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ABSTRACT

This research considers the theoretical and applied aspects of successive
approximation techniques for the determination of controls for nonlinear dynamical
systems. Particular emphasis is placed upon the methods of contraction mappings
and modified contraction mappings. It is shown that application of the Pontryagin
principle to the optimal nonlinear regulator problem results in necessary con-
ditions for optimality in the form of a two point boundary value problem (TPBVP).
The TPBVP is represented by an operator equation and functional analytic results
on the iterative solution of operator equations are applied. The general con-
vergence theorems are translated and applied to those operators arising from
the optimal regulation of nonlinear systems. It is shown that simply structured
matrices and similarity transformations may be used to facilitate the calculation
of the matrix Green's functions and the evaluation of the convergence criteria.

A controllability theory based on the integral representation of TPBVP's, the
implicit function theorem, and contraction mappings is developed for nonlinear
dynamical systems. Contraction mappings is theoretically and practically applied
to a nonlinear control problem with bounded input control, and the Lipschitz

norm is used to prove convergence for the nondifferentiable operator. A dynamic
model representing community drug usage is developed and the contraction mappings
‘method is used to study the optimal regulation of the nonlinear system.
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CHAPTER I

INTRODUCTION

1.1. Background

Optimal control theory has ekperienced an increasing growth of interest in
the past two decades. ‘Initially motivated by the aerospace effort, optimal control
theory is now involved in many aspects of general systems engineering. Applica-
tions range from chemical process control to attempts at managerial and economic'
planning. ‘ |

One of the most important and most widely treated problems to date in
optimai control theory is the so-called "Linéar Regulator Problem". Histofically,
this problem arose in Wiener's work concerning stationary time series and linear
filtering and prediction [Wl]. Under the name 'Minimum Integral Sqﬁaréd Error",
development of this problem was continued throﬁgh the 1950's by Newton [N1],

Booten [B3],and Zadeh [Z1]. Finally utilizing th; techniques of modgrﬁ control
theory,_Kalman [K1] presented important new aspects of.the problem.

The prominence of this problem ié’due fo two primary factors. Firét, the
problem provides a strong link between the classical methods 6f analytic feedback
system design via frequeﬁcy domain methods and the more recent variational approach
favoring analysis in the time domain [K2], [W2]. Secondly, the problem allows the
determination of optimal controls in closed form with mathematical ease. (F&r
general development and presentation of the problem, see Athans and Falb [Al] and
Lee and Markus [L1]). Finally, a pragmatic motivation for considering the

problem is the ease with which the quadratic cost criteria can be intérpreted



physically. Consequently, optimal linear regulation has been extensively
applied to various systems. For example, the theory has found widespreéd
applications in the area of automatic flight control systems. Much of this
work is based on the significant efforts of Rynaski [R4], [R5]. Other{exampies
of optimal linear regulation are contained in Dyer and McReynolds [D2].

However, few systems can adequately be described by a linear dynamic model.
In particular, increasing effort is now being devoted to the development of
models representing systems as varied and as complex as urban areas, natural
resource depletion, management of R and D efforts, and drug usage within a |
community. These models are primarily due to the efforts of Forrester [F3,
F4,F5,F6] and Roberts [R2]. Along with many engineering systems, these systems
contain inherent nonlinearities which must be included in any meaningful study.

In.contrast to linear systems, the regulation of nonlinear dynamical systems
has received limited attention, most of a specialized nature. The primary reason
for this seems to lie. in the fact that nonlinear optimal control problems can
rarely be solved analytically or, more specifically, in feedback form as for
linear regulators. As a result, one must often resort to iterative numerical
techniques for the determination of the optimizing solutions. Consequently, much
of the analysis regarding regulation of nonlinear systems concerns techniques for
determining suboptimal feedback confrollers. (See for example [D1], [G2], [L3],
[p1], ([s2], [J1], [F8],'and [B5]). Most of these approaches involve the modeling
of .the nonlinear éystem as a linear system in some manner. A somewhat different
approach, not suboptimal, is taken by Brunovsky [B4] and Lukes [L4]. Both of
these treatments are closely related to the basic hypothesis that the system be
stabilizable [L1]. Under the assumption of complete controllability, Brunovsky

approached the problem via Lyapunov functions. Lukes requires the system be



stabilizable and then uses Lyapunov-like theory to obtain results for feedback
controllers.

The direction of these various approaches is primarily generated by the
desire for a feedback controller. However, there is a second, more eso;eric
reason, and that is the desire fo: general results. Unfortunately, the undis-
cerning application of an algorithm often limits insight into the underlying
structuré of the problem being considered. This loss of general information is
often due to the fact that practical convergence criteria are few for most of
the iterative methods used in the solution of optimal control problems. Theoreti-
cal aspects of these criteria have been investigated by numerous applied mathe-
maticians (see Kantorovich [K4] and Collatz [C2]). The Russian Kantorovich [K4]
was one of the first to develop and unify the mathematical theory of iterative
methods. Using the power of functional analysis methods, he presented conver-
~gence results for sﬁch basic iterative schemes as contraction mappings and
Newton's method. These basic results have been cbnsiderably broadened, modernized,
and made practical by the efforts of Falb and de Jong [F1]. In their book, they
present the derivation of general convergence criteria for the application of
various successive approximation methods to the solution of optimal control

problems.

1.2. Description of the Problem

The primary goal of tﬁis research is the consideration of the theoretical
ana applied aspects of successive approximation techniques for the solution of
optimal nonlinear regulator problems. Application of the Pontryagin principle
to the posed optimization problem results in necessary conditions for optimality

in the form of a two point boundary value€ problem (TPBVP), Hence, the central



theme of this study shall be the application of successive approximation methods
to the solution of nonlinear TPBVP's which arise from optimal nonlinear regulation.
The basic approach to be used is to represent the TPBVP by an operator equation
and then apply functional analytic results in the iterative solution of operator
equations.

In particular, we shall investigate the contraction mappings method and the
modified contraction mappings method. - We have as our first objective the trans-
lation and application of the general convergence theorems to those operators
originating in the optimal regulation of a nonlinear system. A second objective
is the development of techniques to facilitate the evaluation of the convergence
criteria. Finally, example problems will be solved to demonstrate the usefulness

of the theory.

1.3. Synopsis

A brief summary of the dissertation is as follows: In Chapter 2, the optimal
regulation of ﬂynamical systems is introduced. In particular, we discuss the
reduction of optimization froblems to two point boundary value problems by means
~of Pontryagin's principle; Results are derived for optimal regulation of linear
dynamical systems (Section 2.2) énd several classes of nonlinear systems (Sec-
tion 2.3). Optimal system regulation is considered for both unconstrained and
bounded controls. In Chapter 3, methods of solving two point boundary value
problems afe presented. In particular, the integral equation representation
of two point boundary value problems is introduced (Section 3.,2). The book py
Falb and de Jong [F1] was used as.the main reference for this chapter. The
integral representation makes it possible to consider the solutioﬁ of a two

point boundary value problem as the solution of a corresponding operator equation.



A review of Lipschitz norms and derivative norms for the integral operator is
presented (Section 3.3) and the methods of contraction mappings (Section 3.4)

and modified contraction mappings (Section 3.5) are introduced. Convergence
theorems for both methods are presented. Chapter 3 concludes with the application
of contraction mappings to the solution of two point boundary value problems
arising in Chapter 2 and the derivation of translated convergence theorems.
Chapter 4 is devoted to a rather detailed investigation into the calculation

of the theoretical convergence criteria. Upper bounds are presented for the
Lipschitz norm and derivative norm (Section 4.2) and various techniques for
evaluating these bounds are introduced. In particular, the use of simply
structured matrices (Sections 4.4, 4.5) and similarity transformations (Section
4,6) are considered. The use of partitioned matrices in these developments
provides considerable insight into the generic structure of the Green's matrices
contained within the integral representation. In Chapter 5 the issue of con-
trollability for noniinear systems is considered. Specifically, it is shown

that controllability for linear systems (Section 5.2) and nonlinear systems
(Section 5.3) may be studied via the integral representation and contraction
mappings. In Chapter'6 we present numerical examples to illustrate £he theoreti-
cal and practical application of contraction mapping§ to the regulation and
control of nonlinear systems. In Chapter 7, a dynamic model is developed for

a socio-economic system and contraction mappings is used to investigate the
optimai.regulation of this nonlinear system. Finally, in Chapter 8, we summarize
our results and indicate directions in which future research may be done. We'
conclude with an appendix which gives the actual computer.program  (written ip

the FORTRAN language) which was used in the application of contraction mappings

to the problem discussed in Chaptér 7.
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CHAPTER 2

OPTIMAL REGULATION OF DYNAMICAL SYSTEMS

2.1. Introduction

An optimal control problem is a composite concept consisting of four basic
elements: (1) a dynamical system, (2) a set of initial states and a set of final
states, (3) a set of admissible controls, and (4) a cost functional to be minimized.
The problem consists of finding the admissible control which transfers the state
of the dynamical system from the set of initial states to the set of final states
and, in so doing, minimizes the cost functional. In this chapter we discuss the
‘optimal regulation of nonlinear systems and the reduction of the optimization

problem to a TPBVP by means of Pontryagin's principle.

2.2. Optimal Linear Regulator

As a preface to the nonlinear system analysis, we shall present the basic
results for the optimal linear regulator. (For a very thorough treatment of this
problem see Kleinman [K4]).
Definition 2.2.1. Linear Dynamical System

A linear dynamical system is characterized by the following elements:

(1) A state vector-x of dimension n

(2) A contrél input vector u of dimension r

(3) A linear differential equation which describes the evolution of the

system in tiﬁe, i.e.,
x(t) = A(t) x(t) + B(t) u(t) 2.2.2 e

where A(t) is an nxn matrix and B(t) is an nxr matrix.



N

L ,“ '[1"0] [x(to)] [ 0 0 [x(rq
s N . ' - + =
. D8 oLty -K 1] p(T)

Now given an initial state, . x(t0)= Xps and assuming the control u(t) is not
constrained, the optimal linear regulator problem is then to determine the control
u(t) which minimizes the quadratic cost function

J) = $<x(M, Kx(M+ 5 } [<x(t), QCt) x(t)) + u(t), R(t) u(thlde

t
0 2.2.3

wHere
The terminal time T is specified 2.2.4

K 4s a constant nxn positive semidefinite matrix

-

¢ Q(t) is an nxn positive semidefinite matrix

4
- R(t) is an rxr positive definite matrix
oo

t o R . N -
‘and Kland Q(t) are not both identically zero.
.‘Apblipatipn‘of>thq«mipimum principle to the optimization problem posed above yields

qeceéséry conditions for optimality in the form of the 2n x 2n canonical system

of equations . b i
3 x| | aw -serT @B @) | x@
! S PN S By 2.2.5
o p(v) 1-Q(t) -A'(t) p(t)
s 2 )
- subject to' the -boundary conditions
. X(tg) = Xg ,
T p(T) = K x(T). ' _ 2.2.6
The H-minimal control fo;‘t(E[to, T] is then given by
o u(t) = -R"1(t) B'(t) p(t). 2.2.7

The boundary conditions Specified by eq(2.2.6) may be expressed more compactly as

X
0 2.2.8
0

where I is the rixn, identity matrix and O is the nxn zero matrix. ‘This form of
N - "' )

expressing boundary conditions will become important in the sequel. The TPBVP

N

arising from the linear optimal regulator problem may then be put into the form



y(t) = S(t) y(t) 2.2.9
My (ty) + Ny(T) = ¢

where y is the 2n composite vector

PX(t) 2.2.10
y(t) =
p(t)
S(t) is the 2n x 2n matrix :
A(t) BRI (1)B (1) : C2.2.11
S(t) = o ‘
-Q(t) AT (t)

and M and N are the 2n x 2n boundary value matrices \

I o 0 0 SN
M = [ ] N = [ ] 2.2.12 ,
0 o0 X I | ST

and ¢ is the 2n constant matrix

X s -
c :[ 0] N ~2.2.13

In many physical situations, the input control u(t) may not take on all values. o -

4

As an introduction to systems with bounded control, let us now suppose the input
" . -7 .
control to the linear dynamical system is constrained in magnitude by the relation -« -

Iuj(-)| <1 j=1l,...,r . 7 . 2.2.14 -

T

Then given an initial state for the linear dynamical system, the optimal linear

regulator problem is to determine an admissible control u(t) €Q which minimizes eV

~

-~

the quadratic cost functional given in (2.2.3).

It is shown in [Al] that the necessary conditions for optimality reduce to

x

the 2n x 2n canonical system of equations

X(t) = A(t) x(t) - B(t).SAT {R°1(t) B'(t) p(t)} 2.2.15

Q(t) x(t) - A'(t) p(t)

p(t)
subject to the boundary conditions
x(to) = X, -2.2.16

p(T) = K x(T),



where the SAT function is defined as

1, v > 1
SAT{y} = { v, Iyl < 1 2.2.17
'1: y <-1

It is seen this system of 2n differential equations is not linear. The necessary
conditions thus reduce to a nonlinear TPBVP of the fomm
y(t) = 8(t) y(t) + £(y(t)) : . 2.2.18
My(to) + Ny(T) = ¢ ' ' v

where y is the composite 2n vector

x(t)
y(t) = [ ] . ’ 2.2.19
p(t) '
S(t) is the 2n x 2n matrix
A(t) 0 .
S(t) = [ ] 2.2.20
-Q(t) ~At(t)
f(y(t)) is the 2n vecfor function
-B(t) SAT{R™}(t) B'(t)p(t)} 2.2.21
f(y(t)) = [ . :

M and N are 2n % 2n matrices and c¢ is the 2n vector

I 0 0 0 x0
M= [ ] N = [ ] c = [ ] 2.2.22
0 O K I 0 .

This example illustrates a nonlinear TPBVP arising from the optimization of a
linear system. We shall now consider the optimization of nonlinear systems

and the forms of the resultant TPBVP's.

10



2.3. Optimal Regulation of Nonlinear Systems

In this section we shall consider the control of several classes of nonlinear
systems subject to the quadratic cost functional given in (2.2.3). Our ;im in
" this section is to reduce the necessary conditions for optimality to two point
boundary value problems.

Example 2.3.1.

Many nonlinear systems contain nonlinearities involving only the state
variables. Hence, rather than initially considering the most general formulation,
we shall first consider the class described by the differential equation

X(t) = A(t) x(t) + B(t) u(t) + yp(x(t)) 2.3.2
where we assume y(x(-)) and (3y/8x) (x(-)) are continuous on R". We shall initially ~—-
consider the control to be unconstrained, i.e., u€Q = R". Again we shall
consider the quadratic cost functional

() = % (x(0),Kx(T)) + %fT [<x@, aw) x> + ), RE) v

' ‘o 2.3.3

subject to the assumptions of (2.2.4). Application of the minimum principle
yields necessary conditions for optimality in the form of the 2n x 2n canoﬁical
system of equations

x(t) [A(t) SB()R™L()B (1) [x(t) v(x(t)) ] 234 ——

= +
[P(t)} Q(t) -A'(t) }Lp(t)] [- (3v/3x) ' (x(t)) p(t)

subject to the boundary conditions

[I 0] [X(to)]‘+ { 0 0}>[ x(T)] i [XOJ 2.3.5
0 0 'p(t0) -k I |pmMm 0
The H-minimal control for t,e[to,T] is then given by

u(t) = -R71(t) BU(t) p(t). 2.3.6
It is often.advantageous to standardize tﬂe time interval over which the TPBVP is

defined. This standardization is accomplished by the introduction of a new

variable. Let (see Long [L2])

11



t = to + CT—tO)s =.b + as. 2.3.7
Here s is the new variable which varies between 0 and 1. In most cases we may

take t, = b = 0. In terms of s and a, the TPBVP then becomes

0
[xcs) [ A(as) -B(as)R'l(as)B'(as)}[x(s)} (x(s))
= a + a
p(s) -Q(as) -A' (as) p(s) -(3y/3x) ' (x(s))p(s)
2.3.8
withi
[1 o“xm)] [o OJ[X(I)} {xo]
+ = 2.3.9
0 oflp(o) -k If|lp() 0
where (") indicates differentiation with respect to s. In the sequel, the

TPBVP's which shall be considered will generally be normalized in this fashion.
Example 2.3.10.

As an illustration of the ideas presented in Example (2.3.1), let us consider
the driven, second order nonlinear oscillator studied by Van der Pol. We have

the system given as

xl(t) = xz(t) 2.3.11
. o 2
X,(t) = -x;(t) + e(@-x (t))x,(t) + u(t),
or in vector-matrix form as o

0 0
[ ] u + [ 2 ] 2.3.12
1 s(l—xl)x2

The optimization problem to be considered is that of minimizing the cost_

functional

1 o2 2 2(t))dt 2.3.13
J=?f(x1(t)+x2(t]+u(t)) .3.
0

12



subject to the boundary conditions

xl(O) =Xy xl(T) unspecified 2.3.14

x2(0) =0 ., xz(T) unspecified.

From eq (2.3.4), we have the 2n x 2n canonical system

", ] [ 1 [ 1
%) o 1 0 olix 0 ]
2
X -1 0 0 1]|x e(1-x7)x
2l = | z + 12 ' 2.3.15
Py -1 0 0 1 Py 2€x1x2p2
2
P, . 0 -1 -1 OJ _pZJ —s(l-xl)p2J

subject to the boundary conditions

- . i
1 0 0 0 xl(oﬂ 0 0o o 0]fx;(1) X0
0 1 0 0ffx,(0 0 0 0 0ffx,(1) 0
+ = 2.3.17
0 0 0 o0ffp(0) 0 0 1 offp;(D) 0 '
o 0 0 of]p,(0) 0 0 0 1f|p,(1)] 0
or, in the more compact form,
y(t) = Sy(t) + £(r(t)). ' ' ' 2.3.18

My(0) + Ny(1) = c.

In the sequel, this example'will reappear as we consider the iterative;solution
of TPBVP's of the férm (2.3.18).

The class of sYstems studied in fxample 2.3.1 will now be reconsidered with
a magnitude constraint upon the control. |
Example 2.3.19.

Let us now consider the regulation of the previous system

x(t) = A(t) x(t) + B(t) u(t) + p(x(t)) 2.3.20

13



where the input control vector is constrained in magnitude by
[uj(-)l <1, j=1,...,r. 2.3.21

The cost functional is again given by (2.3.3). Application of the minimum

principle yields the 2n x 2n‘system of canonical equations as

[x(t)] [ ACt) 0 Hx(t)] [tp(x(t)) - Bt)SAT{R L (t) B (t)p (1)}

s L) -ar@]le) - (3v/3xkx (1)) p(t)

2.3.22
subject to the boundary conditions

R o i e
. = 2.3.23
0 0][pC(ty [—K Iilp(m 0

where the SAT function is specified in (2.2.16). For this system, the H-minimal

control is given as

u(t) = -SAT{R™'(t) B'(t) p(t)} , tElty,T]. . 2.3.24
Example 2.3.25
In the previous example, we discussed the large class of nonlinear systems in

which the nonlinearity is a function of only the state variable. Let us now

consider the more general system described by the differential equation
X = A(t)x + B(t)u + y(x,u) 2.3.26

where A(t) 1is an n-x n matrix, B(t) is an n x r matrix, u is an unconstrained

n

r-vector, and y(x,u) and (3y/3x) (x(-),u(-)}) are continuous in R" x R, The
system is subject to the quadratic cost criteria given as
1 1 1
J = Z<x(T),Kx(T)> + 5 f [<x(t), Q(t)x(t)> + <u(t), R(t)u(t)>]dt
’ t

) 0 2.3.27

14



under the assumptions of (2.2.4).
Following the Pontryagin minimum principle, the Hamiltonian for the.

optimization problem posed above is given as

H = 1—<x(t),Q(t) x(t)> + l—<utt), R(t)u(t)> + <A(t) x(t), p(t)>
2 2 ' 2.3.28
+ <B(t) u(t), p(t)>+<y(x{t), u(t)), p(t)>.

Formally applying the Pontryagin principle, the costate vector is then described

by the differential equation
p(t) = - Q(r) x(t) - A'(t) p(t) - (BWBX)'(X(t),UC§))P(t)-' 2.3.29
Along the optimal trajectory we must have u*(t) minimizing the Hamiltonian,i.e.,
H(x*(t), p*(t), u*(t),t) < H(x*(t),p*(t),w,t) 2.3.30

for all admissible w and where (:)* denotes optimal trajectories. If the
Hamiltonian is normal [Al], the minimization equation (2.3.30) may be solved

for the H-minimal u in terms of x,p, and t, i.e.,
u = £(x,p,t). - 2,3.31

Now using (2.3,31) we define

Y(x,E(x,p)) = ¢(x,p) ) 2.3.32 .
and ‘

(3y/3x) (x,&(x,p)) = Z(x,p) ' 2.3.33

where ¢ is an n vector function and Z is an n ¥ n matrix function.

{ x} [ A(t) 0 Hxl [B(t)g(x,p) . ¢(x,p)] o 2.3.34
= - + N
p Q)  -A'(W]]p - 2'(x,p)p _

subject to the boundary conditions
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I 0 x(t0)4 0 0] x(M X0
+ = 2.3.35
o o]lplty) -k IllpM 0
These results may be applied to various forms of y(x,p). In the following
example we consider one such form.

Example 2.3.36

Consider the system described by
% = A(t)x + B(t)u + D(x)u 2.3.36

where A(t) is an n x n matrix, B(t) is an n x r matrix, D(x) is an n x r matrix,
Dij(x) and (aﬁij/axk)(x(-)) are continuous in Rn, and u(-) is an unconstrained
r vector. Consider system (2.3.36) subject to the cost functional (2.3.27) and
the initial condition x(to) = Xp-

Define the vector function £(x,p,t) to contain the elements
E.(x,p,t) = - (3D/8x.) (x) R () [B'(t) + D' (X)] 2.3.37
i Py = <P, xi (X) ¥> s
and define the matrix c(X,t) as
Clx,t) =-B(t) R71(t) D'(t) - D) RTL)[BU(E) + D' ()], 2.3.38

Us;ng the results of Example 2.3.25 and (2.3.37), (2.3.38), the 2n x 2n canonical

System of equations is given as
o [k] [A(t) ~B(t)R71(t)B' (t)] x]
= +
p -Q(t) -A(t) ”P
[I o] x"(to)] [ 0 0“ X(T)] [XO] o '
+ = 2.3.40
1o oflptty) -k 1l p(M 0

The various two point boundary value problems presented in the previous

2.3.39

Clx,t)p
E(x,p,t)}

16



examples can very rarely be solved analytically. Thus we shall investigate
successive approximation techniques for the solution of TPBVP's in the next

chapter.
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CHAPTER 3

METHODS OF SOLVING TPBVP's

3.1. Introduction
In the analysis of optimal control problems, the necessary conditions for

optimality are often in a form which may be reduced to a TPBVP of the form

y(t) = F(y,t), g(y(0)) + h(y(1)) = c. : 3.1.1

In particular, we presented in Chapter 2 various TPBVP's which originate in the
optimal regulation of certain classes of nonlinear systems. We shall now illustrate
that under certain conditions, such TPBVP's may be represented by operator equations

of the form

y = TK). 3.1.2

Then, following the lead of Falb and deJong [F1], we shall investigate the applica-
tion of successive approximation techniques to the iterative solution of these

operator equations.

