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1. SUMMARY

The primary objective of the program conducted under NASA contract NAS3-14317
was to develop the basic B-1 and HB-1 second-stage hydraulic acutator rod seals of a two-
stage configuration from NASA contract NAS3-11170 into seals acceptable for application in
high-performance aircraft. This objective was accomplished by analytically determining the
optimum geometry of the chevron and K-section seal cross sections that would satisfy the
gland dimensions and stress allowables for Boeing/DOT SST flight control applications using
polyimide materials. A polyimide first-stage rod seal was also developed as an adjunct to the
second-stage development with the major objective of determining the degree of pressure
balancing most conducive to reducing friction and wear, without compromising fluid
containment. A seal modular retainer was designed and tested to demonstrate feasibility of a
two-stage seal unitized assembly.

Seals designed to the above objectives were fabricated in 0.0254 m (1.0in.) and
0.0635m (2.5in.) sizes. The fabricated seals were tested to evaluate their structural
integrity during a 200 000-cycle impulse life requirement and frictional resistance over the
temperature and pressure range of the application. Endurance tests were conducted with an
operational goal of 3 850 000 cycles at 450°K (350°F) when installed in an actuator as part
ofa2.758 x 107 N/m2 (4000 psig) hydraulic system.

Screening test results indicated that 70% maximum pressure balanced polyimide
first-stage seals were subject to intermittent periods of erratic and excessive leakage due to
seal lifting. As a result 50% balance polyimide seals were initially installed in the endurance
tests and replaced with cast iron seals after high wear rates showed polyimides unacceptable.
The second-stage seals maintained fluid containment in all tests, although impulsing between
0 and 1.043 x 107 N/m2 (0 and 1500 psig) produced cracks in some redundant elements of
the seals. These scals completed 3 210026 cycles of endurance satisfactorily at the
conclusion of testing.

It was concluded from the design analysis and testing completed during this program
that the advantage of polyimide scals is satisfactory-operational-capability over a wide
temperature range where seals in present usage cannot compete. The disadvantages are the
low material allowables and high coefficient of thermal expansion. The test results
demonstrated that by carefully designing polyimide second-stage rod seals they can be made
to satisfy the dynamic hydraulic actuator requirements of applications in high-performance
aircraft. Further effort will be needed to determine whether the same conclusion can be
reached for the application of polyimide first-stage seals.

Tests should be continued to evaluate the chevron and K-section second-stage seal
configurations at higher temperatures and with other fluids and environments to further
expand the field of knowledge regarding the application of these seals to satisfy the
ever-ex panding demands for reliable methods of fluid containment.



II. INTRODUCTION

The traditional objective in new aircraft design has been to improve the operational
performance and systems reliability/maintainability record in the new airplane above its
predecessors. The performance considerations now include supersonic flight where long
operational life at high temperatures precludes the use of many heretofore conventional
design practices. One such practice, the use of elastomeric rod seals in flight control
hydraulic actuators, can no longer be considered satisfactory standard practice. Similarly,
polytetrafluoroethylene (PTFE) used in combination with elastomers to form two-piece
seals offers only some improvement in life at elevated temperatures. Typically, seals that are
presently selected for Type 1l applications (219° K to 480°K) (-65°F to 275°F) are limited
in life at high temperature while seals selected for Type 11 applications (219°K to 505°K)
(-65°F to 450°F) have low-temperature fluid containment deficiencies.

The material properties of polyimides are acceptable for the entire range of Type 111
hydraulic system temperatures and considerably higher temperatures, making these
materials prime candidates for experimental seal research for advanced aircraft applications.
Experimental investigations with polyimides to date have emphasized these materials’ stable
strength properties at high temperatures over long durations. NASA-initiated research was
instrumental in the early development of new seal concepts using polyimides in exploratory
tests to determine sealing characteristics under various operating environments. These
efforts were conducted under the NAS3-7264 and NAS3-11170 contracts, references | and
2, respectively.

The program reported herein is a follow-on effort of the above-mentioned NASA
contracts. [t was intended to extend the seal development from the category of exploratory
testing to that of seal performance verification testing simulating an actual high-performance
airplane’s requirements. The seals were required to meet the stresses of the application
temperature range with cyclic impulse and the temperature range with fatigure life loadings.
The evaluation was particularly significant with polyimide seals because the material fatigue
allowables were in the same range as the imposed stresses for the aircraft application, based
on a required mean-time-between-overhaul life. Performance measurement under such
dynamic stress conditions, simulating requirements for aircraft presently on the drawing
boards, is the first step leading to seal development for advanced applications having more
severe environments uniquely suitable for polyimide materials. The program included
analyses of the basic seal sections and modifying these sections based on recommended
stress distributions. Seals were fabricated and tested to the fatigue environments of cyclic
impulse and fatigue life typical of a supersonic transport or a high-performance military
aircraft.



I1I. SEAL DESIGN ANALYSIS

DESIGN REQUIREMENTS

Seal design criteria were selected and test objectives established to reflect a high degree
of compatibility with the requirements of the general category of flight control actuators to
be used on high-performance aircraft similar to the Boeing/DOT SST. These requirements
were generally consistent with those that would be expected for any high-performance
aircraft except they may have been somewhat severe for seal life when compared with
military aircraft requirements.

Flight control actuator requirements were investigated because such actuation equip-
ment receives the highest degree of time utilization in flight and is subject to the most severe
environmental conditions. The general criteria, applicable to the most representative
candidate primary flight control actuators, having rod sizes nearest those available for the
test evaluation, were used to establish the design and test parameters for the rod seals
studied. -

General Requirements

Seal configuration.—The seal configuration acceptable for the application was a
continuously pressurized high-pressure two-stage linear actuator rod seal with bleedoff
between stages to return. The design goal for the seal was that there should be no external
leakage other than a slight wetting of the rod downstream of the second stage. Some leakage
was allowed to pass by the first stage to return during system operation. Endurance
requirements for the static and dynamic seals were to provide a component overhaul life of
4.5x 107 sec (12 500 hr). (Refer to par. 5.2.10, ref. 3.)

Hydraulic fluid. —The hydraulic fluid used for design and during testing was the fluid
specified in the requirements of reference 4, Humble Oil WS-8228. The fluid was designed
for use in a closed aircraft hydraulic system, operating normally over the temperature range
of 244° to 450°K (-20° to 350°F), and at a nominal working pressure of 2.758 x 107 N/m2
(4000 psig). The fluid had the capability of operating over the extreme range of 228°to
506°K (-50° to 450°F) at 2.758 x 107 N/m2 (4000 psig), and was required to perform
satisfactorily in an overheat condition at 506°K for 3600 sec in flight. The fluid basic
chemistry was that of the polyolester family. (Refer to par. 5.2.4, ref. 3.)

Fluid pressure.—The hydraulic systems used as a pattern for establishing test
requirements operated with a nominal pressure of 2.861 x 107 N/m2 (4150 psig) at 408°K
(275°F) for supply and 1.034 x 100 N/m2 (150 psig) at 408°K (275°F) for return. The
most demanding design conditions were 2.758 x 107 N/m? (4000 psig) at 506°K (450° F)



for supply and 1.431x 107 N/m? (2075 psig) at 244°K (-20°F) for return. The main
system pressure relief valves were designed to have a full flow setting of 3.448 x 107 N/m2
(5000 psig) maximum. Cracking pressure was 3.206 x 107 £3.447 x 10° N/m? (4650 *50
psig) and reseat pressure was 2.930 x 107 N/m2 (4250 psig) maximum. (Refer to par. 5.1.3,
ref. 3 and par. 3.2.2.1, ref. 5.)

External leakage.—The external leakage allowable, based on the selected application,
was 107 m3 (2 drops) per 25 cycles passed by the second-stage seal, for each rod end of an
actuator at any temperature and pressure. A goal of zero leakage was established but was
not justification for rejection of the seal if the goal could not be obtained. (Example
requirements: par. 3.3.14, ref. 6 and par. 3.3.11, ref. 7.)

Friction.—Seal friction requirements that were stated in flight control actuator
specifications provided data related to the complete actuator assembly, i.e., the combined
sum of friction for the piston and for the two-stage rod seal of a single-ended actuator.
These requirements were not usable for the seal evaluations to be performed in the reported
contract. Specific criteria for testing of each seal separately were, therefore, based on the
mean friction forces obtained during seal friction tests which were the basis for SST
requirements. These criteria were:

® 245 N (55 Ibf) maximum friction force at the first-stage seal ona 0.0254 m (1.0
in.) diameter rod with a 2.758 x 107 N/m2 (4000 psig) chamber pressure.

° 1334 N (300 Ibf) maximum friction force at the first-stage seal on a 0.0635 m
(2.5 in.) diameter rod with a 2.758 x 107 N/m2 (4000 psig) chamber pressure.

® 36 N (8 Ibf) maximum friction force at the second-stage seal ona 0.0254 m (1.0
in.) diameter rod with a 1.379 x 106 (200 psig) chamber pressure.

° 133N (30 1bf) maximum friction force at the second-stage seal on a 0.0635 m (2.5
in.) diameter rod with a 1.379 x 106 N/m2 (200 psig) chamber pressure.

Temperature.—The fluid and component operating temperatures stated in flight
control actuator specifications varied with flight duration and environmental temperatures
associated with the application. Figure 1 shows a composite of the SST hydraulic system
temperature limits. The criterion of the normal maximum operation temperature of the heat
exchanger fluid at flight completion from this figure was 450°K (350° F) and was used as
the steady-state test temperature for design and testing. This temperature magnitude was
extreme for a steady-state value for an entire flight. It was justified as a realistic test
condition only on the basis that it was applied over a nominal endurance life. Such a
combined temperature-life testing condition provided a maximum test exposure at
high-temperature conditions. (Refer to par. 5.1.4, ref. 3.)
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Endurance.—The required flight life of the SST hydraulic components was established
at 1.8 x 108 sec (50 000 hr) with flight control actuator overhaul periods at a minimum of
4.5x 107 sec (12 500 hr) intervals. Seals were to be replaced during each overhaul; thus
overhaul life was established as the endurance life for actuator seals. The mean or nominal
cycle life for rod seals in flight control actuators during one period between overhauls was
established at approximately 8 x 106 cycles, this being nearly equivalent to the cycle life for
the SST rudder actuators as shown in table I. (Refer to par. 3.3.9, refs. 8, 9, and 10 and par.
5.2.10, ref. 3)

Pressure impulse at first stage.—The pressure impulse requirements established for
flight control actuators were 200 000 cycles of 1.448 x 107 to 3.861 x 107 to 1.448 x 107
N/m2 (2100-5600-2100 psig) at the supply port with a rate of pressure rise between 6.206
x 108 and 7.585 x 108 N/m2/sec (90 000-110 000 psig/sec) applicable to the first-stage seal.
The total number of cycles were accumulated by testing at the environmental temperature
shown in table 11. (Refer to par. 3.3.15, ref. 6 and par. 3.3.10, ref. 7.)

