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ABSTRACT

This research considers the theoretical and applied aspects of successive
approximation techniques for the determination of controls for nonlinear dynamical
systems. Particular emphasis is placed upon the methods of contraction mappings
and modified contraction mappings. It is shown that application of the Pontryagin
principle to the optimal nonlinear regulator problem results in necessary con-
ditions for optimality in the form of a two point boundary value problem (TPBVP).

The TPBVP is represented by an operator equation and functional analytic results

on the iterative solution of operator equations are applied. The general con-
vergence theorems are translated and applied to those operators arising from

the optimal regulation of nonlinear systems. It is shown that simply structured
matrices and similarity transformations may be used to facilitate the calculation

of the matrix Green's functions and the evaluation of the convergence criteria.
A controllability theory based on the integral representation of TPBVP's, the

implicit function theorem, and contraction mappings is developed for nonlinear
dynamical systems. Contraction mappings is theoretically and practically applied
to a nonlinear control problem with bounded input control, and the Lipschitz
norm is used to prove convergence for the nondifferentiable operator. A dynamic
model representing community drug usage is developed and the contraction mappings
method is used to study the optimal regulation of the nonlinear system.
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CHAPTER t

INTRODUCTION

1.1. Background

Optimal control theory has experienced an increasing growth of interest in

the past two decades. Initially motivated by the aerospace effort, optimal control

theory is now involved in many aspects of general systems engineering. Applica-

tions range from chemical process control to attempts at managerial and economic

planning.

One of the most important and most widely treated problems to date in

optimal control theory is the so-called "Linear Regulator Problem". Historically,

this problem arose in Wiener's work concerning stationary time series and linear

filtering and prediction [W1]. Under the name 'Minimum Integral Squared Error",

development of this problem was continued through the 1950's by Newton [N1],

Booten [B3],and Zadeh [Z1]. Finally utilizing the techniques of modern control

theory, Kalman [K1] presented important new aspects of the problem.

The prominence of this problem is' due to two primary factors. First, the

problem provides a strong link between the classical methods of analytic feedback

system design via frequency domain methods and the more recent variational approach

favoring analysis in the time domain [K4], [W2]. Secondly, the problem allows the

determination of optimal controls in closed form with mathematical ease. (For

general development and presentation of the problem, see Athans and Falb' [A1] and

Lee and Markus [L1]). Finally, a pragmatic motivation for considering the

problem is the ease with which the quadratic cost criteria can be interpreted

1
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physically. Consequently, optimal linear regulation has been extensively

applied to various systems. For example, the theory has found widespread

applications in the area of automatic flight control systems. Much of this

work is based on the significant efforts of Rynaski [R4], [R5]. Other examples

of optimal linear regulation are contained in Dyer and McReynolds [D2].

However, few systems can adequately be described by a linear dynamic model.

In particular, increasing effort is now being devoted to the development of

models representing systems as varied and as complex as urban areas, natural

resource depletion, management of R and D efforts, and drug usage within a

community. These models are primarily due to the efforts of Forrester [F3,

F4,F5,F6] and Roberts [R2]. Along with many engineering systems, these systems

contain inherent nonlinearities which must be included in any meaningful study.

In contrast to linear systems, the regulation of nonlinear dynamical systems

has received limited attention, most of a specialized nature. The primary reason

for this seems to lie in the fact that nonlinear optimal control problems can

rarely be solved analytically or, more specifically, in feedback form as for

linear regulators. As a result, one must often resort to iterative numerical

techniques for the determination of the optimizing solutions. Consequently, much

of the analysis regarding regulation of nonlinear systems concerns techniques for

determining suboptimal feedback controllers. (See for example [D1], [G2], [L3],

[P1], [S2], [J1], [F8], and [B5]). Most of these approaches involve the modeling

of the nonlinear system as a linear system in some manner. A somewhat different

approach, not suboptimal, is taken by Brunovsky [B4] and Lukes [L4]. Both of

these treatments are closely related to the basic hypothesis that the system be

stabilizable [L1]. Under the assumption of complete controllability, Brunovsky

approached the problem via Lyapunov functions. Lukes requires the system be

2



stabilizable and then uses Lyapunov-like theory to obtain results for feedback

controllers.

The direction of these various approaches is primarily generated by the

desire for a feedback controller. However, there is a second, more esoteric

reason, and that is the desire for general results. Unfortunately, the undis-

cerning application of an algorithm often limits insight into the underlying

structure of the problem being considered. This loss of general information is

often due to the fact that practical convergence criteria are few for most of

the iterative methods used in the solution of optimal control problems. Theoreti-

cal aspects of these criteria have been investigated by numerous applied mathe-

maticians (see Kantorovich [K4] and Collatz [C2]). The Russian Kantorovich [K4]

was one of the first to develop and unify the mathematical theory of iterative

methods. Using the power of functional analysis methods, he presented conver-

gence results for such basic iterative schemes as contraction mappings and

Newton's method. These basic results have been considerably broadened, modernized,

and made practical by the efforts of Falb and de Jong [F1]. In their book, they

present the derivation of general convergence criteria for the application of

various successive approximation methods to the solution of optimal control

problems.

1.2. Description of tha Problem

The primary goal of this research is the consideration of the theoretical

and applied aspects of successive approximation techniques for the solution of

optimal nonlinear regulator problems. Application of the Pontryagin principle

to the posed optimization problem results in necessary conditions for optimality

in the form of a two point boundary value problem (IPBVP). Hence, the central

3



theme of this study shall be the application of successive approximation methods

to the solution of nonlinear TPBVP's which arise from optimal nonlinear regulation.

The basic approach to be used is to represent the TPBVP by an operator equation

and then apply functional analytic results in the iterative solution of operator

equations.

In particular, we shall investigate the contraction mappings method and the

modified contraction mappings method. We have as our first objective the trans-

lation and application of the general convergence theorems to those operators

originating in the optimal regulation of a nonlinear system. A second objective

is the development of techniques to facilitate the evaluation of the convergence

criteria. Finally, example problems will be solved to demonstrate the usefulness

of the theory.

1.3. Synopsis

A brief summary of the dissertation is as follows: In Chapter 2, the optimal

regulation of dynamical systems is introduced. In particular, we discuss the

reduction of optimization problems to two point boundary value problems by means

of Pontryagin's principle. Results are derived for optimal regulation of linear

dynamical systems (Section 2.2) and several classes of nonlinear systems (Sec-

tion 2.3). Optimal system regulation is considered for both unconstrained and

bounded controls. In Chapter 3, methods of solving two point boundary value

problems are presented. In particular, the integral equation representation

of two point boundary value problems is introduced (Section 3.2). The book by

Falb and de Jong [Fl] was used as.the main reference for this chapter. The

integral representation makes it possible to consider the solution of a two

point boundary value problem as the solution of a corresponding operator equation.

4



A review of Lipschitz norms and derivative norms for the integral operator is

presented (Section 3.3) and the methods of contraction mappings (Section 3.4)

and modified contraction mappings (Section 3.5) are introduced. Convergence

theorems for both methods are presented. Chapter 3 concludes with the application

of contraction mappings to the solution of two point boundary value problems

arising in Chapter 2 and the derivation of translated convergence theorems.

Chapter 4 is devoted to a rather detailed investigation into the calculation

of the theoretical convergence criteria. Upper bounds are presented for the

Lipschitz norm and derivative norm (Section 4.2) and various techniques for

evaluating these bounds are introduced.

structured matrices (Sections

4.6) are considered. The use

provides considerable insight

contained within the integral

4.4, 4.5)

In particular, the use of simply

and similarity transformations (Section

of partitioned matrices in these developments

into the generic structure of the

representation. In Chapter S the

Green's matrices

issue of con-

trollability for nonlinear systems is considered. Specifically, it is shown

that controllability for linear systems (Section 5.2) and nonlinear systems

(Section 5.3) may be studied via the integral representation and contraction

mappings. In Chapter 6 we present numerical examples to illustrate the theoreti-

cal and practical application of contraction mappings to the regulation and

control of nonlinear systems. In Chapter 7, a dynamic model is developed for

a socio-economic system and contraction mappings is used to investigate the

optimal regulation of this nonlinear system. Finally, in Chapter 8, we summarize

our results and indicate directions in which future research may be done. We

conclude with an appendix which gives the actual computer program (written in

the FORTRAN language) which was used in the application of contraction mappings

to the problem discussed in Chapter 7.
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CHAPTER 2

OPTIMAL REGULATION OF DYNAMICAL SYSTEMS

2.1. Introduction

An optimal control problem is a composite concept consisting of four basic

elements: (1) a dynamical system, (2) a set of initial states and a set of final

states, (3) a set of admissible controls, and (4) a cost functional to be minimized.

The problem consists of finding the admissible control which transfers the state

of the dynamical system from the set of initial states to the set of final states

and, in so doing, minimizes the cost functional. In this chapter we discuss the

optimal regulation of nonlinear systems and the reduction of the optimization

problem to a TPBVP by means of Pontryagin's principle.

2.2. Optimal Linear Regulator

As a preface to the nonlinear system analysis, we shall present the basic

results for the optimal linear regulator. (For a very thorough treatment of this

problem see Kleinman [K4]).

Definition 2.2.1. Linear Dynamical System

A linear dynamical system is characterized by the following elements:

(1) A state vector x of dimension n

(2) A control input vector u of dimension r

(3) A linear differential equation which describes the evolution of the

system in time, i.e.,

i(t) = A(t) x(t) + B(t) u(t)

where A(t) is an nxn matrix and B(t) is an nxr matrix.

2.2.2



•

1

Now given an initial state, x(t0)= x0, and assuming the control u(t) is not

constrained, the optimal linear regulator problem is then to determine the control

u(t) which minimizes the quadratic cost function

J(u) = 12-<x(T), Kx(T)> + kx(t), Q(t) x(t)> + <u(t), R(t) u(t)Adt

t0
2 . 2 . 3

wHere

The terminal time T is specified 2.2.4

K a constant nxn positive semidefinite matrix

Q(t) is an nxn positive semidefinite matrix

R(t) is an rxr positive definite matrix

and 1( and Q(t) are not both identicålly zero.

Applicatipn of the. minimum principle to the optimization problem posed above yields

necessary conditions for optiikality in the form of the 2n x 2n canonical system

a •

G

stkbject to the 'boundary conditions

,x(t0)= XO

p(T) = K x(T).

The H-minimal control for 't E[to, T] is then given by

u(t) = -R
-1
(t) B'(t) p(t).

of equations

I[kcty . A(t) -B(t)12-1(t)B'(t) x(t)

(t) . -Q(t) -A' (t) p(t)
2.2.5

2.2.6

2 .2 . 7

The boundary tonditions specified by eq(2.2.6) may be expressed more compactly as

[
I

.
oi r x(toi+ r ormi= r x01
cd,Lp(toi L-K I p (T) 1_ 0

2. 2 . 8

where I ijS the nxii, identity matrix and 0 is the nxn zero matrix. This form of
- -,

expressing boundary conditions will become important in the sequel. The TPBVP

arising from the linear optimal regulator problem may then be put into the form



0 0

y(t) = S(t) y(t)

My(to) + Ny(T) = c

where y is the 2n composite vector

[x(t)]
y (t) =

p(t)

S(t) is the 2n x 2n matrix

F A(t) -1
-B(t)R (t)B'(t)

S(t) =
-Q(t) -A'(t)

and M and N are the 2n x 2n boundary value matrices

I 0 ] [ 0 0
N =

-K 1J
and c is the 2n constant matrix

x
c = 

0

0

2.2.9

2.2.10

2.2.11

2.2.12'

•

In many physical situations, the input control u(t) may not take on all values.

As an introduction to systems with bounded control, let us now suppose the input

control to the linear dynamical system is constrained in magnitude by the relation - •

< 1 j = 1,...,r . 2.2.14'

Then given an initial state for the linear dynamical system, the optimal linear

regulator problem is to determine an admissible control u(t)4E0 which minimizes

the quadratic cost functional given in (2.2.3).

It is shown in [A1] that the necessary conditions for optimality reduce to

the 2n x 2n canonical system of equations

i(t) = A(t) x(t) - B(t) SAT {R-1(t) B'(t) p(t)}

= Q(t) x(t) - A'(t) p(t)

subject to the boundary conditions

x(t0) = x0

p(T) = K x(T),

9

2.2.15 2

2.2.16



where the SAT function is defined as

1 , y > 1

SAT{y} = Y IYI < 1 2.2.17

-1 , y < -1

It is seen this system of 2n differential equations is not linear. The necessary

conditions thus reduce to a nonlinear TPBVP of the form

ý(t) = S(t) y(t) + f(y(t)) 2.2.18

My(t0) + Ny(T) = c

where y is the composite 2n vector

y(t) = I x(t)1
L p(t)i

S(t) is the 2n x 2n matrix

S(t) 
A(t) 0

[-Q(t) 40(t)i

f(y(t)) is the 2n vector function

f(y(t)) =
[ -B(t) SAM

-1 
(t) P(t)p(t)}]

0

M and N are 2n x 2n matrices and c is the 2n vector

M =
[ I 0

N
[ 0 ]

c
0

[x

0 0 -K I 0

2.2.19

2.2.20

2.2.21 -

2.2.22

This example illustrates a nonlinear TPBVP arising from the optimization of a

linear system. We shall now consider the optimization of nonlinear systems

and the forms of the resultant TPBVP's.

10



2.3. Optimal Regulation of Nonlinear Systems

In this section we shall consider the control of several classes of nonlinear

systems subject to the quadratic cost functional given in (2.2.3). Our aim in

this section is to reduce the necessary conditions for optimality to two point

boundary value problems.

Example 2.3.1.

Many nonlinear systems contain nonlinearities involving only the state

variables. Hence, rather than initially considering the most general formulation,

we shall first consider the class described by the differential equation

i(t) = A(t) x(t) + B(t) u(t) + Ip(x(t)) 2.3.2

where we assume *(x(.)) and (311)/Dx)(x(.)) are continuous on Rn. We shall initially

consider the control to be unconstrained, i.e., uE St = R. Again we shall

consider the quadratic cost functional

1
J(u) = 7. <x(T),Kx(T)› + [<x(t), Q(t) x(t)› + <u(t), R(t) u(t)ddt-2f

0
2.3 3

subject to the assumptions of (2.2.4). Application of the minimum principle

yields necessary conditions for optimality in the form of the 2n x 2n canonical

system of equations

[kW]. A(t) -B(t)R
-1
(t)P(t)iix(t) ip(x(t))

2.3.4

[P(t)] Q(t) -A'(t) [1)(01 I- (310x)'(x(t)) P(t)]

subject to the boundary conditions

I 0 lx(to)1

0 0 p(t0)]

0 0 x(T)  x0

-K I

{ 

p(T)

.

[ 0

2.3.5

The H-minimal control for t E [to,T] is then given by

u(t) = -R-1(t) B'(t) p(t). 2.3.6

It is often advantageous to standardize the time interval over which the TPBVP is

defined. This standardization is accomplished by the introduction of a new

variable. Let (see Long [L2])

11



t = t
0 

+ ('F-t
0 
)s ..b + as. 2.3.7

Here s is the new variable which varies between 0 and 1. In most cases we may

take t
0 

= b = O. In terms of s and a, the TPBVP then becomei

with

i(s) A(as) -B(as)R
-1
(as)B'(as) x(s)

= a
p(s) J -Q(as) -A' (as) p(s)

I 01 [ x (0) 0 01 rx (1)1 xd

0 0 p(0) d[p(1)] 10

+ a
ip(x(s))

-(4/3x)'(x(s))p(s)1

2.3.8

2.3.9

where (*) indicates differentiation with respect to s. In the sequel, the

TPBVP's which shall be considered will generally be normalized in this fashion.

Example 2.3.10.

As an illustration of the ideas presented in Example (2.3.1), let us consider

the driven, second order nonlinear oscillator studied by Van der Pol. We have

the system given as

*1(t) = x2(t) 2.3.11

)1
2
(t) = -x

1
(t) + e (1-x

1
2 
(t))x

2
(t) + u(t) ,

or in vector-matrix form as

k
1

0 1 Exil 4. [01 u 4. 0
2.3.12

21 -1 1 
x
2 t [ c(1-x2)x 2 [1 

The optimization problem to be considered is that of minimizing the cost

functional

T
2

J = 
¡ 

(x
2 
(t) + x (t) + u

2
(t))dt

1
2.3.13

0

12



subject to the boundary conditions

x1(0) = x0 , xl(T) unspecified

x2(0) = 0 ., x2(T) unspecified.

2.3.14

From eq (2.3.4), we have the 2n x 2n canonical system

1
0100 x

1
0

2
-1 0 0 1 x

2
e(1-x1

2 
)x2

2.3.15

pl
-1 0 0 1

P1
2ex

1
x
2
p
2

P2
0 -1 -1 0

P2
2

-e(1-xdp2

subject to the boundary conditions

1 0 0 0 x
1
(0) o o x1(1) xo

0 1 0 0 x2(0) o o 0 o
x2(1)

0
2.3.17

0000 p1(0) o o 1 o
P1(1)

0 0 0 0 p
2 
(0) 

_
o o

P2(1)

or, in the more compact form,

Y(t) = Sy(t) + f(y(t)) 2.3.18

Ny(1) = c.

In the sequel, this example will reappear as we consider the iterative.solution

of TPBVP's of the form (2.3.18).

The class of systems studied in Example 2.3.1 will now be reconsidered with

amagnitude constraint upon the control.

Example 2.3.19.

Let us now consider the regulation of the previous system

i(t) = A(t) x(t) + B(t) u(t) + *(x(t)) 2.3.20

13



where the input control vector is constrained in magnitude by

111.(.)1 < 1 , j=1,...,r.

The cost functional is again given by (2.3.3). Application of the minimum

principle yields the 2n x 2n system of canonical equations as

2.3.21

r ),(t)] { A(t) 0 x(t) ip(x(t)) - B(t)SAT{R-1(t)B'Wp(t)}

[ -Q(t) -A'(t) p(t) - (Waxix(t)) p(t)

2.3.22

subject to the boundary conditions

I Olixx(t0) 1 0 0  x (T)1

0 0 p (to) -K I p (T).1 OxF 2.3.23

where the SAT function is specified in (2.2.16). For this system, the H-minimal

control is given as

u(t) = -SAT{R-1(t) B'(t) p(t)} , te[to,T]. 2.3.24

Example 2.3.25

In the previous example, we discussed the large class of nonlinear systems in

which the nonlinearity is a function of only the state variable. Let us now

consider the more general system described by the differential equation

ic = A(t)x + B(t)u + gx,u) 2.3.26

where A(t) is an n x n matrix, B(t) is an n x r matrix, u is an unconstrained

r-vector, and ti(x,u) and (4/3x)(x(.),u(.)) are continuous in Rn x Rn. The

system is subject to the quadratic cost criteria given as

1
J = 

2 
—<x(T),Kx(T)> + 7 f [<x(t), Q(t)x(t)> +<u(t), R(t)u(t)>]dt

T

to
2.3.27

14



under the assumptions of (2.2.4).

Following the Pontryagin minimum principle, the Hamiltonian for the-

optimization problem posed above is given as

1
H = T<x(t),Q(t) x(t)> + 

1 
<u(t), R(t)u(t)> + <A(t) x(t), p(t)>

2.3.28
+ <B(t) u(t), p(t)>+ <--Ip(x(t), u(t)), p(t)> .

Formally applying the Pontryagin principle, the costate vector is then described

by the differential equation

p(t) = - Q(t) x(t) - A'(t) p(t) - (91p/ax)'(x(t),u(t))p(t). 2.3.29

Along the optimal trajectory we must have u*(t) minimizing the Hamiltonian,i.e.,

H(x*(t), p*(t), u*(t),t) < H(x*(t),p*(t),w,t) 2.3.30

for all admissible w and where (.)* denotes optimal trajectories. If the

Hamiltonian is normal [A1], the minimization equation (2.3.30) may be solved

for the H-minimal u in terms of x,p, and t, i.e.,

u = C(x,p,t). - 2.3.31

Now using (2.3.31) we define

xi(x,“x,P)) = gx,p) 2.3.32

and

(30/3x)(x,“x,p)) = Z(x,p) 2.3.33

where 0 is an n vector function and Z is an n x n matrix function.

k  A(t) 0 x [B(t)“x,p) + 0(x,p)1 2.3.34

pi -Q(t) -A' (t) p - Z' (x,p)p

subject to the boundary conditions

15



I 0 x(t0)1 0 0 [ x(T)

[ 0 0 [[ p (to) -K I II p(T)

These results may be applied to various forms of gx,p). In the following

example we consider one such form.

Example 2.3.36

Consider the system described by

2.3.35

A = A(t)x + B(t)u + D(x)u 2.3.36

where A(t) is an n x n matrix, B(t) is an n x r matrix, D(x) is an n x r matrix,

j
Dii(x) and (3D

i
/3x

k 
 )(x(.)) are continuous in R

n 
, and u(•) is an unconstrained

r vector. Consider system (2.3.36) subject to the cost functional (2.3.27) and

tht initial condition x(t0) = xo.

Define the vector function “x,p,t) to contain the elements

yx,p,t) = lp, - (BD/axi)(x) R-1(t)W(t) + D'(x)h*

and define the matrix c(x,t) as

C(x,t) =-B(t) Oct) (t) - .D(x) 11-1(t)[}3t(t) + (x)]. '

2.3.37

2.3.38 =-

Usi,ng the results of Example 2.3.25 and (2.3.37), (2.3.38), the 2n x 2n canonical

sys,tem of equations is given as

A A(t) -13(t)R-1(t)13'(t) x C(x,t)p

p -czct) -A(t) J I p E(x,p,t)

I I 01x(tn)] 0 0 x(T) x
0

0 0.11p (to) [-K Ill p(T) =[ 0

The various two point boundary value problems presented in the previous

16
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examples can very rarely be solved analytically. Thus we shall investsigate

successive approximation techniques for the solution of TPBVP's in the next

chapter.
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CHAPTER 3

METHODS OF SOLVING TPBVP's

3.1. Introduction

In the analysis of optimal control problems, the necessary conditions for

optimality are often in a form which may be reduced to a TPBVP of the form

y(t) = F(y,t), g(y(0)) + h(y(1)) = c. 3.1.1

In particular, we presented in Chapter 2 various TPBVP's which originate in the

optimal regulation of certain classes of nonlinear systems. We shall now illustrate

that under certain conditions, such TPBVP's may be represented by operator equations

of the form

Y = T(Y). 3.1.2

Then, following the lead of Falb and deJong [F1], we shall investigate the applica-

tion of successive approximation techniques to the iterative solution of these

operator equations.

3.2 Representation of TPBVP's

In this section we consider the (normalized) two point boundary value problem

Y(t) = F(y,t), g(y(0)) + h(y(1)) = c 3.2.1

where G, g, and h are vector valued functions and c is an element of R . We

shall first review some results relating to the development of equivalent integral

equation representations of the TPBVP(3.2.1). Most results in this section.

19



come from Falb and de Jong [F1]. Since linear TPBVP's will play an important

role in the integral equation representations, we begin our discussion with a

consideration of linear TPBVP's.