3.2 Representation of TPBVP's

In this section we consider the (normalized) two point boundary value problem
y(t) = F(y,t) g(y(0)) + h(y(1)) = ¢ . , o 3.2.1

where G, g, and h are vector valued functions and c is an element of RP. We
shall first review some results relating to the development of equivalent integral

equation representations of the TPBVP(3.2.1). Most results in this section.
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come from Falb and de Jong [F1]. Since linear TPBVP's will play an important
role in the integral equation representations, we begin our discussion with a
consideration of linear TPBVP's.

Consider the linear TPBVP
y(t) = V(t)y(t) + £(t) , My(0) + Ny(1) = ¢ 3.2.2

where V(t)}, M, and N are p x p matrices, and f(t) and d are p vectors. We present

the following theorem on the existence of a solution of equation (3.2.2).

Theorem 3.2.3

Suppose that the functions V(t) and f(t) satisfy appropriate smoothness and
boundedness conditions and det[M + N@v(l,O)] # 0 where Qv(t,s)'is the fundamental
matrix of y = Vy. Then (3.2.2) has a unique solution y(t) on [0,1] which can

be written in the form
1

TORRTORT N IO HELE 3.2.4
: 0

where the Green's matrices H and G are given by

H(t) = @' (t,0) [M+Ne’ (1,00]7) - 3.2.5
and

oV(t,0) ene’ (1,001 MoV (0,5) , 0 < s <t 3.2.6
G(t,s) = v v -1V
-0V (e, 0y mene’ (1,001 NG (1,5) , t < s <1

for all t,s in [0,1].

Proof: (See [Fl] for proof of theorem and technical conditions specified for

V(t) and f(t)).
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The requirement in Theorem 3.2.3 that det[M+N¢v(1,0)] # 0 is crucial to the
integral representation of TPBVP's. We therefore make the following definition.
Definition 3.2.7

Let V, M, N be p x p matrices. Then J = {V(t),M,N} is called a boundary
compatible set if and only if V(t) satisfies certain technical conditions and
det[M+N¢v(l,0)] # 0 where ¢v(t,s) is the fundamental matrix solution of
y = V() vy.
In the sequel we shall often be given two boundary related matrices M and N and
will be required to determine a matrix V(t) so that the set J = {V(t),M,N} is
boundary compatible.b In the next lemma we give necessary and sufficient
conditions for the existence pf'a matrix V(t) which is boundary compatible with
the presbribed'matrices M and N.-
Lemma 3.2.8

Let M and N be p x p matrices. A necessary and sufficient condition that
there be a V(t) with J = {V(t) ,M,N} boundary compatible is that the p x 2p matrix
[M N] have full rank p.

Proof: (See [F1].)

-Theorem 3.2.3 and Lemma 3.2.8 foxm the basis for the integral équatibn representa-

tion of nonlinear TPBVP's of the form (3.2.1). We now have the folloWing.

Theorem 3.2.9
Suppose.that F(y,t) satisfies certain technical conditions and J = {V(t),M,N}

is a boundary compatible set of dimension p. Then the boundary value problem
y = F(y,t), g(y(0)) + h(y(1)) = ¢ : 3.2.10

has the equivalent representation

21



y(t) = HJ(t){c - g(y(0) - h(y(1)) + My(0) + Ny(1)}
1 o3

s f 67 (t,5) (F(y(s),s) - V(s)y(s)}ds
0

where the Green's functions HJ(t) and GJ(t,s) are given by

H oty = oVce,00 (M + neV(1,0)] 7! _ . 3.2.12
and
@V(t,s)[m + N«pv(1,0)]‘1M¢V(o,s) ,0<s <t
¢l (t,s) = 3.2.13
—4>v(t,s)[M + N¢V(1,0)]’1N¢V(1,s) , t<s <1

where @v(t,s) is the fundamental matrix of the linear system y = V(t}y.
Proof: (See [F1] for complete conditions assumed for F(y,t) and a-proof of
the theorem.)

Theorem 3.2.9 presents an integral equation representation for TPBVP's of
the form (3.2.1). It is now a simple matter to demonstrate that solving (3.2.1)
- is equivalent to solving a certain fixed point problem in an appropriate Banach
space. In particular, assuming that the conditions of the previous theorem are
satisfied, we can define a mapping TJ of the Banach space Y = &Z([O,l],Rp) into

itself by setting

) = W@ e-a((0) - hy() + My + Ny} 3.2.14
1 _
+/ GJ(t,s){F(y(s),s_) - V(s)y(s)}ds.
0

Then, (3.2.11) is equivalent .to the fixed point problem

y = TJ(y) o _ 3'.2.154
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on éf([o,l],Rp). The operator equation (3.2.14) can now be solved by successive
approximation iterative techniques as presented by Kantevovich [K4] and particu- .

larly Falb and de Jong [F1].

3.3. Frechet Derivatives and Lipschitz Norms

In the discussion of successive approximation iterative techniques, we shall
require an expression for the Frechet derivative or Lipschitz norm of the operator
TJ. In_this section we shall present a brief treatment of these concepts. (Again,
many of these basic results are from Falb [F1]}.) Let us begin with the following
definition.
Definition 3.3.1.

Let Y be a Banach space with || .. I as norm. Let @ be a closed subset of Y

and let T map Y into Y. The Lipschitz norm of T on @, in symbols: ﬂT UQ , 1s
given by

Drl, = 0V%e CHT@ - T/ fu-viid 3.3.2
If T is Frechet differentiable on @, then derivative norm of T on , in symbols:

I'd
ﬂTﬂ Q is given by
4
= Ssu '
Irly = supg HTpl 3.3.3

We shall now compute expressions for (TYJ)' and (TyJ)" . We have

r,)y @) = 1 () (- (2g/2y) 0/ (0)Tu(0) + [N-(3h/3y) (y (1)) Ju(1)}
1

* f 6 (t,s){ (3F/ay) (y (s)) - V(s)}u(s)ds 3.3.4
0 -

and
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P
(T (u,v) = HJ(t){Z[(a/ayi)(—ag/am(y(onui (03v(0)
i=1
P
s 3 (/3 (-an/3y) ]y (1))u; V()

i=1

P
+ [GJ(t,S) { E ((3/3Yi)(3F/3Y)](Y(S))ui(S)V(S)-;dS 3.3.5

i=1

provided the indicated partial derivatives exist. When evaluating convergence
criteria, we shall require estimates, say for example of the norm of the operator
(TyJ)‘. There are of course several expressions for caleulating or estimating
M(TYJ)‘M . Since the more accurate expressions are difficult to evaluate in
practice, we shall present a coarse estimate that is more amenable to future
applications. We recall first of all tﬁat if v(:)E &f([o,l], Rp), then

nv(.) 4 =. sup sup |v.(t)| 3.3.6

iepP tef0,1] 1

is the nomm of v(:) where P = {1,...,p} and vi(') is the ith component of v(-)f

Noting that (T )" = sup |y (T ) il} and letting H'(t) = [H.(t)],
YO o« u ij

GJ(t,s) = [ng(t,s)], M= [mjk],'N = [njk], V(s) = [vjk(s)], we have as a coarse

estimate

J J )
(T.") = sup (T ")'u
e,y "u"£1§u Sl

P P '
J
< p s {J_E:l RGN EH (nyy - (g;/o7) 6 O]

+ |njk - (ahj/ayk) (y(l))l}) , : ' 3.3.7
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+

1 P
J 1 |
(.Of |63 (t,s)lds)-( SUp | kzll(aFj/ayk)(ycs),s) - vjk(s)lg)‘

P
j=1
Expression (3.3.7).will become quite important in the sequel., One of our primary
objectives shall be determining'techniques for easily estimating this expression.

In some cases, the smoothness conditions required to obtain Frechet deriva-
tives are too strong. As an example, we have the nonlinearity containing the '
SAT function in equation (2.2.15). This fact does not imply that successive
approximating techniques may not be applied to the iterative‘soluti;h of the-
operator equation. It simply means we have lost one method of evaluating
convergence criteria. Hence, under semewhat wéaker smoothness conditions, we
shall compute the Lipschitz norm of the operator'TJ(y);

We have the following result from Falb [F1].

Lemma 3.3.8

Let S be a boﬁnded open set in 62([0,1],RP) and let D be an open set in
rP containing the range of S. Suppose that (i) K(f,y,s) is a map of

[0,1] ¥ D x [0,1] into D which satisfies certain technical conditidns, and (iij
there is an integrable function m(t,s) of s with sup ‘/~;(t,sbds = ﬁ < 'such

°
that |} K(t,y,s) il < m(t,s) and HK(t,yl,s) - K(t,y:,s)“ < m(t,s) “yl-yé][ on

[0,1] x D x [0,1]. Then the mapping T given by
1 : .

T ® = [ Ke,us),)ds
0
P, . P . . 7 P
maps &f([o,l],R ) into éf([o,l],R ) and the Lipschitz norm, [ T| g» Satisfies

01Tl <w. ) ‘ ©3.3.9

Proof: (See [F1] for proof of tHeorem and spécific conditions on K.)
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Corrollary 3.3.10
Suppose that the function
K(t,y,s) = 6 (t,5){F(y,s) - V(s)y}

sattsfies the conditions of Lemma 3.3.8vand that
Nglyy) - glr) < uyl yy-y, b and D hiy )-h(y )l < u, g y -y, 3.3.11

Let
a = max {u, |l HJ(-)II My i HJ(')Ifuz,H HJ(-)M I, | HJ(-)NII}. 3.3.12

Then ETJU§ L o 3.3.13
This result will prove useful in particular when investigating regulators with

bounded input controls.

3.4. Contraction Mappings Method

Contraction mappings (or Pi;ard's method, [P2]) is well known in the mathemat-
ical literature and has long been a standard approach for proving existence and
uniqueness properties for ordinary differential equations. (See for example
Coddington and Levinson [Cl], specifically Section 1.3 entitled "The Method of
Successive Approximations.") To formalize our discussion of this technique, let
us begin with fhe following definition.
Definition 3.4.1

Let Y be a topological space and let f map Y into itself. Let Yo be

an element of Y. The sequence {yn(-)} generated by the algorithm

Ype1 = TG} n=0,1,2,... ' 3.4.2

is called a contraction mapping or CM sequence for T based on Yo
The following theorem is central to our future discussions concerning the

contraction mappings method.
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Theorem 3.4.3
Let Y be a Banach space and let § = §(y0,r) be the closed sphere in Y with
center Yo and radius r. Let T map Y into Y and suppose that (i) T is defined

on §(y0,r), and (ii) there are real numbers n and @ with n > 0 and 0 <a<l

such that
by, - yp I < -  3.4.4
[]TDg <a<l or lTI'gi"‘(l V 3.4.5
L on<r | : 3.4.6
l-a -

where Yy = T(yo). Then the CM sequence {yn} for T based on Yo converges to the

unique fixed point y* of T in § and the rate of convergence is given by
o "
* PR - — -
hy Ya I RIS 'Iyn yn—lll 1w Ilyl Yo I 5.4.7

Proof: (See [F ]).
Let us now consider the application of this theorem to operator equations of the

form

y(®) = V() (t) = H (£){c-g(y (0))- h(y(1) + My(0) + Ny(1)}
1

+ fGJ(t,S){F(y(S),S) - V(s)y(s)}ds
0

3.4.8

where J = {V(t),M,N} is.a boundary compatible set. Following the contraction
mapping prescription, we select an-initial element yo(-) in ég([O,l], Rp) and
successively generate a (M sequence,{yn(-)} for TV based on vo(+) by means of

the algorithm

= T (y.) . 3.4.9

27



or equivalently, by

Y (®) = K () {c-gy, (00) - h(y_(0)) + My_(0) + Ny (1)} o

+fGJ(t,s){F(yn(s),s) - V(s)y, ())ds.

Since we know yn(-) at each successive step, we can write (3.4.10) in the form

v ) = H (D, +fGJ(t,s)fn(s)ds 3.4.11
where

c, =c- gl (0)) - h(y (1)) + My (0) + Ny (1) - 3.4.12
and

£,0s) = Fy,(s)) - V(s) y,(5). ‘ v 3.4.13

Hence, it is seen from (3.4.11) and our results on linear TPBVP (eq. 3.2.4) that
the method of contraction mappings when applied to (3.4.8) essentially amounts
to the successive solution of the linear TPBVP's (3.4.11).

If the partial derivatives of (3.3.) exist, we then have the following.
Theorem 3.4.14.

Let yo(-) be an element of &f([o,l],Rp), and let § = §(y0,r). Suppose that

(i) J = {v(t),M,n} is a boundary compatible set for which

?»= Fiy(t),t) gly(©)) + h(y(1)) = ¢ 3.4.15

is differentiable on S, and (ii) there are real numbers n and a with n > 0 and

0 < o < 1 such that

28



170 - yot=swp s (T o)) - Yo 1 0]} < 3.4.16

i tel[0,1]
J ' ,
sup { II(Ty '} <a . 3.4.17
yes
L on<r - ' - -3.4.18
=< .4.

Then the CM sequence {yn(')} for the TPBVP based on Yo and J converges uniformly
to the unique solution y*(-) of (3.4.15) in S and the rate of convergence is

given by
. . n ’
H'y*(-) -y, ) II < = I y10).-yg() I. . 3.4.19

Proof: Simply apply Theorem 3.4.3.
It should be noticed that if the TPBVP of interest is not differentiable,

but a Lipschitz norm can be obtained, then (3.4.17) is simply -replaced by
“'VJ" § Lo 3.4.20

~We shall use (3.4.20) in the investigation of optimal regulators with bounded
~control. |

At this point we shall make a few general comments concerning our representa-
tion of TPBVP's and, in partiuclar, thé role of the boundary éompatible set.
J = {V,M,N}. From Theorem 3.4.14, we see that the convergence rate factor, a,
is_detgrminéd by the Frechet derivative of the operator TJ(y). In éarticular,

from equation 3.3.6 we have an estimate for this norm. given as
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Jovn _ ft ed oy ql
H(Ty) il = nalﬁlgll“ (Ty) ung

P ag oh, -
=) At o)
(8 {Z(I n"(c))l) (Z ooy~ ( 5 (v [+[n, -\5; (y(1)>|}

L .su
k=1 k
P SF. - .
+ Z(j IG (t s)lds sgp ZI _J. (y(s) s)-v. (S)I}) 3.4.21
J=l k=1 k J

For convergence purposes we wish to make this duanti,ty as small as possible,
and in this light, we shall discuss the choice of J = {V(t), M,N}. All of the
TPBVP's obtained in Chapter 2 have linear boundary conditions of the form
Ky(0) + Ly(1) = c¢c. From this we shall clearly choose M and N to equal the

linear boundary conditions of the TPBVP, thus eliminating the first terms in

(3.4.21). We then have the simplified expression
P 1 P 9F

II(T‘}I,)'IIL sup syp {E (f .j(t,s)|ds) -(sgp %Z (-é—l)(y(s) s)—v (s)|z)§ 3.4.22
J=l k=l k

Consideration of this expression allows us to deduce that if Yo is a good initial
estimate of the solution, then it is often effective to choose V(s) close to
(BF/ay)(yO(s),s). In fact, for V(s) = (BF/ay)(yO(s),s), the iterative method

is known as the '"modified Newton's method.' However, a general choice such as
this for the V matrix usually precludes any attempt at calculating or estimating '
the term IGJ(t,s)Ids , thus preventing an easy estimation of the convergence
criteria. 1In the next section we shall consider a technique which is often

useful for evaluating convergence criteria.
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3.5. Modified Contration Mappings
In some situations, the direct application of the contraction mappihg§
.method does not lead to a convergent sequence of approximations. However,
it is frequently possible to modify T in such a way as to lead to a convergent
sequence of approximations. We consider the following. ‘
Lemma 3.5.1.
Let T and U be mapé of Y into Y. Suppose that I - U is invertible énd let.

P.be the map of Y into itself given by
-1 :
P(y) = [I-U] "[T(y) - U] » 3.5.2.

" Then y*(-) is a fixed point of T if and only if y*(:) is a fixed point of P.
Proof: (See [Fl]);
We shall then consider the selection of an initial approximate solution Yo and

the generation of a sequence {yn} by the algorithm

Yooy = PO = 10170 [Ty ) - Uyl 3.5.3

We shall call this algorithm the modified contraction mappings method. It
should be noted that the modified contraction mapping sequence for T based on
Yo and U coincides with the céntraction mapping sequence for P based on Yo-
Hence we may translate the resulfs on contraction mappings into theorems for
modified contraction mappings. The primary theorem is given as follows.
Theorem 3.5.4.

If U is a linear operator with I-U invertible, if T is differentiable on §,.

and if there are real numbers n,a withn > 0 and 0 < a < 1 such that
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hyy =Ygl =1 ' 3.5.5

sup {Il[I-U]_l[T
YES

1
T-a

o) " VIl ce 3.5.6

n<r, v : 3.5.7

then the modified contraction mappings sequence {yn} converges to the unique
fixed point y* of T and S and the rate of convergence is given by
o an
* —— - — - N
ERARSS B erg DA AT N vl BEURRSY E 5.5.8
Proof: Apply Theorem 3.4.3.
The importance of these results lies in the fact that they extend the range of
applicability of the contraction mapping method to fixed point problems for
operators T that are not contraction mappings. In other words, the basic
contraction mapping criteria
J
sup {H(T")'" I} <a<1 3.5.9
yES Y
is replaced by the condition that the Frechet derivative satisfies
-1...J : ' .
sup { Il [T-U) [T ")'-UIN} <a<1. - 3.5.10
.YES Y )
A second possibility is to replace the sihgle norm in (3.5.10) by a product
of two norms so that
-1 Iy, '
sup (B [T-U] " -0 [(T")*-UJN} <o <1, . 3.5.11
YES y
This formulation offers the possible advantage of easier evaluation, but also
results -in less sharp convergence conditions.
We shall now specify the form of linear operator U that will be used in

the modified contraction mappings algorithm. The following lemma involves
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‘the relation between the operators 7 and T for different boundary compatible
sets J = {V(t),M,N} and J = {W(t),K,L}.
Lemma 3.5.12.

Let J = {V(t),M,N} and 3 = {W(t),K,L} be boundary compatible sets. Let
F(y,t) be continuous in y for each fixed t and measurable'iﬂ t for each fixed y
with fF(y,t)]| < m(t), m(t) integrable. Let T be the linear manifold of
absolutely continuous func.:tAions- in g([o,l],Rp). Let UKi be the operator

given by

Uy, ) (1) = H(t) {-Ky(0) - Ly(1) + My(0) + Ny(1)}
1 .
+ [ s t0es)ves) - vy s)) as
o
for y(+) in £([0,1],RP). Then (i) uiL maps £ ([0,1],RP) into £ ([0,1],RP) ‘and’

. -3.5.13

I into T ; (ii) the operator I—UiL has a bounded linear inverse on T witﬁ

J -1 I,
[1-Uy 17y = [1-v ]y 3.5.14

for y in T and

Vg ¥ = B (©){(-My(0) - Ny(1) + Ky(0) + Ly(1)}

3.5.15
& @0 - Ky
(iii) if y(-) is in §£([0,1],RP), then
P = 17 o) - w0 | 3.5.16
‘and.(iv) under the differentiability assumptiqns
(Tysj' =‘[I-Uin]'1 [(TYJ)' - uy 1. | | 3.5.17

Proof: (See [F1]).
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We shall limit-our future discussions to operato?s U= UiL of the form given
by (3.5.13). It then follows from Lemma 3.5.12 that the modified contréction
. mapping method when applied to the equation y = TJ(y) with modifying operator
U= UiL’ is equivalent to the contraction mapping method applied to the equation
y = 7).

The importantce of this point will become clearer as we develop techniques
for estimating (TyJ)'. We shall now indicaté tﬁe approach that will be considered.

‘Suppose that J is a boundary compatible set for which the corresponding Green's

matrices are easy to evaluate and estimate. Then if "U;L " < q < 1 so that

Jow™ | < 5

the Green's matrices corresponding to J. This édvantage may well offset the loss

, We can obtain an estimate of (3.5.17) which involves only

of accuracy resulting from using (3.5.11). We now have the following.
Theorem 3.5.18
Let y,(-) be an element of # ((0,1],RP) and 1et § = §(y0,r). Suppose that

(i) J = {V(t),M,N} is a boundary compatible set for which

y = F(y,t) gly(©0)) + h(y(1)) = ¢ : 3.5.19

is differentiable on S; (ii) J = {U(t),K,L} is a boundary compatible set; and
(iii) there are real numbers n,q,B, and o with n >0,0<q<1,8 >0, and

o« = B/(1-q) < 1 such that

J . - ' J ' : :
1T Gg) - yp | -.suizps:p {17 ) (O - Yo,i(t”} =n 3.5.20
J ‘ .

W h<a , N | - ssa
sup {0ty Sud 1) <8 3 o 3.5.22
Yye€S y
1 : | - : |
e nsT o : . 3.5.23
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Then the MCM sequence {yn(')} for TJ based on yo(-) and UiL converges uniformly
to.the unique solution y*(.) of (3.5.19) in S and the rate of convergence is
. given by
’ n
Py*C) -y, () 1 s = PAOESNON : 3.5.24
brOOf: Apply Theorem 3.5.4.
In order to illuminate the preceding discussion, let us consider an example
utilizing the previous concepts.
Example 3.5.25.

Let us consider the iterative solution of the differentiable TPBVP given as
y(t) = F(y,t) Ky(0) + Ly(1) = c. 3.5.26

We shall discuss the choice of the boundéry compatible set J= {W(t),M,N} to be
used in the integral representation of the TPBVP. Since the boundary conditions
of (3.5.26) are linear, we shall choose M = K and N = L. Let us suppose that

yo(t) is a good initial estimate for the solution of (3.5.26). Then as indicated,

let us choose W(t) as
W(t) = (3F/3y) (7, (1)), | o 3.5.27

assuming this choice of 3 = {W(t),K,L} is boundary compaiible. However, this
general time varying choice for W(t) makes it extremely aifficult, if not
impossible, to analytically calculate the fundamental matrix @w(t,s) and the
Gnaﬂsfﬁmﬁmw. ‘

Let us now decompose the W(t) matrix as

W(E) = V + 6V(t) 3.5.28

35



where V is a constant matrix of simple structure, e.g., diagonal, which is
boundary compatible with K and L. Then for the boundary compatible set J = {V,K,L}
containing the simple V matrix, it is often possible to analytically calculate

the Green's matrices. We now have

@) = [I-UiL]-l[TJ(y)-UiL ¥l 3.5.29

where
1 _ ,
TJ(y) = HJ(t)C + Jbe(t,s){F(y(s),s) - Vy(s)lds 3.5.30
1 0

UiL y = fGJ(t,s){W(s) y(s) - Vy(s)}ds 3.5.31
or - 0 1

Uy Y = fGJ(t,s)GV(s)ds, ' ' 3.5.32

0

and finally we note

1

Yoy -uy v = H e s fGJ(t,s){F(y(s),s) - W(s)y(s) Mds 3.5.33
0
SO that_ 1
[(TYJ)' - UIJ(L] u = B/.GJ(t,s){(_'aF/ay)(y(s),s) - W(s)lu(s)ds. 3.5.34

Hence we obtain the éonvergence benefifs of choosing a general matrix W(t) while
being abie to calculate the Greeﬁ's matrices using the V matrix of simple
structure.

3.6. Applications of Cohfraction Mappings

Iﬁ this section we shall investigate the application of the contraction
mappings method to the iterative solution of the TPBVP's arisihg from the regula-
tion of nonlinear Systems. In particular, using Theorem 3.4.14 we shall present
the general férm of the tfanslated convérgence theorems for the iterative

solution of these TPBVP's.
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Let us first consider the application to the system presented in Example
2.3.1. Recall that this nonlinear system contained a nonlinear form containing

only the state variable. We have for this case the following translated con-

vergence theorem.

