" algorithm normally used for
placing a task in core is replaced by an algorithm which attempts to keep
the I-bank and D-bank portions of the task separated as much as possible.
A task's I-bank is placed in the core gap with smallest beginning address
which is large enough to contain it; task D-bank is placed in the appropri-
ate gap with largest beginning address. This algorithm attempts to preserve
a large center gap so that a task having a large core requirement can be
quickly accommodated.

Only a marginal improvement in throughput was noted, again
accompanied by an increase in I/O channel queue time.

Experiment #6; Flip-Flop Core Assignment Algorithm (Ref: Table 7 and
Figure 13)

From the baseline core allocation algorithm described in Section
III.B., it can be seen that I-bank is always allocated below and D-bank
always above the center gap. This experiment investigates the effect of
modifying this algorithm such that the only requirement is that I- and
D-bank be on opposite sides of the center gap. This results in a signifi-
cant increase in core utilization, but the increase in throughput is less
than 3 percent, again due mainly to the increase in I/O channel queueing
time.

Experiment #7; Core Compaction (Ref: Table 8 and Figure 13)

In a multiprogramming environment unused core is typically
fragmented into several separate blocks or gaps. This fragmentation can
be substantially reduced by compacting core; that is, relocating tasks so
as to reduce the number of blocks into which unused core is divided. In
this experiment, the optimum core compaction algorithm is assumed; when a
core request is made, those tasks residing in core are relocated so that
all unused core is contained in one gap. This allows utilization of the
unused fragments which occur when any of the above algorithms are employed.
The overall effect is an increased throughput of over 4 percent owing to an
increase in core utilization from 75 percent in the baseline configuration
to 87.86 percent. However, the increased user activity causes more rapid
requests for I/O thereby creating a large increase in I/O channel queueing
times„

Experiment #8; Core Compaction and MAXOPEN = 20 (Ref: Table 9 and
Figure 13)

This experiment achieves a core utilization of 90.79 percentm
but an increase in channel queueing time of almost 80 percent over the
baseline figure restricts the net reduction in processing time to less
than 5 percent.
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Experiment #9: Re-entrant Fortran Compiler (Ref: Table 10 and Figure 13)

The effect of a re-entrant Fortran compiler was simulated by
allowing any concurrent Fortran compile tasks to execute from a common
16.38K I-bank. No improvement in throughput was noted. However, core
utilization decreased suggesting that the baseline core allocation
algorithm with a floating center gap was not compatible with the re-
entrant compiler,, Further investigation is needed in this area.

I/O RELATED EXPERIMENTS

From the results discussed so far, it is obvious that a bottle-
neck exists on the I/O channels» Study of the individual channel queuing
statistics points to the Fastrand subsystems as the location where the
longest queue times are experienced. The following set of experiments
describes the effects of increasing the number of Fastrand dual controllers
from two to three and also of.replacing all Fastrand by a type 8440 disk
system.

An I/O service time of 70 msec, derived from the. Univac THRPUT
program, was assumed for all Fastrand channels. However, since no such,
figure was available for the 8440 disks the following comparative analysis
was performed and an estimated figure of 45 msec arrived at.

i Table 26 compares some of the operating parameters of the
Fastrand drum and 8440 disk.

Positioning Time
Rotational latency
Word transfer rate
Average service time

Fastrand

57 m.sec
35 m.sec
26,283 per sec
70 m.sec

8440 Disk

35 m.sec
12o5 m.sec
138,888 per sec

?

Table 26. . Fastrand and 8440 Disk Operating Parameters

The disk is assumed to operate in a manner similar to Fastrand,
in that there is a lookahead feature which selects from a queue the request
which will cause minimum head movement. However, once the head is in
position there is a delay known as rotational latency which is experienced
while waiting for the desired record to come under the read or write head.
The average value of this delay is given by the time required for the
device to rotate one-haIf of one revolution.

The average service time Tg is given by the sum of the position-
ing time I-, the latency time TL and the data transfer time TD :
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i.e. Ts = Tp+ TL+ TD

hence, Tp = Tg - TL - TD

For the Fastrand drum

Tp = 70 - 35-10

= 25 tn.sec

assuming an average record size of 262 words which would require
a data transfer time of 10 m.sec. This average positioning time of 25 m.sec
is less than the figure of 57 m.sec quoted in Table 25 and is due to look-
ahead being applied to the Fastrand request queue which results in minimum
head movement„

The 45 m.sec service time derived for the 8440 disk consists of
a 262 word transfer time of 109 m.sec, a latency of 12.5 m.sec, and a
positioning time of 30.6 m.sec. This positioning time is only marginally
faster than the figure of 35 rn.sec given in Table 25; however, it is
thought to be reasonable because the disks, being faster than the Fastrand
drums, will have smaller queue lengths associated with them which will lead
to reduced effectiveness of the lookahead algorithm.

Experiment #10; Three Fastrand Controllers

Experiment #11; Two 8440 Disk Controllers

Experiment #12; Three 8440 Disk Controllers

Ref: Tables 11, 12, 13 and Figure 14

These experiments resulted in reduced processing times of 18.8%,
20.1% and 26.8% respectively. All are typified by increased CPU utiliza-
tion due to the reduction in I/O channel queue times. The greatest improve-
ment in throughput is obtained when three 8440 disk controllers are employed.
It is of interest to note from Figure 14 that in this case all queues are
approximately equal, i.e. the queueing delays are equally distributed through-
out the system. Such a balanced system, having no significant bottlenecks,
uses its resources most effectively; hence its throughput is near optimum
for the given set of operating conditions, e.g. a less than optimal core
allocation algorithm.
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THROUGHPUT MAXIMIZATION EXPERIMENTS

Experiment #13; Core Compaction and Three Fastrand Controllers

Experiment #14; Core Compaction, Three Fastrand Controllers and
MAXOPEN = 20

Experiment #15; Core Compaction arid Two 8440 Disk Controllers

Experiment #16; Core Compaction and Three 8440 Disk Controllers

Ref: Tables 14, 15, 16, 17 and Figure 15

This set of experiments applied those changes to the system
which previous experiments had'indicated were most effective in reducing
the overall processing time for the given jobmix. The most effective
changes were related to an additional Fastrand controller, replacement of
Fastrand by an 8440 disk system, core compaction, and an increase in
MAXOPEN.