Consider the linear TPBVP

y(t) = V(t)y(t) + f(t) , My(0) + Ny(1) = c 3.2.2

where V(t), M, and N are p x p matrices, and f(t) and d are p vectors. We present

the following theorem on the existence of a solution of equation (3.2.2).

Theorem 3.2.3

Suppose that the functions V(t) and f(t) satisfy appropriate smoothness and

boundedness conditions and det[M + N4Y(1,0)] # 0 where 4Y(t,$) is the fundamental

matrix of jr = Vy. Then (3.2.2) has a unique solution y(t) on [0,1] which can

be written in the form

1
y(t) = H(t) c + .ir Gj(t,$)f(s)ds

0

where the Green's matrices H and G are given by

and

H(t) =
v
(t,0)[M+N(DV(1,0)]

-1

G(t,$) =

for all t,s in [0,1].

4,11(t,0) [M+N4)
v
(1,0)] 1M4Y(0,$) , 0 < s < t

-4)11(t,0)[M+N4Y(1,0)]
_ 
1 40V(1,$) , t < s < 1

3.2.4

3.2.5

3.2.6

Proof: (See [F1] for proof of theorem and technical conditions specified for

V(t) and f(t)).

20



The requirement in Theorem 3.2.3 that det[M+NOV(1,0)] / 0 is crucial to the

integral representation of TPBVP's. We therefore make the following definition.

Definition 3.2.7

Let V, M, N be p x p matrices. Then J = {V(t),M,N} is called a boundary

compatible set if and only if V(t) satisfies certain technical conditions and

det[M+NOV(1,0)] / 0 where OV(t,$) is the fundamental matrix solution of

= V(t) y.

In the sequel we shall often be given two boundary related matrices M and N and

will be required to determine a matrix V(t) so that the set J = fV(t),M,N1 is

boundary compatible. In the next lemma we give necessary and sufficient

conditions for the existence of a matrix V(t) which is boundary compatible with

the prescribed matrices M and N.

Lemma 3.2.8

Let M and N be p x p matrices. A necessary and sufficient condition that

there be a V(t) with J = {V(t),M,N} boundary compatible is that the p x 2p matrix

N] have full rank

Proof: (See [F1].)

p.

Theorem 3.2.3 and Lemma 3.2.8 form the basis for the integral equation representa-

tion of nonlinear TPBVP's of the form ,(3.2.1). We now have the following.

Theorem 3.2.9

Suppose that F(y,t) satisfies certain technical conditions and J = {V(t),M,N}

is a boundary compatible set of dimension p. Then the boundary value problem

= F(y,t), g(y(0)) + h(y(1)) = c 3.2.10

has the equivalent representation

21



y(t) = Hj(t){c - g(y(0) - h(y(1)) + My(0) + Ny(1)}

1

f Gj(t,$)1F(y(s),$) - V(s)y(s)}ds

0

where the Green's functions Hj(t) and G (t,$) are given by

and

Hj(t) = (t,0)[M + Nod/(1,0)]
-1

v
(t,$)[M + NO

v
(1,0)] 1MOV(0,$) ,0<s< t

-(01(t,$)[M + NOV(1,0)] 1NOV(1,$) , t< s < 1

where 4, (t,$) is the fundamental matrix of the linear system jr = V(t)y.

3.2.11

3.2.12

3.2.13

Proof: (See [Fl] for complete conditions assumed for F(y,t) and a proof of

the theorem.)

Theorem 3.2.9 presents an integral equation representation for TPBVP's of

the form (3.2.1). It is now a simple matter to demonstrate that solving (3.2.1)

is equivalent to solving a certain fixed point problem in an appropriate Banach

space. In particular, assuming that the conditions of the previous theorem are

satisfied, we can define a mapping Tj of the Banach space Y = t;([0,1],e) into

itself by setting

Tj(y) = Hj(t){c-g(y(0)) - h(y(1)) + My(0) + Ny(1)}

1

+f Gj(t,$){F(y(s),$) - V(s)y(s)lds.

0

Then, (3.2.11) is equivalent to the fixed point problem

Y = Tj(Y)

22
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on e([0,1],RP). The operator equation (3.2.14) can now be solved by successive

approximation iterative techniques as presented by Kantorovich [K4] and particu-

larly Falb and de Jong [F1].

3.3. Frechet Derivatives and Lipschitz Norms

In the discussion of successive approximation iterative techniques, we shall

require an expression for the Frechet derivative or Lipschitz norm of the operator

T . In this section we shall present a brief treatment of these concepts. (Again,

many of these basic results are from Falb [F1].) Let us begin with the following

definition.

Definition 3.3.1.

Let Y be a Banach space with as norm. Let S2 be a closed subset of Y

and let T map Y into Y. The Lipschitz norm of T on 0, in symbols: IT O cl , is

given by

T I = us,uvP St  T(u) - T(v)Il/ 11 u-v 111. 3.3.2

If T is Frechet differentiable on 0, then derivative norm of T on 0, in symbols:

OTO'
0 

is given by

II (Ty ) I f

We shall now compute expressions for (T
y 
)' and (T

y
j)" . We have

and

(r 
Y
J),(u) = Hj(t)(EM-(ag/3y)(y(0))]u(0) + [N-(311/3y)(y(1))]u(1)}

1

f Gj(t,$){(3F/ay)(y(s)) - V(s)}u(s)ds
0

23
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(Tj)"(u,v) = Hj(t) E [ (a/ayi) (-ag/ay)] (y(0))ui (0)v (0)) 

E [(a/ayi) (-ah/ay)] (y (1))ui (1)v(1)

i=1

Gj(t,$) j E [ (a/ayi) (aF/3y)] (y(s))ui (s)v(s) ds 3.3.5

i=1

provided the indicated partial derivatives exist. When evaluating convergence

criteria, we shall require estimates, say for example of the norm of the operator

(T )' . There are of course several expressions for calculating or estimating

II (1. )111 . Since the more accurate expressions are difficult to evaluate in

practice, we shall present a coarse estimate that is more amenable to future

applications . We recall first of all that if v(•)E ((Om , RP), then

liv(.) 11 = sup sup Iv. (t) l 3.3.6
i c P te [0,1] 1

is the norm of v(• ) where P = {1, ... ,p} and vi (•) is the ith component of v(• ).

Noting that li(T j) '11 = sup { 11 (Tuj) 'u 111 and letting Hj(t) = [ijii (t)] ,
Y Hull <1

G (t,$) = [G. . (t,$)] , M = [injk] , N = [njk], V (s) = [vjk (s)] , we have as a coarse13 

estimate

ff(Tjj) = sup li(T j) 'u II 1,
Hull <1 Y

P P
1
i 

1
< sup sup 1 T` (1H . (t) a ( E {lmjk - (agj/ayk) (y (0)) 1
i E P t 4—d 

j

j=1 k=1

+ l n jk - (ah./ayk )(Y(1))1 1)j 

24
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P 1

+ ( 
13 

(t,$)Ids).( sup I :E: l(aF./aYk j )(Y(s),$) - v k (s)19 1

j=1 0 s k=1

Expression (3.3.7),will become quite important in the sequel. One of our primary

objectives shall be determining techniques for easily estimating this expression.

In some cases, the smoothness conditions required to obtain Frechet deriva-

tives are too strong. As an example, we have the nonlinearity containing the

SAT function in equation (2.2.15). This fact does not imply that successive

approximating techniques may not be applied to the iterative solution of the

operator equation. It simply means we have lost one method of evaluating

convergence criteria. Hence, under somewhat weaker smoothness conditions, we

shall compute the Lipschitz norm of the operator Tj(y).

We have the following result from Falb [F1].

Lemma 3.3.8

Let S be a bounded open set in e([0,1],RP) and let D be an open set in

RP containing the range of S. Suppose that (i) K(t,y,$) is a map of

[0,1] x D x [0,1] into D which satisfies certain technical conditions, and (ii)
1

there is an integrable function m(t,$) of s with sup fm(t,$)ds = u < co such
t o

that I K(t,y,$) II < m(t,$) and OK(t,y1,$) - K(t,y2,$)I1 <411(t,$) Ry1-y2 on

[0,1] x D x [0,1]. Then the mapping T given by

1

T(u) (t) = f K(t,u(s),$)ds

0

maps e([0,1],e) into g([0,1],e) and the Lipschitz norm, IITQ s, satisfies

RTfi s < p. 3. 3. 9

Proof: (See [F1] for proof of theorem and specific conditions on K.)
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Corrollary 3.3.10

Suppose that the function

K(t,y,$) = Gj(t,$){F(y,$) - V(s)y}

sattsfies the conditions of Lemma 3.3.8 and that

Let

Then

This

0 g(y1) - g(y2) il < 111 11 yl-y2 1t and 0 h(y1)-h(y2) II < P2 q y1-y2 II 3.3.11

a = max {p, II Hj(•) II 1.11, li Hj(•) II p2,0 Hj(•)M 0 , b Hj(•)N II }. 3.3.12

L. a 3.3.13

result will prove useful in particular when investigating regulators with

bounded input controls.

3.4. Contraction,Mappings Method

Contraction mappings (or Picard's method, [P2]) is well known in the mathemat-

ical literature and has long been a standard approach for proving existence and

uniqueness properties for ordinary differential equations. (See for example

Coddington and Levinson [C1], specifically Section 1.3 entitled "The Method of

Successive Approximations.") To formalize our discussion of this technique, let

us begin with the following definition.

Definition 3.4.1

Let Y be a topological space and let T map Y into itself. Let y0 be

an element of Y. The sequence {yn(•)} generated by the algorithm

yn+1 = T(yn) n = 0,1,2,... 3.4.2

is called a contraction mapping or CM sequence for T based on yo.

The following theorem is central to our future discussions concerning the

contraction mappings method.
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Theorem 3.4.3

Let Y be a Banach space and let Š = g(yo,r) be the closed sphere in Y with

center yo and radius r. Let T map Y into Y and suppose that (i) T is defined

on kyo,r), and (ii) there are real numbers n and a with n >' 0 and 0 < a < 1

such that

y1 y0 " < n
11 T

S 
< a < 1 or ITis < a < 1

1
rl < r1-a —

3.4.4

3.4.5

3.4.6

where yl = T(y0). Then the CM sequence {yr
n
} for T based on y0 converges to the

unique fixed point y* of T in S and the rate of convergence is given by

y* yn < yn yn_1 < laa H y1 y0 II • 3. 4. 7

Proof: (See [F ]).

Let us now consider the application of this theorem to operator equations of the

form

y(t) = Tj(y)(t) = Hj(t){c-g(y(0))- h(y(1) + My(0) + Ny(1)}
3.4.8

1

+ Gj(t,$)(F(y(s),$) - V(s)y(s)}ds

0

where J = {V(t) AN} is a boundary compatible set. Following the contraction

mapping prescription, we select an initial element yo(.) in g([0,1], Rp) and

successively generate a CM sequence (yn(.)) for Tj based on yo(.) by means of

the algorithm

Yn+1 = Tj(Yn)

27
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or equivalently, by

Yn.1(t) = 
Hj(t){c g(y

n
(0)) - h(yn(0)) + M

yn
(0) + Nyn(1)}

3.4.10

+ f Gj(t,$){F(yn(s),$) - V(s)yn(s)}ds.

Since we know yn(-) at each successive step, we can write (3.4.10) in the form

y
n+1

(t) = Hj(t)cn + f Gj(t,$)fn(s)ds

where

cn = c - g(yn(0)) - h(yn(1)) + Myn(0) + Nyn(1)

and

fn(s) = F(yn(s)) - V(s) yn(s).

3.4.11

3.4.12

3.4.13

Hence, it is seen from (3.4.11) and our results on linear TPBVP (eq. 3.2.4) that

the method of contraction mappings when applied to (3.4.8) essentially amounts

to the successive solution of the linear TPBVP's (3.4.11).

If the partial derivatives of (3.3.) exist, we then have the following.

Theorem 3.4.14.

Let yo(.) be an element of e([0,1],e) and let 8 = 8(y0,r). 5uppose that

(i) J = {V(t),M,n} is a boundary compatible set for which

= F(y(t),t) g(y(0)) + h(y(1)) = c 3.4.15

is differentiable on 8, and (ii) there are real numbers n and a with n > 0 and

0 < a < 1 such that
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ITj(y0) - y0 H = sup te713 {1Tj(Y0)i(t) - y0,i(t)1} < n 3.4.16
i

sup O(Tyj)' } < a 3.4.17

yE g

n < r1-a —
- '3.4.18

Then the CM sequence {yn(.)} for the TPBVP based on yo and J converges uniformly

to the unique solution y*(.) of (3.4.15) in S and the rate of convergence is

given by

n

11 *(.) - Yn(*) L 3.4.19

Proof: Simply apply Theorem 3.4.3.

It should be noticed that if the TPBVP of interest is not differentiable,

but a Lipschitz norm can be obtained, then (3.4.17) is simply replaced by

0 TJ < a . 3.4.20

We shall use (3.4.20) in the investigation of optimal regulators with bounded

control.

At this point we shall make a few general comments concerning our representa-

tion of TPBVP's and, in partiuclar, the role of the boundary compatible set,

J = {V,M,N}. From Theorem 3.4.14, we see that the convergence rate factor, a,.

is determined by the Frechet derivative of the operator Tj(y). In particular,

from equation 3.3.6 we have an estimate for this norm.given as
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H(Tj)'11 (Ty
J
) iu

a l

ag4 ah.

L .sup sup/7(1 le W) )•(E hm. -(---1-)(37(0))1+In. (y(1))11)
Itp t a•-• 13 jk ay

j=1 k=1 
3k aYk

1
P C OF.\

E
IGjij (t,$) cis4" I d R-1-"qs".-17. (s) 1/ 4

s . ay. Jkj=1 0 k=1 k

3.4.21

For convergence purposes we wish to make this quantity as small as possible,

and in this light, we shall discuss the dhoice of J = {V(t), M,N}. A11 of the

TPBVP's obtained in Chapter 2 have linear boundary conditions of the form

Ky(0) + Ly(1) = c. From this we shall clearly choose M and N to equal the

linear boundary conditions of the TPBVP, thus eliminating the first terms in

(3.4.21). We then have the simplified expression

1 ,aF.\
' I(ry) ILL__ sup sue I E (f ,„• ,t,$) ds) - (sup Z., (-11 (y(s) , s)-v (s) 3.4.22

iep s av jicj=1 lj k=1

Consideration of this expression allows us to deduce that if yo is a good initial

estimate of the solution, then it is often effective to choose V(s) close to

(aF/9y)(yo(s),$). In fact, for V(s) = (aF/3y)(yo(s),$), the iterative method

is known as the "modified Newton's method." However, a general choice such as

this for the V matrix usually precludes any attempt at calculating or estimating

the term Gj(t,$)Ids , thus preventing an easy estimation of the convergence
0

criteria. In the next section we shall consider a technique which is often

useful for evaluating convergence criteria.
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3.5. Modified Contration Mappings

In some situations, the direct application of the contraction mappings

method does not lead to a convergent sequence of approximations. However,

it is frequently possible to modify T in such a way as to lead to a convergent

sequence of approximations. We consider the following.

Lemma 3.5.1.

Let T and U be maps of Y into Y. Suppose that I - U is invertible and let.

P. be the map of Y into itself given by

P(y) = [I-U]-1[T(y) - U(y)]. 3.5.2

Then y*(.) is a fixed point of T if and only if y*(.) is a fixed point of P.

Proof: (See [F1]).

We shall then consider the selection of an initial approximate solution y0 and

the generation of a sequence {yn} by the algorithm

yn+1 = P(Yn) = [I-U]
-1 

[T(Yn) "Yn)].

We shall call this algorithm the modified contraction mappings method. It

3.5.3

should be noted that the modified contraction mapping sequence for T based on

y0 
an
d U coincides with the contraction mapping sequence for P based on yo.

Hence we may translate the results on contraction mappings into theorems for

modified contraction mappings. The primary theorem is given as follows.

Theorem 3.5.4.

If U is a linear operator with I-U invertible, if T is Olferentiable on Š,

and if there are real numbers n,a with n > 0 and 0 < a < 1 such that
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II Y1 - Yo II n

sup { II [I-U]
-1 
[T
(Y) 

- U] H < a
y E S

1
n < r,1-a

then the modified contraction mappings sequence {yn} converges to the unique

fixed point y* of T and g and the rate of convergence is given by

n
II Y* Yn L laa Yn Yn-1 11 L 1-

a
a Y1 - YO II •

3.5.5

3.5.6

3.5.7

3.5.8

Proof: Apply Theorem 3.4.3.

The importance of these results lies in the fact that they extend the range of

applicability of the contraction mapping method to fixed point problems for

operators T that are not contraction mappings. In other words, the basic

contraction mapping criteria

sup f (T j)' 0 < a < 1
yE S

is replaced by the condition that the Frechet derivative satisfies

sup {11 [I-U]
-1
[T 

J
)'-U]11 } < a < 1.

y S

A second possibility is to replace the single norm in (3.5.10) by a product

of two norms so that

sup { 0 [I-U] 14 • 0 [(T j) 1-U] 0 1 < a < 1.
yEs

3.5.9

3.5.10

3.5.11

This formulation offers the possible advantage of easier evaluation, but also

results-in less sharp convergence conditions.

We shall now specify the form of linear operator U that will be used in

the modified contraction mappings algorithm. The following lemma involves
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the relation between the operators T and TJ for different boundary compatible

sets J = {V(t),M,N} and J = {W(t),K,L}.

Lemma 3.5.12.

Let J = {V(t),M,N} and J = {14(t),K,L} be boundary compatible sets. Let

F(y,t) be continuous in y for each fixed t and measurable in t for each fixed

with IF(y,t)11< m(t), m(t) integrable. Let r be the linear manifold of

absolutely continuous functions in e:([0,1],R ).

given by

Let U
KL 

be the operator

U
KL
(y) (t) = H (t) {-Ky(0) - Ly(1) + My(0) + Ny(1)}

1

1Gj(t,$){W(s)y(s) - V(s)y(s)} ds

0

3.5.13

for y(.) in 8;([0,1],e). Then (i) UKL maps e([0,1],0) into g([0,1],e) and
r into r ; (ii) the operator I -UKL has a bounded linear inverse on r with

[I-U
L MN 
]
-1 

y = [I-V j]y
K 

for y in r and

VmN 
5

y = Hj(t){-My(0) Ny(1) + Ky(0) + Ly(1)}

+JrG (t,$){V(s)Y(s) - W(s)y(s)}ds

(iii) if y(.) is in e([0,1],RP), then

Tj(Y) = [Tj(Y) - Ulja(Y)]

and (iv) under the differentiability assumptions

J
(T 

UKL]
-1 

j)' = [I- • [(T )' - Uj
L 
].

K 

Proof: (See [F1]).
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We shall limit our future discussions to operators U = UKL of the form given

by (3.5.13). It then follows from Lemma 3.5.12 that the modified contraction

mapping method when applied to the equation y = Tj(y) with modifying operator

U = U
K
J 
L' 

is equivalent to the contraction mapping method applied to the equation

Y = j(y).

The importantce of this point will become clearer as we develop techniques

for estimating (T )'. We shall now indicate the approach that will be considered.

Suppose that J is a boundary compatible set for which the corresponding Green's

matrices are easy to evaluate and estimate. Then if Mi. < q < 1 so that

—1
ll[UKL]-1 

< 
11 — 1-q , 

we can obtain an estimate of (3.5.17) which involves only

the Green's matrices corresponding to J. This advantage may well offset the loss

of accuracy resulting from using (3.5.11). We now have the following.

Theorem 3.5.18

Let yo(.) be an element of e([0,1],RP) and let g = g(yo,r). Suppose that

(i) J = {1.1(t),M,N} is a boundary compatible set for which

= F(y,t) g(y(0)) + h(y(1)) = c 3.5.19

is differentiable on (ii) J = {U(t),K,L} is a boundary compatible set; and

(iii) there are real numbers n,q,8, and a with n > 0, 0 < q < 1, 8 > 0, and

a = 8/(1-q) < 1 such that .

ITj (yo) - yo II = supsup IlTj(yo)i(t) - yo 1(01} < n 3.5.20
i t

HUjL 
< a

K —

sup { II (T j)1 -
y E S Y

1 n < T.
1-a

< a
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Then the MCM sequence {yn(*)} for T based on y0(.) and UKL converges uniformly

to.the unique solution y*(.) of (3.5.19) in g and the rate of convergende is

given by

n

Y*(*) Yn" 1 ̀  
1a
-a Y - v0(.) 0 . 3.5.24

PrOof: Apply Theorem 3.5.4.

In order to illUtinate the'preceding discussion, let us consider an example

utilizing the previous concepts.

Example 3.5.25.

Let us consider the iterative solution of the differentiable TPBVP given as

ý(t) = F(y,t) Ky(0) + Ly(1) = c. 3.5.26

•
We shall discuss the choice of the boundary compatible set J = {W(t),M,N} to be

used in the integral representation of the TPBVP. Since the boundary conditions

of (3.5.26) are linear, we shall choose M = K and N = L. Let us suppose that

y0(t) is a good initial estimate for the solution of (3.5.26). Then as indicated,

let us choose W(t) as

W(t) = (3F/Dy)(y0(t)), 3.5.27

assuming this Choice of J = {W(t),K,L} is boundary compatible. However, this

general time varying choice for W(t) makes it extremely difficult, if not

impossible, to analytically calculate the fundamental matrix OW(t,$) and the

Green's functions.

Let us now decompose. the W(t) matrix as

W(t) = V + 6V(t) 3.5.28
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where V is a constant matrix of simple structure, e.g., diagonal, which is

boundary compatible with K and L. Then for the boundary compatible set J = {V,K,L}

containing the simple V matrix, it is often possible to analytically calculate

the Green's matrices. We now have

where

or

Tj(Y) = 
J 

"-UM)
-1 

frj(Y)-LIKL Y]
3.5.29

1

Tj(y) = Hj(t)C + fe(t,$)(F(y(s),$) - Vy(s)}ds 3.5.30

1 0

HJ
L = jre(t,$){W(s) y(s) - Vy(s)}ds 3.5.31

-K 
0

1

UKL fjG(t,$)dV(s)ds,y = 3.5.32

0

and finally we note

1
Tj(y) - Uj y Hj(t)c + j(Gj(t,$)(F(y(s),$) - W(s)y(s)1ds 3.5.33

KL
0

so that 1

[(T j), - Uj
L 
] u = fe(t,$){(3F/ay)(y(s),$) - W(s)}u(s)ds. 3.5.34

K 
0

Hence we obtain the convergence benefits of choosing a general matrix W(t) while

being able to calculate the Green's matrices using the V matrix of simple

structure.

3.6. Applications of Contraction Mappings •

In this section we shall investigate the application of the contraction

mappings method to the iterative solution of the TPBVP's arising from the regula-

tion of nonlinear systems. In particular, using Theorem 3.4.14 we shall present

the general form of the translated convergence theorems for the iterative

solution of these TPBVP's.
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Let us first consider the application to the system presented in Example

2.3.1. Recall that this nonlinear system contained a nonlinear form containing

only the state variable. We have for this case the following translated con-

vergence theorem.