Specific Requirements for Second-Stage Seal

An analysis was performed to establish the minimum pressure impulse requirement for
second-stage rod seal design. A relationship was determined for the pressure fluctuations
between the first and second stages (interstage gallery) of a typical linear actuator during a
maximum pressure surge created in an operational maneuver. This effort was performed to
determine whether lesser requirements than those adopted for the SST were practical where
applications of low-strength polyimide materials were practical.

Impulse pressure with maximum allowable first-stage clearance.—The first step in
determining the magnitudes of surge pressures was to simulate the no-load, maximum rate,
ground operation of the combined rudder and stabilizer activities for the SST airplane. This
was the worst case for pressure surge in the fluid return lines and provided the limiting
pressure condition of exposure for the second-stage seal. The analytical simulation was
performed using the HYTRAN (ref. 11) computer program and the mathematical model of
the SST “A” hydraulic system, figure 2. Pressure conditions observed at the inlet and return
to an actuator representative of the size available for testing are shown in figure 3. The
second step of the analysis was to determine how these pressures were translated through
the internal passages in the typical actuator, and how these pressure interactions combined
to establish the pressure profile to which the second-stage seal would be exposed.

Figure 4 shows the dimensions of the seal gallery for the typical actuator used in the
analysis. This actuator design was selected because it had a 0.0635 m (2.5 in.) rod diameter,
which was the largest size rod evaluated in the test program. The configuration of the
interstage gallery contained a poppet-type check valve to prevent loss of system fluid in case
of a failure at the second-stage seal. The free-flow direction of the valve allowed leakage that
passcd the first stage to be returned to the system downstream of the poppet.



Table |.—Endurance test sequence

Sequence % Load Maximum Actuator
number Cycles and stroke|cycle rate, Hz temperature
°K °F

1 75x 10° 2 5 450 | 350
2 5 000 25 0.67 450 350
3 10 000 50 0.50 450 350
4 5 000 100 0.40 450 350
Notes:

1) All cycles are to be run around actuator midstroke position.

2) A portion of the cycles from sequences 2, 3, and 4 are to be
randomly interspersed during performance of sequence 1.

3) Testing spectrum is to consist of ten consecutive runs in the
sequence shown, 1e., 1,2,3,4,1,2,3,4,1, 2.... with the
sum of sequences 1 + 2 + 3 + 4 equalling one run,

Table 11.—Impulse spectrum

Temperature Impulse cycles
S oF

311 100 40 000
408 275 115 000
450 350 40 000
478 400 5 000
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First-stage seal

Supply pressure—e

A

4

To return

Interstage gallery *
{see detail below)

(1]

Bearing areasx

Poppet valve
10-psig cracking pressure
5-Ib/in. spring

0.19 dia

0.24 dia

0.15 dia
2.4in.

0.25 dia
0.6in.

Rod end galtery *
E 0.04 X 0.212 in.
360°

L
0.30 dia B
4.9in.

4Second-stage seal

Actuator rod

| Fluid volume behind poppet = 0.369 in.

0.25dia-3 in.

0.22 dia—0.93 in.

8.9in. :b D D

Atmospheric
pressure

——a» Connection to return distribution

0.3dia-0.5 in.
0.12 dia-0.2 in.

(I

Head end gallery *
0.04 X 0.17 in.

360°

Total fluid volume in interstage = 1.0627 in3

Rod end gallery volume = 0.9008 in.3

Head end gallery volume = 0.1629 inA3

Note:  No Sl units conversion was
made on dimensioned parts
(see appendix 9)

Figure 4 — Rod seal interstage gallery configuration—typical flight control actuator



The first dynamic analysis trial used the HYTRAN program to evaluate the
downstream pressure at the poppet valve simulating the condition that this valve werc o
close at the time of initiation of a return line surge. A branch was added to the upper rudder
servo in the model to idealize the seal gallery and the passages between it and the servo
return port. The data resulting from this analysis are shown in figure 5. The results indicate
that the poppet downstream pressure builds to a stabilized pressure, equivalent to the
magnitude of the damped surge. This would be a realistic case if there were no, or nearly no,

leakage flowing by the first-stage seal.

The first-stage rod seals were not designed to maintain a no-leak condition because
such a design would also impose high friction penalties against actuation power and available
responsc. Thus, when there was first-stage leakage, the interstage gallery pressures (between
the first and second stages) were a function of the supply pressure and leakage flow
dynamics of that first-stage seal and the pressure-flow dynamics of the poppet valve and the
return line pressure fluctuations.

The leakage allowed to pass by the first-stage seal was 1.67 x 1077 m3/sec (10 cc/min)
for a new seal and a maximum of 8.33 x 1077 m3/sec (50 cc/min) under any service
conditions thereafter. For the purpose of analysis the radial clearance between the first-stage
seal and the rod under static conditions preceding initiation of the dynamic surge was
established as 2.245 x 100 m (0.884 x 104 in.) to allow passage of the maximum leakage
allowed. This uniform radial clearance was assumed constant for all calculations of dynamic
pressurc-flow evaluation. The dynamic leakage curve on figure 5 was determined using the

equation
Q= 7Db3{1 + 1.5(¢/b)2] (Pu - Pd)/124L

describing the flow through the annular clearance, the pressure data from the SST upper
rudder response to surge on figure 5, and a mean pressure drop of 4.137 x 104 N/m2 (6 psig)
through the gallery passages. The mean pressure drop through the gallery was used to
simplify calculations since error by substituting this constant value rather than a
flow-related variable pressure was determined to be less than 6.895 x 103 N/m2 (1 psig). The
lcakage flows thus determined were combined with the upper rudder return pressure profile
to determine the fluctuations in movement of the poppet in the poppet valve and evaluate
how those movements reflected changes in seal interstage gallery pressure.

The analysis of the poppet valve was simplified by selecting two constant leakage flow
conditions at the first-stage seal. This simplification was adopted because the problem
complexity resulting by retaining leakage as the variable shown in figure 5 was much more
detailed than necessary to determine maximum pressure conditions in the seal-intcrsfuge
gallery. The constant flow conditions sclected were 1.67 x 1077 m3/scc (10 cc/min). the
maximum new scal allowable, and 8.33 x 1077 m3/scc (50 cc/min), the maximum allowable.
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Figure 6 shows the results of the determination of pressure in the seal interstage gallery
during these conditions. The following describe the meanings of the data:

Analysis with maximum new scal leakage—1.67 x 107 m3/scc (10 c¢/min): The
differential pressure across the first-stage seal supported a maximum new scal leakage until
return pressure reached 8.667 x 100 N/m2 (1257 psig) at 0.023 sec clapsed time. The poppet
then closed and gallery pressure rose at the rate of 2.068 x 107 N/mz/scc (3000 psig/sec) as
shown by the dotted line on figure 6. The resulting gallery pressure rise lagged the return
pressure downstream of the poppet until 0.039 sec elapsed time. The poppet opened when
gallery pressure reached 6.895 x 104 N/m2 (10 psig) greater than the dynamic return
pressurc and closed as the gallery pressure reduced toward return pressure, causing a
differential less than necessary to support the maximum new seal leakage. This occurred
along the dotted line on figure 6 in the manner shown by the lower inset, except where the
line was lower than the return surge pressure. The maximum gallery pressure reached during
a constant maximum new seal leakage was 8.915 x 106 N/m2 (1293 psig).

Analysis with maximum allowable lcakage—8.33 x 1077 m3/sec (50 c¢/min): The initial
effects of the surge cause pressure fluctuations to begin at 0.005 sec. At that time the
poppet closed because the initial condition for first-stage seal dimensional clearance was
based on passing maximum leakage at static conditions, i.e., maximum pressure drop. This
meant that any pressure drop would produce a condition where the configuration would not
support the maximum lcakage flow rate. With the poppet closed the continued leakage
caused fluid compressibility in the seal gallery at the rate of 1.076 x 108 N/mz/sec (15 600
psig/sec) based on maintaining a constant fluid bulk modulus of 1.124 x 109 N/m2 (163 000
psi). The poppet thus opened at a differential pressure of 6.895 x 104 N/m2 (10 psig), which
occurred prior to 0.006 sec of clapsed time. As soon as the poppet opened the gallery
pressure adjusted to return pressure, the resulting differential pressure across the first stage
would not support maximum leakage flow, and the poppet closed. This situation did not

repeat because by 0.0065 sec clapsed time the return pressure was rising more rapidly than
the pressure rise due to compressibility in the gallery. At 0.086 sec elapsed time the gallery
pressure due to compressibility from maximum first-stage leakage flow increased to
6.895 x 104 N/m: (10 psig) above the return surge pressure and the poppet opened.
Subsequent to that point in time the gallery pressure oscillated between the return pressure
and 6.895 x 104 N/m2 (10 psig) greater than return pressure as shown in the upper inset on
figure 6. Those pressure reversals occurred as the poppet opened at the higher pressure,
causing the gallery pressure to reduce to return pressure. This reduction resulted in a lower
differential pressure that could no longer support first-stage leakage and the poppet closed.
This sequence was repeated at intervals of 0.00064 sec throughout the remainder of the
surge, assuming the poppet had immediate response to the dynamic pressure conditions that
formed its environment. The maximum pressure in the interstage gallery during this
sequence reached 9.998 x 107 N/m2 (1450 psig).

13
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[mpulse pressure with new first-stage seals.—The above discussion considered examples
where the clearance between the first-stage seal and the rod would allow the maximum
tolerable installed lcakage ol 8.33 x 1o’ m3/sec (50 cc/min) and resulted in the maximum
gallery pressure under any operable condition. This condition was not expected to exist
except with very worn first-stage seals. When the first-stage seal was new only 1.67 x 1077
m3/scc (10 cc/min) leakage would be allowed.