Theorem 3.6.1.
Let y,(*) be an element of g([o,l],Rp) and let § = S(yo,r). Suppose that

(1) 3 = {V(t),M,N} is a boundary compatible set, and (iii) there are real

numbers n and a with n >0 and 0 <a <1 such that

1

1) IIT?(YO) -yl = H'](t) Xq +f GJ(t,s) {[A(s) 'B(S)R‘l(s),B'(s)J [xo(s)l
[0} 0 -Q(s) -A'(s) ERENO!
3.6.2
- V(s) xo(s) + ¢(x0(s)) | ds»— xo(t) <
I E '
Py (s) ax  (x (s))py (s) Py (t) s
1 A .
2) sup {"(T’)-"% =sup sup f GJ(t,sﬂA(s) -B(s)R* 1 (s)B(s)] -v(s)
YES y yes fujp < 1
: ' .10 1-Q(s) . -A' (s)
3.6:3
(52)
ax/(x(s)) 0 u(s)ds [| < a
. ' .
Dix(s),p(s))  -(3%) (x(s))
. . ' . n 32
where  D(s(s),p(s)) = [D,, (x(s),p(s)] = Z(&—];‘XL_)(X(S)) P (s) ,
. J=1 1
. 3.6.4

1
3) To " T

37



Then the CM sequence {yn(-)} for the TPBVP based on y, and J converges uniformly
to the unique solution y* in § and the rate of convergence is given by -
n
Iy () -y, O s 125 () - v O _ 3.6.5
Proof: Apply Theorem 3.4.14 to the TPBVP of Example 2.3.1.

From this general theorem statement, the performance of the numerical
algorithm is difficult to predict. However, in the sequel, we shall develop
coarse estimates for the convergence criteria contained in Theorem 3.6.1.

We shall now apply the contraction mappings convergence theorem to the
operator equation corresponding to the regulation of a sys;em containing a
general formulation for the nonlineafity, i.e., the TPBVP presented in Example

2.3.45. The nonlinearity contained in that TPBVP is given as

e (x(®),p(t)) + B(t) £(x(t),p(t))
fy()) = 3.6.6
-2t (x(t),p(t))p (L)

where we defined

u = g(x(t),p(t)) .
$(x(t),p(t)) = v(x(t),&8(x(t),p(t))

and

(3y/3x) (x(t),& (x(t),p(t)).

Z(x(t),p (t))

Before applying the (M theorem, we shall first calculate an expression for

(3f£/3y) (y(t)) where y is the composite 2n vector [x,p]. We have
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(36/3xXx,p) + B(t) (3E/0x) (x,p)  (36/3p) (x,p) + B(t) (3€/3p) (x,P)
(Pf/3y) (y) = ’ ‘ 3.6.7
- 9/3x [Z2'(x,p)p] - 3/3p [Z'(x,p)p]

Now defining the matrix functions D(x,p) and W(x,p) to be composed of the elements

n
D;;(x.p) = Z (azki/axj](x,p)pk | o 3.6.8
k=1 T :
and n
UNER D DI CCHVE IR ) S | 3.6.9
k=1

we have (3f/3y)(x,p) given as

Z(x,p) + B(t)(3&/3x) (x,p) B(t) (3€/9p) (x,p) + (3¢/3p(x,p)
(3£/3y) (x,p) = '

‘D(X,P) ‘W(X,P) = Z'(XJP)
: : 3.6.10

Using equation (3.6.10) we have the following theorem.
Theorem 3.6.11. ‘

Let y, be an element of g?([o,l],ﬁp) and let § = §(y0,r). Suppose that
(i) J = {V(t),M,N} is a boundary compatible set for which (2.3.46) is differen-
tiable, and (ii) there are‘real numbers n aﬁd a withn >0 and 0 <o <1

such that
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1

# (t) [xo] + fGJ(t,s){[A(s) 0 ] [?(O(s)]
- )

D 1 o)yl -
| | o ° as) A ey

-V (s) xo(S)] ‘ [¢(xo(5)',po(5)) + B(t) E(XO(S),pO(S))]} ds
+ ) .
[pocs)

"2 (xg(8),pg(s)) 3.6.12
b
- <n,
NG| .
_ 4 ‘ 1
2) sup 1"(1‘ J)-M: sup  sup / O -V(s)
yes Iy y€S fuli<l A {[

-Q(s)  -A'(s)

3.6.13
Z2(x(s),p(s))+B(s) (3&e/3x) (x(s),p(s))
' [ -D(x(s),p(s))
B(s) (3£/3p) (x(s),p(s))+(3¢/3p) (x(s),p(s)]] ] uls)ds
-W(x(s),p(s)) - Z'(x(s),p(s)) ”

< a

1
3) =g nsr

Then the (M sequence {yn(-)} for the TPBVP based on y, and J. converges uniformly
to the unique solution y* in § and the rate of convergence is given by -

n
[+

YY) -y () < 1=y () - yg() 3.6.14

As we have indicated, cursory examination of Theorems 3.6.1, 3.6.10, and

3.6.21 yields limited information converning the convergence of the CM sequence.
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The difficulty to a great extent lies in the intricacy of evaluating the integral
containing the Green's function, GJ(t,s), and the derivative term of the form
(3F/éy) (y(s)) - V(s). In the next chapter, we shall consider techniques for

alleviating these difficulties so that meaningful convergence analysis can be

made without extensive computation.
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CHAPTER 4

CALCULATION OF CONVERGENCE CRITERIA

4.1, Introduction
For the boundary compatible set J = {V(t),M,N}, we consider the iterative

solution of the operator equation
y = T () ' 4.1.1
J . -
where T (y) is given by

y(t) = (1) = HJ(t)fC-g(Y(O) - h(y(1)) + My(0) + Ny(1)}

1 4.1.2
+ fGJ(t,s){F(y(s),s) - V(s)y(s) Mds
0
, . W .
and the Green's functions , G are given by
H(t) = ¢V (t,00[M + Ne¥(1,0)]7}
and
6, (t,s) = #V(z,0)[M + eV (1,001 M8V (0,5) , 0<s <t
¢l (t,s) = _ p 4,1.3
Gil(t,s) ='-®v(t,0)[M + Név(l,O)]-lN¢v(l,s) t<s :;1.

Theorem 3.4.14 specified conditions necessary for convergence of the CM sequence

Ynel = TJ(yn). In this chapter, we discuss in detail the evaluation of the

convergence criteria. In particular, we discuss two general schemes that may be
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used to lessen the analyticél difficulties involved in calculating the convergence
parameters n and a.

The first scheme is simply that of selecting-very simple V matrices for use
in the representation. For example, one might select V as the’zero matrix or a
constant diagonal matrix. For these matrices the fundamental matrix is readily
obtained and the Green's function matrices are often easily calculated.

- The second scheme involves the use of a similarity transformation. In this
appfoach, a more general'constént V matrix is selected and transformed into a
canonical form. Then using the canonical form, the fundamental matrix is obtained.
However, for this approach, the calculation of the Green's function matrices is
somewhat complicated by the transformation matrices. In conclusion, an approximate

technique is developed which often yields accurate estimates.

4.2, Estimates of Convergence Criteria

Before considering specific boundary compatible sets, we first specify those
estimates of the convergence parameters which are desired. As indicated in
Theorem 3.4.14, the numbers to be calculated are estimates for "TJ(yO)—you o
and “(Ty")- |- |
- First consider the estimation of "TJ(yO)-Yol' . At this point, it will be
useful to discuss an effective téchniqﬁe for obtaining the initial estimate of

the solution. Consider the iterative solution of the nonlinear TPBVP

)-, = F()",t) » ) 4-2.1

Ky(0) + Ly(1) = ¢,

and the choice of the boundary compatible set J = {W(t),M,N} to be used in the

integrél'representation. Since the boundary conditions of (4.2.1) are linear,
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we choose M=K, N=L in the representation. If we now choose W(t) based upon
(3F/3y) (y,t), i.e., a linearization of the system, then the solution to the

linear TPBVP

Ky (0) + Ly(1) = c

is often a good initial estimate for the solution of (4.2.1). Moreover, this

choice considerably simplifies the calculation of TJ(yd)-y0 since yo(t)=HJ(t)c
. | 1 B |
T y)-y, = fGJ(t,s){F(yO(s),s) - W(s)yy(s) Mds 4.2.3
0 -
for the boundary compatible set J = {W(t),M,N}.

and

The other norm which must be calculated is the derivative norm "(TyJ)'" .

' As presented previously in (3.3.7), a coarse estimate for u(TyJ)'|[is_given.as

“(TYJ)' | < s [ (TYJ)'u 3|

fuff <1
. p 1 5 o P o
< sup sup{E( |G].;.(t,'s)[dsv)‘(sup{z:|(3F./3yk)(y(s),s)
ieP ot (% J : s (4 J
- =10 k=1 | N
- ij(s)|§)} o | ' 4.2.4_
Let us make the following definitions.
. Definition 4,2.5.
Let P(t) = [Pij(t)] be a matrix with entries
1 . : o ‘ .
_ J -
_ 0
or t 1
J . C J
pij(t) = f |gI_. (t,s)|ds + flgn_“(t,s)lds » 4.2.7
0 R t + ' '
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where and g% are elements of GIJ(t,s) and GHJ(t,s) as given in (4.1.3).
ij .

J
81
ij j

J

Definition 4.2.8

Let 2q = [z0 }] be a vector with elements
i P
z, = sup :IF.(y(t),t)- v,.(t) y, ()] 4.2.9
% tefo,y 730 )Z_:l 377 0,0

Definition 4.2.10
Let z = [zi]_be a vector with elements

P _
z, = sup Sup{zl(aFi/ayj)(y(t),t) —.vij(t)II . . 4.2.11

te[0,1)yes| {7

From (4.2.3) and (4.2.4) it follows that conservative values for the convergence

parameters n and o are given by

. P .
IP(-)ZO ”= Asgp' szp{ :E:pij(t)zoj} <n - 4.2.12
j=1
and
"P(')Z|| = s?p s:p{?éipij(t)zj}- Za 4.2.13

In the remainder of this chapter we shall be primarily concerned with techniques
for determining the matrix P(t) for boundary compatible sets containing simple

V matrices.

4.3. Boundary Value Sets of Interest
In this section we shall briefly specify the form of those pairs of boundary
condition matrices which are of interest. The necessary conditions for regulation

of nonlinear systems reduced to TPBVP's of the form

y =Sy + £(y) ' 4.3.1

My(0) + Ny(1) = ¢ : 4.3.2

46



where the matrices M and N depended on the quadratic cost functional being used.
Specifically we had the following cases.

~Definition 4.3.3.

For quadratic cost functionals including a terminal state penalty of the

form (x(T),Kx(T)) , the boundary condition matrices were

[t oo 0 o I o '
M= N = ' ' . 4.3.4
0 0 K I : B

Since we have rank [M N] = 2n,'Lemﬁa 3.2;8 assures a matrix V exists so the set
J = {V,M,N} is boundary compatible.. We shall henceforth refer to set (4.3.4) as
" boundary value set {1}. |
Example 4.3.5.

For quadratic cost functionals which do not include a terminal penalty,

the boundary condition matrices are given as

I 0 0 o .
M: N: .
0 0 0o Ij 4.3.6

Again rank [M N] = 2n, so a V matrix exists such that J = {V,M,N} is boundary

compatible. The set (4.3.6) shall be referred to as boundary value set {2}.

4.4. Boundary Set for Rgguléfion with Terminal Cost

In this section the use of simple V matrices with boundary value set {1}
will be cbnsidered. The requirements'for boundary compatibility of the various
sets J = {V,M,N} will ﬁe noted in particular. |

Boundary value set {1} is given specifically. as.
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I 0 0. 0
M= N =
o 0 -k I
and a general 2n x2n V matrix is represented as
\Y V..
V= [ 11 12]
Va o Va2
The fundamental matrix for V is represented as

Q.. (t,s) Q.,(t,s)
.'q?v(t,s).= [ 11 12 ]

921(t,s) 'ﬂzz(t,s)

The matrix [M + N¢V(1,0)] is now formed explicitly as

1
M+N¢V(1,o) = [
-Ka | (1,0)+0,,(1,0)

and the inverse, if it exists, may be written as

I
pene’ (1,00171 = [

-Kay, (1,0)+2,,(1,0

~[KR;,(1,0040,, (1,001 [-Ka  (1,0)48,; (1]

4.4.1

4.4.2

4.4.4

4.4.5

For this inverse to exist, the matrix EK912(1,0)+922(1,0)] must be nonsingular.

It is noted that for V equal to the zero matrix or a diagonal matrix, the set

J = {V,M,N} is boundary compatiblé. The core of the Green's function is given

by the matrices [M+N¢v(1,0)]°1M and [M+N¢V(1,0)}le which are explicitly given as
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[M+N¢V(1,0)]'1M

L-[-ka, (1,0042,, (1,017 [-Ka,,(1,0)0+2,,)1,0)]

and

[MeNeY (1,001 N

We shall now consider specific choices for the V matrix.

Example 4.4.8.

Consider the choice of the simplest V matrix, i.e., assume V = 0. The

fundamental matrix is then given as

I ¢
¢V(t,s) = [ ]
o IJ.

Now using (4.4.6) and (4.4.7),

K I 0
[M+NoY (1,0)] v = [
K ol
and .
: 0 0
[MeNoY (1,0] N = [
K . 1.

The Green's function matrices are calculated as

cg(t,s) = 0V (t,0) [MeN0 (1,001 MoV (0,5) = [

*and

Gil(t,s)'= ~oVe,0ymeNe’ (1,001 Y eV (1 ,s) = [
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-1

)

4.4.6

]
[-K,,)1,0)+0,,(1,0)]

4.4.7

4.4.9

4.4.10

4.4.11

4.4.12

4.4.13



and the 2n x 2n P(t) matrix defined as

t 1
P(t) = f lGi(t»S)Ids + fIG;I[I(t,S)Ids 4.4.14
0 t ’

is calculated to be

tl 0 ]
P(t) = : < _ e 4.4.15
[IKI (1-t)1 ‘

where elements of |K| are given as Ikijl'

Example 4.4.16
The use of a p x p (2n x 2n) diagonal V matrix is now considered. Let V

be represented as

[}
M i 1
c. : 4.4.16
., : 0 .
. f
Anf
Vz Jeccmmcacaaaao ? _______________
!
) .
] .
0 E t .
R : un J
so the fundamental matrix is then simply
p— : . : . ﬂ
exl(t“s) ; 4.4.17
{
c. ‘ 0
- A t" I
V ~ . e n( s)i
(4 (t)s) = e e ———-——-—-—- b Stk
. '
' ul(t—s)
fe
7.
0 ' *.ou (t-s)
L et T
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which shall be denoted as

2,,(t,s) 0
QV(t,s) - [ 11727
0 sz(t,s) .

This yields using (4.4.6) and (4.4.7),

v 1 [ I 0]
[M#NO' (1,0)] " M 1) :
952(1,0)K 2,;1,0) o

and

v 1 0 0
[M#N®' (1,0)] " N [ 1 1 ]
: -2,,(1,00K  2,5(1,0)

The Green's function matrices are determined to be

Qll(t’s) 0 ]

Gi(t,s) = [ 1.
922('(,0)022(1,0)1(911(.l,s) 0

and

; 0 ' .0
Cp(ts) = -1 J
sz(t,O)sz(l,Q)Kﬂll(1,s) -sz(t,s) .

In many instances the K matrix associated with the terminal cost is a

4.4.18

4.4.19

4.4.20

4.4.21

4.4.22

diagonal matrix. Let us now assume K diagonal with elements ki. Then using

(4.4.21) and (4.4.22), the P(t) matrix is found to be
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, f
At '

1 1
(e " -1 '
) Al N (
~ i
AN ]
N ]
At '
A i——(e oy o
n ‘
P(t) = [-=mmmmmmmmmmmm F
[k, -u;-t) A ‘
e ! (l-e Y :
1 N K
o\ 1
N 1
N~ f
[k | -p (1-t) A
An e D (1-e n)f
b
n {

Example 4.4.24.

0
;; (1-e )
N
N\
N

1 -p_(1-t)
—(1-e )
Ya

4.4.23

Many nonlinear systems of interest have an underlying oscillator structure.

For this reason we shall consider a choice of V matrix containing linear.oscillator

elements. This choice is represented as
~ . -
51 1
- (
., ! 0
S. «
2T PO 0 S
{5
'3 A
0 / *
{ .
v S
L 8 n J
!

where the Si are 2 x 2 matrices of the form

The fundamental matrix for this choice of V is given as
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— . i -
$,( fs) {
~. (‘
' 0
¢5(t,s)
(pv(t,s) P = o 4.4.26
I
' '
: ¢k(t)s)
t T,
0 ; .
i : _‘tn(t’s) ,J
or - . Q (t:S) O
¢V(t,5) = [ 1 _ : 4.4.27
0 sz(t,s) ,
where the ¢i(t,s) are 2 x 2 matrices of the form
oi(t—s) : o, (t-s)
' e cos mi(t-s) e sin wi(t-s) -
= 4.4,28
d>i(t’s) o. (t-s) Oi(t— ) :
-e sin wi(t-s) e 5)cos wi(t-s)

From (4.4.5), the matrix [M+N¢v(1,0)] is nonsingular if 322(1,0) is nonsingular.

We now have

¢£1(1,0) 0 : 4.4.29
-1 RS
f55(1,0)=" NN
0 o
where . -0,
-1 . e ' cos 0y -e sin wy
4,0 = | 5 . 4.4.30
e ' sin o, e ' cos w. ,
i i

" so this choice leads to a boundary compatible set.

The Green's functions are found to be given as
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Q.. (t,s) 0
Gi(t,s) - [ 11 ] 4431

sz(t,O) A Qll(o,s) 0

and

3 0 0 . :
6i(t,8) = 4.4.32
'sz(t’o) A 911(0)5) 'sz(t’s) ’

where the matrix A 1is given as
-1
A = -03,(1,0) K 2,,(1,0). 4.4.33

The matrix P(t) is then given as

¢ .
fln (t,s)|ds 0
1
P(t) = A :
1 1 4.4.34
-./I.sz(t,O) A 911(0,5)|ds ﬁgzz(t,s)lds |
0 0 ‘

Due to the oscillatory nature of the elements of GJ(t,s), the integration of
the absolute values somewhat complicates an analytic solution for P(t). However,
in a future section we shall consider approximate techniques for obtaining this

P(t) matrix.

4.5. Boundary Set for Regulation with No Terminal Cost

In this section the use of simple V matrices with boundary value set {2}
is'conSidered. The requirements for boundary compatibility of the various sets
J = {V,M,N,} shall be noted in particular. Boundary value set {2} is given

specifically as

I 0 0 0
M: N = 4-5.1
0 0 0 I
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A general 2n x 2n matrix is represented as

v v <
v=| 1 12} _ 4.5.2
A\ \") . . . . .

and the’corresponding fundamental matrix is'givén as

. Y] (t:s) Q (‘t,S) . .
6V (t,s) = [ e 12 4.5.3
2,,(t,s) sz(t.é)
The matrix [M+N®V(1,O)] is formed as
v I . o0
[M+Ne" (1,0)] = : 4.5.4
and the inverse, if it exists, is given by
» I ) 0 '
\ -1
[M+N2" (1,0)] ~ = [ } 4.5.5
-1 -1 D
-922(1,9)921(},0) 2,51}

For this inverse to ekist? 922(1,0) must be nonsingu;ar. It is noted that for
V equal to the zero or diagonal matrix, the set J = {V,M,N} is boundary compatible.
At this pqint we ‘shall beginvto take advantage of.the fact that the remaining
results deéired in this section may be obtained from the results of the previous
section with K equal to zero. fhese results ére now presented-for V matrices
of simple structure. | -
Example 4.5.6.

The first selectionAfor the V matrix is the zero matrix, iie., V = 0.

Using the results of Example 4.4.8 with K = 0, the P(t) matrix is given as
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tI 0
P(t) =
0o (@a-v)r] . 4.5.6

Example 4.5.7
For the second choice of the V matrix, a p x p (2n x2n) 4di'agona1 matrix is

selected, i.e.,

AR B 4.5.8

<
[}
)
1
)
1
1
'
)
|
1
)
1
1
1
1
1
. ]
remmmmemd s m -

. . L . )
Now specializing the results of Example 4.4.16 with K = 0, the P(t) matrix is

obtained as

At '
;‘\— (e 1 ~1) i
1 . {
. i
\\ E 0
At L
%—-(en-l) E 4.5.9
P(t) =  |foommmommeee e
. H -y, (1-t)
f.—i— (1l-e 1 )
RS RN
‘ N
0 ' 1 <u,_(1-t)
t n
i e (1-e )
: n

4.6. Application of Similarity Transformations
As an introduction to the use of similarity transformations, consider the

linear TPBVP

y = Vy My(0) + Ny(1) = c . u ‘ 4601
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If the set J = {V,M,N} is boundary compatible, the solution to (4.6.1) is given

by Theorem 3.23 as
y(t) = ¢ (¢,00MeNeY (1,007 . , 4.6.2

In an attempt to ease the calculation of the fundamental matrix ¢v(t,0), consider

. the use of the nonsingular linear transformation

rz =y L , ' 4.6.3

From (4.6.1) , the transformed TPBVP is given as

1

3 = A'VA z, MAz(0) + NAz(1) = c . 4.6.4

~ -1
If the set J = {A "VA, MA, NA} is boundary compatible, the solution for (4.6.4)

may be written as

-1 -1 _
ATTVA _ - :
z(t) = ¢ . T (t)[MA + NA¢A VA'(1,0)] 1., 4.6.5

In passing, it may be quickly shown that if thé.set J = {V,M;N} is b§undary

compatible, the transformed set J = {ACIVA, MA,NA} is also boundary compatible.
" With the matrix [M+N¢v(1,0)] nonsingular, post multiplication by A yields the

nonsingular matrix [MA+N¢V(1,O)A]. The fundamental matrices are related by
QA'IVA |

¢v(1,0) = A (1,0)/\_1 so the nonsingular matrix [MA+N¢V(1,C)A] may be written

-1 .
as [MA+N®A ,VA(l,O)] indicating the transformed set J = {A-lVA,MA,NA} is boundary

compatible. If the transformation A'IVA reduces V to a canonical form, the

-1
fundamental matrix ¢A VA(t,s) is of simple structure.

Now consider the nonlinear TPBVP

y =Sy + £(y) My(0) +Ny(1) =c . ° 4.6.6
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Again consider the nonsingular linear transformation
Az=y 4.6.7

and let

D = A'lvA L _ . 4.6.8
Then (4.6.6) becomes the transformed TPBVP

. -1 -
2 =A"Skz + A lf(AZ) 4.6.9

MAz (0} + NAz(1) = ¢ .

~ -1 .
If the set J = {A "VA, MA, NA} is boundary compatible, the integral representation

 for (4.6.9) is
TJ(y) = HJ(t)c + ./.GJ(t,S){A_lsAz + A le(nz(s)) - Dz)ds . 4,6.10
0

where the Green's functions are given as’
ki D D - ' ‘ '
H(t) = o (t,0) MA+NaeD (1,0)]7} 4 _ o 4.6.11

and

¢ (t,0ya + Nao (1,001 % 0,5) , 0 <s <t

GJ(t,s) 4.6.12

D: _ .
-oP(t,0ymn + NaeP(1,00) IneP1,s) , t<s <1 .
If it is desired to investigate the iterative solution of the operator equation

2= 1) , _ 4.6.13
the operator derivative (TZJ)' is given as
A 1~
J J -1 -1 .
(T, J'u = G’ (t,s){A "SAz(s) + A T (3f/dy)(Az(s))A - Dlu(s)ds 4.6.14
0 ' ’ :
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if the TPBVP is differentiable. However, rather than using (4.6.14), another
approach may be taken. It may easily be shown that a direct relationship exists
. between the Green's functions for the boundary compatible set J = {V,M,N} and

the transformed boundary compatible'setlj = {D,MA,NA} . 1In particular,

H(t,s) = AW (e,s) - 4.6.15
and .