These experiments resulted in reduced processing times of 24.3%,
26.4%, 31.0% and 35.6% due to the increase in core and'CPU utilization over
the previous set of tests. Figure 15 shows that for the first three experiments
of the above set the I/O channel queueing time has again increased and has
disturbed the balance achieved in Experiment #12. However, this balance was
re-established within the simulator by the addition of another disk controller.

CPU TIME QUANTUM SENSITIVITY EXPERIMENTS

This set of experiments was designed to study the effect of vary-
ing the CPU scheduling in an environment of a reduced I/O channel 'bottleneck
and an optimum core allocation algorithm. In addition to the original system
baseline configuration, the results of Experiment #13: Core Compaction and
Three Fastrand Controllers, is included in Figure 16 for ease of comparison.

Experiment #17; Core Compaction, Three'Fastrand Controllers and Double
Time Quantum (Ref: Table 18 and Figure 16)

In this experiment, the basic CPU time quantum of 8 m.sec was
doubled.

No significant effect was noted,

Experiment #18; Core Compaction, Three Fastrand Controllers and Half-
Time Quantum (Ref: table 19 and Figure 16)

In this experiment, the basic CPU time quantum of 8 m.sec was
halved.

No significant effect was noted.
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Experiment #19; Core Compaction, Three Fastrand Controllers and
Time Quantum Terminating on an I/O Operation
(Ref: Table 20 and Figure 16)

The effect of allowing a task to hold a CPU until it requested
an I/O operation was studied in this experiment. Run priority was used in
place of the switch list level priority of the previous two tests.

No significant effect was noted.

Experiment #20; Core Compaction, Three Fastrand Controllers and
CPU Priority as a Function of I/O Frequency (Ref: Table 21
and Figure 16)

In this experiment high CPU priority was given to those tasks
having a large amount of I/O activity.

No significant effect was noted.

CONCLUSION ON CPU TIME QUANTUM SENSITIVITY TESTS

It is to be concluded from this set of experiments that for the
system configuration and job mix considered, the CPU queue is the least
significant (see Figure 16) r.nd hence no advantage can be gained from
using the CPUs more effi '.•. "'ly.

THIRD SHIFT EXPERIMENTS

A selected set of experiments was performed on the third shift
job mix. Their results are discussed below and compared with the correspond-
ing first shift tests.

Experiment #21; Baseline Configuration - Third Shift (Ref: Table 22 and
Figure 17)

The total queueing time was 40,467 sec., and the total CPU time
11,525 sec. These figures compare to 43,321 sec and 9,582 sec. respectively
for the first shift baseline.

Experiment #22; Zero Tape Mount Time (Ref: Table 23 and Figure 17)

Although the tape mount queue time was eliminated no reduction
in overall processing time was observed, due largely to the increase in
core queue time,

Experiment #23; Core Compaction (Ref: Table 24 and Figure 17)

In this case the overall effect is an increase in throughput of
3.6% due mainly to CPU and core utilization figures of 53.00% and 77.64%
respectively compared to the respective baseline figures of 50.95% and
70.48%. As was the case when core compaction was applied to the first
shift mix, the increased user activity causes more rapid requests for I/O
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thereby creating an increase in I/O channel queueing times.

Experiment #24: Three Fastrand Controllers (Ref: Table 25 and Figure 17)

This experiment resulted in a significant decrease in I/O
queueing times, and an increase in CPU utilization as was observed with the
first shift job mix. In this case the throughput was increased by 12.9%
compared with 18.8% for the first shift job mix. This difference may well
be attributable to the fact that the third shift jobmix consisted of a
smaller number of longer running jobs compared to the first shift mix, and
hence is more likely to exhibit a larger statistical variation than the
first shift mix.
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SECTION VI. CONCLUSIONS

It has proved possible to implement a deterministic throughput
simulator of the MSFC U-1108/8 system whose System Throughput Characteristic
closely matches that of the actual system. The simulation to real-time
ratio was approximately 4:1 for the tests carried out.

Based on an initial verification, it is concluded that this model
is of sufficient accuracy and efficiency to be of use in determining the
effect, on throughput, of varying (a) the 1108 hardware configuration and
(b) the EXEC 8 scheduling algorithms.

A set of experiments has been performed in which both hardware
and executive changes were simulated. The results from these experiments
are the basis for the following recommendations for changes in the present
MSFC UNIVAC 1108 system:

!„ Add another dual channel controller and reconfigure the
FASTRAND subsystems into three banks of four units instead of
the current configuration of two banks of six units,

2. Introduce an executive algorithm for compacting core,

3. Increase the value of the MAXOPEN parameter.

Other combinations of changes showed slightly greater improvement in system
throughput but these three are the most cost-effective due to the minimal
hardware changes. Simulator results show that these changes would increase
system throughput by more than 20%, with most of the increase coming from
recommendation 1, Recommendations 2. and 3. alone would not greatly enhance
system performance and would be effective only if the FASTRAND bottleneck
is first removed by recommendation 1.

It is further concluded that the techniques used in the implementa-
tion of this simulator may also be applied to other systems, and such models
may be used as design tools in determining the optimum hardware/operating
system configurations for future computing systems.
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