Theorem 3.6.1.

Let yo(•) be an element of ([0,1],RP) and let Š = g(yo,r). Suppose that

(i) J = {V(t),M,N} is a boundary compatible set, and (iii) there are real

numbers n and a with n > 0 and 0 < a< 1 such that

1

1) II (Y0) - Hj(t) + f G (t,$) A(s) -B(s)R-
1
(s)13'(s)1 xo(s)

0

{xi

0 -Q(s) -A' (s)  130(s)-1

- V(s) xo(s) +[

_

p0 (s)

2) sup 11(TjPill = sup sup
ycs yes pull < 1

0(xo(s))

I
a*_.
ax (x

0 
(s))p

0 
(s).S

ds-  -

[Po (t)

3.6.2

<

Gj(t,$)f[A(s) -B(s)R
1
(s)B(s) -V(s)

0 -Q(s) -A' (s)

where D(s(s),p(s)) = [Dik(x(s),p(s)]

1
3) 1174 n < r
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o }u(s)ds <

IP
ax 

(x (s)

n
a
2

tp.

L(ax 
k
ax )(x(s)) pi (s) ,

j=1

3.6.4



Then the CM sequence {yn(.)} for the TPBVP based on yo and J converges uniformly

to the unique solution y* in g and the rate of convergence is given by

a
n

HY*(*) - Yn(*)0 1-a 0Y1(*) YO(*)il
3.6.5

Proof: Apply Theorem 3.4.14 to the TPBVP of Example 2.3.1.

From this general theorem statement, the performance of the numerical

algorithm is difficult to predict. However, in the sequel, we shall develop

coarse estimates for the convergence criteria contained in Theorem 3.6.1.

We shall now apply the contraction mappings convergence theorem to the

operator equation corresponding to the regulation of a system containing a

general formulation for the nonlinearity, i.e., the TPBVP presented in Example

2.3.45. The nonlinearity contained in that TPBVP is given as

[0(x(t),p(t)) + B(t) (x(t),p(t))
f(y(t)) =

(x(t),p(t))p(t)

where we defined

and

n=g0c(t),p(t)).

4(x(t),p(t)) = tp(x(t),g(x(t),p(t))

Z(x(t),p(i)) = (Wax)(x(t)Mx(t),p(t)).

Before applying the CM theorem, we shall first calculate an expression for

(af/3y)(y(t)) where y is the composite 2n vector [x,p]. We have
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[

(af/aY)(Y) = 3.6.7

- a/ax [Z'(x,p)p] - a/ap [V(x, )PP]

(a0/ax)(x,p) + 8(t)(n/ax)(x,p) (Wap)(x,p) + B(t)(Wap)(x,p)

Now defining the matrix functions D(x,p) and W(x,p) to be composed of the elements

D..
13
(x,p) = (az

ki k /ax.)(x,P)P 3.6.8

k=1

and

Wij 
..(x,p) = :E: (azkl ./ap))(x ,p)pk ,

k=1

we have (af/ay)(x,p) given as

(af/ay)(x,p) =

3.6.9

[ 

Z(x,p) + B(t)(aVax)(x,p) B(t)(aC/aP)(x,P) + (a0aP(x,P)

-D(x,p) -W(x,p) - Z'(x,p)

3.6.10

Using equation (3.6.10) we have the following theorem.

Theorem 3.6.11.

Let y0 be an element of gr([0,1],e) and let g = g(yo,r). Suppose that

(i) J = {V(t),M,N} is a boundary compatible set for which (2.3.46) is differen-

tiable, and (ii) there are real numbers n and a with n > 0 and 0 < a < 1

such that
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1) =
1

Hj (t) [x0 + f j(t,$)t[ A(s) 0 ro(s)]
to 0 -Q(s) -g(s) [po(s)]

-V(s) [xo(s1 r (x0(s),p0(s)) + B(t) E(x0(s),p0(s))I] ds

1-130(s)-1 -Z'(x0(s),p0(s))

r130(t10(t)-1

n ,

1

2) sup 10(Tyj)'ll I = sup sup
y S y E S

3.6.12

I

Gj(t,$)fr. A(s) 0 -V(s)

-Q(s) -A' (s)

[Z(x(s),p(s))+B(s)(aVax)(x(s),p(s))

-D(x(s),p(s))

B(s)(aE/ap)(x(s),p(s))+(aVap)(x(s),p(s)1 } u(s)ds

-W(x(s),p(s)) - Z' (x(s),p(s))

1
3) 1-a n < r

< a

3.6.13

Then the CM sequence {yn(•)} for the TPBVP based on -y0 and J. converges uniformly

to the unique solution y* in Š and the rate of convergence is given by.

n .

Y*(.) - yn(*) <
a
1a Y1(*) - Y0{.

3.6.14

As we have indicated, cursory examination of Theorems 3.6.1, 3.6.10, and

3.6.21 yields limited information converning the convergence of the CM sequence.
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The difficulty to a great extent lies in the intricacy of evaluating the integral

containing the Green's function, Gj(t,$), and the derivative term of tie form

(2F/Dy)(y(s)) - V(s). In the next chapter, we shall consider techniques for

alleviating these difficulties so that meaningful convergence analysis can be

made without extensive computation.
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CHAPTER 4

CALCULATION OF CONVERGENCE CRITERIA

4.1. Introduction

For the boundary compatible set J = {V(t),M,N}, we consider the iterative

solution of the operator equation

Y = Tj(Y)

where Tj(y) is given by

y(t) = Tj(y)(t) = H(t){c-g(y(0) - h(y(1)) + My(0) + Ny(1)}

1

Gj(t,$){F(y(s),$) - V(s)y(s)}ds

0

and the Green's functions Hj, Gj are given by

and

Hj(t) = (t,OHM + N4Y(1,0)]
-1

(t,$) = e(t,O)IM + Ne(1,0)] 1MOV(0,$) ,0<s< t

Gj (t,$) = -0V(t,0HM + N(I)
v
(1,0)] ,$) t < s <

4.1.1

4.1.2

4.1.3

Theorem 3.4.14 specified conditions necessary for convergence of the CM sequence

Yn+1 = Tj(yn).
In this chapter, we discuss in detail the evaluation of the

convergence criteria. In particular, we discuss two general schemes that may be
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used to lessen the analytical difficulties involved in calculating the convergence

parameters n and a.

The first scheme is simply that of selecting.very simple V matrices for use

in the representation. For example, one might select V as the'zero matrix or a

constant diagonal matrix. For these matrices the fundamental matrix is readily

obtained and the Green's function matrices are often easily calculated.

The second scheme involves the use of a similarity transformation. In this

approach, a more general constant V matrix is selected and transformed into a

canonical form. Then using the canonical form, the fundamental matrix is obtained.

However, for this approach, the calculation of the Green's function matrices is

somewhat complicated by the transformation matrices. In conclusion, an approximate

technique is developed which often yields accurate estimates.

4.2. Estimates of Convergence Criteria

Before considering specific boundary compatible sets, we first specify those

estimates of the convergence parameters which are desired. As indicated in

Theorem 3.4.14, the numbers to be calculated are estimates for 1Tj(Y0)-Yo ll

and 11(Tyj)'11 .

First consider the estimation of
(y0)-Y0

• At this point, it will be

useful to discuss an effective techniqUe for obtaining the initial estimate of

the solution. Consider the iterative solution of the nonlinear TPBVP •

= F(y,t)

Ky(0) + Ly(1) = c,

4.2.1

and the choice of the boundary compatible set J = ON(t),M,N1 to be used in the

integral representation. Since the boundary conditions of (4.2.1) are linear,
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we choose M=K, N=L in the representation. If we now choose W(t) based upon

(3F/3y) (y,t), i.e., a linearization of the system, then the solution to the

linear TPBVP

= W(t)y

Ky(0) + Ly(1) = c

4.2.2

is often a good 'initial estimate for the solution of (4.2.1). Moreover: this

choice considerably simplifies the calculation of Tj(y0)-y0 since yo(t)=Hj(t)c

and
Tj(y0)-y0 = f

1

 Gj(t,$)iF(y0(s),$) - W(s)y0(s)}ds 4.2.3

0

for the boundary compatible set J = {W(t),M,N}.

The other norm which must be calculated is .the derivative norm II (T),J)1 •
As presented previ 11(T j)'11ously in (3.3.7), a coarse estimate for is given.as

il(T j) 11 < sup (T 
J) 
'u 111Y Duo < 1 Y

P 1

sup sup{ E (f,G.J(t,$) ds) ( sup I E Jay ) (y(s),$)
3.3 k

iEP t
j=1 0 s k=1

- v'jks)11)1

Let us make the following definitions.

Definition 4.2.5.

Let P(t) = hoij(t)] be a matrix with entries

or

Pi).(t) g..

0

Pi)..(t) = f
0

4.2.4

t,$)Ids 4.2.6

(t ds ign. (t,$)i ds.;
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where gj and g are elements of G
I
j(t,$) and G

II
j(t,$) as given in (4.1.3).

ij 
Hij

Definition 4.2.8

Let z0 = [zo.] be a vector with elements

z
o. 

= sup IFi (yo (t) ,t) - v. . (t) yo (t) 11
te [0,1] ij

j=1

Definition 4.2.10

Let z = [z.] be a vector with elements

4.2.9

z. sup 
j suptEl(aF./ay)(y(t),t) - ij(t)11 . 4.2.11

ti[0,1breS
j=1

From (4.2.3) and (4.2.4) it follows that conservative values for the convergence

parameters n and a are given by

P

IIP(.)z0 11= sup sup E p 
ij 
(t) z

0 
I

. 
< n 4.2.12

3
3=1

and

OP(.)z sup suptEp..(t)z.} < a 4.2.13
13 J

j=1

In the remainder of this chapter we shall be primarily concerned with techniques

for determining the matrix P(t) for boundary compatible sets containing simple

V matrices.

4.3. Boundary Value Sets of Interest

In this section we shall briefly specify the form of those pairs of boundary

condition matrices which are of interest. The necessary conditions for regulation

of nonlinear systems reduced to TPBVP's of the form

ÿ = sy f(Y) 4.3.1

My(0) + Ny(1) = c 4.3.2
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where the matrices M and N depended on the quadratic cost functional being used.

Specifically we had the following cases.

Definition 4.3.3.

For quadratic cost functionals including a terminal state penalty of the

form <x(T),Kx(T)) , the boundary condition matrices were

[ I 0m _1

0 0

0 01
N =

[-K I
4.3.4

Since we have rank [M N] = 2n, Lemma 3.2.8 assures a matrix V exists so the set

J = {VAN} is boundary compatible. We shall henceforth refer to set (4.3.4) as

boundary value set {1}.

Example 4.3.5.

For quadratic cost functionals which do not include a terminal penalty,

the boundary condition matrices are given as

M
I di

[0 0
N = L°

ol

11 4.3.6

Again rank [M N] = 2n, so a V matrix exists such that J = {V,M,N} is boundary

compatible. The set (4.3.6) shall be referred to as boundary value set {2}.

4.4. Boundary Set for Regulation with Terminal Cost

In this section the use of simple V matrices with boundary value set {1}

will be considered. The requirements for boundary compatibility of the various

sets J = {VAN} will be noted in particular.

Boundary value set {1} is given specifically as.
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M =
I 0

[0 0
N
[

-K
4.4.1

and a general 2n x2n V matrix is represented as

V = [V
11 

V
12

4.4.2
V
21 

V
22

The fundamental matrix for V is represented as

[211(t's)
,$) =

212(t's)1
4.4.3

SI
21
(t s) a

22
(t s)]

The matrix [M + N4,11(1,0)] is now formed explicitly as

I 0 4.4.4
M+N(t

v
(1,0) =[

-K0
11
(1
'
0)+0

21
(1,0) -K0

12
(1
'
0)+0

22
(1,0)1

and the inverse, if it exists, may be written as

[M+NOV(1,0)]-I =

[-EK012
(1
'

0)+0
22
(1,0)]-1[-K011(1,0)+021(1)].

0

[-Kg
12
(1
'
0)+Q

22
(1
'
0)]-1

4.4.5

For this inverse to exist, the matrix FIGE
12
(1,0)

+n22(1,0)] 
must be nonsingular.

It is noted that for V equal to the zero matrix or a diagonal matrix, the set

J = {VAN} is boundary compatible. The core of the Green's function is given

by the matrices [M+101/(1,0)] IM and [M+Nt
v
(1,0)]

-1 
N which are explicitly given as
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[M+N0V(1,0)]-1M
I

'-f-°12(1,o)+222(1,o)]
-1 

[-KC/ 11
(1
'

0)442
21
)1
'
0)]

and

[Mi-N0V(1,0)]-1N

We shall now consider specific

Example 4.4.8.

4.4.6

-4-0
12 
(1
' 
0)+O 

22 
(1
' 
0)]-1K I[-Kn

12
)1
'
0)+0

22
(1
'
0)]-1

4.4.7

choices for the V matrix.

Consider the choice of the simplest V matrix, i.e., assume V = O. The

fundamental matrix is then given as

I 0
0
V 
(t,$) =

[ I0
, 4.4.9

I .

Now using (4.4.6) and (4.4.7),

[1,44.Ncly(1,0)]-1m =

and

ol[I
K 

o
4.4.10

0 0
[M+N0V(1,0]-

{

-K I . 4.4.11

The Green's function matrices are calculated as

0]
G(t
' 
s) = (t,0)[M+N0 (1,0)]

-1 
MOV(0,$) =

I 

and

{I

K 0
4.4.12

G
II
(t
'
s (t,0)[M+N0

V 
(1,0)]

-1
Ne(1,$) -

[0
4.4.13
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and the 2n x 2n P(t) matrix defined as

1

P(t) = f lei(t,$)Ids + II 
(t
' 
s)lds

0

is calculated to be

[ tI 0
P(t)

IK1 (1-01

where elements of 1K] are given as 
lkij
. .1.

4.4.14

4.4.15

Example 4.4.16

The use of a p x p (2n x 2n) diagonal V matrix is now considered. Let V

be represented as

V =

1

•

.
n

0
4.4.16

o

so the fundamental matrix is then simply

1
(t-s)

4.4.17

0

• Xn(t-s)
e

p
1
(t-s)

ie
•

• ' Pn(t-s)
e
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which shall be denoted as

o
(1)
V
(t,$) = 

r11(t's)

0 R
22
(t,$)] 

•

This yields using (4.4.6) and (4.4.7),

[M+N0
V 
(1,0)]

-1 
M =

R
22
(1
'
0)K

11
(1,0)

and
0

[M+N(DV(1,0))-1 N =
[

--022
-1(1,0)K

22
1(1
'

The Green's function matrices are determined to be

and

o

0)

Ril(t,$) 0 1

Gi(t,$) =
R 

-1
(1 
,
0)KR (1,$) 0 ]22(t,0)0

2211

0

GII(t's) = -1
22
(t
' 
0)Q

22 
(1
' 
0)KR

11 
(1
' 
s) -

022(t,$)

In many instances the K matrix associated with the terminal cost is a

diagonal matrix. Let us now assume K diagonal with elements ki. Then using

(4.4.21) and (4.4.22), the P(t) matrix is found to be

51

4.4.18

4.4.19

4.4.20

4.4.21

4.4.22



P(t) =

a
x1t

(e -1)
. 1

t
1
-1-(e 

n 
-1)

'n

1K
1 

-p
1
(1-t)

1

X1 
e (1-e )

\

Ikn I -1.1n(1-t)

e (1-e n)
n

0

(1-t)
)111

1 -Pn(1-t)
P 

(1-e )
n

4.4.23

Example 4.4.24.

Many nonlinear systems of interest have an underlying oscillator structure.

For this reason we shall consider a choice of V matrix containing linear.oscillator

elements. This

V -

choice is represented as

S ,
1 .

i. 1 0
* S I(

J (r.

k

4.4.24

0

n

where the S. are
i

2

a.

x 2 matrices

co.

of the form

S. = 1 4.4.25
-w. Q.

The fundaMental matrix for this choice of V is. given as
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or

, ) =

v
(t,$) =

(I)
1
(t s)

•

o

o

(P
k 
(t
'
s)

(Pn
(t,$)

/NS

0
11
(t s)

o

where the 11)i(t,$) are 2 x 2 matrices of the form

a.(t-s) a.(t-s)
1

1 i
e cos w.(t-s) e sin w.(t-s)
1 

- sin wi(t-s)

(t,$) - (t-s) a.
1(t-s)

COS w.(t-s)

4.4.26

4.4.27

4.4.28

From (4.4.5), the matrix [M+NOV(1,0)] is nonsingular if 022(1,0) is nonsingular.

We now have

where

0 cpn (1,0)]
22(1'(3)= _

-a. -a.
cos w. -e sin w.

-1 
e 1 

1 
1 

1
Oi (1,0) =

- 
-a.

e ai 1
sin w. e cos w.

1 1

so this choice leads to a boundary compatible set.

The Green's functions are found to be given as
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and

G
I
(t
'
s) =

Q
22
(t
'
0) A Q

11
(o s)

G
II
(t
'
s)

0

-0
22
(t
'
0) A R

11
(0
'
s)

where the matrix A is given as

A = .42
22
(1
'
0) K

11
(1
'
0).

The matrix P(t) is then given as

P(t) =

[
11
(t s)

t

[
fIS1n(t,$) Ids 0

0

-Q
22
(t
'
s)]

0
1 4

JIR
22
(t,0) A Q (0,$)Ids

JI5222(t's) 
Ids

0 0

Due to the oscillatory nature of the elements of G (t,$), the integration of

the absolute values somewhat complicates an analytic solution for P(t). However,

in a future section we shall consider approximate techniques for obtaining this

P(t) matrix.

4.4.31

4.4.32

4.4.33

4.4.34

4.5. Boundary Set for Regulation with No Terminal Cost

In this section the use of simple V matrices with boundary value set {2}

is considered. The requirements for boundary compatibility of the various sets

J = {V,M,N,} shall be noted in particular. Boundary value set {2} is given

specifically as

I 0

M 10 0
N = 4.5.1

0 I
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A general 2n x 2n matrix is represented as

V = 
V11 1112

V
1121 22

and the corresponding fundamental matrix is given as

4.5.2

Q11(t's) Q 12(t's)
(Dv(t,$) = 4.5.3

021(t's) 222(t's) •

The matrix [M+MV(1,0)] is formed as

[M+NOV(1,0)] =

[ 221(1'
0) . S1

22 
(1
' 
0)

and the inverse, if it exists, is given by

[[M+NOV(1,0)]-1 =
-1 1

-Q
22
(1,0)0

21
(1,0) Q

22
(1)

4.5.4

4.5.5

For this inverse to exist, 022(1,0) must be nonsingular. It is noted that for

V equal to the zero or diagonal matrix, the set J = {V,M,N} is boundary compatible.

At this point we shall begin to take advantage of the fact that the remaining

results desired in this section may be obtained from the results of the previous

section with K equal to zero. These results are now presented for V matrices

of simple structure.

Example 4.5.6.

The first selection for the V matrix is the zero matrix, i.e., V = 0.

Using the results of Example 4.4.8 with K = 0, the P(t) matrix is given as
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[tI 0
P(t)

0 (1-t)I . 4.5.6

Example 4.5.7

For the second choice of the V matrix, a p x p (2n x2n) diagonal matrix is

selected, i.e.;

V -
n

0

n

4.5.8

•
Now specializing the results of Example.4.4.16 with K 0, the P(t) matrix is

obtained as

P(t) =

A
L (e 1

t 
-1)

X1

0

0

-P1(1-t)
(1-e

n

(l_e 
-p
n
(1-t)
)

4.5.9

4.6. Application of Similarity Transformations

As an introduction to the use of similarity transformations, consider the

linear TPBVP

= Vy My(0) + Ny(1) = c . 4.6.1
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If the set J = {V,M,N} is boundary compatible, the solution to (4.6.1) is given

by Theorem 3.23 as

y(t) = OV(t,0)[M+NOV(1,0)]-1 c. 4.6.2

In an attempt to ease the calculation of the fundamental matrix 0V(t,0), consider

the use of the nonsingular linear transformation

Az = y . 4.6.3

From (4.6.1) , the transformed TPBVP is given as

= A
-1 

VA z MAz(0) + NAz(1) = c . 4.6.4

If the set I = {A-1VA, MA, NA} is boundary compatible, the solution for (4.6.4)

may be written as

-1 -1
z(t) = 0

A VA 
(t)[MA + NAtA

VA
(1,0)]

-1 
c. 4.6.5

In passing, it may be quickly shown that if the set J = {VAN} is boundary

compatible, the transformed set I= {A-1VA, MA,NA} is also boundary compatible.

With the matrix [M+N0V(1,0)] nonsingular, post multiplication by A yields the

nonsingular matrix [MA+N0V(1,0)A]. Tho fundamental matrices are related by

A
-1

VAv
(1,0) = A0 (1,0)A-1 so the nonsingular matrix [MA+NOV(1,0)A] may be written

A
-1

VA
as [MA+N0 (1,0)] indicating the transformed set J = {A

-1
VA,MA,NA} is boundary

compatible. If the transformation A
-1

VA reduces V to a canonical form, the

A
-1

VA
fundamental matrix (t,$) is of simple structure.

Now consider the nonlinear TPBVP

= Sy + f(y) My(0) + Ny(1) = c . 4.6.6
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Again consider the nonsingular linear transformation

and let

A z = y

-L
D = A VA . 

Then (4.6.6) becomes the transformed TPBVP

= A
-1 
SAz + A 1f(Az)

MAz(0) + NAz(1) = c .

4.6.7

4.6.8

4.6.9

If the set j = {A-1VA, MA, NA} is boundary compatible, the integral representation

for (4.6.9) is

1

TI(y) = H(t)c + j G5(t,$)(A 1SAz + A-
1 f(Az(s)) - Dz}ds

0

where the Green's functions are given as

and

I7(t) =
D
(t,0)[MA+NAO

D
(1,0)]

-1

D
(t,0)[MA + NAO

D
(1,0)]

-1
MI)
D
(0,$) , 0<s< t

G (t,$) =1
- -4) (t,0)[MA + NA4)

D
(1,0)]

-1
N4) 1,$) , t < s < 1 .

4.6.10

4.6.11

4.6.12

If it is desired to investigate the iterative solution of the operator equation

z = T (z) ,

the operator derivative CFz 
is given as

4.6.13

1
(T
z
I 
)'u = j(G

J 
(t,$)(A

-1
SAz(s) + A

-1
(3f/3y)(Az(s))A - D}u(s)ds 4.6.14

0
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if the TPBVP is differentiable. However, rather than using (4.6.14), another

approach may be taken It may easily be shown that a direct relationship exists

between the Green's functions for the boundary compatible set J = {V,M,N} and

the transformed boundary compatible set J = {D,MA,NA} . In particular,

and

Hj(t,$) = AH5(t,$) 4.6.15

Gj(t,$) = AG(t,$)A
-1

I

G
II(t,$)= AGIIet,$)e

1

4.6.16

4.6.17

Hence the integral representation for (4.6.6) may be written as

1

y(t) = Tj(y)(t) = AITT(t,$)c + jrAe(t,$)A-1{Sy(s)+f(y(s),$)-Vy(s)lds

0 4.6.18

Then if the matrix A
-1 

VA is a canonical form, (I)
D
(t,$) and G (t,$) are often much

easier to calculate, and it may very well be easier to calculate estimates for

(T 
J
)'

The theory of canonical forms has received great attention in the past years.