The resulting fluctuations in interstage gallery pressure with a new first-stage seal were
determined as follows. The first poppet valve closure occurred at 0.005 sec with a return
pressurc of 1,158 x 106 N/m2 (168 psig) and remained closed until 0.366 sec elapsed time
when gallery pressure rose to 6.895 x 104 N/m2 (10 psig) due to compressibility. At that
time the poppet opened and dynamic response followed the fluctuations described above in
the “Analysis with maximum new seal leakage.” The maximum pressure resulting in the
interstage gallery under that condition was 7.584 x 106 N/m2 (1100 psig), which was less
than the maximum pressure condition which would exist during operation with maximum

wear on the first-stage seal.

Discussion of analysis results.—1t was concluded from the analyses described above that
there was no practical way to substantially reduce the interstage gallery pressure
requirements below the maximum dynamic return pressure during a surge. The excitation of
the poppet showed that any ability to assist in producing a low-pressure sensation in the
gallery was dependent on having continuous low first-stage leakage during seal life. Such a
requircment was unrcalistic because, if it was practical to provide a minimum leakage first
stage. there would be no need for a low-pressure second-stage scal.

Present actuator design philosophy does not allow that the design encumber the
actuator performance to allow adaptation to other than the most efficient seal concept.
Under this philosophy, it was necessary to develop a polyimide seal to satisty the
9.998 x 100 N/m2 (1450 psig) dynamic requirement described above.

The sccond-stage pressure impulse requirement was thus established as 200 000 cycles
of 0 to 1.043x107 to O N/m2 (0 to 1500 to O psig) at the return port with a rise rate
between 1.724 x 108 to 2.413 x 108 N/mz/sec (25 000 to 35 000 psig/sec) based on the
HYTRAN simulator runs. The total number of cycles were accumulated by testing at the
same environmental temperatures as imposed for the first-stage seals per table [1.

In future years this philosophy may of necessity change where temperature
environments require the use of polyimides. In such applications the polyimide may become
the most efficient, or the only usable, scal and special design considerations may be
necessary to utilize the polyimide material properties to their best advantage.

15



FIRST-STAGE ROD SEAL

A typical first-stage rod seal in aircraft linear actuator applications is a seal of
rectangular cross section having controlled leakage characteristics to facilitate lubrication of
the bearing located downstream of the seal, refer to figure 4. The sealing ring is usually
divided. or split. to preclude use of a split gland installation. The split sealing ring is loaded
by a spring compression ring around the outside circumference of the sealing ring. Various
materials have been evaluated in development of such seals including cast iron, unfilled
polyimide, and polyimides with fillers such as graphite, molybdenum disulfide, and Teflon.
A Boeing standard for a cast iron first-stage rod seal of this configuration is included as
appendix 1.

The objective of the development effort on first-stage seals reported herein was to
expand the base of information on the existing seal configuration described above, not to
develop a new or unique scal design. Research involving testing was concentrated on the
various aspects of using polyimides as the material for the inner sealing ring and on
evaluations of the potential for pressure balancing of this ring. Additional analytic research,
which Boeing provided to supplement the contract, was performed to develop a theoretical
tool for relating displacements and stresses in a rectangular seal section. This effort is
reported in reference 12 and is offered as valuable design data, applicable to the
development of new rectangular cross-section seals.

Basic Seal Design

The first-stage seal cross section was defined as an inner rectangular section seal ring
with a step cut and an outer spring compression ring similar in design to the Boeing
BACS11AM standard (appendix 1) for metallic rod seals. The step cut of the sealing ring
was the critical design section. The necessary section thickness for a seal made of polyimide
rather than cast iron was determined by the following analyses.

® A scal section was evaluated using fracture mechanics techniques with the result
that it was not possible to produce the cantilever deflections necessary to
develop a fracture stress in the material at the step cut.

e A seal section was evaluated as a rectangular section compression spring that was
axially loaded with the same result as above.

e Neither of the above analyses considered fatigﬁe failure because equations for
fatigue required use of empirical constants that had to be established by test data.
Material testing was excluded from the scope of the contract reported; thus the
Koppers Company was informally contacted about their related experience.
Koppers was consulted because they were the only approved source for the
above-mentioned Boeing seal standard. Koppers’ reply indicated that a
3.175x 103 m (0.125 in.) wide seal with radial thicknessof 2.286 x 103 m (0.090



in.) would provide the proper strength in a polyimide ring, based on tests relating
fatigue failures to step fillet radius.

Pressure Bzlancing

A pressure balancing technique was developed for a first-stage seal model as shown in
figure 7. A digital program for the high-speed digital computer was written to optimize
pressure balancing with the prime objectives of:

e Dectermining the minimum sealing forces needed in both the axial and radial
directions to control leakage within allowable limits when using polyimide

material properties

e Balancing the axial and radial sealing forces to minimize the distortion of the seal

cross section

An example seal was used to establish the computer program validity. The analysis
considered a series of radial balancing grooves between D, and D4 on the model (D3 is one
example) with each of a series of axial grooves between O and A (A being an example).
Considerations determined within the analysis included radial and axial friction on the
scaling faces. radial and axial mechanical loading of the seal, and pressure distribution across
the leakage paths. The example analysis results indicated that the most effective groove
dimensions for force balancing radial and axial loads were 25% cuts on both seal faces. This
condition did not provide the minimum forces for the control of leakage. thus indicating the
need for design compromise and iteration to optimize the design.

The analytical optimum of both axial and radial balancing had drawbacks in
applications where dynamic pressure surges were expected. Under delicately balanced
conditions, rapid fluctuations in localized pressures cause seal lifting and increase leakage
more readily than under conditions of less optimum balancing. This tradeoff between
balancing and friction had to be placed in a realistic perspective for the application under
consideration. Experience in testing revealed that side balancing did not contribute
significantly toward reducing overall seal friction but it did detrimentally affect sealing in
dynamic conditions. This practical viewpoint was considered to have greater value in the
contract application than would provision of optimum balancing.

The above considerations were incorporated in a proposal to seal manufacturers for the
procurement of test seals. The discussion of the design features of the procured hardware is
provided under *‘Seal Procurement and Manufacture.”

17
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Terminology:
FS = mechanically applied axial spring force
FC = mechanically applied radial compression force
F1 = axial hydraulic high-pressure force in direction of system pressure
F2 = radial hydra'ulic high-pressure force toward rod
F3 = radial hydraulic pressure force along axial sealing face
{assumed to reduce in a linear manner through oil film
between rod and seal)
Fa = axial hydraulic pressure force along radial sealing face
(reducing linearly through oil film)
Fs = axial hydraulic low-pressure force opposing system pressure
Mg FS = friction between mechanical axial spring and seal in radial
1 direction
MR(EFA) = friction force on radial sealing face
“AF3 = friction force on axial sealing face

Figure 7—First-stage seal pressure balancing
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SECOND-STAGE ROD SEALS

The primary design objective of the evaluation was to optimize the cross-sectional areas
of the NASA Contract NAS3-11170 (ref. 2) B-1 and HB-1 sccond-stage seal designs and test
the revised designs to realistic and existing requirements for actuators used in high-

performance aircraft.
Scal and Gland Descriptions

Figures 8 and 9 show drawings of the B-1 and HB-1 seal asscmblies, as configured in
the reference 2 contract. Dimensions given on these drawings show percentage of seal gland
depth. These proportions were maintained, in the initial design itcration, for the stress
analysis to determine the ability of the B-1 and HB-1 configurations to satisfy alternating

load cycling consistent with aircraft applications,

Figure 10 shows the second-stage seal cavity dimensions within the two actuators
available for test evaluation. These dimensions could be used to establish the design outside
diameters where seal modules are not to be incorporated. However, these outside diameters
needed to be reduced in this study, where the seal module was considered, to ensure
adequate thicknesses in the cylinder and module parts for the stresses imposed. The
desirable goal was to have the final scal fit MIL-G-5514F envelopes. Dimensions for these

glands are referenced in figure 10.

The use of three chevrons in the NAS3-11170 (ref. 2) B-1 configuration provided two
redundant sealing surfaces. The first seal size reduction was to consider only two chevrons,
thus providing onc redundant scal. The design for the NAS3-11170 HB-1 seal assembly
included only one redundant scaling surface, and it was not considered desirable to
eliminate one of the K-sections in that configuration.

The design for the mechanical spring loading of the B-1 and HB-1 seals provided a
static force on the inside lip of the sealing legs. This spring loading was designed to
compensate for differential expansion during temperaturc rise. Initial seal deformation
compensated the differential contraction during cooling. It was considered a very desirable
goal in terms of simplifying scal design, to eliminate the need for the differential mechanical

spring load on the seal lips.
Materials Considerations in Stress Analysis

An important aspect of design optimization was selecting the polyimide material with
the properties best suited to the application under consideration. Comparison of candidate
material properties for seal design applications was based on manufacturers’ published
information and test data obtained during cvaluations reported in reference 2. The

19
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0.1235
0.1215

Allowable
cross section
for loading
block

MIL G-5514F-214
(Using double backups)

Rod
diameter

0.314 0.228 ———"

0.304

0.0254-m {1-in.) DIAMETER ROD

0.152
= 0.111 |
_ , 0.322
| 0.311
|
| Allowable
| cross section
0.188 MIL G-5514F-333 | for loading
0.186 {Using double backups) : block
|
I
|
K3 |
0.434 | 0.228 {
0.424 '
Rod
diameter

0.0635-m (2.5-in.) DIAMETER ROD

(all dimensions in inches)

Note: No Sl conversion was made on dimensioned parts {(See Appendix 9)

Figure 10.— Test Actuators Seal Gland Dimensions




properties of Gemon. Meldin, and Vespel polyimides were reviewed to determine whether
material advancements since the reference 2 contract would provide an advantage to the seal
designs under consideration. Table IIl shows the characteristic properties of candidate
materials from each of these families best suited for scal design. The following arc analyses
of those properties.

®  Gemon 2010, General Electric (Graphite filled—exact percentage proprietary)

This material possesses the best combination of material ultimate strength
properties and fabrication cost. It is relatively inexpensive and could be
compression molded, and it appeared to yield superior wear resistance character-
istics. Somewhat lower mechanical properties and the need to perform seal
designs without complcte knowledge of how the material behaves are disadvan-
tages. The low clongations for Gemon 2010 and 2012 shown in table 1l were
verified by the manufacturer and therefore disqualified these materials from
further application because the strain introduced by preset interference would fail
the material in elongation.

e Gemon 2012, General Electric (Tetraftuoroethylene filled—exact percentage
proprietary)

Comments for Gemon 2010 also apply to 2012, except that the latter had lower
mechanical properties and was subject to lower wear rates.