Gg(t,s) = AGg(t,s)A-l o o - 4.6.16

G (t,8)= ACTICE, )0 S 4.6.17

Hence the integral,representation‘for (4.6.6) may be written as
- ol J -1
y(t) = T"(y)(t) = AH (t,s)c + AG” (t,s)A “{Sy(s)+f(y(s),s)-Vy(s)l}ds

0 4.6.18

A~

Then if the matrix A“1VA is a canonical form, ¢D(t,s) and GJ(t,s) are often much
easier to calculate, and it may very well be easier to calculate estimates for
J
(Ty )! .
The theory of canonical forms has received great attention in the past years.

General books of interest include Gantmacher [Gl], Bodweig [B2],Turnbull [T1],

and Ferrar [F2]. Of interest to control analysts are the books of Bellman [B1]
and Ogata [01]. In particular, we now present a well known theorem concerning

the diagonalization of matrices.

Theorem 4.6.19
If the characteristic roots A of the matrix V are distinct, there exists

a matrix A such that
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atva = 2~ 4.6.20
A

Proof. (See Bellman or Ogata).
However, if a p x p matrix V does not possess p linearly independent eigenvectors,
then V is not similar to a diagonal matrix. In this case, it can be proved
rigorously that a p x p matrix, V, possessing less than p linearly independent
charactéristic vectors is similar to the Jordan canonical form, where the
elements in the main diagonal are the characteristic roots and the elements
immediately above the main diagonal are either one or zero and all other elements
are zero. (The proof of this statement may be found in Turnbull.) However,
rather than using the more involved Jordan canonical form, we.shall make use of

the following result from Bellman.

' Theorem 4.6.21

Given any matrix W, we can find a matrix vaith distinct characteristic
roots such that HW-V"_i € , where & isvany preassigned qﬁantity.

Proof. (See Bellman.)

The importance of Theorem 4.6.21 is as follows. Assume énalysis of the
convergence conditions indicates the matrix W is a good choice for use in the
integral reﬁresentatioh. If W contains multiple characteristic roots, it is-
not similar to a diagonal form and the advantages of this simple form are not
available. However, since we are. free to choose the matrix, we may use Theorem
4.6.21 and '"perturb’ the W matrix to a V matrix 'close to W" (i.e., "W—Vﬂ»i_é )

which does have distinct characteristic roots. We may then determine a matrix
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A such that A'IVA is a'diagonal form. We shall consider one further special

case and that is the system whose distinct characteristic roots involve complex

conjugate paris

We shall follow Ogata.

Assume for convenience that the system involves only one pair of complex

conjugate characteristic roots.

than one pair of complex conjugate characteristic roots is obvious.

that the eigenvalues A

"1

Assume also that the eigenvalues A

Ay =0 + jw

and X

1

!

1

Extension to the case where there are more

Assume

are complex conjugates and are.given by

=0 - jw .

matrix is then of the form

[ew 53
u

3

"’Ap are real and distinct.

by means of the transformation matrix defined by

1/2
1/2

-i/2
i/2

Namely the modified diagonal form D is given as

D =K

-1

-1

IS

1

VAK .
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4.6.24

4.6.25
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:

Not only does D have only real elements but, more significantly, K

AK have only real elements, Now setting

the transformation is given the standard form of

p = A tva .

1

A"

1

and

As a result of this discussion, in the sequel the term canonical form shall

specifically refer either to diagonal or to the modified diagonal form as in

(4.6.24).

4.6.27

4.6.28

We shall now choose several forms for the V matrix to illustrate the use

of the similarity transformation with the boundary value sets of interest.

Example 4.6.29.

Let us consider the boundary value set

d S IR W

and the 2n x 2n V matrix with distinct characteristic roots

v 0.
o]
0 sz

The similarity transformation has the form

’ -1
- Ay 0 -1 A O
A= A = -1
0 A ' 0 A

22 22
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and the canonical matrix D is given as

1

D= ATVA 4.6.33

The fundamental matrix of the canonical matrix has the general form

¢ '(t)s)
¢ (t,s) = [ 11 0 l | | 4.6.34
0 9,5, (t,8) '

The matrix [MA + NAéD(l,O)] is obtained as

A 0 :
D 11
[MA + NA® (1,0)] = [ 4 ]' 4.6.35
K8y (1,0 Ayt (1,000,
and if the inverse exists,
Al 0
D -1 11
[MA + NAG®T (1,0)] =
o200k ke 1,00 65k, 0nc2
22 22 11711 * 2247 22
‘ 4.6.36
The Green's functions are then found as
~ ¢,,(t,s) 0
1Y R :
Ieers) - [ ] .6.57
$55(t,0)80),(0,5) 0
and
3 0 0 . :
GII (t,s) = : 4.6.38

where the n x n matrix & is given by
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-1 -1
& ==¢,,(1,0)A,5 KA, 14,,(1,0) . 4.6.39

Then for P(t) defined as

R R | o . .

P(t) = f|G‘I’ (t,s)|ds + f ]G‘;I(t,s)|ds ,
0 t

we have .

r t h
ﬁ¢11(t,s)lds ’ 0

~ 0 .

P(t) =

1 1

ﬁ¢22(t,0)A¢11(0,s)|ds 7 ﬁ¢22(t,s)|ds . . 4.6.40
"0 t

It should be noticed that P(t) may be obtained as
P(t) = AP(e)A" L 4.6.41

" Example 4,6.42.

Let us now consider the use of a 2n x 2n V matrix of the form

Vs 7 4.6.42

I o] - 0 0
M= N =
0 0 0 I . ’ 4.6.43

Defining the canonical form D = A'IVA, we can calculate P(t) by specializing

the results of Example 4.6.29 with K = 0. P(t) is obtained as
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t

ﬁcbu(t,s)lds 0

P(v) = 0 1 . 4.6.44

0 fl¢22(t,s)lds

t .

This is an especially nice result if the V 1 and Voo matrices may be diagonalized.

1
Specifically, if D has the form

B ] -
A '
n~_ : 0
D= |eemmmmmeemen - e _
VM~ 4.6.45
1 ~
; > -
_ i Y
Then P(t) has the particularly simple form _
. A t ) -
i—( ' }
1 \ I
N 1
AN At i
N n i 0
T -1) .
- n :
P(t) = frmmmmmmommomommoomomoees f--cmomoo o 4.6.46
© . -u) (1-)
L)
N
v N
0 ‘ N
i -u_(1-t)
~ I
Ma

In this section, the use of similarity transformations was introdﬁced in an
attempt to simplify the calculation of P(t). For some cases the techniqueAQorkéd
very well yielding simple expressions for P(t). However, in some instances the
matrix P(t) is very awkward to calculate. Consideration of the similarity trans-
formation led to the development of an approximate technique which is presented

in the next section.
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4.7. Approximate Technique
We shall now introduce a technique which, though not mathematically rigorous,
allows one to obtain estimates for P(t) in a much simpler fashion. Using the

1

canonical transformation A, define the matrix D as D = A VA and write Gg(t,s)

and GiI(t,s)_as
G“I‘(t,s) = (reP (2,000 3 oo’ (1,001 I aeP 0,007y 4.7.1
Gfl(t,s) = (0Pt 00n Lyeene’ (1,007 eV 1,0y 340600, 5)0 Y. 4.7.2

The terms have been separated by brackets to indicate the factors contributing to
the magnitude of P(t), namely the inversion and the integration of the fundamental
matrices. Consider the general 2n x 2n V matrix and the resultant fundamental
matrix to be given as .

v v 2,(t,8)  9,(t,s)

V= o' (t,s) =
v \' QZl(t,s) ﬂzz(t,s) . 4.7.3

I 0 0 0 : h
- M= N = . 4.7.4
0 0 -k I , o
we have
I : 0

[M+N¢V(1,0)] = [ 4.7.5

-k, (1,0)+Q,, (1,00 -k®;,(1,0)+0,,(1,0)

and if the inverse exists,

66



I
+NeY (1,001 = [ . A
~[K2 5 (1,0040,5, (1,01 [-kay ) (1,004, (1,0)]

0
-1
[-Kke,,(1,0)+0,,(1,0)] . 4.7.6
The center bracketed terms are then found as
v 1 I 0
[M+N®' (1,0)]7" M = 4.7.7
A 0
and
0 0
MeNoY (1,0)]7 Y Ne¥(1,0) = ] 4.7.8
. -A I -
where the n x n matrix A is given as
-1 ’
A = -[Ka,(1,0)+0,,(1,0)] " [-Ka,, (1,0)+0,, (1,0)]. 4.7.9

Now assuming that @D(t,s) represents the primary magnitude characteristics of

AfbD(t,s)A—1 , we shall form

(o0, 001 MeN2V (1,007 MiteP(0,5)} 4.7.10
and '

-teP (e, 030 uene’ 1,017 oY 1,09316° 0,503 4.7.11

as approximations to Gg(t;s) and Ggl(t,s). Following the discussion in Section 4.6
concerning canonical forms, the fundamental matrix ¢D(t,s) may be represented in

the form

67



D
$,,(t,s) 0
Leesy = | 1

0 ¢f,_’2(t,s) X 4.7.12

Using (4.7.10) and (4.7.11), we obtain the approximations

o2 (t,s) 0
] 11 ,
Y (t,s) & 4.7.13
! D (t,0860 (0,5) 0 '

b2 t.0)26,, (0,

and
0 0

e (t,s) # i
1'% 0 b 0 4.7.14

Finally, this yields

jl«b[l)l(t,SJlds 0
1

4.7.15
1
[|¢32(t,om‘1’1co,s)|ds f](blz)z(t,s)lds
' t

P(t)

For the boundary value set

1 0 0 0
M= N = : 4,7.16
0 o0 o 1], .

we may specialize the results of (4.7.15) with K = 0 to obtain
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t
0fl¢‘jl(t,s)lds 0

P(t) 4,7.17

jl¢§2(t,0)£¢§1(0.s)lds S162, ce.9)1as
t -

where

. -1
b= -05,(1,00,,(1,0) . 4.17.18

These approximations greatly simplify the calculation of P(t), and moreover, they
capture the primary <quantitative behavior of the P(t) matrix. The concepts and
techniques introduced in this chapter will be illustrated in several numerical

examples in Chapter 6.
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CHAPTER 5

CONTROLLABILITY FOR NONLINEAR SYSTEMS

5.1. Introduction

The concept of null controllability isla natural aspect of the study.of
optimal regulation for nonlinear systems. Whereas the optimal regulator attempts
to drive the system from its'initial state into a region near the origin, null
controllability is concerned with driving the system precisely to the origin.
Historically, the issues of regulation and controllability are closely intertwined.
The study of linear regulator problems in a general framework served to uncover
some of the underlying relationships that exist between the structure of the
optimal system and the fundamental concept of controllability [K1], [K3]. Much
of the effort to date concerning null controllability of nonlinear systems has
involved determination of feedback controllers such that the driven systems
satisfy certain Lyapunov-type stability arguments [B4], [G3]. 1In this chapter
the integral representation of TPBVP's and the contraction mapping theorem will
be used to investigate the controllability of nonlinear systems via existence of

solutions arguments.

5.2. Controllability for Linear Systems .
As an introduction to the controllability issue and the approach to be

taken in the study, we shall first consider the controllability of linear-systems.



Definition 5.2.1.

The autonomous linear control process

x(t) = Ax(t) + Bu(t) . _ o 5.2.2

with_ueQ = R"

» is' (completely) controllable in case: for each pair of points
X and X in Rn, there exists a bounded measurable controller u(t) on some finite

interval 0 < t f;T , which steers Xq to x

1 -
Theorem 5.2.3.
The autonomous_linear system
x(t) = Ax(t) + Bu(t) ’ 5.2.4

with uef = Rm, is (completely) controllable if and only if a solution exists to

the linear TPBVP
Xy - A -BB’] X
= 5.2.5
L.b] 0 -A! [p]
[1 o] rx (0) [0 0 fx{1 X,
0 of |p (0)] I. o L(li] ) [xl]

Proof: Assume a solution x*(t), p*(t) exists to the TPBVP (5.2.5). Now cohsider

the optimization problem of determining a control u(t) to drive the system (S.2L4)

from the initial state Xy to the terminal state x

1 : .
J =% f {u), u()) at 5.2.6
0 .

1_-.such that the cost functional
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is minimized. Application of the Pontryagin principle yields precisely the
TPBVP (5.2.5). Then the control

u(t) =-B'p*(t) . 5.2.7
drives the system from x, to Xp -

0

Conversely, assume that the system (5.2.4) is completely controllable. We

shall show that a solution exists to the TPBVP. The linear TPBVP

y(t) = Vy(t) + £(t) , 5.2.8

My(0) + Ny(1) = ¢

A -BB! I 0 : 0 0
0 -A' 0 0 I 0

has a solution for every f(t) and c if det[M+N¢V(1,0)] # 0 . The fundamental

with

matrix for V is'given in the form
' Q (t,S) Y] (t’s)
oV (t,s) = [ 13 125 ] 5.2.10
and the matrix [M+N¢V(1,O)] is obtained in the form

v . I 0 .
[M+Ne" (1,0)] = ‘ ] 5.2.11
,,(1,00  @,,(1,0)

The inverse, if it exists, is given as

I . 0

MeneY (1,0)170 = 5.2.12

-1 ‘ -1
‘912(1:0)911(1:0) 912(1)0)
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v .
and det[M+N¢ (1,0)] = det[le(l,O)];. Now investigating the differential equation

describing ®v(t,0), we have

£, (¢,0)
f15(£,0)

These equations

A2, (£,0) - BB'),(£,0) 5 8;,(0,0) = 0

= -A'sz(tﬁo) 3 922(0’0) =1

yield

2,,(t,0) = A (t,0) = QA(o,_t)'

and

le(t,

Hence for the existence of a solution to the TPBVP (5.2.5), we must have

t
0) = oA

0

1

det[e"(1,0) f¢A(o,o)BB'¢f\(b,§)'do] 0.

However, the assumption of complete controllability specifies

0

1
det[ f¢A(0,U)BB'¢A(0,'0)'do]';€ 0,
0

therefore a solution to the TPBVP must exist.

Hence the issue of invertibility of’912(1,0) leads to the well known

(t,0) f #*(0,0)BB"6*(0,0) 'do .

5.2.13-

5.2.14

5.2.15

5.2.16

5.2.17

controllability Grammian and the approach is seen to yield conditions compatible

with previously derived results. The foilowing cordllary will often prove useful

when selecting a V matrix for a controllability investigationm.
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Corollary 5.2.18

Let the constant 2n x 2n matrices V,M, and N be of the form

V.oV I. 0 o 0
v | B 12 M = N = 5.2.19
0 v, 0o 0 1 0 ‘

with V12 = -BB' where B is an n x r matrix. Then the set J = {V,M,N} is

boundary coﬁpatible if and only if

Vn-l

rank [B’VllB""’ 11

B] =n 5.2.20

_ Proof. See proof of theorem 5.2.3 and Lee and Markus [L1] for the relationship
between (5.2.20) and the controllability Grammian.

The obvious advantage provided by Corollary 5.2,18 is that it removes the
calculation of @v(l,O) when determining the boundary compatibility of a set J
in the form of (5.2.15). With this background, we shall now consider nonlinear

controllability.

5.3. Nonlinear Controllability

In this section we shall extend the approach of Section 5.2 to include
nonlinear systems. However, rather than considering global controllability
as for linear systems, we shall consider local null controllability, i.e.,
the problem of regulating an initial state, near the origin, to the origin.
Definition 5.3.1. {L1]

Consider the control process in R"
%= f(x,u) in €% in R"x @ 5.3.2

where @ is a restraint set in R". The domain vfﬁgf null controllability is
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0 € Rn, each of which can be steered to X, = 0

by some bounded measurable controller u(t) €92 in finite time. If dyzontains

defined as the set of all points x

an open neighborhood of X, = 0, then (5.3.2) is said to be locally controllable
(near the origin). We shall now consider the null controllabiiity of nonlinear

systems by means of integral representations.

- Theorem 5.3.3.

Consider the control process in R"

% = fx,u) in €% in R" x @ 5.3.4

with u = 0 interior to the restraint set Q c RT . .

Assume
(a) £(0,0) = 0 : 5.3.5
(b) rank [B,AB,...,A" 'B] =n , 5.3.6
where A = (3£/9x)(0,0) and B = (3£/3u) (0,0) 5.3.7

Then the domain cl’of null controllability is open in R".

Proof. Let us define the function y(x,u) as

v(x,u) = f(x,u} - Ax - Bu 5.3.8
so that
¥(0,0) = 0 _ . 5.3.9
GH 0o=-0 5.3.10
and
3 o
GO0 =0 . 5.3.11

Now consider the optimization problem composed of the system
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X = Ax + Bu + w(x,g) , 5.3.12
the boundary conditions,

x(0) = x, , x(1) =0, - 5.3.13
and the cost functional

1
J=3 f Q),ue) dt. _ 5.3.14
0

The Hamiltonian for this problem is given by

=1 (umu®) + (ax)p@) + {Bu),pm) ¢ ($0,u,p(0)

5.3.15
and the costate variable is described by the differential equatidn
Y .
p=A'p - (§§-' (x,u)p . 5.3.16
Now assume a control of the form
u = -B'p : 5.3.17
accomplishes the desired transfer. The canonical system of equations is now
~given as
X = Ax - BB'p + y(x,u(p)) 5.3.18
) .
p=-Ap- ('5%)' (x,u(p))p 5.3.19

subject to the boundary conditions
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{ 1 o] [X(O)] [o o] [x(l) [xol
. - . 5.3.20
0 0} tp(0) I o0 p(ll] 0

This may be expressed as

y =Sy + F(y)
My (0) + Ny(1) = ¢

A -BB' I 0]. 0 o X,
S = M = N = c = , 5.3.22
0 A 0 o I o 0 :

b(x,ulp))

5.3.21

where

and

Fly) = 5.3.23

- (%%D‘ (x,ulp)lp

For the boundary compatible set J = {V,M,N} whére M and N are given in (5.3.22),

the solution to (5.3.20) may be written as

1
y(@®) = H (t)c + fGJ(t,s){Sy(s) + F(y(s)) - V(s)y(s)}ds 5.3.24
0 . .
or as an operator equation
y=1w). S . 5.3.25

Clearly with ¢ = 0, y(-) =0is a fixed poiﬁt of TJ. We are now interested in
the existence of a solution, Y(-), if ¢ is varied in a neighborhood of the origin.

Define the variable z as

2=,y .- B ' 5.3.27
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It is seen that a zero of PJ is a fixed point of TJ. We shall now show that
(P;)' (0,0) has a bounded inverse and the desired conclusions concerniné the
- existence of a solution y may be deduced from the implicit function theorem.
(For presentations éf the implicit function theorem, see Kantorovich [K4] and
Holtzman [H1}). The operator derivative is given as

1

(Pf,)' (0,0)v(t) = v(t) - fGJ(t,s){s + (g—;) (0) - V(s)}v(s)ds 5.3.28
0

or.
(P‘;,)' ©,0v = {I-D7]v . 5.3.29
~ oF . - Jo-1 .

If the set J = {S + (5;9(0), M,N,} is boundary compatible, then [I-D"] is

bounded and is given as (see Falb [F1])

~

[I-DJ]'1 v = [I-RJ] v 5.3.30
where
~ 1 ~S
RYv = fGJ(t,s){V(s) - s - (%-5-) 0} v(s)ds. 5.3.31
0

nS
All that now remains is to show that J = {S + (%;J(O),M,N} is boundary compatible.

We have
-y (x,ulp))
F(y) = 2 ’ 5.3.32
‘ -(H)'(x,u(p))p
and .
Ay 3y
) (x,ulp)) D (x,u(p))
oF ox op 5.3.33
GHO) =
Y 3 (aq; , 3 Ay, ,
- axl G u@)p]l - 55l G0 (xuld)p]
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We have from (5.3.10) that (9y/8x}(0,0) = 0 , and (3y/3p) (x,u(p}) may be

obtained as

G x,ue) = G GR (xue) < -[GD (x,u(p) - BIB'

which evaluated for y(:) = 0 vyields
oy -
(a—p-) (0,0) =0 .
Defining the n x n matrix D(x,p) as
3
D(x,p) = (39" (x,ulp)) ,
it only remains to calculate
2 [p(x,p)p] and = [D
3x1P(pipl and 5= [D(x,plp] .
If the n x n matrix Q(x,p) is defined as
- 3
Q(X,P) = -3_;(— [D(X:P)P] )
Then the elements of the matrix are given as
T o

G P = D G e
1 j=1 1 .

and then,

Q0,0) =0 .
Similarly if the n x n matrix T'(x,p) = g?g[D(x,p)p]
then the elements of the matrix are given as

aD

o |
Y P = (a—ﬁli‘%)(x,p)pj + D(x,P)y; -

j=1

80

.34

.35

.3.36

.37

.38

.39

.41

.42



Since D(0,0) = 0 , then from (5.3.42)°
r(,0) =0 . 5.3.43

As a result,

oF
GO =0, 5.3.44
~ ~ ‘
and J is given simply as J = {S,M,N} where
A -BB '
g = 5.3.45
0 -A

Then from the éssumption that tﬁe set {A,B} is controllable and the résulf of
Corollary 5.2.18, the set 3'=‘{S,M,N} is boundary compatible, and consequently
the inverse is bounded. Hence for c¢ in a neighborhood of the origin, a solution
y exists to the TPBVP and the system is null controllable in a neighborhood of

" the origin as was to be proved. In addition,'we note that the términal state

is not required to be the origin, but may be any point Xy in a neighborhood of
the origin.

The previous theorem does not specify the size of l’, the controllable
region, ﬁnly that the system is ﬁull controllable in a region'near the origin,
In addition, the condition that the.linéarized system be controllable about the
origin is not necessary for nonlinear null controllability. The use of the
contraétion mapping theorem allow; us to consider the domain of Xp,%; such that
a solution exists to the TPBVP, and moreover, the theorem is stated without
spécifying linearized controllability.. As an example of the use of the contrac-
tion mappings theorem for controllability investigation, the broad class of

systems described as
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x = f(x) + Bu 5.3.46

will be considered.
Theorem 5.3.47.

Consider the control process in R"
. 2 . n ‘ : '
= f(x) + Bu in C in R x qQ . ) 5.3.48

Let yo(-) be an element of (Z([O,l],Rp) and let S = §(y0,f). Sﬁppose that
(1) J = {V,M,N} is a boundary compatible set, and (ii) there are feal numbers

n and o with n > 0 and 0 < a < 1 such that
' - 1
D oy = W pxys [ (e + foge
: 0 of
0 - (5§9'(XO(S))P0(S)

x5 (s) " X (£) ‘
T =V(s) ds - <n 5.3.49

Py (s) Py (t)
X .
J : of
2) sup (T’ = sup_  sup G (t,s)([ (=) (x(s))
el y€S fuji < 1 {f x
- §x [c 5y (x(s)p(e))
-0
5.3.50
- ( ) (X(S)) -V(s)| u(s)ds <a
3) T%E' n<r. ‘ - . B ’ 5.3.51

Then the CM sequence {yn(')} for the TPBVP based on Yo and J converges uniformly

to the unique solution y* in S and a control exists, u = -B'p*, to steer the
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system (5.3.48) from x, to the origin.