General books of interest include Gantmacher [G1], Bodweig [B2],Turnbull [T1],

and Ferrar [F2]. Of interest to control analysts are the books of Bellman [B1]

and Ogata [01]. In particular, we now present a well known theorem concerning

the diagonalization of matrices.

Theorem 4.6.19

IfthecharacteristicrootsX.of the matrix V are distinct, there exists

a matrix A such that
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A
-1

VA = 4.6.20

Proof. (See Bellman or Ogata).

However, if a p x p matrix V does not possess p linearly independent eigenvectors,

then V is not similar to a diagonal matrix. In this case, it can be proved

rigorously that a p x p matrix, V, possessing less than p linearly independent

characteristic vectors is similar to the Jordan canonical form, where the

elements in the main diagonal are the characteristic roots and the elements

immediately above the main diagonal are either one or zero and all other elements

are zero. (The proof of this statement may be found in Turnbull.) However,

rather than using the more involved Jordan canonical form, we shall make use of

the following result from Bellman.

Theorem 4.6.21*

Given any matrix W, we can find a matrix V with distinct characteristic

roots such that BW-VO < e , where C is any preassigned quantity.

Proof. (See Bellman.)

The importance of Theorem 4.6.21 is as follows. Assume analysis of the

convergence conditions indicates the matrix W is a good choice for use in the

integral representation. If W contains multiple characteristic roots, it is

not similar to a diagonal form and the advantages of this simple form are not

available. However, since we are.free to choose the matrix, we may use Theorem

4.6.21 and "perturb" the W matrix to a V matrix "close to W" (i•e. < e )

which does have dis'tinct characteristic roots. We may then determine a matrix

60





Not only does D have only real elements but, more significantly, K
-1

A
-1 

and

AK have only real elements. Now setting

A = AK

A
-1 

= K
-1

A
-1

4.6.27

the transformation is given the standard form of

D = A VA . 4.6.28

As a result of this discussion, in the sequel the term canonical form shall

specifically refer either to diagonal or to the modified diagonal form as in

(4.6.24).

We shall now choose several forms for the V matrix to illustrate the use

of the similarity transformation with the boundary value sets of interest.

Example 4.6.29.

Let us consider

M =
I 0

0 0

the boundary value

N =

set

0 0

-K I
4.6.30

and the 2n x 2n V matrix with distinct characteristic roots

V =
[0

V
11

4.6.31
V
22

The similarity transformation has the form

A =
[A

11 
0 1

0 A
22

-1 [Ail
A .

0

A
-1

0 
22

4.6.32

62



and the canonical matrix D is given as

D = A 
1 
V

The fundamental matrix of the canonical matrix has the general form

(1)
D
(t,s r

il(t,$)

0

o

4)22(t,$) •

The matrix [MA + NAOD(1,0)] is obtained as

[MA + NA0(1,0)] =

and if the inverse exists,

+ NA(I,
D
(1,0)]

-1

A
11 

0

[-KA
11
0
11
(1
'
0) A cp (1 0)1 ,

22 22 '

0

0
22
(1
'
0)A

22 
KA
11
0
11 

(1,0) (I)22(1,0)A22

The Green's functions are then found as

4,11(t,$) 0

Gi(t,$) =

(1) (t'°)411 
(0,$) 0

Gj
I 
(t
' 
s) =

I 

0

(t,0) 
"11(O's)

where the n x n matrix 6 is given by
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4.6.33

4.6.34

4.6.35

4.6.36

4.6.37

4.6.38



-1 -1
° —4'22(1,O)A22 KA114)11(1,0) .

Then for P(t) defined as

we have

- •

P(t) = f l G 
I 
j 
' 
sflds + f 1GII ' 

(t sflds

0

P(t) =

t

t
.1 ds°11(t-s)l01 0

1 
1

/* 

:22(t,O)"11(o's)1.1 1
.ds 

.11:22 
(t,$)Ids

0 t

It should be noticed that P(t) may be obtained as

P(t) = AP(t)A
-1

Example 4,6.42

Let us now consider the use of a 2n x 2n V matrix of the form

V =

[1/
11

0 V
22

with the boundary value set corresponding to no terminal penalty, i.e.,

rI 0
M = LO 0] N = 0 I]

Defining the canonical form D = A
-1

V , we can calculate P(t) by specializing

the results of Example 4.6.29 with K = 0, P(t) is obtained as
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4.6.40

4.6.41

4.6.42

4.6.43



J11011(t,$)Ids 0

P(t)
1

0 jr022(t,$)Ids

4.6.44

This is an especially nice result if the V
11 

and V
22 

matrices may be diagonalized.

Specifically, if D has the form

n
D =

Then P(t) has the particularly simple form

P(t) =

1 t
( 1 -1)

1 •
•
\ 

1 
Xnt

7.--(e -1)
^n

un

0

0

1 
-u1(1-t) )

1-e

•
•

•

4.6.45

4.6.46

1 (
1 e

7pn(1-t)\

Pn

In this. section, the use of similarity transformations was introduced in an

attempt to simplify the calculation of P(t). For some cases the technique worked

very well yielding simple expressions for P(t). However, in some instances the

matrix P(t) is very awkward to calculate. Consideration of the similarity trans-

formation led to the development of an approximate technique which is presented

in the next section.
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4.7. Approximate Technique

We shall now introduce a technique which, though not mathematically rigorous,

allows one to obtain estimates for P(t) in a much simpler fashion. Using the

canonical transformation A, define the matrix D as D = A
-1

VA and write Gi
J
(t,$)

and GII(t,$) as

G
I
(t,$) = {A(1)

D
(t,O)A

-1
}{[M+N(1)

V 
(1,0)]

-I 
M}{A0

D 
(0,$)A

-1 } 4.7.1

Gj
I 
(t
' 
s) = -{A.1)

D
(t,O)A

-1
}{[M+NO (1,0)] 1N4Y(1,0)}{A(I)

D
(0,s)A

-1 
}. 4.7.2

I 

The terms have been separated by brackets to indicate the factors contributing to

the magnitude of P(t), namely the inversion and the integration of the fundamental

matrices. Consider the general 2n x 2n V matrix and the resultant fundamental

matrix to be given as

V =
V11 V12

V
21 

V
22

t,$) =

[ 5111(t,$) 5212(t,$)

5221(t's) 222(t's) • 
4.7.3

For the boundary value matrices

0 0 01
M =

[I
N
[

4.7.4

we have

0 0 -K I]

I 0
[M+NO

v
(1,0)] = 4.7.5

-K0
11
(1,0)+0

21
(1,0) _Kn

12 
(1,0)+0

22
(1,0)

and if the inverse exists,
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[M+NOV(1,0)]-1
I

-[-m12(1,°)+° 11
-1

22(''' (1.°)+'

0

[-KO (1,0)
12 +222(1'0)1

The center bracketed terms are then found as

and

[ 

I 0
[M+NOV(1,0)]-1 M =

A 0

[M+NlY(1,0)]-1 NrDV(1,0) =

where the n x n matrix A is given as

0 0]

-A I

A = -pm12(1,0)+°22(1,0)14[-m11(1,0)+Q21(1,0)1.

(1,0)]

4.7.6

4.7.7

4.7.8

4.7.9

Now assuming that (I)
D
(t,$) represents the primary magnitude characteristics of

AO
D
(t,$)A

-1 
, we shall form

and

{4)
D
(t,0)1{[M+N(1)

V 
(1,0)]

-1
 M}{(1)

D
(0,$)}

-(4)
D
(t,0)}{[M+N(1)

V 
(1,0)]

-1 
N4Y(1,0)}{(1)

D
(0,$)}

4.7.10

4.7.11

as approximations to GI(t,$) and G11(t,$). Following the discussion in Section 4.6

concerning canonical forms, the fundamental matrix 0
D
(t,$) may be represented in

the form
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(I)
D
(t,$) =

[PIL(t,$) 0

o 0
22
(t s)] 4.7.12

Using (4.7.10) and (4.7.11), we obtain the approximations

4111(t's)
Gj(t,$)z. 4.7.13

and

D
2  
(t,0),64

D 
1
(0,$) 0

2 

0 0
Gj (t,$)

[

4.7.14
O
2  
(t,O)A0D

1 
(0,$) 

(1'22(t's)2 

Finally, this yields

D 
1 ' 
(t s)lds 0

1 

P (t)
1

4.7.15

fle22(t,0)6ppli (0,$) ids 0D22 (t , s ) ds

For the boundary value set

01 0
M =

[I
N =

[0
4.7.16

0 0.1 0 I ,

we may specialize the results of (4.7.15) with K = 0 to obtain
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where

P (t)
1( SD 'sflds 

0I 11 

le (t
' 1 
0)4D

1 ' 
(0 s)lds flAD

2'
.
' r's' 

lds
l'222 

A = 41
22
(1
'
0)0

21
(1
'
0) .

4.7.17

4.17.18

These approximations greatly simplify the calculation of P(t), and moreover, they

capture the primary quantitative behavior of the P(t) matrix. The concepts and

techniques introduced in this chapter will be illustrated in several numerical

examples in Chapter 6.
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CHAPTER 5

CONTROLLABILITY FOR NONLINEAR SYSTEMS

5.1. Introduction

The concept of null controllability is a natural aspect of the study of

optimal regulation for nonlinear systems. Whereas the optimal regulator attempts

to drive the system from its initial state into a region near the origin, null

controllability is concerned with driving the system precisely to the origin.

Historically, the issues of regulation and controllability are closely intertwined.

The study of linear regulator problems in a general framework served to uncover

some of the underlying relationships that exist between the structure of the

optimal system and the fundamental concept of controllability [K1], [K3]. Much

of the effort to date concerning null controllability of nonlinear systems has

involved determination of feedback controllers such that the driven systems

satisfy certain Lyapunov-type stability arguments [B4], [G3]. In this chapter

the integral representation of TPBVP's and the contraction mapping theorem will

be used to investigate the controllability of nonlinear systems via existence of

solutions arguments.

5.2. Controllability for Linear Systems.

As an introduction to the controllability issue and the approach to be

taken in the study, we shall first consider the controllability of linear systems.
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Definition 5.2.1.

The autonomous linear control process

k(t) = Ax(t) + Bu(t) . 5.2.2

with ue St = Rm , is (completely) controllable in case: for each pair of points

x
0 

and x
1 
in R

n
, there exists a bounded measurable controller u(t) on some finite

interval 0 < t < T which steers x0 to x1 
.

— — 

Theorem 5.2.3.

The autonomous linear system

k(t) = Ax(t) + Bu(t) 5.2.4

with uE D= Rm, is (completely) controllable if and only if a solution exists to

the linear TPBVP

[kJ 

IA -BB] [1

0 -A' p

1 0 (01 0 0 tx(, x00 01 p (0) I 0 lp(1) x
1•
1 

•

5. 2.5

Proof: Assume a solution x*(t), p*(t) exists to the TPBVP (5.2.5). Now consider

the optimization problem of determining a control u(t) to drive the system (5.2.4)

from the initial state xo to the terminal state x1 such that the cost functional

1
1

J = 
2 
— f <u(t), u(t)) dt

0
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is minimized. Application of the Pontryagin principle yields precisely the

TPBVP (5.2.5). Then the control

u(t) =-B'p*(t) 5.2.7

drives the system from x0 to xl .

Conversely, assume that the system (5.2.4) is completely controllable. We

shall show that a solution exists to the TPBVP. The linear TPBVP

with

y(t) = Vy(t) + f(t)

My(0) + Ny(1) = c

[A -B131
V = 

1

0 -A'
M =

0 0
N =

o

has a solution for every f(t) and c if det[M+Ne(1,0)] # 0 . The fundamental

matrix for V is given in the form

tlY(t,$) = 1211(tis)
L o

and the matrix [M+Ne(1,0)] is obtained in the form

I 0
[M+Ne(1,0)] =

2
11
(1
'
0) 2

12
(1
'
0)]

The inverse, if it exists, is given as

I o
[M+NclY(1,0)]-1 = -1

-2
12
(1
'
o)n11

-1(1 o) '12(1.°)
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and det[M+N0V(1,0)] = det[1212(1,0)]; . Now investigating the differential equation

describing 0
V 
(t,0), we have

Q
12
(t PS2(t0)22 ,612(t'°) 

= A0) - B 0
12
(0
'
0) 0

6
22
(t,0) = -A,52

22
(t,0) , 0

22
(0
'
0) = I

These equations yield

and

-A'
2
(t,0) = (t,0) = 0

A
(0,t)'

0
12
(t,0) =

-A
(t,0) f

A
(0,a)B

B
'0,

A
(0,0)'da .

0

Hence for the existence of a solution to the TPBVP (5.2.5), we must have

1

det[0
A
(1,0) f

A
(0,a)BB,0

A
(0,o)'da] # 0 .

0

However, the assumption of complete controllability specifies

1

det[
A
(0,a)BB'0

A
(0,0)'da] # 0 ,

0

5.2.13

5.2.14.

5.2.15

5.2.16

5.2.17

therefore a solution to the TPBVP must exist.

Hence the issue of invertibility of 5212(1,0) leads to the well known

controllability Grammian and the approach is seen to yield conditions compatible

with previously derived results. The following corollary will often prove useful

when selecting a V matrix for a controllability investigation.
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Corollary 5.2.18

Let the constant 2n x 2n matrices V,M, and N be of the form

V
11 

V 0 1 0 0
V = • M = Il N0 -V11 0 0] II 0

with V
12 

= -BB' where B is an n x r matrix. Then the set J = {VAN} is

boundary compatible if and only if

rank [B,V
11

B,...,V
1
1 
B] = n

1 

5.2.19

5.2.20

Proof. See proof of theorem 5.2.3 and Lee and Markus [L1] for the relationship

between (5.2.20) and the controllability Grammian.

The obvious advantage provided by Corollary 5.2.18 is that it removes the

calculation of e(1,0) when determining the boundary compatibility of a set J

in the form of (5.2.19). With this background, we shall now consider nonlinear

controllability.

5.3. Nonlinear Controllability

In this section we shall extend the approach of Section 5.2 to include

nonlinear systems However, rather than considering global controllability

as for linear systems, we shall consider local null controllability, i.e.,

the problem of regulating an initial state, near the origin, to the origin.

Definition 5.3.1. [L1]

Consider the control process in R
n

= f(x,u) in C
2 

in Rn x 5.3.2

where S3 is a restraint set in Rm. The domain Yrof null controllability is
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defined as the set of all points x0
 E R

n
, each of which can be steered to x

1 
= 0

by some bounded measurable controller u(t) c:n in finite time. If AContains

an open neighborhood of xl = 0, then (5.3.2) is said to be locally controllable

(near the origin). We shall now consider the null controllability of nonlinear

systems by means of integral representations.

Theorem 5.3.3.

Consider the control process in Rn

= f(x,u) in C
2 

in R
n
 x

with u = 0 interior to the restraint set 0 C:11111 .

Assume

(a) f(0,0) = 0

(b) rank [B,AB,...,A
n-1

B] = n

where A = (3f/3x)(0,0) and B = (3fPu)(0,0)

Then the domainceof null controllability is open in Rn.

Proof. Let us define the function gx,u) as

so that

and

5.3.4

5.3.5

5.3.6

5.3.7

gx,u) = f(x,u) - Ax - Bu 5.3.8

4)(0,0) = 0

.311,
(---) (0
' 
0) = 0

Dx 

311,
(---)(0
' 
0) = 0 .

Du 

5.3.9

5.3.10

5.3.11

Now consider the optimization problem composed of the system
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ic = Ax + Bu + 11)(x,u) , 5.3.12

the boundary conditions,

x(0) = x0 , x(1) = 0 , 5.3.13

and the cost functional

1
1

J = 
2 
— f (u(t),u(t)) dt. 5.3.14

0

The Hamiltonian for this problem is given by

1
H = 

2 
— (u(t),u(t)) + (Ax(t),p(t)) (Bu(t),p(t))

and the costate variable is described by the differential equation

(x.,u) ,p (t))

5.3.15

p = A'p - (x,u)p . 5.3.16

Now assume a control of the form

u = -B'p 5.3.17

accomplishes the desired transfer. The canonical system of equations is now

given as

ic = Ax - BB'p + gx,u(p)) 5.3.18

= -Alp - (a)( (x,u(p))p 5.3.19

subject to the boundary conditions
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1 I 01 lx(0)1 0 [x(1)1 x 10 0 0 p(0) II 0 [p(1)] I 0.1

This may be expressed as

where

and

= Sy + F (y)

MY(0) + Ny(1) = c

A -BB' 1
S =

0 -A'

F(y) = [

M =

- (x,u(P))PI ••
alp

114x,u(P))

N = C =

5.3.20

5.3.21

5.3.22

5.3.23

For the boundary compatible set J = {V,M,N} where M and N are given in (5.3.22),

the solution to (5.3.20) may be written as

1

y(t) = Hj(t)c + fe(t,$)(Sy(s) + F(y(s)) - V(s)y(s)}ds

0

or as an operator equation

Y = Tj(Y).

5.3.24

5.3.25

Clearly with c = 0, y(-) = 0 is a fixed point of T . We are now interested in

the existence of a solution, y(.), if c is varied in a neighborhood of the origin.

Define the variable z as

z = P (c,y) . 5.3.27
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It is seen that a zero of Pj is a fixed point of T. We shall now show that

(P )' (0,0) has a bounded inverse and the desired conclusions concerning the

existence of a solution y may be deduced from the implicit function theorem.

(For presentations of the implicit function theorem, see Kantorovich [K4] and

Holtzman [H1]). The operator derivative is given as

or

1
BF

(Pj)' (0,0)v(t) = v(t) - Gj(t,$){5 + (--)(0) - V(s)}v(s)ds 5.3.28

0

(Pj)' (0,0)v = [I-Dj]v .

BF
If the set 3" = IS + (--)(0), M,N,} is boundary compatible, then [I-Dj]

-1 
is

Dy

bounded and is given as (see Falb [F1])

where

5.3.29

[I-Dj]-1 v = v 5.3.30

1

R
3 

= 
BF

Jr. j(t,$){V(s) - S - e--)(0)1 v(s)ds.By
0

5.3.31

DF
A11 that now remains is to show that 3% {s (--)(0),M,N1 is boundary compatible.

By

We have

and

[ 

li(x,u(p))

F(Y) = a,
- (i--;c) ' (x,u(p))17.

4
(u)(x,u(P))

alp
- 

3 
7,-,[(-57)'(x,u(p))pl

79

4
(--)(x,u(P))Bp

D 4
--4(--P(x.u(P))13]ap Bx

5.3.32

5.3.33



We have from (5.3.10) that (3Vax)(0,0) = 0 , and (atp/ap)(x,u(p)) may be

obtained as

alp alp au af
(—ap)(x,11(1))) = (—au)(7-p)(x,u(P)) = -[(7-u)(x,u(P)) - BDP

which evaluated for y(.) = 0 yields

(---)(0,0) = 0 .
ap

Defining the n x n matrix D(x,p) as

D(x,p) = 4P(x,u(p)) ,

it only remains to calculate

;R[D(x,p)p] and ap [D(x,p)p] .

If the n x n matrix Q(x,p) is defined as

a
Q(x,p) = .57 [D(x,p)p] ,

Then the elements of the matrix are given as

and then,

n

cik(x,p) = L.

Q(0,0) = 0 .

apk,

(x,P)p-
i

Similarly if the n x n matrix r(x,p) = 
a 

[D(x,p)p]

then the elements of the matrix are given as

n
aDki

y .(x p) = (ap. )(x,p)pj p(x,p)ki •

j=1 1.
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5.3.34

5.3.35

5.3.36

5.3.37

5.3.38

5.3.39

5.3.41

5.3.42



Since D(0,0) = 0 , then from (5.3.42)

r(o,o) = o .

As a result,

3F
(—) (0) = 0 ,
3y

and J is given simply as J = {SAN} where

A -BB'
S =

0 -A' .

5.3.43

5.3.44

5.3.45

Then from the assumption that the set {A,B} is controllable and the result of

Corollary 5.2.18, the set .7= {SAN} is boundary compatible, and consequently
the inverse is bounded. Hence for c in a neighborhood of the origin, a solution

y exists to the TPBVP and the system is null controllable in a neighborhood of

the origin as was to be proved. In addition, we note that the terminal state

is not required to be the origin, but may be any point xl in a neighborhood of

the origin.

The previous theorem does not specify the size ofir, the controllable

region, only that the system is null controllable in a region near the origin.

In addition, the condition that the linearized system be controllable about the

origin is not necessary for nonlinear null controllability. The use of the

contraction mapping theorem allows us to consider the domain of x
0' 

x
1 
such that

a solution exists to the TPBVP, and moreover, the theorem is stated without

specifying linearized controllability. As an example of the use of the contrac-

tion mappings theorem for controllability investigation, the broad class of

systems described as
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= f(x) + Bu 5.3.46

will be considered.

Theorem 5.3.47.

Consider the control process in Rn

x f(x) + Bu in C
2
 in Rn x

Let yo(-) be an element of 4;([0,1],e) and let g = g(yo, . Suppose that

5.3748

(i) J = (V,M,N1 is a boundary compatible set, and (ii) there are real numbers

n and a with n > 0 and 0

1) IlTj(y0)-y0 II =

< a < 1 such that

1

(t) xol 

0

+ Gj (t,$)

I 0

-V(s)

2) sup_ / 11(T;)' sup_ sup
yE g • y E S Hun < 1

0

af- (rip (x(s))

3) 
11 

<a — n r .

[
-BB'po(s) + f(x0(s))1

af
- (ye (xo(s))po(s)

xo(s)1 1 )(0(01
ds -

PP) PO "

1

f Gj(t,$)il

0

3x

< n

(u
f
)(x(s))

5.3.49

[(4)1 (x(s))p(s)]

-V(s) u(s)ds <

5.3.50

5.3.51

Then the CM sequence {yil(*)} for the TPBVP based on y0 and J converges uniformly

to the uniqUe solution y* in 8 and a control exists, u = -B'p*, to steer the
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system (5.3.48) from x
0 

to the origin.