° Meldin PI-15Y. Dixon (15% Graphite filled)

This material is available in the form of molded flat sheet stock. Detail parts have
to be machined. It does have very good mechanical and thermal properties. This
material was not given further consideration after determining that stresses due to
22.286x 104 m (0.009 in.) required preset interference fit would cause excessive
permanent set, an effect of the low elongation property of the material.

°® Meldin PI-30X, Dixon (30% PTFE filled)
The load capacity of less than 6.895 x 100 N/m2 (1000 psig) eliminates this
material from consideration in dynamic load applications.

° Vespel SP-21 DuPont (15% Graphite filled)

This material is available from DuPont as formed blocks or as machined parts.
Supplied materials have been shown to have uniform propertics. and considerable
rescarch data on properties have been published in reference 13. Because
machining is the only method of fabrication, parts are more expensive than if
they could be molded.

As a result of the material investigation discussed above, the DuPont Vespel SP-21
polyimide was determined to be the optimum material of the candidates considered.
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[sotropic property data were investigated. There were no direct test data available;
however, the opinion of DuPont was that SP-21 isotropic fatigue curves would have the
same slope as those for the parallel and perpendicular grain dimensions and would be half
way between these curves. Due to lack of data, further consideration was not given to
designing for use of isotropic properties.

The Boeing proposal for the reported research contract, reference 14, suggested use of
DuPont Vespel SP-1 for the second-stage seal material to provide correlative results between
reference 2 and the evaluation being reported. This course of action would have precluded
use of advanced polyimides which might show improved seal characteristics. On the basis of
the investigation of the material developments described above, Vespel SP-21 was allowed
for initial second-stage seal design to take advantage of DuPont technology advancements.

Because there was insufficient manufacturers’ information on polyimide fatigue
properties, an attempt was made to more accurately predict these propertics for other than
zero mean stresses by using the DuPont zero-mean data and formulas applicable to metallic
materials. The Stuessi method was used to shape the S-N curves in figure 11 (perpendicular
and parallel grains for SP-21 material) for different constant mean stress levels. The
crossplot of the S-N curves in figure 11 for perpendicular and parallel material grains,
respectively, indicate the maximum stress levels as a function of the shape of the stress
cycle. These curves were considered applicable for plastics in the region where there was no
plastic flow. There was no attempt to verify the data by testing, this being outside the scope
of the study. ‘

Correlative test data were needed to substantiate the validity of the curves developed
above. Tests reported in reference 2 and those performed at NASA-Lewis during evaluations
concurrent to this study were reviewed for applicable fatigue data that would assist in this
correlation. A compilation was made of such data and is included as table [V. These data
indicate that in tests 3A and 4B the DuPont fatigue allowables have been exceeded
successfully, providing the correlation desired. Because the number of tests were few, and
the test conditions varied, this type of correlation did not provide sufficient data to describe
the values to which the fatigue allowables could be adjusted. The data did indicate
conservatism in the manufacturers’ allowables sufficient to indicate that SP-21 material
could be used with the chevron design parameter optimizations.
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Stress Analysis Modeling

The chevron scal geometry was extremely sensitive to the relationship between
material stresscs and the imposed hydraulic pressure loading. The object of the stress
analysis was to determine the specific chevron geometry, adaptable within available test
actuators, that would tolerate the highest hydraulic pressure reversals occurring during
dynamic operation of the design service application. The analysis was necessary because the
geometry of the reference 2 B-1 and HB-1 seals, without a modification, would not sustain
the stresses in an actual airplane application. Therc were a number of design iterations
leading to the final configuration of a tapered-leg, thickened-apex chevron design. Those
that received major consideration arc discussed in chronological order of evaluation.

Initial program  definition.—There were a number of differences between the
requirements applied to the reference 2 test seal designs and the design needed for an
airplanc service application. These diffcrences all reflected increases in stress loads. The
following had a significant relationship to determining the conditions of stress in the scal as
it would be used in a high-performance aircraft service application such as the SST or Air
Force B-1.

) Polyimides are plastics having no definite yield point, this being shown on the
stress-strain curve in figure 12. Yield points that were used in calculations were
selected using 0.002 m/m (in./in.) strain parallel offsets to the slope of the
tension-compression curve at O strain. The modulus of elasticity used in
calculations was the slope of the 2% offset lines.

o The large differential between coefficients of thermal expansion for the steel
actuator 1.26 x 107 m/m/°K (7 x 1076 in./in./°F), and the polyimide seal,
414107 m/m/°K (23 x 10°6 in./inPF). needed to be considered in the seal
design so that leakage paths at the seal ID at high temperature and at the seal OD
at low temperature would not be introduced. The magnitudes of these effects are
illustrated in figure 13, showing the free dimension rclationships between the scal
and cavity if the full effects of aging and differential expansion arc allowed
without compensation.

e The most important of the propertics affecting the subject analysis of stress was
fatigue strength. Very little data were found in a literature scarch and by

discussions with DuPont to describe polyimide fatigue allowables. The DuPont
Vespel design handbook. reference 13, indicated the following allowables for SP-21
material in the perpendicular grain.
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EXPANSION BY HEATING

Gland OD

100% T
99.6%
Initial seal Gland

° ° Aged seal 100%
@ 297°K (75°F)  depth

@ 297°K (75°F)

F 2___

Rod diameter 1

100.4% T
100%

100%

Seal designed at 297 K {75°F) will leak at rod and gland aft
and at rod in 450°K (350°F) environment

/ 100. 6%
(100.2%) 100-2%

Expanded seal
@ 450°K (350°F)
(Aged and expanded)

A
1

100.5%
(101.0%)1100.2%

er aging

CONTRACTION BY COOLING

Gland OD

1 }

100%
99 8%
Initial seal Gland 99.4%

o o depth
@ 450°K (3507F) Contracted seal

@ 297°K (75°F)

f
—f- 99.8%

99.0%

@ 297°K (75°F) and aged

SN

Rod diameter f

100%
0% 998%

99.4%

Seal designed at 450°K (350°F) will leak at gland in 297°K {

99 8%
seal and rod

75°F) environment

Note: Percentages are final dimensions of unrestrained parts

Figure 13.—NAS3-11170 B-1 seal vs steel actu

ator: thermal effects
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For SP-21, allowable fatigue stress

=4.620x 107 N/m2 (6.700 ksi) @ 2 x 103 cycles, room temperature )

(for 1.043 x 07 N/m2 (1500 psig) impulse during ground servicing) | Impulse
o o

=2.965 x 107 N/m2 (4.300 ksi) @ 2 x 10° cycles, 450 K (350 F)  { Life

(for 6.895 x 106 N/m2 (1000 psig) impulse during flight service) )

=4.137x 107 N/m2 (6.000 ksi) @ 8 x 106 cycles, room temperature }
(for 1.379 x 106 N/m2 (200 psig) steady state ground service) ' Fatigue
=2.620 x 107 N/m2 (3.800 ksi) @ 8 x 106 cycles, 450 K (350°F)  ( Life

(for 2.758 x 106 N/m2 (400 psig) steady state flight service)

/

These allowables were established at a specific stress cycle with a zero mean. (A
zero-mean stress was defined as equal magnitude tension and compression loading
about a zero stress.) This requirement is illustrated as the allowable material stress
cycle in figure 14.

The difference between the maximum and minimum values in the applied stress cycle
from figure 14 for the application being investigated were significantly less than the
allowable stress limits, although the maximum tension stress for the applied cycle at 450° K
(350°F) exceeded the allowable for this temperature. Because the applied stress amplitude
was only 28% of the allowable and the maximum stress exceeded the tension allowable by
only 9%, it was concluded that the seal could meet the high-temperature cyclic stress
requirements. ‘

The stress analysis of the chevron seal was initially treated as the combination of
internal and external cones interacting with a circular plate, which approximates the apex
action of the cross section. The best seal from the above analysis was mathematically
modeled for a finite-element solution using a high-speed digital computer.

The method of interacting cones was abandoned in favor of the finite-element plate
analysis, which was considered to better represent the elemental interactions of the chevron
seal. The initial rough design analyses, using the plate analysis method, are described in
appendix 2. Figure 15 shows a simplified diagram of the finite-element mathematical model
using plate theory. The advantages of the improved model were integrally tied to its use in
the stress analyses to formulate an optimum seal configuration. The advantages include the
following.

® The increase in the number of nodes at the apex of the downstream chevron
improved accuracy in analysis of effects of leg angle change and support block
stress relief. In analyzing the effects of variation in support block contact a
backup block was simulated for a large angle of contact about the seal apex. This
was in contrast to the apex point loading used in the unit cases analyzed in the
preliminary evaluations (see appendix 2).



CUL) | p—

81342 $S811S U0INBYD Wiealisdry— | 84nbiy

/ N\ |

\ / (UBBW UOISUAL) 31IAD $531S POI|AAY = — == B

\ / (UBRIW 043Z) BIDAD $S341S BIGPMOYY N

/7 N\
/ / N\
/ / ANAN
// A\
/4 A\
V4 N\
\
N\ //

= NN S
NN \\w\ AN /% / d
MRS .7 //Ar/ Py
/M o~ \\ v/ /I\\\\\\
N \w

G-

o
]

0
(o]
i

01

Sl

0'¢

| G'C

(VA3

ER

S'p

uoissaidwong

(LOI' X ZLU N) ssong

SN

(15¥) ssang



Qutside diameter

. . . 2068
Standard view—a true projection looking toward 206 Gl 2
the origin at 45° to -X and +Z axes with —Y axis to the right ez A
2066 4 2033
\ 2065 2/ 2032
Z A
2064
% < 2031
2063
o < 2030
Number is identification code 2062 4 2029
for particular element. Arrow 2061 4 22008
g + . on.
indicates local + X direction 2060 2027
” Ve
2059 )7 2026
22025 bd
2058 . X
A/ 2024
2057/ 2 /2023
2056
fl 2/ 2022
Y
2055 /2 r [ Coordinate designations for finite -
element plate in SAMECS model
2054 4 # [2020
Direction of
applied pressure
2009
2008
2007
w
_ - — W 2006
. 41
Outline of 20 = o
upstream chevron element 2040 x 2005
Node of math model 2039\ x 2004
X
Beam of math 2038 v \2003
model 2037 — w\2002
Outline of 2036\
2035\ =

downstream element ———

Inside diameter

Figure 15 — SAMECS stress model: two chevron, 0.524-rad (30°} seal
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o The addition of nodes and interconnecting beams across the area of contact
between the upstream and downstream seal elements facilitated more accurate
definition of the interactions between seal elements when exposed to ranges of
hydraulic pressures, element thicknesses, and leg angles.