0

Proof. Consider the optimization problem consisting of the system (5.3.48), t

. cost functional

1
J=3 /(u(t), u(t)) dt, s,
0

and the boundary conditions

x{0) = Xy x(1) =0 . 5.

Application of the Pontryagin principle to the posed optimization problem

. reduces the necessary conditions for optimality to the TPBVP

[x} BB'p + £(x)
. ) = 5
Pl - éheap
[I 0] [x(0) [O 01f x(1) [ X
+ = 5
0 0] [p(O)] I OJ[p(l)] 0 ]

For the boundary compatible set J = {V,M,N}, the solution to the TPBVP may be

written under certain smoothness conditions as

1
[x(t)] o)) = W) [xO] f ¢ (t,s) {[ -BB'p(s) + £(x(s))
= +
. 0
0

p(t) -ED xs)p(s)

- V(s) [x(s)
. %ds 5.
|p@)]
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‘Applying contraction mappings Theorem 3.4.14 to tﬁe operator (5.3.56) yields
the conditions to be proved in Theorem 5.3.47.

For the general system formulation, x = f(x,u), the canonical equations
of 2.3.54 are used subject to the boundary conditions.(S.S.SS); Techniques for

calculating the criteria of Theorem 5.3.47 will now be considered.

5.4. Evaluation of Controllability Convergence Parameters

In Section 4;6, the variables Zgs 2, and P(t) were defined such that coarse
estimétes for n and « were obtained as
IPC)zy i E 5.4.1

and ' . . -
' : “firc)z ) . - 5.4.2

3
1]

R
"

In this section we shall consider the determin#tion of Zgs 2 and P(t) for

the controllability Theoreh 5.3.47. 1In particular, ;He conditions for boundary
compatibility and the use of simple V matricés and similarity transformations
will be considered.

Therboundary value set for controllability problems is given as

1 o0 o o}
M= N =} ' 5.4.3
' o o I © . A '
Assuming a general form for the 2n x 2n V matrix and the fundamental matrix

Qv(t,s), i.e.,

v v : Q. (t,s) Q,.(t,s)
[ 11 12] <I>v(t,s)=[ 1t 12 s 4.4

Qzl(t,s) sz(t,s) .

The matrix [M+N¢v(1,0)] is obtained as
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v I 0

[M+NO" (1,0)] = 5.4.5
911(1,0) 912(1,0) .

This yields det[M+N¢v(l,0)] = det[le(l,O)]. Hence the condition for boundary

compatibility reduces to the nonsingularity of 912(1,0). In'passing, it is seen

that neither the zero matrix nor a diagonal matrix (nor a modified diagonal) may

be used in the integral representation. If det[le(l,O)] # 0 , the inverse of

[M+N¢v(1,0)] is given as

I 0
pene” (1,0)]71 - [ ]

-1 -1
‘912(1,0) 911(1,0) 912(1,0) 5.4.6
‘and then the core matrices of the Green's function are given as
v -1 I 0
[M+N$" (1,0)] "M = 1 _ . 5.4.7
-912 (1,0) 911(1,0) 0
and ) 0 0
eNeY (1,001 n0Y (1,0) = [ . ] . 5.4.8
251,00 2,00 11,

Since the boundary value set (5.4.3) disallows the use of particularly simple
V matrices, we shall consider an approximate technique for calculating GJ(t,s)
and P(t) for V matrices of general structure.

Example 5.4.9. .

Using the canonical transformation

1

D= AT'VA ' 5.4.10
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the Green's function matrices are given as
Gi(t,s) = (neP (e, 000" 3 meneY (1,00 ] M3 neP 0,500
Gél(t,s) = -1ae? (e, 0n T H eV (1,001 MneY (1,0) 1 (neP (0,530

for the boundary compatible set J = {V,M,N}. From (5.4.7) and (5.4.8), the

center bracketed terms in (5.4.11), (5.4.12) are given as

: I 0
MeNeY (1,037 1M = [ l
A0

and
' 0 0
MeNe ¥ (1,031 neY (1,0) = [ ]

where

-1
A = -07,(1,0) @, (1,0)

. D g . . I
Assuming that ¢ (t,s) represents the primary magnitude characteristics of

A@D(t,s)A'l , approximations for Gg(t,s) and Ggl(t,s) are formed as
6 (t,5) % P (t,0) Mene (1,001 Mo (0, 9)
and

617 (t,s) = 00,00 pene’ (1,001 we¥ (1,000%0,5)

Following the discussion in Section 4.6, V is chosen suchvthat éD(t,s) is
" diagonal or modified diagonal and may be represented as
D . .

Pt,s) = b
0 ¢22(t15) . .'
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Using this form of ¢D(t,s) in (5.4.16) and (5.4.17), the approximations for

Gi(t,s) and G%I(t,s) are given as

40, (t,5) 0
J 11 ,
G (t,s) & . 5.4.19
' D t,0) a2 (0,s) o
922 (1,0) 80,05
and
0 0
6l s 2 | 0 0 . 5.4.20
¢,5,(t,0) 8¢4,(0,8)  ¢,,(t,s)
The approximation for P(t) is then given as
[t -
D
S18 s las 0
0 5.4.21
P(t) =~
1 1
D D D
fl¢22(t,0) 8¢, (0,5) |ds f l65,(t,s) |ds
L0 t )
where
-1
A = -075(1,0) 9,;(1,0) . 5.4.22

For D a diagonal matrix, P(t) given by (5.4.21) becomes a particularly simple
form. Several variables are now defined which will be used with P(t) to calculate
estimates for n and a in-Theorem 5.3.47.
Definition 5.4.22.

Using the boundary compatible initial estimate, yo(t) = HJ(t)c, define the

2n vector ZO as
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|-BB'po(s) - Vyyx0(s) - Vy,po(s) + £(xy(s))]
z, * sup
s [-Va1%g () - Vyppg(s) - (B£/2%)" (x4 (s))pg (5]
A conservative estimate for n is given as

n = "P(')ZO .

Definition 5.4.25.

Define the real numbers vij’ gij’ and oij as
v,. = Sup afi
1 ges UG- vy s i.5=1,m o
. ] Tij -
= - ' - . 3 3=
Eij I( BB )IJ v12..l ; i,j=l,n
. ij :
and n azf
= k
Gij - XS;PG,S : IE (Bxiaxj)(x) pkl z ?
7 k=1
and define the n vectors 2y and zyp to be composed of the elements
n
y - (Vij * E13)
i j=1

and

Then the 2n vector z defined as

zZ = ZI
o 114,

88

.23

.24

. 26

.27

.28

.29

.30

.31



may be used with P(t) to obtain a coarse estimate for a as
a= fp()zl . 5.4.32

Numerical evaluation of the convergence criteria is presented for various

examples in Chapter 6.
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CHAPTER 6

6.1. Introduction

We examine the regulation and control of several nonlinear systems to
demonstrate the usefulness of contraction mappings and to illustrate the practical
applications of the major theoréms. There are many well known and very powerful
iterative methods for the solution of optimal control problems. Howefer, practical
éonvergence criteria are few and far between. In this chapter we demonstrate
that general results may be obtained via the application of the contraction
mappings convergence theorem. In addition, the practical application of the
contraction mapping algorithm demonstrates that in many cases it is an efficient,
.straightforward technique for the solution of optimal control problems. The
examples demonstrate that practical application has a much broader range than
the theoretical results might imply. This is primarily due to the coarse
estimates which are used to evaluate the convergence parameters.

The first example to be considered is the regulation of the well known
Van der Pol equation. As én illustrative exercise, both contraction mappings
and modified contraction méppings are applied to this problem. The results
obfained are compared with previously published data. The second example
begins a two part sequence investigating the null controllability of nonlinear’
systems. The first member of the sequence is a particularly simple system

which serves to introduce bounded control problems. The final example of the



chapter considers the null controllability of the pitching motion of a satellite

with bounded control thrust.

6.2. Van der Poi's Equation

In this rather'long_example, we consider in detail manylof the concepts
essential to the contraction mappings theory. In particular, the choice of
the boundary compatible set J and the calculation of the convergence parameters
will be investigated closely. The systém to be considered is the driven, second

order nonlinear oscillator studied by Van der Pol.

X =X, |
)‘( = l—x + C(l-xz )x + .u- 6.2_.1
2 1 172 )
The cost functional to be minimized is taken from Bullock [B6] as
s , _
J = % j [xf(t) " xg(t) + u?(t)]dt , 6.2.2
0
and the boundary conditions for the optimal regulator problem are'given as
x,(0) = 1.0, x,(5) unspecified
xz(O) = 0.0 xz(S) unspecified . 6.2.3

From Example 2.3.10, the necessary conditions for optimality reduce to the TPBVP

y=Sy+ £ : - 6.2.4

Ky(0) + Ly(1) = ¢

where
: —
0 5 .0 0 [ o A
5 0 0 --5] - . 5(1-xf)x2 ] -
S = . fiy) = € ., 6.2.5
5 0o o s 10x, x,p,
2
0 -5 75. 0 _ -5(1—x2)p2 -
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and

1 0 0 o 0 0 0 0 1
c 1 0 o0 0 0 o0 O 0
K = L = c = 6.2.6
0o 0 o0 o 6 0 1 O ) 0
0 0 0 o o 0 0 1 0

Using a boundary compatible set J = {V(t), M, N}, (6.2.4) may be expressed in

integral form as

y@) = B (£){c-ky (0) = Ly(1) + My(0) + Ny(1)} ° |
o 6.2.7
+ ~/ﬁG (t,s){Sy(s) + £(y(s)) - V(s)y(s)}ds
0 : ’
The iterative‘solution of (6.2.7) by contréction méppings is 'now considered.
We begin with the selection of the boundary compatible set J = {V(t),M,N}.
Since the boundary conditions of (6.2.4) are linear, the natﬁral choice
| for the matrices M and N are M=K, N=L. If the initial estimate of the solution
is then chosen as HJ(t)c, every member of the ;oﬁfraction mapping sequence
‘satisfies the‘boundary conditions. As indicated previously, it is often
advantageous to choose the matrix V in such a way that {S + (3f/3y) (y)-V(s)}
is small. Following this guideline geﬁerally requires inclusion of time
varying functions in the V matrix, thus complicating the convergence analysis.
However, ifie_ is small in (6.2.5), an accepfable choice for V is simply the
linear part-of (6.2.4), i.e., V = S. For larger values of € , it may become
necessary to include an effect of the nonlinearity in the choice of the V.matrix,

but for now, consider V to be chosen as
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6.2.8

0o -5 -5 0

The variables P(t)}, z,, and z, defined in Chapter 4 for use in convergence

O,
analysis, will now be obtained for this example. From.(4.2.9), (4.2.11), (6.2.5)

and (6.2.8), the vectors 2y and z are
_ . -
2
115 a-xJ () )%, (1),
= e )
o e [10 x, (£) g%, (t) 4P, (t) | v : 6.2.9
15 a-xdm e,

and ‘
.~ - 0 ! . s
2 % @x, @] + [a-xi@)]

z = sup S:?ge |2 xz(t)pz(t)[ + [2 xlct)pz(t)l»+ |2 xl(t)xz(t)l 6.2.10
t vy :

{l2x, (0, (e3] I(l-xf(t))l

for V given by (6.2.8), the calculation and structure of the fundamental matrix
is somewhat involved, thus complicating the cglculation 6f P(t). Since the
characteristic roots of V are two bairs of cohplex coﬁjpgates, the techniques of
Example 4.4.24 are useful for évaluating the P(t) matrix.v Thg canonical |

transformation

D = A" tva a I j o 6.2:11
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transforms the V matrix into the block diagonal form

where o

to calculate the matrix P(t) from (4.7.1) and (4.7.2).

1

==-3.35, w

1

wl 0 0 W
01 0 0

0 9, &

0 -m2 9, |
= 4,91, and 9,

= 3.35, u,

= 4.91,

6.2.12

It is then straightforward

The parameter & is included .in the example so that the general case may

be considered. In particular we are interested in determining the range of €&

for which the contraction mappings theorem is valid. Before proceeding with

the convergence analysis, the sphere §(y0,r) must be defined. The initial

estimate of the solution, yo(-) is taken to be the boundary compatible initial

estimate, i.e., the solution to the linear TPBVP

or

(It should be noticed that this choice for Yo does not require additional

computation since the terms are necessary for the CM algorithm.) With this

y = Vy

My(0) + Ny(1) = ¢

y(t) = B () c.

choice of y, the radius of S is taken as r =

illustrated in Figure 6.1.
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~ -
S
\\_’4
s -
1 .
P2
0.5
i
s,
‘\V =
\\‘_/,f’.
-1

Figure 6.1 The Sphere §(y0,r)v

From (6.2.9) and (6.2.10), the vectors z, and z are calculated as

0.0 0.0
2.1 5.8 v
zg = E z = & _ 6.2.14
2.5 12.6f - : ’
3.8, 7.9

Conservative estimates for the convergence parameters n and o are obtained as

=]
n

- sup{P(t)zy} = 2.1€ " ' ' 6'.2'.‘15
t : .

and

R
]

sup{P(t)z} = 6.7 - B : - 7 _- 6.2.16
t .
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Using (6.2.15) and (6.2.16), the requirements of Theorem 3.4.14 are specified as

6.7€ < 1 6.2.17
and

2.1& , _ o

ez < 0.1 6.2.18

Analysis of (6.2.17) and (6.2.18) shows that for £ < 0.034 the convergence
conditions of the theorem are satisfied.

The case for € = 1.0 is treated in the paper "A Second-Order Feedback
Method for Optimal Control Computations', by Bullock and Franklin [B6]. In’
the paper, the optimization problem presented by (6.1,2,3) is solved by the
techniqugs of steepest descent and second variation. We now consider the
application of contraction mappings to (6.2.4) with €= 1.0. Again the V mafrix
is chosen V = S. Now rather thaﬁ taking Yo @S the solutioﬁ fo the linear TPBVP,
yo(t) shall be given by the fifth iteration of the CM algorithm begun with the
4 initial guess HJ(t)c} This choice for Yo is made so that the region §(y0,r) is
more likely to.include the solution y(t) to the nonlinear TPBVP. We again take

r = 0.1. This sphere is illustrated in Figure 6.2.

-We shall first determine the convergence rate factor a., Taking the supremum

over §, z is given as

0.0 -
6.1
12.9

8.1]
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Figure 6.2 The Sphere §(y0,r)

and a coarse estimate for a is

a = sup{P(t)z} = 6.8 6.2.19
¢ 4

With a > 1, the conditions of the theorem are not satisfied and convergence is
not guaranteed by the theorem. -However, these theoretical results are only

guidelines for the practical application of contraction mappings. In fact,
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the CM algorithm reduced the convergence norm (given as sup sup|y.

. 1,n+1(t)-yi,n(t)l)
1€p t o

-4 . . . : .
to 10 ° in fourteen iterations. In order to compare these results with those

presented in ‘[B6], we note that the norm of the cost function (given as lJn+1_ Jnl)
was reduced to 10-S in fourteen iterations by the CM algorithm. In [B6], the
computed cost agreed with the optimal in only two significant figures after
eighteen iterations for the steepest descent procedure. The more complicated
second order technique obtained five place accuracy in the cost after five
iterations.
Using the results of Section 3.5, we now consider a technique which is

often effective in reducing a and the number of iterations required by the CM
algorithm.' In this approach, a more complicated boundary compatible set
J = {W(t), M, N} is used in the integral representation. . The matrix W(t) is
designed to include time varying terms attempting to model the effects of the
nonlinearity. For exémple, model [1 - xf(t)] as [1 - (l-t)z] and select the
W(t) matrix as

0 5 0 0 T'

2
-5 5&[1-(1-t)7] o© -5
W(t) = 6.2.20
-5 0 0 5
2

0 -5 -5 -5&[1-(1-t)7]

However, using the equivalence relation (3.5.29), we have
P J -1 J
T = Uyl T o) - Uy v | 6.2.21

for the boundary compatible sets J = {V,M,N} and J = {W(t),M,N}. Hence the Green's
function may be calculated using the simpler set J = {V,M,N} where V is given by
(6.2.8) and P(t) is calculated using the D matrix (6.2.12). We previously found

that with V given by (6.2.8), the conditions of the contraction mappings theorem
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are satisfied for ¢ 5;0.0341 A similar analysis is now done for J-= {W(t) ,M,N}.

The vectors z, and z are given as

and

~ Now using J

Example 3.5.

0
|5x, (1), [1-x5 (1)) - (-0-02]]
= sup €
t | 10x, (£) 4%, (£ 5P, (2D 6.2.22
Isp, (0, [1-x5 (1)) - a-a-©)H]] ]
r o 7
| |2x, (%, (®)] * a-x3(t)) - a-a-?)]
= sup_ £
yes |2x, (®)p, ()| + [2x;(0)p,(e) | + |2x (), (1) ] 6.2.23
| 12x,(0p, ()| + Q<)) - a-a-v2]

= HJ(t)c, r = 0.1, we find following

{W(t), M, N} with Yo (1)

25 and (6.2.22), (6.2.23)

that conservative values for the convergence

parameters are

=]
]

sup {P(t)zo} = 0.64¢€
t .

and

R
n

sup {P(t)z} = 5.0¢§
t

The requirements of Theorem 3.4.14 are then

5.06 <1 6.2.24
and

0.64€

1-5.0¢ =~ 0.1 6.2.25
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Analysis of (6.2.24); (6.2.25) shows that the convergence conditions of the

theorem are satisfied for
€< 0.092 6.2.26

a three fold increase over the previous value. These results are guidelines,
but indicate the improvement due to use of the better designed, though more
complicated, W(t) matrix.

Using the boundary compatible set K {Ww(t) ,M,N} for £ = 1.0, a conservative
value fof a is a = 5,1, an improvement over (6.2.14), but again violating the
theoretical specifications. However, the practical application of the (M
algorithm reduced the convergence norm to 10-5 in eight iterations,‘a significant
improvement over the algorithm using J = {V,M,N}. The iterative sequence for

the control function is shown in Figure 6.3.

0.5

Figure 6.3 Control Iterations

(Numbers indicate iteration sequence.)
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A comparison of the convergence behavior for J and J is shown in Figure 6.4,
HORM

10! |

-

T3 5 7 9 11 13 15

NUMBER OF ITERATIONS

Figure 6.4 Comparison of Performance for Contraction

Mappings and Modified Contraction Mapptions.

6.3. Null Controllability with Bounded Control
The first example of system null controllability involves a simple linear
system with bounded input control. The example is included primarily as an

introduction to the techniques of dealing with a bounded control. Consider

the system

X = Ax + Bu 6.3.1
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where

0 1 0
A= B = 6.3.2
0 0 1
and the control magnitude is constrained to satisfy
fu()] <1, 0<t<T. 6.3.3
The initial conditions are
xl(O) =1, x2(0) =1,
and the final state of the system is required to be the origin, i.e.,
xl(t) =0, XZ(T) =0, : 6.3.5

where T is a prescribed fixed terminal time.

The linéar system (6.3.1) is clearly controllable since rank [B,AB] = 2.
However there do exist combinations of T and X, such that the system cannot
be driven to the origin by the bounded control in time T, We shall investigate
the null controllability of this system by considering the optimization problem

composed of the system (6.4.1), the cost functional
T

i=z fuz(t)dt, 6.3.6
4

and the boundary'conditipns (6.3.4),(6.3.5).

Analytical investigation of this optimization problem yields the
information that the minimum time réquired fér tﬁe system to be driven from
(1,1) to the origin is 1 +\fg: and at this value, the H-minimal control is

bang-bang. As T is increased from 1 + \[g, the optimal control becomes a
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'saturating function; and whéh T is sufficiently great, the H-minimal control
never saturates, i.e., it never takes on its maximum allowable magnitude. These
points concerning null controllability are now illustrated by applying contraction
mappings to the TPBVP associated with the posed optimization problem.

Application of the minimum principle and a change of time variable transforms

the optimization problem into the TPBVP

X, = ax

1 2
x, =-a SAT{pz} _ 6.3.7
p, =0
P, = ap;

with boundary conditions

1 0 0 0] [x(0 0 0 0 0][x(D 1
0 1 0 ‘of {x,(0) 0 0 0 0f]xm 1
| . _ = 6.3.8
0o 0 0 o |p (0 1 0 0 offp W) 0
o 0 0o o [p,(0 0 1 0 of[p,0) 0
or
y = £

. 6.3.9
My(0) + Ny(1) = ¢
where SAT(:) is defined in (2.2.17), and where the time variable has been
changed so that t = as where s € [0,1] and a = T. [(-) now indicates differentia-
tion with respect to s.] We shall consider the case with a = 5.0.
Using the boundary compatible set J = {V,M,N}, the solution to (6.3.9),

if it exists, may be written as
1 2
y(t) = B (t)e + fGJ‘(t,S){f(y(S)) - V(s) y(s)}ds . 6.3.10
0
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From Corollary 5.2.18, the V matrix given by

A -BB!
V =
0 -A'

is boundary compatible with M and N given in (6.3.8). Using V specified in

.(6.3.11), (6.3.10) may be written explicitly as

1 : 0
y(£)=T" () (£)=H’ (t)c + ch_(t,s) ap, (s) -aSAT{(p, (s)} | ds
0 o ‘
0

6.3.11

6.3.12

We shall now investigate the convergence conditions for the contraction mappings

algorithm when applied to this non-differentiable TPBVP.

Instead of deriving

conditions satisfied by the Frechet derivative, we shall be concerned rather with

conditions on the Lipschitz norm of the operator TJ. The initial estimate of

- the solution and the center of the region §(y0,r) is taken to be HJ(t)c. To

complete the definition of S, the radius is set as r=0.2.

trated in Figure 6.5.

Values for "TJ(yo) -y0” and the L'ipschitz norm I]TJUS must now bg

calculated. From (6.3.12), it is seen that the nonlinearity is contained in

This region is illus-

only the second component of the forcing function. Hence we shall investigate

the Lipschitz norm of the operators

1
T'i](u) = /ng (t,s)[au(s) - aSAT{u(s)}]ds
0
where ngis the 1,2 element of the Green's matrix GJ(t,s).

norm is formally defined as
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'Figure 6.5 The Sphere S(yo,r)

ﬂTJU = = sup . "T1 (u) - Tl (V)"
i=s u,Veé 'nu - V‘“ 1 6.3.14
u# v

and for the operator in (6:4.13) ,

1
17 @-T; | "fo 6, (t,5)[alu(s)-v(s))+aSAT(v(5) }-asAT(u(s) }]ds |
hu-vp hu() = veN

6.3.15
or
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1
“Ti(u)—Ti(v)” ) a szp %{.IGgé(t,§){[u(s)fv(s)}ﬁ[SAT{v(s)}—SAT{u(s)}]}Ids

flu - v - . sgp [ulP)-v()T
6.3.16
Now noting
suplu(p)-v(e)| > [u(s)-v(s)| ’ | 6.3.17
and
sgplu(p)—v(p” > |SAT{u(s)}-SAT {v(s)}] , 6.3.18
we have

1
“Ti(u)_Ti(V)” J u(s)-v(s SAT{v(s)}-SAT{u(s)}
oy S {’Giz(t”s) | eSSt TR flas

6.3.19
It may be shown that with r = 0.2
u(s)-v(s) SAT{V(S)}—SAT{u(s)}} <3 6.3.20
[us)-v(s)| lu(s)-v(s)| -

The required Lipschitz norm may now be evaluated in several ways, each of varying
degrees of accuracy. We now consider one of the more accurate techniques.