Proof. Consider the optimization problem consisting of the system (5.3.48), the

cost functional

=
2
1

1

f<u(t), u(t)> dt,

0

5.3.52

and the boundary conditions

x(0) = x0 , x(1) = 0 . 5.3.53

Application of the Pontryagin principle to the posed optimization problem

reduces the necessary conditions for optimality to the TPBVP

1 -BB'p + f(x)I

a
- e-

f
d ' (x)p

I 01 lx(0)1 [0 0.1 [ x(1) }

0 0 p(0) I 0 p(1)

5.3.54

5.3.55

For the boundary compatible set J = {VAN}, the solution to the TPBVP may be

written under certain smoothness conditions as

lx(t) 
0

] Tj(y)(t) = Hj(t) [x

p(t) 0

1

f Gj(t,$) -BB'p(s) + f(x(s))

af-t-c) (x(s))p(s)

- V (s) x(s)
ds

p(s)
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Applying contraction mappings Theorem 3.4.14 to the operator (5.3.56) yields

the conditions to be proved in Theorem 5.3.47.

For the general system formulation, k = f(x,u), the canonical equations

of 2.3.54 are used subject to the boundary conditions (5.3.55). Techniques for

calculating the criteria of Theorem 5.3.47 will now be considered.

5.4. Evaluation of Controllability Convergence Parameters

In Section 4.6, the variables z
0' 

z, and P(t) were defined such that coarse

estimates for n and a were obtained as

and
n =

• a = .017(.)z .

5.4.1

5.4.2

In this section we shall consider the determination of z0, z, and P(t) for

the controllability Theorem 5.3.47. In particular, the conditions for boundary

compatibility and the use of simple V matrices and similarity transformations

will be considered.

The boundary value set for controllability problems is given as

oN =
I oi

Assuming a general form for the .2n x 2n V matrix and the fundamental matrix

OV(t,$), i.e.,

[ 
V = 

V
11 

V
12

v v
21 22

211(t's) C12(t's)v
(t,$) =

The matrix [M+NOV(1,0)] is obtained as
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1 221(t's) C122(t's) '

5.4.3

5.4.4



be used in the integral representation.

[M+NOV(1,0)] is given as

[M+10V(1,0)]-1 =

I

If det
[212(1,0)]

1

0 ,

-1 2) 2-212(1 '11' (12) 
D (1
12 '

0)1

and then the core matrices of the Green's function are given as

and

o
[wisloV(1,0]-11,4

-1
-4.2
12 

(1,0) 52
11
(1,0) 0

[[M+N(01(1,0)]-1N4Y(1,0) =

0 0

Q
12 
(1
' 
0) 

11 
(1
' 
0) I

[M+NdY(1,0)] =
SI
11
(1
'
0) 52

12
(1
'
0)  .

5.4.5

This yields det[M+NOV(1,0)] = det[52
12
(1,0)]. Hence the condition for boundary

compatibility reduces to the nonsingularity of D12(1,0). In passing, it is seen

that neither the zero matrix nor a diagonal matrix (nor a modified diagonal) may

the inverse of

5.4.6

5.4.7

5.4.8

Since the boundary value set (5.4.3) disallows the use of particularly simple

V matrices, we shall consider an approximate technique for calculating Gj(t,$)

and P(t) for V matrices of general structure.

Example 5.4.9.

Using the canonical transformation

D = A
-1

VA ,
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the Green's function matrices are given as

G/(t,$) = {A(1)D(t,0)A
-1

}{[M+N(1)V(1,0)]-1M}{A~D(O,$)A
-1}

GII(t's) = {Ad?
D
(t,O)A

-1 
}i[M+N(01(1,0)] 110V(1,0)}(A(1)

D
(0,$)A

-1
1

5.4.11

5.4.12

for the boundary compatible set J = {VAN}. From (5.4.7) and (5.4.8), the

center bracketed terms in (5.4.11), (5.4.12) are given as

I 0
[M+N(01(1,0)]-1M = 5.4.13

and

A 0

0 0
[M+N(DV(1,0)] 1N4Y(1,0) = 5.4.14

where

-A I

A = 
-5212

1
(1
' 
0) 52

11 
(1
' 
0) 5.4.15

Assuming that (I)
D
(t,$) represents the primary magnitude characteristics of

AO
D
(t,$)A

-1 
, approximations for G

I(t,$) and GII
(t,$) are formed as

G, (t,$)
D
(t,0)[M+10

v
(1,0)]

-1 
/0

D 
(0,$)

and

5.4.16

Gj (t,$)
D
(t,0)[M+N(1) (1,0)]-1N(IY(1,0)(1)

D
(0,$) . 5.4.17

Following the discussion in Section 4.6, V is chosen such that e(t,$) is

diagonal or modified diagonal and may be represented as

D 4)11(t,$)
(t,$) = 5.4.18.

0 
4)22(t's)1 •
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Using this form of 0(t,$) in (5.4.16) and (5.4.17), the approximations for

yt,$) and G11(t,$) are given as

and

D
011(t,$) 0

0
D 
2 1 
(t,0) tap

D 
1
(0,$) 0

0 0

GII(t's) D
AO

11
(0,$)

4)22(t'O) °22(t's)1

The approximation for P(t) is then given as

where

P(t);;,-

- t
fl D011(t,$)Ids
0

(t,0) 
Aell 

(0,$)Ids

A = -52
12
(1
'
0) 52

11
(1,0) .

0

1

f l(pD22(t ,$) Ids

t

5.4.19

5.4.20

5.4.21

5.4.22

For D a diagonal matrix, P(t) given by (5.4.21) becomes a particularly simple

form. Several variables are now defined which will be used with P(t) to calculate

estimates for n and a in Theorem 5.3.47.

Definition 5.4.22.

Using the boundary compatible initial estimate, y0(t) = Hj(t)c, define the

2n vector z
0 

as
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[ 

1-BB'p0(s) - 
V11x0(s) - 

V12p0(s)
 + f(x0(s))1

z --. sup 5.4.23

I -V21x0(s) v22p0(s) - ofl2xF(x0(s))po(s)1

A conservative estimate for n is given as

n = HP(.)zo . 5.4.24

Definition 5.4.2S.

Define th erealnumbersv,Eand 

vi4 = sup
ixe51`3x.'`

asij ij, Gij

ir 3f„
• iVll..l

5.4.26
l i 

x) - j=1- 
• '
n

"
3

Ei
=1(-1313')

ij

and

..
aij 

= sup

- V
12. 

1 ; i,j=1,n
j

ij

n 2
f

I ILE]

-5.4.27

5.4.28
(axl .)(x) Pk' '

x,pe S k=1

and define the n vectors zI 
and z

II 
to be composed of the elements

n

(v . 
ij 
. + E .

1)
. ) 5.4.29

j=1

and n

z
II. 

= 
I: ij

5.4.30

j=1

Then the 2n vector

z =
1 z

I
z
II

z defined as

,
5.4.31
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may be used with P(t) to obtain a coarse estimate for a as

a = .

Numerical evaluation of the convergence criteria is presented for various

examples in Chapter 6.

-
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CHAPTER 6

ITY ICAL EXAMPLES

6.1. Introduction

We examine the regulation and control of several nonlinear systems to

demonstrate the usefulness of contraction mappings and to illustrate the practical

applications of the major theorems. There are many well known and very powerful

iterative methods for the solution of optimal control problems. However, practical

convergence criteria are few and far between. In this chapter we demonstrate

that general results may be obtained via the application of the contraction

mappings convergence theorem. In addition, the practical application of the

contraction Mapping algorithm demonstrates that in many cases it is an efficient,

straightforward technique for the solution of optimal control problems. The

examples demonstrate that practical application has a much broader range than

the theoretical results might imply. This is primarily due to the coarse

estimates which are used to evaluate the convergence parameters.

The first example to be considered is the regulation of the well known

Van der Pol equation. As an illustrative exercise, both contraction mappings

and modified contraction mappings are applied to this problem. The results

obtained are compared with previously published data. The second example

begins a two part sequence investigating the null controllability of nonlinear'

systems. The first member of the sequence is a particularly simple system

which serves to introduce bounded control problems. The final example of the
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chapter considers the null controllability of the pitching motion of a satellite

with bounded control thrust.

6.2. Van der Pol's Equation

In this rather longexample, we consider in detail many of the concepts

essential to the contraction mappings theory. In particular, the choice of

the boundary compatible set J and the calculation of.the convergence parameters

will be investigated closely. The system to be considered is the driven, second

order nonlinear oscillator studied by Van der Pol.

k
1 
=x

2

k
2 
= -x

1 
+ E(1-x

1
 
)x2 + u .

The cost functional tO be minimized is taken from Bullock [B6] as

j
2
1 2

+ x(t) + u
2
(t)]dt ,

and the boundary conditions for the optimal regulator problem are given as

x1(0) = 1.0 x
1 
(5) unspecified

x2(0) = 0.0 x
2
(5) unspecified .

6.2.1

6.2.2

6.2.3

From Example 2.3.10, the necessary conditions for optimality reduce to the TPBVP

= + f(y) 6.2.4

Ky(0) + Ly(1) = c

where

0 5 0 0 0

-5 0 0 -5 5(1-xl
2 
)x2

S = f(y) = 6 6.2.5
-5 0 0 5 10x

1
x
2
p
2

_ 0 -5 -5 0, -5(1-x
2

2
)p
2
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and

1 0 0 0 0 0 0 0 1

0 1 0 0 0 0 0 0
K = L = C = 6.2.6

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1_

Using a boundary compatible set J = {V(t), M, N}, (6.2.4) may be expressed in

integral form as

y(t) = Hj(t){c-Ky(0) - Ly(1) + My(0) + Ny(1)}

1

+ f ){sy(s) + f(y(s)) - v(s)y(s)}ds
6.2.7

The iterative solution of (6.2.7) by contraction mappings is now considered.

We begin with the selection of the boundary compatible set J = {V(t),M,N}.

Since the boundary conditions of (6.2.4) are linear, the natural choice

for the matrices M and N are M=K, N=L. If the initial estimate of the solution

is then chosen as Hj(t)c, every member of the contraction mapping sequence

satisfies the boundary conditions. As indicated previously, it is often

advantageous to choose the matrix V in such a way that {S + (af/Dy)(y)-V(s)}

is small. Following this guideline generally requires inclusion of time

varying functions in the V matrix, thus complicating the convergence analysis.

However, if 6 is small in (6.2.5), an acceptable choice for V is simply the

linear part-of (6.2.4), i.e., V = S. For larger values of t , it may become

necessary to include an effect of the nonlinearity in the choice of the V matrix,

but for now, consider V to be chosen as

93



o s o

-5 0 0 -5
1.1

-5 0 0 5

_ 0 -5 -5 0

6.2.8

The variables P(t), zo, and z, defined in Chapter 4 for use in convergence

analysis, will now be obtained for this example. From (4.2.9), (4.2.11), (6.2.5)

and (6.2.8), the vectors z0 and z are

0

15 (1-xl
2 
(t)0)x2(t)0 1

z
0

sup
t 110 x1(t)0x2(t)0p2(t)0 1

Is (1-xl
2 
(t)0)1)2(t)01

and

z = sup sup_
t yE S

. '0

xl(t)x2(01 + 1(1-xf(t))1

2(t)p2(t)1 + 12 xl(t)p2(t)

(t)P2(01 1(1-4.(t))1

xl(t)x2(t)i

6.2.9

6.2.10

for V given by (6.2.8), the calculation and structure of the fundamental matrix

is sOmewhat involved, thus complicating the calcUlation of P(t). Since the

characteristic roots of V are two pairs of complex conjugates, the techniques of

Example 4.4.24 are useful for evaluating the P(t) matrix. The canonical

transformation

= A IVA
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transforms the V matrix into the block diagonal form

a
1

w
1

0 0

D =
-w

1
a
1

0
6.2.12

0 0 02 w
2

_ 0 0 -w
2

a
2

where al =-3.35, wi = 4.91, and a2 = 3.35, w2 = 4.91. It is then straightforward

to calculate the matrix P(t) from (4.7.1) and (4.7.2).

The parameter e is included in the example so that the general case may

be considered. In particular we are interested in determining the range of C

for which the contraction mappings theorem is valid. Before proceeding with

the convergence analysis, the sphere g(yo,r) must be defined. The initial

estimate of the solution, yo(.) is taken to be the boundary compatible initial

estimate, i.e., the solution to the linear TPBVP

or

= Vy My(0) + Ny(1) = c

y(t) = Hjr(t) c.

6.2.13

(It should be noticed that this choice for yo does not require additional

computation since the terms are necessary for the CM algorithm.) With this

choice of yo, the radius of g is taken as r = 0.1. This sphere g(yo,r) is

illustrated in Figure 6.1.
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1

1:0

0

Figure 6.1

1

-0.5

P20

0:5

The Sphere (ycl,r)

••••
.00

From (6.2.9) and (6.2.10), the vectors z0 and z are calculated as

z
0

1

0.0- 0.0

2.1 5.8
e z = 6 6.2.14

2.5 12.6

3.8 7.9

Conservative estimates for the convergence parameters n and a are obtained as

and

n = sup{P(t)z0} = 2.1 e 6.2.15
t

a = sup{P(t)z} = 6.76 6.2.16
t
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Using (6.2.15) and (6.2.16), the requirements of Theorem 3.4.14 are specified as

and

6.7C < 1 6.2.17

2.1 C
< 0.1

1-6.7E —
6.2.18

Analysis of (6.2.17) and (6.2.18) shows that for 6 < 0.034 theconvergence

conditions of the theorem are satisfied.

The case for = 1.0 is treated in the paper "A Second-Order Feedback

Method for Optimal Control Computations", by Bullock and Franklin [B6]. In

the paper, the optimization problem presented by (6.1,2,3) is solved by the

techniques of steepest descent and second variation. We now consider the

application of contraction mappings to (6.2.4) with C = 1.0. Again the V matrix

is chosen V = S. Now rather than taking yo as the solution to the linear TPBVP,

y0(t) shall be given by the fifth iteration of the CM algorithm begun with the

initial guess Hj(t)c. This choice for yo is made so that the region Š(Y0,T) is

more likely to include the solution y(t) to the nonlinear TPBVP. We again take

r = 0.1. This sphere is illustrated in Figure 6.2.

We shall first determine the convergence rate factor a. Taking the supremum

over Š, z is given as

z =
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0

1.0

2.0

x2
0

-0.5

P20

Figure 6.2 The Sphere g(yo,r)

and a coarse estimate for a is

a = sup{P(t)z} = 6.8 6.2.19
t

With a > 1, the conditions of the theorem are not satisfied and convergence is

not guaranteed by the theorem. However, these theoretical results are only

guidelines for the practical application of contraction mappings. In fact,
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the CM algorithm reduced the convergence norm (given as sup suP1Yi n+1 (t) -Y-1 n (t )1), .,
iep t

to 10 
4 

in fourteen iterations. In order to compare these results with those

presented in [86], we note that the norm of the cost function (given as 1J114.1  

was reduced to 10
-5 

in fourteen iterations by the CM algorithm. In [B6], the

computed cost agreed with the optimal in only two significant figures after

eighteen iterations for the steepest descent procedure. The more complicated

second order technique obtained five place accuracy in the cost after five

iterations.

Using the results of Section 3.5, we now consider a technique which is

often effective in reducing a and the number of iterations required by the CM

algorithm. In this approach, a more complicated boundary compatible set

J = Mt), M, N} is used in the integral representation. The matrix W(t) is

designed to include time varying terms attempting to model the effects of the

nonlinearity. For example, model [1 - x
1
2
(t)] as [1 - (1-0

2
] and select the

W(t) matrix as

0 5 0 0

-5 5 & [1-(1-t)
2
] 0 -5

-5 0 0 5

0 -5 -5 -5 E [1-(1-t)
2
]

However, using the equivalence relation (3.5.29), we have

W(t) =

J 
T3(y) = [I-U ]

-1 
[1J 

(y) - U
j 

y]
MN  MN

6.2.20

6.2.21

for the boundary compatible sets J = {VAN} and = {W(OAN}. Hence the Green's

function may be calculated using the simpler set J = {V,M,N} where V is given by

(6.2.8) and P(t) is calculated using the D matrix (6.2.12). We previously found

that with V given by (6.2.8), the conditions of the contraction mappings theorem
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are satisfied for 6 < 0.034. A similar analysis is now

The vectors z
0 

and z are given as

0

done for .7= {w(t),m,N}.

15x
2
(t)

0
[1-x

1
2 
(t)

0
) - (141-0

2

z0
 
= sup

t
110x1(00x2W0p2(001{ 

15p2(t)0[1-x1
2 
(00) - (1-(1-t)

2
)]I_

6.2.22

and
0

12x1(0x2(01 + 10-4(0) - (1-0-02)1

z = sup {yEs 1 2x2(0132(01 1 2x1(t)p2(t)1 + 12x1(t)x2(t)1

12x1(t)p2(t)1 + l(1-xf(t)) - (1-(1-t)2)1

6.2.23

Now using = {w(t), m, N} with yo(t) = 0(t)c, r = 0.1, we find following

Example 3.5.25 and (6.2.22), (6.2.23) that conservative values for the convergence

parameters are

and

n = sup {P(t)zio} = 0.64C
t

a = sup {P(t)z} = 5.OE
t

The requirements of Theorem 3.4.14 are then

and
5.0C < 1 6.2.24

0.64C 
0.1. 6.2.251-5.0C —
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Analysis of (6.2.24), (6.2.25) shows that the convergence conditions of the

theorem are satisfied for

E< 0.092 6.2.26

a three fold increase over the previous value. These results are guidelines,

but indicate the improvement due to use of the better designed, though more

complicated, W(t) matrix.

Using the boundary compatible set 7 {W(t),M,N} for I = 1.0, a conservative

value for a is a = 5.1, an improvement over (6.2.14), but again violating the

theoretical specifications. However, the practical application of the CM

algorithm reduced the convergence norm to 10
-5 

in eight iterations, a significant

improvement over the algorithm using J = {V,M,N}. The iterative sequence for

the control function is shown in Figure 6.3.

Figure 6.3 Control Iterations

(Numbers indicate iteration sequence.)
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A comparison of the convergence behavior for J and Xis shown in Figure 6.4.

NORM

101

100

10

10-2

- 10-3

10
-4

10-5

10-6

1 3 5 7 9 11'. 13 15

NUMBER OF ITERATIONS

Figure 6.4 Comparison of Performance for Contraction

Mappings and Modified Contraction Mapptions.

6.3. Null Controllability with Bounded Control

The first example of system null controllability involves a simple linear

system with bounded input control. The example is included primarily as an

introduction to the techniques of dealing with a bounded control. Consider

the system

= Ax + Bu 6.3.1
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where

A=
10 1

1 0 0
B =

[O1
6.3.2

and the control magnitude is constrained to.satisfy

lu(t) < 1 , 0 < t < T . 6.3.3

The initial conditions are

x1(0) = 1 , x2(0) = 1 ,

and the final state of the system is required to be the origin, i.e.,

xl(t) = 0 , x2(T) = 0 , 6.3.5

where T is a prescribed fixed terminal time.

The linear system (6.3.1) is clearly controllable since rank [B,AB] = 2.

However there do exist combinations of T and x
0 

such that the system cannot

be driven to the origin by the bounded control in time T, We shall investigate

the null controllability of this system by considering the optimization problem

composed of the system (6.4.1), the cost functional

T

J = 
2 
f u2 (t)dt, 6.3.6

0

and the boundary conditions (6.3.4),(6.3.5).

Analytical investigation of this optimization problem yields the

information that the minimum time required for the system to be driven from

(1,1) to the origin is 1 +47, and at this value, the H-minimal control is

bang-bang. As T is increased from 1 + 4T, the optimal control becomes a
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saturating function, and when T is sufficiently great, the H-minimal control

never saturates, i.e., it never takes on its maximum allowable magnitude. These

points concerning null controllability are now illustrated by applying contraction

mappings to the TPBVP associated with the posed optimization. pioblem.

Application of the minimum principle and a change of time variable transforms

the optimization problem into the TPBVP

ax
21

i
2
 =-a SAT{p2} 6.3.7

1)1 
= 0

P2 
=ap1

with boundary conditions

1 0 0 0-
xl(0)

0 0 0 0 x1(1)- 1

0 1 0
x2(0)

0000 x2(1) 1
6.3.8

0000 p1(0) 1000 p1(1)
0000

P2(0)-
0 1 0 0_ 132(1)- o_

or

= f(y)
6.3.9

• My(0) + Ny(1) = c

where SAT(•) is defined in (2.2.17), and where the time variable has been

changed so that t = as where s E [0,1] and a = T. [(.) now indicates differentia-

tion with respect to s.] We shall consider the case with a = 5.0.

Using the boundary compatible set J = {VAN}, the solution to (6.3.9),

if it exists, may be written as

1

y(t) = Hj(t)c + j(- Gj(t,$){f(y(s)) - V(s) y(s)}ds .

0
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From Corollary 5.2.18, the V matrix given by

A -BP]
V = 6.3.11

0 -A'

is boundary compatible with M and N given in (6.3.8). Using V specified in

(6.3.11), (6.3.10) may be written explicitly as

1 0

y(t)=Tj(y)(t)=Hj(t)c + J Gj(t,$) ap2(s)-aSAT{p2(s)} ds . 6.3.12

0

0

We shall now investigate the convergence conditions for the contraction mappings

algorithm when applied to this non-differentiable TPBVP. Instead of deriving

conditions satisfied by the Frechet derivative, we shall be concerned rather with

conditions on the Lipschitz norm of the operator Tj. The initial estimate of

the solution and the center of the region (yo,r) is taken to be Hj(t)c. To

complete the definition of Š, the radius is set as r=0.2. This region is illus-

trated in Figure 6.5.

Values for HT
J 
(y0)-yo ll and the Lipschitz norm OTj 0- must now be

calculated. From (6.3.12), it is seenthat the nonlinearity is contained in

only the second component of the forcing function. Hence we shall investigate

the Lipschitz norm of the operators

1

Ti(u) =
i2 (t,$)[au(s) - aSAT{u(s)}]ds

0

where Gi2is the i,2 element of the Green's matrix G
J 
(t,$). The Lipschitz

norm is formally definod as

105

6.3.13



'2
0

p10
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Figure 6.5 The Sphere g (y0 ,r)

IITI = sup_ 
liTi (u) - Ti (v)ll

u v E S - v 11
S 6.3.14

, 

v

and for the operator in (6.4.13) ,

OT

1

Ti (u)-Ti (v)11 fo Gji2  (t,$) [a(u (s )-v (s) )+aSAT{v (s ) }-aSAT{u (s) }jds

llu-v Hu(*) - v(.)11
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hTi(u)-Ti (11
Hu - vH

Now noting

1

a sup fIG1 (t,$){[u(s),v(s))4[SAT{v(s)}-SAT{u(s)}1}Ids
< t 0 

sup lu(P)-v(P)

sisiplu(p)-v(P)1 > lu(s)-v(s)1

and

we have

suplu(P)-v(P)1 > ISAT{u(s)}-SAT {v(s)}1

ri(u)-Ti(v)I1

Hu -

6.3.16

6.3.17

6.3.18

1

a sup fl
G 

(t,s 
u(s)-v(s) SAT{v(s)}-SAT{u(s)} 

Ids12 lu(š)-v(S)1 lu(s)-v(s)[
0

It may be shown that with r = 0.2

I u(s)-v(s)  SAT{v(s)}-SAT{u(s)}  < 2

lu(s)-v(s)1 u(s)-v(s)

6.3.19

6.3.20

The required Lipschitz norm may now be evaluated in several ways, each of varying

degrees of accuracy. We now consider one of the more accurate techniques.