The definition used for each of the finite elements of the chevron seal is the plate as
described in figure 15, a reproduction of the computer printout of the idealized seal model.
The method of analysis used evaluated the response of individual plates, or elements, and
subsequently combined those responses to produce compatibility within the structure.

The Boeing SAMECS computer program, reference 15, used the direct stiffness
(displacement) method to perform the required analyses. Unknown rotations and
displacements of the seal were determined using the matrix form of the following equation:

[p] = (K]} [F]
where [K] was the stiffness matrix, [F] was the force matrix, and [p] was the matrix of
unknown displacements.

Specified pressure and preset interference loads were introduced into this equation to
yield a seal displacement vector in global coordinates. The computer program then
transformed this displacement vector into elemental displacements which, when multiplied
by the element stiffness matrix, produced the element loads.

The chevron seal finite-element model had 68 plates. In order to economically analyze
the large number of plates, a thin-slice approach was used. The thin slice, 0.01745 rad (1°),
of seal circumference, was restrained between a coordinate system plane and a plane slightly
skewed to the coordinate system. The chevron seal model was particularly suitable to a
thin-slice analysis because the structure and applied loads were axisymmetric. In such cases a
very thin slice of the structure may be analyzed in place of a quarter shell.

Symmetric boundary conditions dictated that the shell could not translate perpen-
dicular to the boundary or rotate at the boundary. Since one boundary was in a coordinate
plane, translation and rotation were deleted from the problem by removing the entire row
and column, corresponding to zero deformation, from the stiffness matrix. On the thin-slice
boundary, mechanisms were used which employed artificially stiff elements (torque tubes
and axial rods) to restrain the structure in the required directions. These elements were
assigned stiffnesses 1000 times greater than the hoop stiffness of the actual structure at the
boundary, assuring zero deflection.
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The predominant stresses encountered in the finite-element analysis of the chevron seal
were meridional bending stresses. The hoop stresses were approximately 30% to 40% of the
meridional stresses in most cases and therefore were not critical to design. The meridional
bending stresses were caused by interaction forces between the chevron legs and boundary
reactions at the gland OD and ID.

Figure 16 shows the results of the finite-element analysis of a two-chevron seal on a
0.0254 m (1 in.) diameter rod with varying groove depths. All seal dimensions were retained
in the same proportions as configured in the B-1 chevron design, the model being shown on
figure 8.

The stresses plotted are the most critical meridional stresses, which occur at plate
2017, figure 15, for different pressure levels and a constant 2.286 x 104 m (0.009 in.)
interference fit.

These results indicated that gland depth did not greatly affect the stress in a chevron
seal. The curves also showed the sensitivity of the chevron seal to pressure loading by the
relationship of internal stresses to the 4.137 x 107 N/m2 (6.00 ksi) nominal stress level
allowable for SP-21 polyimide material in the seal configuration.

The freebodies in figure 17 are presented to illustrate the predominate forces and
reactions to which a two-chevron configuration was subjected. Hoop stiffness (Khoop) and
beam bending stiffness were interrelated such that, as rod diameter became larger, the load
reacted by increased beam bending. For rod diameters of 0.0254 m (1.0 in.) and larger, that
were of interest for the applications under consideration, the dominant influence was beam
bending. A plot of beam bending stress versus rod diameter is shown in figure 18 for the
conditions of 1.034 x 107 N/m2 (1500 psi) pressure loading with a seal having a 0.5236 rad
(30°) leg angle and various leg thicknesses. These results show a near flat characteristic of
applied bending stress and rod diameter.

For rod diameters less than 0.0254m (1.0in.) the hoop stiffness may become
dominant due to the lower allowables in the parallel grain of the polyimide material. This
relationship was not evaluated in the stress analysis for the reported evaluation, but it will
be a factor for consideration in the future to prepare seal dimension standards for a range of
seal sizes for industry use.

Another parameter important to stress analysis was the curved-beam correction factor
for bending stresses. Because there was a nonlinear distribution of stresses due to
curved-beam bending, correction factors had to be applied as indicated in figure 19. The R/c
value for the reference 2 seals was 4.0. This value was accepted as a minimum objective for
design to keep the inside fiber stresses from exceeding practical allowable limits. Control of
R/c was thus maintained by the proper selection of R with respect to optimum t such that
R>2topt'
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Figure 16.— SAMECS model stress vs gland depth
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o The airplane application seal designs were developed for a reduced-size seal when
compared to the reference 2 test seal. The size reduction created higher material
stresses due to a higher percentage squeeze on the seal cross section, this being
necessary to prevent leakage at temperature extremes and being independent of
seal dimensions.

e The service temperature range for the SST seal application was 450°K to 228°K
(+350°F to -50°F). Seal prestresses were required to account for the differential
expansion of materials at both temperature extremes. This created higher material
stresses than encountered in the reference 2 program that evaluated only
high-temperature performance.

e The dynamic pressures encountered by a seal in an aircraft application are
primarily those bearing a direct relation to the alternating differential pressure
fluctuations in the fluid supply that powers the actuator. Those alternating
stresses are a fatigue problem. The reference 2 seal test program did not impose
alternating stresses on the seal because internal actuator pressure was not used to
drive the actuator rod. This pressure regime accounted for the major difference
between the requirements of the reported study and previous NASA programs.

Figures 20 and 21 illustrate, in summary form, the iterations of the initial stress
optimization studies performed for the 0.0254 m (1.0 in.) rod application and discussed in
detail in appendix 2. Analysis was initiated with a gland depth assignment, curve 1.
Optimizations were then conducted for tension loading with each step, 2 and 3 producing a
favorable addition to the stress allowable. This pattern was not reflected in the compression
load analysis. Leg angle evaluation, curve 3, showed a severely reduced stress allowable in
compression. This effect was unavoidable and important to the analyst to ensure that proper
optimizations for both tension and compression were evaluated.

Analysis validity.—The DuPont Vespel Design Handbook (ref. 13) shows that there are
insignificant differences between the axial and flexural fatigue allowables for 107 life cycles.
The near-linear relation indicated that a Hooke’s law approximation used in the analytical
treatment had good accuracy in reproducing realistic conditions. At 103 life cycles there
were larger differences between quoted axial and flexural stress allowables, and nonline-
arities were in evidence. The application being evaluated was concerned with an impulse life
of 2x10° cycles and an endurance life of 8 x 106 cycles. Errors from a linear
approximation at these cycle magnitudes were within the accuracy that other material
properties could be determined, and no correction was considered necessary.
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Practical Constraints

An evaluation was conducted to define the geometry options for the total chevron seal
configuration in the 0.0254 m (1.0 in.) ID size. The considerations were: (1) how many
chevrons offered the best seal efficiency, (2) what material offered the best combination of
allowables, (3) what cross sections were most favorable for fatigue environments, and
(4) what tolerance difficulties were encountered that affected design options.

Configuration options.—Figure 22 shows diagrammatically the option potentials
considered to be the most effective for proceeding to design, preparatory for chevron seal
fabrication. These options were determined to have the best combinations of characteristics
out of the matrix of possible combinations of section geometry, materials, and gland depths
listed below. '

Section Geometry Materials Gland Depth
1. Uniform thickness 1. Unfilled polyimide 1. NAS3-11170 seal
(SP-1) 6.274 x 1073 m (0.247 in.)
2. Tapered thickness
3. Single element 2. 15% graphite 2. Maximum Boeing
fill (SP-21) actuator
4. Dual element 3.581 x 103 m (0.141 in)
5. Triple element 3. 40% graphite 3. Military Specification
fill (§P-22) 3.073x 103 m (0.121 in.)

6. Strongback for
each sealing
element

7. Flexible back for

upstream sealing
element

Section geometry: The consideration of geometry relates to the number of sealing
elements, element thicknesses, and configurations of supporting elements that are part of
the total seal.

@  Uniform thickness was optimum for the downstream chevron because maximum
stresses occurred at the point of separation of the chevron from the backup
support. This separation point shifted during loading and temperature variations.

e Tapered thickness was optimum for the upstream chevron because maximum
stress occurred at the chevron apex with reduced stresses toward the leg tips. The



Configuration Material

Advantages

Disadvantages

® Element redundancy ® Insufficient SP-22 data
® Seal and gland thermal ® Both tension and com-
SP-22 expansion difference pression loads influence
SP-21 is least using SP-22 design of cross section
® Higher ultimate stress @® May exceed fatigue allow-
with SP-21 able using SP-21
@ |Interchangeability
® Interchangeability ® One element overdesigned
of elements ® Must exercise design
to determine whether
SP-21 elements will stack
properly
Thickened @ Strengthened critical ® Different geometries of
apex stress section sections increase installa-
tion problems and fabrica-
SP-21 tion costs
Strongback @ Strengthened upstream ® Three elements make
apex without change seal cavity longer
SP-21 to chevron geometry
or
SP-22
Flexible @® Teflon midelement ® Growth for applications
will deform under limited by Teflon
SP-21 load to support sublimation temperature
or upstream element
SP-22
® Section designed for ® No redundancy
only compression ® Apex is either under-
Uniform SP.21 loading if second designe(_i or legs are
Section element need not be overdesigned
considered
@® Cross section designed ® No redundancy
for local stress
Nonuniform SP-21 giving greatest

Section

/i

flexibility

Figure 22.—Seal configuration options
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apex could not be completely supported in a dual-element configuration, and a
thickened apex section was mandatory.

A single-element seal had the advantage of a configuration that could provide
optimum backup support to the sealing element at the expense of redundancy.

A dual element provided sealing redundancy at the expense of allowing stress
optimization by manufacturing the upstream and downstream elements to
different geometric shapes, or at the expense of a nonoptimum design of one
element,

Triple-element seals had an advantage of allowing either a flexible or strongback
element to be used between redundant sealing elements, at the expense of a
longer seal gland.

Materials: The consideration of materials relates to the percentage of graphite filler in
the polyimide and the variations in material properties resulting from introduction of the

filler.

SP-1 had the highest ultimate allowables but also the highest coefficient of
thermal expansion and the poorest friction properties. Designs with SP-1 material
could not meet the requirements for the allowable stress envelope.

SP-21 had moderate ultimate allowables with a moderate thermal expansion
coefficient and good friction properties. Stresses in designs with SP-21 material
were within the calculation error tolerance using the minimal fatigue data
supplied by DuPont.