Note that as a result of the choice of §(y0,r), saturation can only occur

for 0 < s < 0.25. We may now write
.25
173 -3 0] J ,
< 2 asup f |65, (t,s)|ds 6.3.21
Ju - v t 0

which may be approximated as
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00,

S

| A

sup sup {Za(.ZS)Piz(t)} =5/16 < 1
i t

where

1
__
c
- Gy

1

P, (t) = (t,s)|ds + f led. (t,8))ds .

i2 {2 II. i .
t i,2

o

>

Now determining "‘I‘J(yo) - Yy “ , we have

- 1
Tg(yo) - Yoi = f G.‘ilz(t,s)[apz(s)0 - aSAT{pz(s)O}]ds .
0
From yo(-)

sup{,|ap2(t)0 - aSAT{pz(t)o}I} < 0.04a ,
t

and then .25

ITJ(yO)-yO“ sup sup{0.04a [ |Gi2(t,s)|ds}

i t 0

A

I A

(0.04a) (0.25)51i1p Sltlp {p,, ()} = é_o

Taking conservative values a = 5/16, n = 1/60 ,

so that the theoretical application of contraction mappings is successful.

Hence a solution exists to the TPBVP and a control exists to accomplish the

desired transfer. These concepts will now be applied to a nonlinear system.
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6.4. Controllability of Satellite Pitch Motion

The pitch motion of a satellite in circular orbit can be described by the

normalized differential equation

1 X2
X ) -sin X, +u i 6.4.1
2 1

wheﬁever a principal axis of the satellite remains normal to the orbit plane
[R1]." The controlling torque u(t) is bounded (Iu(t)l < 1) and xl(t) is twice
the pitch coordinate. In investigating the null controllability of the system,
our goal is to find an acceptable control u(t) which zeros the pitch and pitch
rate in a preséribed fixed time T .

In a neighborhood of the origin, system (6.4.1) behaves as
X = Ax + Bu 6.4.2

where

0 1

o>
n

0
] B = (3£/5u)(0,0) = H

(3£/9x)(0,0) = [
-1 0 1

6.4.3

For the linear system (6.4.2), rank [B,AB] = 2, and from Theorem 5.3.3, the
nonlinear system (6.4.1) is controllable in a region of the origin. As in the
previous example, null controllability is investigated by considering the optimiza-
tion problem consisting of the system (6.4.1), the specified boundary conditions,
and the cost functional

T
o J = fuz(t)dt ‘ 6.4.4
0 B .

Nf =
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Application of the minimum principle and a change of time variable trans-

forms the optimization problem inte a TPBVP of the form

where

where th

1f

where J
(6.4.2)

given as

y = Sy + f(y) 6.4.5
My(0) + Ny(1) = ¢
[0 a 0 0]
0
0 0 0 0
S = f(y) =|-a sin xl—aSAT{pz} 6.4.6
0 0 0 0
ap, cosx
LO 0 -a 04 2 1
0
(1 0 o0 0] 0 0 o0 X
10
0 1 0 0 0 0 0 X,
M = c = 0 6.4.7
0 0 0 0 0 0 0 0
o0 0 -0 0 1 0 o0 0
e differentiation is now with respect to s where t = as , s€ [0,1].
a solution to (6.4.5) exists, it may be represented as
1
y(t) = HJ(t)c + ~/EJ(t,s){Sy(s) + fy(s)) - V(s)y(s)l}ds 6.4.8
-

{v(t), M, N} is a boundary compatible set. Since the linear system

is controllable, Corollary 5.2.18 states that the 2n x 2n V matrix

\%

li?

-BB!

-At

|

6.4.9

is boundary compatible with M and N given by (6.4.7). Choosing V from (6.4.9)

yields
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vV = 6.4.10

We shall now investigate the null controllability of the system for various

initial conditions and time intervals.

Example 6.4.11.

Consider the initial condition for the system to be 60° for the pitch angle
and zero for the pitch rate. It is desired to regulate the system to zero in
. one half period, i.e., T = w. The initial estimate of the solution and the
center of the sphere § is taken to be HJ(t)c. The region §(y0,r) is defined by
setting.r = 0.1 and is illustrated in Figure 6.6.
It is seen that for this Q(yo, r) that |p2| is always less tHan one so that
saturation néver occurs. Hence the forcing function for (6.4.8) may be con-

sidered as
0

-a(sin X; - xl)
F(y) =Sy + f(y) - Vy =
’ a(cosx1 - l)p2

0

Estimates for the convergence parameters are calculated using the variables

defined as

1 .
P(t) = fIGJ(t,s)Ids ' 6.4.13
0
zoi= szp {lFi(yo(s))I} 6.4.14
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Figure 6.6 The Sphere §(y0,r)i for T = m.

and

P \[3F,
z.= sup_ { Z l(a—f-) (s)) }
J

i
YES j=1

where F(y) is given by (6.4.12). The matrix V given by (6.4.10) may be transformed

into the canonical matrix D given as-
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1 1
-w a 0 0
p=] + 1 6.4.16
0 0 02 w,
0 0 W, 02

where 9, = 0, w =a, 0, = 0.05, w, = a. From (6.4.14), the matrix P(t) may then

be obtained by integration of the expression

t
P(t) = fl{m“(t,o)/\'l}{[M+N¢V(1,0)]'1M}{A¢D(o,s)1\'1}|ds
0

+ fl{AQD(t,O)A-l}{[M+N¢v(1?0)]'1N¢V(1,O)}{A<I>D(0,s)l\'-1}|ds
t

6.4.17
Using (6.4.12), (6.4.15), and taking the supremum over S yields
0 0.0
. |a(cosx1-1)| 0.418
.z = sup_ . _ = 6.4.18
yE 3§ |a_p2 sin xll + |a(cos xl—l)l 0.653
0 : 0.0
The vector Z, is found from (6.4.12) and (6.4.14) as
0.0
0.095
ZO = 6.4.19
0.028
0.0
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Using (6.4.17), (6.4.18), and (6.4.19), conservative estimates for the convergence

parameters n and a are found as

3
i}

sup {P(t)zo} = 0.047 6.4.20
t

R
1

sup {P(t)z} = 0.38 : 6.4.21

Now testing "n/(l-a) < r , we have

S = 0.075 <r=0.1. 6.4.22
1-0 :

Hence the convergence conditions of the contraction mappings theorem are
" satisfied and the theoretical application of contraction mappings is successful.
Moreover, a solution exists to the TPBVP and a control exists to accomplish the
desifed'transfer.
Example 6.4.23

Consider the initial condition for the system to be 60° for the pitch angle
and zero for the pitch rate. It is desired to regulate the system to zero in one
quarter period, i.e., T = n/2. The initial estimate of the solution and the
center of the sphere S is taken to be HJ(t)c. The region §(y0,r) is defined by
setting r = 0.1. This region is illustrated in Figure 6.7.

It is seen that §(yo,r) contains a saturating region for P,- Hen;e the

forcing function for (6.4.8) must be considered as

0
-a(sin xl-xl) —'a(SAT{pz}-pz)
F(y) = Sy + f(y) - Vy = 6.4.24
apz(cosxl-l)

0
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Figure 6.7 The Sphere S(yo,r) for T = n/2.

As in Section 6.3, the Lipschitz norm of the operator TJ(y), not the Frechet
derivative, must be investigated. For S(yo,r), the Lipschitz condition for

F(y) is given as

0 - 0 0 0 ' Ix;-x"; |

0.33 0 0 3.14 |x,-x",|
[FO)-Fo)| <

0.7 0 0 0.34 Ipl—p'll

0 0 0 0o . lp,-p',l
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or

IFo) - Foll<cly -yl . 6.4.26

Using P(t) from (6.4.17) and defining the 2n vector z as composed of the elements

2n
5 = 2 641, 6.4.27
j=1
a conservative estimate for o is [[P(-)zl| . However, because the saturation

occurs ohly over a short interval of §(y0, r) , this estimate would tend to be

quite inaccurate. Hence we deal with the saturation effect separately. Now let

0 0
0.34 3.14

z1 = L 14 and z, = o 6.4.28
0 0

where zZy arises from the differentiable part and z, from the saturating effect.

Then as in Section 6.3 ,

_ 1.0
o = sup {P(t)zl} + sup { f IGJ(t,s)zz|ds} 6.4.29
t t -4 olss -
or
o = sup {P(t)zl} + sup{(3.14)(0.15)Piz(t)} . 6.4.30
t t

Using the values of P(t) from (6.4.17), a is evaluated as

. a=1.56 . . . 6.4.31
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Hence the requirement that o < 1.0 is violated, and convergence is not guaranteed.
However, as indicated previously, these coarse estimates are used as guidelines
for the practical application of contraction mappings. Indeed, the CM algorithm
reduced the convergence norm to 10'5 in ten iterations. Figuré 6.8 - illustrates

the state and control history.

-1.0 |

6.8 State and Control History
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CHAPTER 7

PRELIMINARY STUDY ON THE DYNAMICS OF

DRUG USAGE WITHIN A COMMUNITY

7.1. Introduction

The modeling of complex socio-economic systems has recently received con-
siderable attention. Arising initially as an aid to management decision making,
[F7}, [R2], system modeling is now applied to many systems of public concern
_ [F5], [R3]. The primary objective of the modeling effort is the formulation of
improved administrative control policies. Typically, once a model is developed,
the process of designing improved policies is largely a trial and error process.
That is, the behavior of the system is first simulated with the model using one
control policy and theﬁ another. The simulation results are then compared to
determine which policy yielded the 'best'" behavior, clearly an inexact and
inefficient technique of analysis.

In this chapter we consider the feasibility of applying the systematic
techniques of optimal control theory to the determination of policies for
social systems. Specifically, a dynamic model attempting to represent the
causal, feedback structure of community drug usage is developed. Then using
optimization theory, we atfempt to gain insight into how a community might best
resbond to a rapidly growing heroin addiction problem. The initial phase of -
the study is the creation of a dynamic model which reflects the modes of behavior

of the system being investigated.
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7.2. Development of a Dynamic Model

The development of a model for a complex system such as drug usage is in
itself a major effort. The subtle interrelationships and multi-feedback loops
are often difficult to conceptualize. Likewise, the determinafion of various
parameters within the model is a difficult task involving much data analysis.
The main tﬂrust of ‘this chapter is not in the modeling direction. Rather, we
shall develop a simple model which hopefully reflects inpart the basic behavior
of a very complex system. Similarly, parameter values are chosen after discussions
and rea&ings and are believed fo be reasonable.' In this spirit, the development
of the model is begun. (For the development of a more comprehensive model,
see Roberts [R3]).

The model concerns itself with three groups of people within the community.
These groups represent the three levels of drug usage which will be considered in
the model. These three pools of people are:

i) potenfial drug users

ii) drug users

iii) heroin addicts

" Of course, much finéf lines may be drawn, but these three are sufficient for this
study. The dynamical nature of this problem is reflected in the constantly
changing population of each level and the inherent relationships between these
changes. The multiple interrelationships are often difficult.to conceptualize,
but are critical to the feedback, multiloop structure of the system. Figure 7.1
represents how one might initially conceive this system as simply involving
transitions of people from various stages of drug usage,
In Figure 7.1, the double lines represeﬂt the flow of people between levels and

the values controlling these flows are determined by the variables alongside.
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Figure 7.1 Levels of Drug Usage

However, upon recognizing the feedback structure of the system, Figure 7.2 is a

more accurate representation.

_FEEDBACK STRUCTURE OF DRUG USAGE
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Figure 7.2 Feedback Structure of Drug Usage
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Note that. in reality there are feedback paths from the’drpg users level and
the heroin addicts level back to -the community response. However, we shall
be attempting to determine how a community might best respond rather than
modeling the present reaction.

Let us first consider the flow between potential drug users and drug users.
In this study, "Potential Users' will represent the community population between
the ages of ten and thirty who are not using drugs illegally. The next level of
drug usage, ''Drug Users,' represents that group of people who occasionally
participate in the illegal use of drugs, but who are not addicted to heroin.
The flow between these levels is determined By the drug education program, the
police effort, the number of potential users, and the number of drug users. Of
these four variables, the number of drug users might be considered the dominant.
This is simply due to the fact that the users tend to share their supply, turn-on
their friends, and in general, tend to increase their numbers. The level of the
drug education program and the fear of arrest may tend to deter some potential
users, but these are not the dominant effects. The flow rate from potential users
to users depends on the number of potential users in the sense of availability,
i.e., if there are few pétential users remaining, the inflow into drug users will
wither, and, conversely, if there are many potential users, the self induced
growth rate of drug usage»is unimpeded. Some drug users revert back to potential
users through the efforts of police and education, but this is considered a minor
effect.

The flow from drﬁg users to addicts is of the same form as the flow from
potential users to users. Again, education and police effort tend to deter the

flow and a self growth rate is again present via the number of addicts. The flow
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from Drug Users to Heroin Addicts simply reflects the fact that most addicts
previously used "soft" drugs; it is not a causal indication. Addicts are removed
- from the street primarily by police action which is a result of the community-
response to the number of addicts manifested by the rising crime rate.. The drug
éducation program and police effort are created by community spending for these
programs. In this model, the community spending for police and education are
considered as the two control variables to be determined.

For simulation and optimization studies, the general descrfption of the model
must be transformed into é system of equations characterizing the dynamics of the
system. A convenient procedure for developing equations describing the dynamics
of a general system is the DYNAMO format [P3]. Developed by the Industrial
Dynamics Group at the Sloan School, M.I.T., DYNAMO is both a simulation language
and a discrete equation representation for the system dynamics. We now develop
the DYNAMO equations which describe the dynamics of the drug usaée model.

As indicated in the general description of the system, the number of drug
users determines the nominal growth rate of drug usage, i.e., the ''recruitment"

rate. This is represented as

1

NGRU.K = (g55g) DU-K 7.2.1
where
NGRU Nominal Growth Rate of Drug Usage (—2Sh)
ominal Gro g ge G—rr

.K a postscript indicating that NGRU.K
refers to nominal growth rate at
the pfesent time K

DU  Drug Users

AODC a constant determining the growth rate.
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The availability of potential users is included as a multiplier of the nominal
growth rate and is a function of the difference between the initial number of
potential users and the present number of drug users. The nonlinear relationship
has the general form illustrated in Figure 7.3 where APUM is the availability of

potential users multiplier and IPU is the initial number of potential users.

APUM
1.0

" 1PU-DU
1.0 TIPU

Figure 7.3 Availability of Potential Users Multiplier

The total flow from potential users to drug users is then given as

GRU.KL = (APUM.K) (NGRU.K) ' 7.2.2

where
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GRU Growth Rate of Usage (~—=r)

.KL postscript indicating that GRU.KL refers to the rate of growth
of drug usage during the time increment from K to L.

The nominal growth rate of addiction is determined by the number of addicts as

1
NGRA.K = (Kﬁﬁa AD.K . 7.2.3
where
' NGRA Nominal Growth Rate of Addiction men )
ominal Grow icti (ESH?H
AD Addicts (men)
AOD Constant determining the growth rate.
The number of drug users influences the growth rate of addiction as an availability
multiplier of the form illustrated in Figure 7.4 where ADUM is the availability of

drug users multiplier.

ADUM
1.0

by

Figure 7.4 Availability of Drug Users Multiplier
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The drug education level acts to deter the flow rate and is included as a
multiplier which decreases with increasing education effort. The form of the
function is illustrated in Figure 7.5 where AEDM is the addiction education

multiplier.

AEDM

Figure 7.5 Effect of Education Upon Addiction Growth Rate
The total flow from Drug Users to Addicts is the growth rate of the addiction
level and is given as
GRA.KL = (AEDM.K) (ADUM.K) (NGRA.K). 7.2.4
The population of the drug usage level is then given by
DU.K = DU.J + (DT)(GRU.JK - GRA.JK) 7.2.5

whére GRU is the growth rate of drug usage and GRA is the growth rate of
addiction, i.e., the flow rate from drug usage. ‘DT is delta time, the discrete
time increment.

The removal rate of addicts depends on the number of police, the effectiveness

of police action, and the number of addicts. If it is assumed that each policeman
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arrests a certain number of addicts per month, the nominal removal rate is given

as
NRRPE.K = (GAIN.K) (PE.K) 7.2.6
where
NRRPE Nominal Removal Rate due to Police Effort qﬁg%%ﬂ

GAIN  The effectiveness of police

PE Police Effort (men).
The variable "GAIN" in (7.2.6) is not a constant because addicts are increasingly
careful as police effort increases and, as a result, police effectiveness in
making arrests decreases. The nonlinear form of the GAIN multiplier is shown

in Figure 7.6.

GAIN
1.0
PE
1 2 3 4
Figurg 7.6 Police Effectiveness

Thé removal rate of addicts is also influenced by the availability of addicts to
arrest. This effect is included as a multiplier‘which decreases with decreasing

numbers of addicts, reflecting the difficulty in finding the addicts. The form
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of this relationship is illustrated in Figure 7.7 where AAM is the availability

of addicts multiplier.

AAM

15 30 45 60 N

Figure 7.7  Availability of Addicts Multiplier

The total removal rate is then given as
RRPE.KL = (AAM.K) (GAIN.K) (NRRPE.K) 7.2.7

where RRPE is the removal rate due to police effort. The number of addicts is

then the integration of the inflow and outflow rates, i.e.,
AD.K = AD.J + (DT)( GRA.JK - RRPE.JK). _ 7.2.8

Police effort and the drug education program are considered to be. first

order responses to community spending. In DYNAMO this is represented as

PE.K = PE.J + (DT) (ﬁp-)(cspE.JK - PE.J) 7.2.9
ED.K = ED.J + (DT) (D—}AE-) (CSED.JK - ED.J) 7.2.10

where PE represents the Police Effort (men), DAP the Delay in Adjusting the
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Police (months), CSPE the Community Spending on Police Effort (men), CSPE the

Community Spending on Police Effort (men), ED the Education program (men), DAP
the Delay in Adjusting the Education program (months), and CSED the Community
Spending on Education (men). | .

This completes the development of the system equations, however a simplifica-
tion is now considered. The three states '"Potential Users", "Drug Users', and
"Hefoin Addicts'" are included in the model equations. These three states modeled
the changing population for three divisions of the youth population. However,
in many communities, especially those in which heroin addiction is becoming a
problem, the time dynamics of the first two variables have been completed. That
is, the percenfage of the youth population which falls into the extremely broad
category '"Drug Users'" is relatively fixed or slowly time varying, the major
growth phase being essentially complete. For these reasons, only the variable
"Heroin Addicts" is included as a dynamic variable. This assumption yields the

" following equations describing the system:

i) Addicts: AD.K = AD.J + (DT) (GRA.JK - RRPE.JK) 7.2.11
ii) Police:  PE.K + PE.J + (DT) () (CSPE.JK - PE.J) 7.2.12
iii) Education:-ED.K = ED.J + (DT)(ﬁ%EJ(CSED.JK - ED.J). - 7.2.13

The growth rate of addiction, GRA, is given as
= 1 '
GRA.KL = (AEDM.K)(KBEJAD.K _ 7.2.14

where AEDM is the effect of drug education and AOD is the nominal growth rate

factor of addiction. The removal rate of addicts due to police effort is given

RRPE.KL = (AAM.K) (GAIN.K)PE.K 7.2.15
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where AAM is the availability of addicts multiplier and GAIN is the effectiveness
of police effort.
These discrete representations may easily be transformed into the form of

continuous differential equations as
X = fl(xl,xs) - fz(xl,xz) = f(xl,xz,xs)

.1 1

X2 = G x * Gy ' 7.2.16
.1 1

X3 = - (gapd*s + AR,

. where Xy represents addicts, X, police effort, Xz drug education program, Uy

community spending on police effort, u, community spending on drug education,

2
(DAP) delay in adjusting police effort, and (DAE) the delay in adjusting the
education program. f1 and f, represent respectively the growth rate of addiction

and the removal rate of addicts. This system belongs to the broad class of

nonlinear systems described as
X = Ax + Bu + y(x). ' 7.2.17

The results obtained in Chapters 2 and 3 regarding the optimai regulation of

(7.2.17) will now be applied to the drug usage model.

7.3. Optimal Regulation of the Nonlinear System
The cost functional for the optimization problem is designed to regulate
the number of addicts yet maintain public expenditures at a reasonable level.

Consider the cost functional to be of the form

T _
J =% f [qxf(t) + (cp)uf(t) + (CE)ug(t)]dt 7.3.1

o 0
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where x. represents addicts, u

1 community spending for police, and u

community

1 2

spending for drug education. Appropriate choices for the cost parameters q, CP,
and CE must be made to obtain 'acceptable' levels of x(t) and u(t). A choice

that is often quite reasonable [B7] is given as

é—= maximum allowable (xl)2

1 . 2
(-(-:-[;) = maximum allowable (ul) 7.3.2
(—l-) = maximum allowable (u )2

cp) = maximum a 2

Using (2.3.8) and (2.3.9), the necessary conditions of optimality for the optimiza-
tion problem consisting of the system (7.2.1,2,3), the cost functional (7.3.1),

and the initial condition x(0) = X reduce to the TPBVP

Yy = Sy + ¢(y) , 7.3.3

My (0) + Ny(1) = ¢ 7.3.4

where y is the 2n composite vector

X
y = - -
| P
"0 0 0 0 0 0 T
a a
O -om ° O oEyman)? 0
0._3a_ 0 0 ..__a____z
S = (DAP) (CE) (DAE) 7.3.5
qa 0 0 0 0 0.
a
00 0 0 0
a
(o0 o o o o ey
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- af(xl, Xys x3) 1
0

0

vy) = . 7.3.6
-a(af/axl)(xl,xz,xs)p1 .

-a(af/axz)(xl,xz,xs)p1

- 'a(af/axs) (xl sx2:x3)P1 -

S AR AN SN

and where a is the change of time scale variable.

Values must now be assigned to the various system parameters. In a éense
these parameters depend on the community and environment being discussed. We
aséume that the community of interest is neither an extremely wealthy suburb
nor the extremely poor section of an inner city. We assume the community has a
population of 50,000, The youth population of such a community roughly comprises
30% of the population [S3]. Since we are primarily interested in regulating the
early phases of heroin usage, we assume that initially the community has a low
level of heroin addiction, say one pef thousand of the youth fopulation. Comnuni -
ties generally have a police force composed of approximately one policeman per
thousapd of population, [S3]. We assume that initially the police force has
no effort directed specifiqally at heroin. The community is also assumed to
ipitially have no drug education program. A reasonable value for police effective-
ness is one conviction per month per policeman but decreasing in a nonlinear

manner as police effort increases due to increasing caution among addicts. The
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'The delay in adjusting the police effort is essentially a training delay and is
assumed to be six months. The delay in adjusting the drug education program is
assumed to be one year. The boundary compatible set J = {V,M,N} must now be chosen
for the integral representation, . The.boundary matrices are .chosen directly from

(7.3.7). The V matrix is chosen in the form

" ac ad ae 0 0 0 ]
A a it ..___g___...
0 =AY 0 O wchyoay? O
0 o -2 0 0  e——a
(DAE p)
V= (CE) (DAE) 7.3.8
-aq 0 0 -ac 0 0
a
0 0 0 -ad W 0 '
0. 0 0 -ae - 0 —(%T

vwhere c,d, ana e may be chosen to model the nonlinearity f. The characteristic
Toots of this matrix are real, distinct, and readily evaluated, thus easing the
. determination of the P(t) matrix for convergence aﬁalysis. Numerical cases afe
now considered as examples. 4

Example 7.3.9.