Note that as a result of the choice of (yo,r), saturation can only occur

for 0 < s < 0.25. We may now write

ri(u)—Ti(v)11

nu —

.25

<2asuplf1.
G12

(t,$)Ids
t 0

which may be approximated as
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where

Pag<supsup{2a(.25).P12
(t)} = 5/16 < 1

i t

.11
. (t) = IGj (t s)lds .
P12 Gj (t s)lds +

II. 'Ii,2 
1,2

0

Now determining 11Tj (y0) - y0 11 , we have

From yo(*)

and then

6.3.22

6.3.23

1
Ti(y0) - yoi  Gi2(t,$)[ap2(s)0 - aSAT{p2(s)0}]ds 6.3.24

sup{lap2(00 - aSAT{p2(t)0}1) < 0.04a , 6.3.25
t

ITJ(Y0)-4
.25

_ . 1
< sup sup{0.04a 1G.

2 
(t
' s)ids}

i t 0

< (0.04a)(0.25)sup sup {Pi2(t)} 
= 60 '

i t

Taking conservative values a = 5/16, n = 1/60 ,

= 0.1 < r = 0.2

so that the theoretical application of contraction mappings is successful.

Hence a solution exists to the TPBVP and a control exists to accomplish the

desired transfer. These concepts will now be applied to a nonlinear system.
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6.4. Controllability of Satellite Pitch Motion

The pitch motion of a satellite in circular orbit can be described by the

normalized differential equation

xl x
2

=x
2 

-sin x
1
+u

6.4.1

whenever a principal axis of the satellite remains normal to the orbit plane

[R1]. The controlling torque u(t) is bounded (lu(t)1  1) and xl(t) is twice

the pitch coordinate. In investigating the null controllability of the system,

our goal is to find an acceptable control u(t) which zeros the pitch and pitch

rate in a prescribed fixed time T

In a neighborhood of the origin, system (6.4.1) behaves as

where

= Ax + Bu 6.4.2

A = (af/3x)(0,0) =
-1 0

B = (3f/au)(0,0) =
6.4.3

For the linear system (6.4.2), rank [B,AB] = 2, and from Theorem 5.3.3, the

nonlinear system (6.4.1) is cnntrollable in a region of the origin. As in the

previous example, null controllability is investigated by considering the optimiza-

tion problem consisting of the system (6.4.1), the specified boundary conditions,

and the cost functional

1
J = 

2 
— 
f 

u
2 
(t)dt

0
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Application of the minimum principle and a change of time variable trans-

forms the optimization problem into a TPBVP of the form

= Sy + f(y)

My(0) + Ny(1) = c

where

6.4.5

0 a 0 0
0

0 0 0 0
S = f(y) = -a sin xl-aSAT{p2} 6.4.6

0 0 0 0
ap2 cosx1

0 0 -a 0
0

1 0 0 0 0 0 0 0 x
1
0

0 1 0 0 0 0 0 0 x
2

M = N = c = 0 6.4.7
0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0 0

where the differentiation is now with respect to s where t = as , sE [0,1].

If a solution to (6.4.5) exists, it may be represented as

1

y(t) = Hj(t)c + j(P(t,$){Sy(s) + f(y(s)) - V(s)y(s)}ds 6.4.8

0

where J = {V(t), M, N} is a boundary compatible set. Since the linear system

(6.4.2) is controllable, Corollary 5.2.18 states that the 2n x 2n V matrix

given as

A -BB'l
V =

0 -A'
6.4.9

is boundary compatible with M and N given by (6.4.7). Choosing V from (6.4.9)

yields
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0 a 0 6-

-a 0 0 -a
V = 6.4.10

0 0 0 a

0 0 -a 0

We shall now investigate the null controllability of the system for various

initial conditions and time intervals.

Example 6.4.11.

Consider the initial condition for the system to be 60° for the pitch angle

and zero for the pitch rate. It is desired to regulate the system to zero in

one half period, i.e., T = IT. The initial estimate of the solution and the

center of the sphere S is taken to be Hj(t)c. The region g(yo,r) is defined by

setting r = 0.1 and is illustrated in Figure 6.6.

It is seen that for this 8(yo, r) that Ip2 1 is always less than one so that

saturation never occurs. Hence the forcing function for (6.4.8) may be con-

sidered as

F(y) = Sy + f(y) - Vy =

0

-a(sin

a(cosx
1

0

Estimates for the convergence parameters are calculated using the variables

defined as

1

P(t) = fle(t,$)Ids

0

6.4.13

z
0 
= sup {1Fi(y0(s))1) 6.4.14

s
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-0 . 4
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•

Figure 6.6 The Sphere g(yo,r) for T = n.

P i(aFi
z ;.= sup_ / E 1 ,77-) (y(s))11

y S 
j=1 dYj

6.4.15

where F(y) is given by (6.4.12). The matrix V given by (6.4.10) may be transformed

into the canonical matrix D given as
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O

D =
- 
wl 1

O O
6.4.16

0 0
a2 w2

0 0 -w
2

a2

where al = 0, wl = a, a2 = 0.05, w2 = a. From (6.4.14), the matrix P(t) may then

be obtained by integration of the expression

P(t) = j6{A0(t,O)A
-1

}([M+N(Dv(1,0)]
-1

M}{114)
D
(0,$)A

-1
}Ids

0

jr1{A0 (t,O)A-1}{[M+NOV(1,0)]-1NOV(1,0)}{A0(0,$)A-1}1ds

6.4.17

Using (6.4.12), (6.4.15), and taking the supremum over S yields

0 0.0

la(cosx1-1)1 0.418
z = sup_

=

6.4.18
yE S lap2 sin x1 l + la(cos x1-1)I 0.653

0 0.0

The vector z0 is found from (6.4.12) and (6.4.14) as

-0.0

0.095
z
0

6.4.19
0.028

_0.0
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Using (6.4.17), (6.4.18), and (6.4.19), conservative estimates for the convergence

parameters n and a are found as

n = sup {P(t)z0} = 0.047 6.4.20
t

a = sup {P(t)z} = 0.38 6.4.21

Now testing n/(1-a) < r , we have

ri
1-a

= 0.075 < r = 0.1 . 6.4.22

Hence the convergence conditions of the contraction mappings theorem are

satisfied and the theoretical application of contraction mappings is successful.

Moreover, a solution exists to the TPBVP and a control exists to accomplish the

desired transfer.

Example 6.4.23

Consider the initial condition for the system to be 60° for the pitch angle

and zero for the pitch rate. It is desired to regulate the system to zero in one

quarter period, i.e., T= n/2. The initial estimate of the solution and the

center of the sphere S is taken to be Hj(t)c. The region kyo,r) is defined by

setting r = 0.1. This region is illustrated in Figure 6.7.

It is seen that g(yo,r) contains a saturating region for p2. Hence the

forcing function for (6.4.8) must be considered as

F(y) = Sy + f(y) - Vy =

0

-a(sin xl-x1) - a(SAT{p2}-p2)

ap2(c 
osx

1 
-1)

0
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Figure 6.7 The Sphere g(yo,r) for. T = w/2.

As in Section 6.3, the Lipschitz norm of the operator Tj(y), not the Frechet

derivative, must be investigated. For g(yo,r), the Lipschitz condition for

F(y) is given as

IF(y)-F(>")1 <

0

0.39

0.75

0

0 0 0 - -jx1.-)01 1

0 0 3.14 Ix2-x'21
0 0 0.34 Ipl-p'1 1
0 0 0 Ip2-p'2 1 -
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or

IIF(y) - F6r911 < C Ily - II • 6.4.26

Using P(t) from (6.4.17) and defining the 2n vector z as composed of the elements

2n

j
zi
 
= 2: [C

i
j , 6.4.27

j=1

a conservative estimate for a is UP(.)z11 . However, because the saturation

occurs only over a short interval of .(y(:), r) , this estimate would tend to be

quite inaccurate. Hence we deal with the saturation effect separately. Now let

0 0

0.34 3.14
=

1 1.14
and z

2 
=

0
6.4.28

0 0

where z
1 

arises from the differentiable part and z
2 

from the saturating effect.

Then as in Section 6.3 ,

or

1.0

a = sup {P(t)21} + sup I f G (t,$)z2Ids

0,85

6.4.29

a = sup {P(t)z1} + sup{(3.14)(0.15)Pi2(t)} . 6.4.30

Using the values of P(t) from (6.4.17), a is evaluated as

a = 1.56 . 6.4.31
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Hence the requirement that a < 1.0 is violated, and convergence is not guaranteed.

However, as indicated previously, these coarse estimates are used as guidelines

for the practical application of contraction mappings. Indeed, the CM algorithm

reduced the convergence norm to 10
-5 

in ten iterations. Figure 6.8 illustrates

the state and control history.

1 .0

- 1 .0

6.8 State and Control History

L
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CHAPTER 7

PRELIMINARY STUDY ON THE DYNAMICS OF

DRUG USAGE WITHIN A COMMUNITY

7.1. Introduction

The modeling of complex socio-economic systems has recently received con-

siderable attention. Arising initially as an aid to management decision making,

[F7], [R2], system modeling is now applied to many systems of public concern

[F5], [R3]. The primary objective of the modeling effort is the formulation of

improved administrative control policies. Typically, once a model is developed,

the process of designing improved policies is largely a trial and error process.

That is, the behavior of the system is first simulated with the model using one

control policy and then another. The simulation results are then compared to

determine which policy yielded the "best" behavior, clearly an inexact and

inefficient technique of analysis.

In this chapter we consider the feasibility of applying the systematic

techniques of optimal control theory to the determination of policies for

social systems. Specifically, a dynamic model attempting to represent the

causal, feedback structure of community drug usage is developed. Then using

optimization theory, we attempt to gain insight into how a community might best

respond to a rapidly growing heroin addiction problem. The initial phase of

the study is the creation of a dynamic model which reflects the modes of behavior

of the system being investigated.
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7.2. Development of a Dynamic Model

The development of a model for a complex system such as drug usage is in

itself a major effort. The subtle interrelationships and multi-feedback loops

are often difficult to conceptualize. Likewise, the determination of various

parameters within the model is a difficult task involving much data analysis.

The main thrust of this chapter is not in the modeling direction. Rather, we

shall develop a simple model which hopefully reflects inpart the basic behavior

of a yery complex system. Similarly, parameter values are chosen after discussions

and readings and are believed to be reasonable. In this spirit, the development

of the model is begun. (For the development of a more comprehensive model,

see Roberts [R3]).

The model concerns itself with three groups of people within the community.

These groups represent the three levels of drug usage which will be considered in

the model. These three pools of people are:

i) potential drug users

ii) drug users

iii) heroin addicts

'Of course, much finer lines may be drawn, but these three are sufficient for this

study. The dynamical nature of this problem is refiected in the constantly

changing population of each level and the inherent relationships between these

changes. The multiple interrelationships are often difficultto conceptualize,

but are critical to the feedback, multiloop structure of the system. Figure 7..1

represents how one might initially conceive this system as simply involving

transitions of people from various stages of drug usage.

In Figure 7.1, the double lines represent the flow of people between levels and

the values controiling these flows are determined by the variables alongside.
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POTENTIAL
USERS

DRUG
USERS

/
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ADDICTS

1. Education

2. Polic Effort

Number of Po-
tential Users

4. Number of drug
Users

5. Education

6. Police Effort

7. Number of drug
Users

8. Number of Heroin
Addicts

9. Police Action
4------

• 10. Rehabilitation

11. Number of Addicts

ADDICTS)
ARRESTED

Figure 7.1 Levels of Drug Usage

However, upon recognizing the feedback structure of the system, Figure 7.2 is a

more accurate representation.

,FEEDRACK STRUCTURE OF DRUG USAGE

EDUCATIONAL
EFFORT

r-EDUCATIONAL EFFORTUNDER CONSTRUCTION

COMMUNITY
RESPONSE

I POLICE EFFORT IN
TRAINING

POLICE EFFORT

POTENTIAL
USERS

DRUG
USERS

HEROIN
ADDICTS

'ADDICTS
ARRESTED

Figure 7.2 Feedback Structure of Drug Usage
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Note that in reality there are feedback paths from the drug users level -and

the heroin addicts level back to the community response, However, we shall

be attempting to determine how a community might best respond rather than

modeling the present reaction.

Let us first consider the flow between potential drug users and drug users.

In this study, "Potential Users" will represent the community population between

the ages of ten and thirty who are not using drugs illegally. The next level of

drug usage, "Drug Users," represents that group of people who occasionally

participate in the illegal use of drugs, but who are not addicted to heroin.

The flow between these levels is determined by the drug education program, the

police effort, the number of potential users, and the number of drug users. Of

these four variables, the number of drug users might be considered the dominant.

This is simply due to the fact that the users tend to share their supply, turn-on

their friends, and in general, tend to increase their numbers. The level of the

drug education program and the fear of arrest may tend to deter some potential

users, but these are not the dominant effects. The flow rate from potential users

to users depends on the number of potential users in the sense of availability,

i.e., if there are few potential users remaining, the inflow into drug users will

wither, and, conversely, if there are many potential users, the self induced

growth rate of drug usage is unimpeded. Some drug users revert back to potential

users through the efforts of police and education, but this is considered a minor

effect.

The flow from drug users to addicts is of the same form as the flow from

potential users to users. Again, education and police effort tend to deter the

flow and a self growth rate is again present via the number of addicts. The flow
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from Drug Users to Heroin Addicts simply reflects the fact that most addicts

previously used "soft" drugs; it is not a causal indication. Addicts are removed

from the street primarily by police action which is a result of the community

response to the number of addicts manifested by the rising crime rate.. The drug

education program and police effort are created by community spending for these

programs. In this model, the community spending for police and education are

considered as the two control variables to be determined.

For simulation and optimization studies, the general description of the model

must be transformed into a system of equations characterizing the dynamics of the

system. A convenient procedure for developing equations describing the dynamics

of a general system is the DYNAMO format [P3]. Developed by the Industrial

Dynamics Group at the Sloan School, M.I.T., DYNAMO is both a simulation language

and a discrete equation representation for the system dynamics. We now develop

the DYNAMO equations which describe the dynamics of the drug usage model.

As indicated in the general description of the system, the number of drug

users determines the nominal growth rate of drug usage, i.e., the "recruitment"

rate. This is represented as

where

NGRU.K - (AODC-) 
DU.K

- 

1
NGRU Nominal Growth Rate of Drug Usage ( 

men
nonth'

.K a postscript indicating that NGRU.K

refers to nominal growth rate at

the present time K

DU Drug Users

AODC a constant determining the growth rate.
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The availability of potential users is included as a multiplier of the nominal

growth rate and is a function of the difference between the initial number of

potential users and the present number of drug users. The nonlinear relationship

has the general form illustrated in Figure 7.3 where APUM is the availability of

potential users multiplier and IPU is the initial number of potential users.

APUM

1.0

1.0
IPU-DU
IPU

Figure 7.3 Availability of Potential Users Multiplier

The total flow from potential users to drug users is then given as

where

GRU.KL = (APUM.K)(NGRU.K) 7.2.2

124



1
GRU Growth Rate of Usage ( 

men
-month'

.KL postscript indicating that GRU.KL refers to the rate of growth

of drug usage during the time increment from K to L.

The nominal growth rate of addiction is determined by the number of addicts as

where

NGRA.K = (Ta
) 

AD.K

1
NGRA

4 
Nominal Growth Rate of Addiction 

men
rcfEnoi j

AD Addicts (men)

7.2.3

AOD Constant determining the growth rate.

The number of drug users influences the growth rate of addiction as an availability

multiplier of the form illustrated in Figure 7.4 where ADUM is the availability of

drug users multiplier.

ADUM

1.0

DU

Figure 7.4 Availability of Drug Users Multiplier
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The drug education level acts to deter the flow rate and is included as a

multiplier which decreases with increasing education effort. The form of the

• function is illustrated in Figure 7.5 where AEDM is the addiction education

multiplier.

AEDM

1.0

2 4 6 8 10 ED

Figure 7.5 Effect of Education Upon Addiction Growth Rate

The total flow from Drug Users to Addicts is the growth rate of the addiction

level and is given as

GRA.KL = (AEDM.K)(ADUM.K)(NGRA.K).

The population of the drug usage level is then given by

DU.K = DU.J + (DT)(GRU.JK - GRA.JK)

where GRU is the growth rate of drug usage and GRA is the growth rate of

7.2.4

7.2.5

addiction, i.e., the flow rate from drug usage: DT is delta time, the discrete

time increment.

The removal rate of addicts depends on the number of police, the effectiveness

of police action, and the number of addicts. If it is assumed that each policeman
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arrests a certain number of addicts per month, the nominal removal rate is given

as

where

NRRPE.K = (GAIN.K)(PE.K) 7.2.6

,
NRRPE Nominal Removal Rate due to Police Effort ( 

men
-month'

GAIN The effectiveness of police

PE Police Effort (men).

The variable "GAIN" in (7.2.6) is not a constant because addicts are increasingly

careful as police effort increases and, as a result, police effectiveness in

making arrests decreases. The nonlinear form of the GAIN multiplier is shown

in Figure 7.6.

GAIN

1.0

1 2 3 4

Figure 7.6

PE

Police Effectiveness

The removal rate of addicts is also influenced by the availability of addicts to

arrest. This effect is included as a multiplier which decreases with decreasing

numbers of addicts, reflecting the difficulty in finding the addicts. The form
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of this relationship is illustrated in Figure 7.7 where AAM is the availability

of addicts multiplier.

AAM

1.0

Figure 7.7

15 30 45 60
AD

Availability of Addicts Multiplier

The total removal rate is then given as

RRPE.KL = (AAM.K)(GAIN.K)(NRRPE.K) 7.2.7

where RRPE is the removal rate due to pOlice effort. The number of addicts is

then the integration of the inflow and outflow rates, i.e.,

AD.K = AD.J + (DT)( GRA.JK RRPE.JK). 7.2.8

Police effort and the drug education program are considered to be.first

order responses to community spending. In DYNAMO this is represented as

PE.K = PE.J + (DT)(1757)(CSPE.JK - PE.J)

ED.K = ED.J + (DT)(---)(CSED.JK - ED.J)
DAE

where PE represents the Police Effort (men), DAP the Delay in Adjusting the
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ii) Police:

Police (months), CSPE the Community Spending on Police Effort (men), CSPE the

Community Spending on Police Effort (men), ED the Education program (men), DAP

the Delay in Adjusting the Education program (months), and CSED the Community

Spending on Education (men).

This completes the development of the system equations, however a simplifica-

tion is now considered. The three states "Potential Users", "Drug Users", and

"Heroin Addicts" are included in the model equations. These three states modeled

the changing population for three divisions of the youth population. However,

in many communities, especially those in which heroin addiction is becoming a

problem, the time dynamics of the first two variables have been completed. That

is, the percentage of the youth population which falls into the extremely broad

category "Drug Users" is relatively fixed or slowly time varying, the major

growth phase being essentially complete. For these reasons, only the variable

"Heroin Addicts" is included as a dynamic variable. This assumption yields the

following equations describing the system:

i) Addicts: AD.K = AD.J + (DT)(GRA.JK - RRPE.JK)

1
PE.K + PE.J + (DT)(-----)(CSPE.JK - PE.J)

DAP

7.2.11

7.2.12

iii) Education: ED.K = ED.J + (DT)(40(CSED.JK - ED.J). 7.2.13

The growth rate of addiction, GRA, is given as

GRA.KL = (AEDM.K)(T5T)AD.K 7.2.14

where AEDM is the effect of drug education and AOD is the nominal growth rate

factor of addiction. The removal rate of addicts due to police effort is given

RRPE.KL = (AAM.K)(GAIN.K)PE.K 7.2.15
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where AAM is the availability of addicts multiplier and GAIN is the effectiveness

of police effort.

These discrete representations may easily be transformed into the form of

continuous differential equations as

ki = fl(xl,x3) - f2(xl,x2) = f(xl,x2,x3)

X2 = -'
r 
DAP

I) 
x2 ' 

r 
DAP'ul

1 1
k3 (1TA—E)x3 (1:TAE)u2

7.2.16

where x
1 

represents addicts, x
2 
police effort, x

3 
drug education program, u

l

community spending on police effort, u2 community spending on drug education,

(DAP) delay in adjusting police effort, and (DAE) the delay in adjusting the

education program. fl and f2 represent respectively the growth rate of addiction

and the removal rate of addicts. This system belongs to the broad class of

nonlinear systems described as

= Ax + Bu + ty(x). 7.2.17

The results obtained in Chapters 2 and 3 regarding the optimal regulation of

(7.2.17) will now be applied to the drug usage model.

7.3. Optimal Regulation of the Nonlinear System

The cost functional for the optimization problem is designed to regulate

the number of addicts yet maintain public expenditures at a reasonable level.

Consider the cost functional to be of the form

1
J = T [qxf(t) + (CP)u21(t) + (CE)1122(tAdt
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where x
1 
represents addicts, u

1 
community spending for police, and u

2 
community

spending for drug education.

and CE must be made to obtain

Appropriate choices for the cost parameters q, CP,

"acceptable" levels of x(t) and u(t). A choice

that is often quite reasonable [B7] is given as

1
— = maximum allowable (x

1
)
2

= maximum

maximum

allowable (u
1 
)
2

allowable (u
2
)
2

Using (2.3.8) and (2.3.9), the

tion problem consisting of the

and the initial condition x(0)

= SY gY)

My(0) + Ny(1) = c

7.3.2

necessary conditions of optimality for the optimiza-

system (7.2.1,2,3), the cost functional (7.3.1),

= xo reduce to the TPBVP

where y is the 2n composite vector

S =

x

0 0 0

a
° (DAP) 0

0 0 0

a 
0
(CP)(DAP)

2 0

0 0-a0
(DAP)

-qa 0 0 0

0 0 0 0
(DAP)

0 0 0 0 0

0

0

a
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(CE)(DAE)2
O.

0

a
7:5ATT -

7.3.3

7.3.4
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11)(y) =

— af(xl, x2, x3)

0

0

-a(3f/2x1)(xl,x2,x3)pl

-a(af/3x2)(xl,x2,x3)pl

_-a(3f/3x3)(xl,x2,x3)pl

I 01 
M =

0 0.1
N

0.1 Ixo]
C =

0 I

7.3.6

and where a is the change of time scale variable.