SP-22 had low ultimate allowables for polyimides, good friction properties, and
the lowest coefficient of thermal expansion of the materials investigated. Stresses
for designs with SP-22 material were acceptable to the allowable fatigue design
envelope but were based on judgmental fatigue information that has not been
validated.

Gland depth: The reduction of gland depth was a primary objective of the design

study.

The reference 2 gland depth of 6.274 x 103 m (0.247 in.) was too large for
practical usage and reduction of this dimension was one objective of the study
effort.



e The maximum gland depth of 3.581 x 103 m (0.141 in.), using a modular
installation in the 0.0635 m (2.5 in.) rod diameter Boeing actuator, was used as a
standard for stress calculations under the assumption that problems would be
compounded with a greater than necessary reduction in depth.

® The MIL-G-5514 (ref. 16) gland depth of 3.073 x 103 m (06.121 in.) in the
0.0254 m (1.0in)) rod diameter actuator was the objective for eventual design
and in addition had the advantage of minimizing differential expansion between
chevron 1D and OD more than the larger glands. This occurred at the expense of

manufacturing problems with the smaller size.

Optimum seal: The optimum seal was determined to be the two-element configuration
to fit a MIL-G-5514 (ref. 16) gland with a uniform-thickness downstream chevron and a
thickened apex in the upstream chevron. This selection provided a redundancy of sealing
elements, optimum geometry for a backed downstream element and an unbacked upstream
element, and a gland depth meeting the established objective. The major disadvantages of
the selected seal were the noninterchangeability of the seal elements and the added cost of
manufacturing two different element geometries.

Material selection.—The use of DuPont Vespel SP-22 as the optimum polyimide
material for the chevron seal concept was based on accepting judgmental estimations of
appropriate property allowables for fatigue data that did not have testing validation. This
risk was considered to be beyond the scope of the study objectives and therefore Vespel
SP-21 was selected as the best practical choice of materials for the second-stage seals. The
risk taken in using SP-21 was that of not knowing quantitatively the degree of conservatism
in the analytical stress analysis. This analysis employed zero-mean stress data to a set of
operational conditions where complete reversals were not experienced. The resulting design
data indicated that fatigue allowables were exceeded, based on the zero-mean stresses. In a
more precise analysis, using the applications means cyclic stress envelope, the results would
be within the allowables acceptance region. Such allowables, if available, would have
relationships to zero-mean allowables similar to those discussed earlier. As a result of this
conservatism, SP-21 was judged to be the practical optimum material for seal fabrication.

Seal dimensions.—The optimum dimensions for a chevron seal in a Military
Specification (ref. 16) gland depth, applied to a 0.0254 m (1.0 in.) diameter rod application,
were determined as being an optimum thickness of 6.096 x 1074 m (0.024 in.) and an
optimum leg angle of 0.471 rad (27° using SP-21 material. At this angle compression
stresses were not exceeded for the fatigue cycle envelope and the effect of exceeding
allowable tension stresses could be eliminated by using a thickened section at the apex of
the upstream seal. These relationships are shown in figure 23. The radius at the apex was
determined using a minimum R/c of 4 from figure 19 for curved-beam correction. This ratio
was not compatible with the other dimensions as stated above and an R/c of 3 was of

47



adeys uoinrays wnwildo 10y ajbue 63| sA ssa11S—'EC ainbi4

(1s3) O ‘ssanis Buipuaq |euotpuaiy

9 14 [4 0 C- V- 9 8- (0]
¥ 4 1 1 J i 1 T 1
(,.0L X ZW/N) O 'ss2AS
9 14 () [4 l 0 L- € \a G- 9 L- .
s o T T 5 pel Ggz'o
28 s g 18
_w. 3 _ﬁ _N _w 12-dS 1odsap :|elialepy
I3 [ol2 5 3
. _ T Q0 ¢ W m _d
~ % —nnuaw — ° £
8 x |3 I 12, SE0
N - — o o . \
x Q|2 = L:u.
- N9 o m \ o 0./
0/. > _m _ W 2 ] ! A@ .
2 3 =& g & ov'0
w.C. = — _ /V«/¢ v
I =
: R vo L S0
R (= m.llT —— e e e— c— /&00
T, _ a ajbue wnwndo O
& | [ .
< _ — 050
| | | 100YsJan0 | )
m - ssang | S50
" | 09'0
, | G9'0
s3940 as|ndwit 0L X Z 1€ d|qemolje anbijp) = w——— (U 20°0) W, 0L X9609 = 13
(wzrol Em.o_. XgL0E =D
(furol) wySeoo = @

(sueipeu) 10 ‘a|6ue ba

Jomr

~00C

—05¢C

4.0¢

Iomm

(6ap)®ajbue Ba

48



necessity adopted. The ratio value of 3 was less than the minimum suggested value and thus
increased the curved-beam correction factor more than optimally desired. The resulting
radius for the center of a uniform chevron cross section was 9.144 x 10'4 m (0.036 in.). The
downstream and upstream radii became 1.219 x 103 m (0.048 in.) and 6.096 x 1074 m
(0.024 in.), respectively. The upstream radius for the nonuniform section of the upstream
chevron was 7.620 x 104 m (0.030 in.) and was fitted to accommodate the thickened apex
section needed to keep tension stresses within the fatigue limit allowables. An illustration of
this configuration is shown in figure 24.

The optimum chevron configuration was established as the one where the total preset
interferences and gaps between the chevron and its gland were minimized to reduce preset
stresses. This was accomplished at the rod contact surface by making the free shape
interference at 228°K (-50°F) equal 4.064 x 105 m (0.0016 in.) and the gap at 450°K
(350°F) equal the same value. The same procedure was used at the chevron OD, or contact
surface with the gland. On this surface, at 228°K (-50° F), there would be a 4.826 x 10 m
(0.0019 in.) gap and an equal value interference at 450°K (350°F) between the chevron
free shape and the gland.

Under temperature conditions, where the free shape produced a gap, an added loading
system was necessary to force contact between the chevron and the rod or gland surfaces.
The magnitudes of these forces were determined by computer stress analysis. The forces
varied between 66.7 and 111.2 N (15 and 25 Ibf), depending on whether they were applied
in a radial or tangential direction to the rod centerline. The distances over which loading
forces were required to act were established by evaluating the dimensional variations due to
thermal expansion of the chevrons in the seal assembly. The variations determined are
described in tables V and VI.

Either of the analyses in tables V and VI reflect movement due to thermal expansion
of the chevron assembly within the seal cavity constraints. The two analyses were not
additive. To maintain sealing contact at 450°K (350°F) at the rod surface and at 228° K
(-50°F) at the gland OD surface, the upstream chevron needed to be forced downstream
from the positions indicated in the above analyses by the amounts indicated in table VIL.

At 228°K (-50°F) on the rod surface, and at 450° K (350° F) on the gland OD, the seal
cavity surfaces kept the chevron in contact by interference fit. These fits required the legs in
contact with the cavity to move upstream by the total amounts indicated in the tangential
variations presented in table V. At low temperature on the rod, and at high temperature on
the gland OD, the upstream faces of the assembly were farther upstream than at high
temperature on the rod or at low temperature on the gland OD. This condition made it
necessary to use a spring loading system to provide the forces to close the clearances
resulting from thermal expansion. The spring loading for the inner and outer legs of the
assembly needed to be independent since the clearance conditions occurred at opposite ends
of the temperature spectrum for the two legs.
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Table VII.—Compression distances to close clearances resulting from thermal expansion

Temperature Movement required
Location °K °F Direction of motion m in.
Inner leg at rod 450 350 Horizontal compression 1.778 x 10°3| 0.0070
surface or 4
vertical outward 9.652 x 107" | 0.0038
Quter leg at gland 228 -50 Horizontal compression 3.912x 103 0.0154
oD or 3
vertical outward 1.778 x 10°Y| 0.0077

Spring loading considerations.—The Belleville spring was considered optimum for use
to provide the required compressive loading because it could be designed in a region of
deflection vs load with a negative slope. With such a design, loading was provided with an
extended spring to close the clearance resulting from thermal expansion, while the same
spring induced lesser stresses in the chevron, at lower spring deflections, where the chevron
interference fit in the gland forced unwanted spring compression. As attractive as this
concept was in theory, it could not be fabricated to the dimensions of the seal gland for the
applications under consideration because the ratio of OD to ID for the spring approached

unity.

The alternate spring considered was the “garter” spring because it provided a soft
action characteristic. This spring would act in the radial direction on the inner leg but would
not be applicable for outer leg loading. The small size of the seal gland precluded use of this
spring because wire diameter would have to be greater than one-half the allowable coil
diameter for the spring.

Calculations for a simple compression spring showed that the allowable torsional
stiffness of the spring material was exceeded when spring dimensions were limited to the
cavity size for the application.

Conclusions.—The preceding results all supported difficult aspects of fabricating the
chevron seal design where the theoretical optimum preset for the pair of chevrons was the
minimum preset equally divided between the ID and OD legs of the seal. The alternative was
to design the seal configuration for the optimum downstream element and configure the
assembly to incorporate two such elements. A strongback between the elements, see figure
22, was necessary to allow the upstream element to be designed so that the pressure and
interference bending stresses were opposite rather than additive. These stresses were additive
when this element was not supported. The preset was applied so that maximum interference
would occur at 228°K (-50° F), with decreasing interference as temperature was elevated. In
this way the stresses always remained opposite and spring loading was not required to keep
the chevrons seated.



Chevron Seal Design

Chevron design drawings were prepared to utilize the advantages of opposing pressure
and preset loads to offset the disadvantages of large presets and provide seal concepts that
required no loading springs.

The downstream chevron element was rigidly supported by a rounded backup block
through contact at the chevron apex. This support produced a less severe stress condition in
the downstream chevron element than was present in the upstream element, which was not
similarly supported. By placing a “strongback” or rigid body between the downstream and
upstream chevron elements of a two-element assembly the stress distribution in both
elements was made similar. Designs for the small 0.0254 m (1.0 in.) and large 0.0635 m (2.5
in.) diameter rod assemblies using this rigid supporting technique for both elements were
developed as follows.