In this example we consider the rather short time intervél of one year.
Specific values are selected for the cost parameters q, CP, CE, and the con-
traction mapping method is applied to the TPBVP arising from the optimal
regulator problem. If it is desired to prevent addiction from growing greatly
from its initial value, q may be selected as 0.04. This represents the maximum

desired number of addicts as 5 in (7.3.2). If the police can allocate a maximum
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nonlinear effectiveness curve is illustrated in Figure 7.8,

GAIN
1.0
PE
1 2 3 4
Figure 7.8 Police Effectiveness

The effectiveness of the drug education program is assumed to reduce the addiction
growth rate by a maximum of 50% for a highly effective education program. The
effectiveness is modeled as a function of the number of people involved in the

drug education program. This is illustrated in Figure 7.9.

AEDM

1.

2 4 6 8 10¢tD

Figure 7.9 Effect of Education Upon Addiction Growth Rate
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of two men to the control of addiction, CP may be chosen as 0.25. Simila;ly, if
the school committee believes that ten teachers are sufficient for the drug
education program, CE may be chosen.as CE = 0.01.

The contraction mapping algorithm is begun with HJ(t)c; Yo» the center of
S(yo,r), is chosen as the third member of the CM sequence, and r is set as

r = 0.2. The center of §(yo,r) is shown in Figure 7.10.

AD
15.
PE
10. | 1|
5.1 6l
. |
ED Py
.00]_ "O |
5.1
! ]
P2 P3 .
o | 1
.001
-3 I -

Figure 7.10 The Function yo(t) for T = 12 Months.
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Now determing the convergence parameters n and o , the vectors zg and z

composed of the elements

2n 2n
A X 1) MO SRR AN I PRI G |
it = j ~ j
: )= )= 7.3.10
2n
g = sup { 21 ls; 0 + @v; /oy - vij(t)l}
j=

are evaluated as

[0.12 1 £ 0.13 T
.0 0
0 0
z, = ‘2 = 7.3.11
0.01 0.02
0.11 0.14
| 0.02 ] | 0.03 ]

. Using the distinct characteristic roots, (4.7.17) is evaluated for P(t) yielding

conservative values for n and a as:

0.14

3
n

sup {P(t)zo}
t 7.3.12

0.16 .

R
]

sup {P(t)z}
t
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We then have

A - 0.17<r1=0.2.
1-a

Hence the conditions of the theorem are satisfied and the theofetical application
of contraction mappings is successful and convergence of the (M sequence is
indicated. The practical application of the CM algorithm reduced the convergence
norﬁ to 10-3 in ten iterations. The time histories for the state variables

addicts, police effort, and drﬁg education are illustrated in Figuré 7.11.

AD
15.
10.

5.

ED
.001

Figure 7.11 Addicts, Police, and Education for T = 12 Months

We shall delay discussing the implications of these results until the néxt. example
is presented.
Examplé 7.3.13.

In this example we consider longer term behavior and let the time interval of
interest be four years. If it is desired to prevent addiction from growing over

20 in the four year period, q may be selected as 0.0025. If the police can
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allocate only one man to the control of addiction, CP may be chosen as 1.0,
Similarly, if the school committee believes that ten teachers are sufficient
for the drug education program, CE may be selected as 0.01.

The contractioh mapping algorithm is begun with HJ(t)c; Yo» the center of
S(yo,r), is chosen as the fifth member of the (M sequence; and r is set as

r = 0.2. The center of S(yo,r) is illustrated in Figure 7,12.

AD
30 e PE
’. N -
20 /———/ 4|
10 } 2l
ED Py
3
[ 2
31
I 1}
1
] 1
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R )
N | \//
-2 ] 10

-3k
Figure 7.12 Addicts, Police, and Education for T = 12 Months

Using (7.3.10) and §(y0,r), the vectors zq and z are evaluated as

r0.55 7 [ 0.59 ]
0 0
0 0
z, = z = 7.3.14
0.06 : 0.08
0.52 0.54
| 0.09 [ 0.11 ]
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Using a = 48, (4.7.17) is evaluated for P(t) yielding conservative values for

n and o as

n = sup'{P(t)zo} = 0.62
t 7.3.15
a = sup {P(t)z} = 0.73
t
We have a < 1.0, however
no_ _ ' e
T = 2.5>r=0.2 7.3.16
-0 . .

so the theoretical application of contraction mappings does not guarantee con-
vergence. However, these results are only guidelines for the practical application
of the CM algorithm. In fact, the CM algorithm reduced the convergence norm to
10.3 in.twelve iterations. The time histories for. the state variables addicts,

police effort, and drug education are illustrated in Figure 7.13.

: PE.

AD - 0.4]

30 0.3}
20 0.2}
10 0.1

Figure 7.13 Addicts, Police, and Education for T = 48 Months
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'Discussion of Results

Although the stated purpose of this chapter is illustrative in nature,
perhaps one or two broad qualitative implicatons may be drawn from the results
of the two sample cases., First, the need for prompt action is.clearly indicated.
With addiction growing at an exponential rate, any delay in dealing with the
problem is ﬁritical. In both examples, the police effort with a short reaction
time is used to begin removing the addiction core as quickly as possible. In
the first example, it is seen that the controller responds to the short term
situation with basically only a police effort. This is ﬁrimarily due to the
fact that the controller does not have the time to establish a viable drug
education program. The second example is a longer term situation and the control
response is seen to be reasonably balanced, i.e., the optimal regulator responds
with both police effort and an education program. Again the police effort is
the first to be utilized, but the education program is brought into play as
quickly as possible.and tends to deter long term growth. The drawing of
quantitative conclusions from these examples would be of dubious value. However,
the chapter illustrates that system modeling and optimal control theory may be
" jointly utilized to obtain information and insight into policy formulation for
complex'systems. Moreover, the éhépter demonstrates that contraction mappings
is a useful concept and tool for both the theoretical and practical investigation

of nonlinear system control.
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CHAPTER 8

SUMMARY, CONTRIBUTIONS AND RECOMMENDATIONS

8.1.-'Summ;ry

" In the broadest sense, the objective of this dissertation was to study the
theoretical and applied aspects of contraction mappings for the solition of
nonlinear control problems. This objective was achieved by considering the
theoretical and practical application of contraction mappings to the particular
issues of optimal regulation and controllability of nonlinear dynamical systems.

It was shown in the study that application of the Pontryagin principle to
the optimal regulator problem yielded necessary conditions for optimality in
the form of a two point boundary value problem. Optimal system regulation was
considered for both unconstrained and bounded controls and results were derived
for the optimal regulation of linear dynamical systems and several classes of
nonlinear systems. By an' appropriate selection of boundary conditions, it was
" shown that the issue of controllability for dynamical Systems may also be reduced
to the Study of two point boundaiy value problems. T
The representation of two point ‘boundary value problems by an iﬁtggrar

equation was then introduced and made it possible to consider the solution of
two point: boundary value problems as the solution of corresponding operator
equations. The joint application of the integral representation and the implicit
fﬁnction theorem provided new insight into the controllability of nonlinear
systems. The methods of contraction mappings and modified contraction mappings -

were then presented for the solution of operator equations. Convergence theorems
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were presented for both methods, and translated convergence theorems were derived
for those operators arising from the optimal regulation of nonlinear systems.

A detailed investigation of the calculation of the theoretical convergence criteria
was conducted. Upper bounds were presented for the Lipschitz norm and derivative
norm, and various techniques for evaluating these bounds were introduced. In
particular, the use of simply structured matrices and similarity transformations
were considered. The use of partitioned matrices in these developments provide
considerable insight into the generic structure of the Green's matrices contained
within the integral representation.

Several numerical examples were presented to illustrate the theoretical and
practical application of contraction mappings to the regulation and control of
nonlinear systems. In particular, an example involving the regulation of
Van der-Pol’s equation was used to illustrate the calculation of the convergence
parameters and to demonstrate the manner in which the modified contraction mappings
method may be used to extend the range of applicability of contraction mappings.
An example considering the null controllability of the pitch motion of a satellite
with bounded control thrust was then presented. This exaﬁple illustrated the
application of contraction mappings to an operator which did not satisfy differ-
entiability conditions. The Lipschitz norm rather than the derivative norm was
then used for the theoretical convergence analysis and to prove null controllabil-
ity from the initial pointa The final example involved the development of a
dynamic model attempting to represent the causal, feedback structure of community
drug usage. Optimal regulator theory and contraqti@n mappings were then used
to gain insight into how a community might best respond to a rapidly growing
heroin addiction problem. The various examples demonstrate that contraction
mappings is a useful tool for both the theoretical énd practical investigation

of nonlinear system control.
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8.2, Contributions -
The author considers the following items to constitute the original contribu-
“tions of this dissertation.

1. The determination of Green's functions in explicit form using simply
structured matrices and similarity transformations.

2. The development of insight into the generic structure of broad classes
of Green's functions by the use of partitioned matrices.

3. The development of a controllability theory for nonlinear dynamical
systems based on an integral representation of TPBVP's, the implicit function
theorem, and contraction mappings.

4. The theoretical and practical application of contraction mappings to a
nonlinear control problem with bounded input control and the subsequent use of the
Lipschi£z norm to prove convergence for the nondifferentiable operator equation.

5. The theoretical and practical application of contraction mappings to the
optimal regulation of a dynamic model of a socio-economic system.

In addition, convergénce theorems are presented for operators arising from
the optimal regulation of several classes of nonlinear sy§tems. However, these
results are translations of the general theorems presented in Falb [F1] and in

that sense are not completely original.

8.3. Recommendations

In this section some éreas of possible future research will be briefly
outiined. As indicated in the summary, the main thrust of this dissertation has
been directed .toward the application of contraction mappings. However, Falb and
de Jong [F1] have succinctly revealed the close relationship which exists between

contraction mappings, modified contraction mappings, and Newton's method. The
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first area for possible additional research lies in exploiting this relationship
and applying Newton's method to thoge operators arising from the optimal regula-
tion of nonlinear systems. Investigation of the convergence criteria for Newton's
method should yield additional insight into the theory of state regulation for
nonlinear systems. The second area of research lies in the extension of the
controllability results of Chapter 5.. These results for the controllability of
nonlinear systems are essentially local in nature, i.e., they consider controll-
ability near the origin. However with additional analysis using the integral
representation, it should be possible to identify classes of problems for which
global results may be proved. The third and final area of recommended research
involves an in-depth analysis into the relationship between the drug system
model and the results of optimization. In particular, the data base for the
model, parameter identification, and a sensitivity analysis deserve significant
attention. In this manner, critical issues of the problem may be identified for

additional social investigation and data collection.
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APPENDIX A

The contraction mappings program consists of a main program and several
subroutines. A brief description of the function of each part is now presented.

MAIN essentially directs the program and performs no actual computation.
MAIN first calls the subroutine STTRM which calculates the fundamental matrices
¢V (¢,0) and V(0,5). To accomplish this task, STTRM calls AFCT and VELEMS,
and the integration to calculate ¢v(-,-) is performed by DIFEQ. The resultant
fundamental matrices are stored by OUTP and OUTT. MAIN next calls CALC, the
major subroutine of the algorithm. CALC computes the Green's funcpions and
directs the solution of the successive members of the CM sequence. VCAL and
VELEMS are used to calculate V(t), and SBFN calculates {c - g(y(0)) - h(y(0)) +
My(0) + Ny(1) and F(y)}. FINT then calls DQSF tolintegrate the expression

t 1
fG‘;(t,s){F(yn(s),s)-V(s)yn(s)}ds + fG‘;I(t,s){F(yn(s),s)-V(s)yn(s)}ds.

0 t
CONV is then called to test for convergence. 'If the test for convergence is
successful, the program returns to MAIN and ends. If the test for convergence
fails, the algorithm remains in CALC and calculates the successive solutions
until either convergence is attained or a stop condition is réached. All
computations are done in double precision arithmetic. To use the contraction
mappings program, the user must modify only two subroutines, VELEMS and SBFN.

In VELEMS, the user specifies the choice of the V(t) matrix. In SBFN,
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the user specifies the differential equation y = F(y,t) and the boundary
condition g(y(0)) + h(y(1)) = ¢. The program contains many comment statements

to ease application.
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C
C
C

[N

CONTRACTINN MAPPING ALGORITHM

MATN
DOUBLE PPFRCISTION PHIWPHIS PHIOS o DEL Ty FNy Ny YSeAINTL,QAQINT L V,C
NROYKLE PRECTSION XN,XM
NPOYALE PRECISTION FMINT
DOURLE PRECTISION UNITY
NOUBLE PRECISTIGN UN , .
COMMON PHT (239321 ) 3PHIS{Gy24321)DELTLFN({G,21),D(9)
COMMON YS(2321,15),QINT{242]1)40QINT(23,21)4V(9,9,21)
COMMON C{Q) ¢ XN{Q,0) 4 XM(9,6),11,111
COMMON KXy LLyNDM NINT, ITER
DIMENSTION UNTTY(15,15) \
NDIM IS THEC DIMENSIOM OF THE PROBLEM VECTOR
REAND(5,2) NDOTM
2 FCRMAT(TS)
NDM=NDTM
NSQ=NDTMENDTM ]
THE INCREMENT OF SOLYUTTION IS NOW READ IN,
READ(S,3) DELT
3 FORMATI(NIO.?) _
THFE NUMRER (F INCREMENTS IS NOW CALCULATED,
ENTNT=] ,ODD/NDELT+1.1ND
NINT=INDINT(FNINT)
THE SURROUTINE STTRM WTLL NOW RE CALLED T CALCULATE THE STATE
TRANSITION MATRIX OF THE SPECIFTED LINFAR SYSTEM AND ITS ADJNINT
FALL STTEMINDIMY |
THE MATRIX UNITY IS FORMED TN CHECK THE ACCURACY IN CALCULATING
PHI AND PHIS.
No 663 J=1,NDM
DN 663 I=1,NDM
UNTTY(T1,J)=0.0D0
DO £63 K=1,NNM
A2 UINITY (T IV =UNITY( T, )Y 4+PHI( [yKy21)%kDHTS({K,J,21)
N 665 [=1,NDH™ '
WRTTE(A,464) (UNTTY(T,Jd), J=1,NDM)

LbT



C

C

-~

(.

664 FOPMAT(* *¢,5%,D15.8)
£65 CONTINUE
UN=0.,0D0
DO 333 [=1,NDIM
UN=UNITY (I, I)+UN
233 CONTINUFE A
IF(UN oGT. 1.500%NDIM) GO
NOW THF MAJNR SURRNUTINE CALC
NFW SOLUTTION,.
CALL CALCUINDIM) :
A STPP CONDITION IS CHECKEN,
IFLITER LEQ. 15) 510 TN 406
ITERLI=1TER+]
NO 19 K=1,ITERL
WRITE(A,15) K
16 FORMAT('0?',5X,4HK = ,13)
DA 18 J=1,NNIM
WRTTE(6,20) J
20 FORMAT(Y ¢,10X,4H) = ,13)
WRITE(6,17) (YS(JWNDS,K),
17 FORMAT(Y *,15X,DN15, 8)
18 CONTINUE
19 CONTINUFE
ADK STNP
- END

TG 606
[S CALLED T CALCULATE AND STORF THE

NDS=1,NINT)
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CSURRDYTING -SBFN(NDIM)

e

DOUBLE PRECISTIN PHI PHIS, PHINSy DEL Ty FNg Dy YS, 3 INT,Q00INT,V,C
DOYRLE PRECISION XNy XM
DOBLE PRECTISINN YV oF g2 oY1 oYT oGy H,TT,TTT
DOURLE PRECTISTON X1 gX23X2 X4 X5 3 XA, DFIXTyGATN,y GMAX, DGDHP
NDAUYRLE PRECTSTION GTAULAND,AEDM, PT,AAM,AVE ,ORDA PCS,FF
DOUBLE PRECISTIAN CAPYHAR,CP,CFE,a01,02,23
CD."‘*.MO!'\!‘ p"‘I(QQval, 'pH'Ic;(ngYZI., 'DFLT’F'\!(Q'&].)’D(Q,
COMMON YSIUS,21515)40TNT(3,21),00INT(G,21),V(G,9,21)
COMMNYN Q(93.xw(q,9),xw(9,o),11,rrx
COMMON KK, LL 4yNDOM NINT, ITER
”I“FN°T“N YV(]“)'P(IG)'Z(iﬁ).YY(IS).YT(I%).z(la),H(]“)
DIMENSION TT(LS),TTT(15)
DIMENSION DFDXT(/A,64) 4PCS(4)4FF(D)
€ THE FOLLOIWING VARTARLES ARE SE[Q T CALCULATE THE NONL [NFAR
€ OFARCING FUNCTION F(T1),
‘ P1=3,141533NY
AVB=460,0D0
NT=12.000
SMAX=1,.0D0
GTAU=,25500
DAP= A, 00D
NAE=12.0D0
CE=.01N0
f,0=,2500
1=.0400
02=0,000
02=0,000
NO 600 NDT=1,NINT :
£ THF NONLIMFAR FQUATION IS A FUNCTION 0OF THE STATE AT THLC CURRENT

C TIME. A VECTOR OF THF STATF AT THE NDOT IS CREATFD AND IS USER TO

C CALCULATE F AT NDT.
DO. 599 T=1,NDIM
599 YV(T)=YS{TI.NDNT,ITER)

C THIS SU‘"«’]IJTINL CALCULATES THF VALUJSS OF FN=F(Y)=V*xY FOP VALUES OF NOT
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102

113

109

108

X1=YV(1)

X2=YV(2)

X3=YV(3)

X4=YV(4)

XS=YV(5)

X6=YV(5)

N0 102 I=1,3

no 102 J=72,3

DFNXT(T1,J)=0.0D0
GAIN=DCAOS(043600%X2)
NGNP=-0,36D0*NSTIN(0.36N0%X?)
AOD=50.0D0

TF{X2 .GT. 10.000) GO TG 110 _
AENM=,78)04.2500%DCNS(PI%X2/10.0D0)
VFIXT(341)==(42500%PI/10.0D0)ADSIN(PI%X3/10.0N0)xX1/AQD
GO TO 111

AFNDM=,5099

NFDXT(3,1)=0,00D0

CONTINUF

IF(X1 «GT. 60.000) GN TO 112
AAM=,5D0+,.5D0=NSIN(PI*(X1-AVRB/2.0D0)/AVR)
DRNA=GAINAX2%,5D0*(PI1/AVB)XLCOS(PI*(X1~-AVB/2.0D0)/AVB)
GO FN 113 : _
AAM=1,0N0

DRDA=N, 0NN

CONTINUE

DFDXT(1,1)=AENM/AOD-DRDA
DFNXT(241)=-AAMEGAIN=AAMKX 2% DGDP

NO 109 K=1,3

PCS(K) =YV (K+3)

DO 1078 1I=1,3

FF(I)=0.0D0

DO 108 K=1,3

FEOI)=FF(I)+DFDXT(T ,K)*PCS(K)
GRA=AFDMAX1/A0D

RRPE=AAMEGATN%X?2
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FU1)=NT%(GRA-RRPF)
F(2)=DT#(~1,0D0%X2/NAP=1,0N0%X5/{ CAPXDAPXCP) )
F{3)=DTH(=-X3/DAE-X5/(CAEXDALXCE))
FU4)=0T#(-QLI=X1-FF (1)} :
FIS)=DTH{=Q2%5X2+XS/DAP-FF(2))
E(6)=NT*(-Q34X3+X6/0AE-FF(3))
C THF PROOUCT  VINDTY.Y(NDT) TS NOW O8TATNED AND STORED AS A
C FUNCTIGN OF TIME.
NO 598 [=1,NDI4
2(1)=0.000
DD 598 K=1,NDIH
598 Z(I)1=2(T)4VIT4KNDTIEYVIK)
FN IS NOW OBTAINED AND STORED AS A FUNCTION OF TIME
NO 597 TL=1,NDIM ' -
ST FN{TL,NDT)I=F(IL)=-Z(TIL)
£ THIS PROCEDURE IS REPEATED FNR INCREASING NOY
600 CONTINUZ
THIS SUBROUTINE ALSO CALCULATES THE EXPRESSION,
D=C-GUY)=H(Y)+XM%Y(0Q)+XN*Y (1), THE INITIAL AND TERMINAL STATF
VECTORS ARE GENERATED RELOW.
NN 601 T=1,NDIM
YT(I)T-YS( Iv]vITFp)
01 YTCL)=YS(T 4 NINT,ITER)
G(1)=YI(1)
G(2)=YT(2)
GU3)=YT(3)
Gl4)1=0,0D0
G(5)=C.00N0
G(6)=0.000
H(1)=0,009
H(2)=0.000
H(3)=0.000
HU4)=YT(4)
H(5)=YT(5)
H(A)=YT(6)
C THE PRODUCTS M*Y(0) AND NxY(1) ARE NOW OBTAINED AND THE RESULT n

O
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C 1S FORMED,

~02

5073

504

N0 /K02 1=1,NNIM
TT(11=0.300

DN 602 K=1,NDIM
TTOI)=TTUI)4XMOT K RYT(K)
NO €03 I=1,NDNIM
TTT(1)=0.000

NO 603 K=1,NCIM
TYTCII=TTTOI) #XN(T oK) *YT(K)
NN 604 M=1,NDIM

DIMY=CIM) =G(M)=H(MY+TT(M)+TTT (M)
RETURN

END
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SURPQOQUT INE VELEMS(X,A)
C THIS SUBROUTINE CALCULATES THE LIMEAR SYSTEM MATQIX IM VECTOR FiIRM

DOUEBLE PRECISION X,A

douetLe PRECISION TF

pouaLs PRECTS 17N Al A2 y A3, DT, CAPLZCAFE,Q140Q2,03,CP4CF

DIMENSINN A(225

Al=,0200

A2=-,15D0

A3==-,00590

DT=12.000

DAP=4,0N0

DAF=12.010-

CeE=.01D0

fp=,2500

M=,04N0

DA2=C. 000

N3=0,000

A1 )=41%DT

A(?2)y=C. 00D

A(2)1=0.000

A(4)==Q1=DT

A(5)=C. 0NN

A{6)=0,000

A(TI=A2%0T

A(8Y==DT/DAP

AS)=C.00ND

AC1C)Y=0,0D0

A(11)==-02%DT

At12)Y=C.NDD

A(13)=A3%0T

A(14)=C.0N0O

A{15)==DT/DAF

A(lL6)=0.000

A{17)V=0.0D0

A(1R})==Q3%DT

A(12)=0,90N9
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A(20)=0,000
A(21)=0,0D0
AL22)=-A1%DT
A(?3)=-A2%DT
AL24)==A35DT
A(25)=0,000
AL26)==0T/(DAPXDAPXCP)
A(27)=0,0D0
A(28)=0,000
A(29)=0T/NAP
A(301=0,000
ALR1)=0,000
A132)=0.0D0
A(23)==-DT/(TAEXDARRCF)
A34)=0,000
AL35)=0,000
A(3A)=DT/DAE

RETURN

END
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SURROUTINE VCAL
£ THIS SURRQUTINE CALCULATFES AND STORES THE V MATRIX IN TIME.
- NOUBLE PRECISION X, A _

NAUBLE PRECISTIIN PHI W PHT S, PHINSyDELT yFNyDyYSyQINT,OQINT,V,C
DOUBLE PRECISION XN, XM
COMMON PHI(949,21)4PHIS(3,9,21)4DELT4FNI9,21)40(9)
COMMON YS(9921,15),QINT(9,21),0QINT(9,21),V(9,9,21)
COMMON C(9) 4y XN(Dy9) yXM{9,G),T1,T1L
COMMON KK,LL yNDM,NINT, ITER
NIMENSION A(225)
PR 100 J=1,21
X=(J=1)%DELT
CALL VELEMS(X,A)
NQ 555 [Q=1,NDM
NN 554 J0=1,NDM
KQ={10=-1)%NDM+JQ

554 V(JO,IQyJ)=4(KO)

5565 CONTINUFE

100 CONTINUE
2F TURN
END

SSt



C FOR

554
&85

SUBROUTINE AFCT(X,SM,DERV)
C THIS SUBRNUTINFE IS USED TN CALCULATE V(.) IN THE INTEGRATION

PHI .