Values must now be assigned to the various system parameters. In a sense

these parameters depend on the community and environment being discussed. We

assume that the community of interest is neither an extremely wealthy suburb

nor the extremely poor section of an inner city. We assume the community has a

population of 50,000. The youth population of such a community roughly comprises

30% of the population [S3]. Since we are primarily interested in regulating the

early phases of heroin usage, we assume that initially the community has a low

level of heroin addiction, say one per thousand of the youth population. Communi-

ties generally have a police force composed of approximately one policeman per

thousand of population, [S3]. We assume that initially the police force has

no effort directed specifically at heroin. The community is also assumed to

initially have no drug education program. A reasonable value for police effective-

ness is one conviction per month per policeman but decreasing in a nonlinear

manner as police effort increases due to increasing caution among addicts. The
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The delay in adjusting the police effort is essentially a training delay and is

assumed to be six months. The delay in adjusting the drug education program is

assumed to. be one year.. The- boundary compatible set J = {.V,M,N} must now be -chos.en

for the integral representation. . The...boundary matrices are .chosen directly from

(7.3.7). The V matrix is chosen in the form

V=

ac ad ae 0 0 0

a
0

(I)A13

-act

0

0

0

0

a
-TITAET

a
0

(CP) (DAP) 2 
0

.0 0  a 

(CE)(DAE)2

-ac 0 0

- ad
a

(DAP)

-ae 0

0

a
(DAE)

7.3.8

where c,d, and e may be chosen to model the nonlinearity f. The characteristic

roots of this matrix are real, distinct, and readily evaluated, thus easing the

determination of the - P(t) matrix for convergence analysis. Numerical cases are

now considered as examples.

Example 7.3.9.

In this example we consider the rather short time interval of one year.

Specific values are selected for the cost parameters q, CP, CE, and the con-

traction mapping method is applied to the TPBVP arising from the optimal

regulator problem. If it is desired to prevent addiction from growing greatly

from its initial value, q may be selected as 0.04. This represents the maximum

desired number of addicts as 5 in (7.3.2). If the police can allocate a maximum
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nonlinear effectiveness curve is illustrated in Figure 7.8.

GAIN.

1.0

PE
1 2 3 4

Figure 7.8 Police Effectiveness

The effectiveness of the drug education program is assumed to reduce the addiction

growth rate by a maximum of 50% for a highly effective education program. The

effectiveness is modeled as a function of the number of people involved in the

drug education program. This is illustrated in Figure 7.9.

AEDM

1.0

•
2 4 6 8 10 

ED

Figure 7.9 Effect of Education Upon Addiction Growth Rate
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of two men to the control of addiction, CP may be chosen as 0.25. Similarly, if

the school committee believes that ten teachers are sufficient for the drug

education program, CE may be chosen as CE = 0.01.

The contraction mapping algorithm is begun with ie(t)c; y0, the center of

.(yo,r), is chosen as the third member of the CM sequence, and r is set as

r = 0.2. The center of g(yo,r) is shown in Figure 7.10.

AD

15

10.

5.

ED

. 001

1

PE

p2 p3

001

1

1

Figure 7.10 The Function y0(t) for T = 12 Months.
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Now determing the convergence parameters n and a , the vectors z0 and z

composed of the elements

2n

z
O.

= sup 1 1:E: sij(t)y0 (t) + *i(y0(t)) - I: vij (t)y0 (t) 11

1 t J Jj=1 j=1 7.3.10

2n

z. = sup :E: Is.-3.3 (t) 4. j(/aY)(Y(t)) - v..(01

j=1

are evaluated as

-0.12

0

0

0.13 -

0

0

z
0 
=

0.01
"Z =

0.02
7.3.11

0.11 0.14

0.02 0.03

Using the distinct characteristic roots, (4.7.17) is evaluated for P(t) yielding

conservative values for n and a as.

n = sup (1)(t)z0} = 0.14
t 7.3.12

a = sup {P(t)z} = 0.16 .
t
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We then have

= 0.17 < r = 0.2 .
1-a

Hence the conditions of the theorem are satisfied and the theoretical application

of contraction mappings is successful and convergence of the CM sequence is

indicated. The practical application of the CM algorithm reduced the convergence

norm to 10
-3 

in ten iterations. The time histories for the state variables

addicts, police effort, and drug education are illustrated in Figure 7.11.

AD

15.

10.

5.

ED

1

Figure 7.11 Addicts, Police, and Education for T = 12 Months

We shall delay discussing the implications of these results until the next example

is presented.

Example 7.3.13.

In this example we consider longer term behavior and let the time interval of

interest be four years. If it is desired to prevent addiction from growing over

20 in the four year period, q may be selected as 0.0025. If the police can
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allocate only one man to the control of addiction, CP may be chosen as 1.0.

Similarly, if the school committee believes that ten teachers are sufficient

for the drug education program, CE may be selected as 0.01.

The contraction mapping algorithm is begun with Hj(t)c; yo, the center of

8(Y0,r), is chosen as the fifth member of the CM sequence; and r is set as

r = 0.2. The center of (yo,r) is illustrated in Figure 7.12.

AD

30

20

1 0

P2

-2

-3

Figure 7.12 Addicts, Police, and Education for T = 12 Months

Using (7.3.10) and 8(y0,r), the vectors z0 and z are evaluated as

1

. 2

3

2

p3

PE

•

0.55 - 0.59 -

0 0

0 0
z =
0 0.06

z =
0.08

7.3.14

0.52 0.54

0.09 _ 0.11
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Using a = 48, (4.7.17) is evaluated for P(t) yielding conservative values for

n and a as

n = sup {P(t)z0} = 0.62
t 7.3.15

a = sup AP(t)z} = 0.73
t

We have a < 1.0, however

1-a 
= 2.5 > r = 0.2 7.3.16

so the theoretical application of contraction mappings does not guarantee con-

vergence. However, these results are only guidelines for the practical application

of the CM algorithm. In fact, the CM algorithm reduced the convergence norm to

10
-3 

in twelve iterations. The time histories for•the state variables addicts,

police effort, and drug education are illustrated in Figure 7.13.

PE.

AD 0.4

30
0.3

20 0.2

10 0 . 1

1

1

Figure 7.13 Addicts, Police, and Education for T = 48 Months
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Discussion of Results

Although the stated purpose of this chapter is illustrative in nature,

perhaps one or two broad qualitative implicatons may be drawn from the results

of the two sample cases. First, the need for prompt action is clearly indicated.

With addiction growing at an exponential rate, any delay in dealing with the

problem is critical. In both examples, the police effort with a short reaction

time is used to begin removing the addiction core as quickly as possible. In

the first example, it is seen that the controller responds to the short term

situation with basically only a police effort. This is primarily due to the

fact that the controller does not have the time to establish a viable drug

education program. The second example is a longer term situation and the control

response is seen to be reasonably balanced, i.e., the optimal regulator responds

with both police effort and an education program. Again the police effort is

the first to be utilized, but the education program is brought into play as

quickly as possible and tends to deter long term growth. The drawing of

quantitative conclusions from these examples would be of dubious value. However,

the chapter illustrates that system modeling and optimal control theory may be

jointly utilized to obtain information and insight into policy formulation for

complex systems. Moreover, the chapter demonstrates that contraction mappings

is a useful concept and tool for both the theoretical and practical investigation

of nonlinear system control.
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CHAPTER 8

SUMMARY, CONTRIBUTIONS AND RECOMMENDATIONS

8.1. Summary

In the broadest sense, the objective of this dissertation was t6 study the

theoretical and applied aspects of contraction mappings for the solution of

nonlinear control problems. This objective was achieved by considering the

theoretical and practical application of contraction mappings to the particular

issues of optimal regulation and controllability of nonlinear dynamical systems. .

It was shown in the study that application of the Pontryagin principle to

the optimal regulator problem yielded necessary conditions for optimality in

the form of a two point boundary value problem. Optimal system regulation Was

considered for. both. unconstrained and bounded controls and results were derived

for the. optimal regulation of linear dynamical systems and several classes of

nonlinear systems. By an..appropriate selection of boundary conditions, itWas

shown that the issue of controllability for dynamical Systems may also be reduced

to the study of two point boundary value problems.

The representation of two pointtoundary value problems'by an in'tegral 

equation was then introduced and made it possible to consider.the solution of

two point'boundary value problems as the solution of corresponding operator

equations. The joint application of the integral representation and the implicit

function theorem provided new insight into the controllability of nonlinear

systems; The methods of contraction mappings and modified contraction. mappings

were then presented for the solution of operator equations. Convergence theorems
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were presented for both methods, and translated convergence theorems were derived

for those operators arising from the optimal regulation of nonlinear systems.

A detailed investigation of the calculation of the theoretical convergence criteria

was conducted. Upper bounds were presented for the Lipschitz norm and derivative

norm, and various techniques for evaluating these bounds were introduced. In

particular, the use of simply structured matrices and similarity transformations

were considered. The use of partitioned matrices in these developments provide

considerable insight into the generic structure of the Green's matrices contained

within the integral representation.

Several numerical examples were presented to illustrate the theoretical and

practical application of contraction mappings to the regulation and control of

nonlinear systems. In particular, an example involving the regulation of

Van der Pol's equation was used to illustrate the calculation of the convergence

parameters and to demonstrate the manner in which the modified contraction mappings

method may be used to extend the range of applicability of contraction mappings.

An example considering the null controllability of the pitch motion of a satellite

with bounded control thrust was then presented. This example illustrated the

application of contraction mappings to an operator which did not satisfy differ-

entiability conditions. The Lipschitz norm rather than the derivative norm was

then used for the theoretical convergence analysis and to prove null controllabil-

ity from the initial point. The final example involved the development of a

dynamic model attempting to represent the causal, feedback structure of community

drug usage. Optimal regulator theory and contraction mappings were then used

to gain insight into how a community might best respond to a rapidly growing

heroin addiction problem. The various examples demonstrate that contraction

mappings is a useful tool for both the theoretical and practical investigation

of nonlinear system control.
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8.2. Contributions

The author considers the following items to constitute the original contribu-

tions of this dissertation.

1. The determination of Green's functions in explicit form using simply

structured matrices and similarity transformations.

2. The development of insight into the generic structure of broad classes

of Green's functions by the use of partitioned matrices.

3. The development of a controllability theory for nonlinear dynamical

systems based on an integral representation of TPBVP's, the implicit function

theorem, and contraction mappings.

4. The theoretical and practical application of contraction mappings to a

nonlinear control problem with bounded input control and the subsequent use of the

Lipschitz norm to prove convergence for the nondifferentiable operator equation.

5. The theoretical and practical application of contraction mappings to the

optimal regulation of a dynamic model of a socio-economic system.

In addition, convergence theorems are presented for operators arising from

the optimal regulation of several classes of nonlinear systems. However, these

results are translations of the general theorems presented in Falb [F1] and in

that sense are not completely original.

8.3. Recommendations

In this section some areas of possible future research will be briefly

outlined. As indicated in the summary, the main thrust of this dissertation has

been directed toward the application of contraction mappings. However, Falb and

de Jong [F1] have succinctly revealed the close relationship which exists between

contraction mappings, modified contraction mappings, and Newton's method. The

143



first area for possible additional research lies in exploiting this relationship

and applying Newton's method to those operators arising from the optimal regula-

tion of nonlinear systems. Investigation of the convergence criteria for Newton's

method should yield additional insight into the theory of state regulation for

nonlinear systems. The second area of research lies in the extension of the

controllability results of Chapter 5. These results for the controllability of

nonlinear systems are essentially local in nature, i.e., they consider controll-

ability near the origin. However with additional analysis using the integral

representation, it should be possible to identify classes of problems for which

global results may be proved. The third and final area of recommended research

involves an in-depth analysis into the relationship between the drug system

model and the results of optimization. In particular, the data base for the

model, parameter identification, and a sensitivity analysis deserve significant

attention. In this manner, critical issues of the problem may be identified for

additional social investigation and data collection.
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APPENDIX A

The contraction mappings program consists of a main program and several

subroutines. A brief description of the function of each part is now presented.

MAIN essentially directs the program and performs no actual computation.

MAIN first calls the subroutine STTRM which calculates the fundamental matrices

(DV(t,0) and clY(0,$). To accomplish this task, STTRM calls AFCT and VELEMS,

and the integration to calculate OV(.,.) is performed by DIFEQ. The resultant

fundamental matrices are stored by OUTP and OUTT. MAIN next calls CALC, the

major subroutine of the algorithm. CALC computes the Green's functions and

directs the solution of the successive members of the CM sequence. VCAL and

VELEMS are used to calculate V(t), and SBFN calculates {c - g(y(0)) - h(y(0)) +

My(0) + Ny(1) and F(y)1. FINT then calls DQSF to integrate the expression

1

jr G(t,$){F(y 
n
(s),$)-V(s)yn(s))ds + )(G

II
(t,$){F(yn(s),$)-V(s)yn(s)}ds.I 

0

CONV is then called to test for convergence. If the test for convergence is

successful, the program returns to MAIN and ends. If the test for convergence

fails, the algorithm remains in CALC and calculates the successive solutions

until either convergence is attained or a stop condition is reached. All

computations are done in double precision arithmetic. To use the contraction

mappings program, the user must modify only two subroutines, VELEMS and SBFN.

In VELEMS, the user specifies the choice of the V(t) matrix. In SBFN,
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the user specifies the differential equation y = F(y,t) and the boundary

condition g(y(0)) + h(y(1)) = c. The program contains many comment statements

to ease application.
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C CONTRACTION MAPPING ALCORITHM
C
C MATN

ncluBLE PPECISTON PHI,PHISIPHIUS,DELT,EN.D 9 YS.)INT,QQINT,V,C 
ITUHLE PPECTsInm XN,XM
nour1LE wk=c1sION FNINT
DOUBLE PRECISION UNITY
nouBLE PRECISTON UN
ummoN PHI(9.9,;'1),PHIS(C.P.21),DEIT,EN(q,21),D(9)
COMMON YS(9,21.15),OTNT(9,21),UOINT(9,21),Vlq,P,2])
COr'!mON r(9),xN(9,q),xm(q,q),II,III
commm RK,LL.NDM,NINT,ITFR
DTmENSION UNITY(15,15)

C NDIm IS THE DIMENSION OF THE PROBLEM VECTOR
READ(5,2) NDTM

2 FORMAT(T5)
NOM=NDTM
NSO=NDIM*NDIM

C THE INCREMENT OF SOLOTTON IS Nrvi READ IN.
RFA0(5,3) DELT

3 EORMAT(610.2)
C THF NUMBEP OF INCREMENTS IS NOW CALCULATED.

FNINT=1.0DO/DFLT+1.100
NINT=IDINT(ENINT)

C THE SURROUTINE srl-Pm WILL NOW RE CALLED TO CALCULATE THF STATF.
C TRANSITION MATRIX OF THE SPECIFIED LINEAR SYSTEM AND ITS ADJOINT

CALI. STTPM(NOTM)
C THF MATRIX UNITY IS FORMED TO UiECK THE ACCURACY IN CALCULATING
C PHI AND PHIS.

DO 663 J=1,NOM
60 663 I=1,NDM
UNITYIT,J)=0.090
DO 663 K=1,NOM

66 IINITY(I,J1=UNITY(I,J14-PHI(I,K,21)*PHTS(K,J,21)
DO 665 1=1,ND4
WRITE(6,664) (UNITY(T,J), J=1,NDM)



664 FORMAT(' ',5)(,015.91
665 CONTINUE

ON=0.0D0
00 333 I=I,NOIM
UN=UNITY(I,i1+ON

313 CONTINUE
IF(UN .GT. 1.500*NOIM) GO TO 606

C NOW THF MAJOR SUPROUTINE CALC IS CALLED TO CALCULATE AND STORE THF:
C NFW SOLUTTUN.

CALL CALC(NDIM1
(7 4 sTrIP CONDITNN IS CHECKED.

IF(ITER .E.O. 151 '10 TO 606
ITER1=ITER+1
no 19 K=1,ITER1
WRITF(6,16) K
FORMAT('01,5X,4HK = 03)
On 19. J=1,ND1M
WRTTE(6,?01 J

?0 cORMAT(' 1 ,10X,411,1 = ,I3)
WR ITE(6,17) (YS(J,NOS,K1, NDS=1,NINT1

17 FORMAT(",15X,015.81
1P CONTTNUF
lq CONTINUE

606 sTnp
FN0



SUBROUTINE .SBENINDIMI

C THIS SuRPouTINE CALC)LATES THE VALUES OF FN=FIYI-Vg01, EPP. VALUES nF NDT
nnuBLF. PHI,PHIS,PHIOS,OELT,EN,O,YS,QINT,DOINT,V,C
DOULE PRECISION XN,XM
001191. PRECISIIIN YV,F,7,YI,YT,G,H,TT,TTT
DOUILE PRECISION X10(?,X30/i.X5,X6,7FIXT,GAIN,GmAX,DGDP
OfluFALC PRECTSTUN GTAU,A0DIAEDNI,PI,AAm,AVB,9RPA,PCS.FF
DOUBLE RRECISTIU EAP,Q4E,CP,CE,01,02,,,13
COmmON PHI(9'.9.?1),PHIS(9.q,21)iDELT,ENI9,21),0(91
COMMoN YSI9,21,151,0INT(9,21),D'ANT(9,7.11,V(9,9,21)
commoN c.(9)0(N(9,9)0o1(9,q),TI,Itt
cnmwIN KK,I.L.N0m,NINT,ITFP
DIMENSION YV(151,E(15).ZIT5).1,1(15).YTI15),GI15),H(I5)
DIMENSION TTI15),TTT(15)
DIMENSION OFDxT(4,4),PCS(41.FE(9)

C THE FOLLOWING VARIABLES ARE USEU, TO CALCULATE THE NONLINEAR
C EoRCING FUNCTION FIT).

(1 1=3.1415930)
AvB=.000
0T=I2.000
GMAx=1.000
GTAU=.255D0
040-6.0D0
OAE=I2.000
CE=.01D0
C9-.25rm
01-.94on
02=0.0D0
03=0.000
O0 600NOT=I,NINT

C THF NONLINEAR EQUATION IS A FuNCTION OF THE.' STATF AT THU CuPRENT
C TIME. A VECTOR np THF STATE AT THE NOT IS CREATED ANC IS usFn TO
C CALCULATE F AT NOT.

00.599 I=I,Nolm
599 YVIII=YSII,NDT,ITFRI



X1=YV(1)
X2=YV(2)
X3=YV(3)
X4=YV(4)
X5=YV(5)
X6=YV(61
DO 10? 1=1,3
DO 102 J=2,3

10? 9F0XT(1,J)=0.000
GAIN=DCOS(0.3600*X2)
DGDP=-0.3600*DSIN(0.1600*X21
AOD=50.000
1F(X3 .GT. 10.000) GO TO 110
AE0M=.75D0+.2500*DCOS(PI*v3/10.0001
DFOXT(3,1)=-(.2500AtPI/10.000)*DSIN(PI*X3/10.000)*X1/A00
Gn TO 111

1.10 AFOM=.5000
OF0XT(3,11=0.000

111 CONT1NUF
IF(X1 .GT. 60.000) GO TO 112
AAM=.5D0+.500v0SIN(P1*(X1-AVB/2.0001/AVB)
DROA=GAIN*X2*.500*(PI/AVB)*CCOS(PI*(X1-AVB/2.0D0)/AVB)
GO TO 113

112 AAM=1.0P0
DRDA=0.000

113 CONTINUF
DFDXT(1,1)=AEDM/A0D-DROA
DFDXT(2,11=-AAM*GAIN-AAM*X2*DGDP
DO 109 K=1 13

109 PCS(K)=YV(K+3)
do 10R 1=1,3
FF(1)=0.000
DO 108 K=1,3

108 FF(T)=FF(1)+0FOXT(1,K)*PCS(K)
GRA=AEDM*X1/A00
RRPE=AAM*GAIN*X2



F(1)=DT*(GRA-PRPF)
F(2)=DT*(-1.000*X:?/DAP-1.000*X51(CAP*DAP*CP))
E(3)=PT*(-X3/DAE-X6/(CAE*DAE*CE))
F(4)=QT*(-01*Xl-FF(1))
F(5)=OT*(-1)2*X24-X5/DAP-FF(2))
F(6)=DT*(-Q3*X3+X6/0AF-FF(1))

C THF PRODUCT N(NOT)*Y(NDT) TS NOW OBTATNE1 ANO STORED AS A
C FUNCTION OF TIME.

no 598 I=1.NDIM
7(1)=0.000
on 598 K=1,NDIM

599 Z(I)=7.(1)+V(I,K,NOT)*YV(K)
C FN IS NOW OBTAINED AND sTrIRED AS A FUNCTION OF TIME

00 597 IL=1,NDIM
g47 FWIL,NOT)=F(IL)-7.(IL)

r THIS PROCEDuE IS REPEATED FOR INCREASING NOT
600 CONTINUE

C THIS SUBROUTINE ALSO CALCULATES THE EXPRESSION,
C 0=C-G(Y)-H(Y)+XM*Y(0)+XN*Y(1). THF INITIAL AND TERMINAL STATF
C VECTORS ARE GENERATED BELOW.

on 601 I=1,NOIM
YI(I)=YS(I,1,ITER)

601 YT(I)=YS(I,NINT,ITER)
G(1)=YI(1)
G(2)=YI(2)
G(3)=YT(3)
G(4)=0.090
G(5)=C.000
G(6)=0.0D0
H(1)=0.000
14(2)=0.090
H(3)=0.090
H(4)=YT(4)
H(5)=YT(5)
H(6)YT(6)

C THF PRODUCTS M*Y(0) AND N*Y(1) ARE NOW OBTAINED AND THE RESULT fl



C. TS FORmE0.
7)11 602 1=1,NnIM
TT ( I 1=0.000
00 602 K=1.NDIM
TTTT )=TT( )+XM( I,K)tYT(K
nr 603 1=1,Nrypi
TTT( T )=0.0!•)0
On 603 K=1,NDIA

603 TTT( 1)=TTT( I )*XN( ,K)*NeT (K)
NI 604 M=I,NCIiM

604 D(M)=C( m) -G(M)-H(M)+TT(M )+TTT(1
RFTURN
ENO



SUBROUTINE VELEMSIX,A1
C THIS SUBROUTINE CALCULATES THE LINEAR SYSTEM MATRIX IN VECTOR FORM

DOUBLE PRECISION X,A
DOUBLE PRECISION TF
DOUBLE PRECISION A1,42,A3,PT,CAP CAE Q1,02,03,CP,CE
DIMENSION A(z25)

A2=—.15DO
A17—.00500
OT=12.000
DAP=6.000
o4E=12.0no.
CF=.0100
CP.25D0
:)17.0400
0?=C.000
o3-o.ono
A(1)=Al*nr
A(?)-o.opo
A(3)=0.000

A(5).C.000
'W-170.000
A(7)=A2*OT
A(81=-1)T/DAP
..'1()=C.000
A(10)=0.000
A(II)=-02*OT
A(12)=0.000
A(13)=A3*OT
4(14)=C.000
A(15)=-1')T/DAE
4(16)=0.000
A(171=0.000
A(1R)=-034cDT
A(191=0.000



A(20)=0.000
A(21)=0.000
A(22)=—A1*DT
A(23)=—A2*0T
A(24)=—A3exOT
A(25)=0.000
A(26)=-0T/(0AP*CAP*CP)
A(27)=0.000
A(28)=0.000
A(29)=0T/OAP
A130)=0.000
A(71)=0.000
A(32)=0.000
A(33)=—DT/(CAE,x0AF*CE)
A(34)=0.000
A(35)=0.000
A(36)=DT/OAF
RETURN
END