Small-size chevron design.—The 0.254 m (1.0 in.) chevron preset was assigned to
provide a minimum of 2.54 x 100 m (0.001 in.) interference fit at both the inside and
outside legs of the chevrons at any temperature condition. Maximum preset at the extremes
of the temperature range was 1.27x 104 m (0.005 in.) in a 3.073 x 1073 m (0.121 in.)
gland. With such an interference fit, loading springs were unnecessary but the stress in
unsupported upstream chevrons was excessive. To avoid such overstressing, two design
criteria needed to be satisfied. These were:

e The chevron leg section between the tip and the tangent point to the apex
curvature needed to be sufficiently flexible, under conditions of maximum preset
and no pressure loading, that fiber bending stresses remained within the allowable
stress envelope. '

e The chevron leg, including the curved-beam section at the apex, needed to be
strong enough to ensure that the maximum pressure-induced bending stresses, in

addition to stresses due to preset, remained within the allowablé stress erivelope. -

The critical stresses in the two-chevron configuration, using a 0.349 rad (20°) to 0.698
rad (40°) leg angle range with the apex of the upstream seal unrestrained, did not remain
within the allowable stress envelope for presets greater than approximately 5.08 x 109 m
(0.002 in.) per leg. This is indicated by the data in figure 20, where the preset equals
9.144 x 10° m (0.0036 in.) total for two legs. This limitation occurred because the
pressure-induced load, and preset load, produced bending moments that were additive, i.e.,
both tension or both compression at the same extreme fiber. By placing a strongback
between the upstream and downstream chevrons the critical pressure-induced moment
opposed the moment produced by preset loading, and the resultant stresses were minimized.
This result only partially satisfied the two criteria mentioned above.
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In order to arrive at a complete solution for a chevron design, an approximate hand
analysis was performed treating the chevron leg as a simple beam with an equivalent length
and thickness. The freebodies used were as follows:

Deflection
I < X ? due to
# preset &

L Leg tip
Leg tangent

It was found that no realistic solution existed for a chevron with a leg thickness that
was capable of resisting 1.270 x lO'4 m (0.005 in.) preset and 6.895 x 106 N/m2 (1.00 ksi)
pressure loading without drastically exceeding the +2.964 x 107 N/m2 (x4.30 ksi)
allowable stress envelope at 450°K (350°F). Acceptable solutions had different equivalent
leg thickness for the deflection and pressure conditions, indicating that a tapered leg
chevron was required. Hand calculations were not used for further calculations because
approximations for curved-beam stiffness and the taper ratio for the leg were too gross,
requiring calculations by the finite-element analysis to provide acceptable data correlation.

Computer solutions using the finite-element analysis were obtained to evaluate the
model shown in the figure below for the region of acceptable configuration design.

l Notes:
5 1) +M,, puts compression
Center of loading on +Y hber

curvature
2} 'Fx puts beam in tension

3) Thicknesses along curved
beam are measured on radius

DOWNSTREAM

Tip thickness



Limitations were imposed on certain dimensions for the computer analysis. The
minimum practical thickness for the leg tip was limited to 3.810 x 10'4 m (0.015 in.) so
that there would be sufficient thickness to support shear forces imposed by the cutting tools
during fabrication. The thickness at the apex was required to be 1.2 times the leg thickness
at the tangent, based on prior analysis that this ratio would not overstress the apex at
maximum preset when the stresses at the tangent were acceptable. In addition, the allowable
critical stress was limited to +2.964 x 107 N/m2 (£4.300 ksi). This value was based on the
most current DuPont data, which was believed to be conservative; however, the degree of
conservatism could not be determined without additional property data. Such property
evaluation was outside the scope of the study effort.

The results of the computer analysis are shown in figure 25 for the region of solutions
acceptable for the envelope of stress allowables. An evaluation of the results was made to
reach a practical solution for the 0.0254 m (1.0 in.) rod application. A minimum of 0.349
rad (20°) for the leg angle was established as a compromise to keep the leg length within
practical limits. Lower angles required high taper ratios, which increased the contact foot
area of the chevron. A limiting value occurred at 0.262 rad (15° where the entire leg was in
contact with the gland.

At a 0.349 rad (20°) leg angle there was no theoretical solution within the
+2.964 x 107 N/m2 (£4.300 ksi) stress envelope. The best practical solution provided
stresses within -3.310 x 107 to 2.551x 107 N/m2 (-4.800 to 3.700 ksi) using a tangent point
thickness of 6.350 x 10% m (0.025 in.). This solution was practical from two standpoints:
(1) the deviation from either the preset or pressure curve was small and judged to be within
the conservatism of the allowable, and (2)the accuracy of dimensional control in
fabrication could not guarantee the tolerance applied to the angle of crossover between the
theoretical preset and pressure curves shown. :

Large-size chevron design.—An analysis similar to that described above was performed
to determine the region of acceptable design for the 0.0635 m (2.50 in.) rod application
using a two-element chevron assembly with a midelement strongback. The criterion for a
2.54x10° m (0.001 in.) minimum preset was also applied for the large-size rod
application, resulting in a maximum preset, at temperature extremes, of 2.286 x 104 m
(0.009 in.). The 3.581 x 103 m (0.141 in.) gland depth acceptable for use with a modular
seal was used in the finite-element computer analysis to produce the results shown in
figure 25.

The results show no area of common solution for the preset and pressure curves.
Because the 3.581 x 103 m (0.141 in.) gland depth was the maximum considered practical
for the test actuator under consideration, an engineering judgment was made to determine
the most practical design to satisfy the constraints of 3.810 x 104 m (0.015 in.) tip
thickness, apex thickness equal to 1.2 times tangent thickness, and leg angle equal to 0.349
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0.0635 m (2.5 in.) application

Figure 25. Finite-element stress envelope



rad (20°). The choice was between exceeding either the tension or compression allowable in
the stress envelope. A tangent point thickness of 7.620 x 104 m (0.03 in.) was selected as
the best solution by exceeding the compression allowable because a shift in stress cycle in
the compression direction gave a better fatigue life. The above tangent point thickness was
considered a maximum allowable so that the compressive loading of the extreme fiber at the
tangent point due to preset would not cause permanent set. The resulting stress cycle was
-5.171 x 107 to 3.930 x 107 N/m?2 (-7.500 to 5.700 ksi).

Chevron seal design summary.—The chevron seal design drawings that were produced
using the results of the above analyses are shown in figures 26 and 27. These seal drawings
are also produced in references 17 and 18, which include machining tolerances and finishes

for all parts.

In summary, there were a number of design iterations leading to the final configuration
of a tapered-leg, thickened-apex chevron design. Those that received major consideration are

described briefly in table VIII in chronological order of evaluation, and their advantages and’

disadvantages cited. Concept 5 appeared to be most satisfactory on the basis of both
theoretical stress analysis and practical fabrication constraints, and was therefore recom-
mended for fabrication and test.

K-Section Seal Design

The design evaluation of the K-section seal, similar in concept to the reference 2 HB-1
configuration, was initiated independent of the chevron analysis. Stress considerations were
based on the K-section being comprised of a stiff vertical member of constant cross section
and two independent, tapered legs. As such, each leg was a flexible cantilever beam having a
specific taper ratio. The loading condition on each leg was composed of a pressure
component and a preset component in similar fashion to the chevron leg loads. The
pressure-induced load was the same as the load.induced in a chevron leg having the same
dimensional parameters; however, the K-section leg reacted with greater rigidity to preset
loading because there was no interaction between legs of the K-section.

The reduced flexibility in the K-section legs due to preset loading was indicated in
computer printouts for the optimum taper ratio analysis. Stresses were extremely sensitive
to the distribution of thicknesses along the tapered leg to the extent that the sensitivity was
within the manufacturing tolerances needed in fabrication. A choice was presented to accept
the best design out of that analysis, requiring a leg thickness distribution having a shape as
shown in exaggerated fashion below:

Leg root Leg tip
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or to use the final chevron design with a rigid vertical beam as an integral part of the apex
geometry. The latter choice was selected for the following reasons:

e The average taper ratio of approximately 1 to 2 from tip to root, recommended
from the computer analysis for taper ratio, was the same as the ratio of
3.810x 104 m (0.015 in.) at the chevron tip to 7.620 x 104 m (0.030 in.) at the
chevron apex.

e There was no guarantee that the tolerances of the shape determined by taper ratio
analysis could be maintained sufficiently accurate in fabrication.

® A uniform taper was preferable to a contoured shape for seal simplicity.

e Tooling was minimized by generating the inside shape of the chevron and
K-section with the same forming cutter if the chevron geometry was accepted for
K-section design.

K-section seal design drawings were produced using the results of the above analyses.
These designs are shown in figures 28 and 29. These seal drawings are also produced in
references 19 and 20, which include machining tolerances and finishes for all parts.

MODULAR RETAINER

The development objective for a modular retainer was to design a mechanism that
would permanently hold both the first- and second-stage rod seals in their proper
orientation, independent of other actuator parts, and could be installed in an actuator asa
single unit with the seals encapsulated. '

Test Actuator Applications

Designs were prepared for the inclusion of modular seal retainers in both the 0.0254 m
(1.0 in.) and 0.0635 m (2.5 in.) actuators to be used during endurance testing. These
modular designs are shown on figure 30 and with the complete actuator designs in
references 21 and 22. The modular assembly, -2 part, is assembled by spiraling the
first-stage, split-ring seal into place. The second-stage seal is installed in the module gland, -3
part, by sequentially introducing parts from the downstream end of the gland. The retainer,
-4 part, is then added to provide capture of the:seal in the gland. The 0-80 screw is used to
hold the retainer in place prior to actuator installation. The module gland also acts as the
rod bearing and a retainer for the static seals on both sides of the interstage bleed. The
module retention nut, -5 part, is used to hold the module in the actuator and to react static
thrust loads. The module designs were configured to best complement the existing
actuators. This was satisfied by consolidating the rod gland bearings with the rod seals
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First stage seal (see appendix 3)

"

Static O ring seal and backup rings

i D Second stage seal

(see figures 26 and 28)

0-80UNF x 3/16
cap screw

“TTET T —Of T

N P o B I AN

-3 part (actual size)

-S.ee reference 22 for detail dimensions

Seal module for 0.0254m (1.0 in.) test actuator (reference 22-2 assy)

Pressure port 7 /—Interstage bleed'

/ 1
| ' : i Actuator Assy
| ! ' |
: | -5 retainer nut
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\ZBearing Static O ring _seal Second stage seal
area and backup rings (see figures 27 and 29)
Piston rod 3

First stage seal
(see appendix 3)

- Bearing lf/

-— q:_ —
-2 part (actual size)
See reference 21 for detail dimensions

0-80UNF x 3/16
cap screw

4

Seal module for 0.0635m {2.5 in.) test actuator (reference 21 -2 assy)

Figure 30 — Seal modules for test actuators



in the modular units, resulting in a seal module that was longer than if the bearing and seal
modules were separately constructed.