DOUBLE
DOUBLE
DOURLE
COMMON
COMMON
COMMON
CUOMMCN

PRECISINN PHIZPHISyPHIOS, DELT4FNyDyYSyQINT,0QINT,V,C

DRECTSION XN,y XM ‘

PRECISICN XoSMyNERV,A,TMP
PHI(9,3921)4PHIS(54G9,21)4DELTHFN(G,21),D(9)
YS{9421415) 4 QINT(9921)4QUINT(9421)4V(G49421)
CLO) s XN(939) ¢ XM(Q,49),TT,T11

KKg LLyNDM,NINT,TTER

DIMENSION DERV(15),A(225),SM(15)
CAlLL VELEMS{X,A)

pPO 585

IN=14NDM

TMP=0,0D0

o 554

JA=1 oy NDM

KO=(JO-1)#NDM+T0Q
TMP=TMP+A (KQ)*SM(JD)
DERVIIQ)I=TMP

RETURN
FND
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SUBROUTINE ATEC(X,SMyDERV)

C THIS SUBROUTINE IS USED TO CALCULATE =V'(,) IN THF TINTEGRATION

C FOR

554
555

PHIS.

DOUPLE PRECISIAN PHIZPHI S, PHIOS,DFEL T FNDyYS,GINT,AQINT,V,C
DOUBLE PRECISION XN, XM

NOURLE PRECISINN X,SM,NFRV,A,THp

COMMON PHI(Q,39,21)yPHIS(G,8,21),DELT,FN(9,21),N(9)
COMMON YS(9,321,15) yDINT(9,21),Q0INT(5,21),V(9,9,21)
COMMON C(9) 3 XN(9,9) yXM(C,Q) ,IT,1T11

COMMAN KKoLLyNDOM NINT, ITFR

DIMENSTEN DERVI15),A(2258),SM(15)

CALL VELEMS(IX,A)

DN 565 19=1,NDM

TMP=0), N0

DN 584 J0=1,NIM

KQ=(T1Q-1)=MDM+J1)

THMP=TMP+A(KQ)=SMJN)

NERV(TQ)==-TMP

RETURN

FND
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SUBROUTINE DIFEQ(Ny PMONE s ToDT »CTR yVAR JRHS )
€ THIS SUBROUTINFE IS USFND TN INTEGRATE FUR PHI AND PHIS.
C THF TECHNIQUE 1S A FNURTH CROER RUNGE=KUTTA AS MODIFTED BY GILL.
DOUBLE PRECISION VAR(6) 4RHS(2),CLAM(S0),CCC1,CCC2,CCC3
DOURLE PRECISION UGHLY,RONT2,MNUS,PLUS
DOUBLE PRECISION T,NT:
30 FORMAT(43HIMPROPER COUNTER SETTING IN THE DIFEQ SURRC)
INTEGER CTR,PMODE
TE(PMONE) 99,1,2
1 DO 4 J=1,N
4 QLAM(J)=D,
RONT2=14414213546237300500
MNUS=1.00-1.D0/F00T?
PLUS=1.D04+).NDN/RNOT2
PMODE =1
CTR=0
IF(CTR) 99,3,5
CCC1=.5D0
CCC2=1.00
CCL2=NTx,5N0
T=T+CCC3
G0 TO 20
5 IF(CTR=2) 647,93
A CCCl=MNUS
14 CCC2=CCCl
CCC3=CCC1*DT
60 TO 20
7 CCC1=PLUS
T=T+DT%,500
60 TO 14
B CCC1=.1666666666666667D0
CCC2=.33333333323333330N0
£CC3=DT*.5D0
CTR=-1
20 CTR=CTR+1
CCC1=CCC1%DT

w N
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22

Q9

N0 22 J=1,N

WGHLY=CCC 1*RHS{J) -COO2%QLAM(J)
QLAM(J)'OIAM(J}+UOHLY+UCHLY+UFHLY -CCC3%RHSLY)
VARUJ)=VAR( J) +UGHLY

RETURN

WRITE(6,30)

RETURN

END
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CSURRDOUTTME STTRM(INDIM)
€ THIS SURROUTINF COMPUTES THF STATE TRANSITINN MATRIX 0OF THE LINEAR
C SYSTEM AND ITS ADJOINT AND STORES THEM A5 FUNCTIONS OF TIME,

DOUBLE PRECTISION PHI,PHIS PHIOS,DEL ToyFNyDyYS,OINTLQQINT,V,(
DOUBLF PRECISIONM XNy XM
DOUBLE PRECISTION YoDERY,TF,T,0T
C OMMGON PHI(9,9,21),DH15(9,Q,21),nELT,FN(¢.21),o(9)
COMMON YS(9,21,15),QINT(G,21),Q0QINT(9,21),V(S,9,21)
COMMON CLO) 4y XN(Fy9) g XM(9,8),TT1,117
COMMON KK, LLyNDM,NTINT,TTER
DIMENSTON Y(15),D5RY(15)
INTEGER CTR,PMONE
READ(S,1) DT
1 FORMAT(D10.2)
WRITE(5,2) NT
2 FORMAT (10, 5X, 104INTEGRATINN STFP = ,ND15,.8)
N0 7 1T=1,NDIM
NN 3 J=V,NINM
TF((II-J) .EQ., 0) Y(J)=1,0D0
IF((IT=J) NF, D) Y(J)=0.0D0
3 CONTINUE
T=0.,000
TF=1.0N0
PMNDE =0
cTe=0
KK=0
CALL OUTP(T,Y,NDIM)
4 CONTINUE
CALL AFCT(T,Y,DERY)
CALL DIFEQINDIM,PMONE,T,NDT,CTR, Y,NERY)
IF(CTR +EQ. D) GN TO & =
GO TO 4
5 CALL DUTP(T,Y,NDIM)
TF(T .GE. TE) 60O TO 6
G0 TN 4
4 COMTINUF
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el

1D

1t

13
14

15
16

CONT INUF

NO 9 NN=1,NDTIM

WRITF(6,8) (PHI(NN,NM,21), NM=1,NDIM)
FORMAT('0',5X,D15.3)

CONTINUF

DO 14 T11=1,NDIM

NO 10 J=1,NDIM

IF((III-4) .EQ. 0) Y(J)=1.9D0
TR(LITI=J) JNE. 0) Y(J)=0,000
CONTINUE '
T=0.0D0

TE=1.,ND0

PMANE =)

CIR=0

[_L:O

CALL NUTT(T4Y,NDIM)

CONTINUFE

CALL ATFC{T,Y,DERY)

CALL DIFFQINDIMA,PMIDE,T,DTCTR,Y,DERY)
[E(CTR .FQ. 0O) GI TO 12

GO TO 11 ‘

CALL QUTT(T,Y,NDIM)

IF(T WGE. TF) GO TO 13

GO TO 11

CONT INUF

CONT INUF

DO 16 NN=1,NCIM :
WRTITE(6415) (PHIS(NN,NMys21), NM=1,NLCIM)
FORMAT('0'y5%,D15.8) :
CONT INUE

RETURN

END
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SUBRNOUT

INE QUTP(T,Y,NDIM)

C THIS SUBRQUTINE STORES THE MATRIX PHI(.,0) AT THE APPRPAPRIATE
C INCREMENTS

101

Q9
100

NDOUBLE
NDOUBLE
NOURLE
NNUBLE
COMMOM
COMMONM
COMMON
COMMON
NDIMENSI
DELT=.0
NQ=FLNA
TEST=DA
TF(TEST
WRTITE(6
FORMAT(
KK=KK+1
no <°9 J
PHI(J, 1T

OF TIME.

PRECISION PHIZPHISyPHIOS,DELT4FNyNyYSyQINTL,QQINT,V,C -

PRECISTON XNo XM
PRECISION T,Y
PRECISION DELTLCQ,TEST,CABS :
P4T(949,21)4yPHIS(9y9421),DELT,FN{(9,21),D(9)
YS(9521,15) 4QINY (94921 ),0RINT(9,421),VI9,9,21)
CIOYyXN(G,9) 4, XM{ 9,9}, 11,111
KKegLLyNDMyNINT, ITER ’
ON Y{(9)
$00
T{KK)
BS(QO*DELT-T)
«GT. .0N0100Y GO T3 100
'101) T
'Y, 4HT = ,D15.8)

=1 yNDI™
TeKKY¥=VY{J)

CONTINUE

CONTINU
RETURN
END

E
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SUBROUTINE QUTTI(T,Y,NDIM)
C THIS SUBROUTINE STORES THE MATRIX PHIS{.,0) AT APPROPRIATE
.C INCREMENTS QF TIME,

DOURLE PRFCISICON PHIWPHIS,PHINS,DELT, FV.D,YS,QINT.OQINT Vy
NOURLE PRECISTION XNy XM
DOVBLE PRECISION T,Y
DOULLE PRECISION DELT,PR,TEST,NDARS
COMMON PHTI (949,211 43PHIS(94G54211,NELTHFN(9,21),D(2)
COMMON ¥YS(9421,15)+0INT(9,21),90INT(9,21),V(9,9,21)
COMMON C(9) 3 XN(9y9) 9 XM(949),TT,ITT
COMMON KKy LLyNDOM,NINT,ITFER
DIMENSION Y (9)
DELT=.05D0
PR=FLOATI{LL)
TEST=DABS(RR*DFLT-T)
IF(TEST 4GT. .07201N0).G0 T3 100

. WRITE(%,101) T

101 FORMAT(Y ', 4HT = ,D15,8)
LL=LL+1
ND 99 J=1,NDIM
PHIS(TIT, JyLL)=Y(J)

99 CONTINUE

100 CONTINUF
RETURN
END

‘J
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C CONVFRGENCE

C THG

555
. THE
. SET

SURRDUTINE CALCINDOIM)
C THIS 1S THF MAJOR SUBROUTINE TN THE PROGRAM, HERE THE INTFGRAL
C EQUATIONS ARE SOLVED

nouRLE
nOUsLE
npyaL e
IOURLE
NRURLE
DDUBLE
DOUBLE
OoUBL E
20URLE

IS MADE.
FRECISTON
PRECISTION
PRECISIIN
PRECISION
PRECISTION
PRECISTON
PRECISIGN
PRECISION
PRECISINN

FOR THE ITERATED SNLYTIONS AND THF TEST FOK

DY PHT Sy HTINS yDEL Ty FMy Dy ¥Sya INT,,ONINT 4V,
XN, XM

STy XCoT 9y TMy TN, TFMP1,TEMP2,TEMP3

FpPS

DET

VSI,STIN

TST,TSTIN

RF

COST,CTvV,7

COMMEON PHI(G,9,21),PHIS(9,9,21)4DELT,FN(9421),D(9)
COMMON YS(Qe21415),QINT(G,21),Q0INT(9,21),V(9,9,21)
COMMON CUG) 9 XN(I,9) 9 XM(C4Q), IT, 11T

COMMON KKoLL  NOM,NINT, ITER

NIMENSTON
DTMENSTON
DIMENSICN
DIMENSICHN
NDYMENSION

TEMPLULIS) 3 TEMP2UL1S ) TEMPA(15),L(15),M(15)
TU154 15,210, TM{15,15,21), TN(15,15,21)
XCOLS5915)3VST(225),STIN(L5,15),ST1(15,15)
TST(225),TSLIN(225)

QIV(21),2(21)

FQUIVALENCS (ST(1,1),TST{1))
FAQUIVALENCE (STTIN(L4X),TSTIM{1Y))
RELAXATINN FACTNR IS READ TN, NOPMALLY TT 1S 0ONE,

2EANLS,555

) ’F

EORMATI(N1IN.2)
ROUNDAPY CONDITION MATRICES TN THF ROUNDARY COMPATIARLE

J<=(V'M'N)

ARF NOW READ IN,

nn 2 T=1,NDIM

CEADN(S5,1)

(XM(T4d)y J=1,NDIM)

FORMATI(D1O.2)

CONTINUE

DO 4 T=1,NDIM

READ(5,43)

(XNCT4J)y J=14NDIM)

FORMAT(N10.2)

142!



DAY

O

4
EPS,

[

THE

10
THE

CONTINUE
THE CCOGNVERGENCE MEASURF IS NOW READ IN.
READ(5,Q) EPS
FARMAT(DLD.?)
BOUNDAPY CONDITION VECTNOR 6 TS NOW RFEAD IN.
PEAN(5,10) (C{T), I=1,NDIM)
FORMAT(D10.2)
CONSTANT I5M IS NOW READ IN. IF ISM IS OME, THE PROGRAM

COMPUTES THE INITIAL BOUNDARY COMPATIBLE GUESS.
TF ISM IS NOT ONFEy THE INITIAL SOLUTICN IS NOW READ TN,

664
N

13
14
15

READ(5,645) JSM

FORMAT(IL0) ,

FOBPMING THE PRODUCT OF N=*PHI(1,0)

N7 J=1,NDTM™

NN 7 T=1,NDTM

XCULyJ)¥=0,0D0

N 7 K=1,NDIM
XCAToJ¥=XCAlTod)#XN(T KI=PHT Ky JyNINT)
MATRIX SUM (M+N=PHT(1,D))) IS NOW EORMED,
nO R J=1,NDIH

N5 I=1' NO[”

ST(IyJI=XM(T,J)¢XC(Lyd)

WRTITE(6,12)

FORMAT ('O, 2X,2HSTY

NN 15 T=)1,NDIM

NN 16 Jg=1,N0TH

WRITE(6,13) SI(I,4)

FORMAT(' *,10X,0N15.8)

CONTINUE

CONTINUE

MOADE =P

CALL ARRAY(MODEZNDIM NNIM,15,15,VSI,TST)
CALL MINVIVST o NDIMyDET, Ly M)

MODF=1 :
CALL ARRAY(MIDE,NDIM,NDIM,15,15,VST,TSTIN)
WRITF(6,112)

So1



112 FORMAT(PQ" 42X 44HSTIN)
N 115 I=14,NDIM
DN 114 J=1,NDIM
WRITE(H4112) SIIN{I,J)
113 FORMAT('0', 10X,N1548)
114 CONTINUE
115 CONTINUE
N 4C0 NDT=1,NINT
NN 397 J=1,NDIM
NN 327 I=14,NNIM
T(IyJeNDT)=0.00D0
DD 397 K=1,4,NDIM
AGT TUTyJeNDTI=T{L g JoNDTIHPHILT 4Ky NOT)IRSTIN(K,J)
N0 398 J=1,NDIH
N0 298 [=1,NDIM
T4(T4JyNDT)=0.0D0
: ND 398 K=1,NDIM
2G99 TMUTL 4 JyNITI=TA(T y JyNDTIHT LT ZKyNDT)IXXM(K,yJ)
NN 399 J=1,NDIM
DD 399 T=1,NNIM
TN{I+JsNDT)=0,0D0
DN 399 K=1,NDIM
290 TN(T g JeNDT)=TN (T4 JoNDTI+T (T ,KyNDTIRXC(K,J)
400 CONTINUE :
ITER=0
401 ITER=ITER+]
[FCITER LEQ. 15) GO TN af¢
TF(ITER .GT, 1Y GO TQ 732
TF(ISM ,EQ. 1) G TN 669
N 668 I=1,NNDIM
REAND(S,66T) (YS{I,J4l)y J=1,NINT)
667 FORMATINLIO.2) :
668 CONTINUE
GO TO 670 ,
69 DO 814 NDS=1,NINT
NO B1S T=1,NDIM
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O

S DY O

O o

D

[N

YS(I4NDS,1)}=0.0D0
DD 816 K=1,NDIM
Q1A YSUIWMDSey1)=YS{TNDNS,LI+T(T,KyNDS)%C(K)
P15 CONTINUE
8)4 CONTINUE
670 CONTINUE
NN 818 I=1,NDIM
WRITE(6+317) (YS(T4Ny1)yN=1, NINT)
A17 FORMAT(' ',20X,N15.,8)
812 CONTINUE
THE SURBROUTINE VCAL TS NOW CALLED TD CALCULATE AND STPFF THE LINFAFE
SYSTEM MATRIX AS A FUNCTION OF TIME
CALL VCAL _—
SUBRNUTINE SBFN WILL MOW RE CALLED T CALCULATE FN=F(Y)-V=xY
782 CALL SBFN(NDIM)
SUBROUT INE FINT INTEGRATES PHI(O0sSY=FN(S) FROM ZERD TO T AND
STORES THE INTEGRAL AS A FUNCTION OF Ty WHERF T VARIES FROM ZERND
TO NNE. THESE VALUES ARE YSED TO CALCULATE THE INTEGRAL. FPGM T TO DONE,
CALL FINT(NDIM)
THE NEXT SEQUENCE OF INSTRUCTICNS SOLVES FOR THE NEXT [TEPATED
SOLUTICN. FIRST THE PRADUCT T(T)*D WILL 8E CALCULATED.
NO 304 NNS=1,NINT
PO 300 I=1,NDIM
TEMP1I(I)=0,000
DO 300 K=1,NDIM
30C TEMPLI(I)=TEMPLI({I)+T(I,K4NES)%DI(K)
NEXT, THE PFIODOUCT OF TM(NNS) AND THE INTEGRAL OF FN FROM ZERO TN
NDS IS FORMED, - '
PO 301 T=1,NDIM
TEMP2(1)=0,0D0
NE 301 K=1,NDIM -
201 TEMP2( T )=TEMP2(T)+TM{I K NDS)*QINT(K,NDS)
NEXT, THE PRODUCT OF TN(NDS) AND THE INTEGRAL OF FN FROM NDS T ONE
IS FORMED.
NO 302 1=1,NDIM -
TEMP3(T1)=0.0D0

19T



o)

NG 302 K=1,NDTM
202 TEMPI(T)=TEMPA(])+TN(T,K, N”ﬁ)*QQINT(K,NDS)
THF THREE TFMPS ARE SUMMED TC GIVE THE VALUE NF THE NEW SOLUTTUOM
AT TIMF NDS.
NG 363 JI=1,NDIM
302 YSOJIINDS, ITER+ 1) =(1.0D0-RF)xYS(JJyNDS, ITER)
C #RF(TEMPY (JJI+TEMP2(IJ)-TEMP3(JI))
THTS PRCCEDURE TS RFPEATED FOR INCREASING NDS
304 CONTINUFR
- ITER1=TTFR+1
WRITE{(A,404)

S 406 FNRMAT('0*,5X,2HYS)

DO 4C7 1=1,NDIN
PN 40h N=1,NINT
WRITE(A4405) YS(T4N,ITERY)
405 FORMAT(* *,10X,N15,8)
406 CONTINUE
407 CONTINUE '
CONVERGENCE OF THE ITEQATIONIS NOW TESTED,
CALL CONVINDIM,MM,EPS)
IF(MM (EQ. 1) GG TO 401
9Ce RETURN
END
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D

CSUBROAUTINE FINT(NGIM)
SURROUTINE FINT INTEGRATES PHI(O,S)=FN(S) FROM ZERO TO T AND
STORES THE INTEGRAL AS A FUNCTICN OF T, WHFRE T VARIES FROM 7Fun

T ONE. THESE VALUSS ARFE USFD TO CALCULATE THE INTEGRAL FROM T TO ONE,

NOYPLE PRECISINN PHIZPHIS OHIUS, DEL T, FN D YS,OINTLADINT,V,C
DOUBLE PRECISION XNgXM
NOUBRLF PRECISION AC,7,Q1V
COMMON PHI(Q39421 )y PHIS(9,9,21),0FLT4FN(9421),D(5)
COMMON YS(2421 41513 QINTLG,21)43Q0INT(9,21),V{%5,9,21)
COMMON CLO) o XNIDy Q) o XM GG o IT,111
COMVEON KKy LLyNDMGNINT, ITER
DIMENSTION QO(15,21),2(21),0IVI21)
CALCULATE AND STORF THE VECTOR PHI(0,NDS)IXFN(NDS) AS A FUNCTIAON DF NDS
DO ST NDS=1,NINT
N85 1=1,NDIM
NI ,NDS)I=0,.000
NG G4 K=1,NNIM
94 QLI WNDSI=ANCT,NRSY+PHTISTT K NDSIEEN(KL,NDS)
95 CONTINUF
S7 CONTINUE
THE TIME HISTNRY OF FACH COMPONENT TS 0UT IS VECTOR FORM AND
INTESRATFED BY DQSF.
NO 100 KJI=1,NNTM
N0 98 LJ=1,NTINT
QIVILD)I=2Q(K I, 1)
QR COMTINUE
CALL DOSF{DFELT 4DTIV4Z,NINT)
THE INTEGRALS ARFE STNRED [ GINT AND 2RINT.
DO 99 NN=1,NINT
QINT(KJI¢NNY=Z(NN)
aqQ CONTINUF
100 CONTINUE
DO 202 M=1,NDIM
0 201 MM=1 ,NINT
201 QQINT{M,MM)=QINT(M,NINT)-QINT (M, M)
202 CONTINUE
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SURROUTTNE CONV(NDIM MM, FPS)

r THIS SUBROUTINE TESTS FOR CONVERGENCE NF THE ITERATION,
NOJRLE PRECISICN PHILPHTS, PHIﬂ§ DELTFENy Dy YSHyQINTLOQINT,V,C
DOURLFE PRECISTIN XNy XM
DOUBLE PRECISINN RYLBIGC,BIG,EPS,C DN
NOUBLE PRECTSICN [ABRS .

DQUBLF PRECISION COST,,QIV,7
COMMCN PHI(993421 ) yPHIS(9,y9921)4DELTHFN(9,21),D(9)
COMMNON YS(9,21,415)4QINT(G9,21),QRINT(9,21),V(9,9,21)
COMMON C() ¢ XN{G9ySG) g XM(9,9), 11,111
COMMON KK L L NDMyNINT, ITER
DIHENSTION DY (21),8IGC(15)
DIMENSION QIVI21),Z2(21)
N 700 T=1,NDIM
DO 6298 NDS=1,NINT
AGR NYINDS)=DABSIYS(14NDS,ITER+1)-YS(I,NDS, ITER)’
C THE LARCEST AASOLUTE DIFFERENCE IN THIS COMPONENT WILL NNOW Vv
THE LARGEST ARSOLUTE DIFFERENCE IN THIS COMPONENT WILL NOW BE FDUND
BIG=DY())
DO 6G9 Mz=2,NINT
TFIDY (M) LT, B8IG) GN T 699
BIC=DY (M)
A CONTINLE
700 BIGCLL)=RIG
CON=BIGCI1)
NN T7CY L=2,NDTM
FTF(RIGC(L) LT, CCNY GO T 701
CON=BIGC(L)
701 CONTINUE
WRITE(6,755) CION
T55 FORMAT('0'y 15Xy 30HNORM DF FUNCTION DIFFERENCE = ,D15.8)
- IF(CON L T. EPS) 60O TO @999
MM=1
G0 TN 998
€90 uM=0
998 RETURN
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