SURROUTINE VCAL
c THiS SUBROUTINE CALCIJLATFS AND STORES THE V MATRIX IN TIME.

nOuBLE PRECISION X,A
OpUBLE PRECISION PHI,PHTS,PHIOS,DELT,FN,D,YS,AINT,CAINT,V,C
DOUBLE PRECISION XN,XM
CDMMON PHI(9,9,21),PHIS(9,9,21),DELT,EN(9,21)T0(9)
COMMON YS(9,21,15),OINT(9,21),DDINT(9,21),V(9,9,21)
COMMON C(9),XN(90)0(m(9,q),II,IIT.
COMMON KK,LL,NDm,N(NT,ITER
DIMENSION A(225)
DO 100 J=1,21
)(=(.1-1)*DELT
CALL VELEMS(X,A)
00 555 1Q=1,NDM
nn 554 J0=1,NDM
KQ=( TO-1)*NDM+JO
VIJO,I0,J)=4(K(J)

555 CONTINUF
100 CONTINUE

RFTURN
END



SUBROUTINE AECT(X,SM,DERVI

C THIS SUBROUTINE IS USED TO CALCULATE V(.) TN THE INTEUATION

C FOR PHI.
DOUBLE PRECISION PHI,PHIS,PHIOSIDELT,EN,D,YS,:)INT,OQINT,V,C
DOUBLE DRECTSION XN,xM
DOUBLE PRECISION X,SM,DERV,A,TMP

crimmoN PHI(q0,21),PHIS(q19,21),DELT,EN(9,21),D(9)
COMmoN YS(c1,21,15),QINT(9,21),QQINTI(1,21),W,19,211

COMMON C(9),XN(9,9),Xm(9,0),IT,TIT

COMMCN ICKILL,NOM,NINT,TTER
nimF.NsION DERV(15),A(775),SM(15)

CAIL VELEMS(X,A)

DO 599 10=1,NOM
TmP=0.0D0
r)O 554 Ji)=1,NOM
KO--(J0-1),rNDM+T(,)

554 Tmp.TmP+A(KOI*Sm(JO)
fg5 DEPV(TO)=TmP

PETURN
END



SUBROUTINE ATEC(X,SM.DERV)
C THTS SUBROUTINE IS USED TO CALCULATE -V°(.1 IN THF INTEGRATION
C FOR PHIS.

nnuRLE PRECISION PHI,PHIS,PHIOS,DELT.FN.D,YS,QINT,MINT,V,C
DOUBLE PRECISION XN,XM
nnuBLE PRECISION X,SM,OFPV.A,T1P
ComMnN PHI(9.9.21),PHIS(c;,(1,211,DELT,FN(q,211,0(9)
Crimm,:m YS(,?1,151.0INT(Q,21).Q9INT(q,21).V(9.9,21)
(7.0MrAnN C(9),xmq,q),xm(0,9),IT,ITi
CW9InN KK,LL,NDM.NTNT,TTER
DIMENS1(3N DERV(15),A(225),SM(15)
CALL VFLEMS(X,A)
nn 955 I0=1,NDM
Trop=0.200
Dr 554 J0=1,Nnm

KO=IT(J-1)DM+J(J
954 TMP.TMP+A(KO)SM(Jp)
555 DERVITO1=-TrIP

RETURN
ENn



SUBROUTINE. DIFEON,PMODE,T,OTICTRiVAR,RHSI
C THIS SUBROUTINE IS USED rn INTEGRATE FOR PHI AND PHIS.
C THF TECHNIQUE IS A FOURTH ORDER RtINGE-KUTTA AS MODIFIED RY GILL.

DOUBLE PRECISION VARI61,RHSI2I,OLAM(50),CCC1,CCC2,CCC3
DOUBLE PREC ISION UGHLY,ROOT2,MNUS,PLUS
DOUBLE PRECISION TOT'

30 FORMAT(43HIMPROPER COUNTER SETTING IN THE DIFFQ SURROI
INTEGER CTROMODE
IFIPMODFI 99,1,2

1 nn 4 J=1,N
4 DLAM(J)=0.

ROOT2=1..41421156237300500
MNUS=1.00-1.00/POOT2
PLUS=1.00+1.D0/RnoT2
PMODE=1
CTR=O

.2 IF(CTR) 99,3,5
3 CCCI=.5D0
CCC2=1.D0
CCC3=DT*.500
T=T+CCC3
GO TO 20

5 IF(CTR-2) 6,7,9
6 CCC1=MNUS
14 CCO=CCC1

CCC3=CCC1*DT
GO TO 20

7 CCC1=PLUS
T=T+DT*.500
GO TO 14

P CCC1=.1666666666666667D0
CCC2=.3133333333333333D0
CCC3=DT*.500
CTR=-1

20 CTR=CTR+1
CCC1=CCCI*DT



DO 22 J-.=1,N
UGHLY=CCC1*RHS(JI-CCC2YtOLAM(J)
OLAM(J)=OLAM(J)+UGHLY+UGHLY+UGHLY-CCC3*RHS(J)

22 VARW=VAR(J)+UGHLY
RETURN

99 WRITE(6,30)
PETURN
FND



SUBROUTINE STTRM(NDIM)
C 'THIS SUBROUTINE CoMPUTES THF STATE TRANSITION MATRIX OF THE LTNEAR
C SYSTFM AND TTS ADJOINT AND STORES THEM AS FUNCTIONS OF TIMF.

DOUBLE PRECTSTON PHI,PHIS,PHIOS,DELT,FN,D,YS,QINT,QQINT,V,C
DOUBLE PRECISION XN,XM
DOUBLE PRECISION Y,DERY,TF,T,OT
COMMON PHI(c4,9,211,PHISI9,q,211,0ELT,FNIC:,211,0(91
COMMON YS(c1,21,151,0TNT(c0.11,0QINTI9,211,V(q,c),211
COMMON CIR1,XN(9,91,XMCR,9),II,TIT
COMMON KKILL,NOM,NTNT I TTFP
DIMENSION Y(15),WTRY(151
INTEGER CTR,PMO))E
READ(5,11 DT

1 FORMAT(010.21
WRTTE(5,2) nT

2 FORMAT( 10 0,5X,I9HINTEGRATTON STEP = ,015.31
no 7 II=1,NOTM
on 3 J=1,NDIM

.E0. 0) Y(J)=1.000
IFITII—J1 .NF. 01 11(.11=0.000

3 CONTINUE
T=0.000
TF=1.000
PMODE=0

KK=0
CALL OuTP(T,Y,NDIM)

4 CANTINUE
CALL AECT(T,Y,DCRY)
CALL DIFFATNDIM.PMODE,TOT,CTR,Y,DERY1
IFICTR .EQ. 01 Gn TO 5
GO TO 4

5 CALL OUTPIT,Y,NDIM)
TETT .GE. TF) GO TO 6
GO TO 4

6 CONTINUE



CONTINUE
DO 9 NN=1.NOIM
WRITE(604) (PHI(NN,rM,21), NM=1,NDIM)
FORMAT('0',5X,015.3)

9 CONTINUE
Do 14 III=1,NDTM
00 lo J=1,NDIM
IF((III-J) .EQ. 0) Y(J1=1.000
IF((III-J) .NE. Y(J)=0.0r0

10 CONTINUE
T=0.0D0
Tc=1.0D0
PMODE,--0
CTR=0
LL=0
CALL OUTT(T,Y,NDIM)

11 CONTINUE
CALL ATECAT,Y,IEPY)
CALL DIFEO(NDIM,PMOOE,T,DT.CTR,Y,DERY)
IF(CTP .EQ. 0) GO TO 12
GO TO 11

1 2 CALL OUTT(T,Y,NF)IM)
IF(T TF) GO TO 13
GO TO 11

13 CONTINUE
14 CONTINUE

DO 16 NN=1,NOIM
WRTTE(6,15) (PHIS(NN.NM.211, NW=1,NCIM)

1.5 FORMAT('0 1,5X.015.9)
16 CONTINUE

PETURN
ENO



SUBROUTINE OUTP(T,Y,NDIM)
C THIS SUBROUTINE STOPES THE MATRIX PHI(.0) AT THE APPPnPRIATF
C INCREMENTS OF TIME.

DOUBLE, PRECISION PHI,PHISOHIOS,DELT,FNI D,YS.QINT,00INT.V,C .
DOUBLE PRFCISION XN,XM
nouBLE PRFCISION T,Y
wuBLE PRECISION DELT,CO,TEST,OA5S
COMMnN PAI(9.9,21),PHIS(9,9,21),DELT,FN(9,21)0(9)
COMMON YS(9,21,15),QINT(9921)00INT(901),V(9,9,21)
COMMON C(9),XN(99 910N(90),II,III
COMMON KK,LL.NDM,NINT,ITER
DIMENSION Y(9)
DELT=.0500
00=FLOAT(KK)
TEST=DAP,S(Q0*DFLT-T)
IF(TEST .GT. .000100) GO TO 100
WRITE(6,101) T

101 FORMAT(",4HT = 0015.8)
KK=KK+1
DO 99 J=1.NDIM
PHI(J,TIOCK)=Y(J)

99 CONTINUE
100 CONTINUE

RETURN
FNO



SUBROUTINE OUTT(T,Y,NDIM)
C THIS SUBROUTINE STORES THF MATRIX PHISt.,0) AT APPROPRIATE
.0 INCREMENTS OF TIME.

nntiBLE PRFCISION PHI,PHIS,RHIOS,DELT,EN,D,YS,QINT,OQINT,V,C
DOUBLE PRECISION XN,XM
DOUBLE PRECISION T,Y
OnoelE PRECISION DELT,RR,TEST,DARS
COMMnN PHI(9,9,21),PHIS(919,21),DELT,FN(9,211,D(91
COMMON YS(9,21,151,0INT(9,211,0MINT(9,211,V(9,9,21)
cn.imrIN c(9)oN(9,9),xm(9,9),TI,ITT
crimmoN KK,LL,Nom,NINT,TTER
DIMENSInN Y(9)
DELT=.05D0
RR=FLOAT(LL)
TEST=DAPS(RR*DELT-T1
IF(TEST .GT. .000100), GO TO 100
WRITE(6,101) T

101 FORMAT(' ',4HT = ,015,p)

LL=LL+1
00 99 J=1,NDIM
PHIS(III,J,LL)=Y(J)

99 CONTINUE
100 CONTINUF

RETURN
ENO



SUP:ROUTINE CALEANDIm)
C THIS IS THE MAJOR SUBROUTINE TN THE PROGRAM. HERE THE INTFGRAL
C EDUATIONS ARE SOLVED FOR THE ITERATED SOLUTIONS AND THF TFST Enq
C CONVERGENCE IS MADE.

nCMBLE PRECISInl PMPHIS,PHIOS,DELT,EM,D,YS
DOUBLE PRECISION XN,XM
ImpltE PRECISION SI,XC,T,TM,TN,TEmPI,TEMP2,TEMP3
TluBLE PRECISION FPS
DOUBLE PRECISION DET
DOUBLE PRECISION VSI,SIIN
onoBLP_ PRECISIN TSI,TSIIN
DOUBLE PRF.CISION RE
DOUBLE PRECISION COST,CIV,7
commcIN PHI(9,9,21),PHIS(9,q,21),DELT,EN(R,211,D(9)
COMMON YS(0,?1,15),OINT(c,21),QCINT(9,21),v(9,9,21)
commr)N
commoN KKILL,NDM,NINT,ITER
DIMENSION TEMP1(15),TEMP2(15),P2MP'.(15),L(15),M(15)
;)IMENSION T(15,15,21),TM(15,15,.71),TN(15,15,211
DIMENSION XC(15,19),VSI(P25),SIIN(1 63,15),SI(15,15)
DtmENSICN TSI(??5),TSIIN(2?.51
DImENSION AIV(211,l(21)
FOUIVAIENCE (SI(1,1),TSI(1))
E00IVALENCF ISITN(1,1),TSIINMY

C THILT RELAXATION FACTOR IS READ IN. NORmALLY TT IS ONE.
REAC(,555) RF

55 FORMAT(D10.2)
C THE 40uNDARY CONDITION MATRICES TN THF BOUNDARY COMPATIBLE
C SET J-1..(V,M,N) ARF Nnw READ IN.

nn 2 I=1,NDIm
READ(5.11 (XM(I,J), J=1,NOIM)

I FORMAT(010.2)
2 CONTINUE
DO 4 I=I,NDIM
READ(5,3) (XN(I,J), J=1,NOIM)

3 Fop:MATO:110.21



4 CONTINUE
r FPS, THE CONVERGENCE MEASURE IS NOW READ IN.

RFAO(5,q) EPS
? PMAT(010.21

C THE BOUNDARY CoNOITTON VECTOR C TS NOW READ IN.
RFAfl(5,10) (C11), I=1,NnTm)

10 FORMAT(D10.,1
C THE CONSTANT ISM TS Nnw READ IN. IF ISM IS nNE, THE PROGRAM
C CoMPUTFS THE INITIAL BOUNDARY COMPATIBLE GUESS.
C. IF ISM IS NOT ONF, THE INITIAL SOLUTION- IS NOW READ TN.

READ(5,666) JSM
(s6'3 FORMAT(I10)

C NOW FOPMING TUE PRODUCT OF N*PHI(1,0)
Do 7 J=1,NOTM
no 7 I=1,NDIM
XC(I,J)=0.000
DO 7 K=1,NDIM

7 XC(I,J)=XC(1,J)4-XN(I,K)=PHI(K,J,NINT)
C THE MATRIX SUM (m+N*PH1(1,0)1) I s Now FoRMED.

DO P J=1,NDIM
DO B I=1,NOP1

8 SI(I,J)=XM(I,J14-XC(I,J)
WRITE(6,121

12 FORMAT('0',2X,2HSI)
no 15 I=1,NDIm
On it J=1,NOIM
WRITE(6,131 SI( I,J)

13 FORMAT(' ',10X,015.8)
14 CONTINUE
15 CONTINUE

WIDE=?
CALL ApRAy(MODE,NoTm,N0IM,15,15,VSI,TS11
CALL mINV(VSI,NDIM,OET,L,M)
MODF=1
CALL ARRAY(MODE,NDIN,NOIM,15,15,VSI,TSIIN)
WRITE(6,1121



112 FOPMAT('0°,2X,4HSITN)
09 115 I=1,NDIM
DO 114 J=1,NDIM
WRITE(6,1131 SIIN( I,J)

111 FORMAT( 101,10X,015.81 .
114 CONTINUE
115 CONTINUE

no 400 NDT=1,NINT
DO 397 J=1,NDIM
DO 397 I=1,NDIM
T(I,J,NOT1=0.0D0
DO 397 K=1,NOINI

197 T(I,J,NDT)=TII,J,NOT1+PHI(T,K,NO.T).*SIIN(K,j1
no 398 J=1,NDIm
DO 398 I=Ionim
TM(I,J,NoT)=0.000
DO 398 K=1,NDIM

199 TMII,J,NIT1=T1(T,J,NOT1+T(I,K,NOT14XM(K,J)
DO 399 J=1,NDIM • (3\
DO 399 I=1,NDIM
TN(I,J,NDT1=-0.0D0
Do 399 K=1,NOIM

199 TN(I,J,NDT)=TN(I,J,NDT1+T(I,K,NOT)*XC(K,J1
400 CONTINUE

ITER=0
401 ITER=ITER+1

IFfITER .E0. 15) GO Tfl 9C(7
IF( ITER .GT. 11 GO TO 782
IF(ISM .FQ. 11 GO To 669
RO 668 I=Iontm
READ(5,6671 (YS(I,J,1), J=1,NINT1

667 FORMAT(D10.21
66R CONTINUE

GO TO 670
669 DO 814 NDS=1,NINT

no 815 I=1,NDIM



YS(I,NDS,1)=0.000
DO 816 K=1,NDIM

916 YS(I,NDS,1)=YS(I,NDS,1)+T(I,K,NOS)*C(K)
915 CONTINUE
114 CONTINUE
670 CONTINUE

DO 818 I=1,NDIM
WRITE(691171 (YS(I0,1),N=1,NINT)

817 FORMAT(",20X,015.91
919 CONTINUE

.„ THE SUBROUTINE VCAL IS NOW CALLED TO CALCULATE AND STORE THF LINFAP
C SYSTEM MATRUX AS A FUNCTION OF TIME

CALL VCAL
C SUBROUTINE SBFN WILL NOW BE CALLED TO CALCULATE FN=F(Y)-V,%Y

792 CAI..L SBEN(NDIM)
SUBROUTINE FINT INTFGRATFS PHI(0,S)*FN(S) FROM ZERO TO T AND

C STORES THF INTEGRAL AS A FUNCTION OF T, WHERE T VARIES FRom ZERO
C TO ONE. THESE VALUES APE USED TO CALCULATE THE INTEGRAI. FRCM T TO ONE.

CALL FINT(NDIM) cr,

C THE NEXT SEQUENCE OF INSTRUCTIONS sno/Es FOR THE NEXT ITERATED
C SOLUTION. FIRST THE PRODUCT T(T)*D WILL BE CALCULATED.

00 304 NDS=1,NINT
DO 300 I=1,N1)IM
TEMP1(I)=0.0D0
DO 300 K=1,NDIM

300 TEMPI(I)=TFMR1(I)+T(I,K,NDS)*D(K)
C NEXT, THE PRODUCT OF TM(NDS) AND THE INTEGRAL C1F FN FROM zERo. TO
C mns IS FORMED.

DO 301 T=1,Nptm
TEMP2(I)=0.opo
no 301 K=1,NDIM

101 TEMP2())=TEMP2(I)+TM(I,K,NDS)*QINT(K,NDS)
C NEXT, TFE PRODUCT OF TN(NDS) AND THE INTEGRAI. OF FN FROM NDS TO ONF
C IS FORMED. 

DO 302 I=1,Nntm
TEMP3(i)=0.0D0



no 302 K=1,NOIM
302 TEMP3(I)=TEMP3(I)+TN(I,K,NOS)*Q0INT(KODS)

C THF THREE TFMPS ARF SUMMED TO GIVE THE VALUE OF THE NFW S(ILUTION
C AT TIMF NDS.

PO 303 JJ=1,NDIM
303 YS(JJ,NDS,ITER+1)=(1.000-RF)*YS(JJ,NDS,ITER)

C. 4-RE*(TEMP1(JJ)+TEMP2(JJ)-TEMP3(JJ))
C THTS PROCEDURE TS REPEATED FOR INCREASING NOS
304 CONTINUE

ITER1=TTER+1

WRITE(6,4(?4)
404 FO0MAT('0',5X,211YS)

DO 4C7 1=1,NOIM
no 406 N=1,NiNT
wPITE(6,405) YS(I,N,ITEP1)

405 FORMAT(' ,,lox,n15.8)
406 CONTINUE
407 CONTINUE-

C CONVFRGENCE OF THE ITERATIONIS NOW TESTED rp. 00
CALL CONV(NDIM,MM,EPS)
IE(MM .FQ. I) GO TO 401

909 RETURN
END



SUBROUTINE FINT(ND(M)
r SUBROUTINE FTNT INTEGRATES PHI(0,S)*EN(S) FROM ZERO TO T AND
C STORES THE INTEGRAL AS A FUNCTIflN OF T, WHERE T VARIES FROM lFfl
C rn ONE. THESE VALUF.S ARP USED TO CALCULATE THE INTEGRAL FROM 1 To ONE.

0OURIF PRECISION BHI,PHTS,PHIOS,DFLT,EN,O,YS,OINT,WINT,V,C
DOUBIE PRECISION XN,XM
DOUBLE PRECISION OC,7,CIV
COMMON RHI(e,e,21),PHIS(9,9,?]),DELT,EN(9,21),0(e)
crimmoN YS(9,21,15),OINT(9,?1),OINT(9,21),V(9,9,21)
crAmnN c(9),xN(9,9),v0(9,9),I1,11r
crPmcN KK,LL,NOM,NINT,ITFP
DIMENSION 00(15,?1),7(?1),CIV(211

C CAICULATE AND STORE THE VECTOR PHI(0,NDS)*EN(N0S) AS A FUNCTION OF NDS
00 97 NDS=1,NINT
2n 95 I=1,NDIM
0Q(1,NDS)=0.000
no e4 K=1,NDIM

94 00(I,NDS)=00(1,NDS)4PHfS(I,K,NDS)*EN(K,NOS)
95 CONTINUE
97 CONTINUE

C THE T TMF HIsrnPy 2F EACH COMDONENT TS, PUT I S VECTOR FORM AND
C INTE'GRATFD BY 00SE.

or 100 K.J=1,NOIM
00 93 LJ=1,NINT
01V(LJ)=QQ(KJ,LJ)

9R CONTINUE
CALL DOSF(DELT,OIVIZ,NINT)

C THE INTEGRALS ARF srnizEn IN CINT AND OQINT.
DO 99 NN=1,NINT
QINT(KJ,NN)=Z(NN)

99 CONTINUE
100 CONTINUE

DO 202 M=1,NOIM
00 201 MM=1,NINT

POI QQINT(m,MM)=OINT(M,NINT)-OINT(M,MM)
202 CONTINUE
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SUBROUTINE CONV(NDTM,Mm,FPS)
C THIS SUBROUTINE TESTS FOR CONVERGENCE nF THE ITERATION.

nnUBIE PRECISION PHI,PHIS,RHIOS,DELT,FN,O,YS,0TNT,00INT,v,C.
DOUBLE PRECISION XN,XM
DOUBLE PRECISION CY,BIGC.BIG,'Eps,CoN
DOUBLE PRECISION DABS
DOUBLE PRECISION CnST,0Iv,7
COMMON pHI(9,9,21 1 ,PHIS(9,9,21),DELT,FNI9,2II,O(9)
COMMON YS(9,21,1),OINT(9,21),Of;INT(9,21),VIP,9,21)
COMmON C(9),XN(9,9),Xm(9,9),II,III
COMMON 10<0.1,NDM,NINT,ITER
DIMENSION DY(211,BIGC(15)
DIMENSION OIV(21),1.I211
nn 700 I=1,NnIM
DO 699 NnS=1,NINT

698 DY(NOS)=DABSIYS(I,NDS,ITER+1)-YSII,NDS,ITER))
C THF LARGEST ABSOLUTE DIFFERENCE IN THIS COMPONENT WILL Nnw V
c THE,. LARGEST ABSOLuTE DIFFERENCE IN THIS COMPONENT WILL NOw BE FOUND

ITG=DYII)
00 699 P=2,NINT
TF(DY(m) .LT. BIG) Gn To 699
BIC=DY(M)

61qc? CnNTINUF
70o BIGC(1)=BIG

CrN=BIGCt1)
DO 7C1 1=2,NDIm
IEIBIGC(L) .LT. CCN) GO TO 701
CON=BIGCILI

701 CONTINUE
WRITE(6,755) CON

7q5 FORmATI,01,15X,3OHNORM OF FUNCTION DIFFERENCE ,D15.8)
IF(cnN .LT. EPS) GO TO 999
A.m=1
on TO 998

999 mm=0

99R RETURN
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