Whether or not the seals are installed in modular retainers does not affect the results of
testing either the first- or second-stage seals. Thus, the use of the modular retainer during
endurance testing was considered only to determine whether installation procedures
facilitated maintainability, and precluded improper installation. Because this objective could
be accomplished successfully during tests of only one size of retainer, the 0.0635 m (2.5in.)
actuator size was selected. This choice was based on considerations of minimum
modification to existing hardware.

New Actuator Applications

When the seal module is considered for new actuator designs, there are alternate
approaches available. Two factors determining the practicality of these possibilities are as
follows:

® The ratio of piston diameter to rod gland diameter determines the rod gland
material thickness available for machining of seal glands, bosses, and leakage
ports. The larger this ratio, the more freedom is available in design.

o The optimum placement of each rod bearing is at the maximum distance from the
neutral piston position so as to minimize rod side motion and piston cocking.

If a separate bearing is placed upstream of the seal module, it will reduce the distance
between the bearing and the neutral piston position below the possible maximum and
require tighter seal module dimensional tolerances to allow the seal retainer to act as a
secondary bearing against side loads. Placement of the bearings downstream of a separate
seal module imposes the requirement for nonlubricated bearings and results in problems
with the selection of materials for the interfacing bearings, rod, and housing. Such
placements as those discussed above are unconventional for aircraft design; however,
incorporating the seal module and bearing into a single unit makes the unit larger and more
costly than if the two were considered separately.

The sketches in figure 31 show: (a) the integrated unit of a bearing and seal module
recommended for a new actuator, and (b) a separate seal module for a new actuator. Either
of these configurations could be fabricated for use as a unit installation for actuators to be
developed for future programs. Selection of one or the other, or modifications of either,
would depend on the application and the design options available to satisfy the operational
requirements.
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{shortened from (a) to eliminate
bearing surfaces.)

Figure 31. New actuator modular retainer concepts



IV. SEAL PROCUREMENT AND MANUFACTURE
FIRST-STAGE PROCUREMENT

Requests to the Dover Corporation—Cook Airtomic Division, Koppers Company—
Metal Products Division, and Royal Industries—Tetraflour Division, were made to establish
their design experience applicable to polyimide step-cut rings. As a result of the responses
received, Koppers was engaged to design and fabricate 36 first-stage seals; six each in two
diameters with three percentages of diametral balancing for each diameter seal. The seal
internal diameters were to match a 0.0254 m (1.0 in.) rod and a 0.0635 m (2.5 in.) rod.
Pressure balancing percentages were 30%, 50%, and 70%. The seal geometries were patterned
to the appendix 1 configuration and were designed to be capable of a life that would satisfy
the impulse and endurance requirements, as stated earlier. The final design configurations
are reproduced in appendix 3.

SECOND-STAGE MANUFACTURE

Boeing fabricated the second-stage seals at its precision instrument machine shops to
have close logistic contact between design engineering and the manufacturing personnel.
This allowed near-constant feedback regarding the procedures and processes employed and
the effect of these on quality of the final machined parts.

The first step in manufacture was to configure a method of holding the SP-21
polyimide material during the various operations required to form the seal geometries. This
was accomplished by rough machining the polyimide into washer shapes which had extra
material on both the ID and OD of the finished part dimensions. The washers were
machined with the material perpendicular grain along the washer diameters and the parallel
grain through the washer centerline to utilize the stress properties as indicated in the design
analysis. The rough machined washers were heat treated at 533° K (500° F) for 7200 sec (2
hr) to drive out moisture that, if allowed to remain during final machining, would be
released during high-temperature testing and result in shrinkage of the final part. Holding
fixtures were fabricated to retain the polyimide washers during machining of the seals.
These fixtures, diagrammatically illustrated in figure 32, were employed in the sequence
shown during chevron fabrication. Similar fixture pieces were used for fabrication of the
K-section. Seals were fabricated in the following sequence: 0.0254 m (1.0 in.) chevron,
reference 17; 0.0635m (2.5 in.) K-section, reference 19; 0.0635 m (2.5 in.) chevron,
reference 18; and 0.0254 m (1.0 in.) K-section, reference 20. This sequence was used to
allow the machine operator to proceed through the learning curve with a less critical
configuration. It also allowed fabrication of the seals most desired for endurance testing
(0.0254 m, 1.0 in., chevron and 0.0635 m, 2.5 in., K-section) prior to others, such that
screening tests of these seals could be started as early in the program as possible.
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Cutting tools were ground to the shapes conforming to the finished geometry of each
section of a given part. A single tool was used to generate the concave surface in step 1 in
figure 32. Similarly, a single tool was made to generate the finished convex surface in step 3.
It was necessary, however, to rough cut the convex side of the part prior to final machining
in order to limit the final cut with the finishing tool to 2.54 x 10'5 m (0.001 in.). This
limitation was needed to prevent the resilience of the thin leg section of the part being
machined from distorting the final shape due to loading produced by the machining tool. It
was determined that, without the rough cuts, the 0.0254 m (1.0 in.) chevron inside leg
could be distorted as much as 7.62 x 105 m (0.003 in.)on its finished diameter and the

0.0635 m (2.5 in.) chevron as much as 1.778 x 10'4 m (0.007 in.) on its finished inside
diameter.

The finish cutters were inspected for proper shape againét a 100X template of the
finished part on a comparator. The machined part was inspected for conformance to its
cutting tool after machining was completed to ensure that the resilience of the part under
tool load did not affect the finished shape. It was necessary to periodically reinspect the
tool against the template on the comparator to determine tool wear and plan when tool
regrinding would be necessary. The process of fabricating the SP-21 into the concave surface
produced a flaky finish that was apparently a function of the graphite in the material.
Attempts at polishing the surface did not improve the appearance. Because machine
inspections of the concave surface roughness were not possible, a more complete analysis of
the flakiness could not be made. The condition did not lead to rejection of finished parts,
but was watched for any evidence of flake removal that would become a source of
contamination. Photographs of the completed seals are shown in figure 33. These
photographs show that a polyimide part, identified as an upstream radius block, was
fabricated in addition to the parts detailed on figures 26 through 29. This radius block was
used in the seal gland as a practical means of preventing leg tip damage on the upstream
sealing element for either the chevron or K-section seals during installation. Another method
to accomplish the same objective would have beén to fabricate a more complex geometry in
the seal gland.

V. TEST PERFORMANCE

Testing was performed with the objective of determining whether the design
methodology used to develop the rod seals as described in previous sections of this report
could be validated by testing to critical design requirements. An additional objective was to
demonstrate the advantages of the use of polyimides in satisfying the requirements of long
life at elevated temperatures. The tests selected to meet these objectives were divided into
the categories of screening and endurance testing. Screening tests were used to evaluate the

69



L1 =0128g

L'l =01 98dS

$aljquiasse [as 153} abels-puoaas — g a4nbl

uoI1103s-) ("Ul G'Z) W GE90'0

Suo9as-y|

UCIASYD ("Ul G'Z) W GE90°0

Nn

34
20|q
sniped
wieaisdn

390)q snipeJ
weasdn

80°L = 0’L 3838

uo109s-) {"Ul 0'L) W G200

!
w
H
*0iq
R snipes
SU011985-Y) weansdn
uouaABYyd (Ul 0°L) W $SZ0°0
80°L =0l 21838

yo01q snipel
weansdn

70



-

>

various configurations for both the first- and second-stage applications and from these select
the configurations to be used during endurance testing. The endurance test was conducted
to evaluate the selected seals to the accelerated life cycle requirement representative of the
45x 107 sec (12 500 hr) overhaul life for rod seals to be used on the Boeing/DOT
supersonic transport airplane.

SCREENING TESTS

Screening tests were developed for the purpose of providing data that would show the
differences between the alternate seal candidates as well as data that would show a
quantitative measure of the potential for the seals under stress environments typical of an
advanced airplane application. The screening tests selected were: (1) an impulse test to
evaluate the structural integrity of the seal cross section, and (2) a friction test to evaluate
the friction forces that contribute to inefficiency of the hydraulic actuator.

Impulse Testing

Pressure impulse tests were conducted to evaluate the integrity of both the first- and
second-stage seals under the environment described in figure 34. The existing test facility,
shown in figure 35, was utilized and the hydraulic setup modified as required to provide the
specific test environment. Impulse tests were perfomred on both the small (0.0254 m,
1.0in.) and large (0.0635 m, 2.5 in.) first-stage seals with two of the three balancing
conditions, and on both the small and large sizes of chevron and K-section second-stage
seals. Descriptions of the test sequences and instrumentation are provided in appendix 4.

First-stage impulse results.—The 0.0254 m (1.0 in.) ID first-stage seals, in both conditions of
30% and 50% pressure balancing, and the 0.0635 m (2.5 in.)ID first-stage seals, in both 30%
and 70% balancing configurations, were impulse tested. There was no evidence that impulse
testing had any effect on the structural integrity "of these seals. The 0.0635 m (2.5 in.) 30%
seal showed damage in the area of the step cut subsequent to impulse testing. This damage
was judged to be due to material contamination or notch sensitivity at machine marks and
not attributable to stress failure under load. Figure 36 is a photograph of this seal and the
area of damage. Leakage measurements during testing indicated that fluid containment was
not dependent on pressure balancing. Leakage averages at the test temperatures evaluated
showed variations as indicated in table IX. These are compared against a 8.3 x 1077 m3/sec
(50 cc/min) allowable.

Two values are shown where low and high leakages were sufficiently separated that a
statistical mean would be misleading. One value is shown where measurements were
clustered and averaging was meaningful.
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Table |X.— Leakage data—first-stage impulse test

Leakage variation with temperature
Seal Units 311°K(100°F) 408°K(275°F) 450°K (350°F) 478°K(400° F)
00254 mID | m3x 10°8/sec 4.17 16.7 t0 48.3 23.310 35.8 25.0 to 45.0
(1.0in.) (cc/min) (2.5) (10 to 29) (14 to 21.5) (15 to 27)
0.0635m 1D | m3x 108 sec 2.83 4.17 to0 20.0 6.67 to 18.3 6.67
(2.5in.) (cc/min) (1.7) (2.5 to 12) (410 11) (4)

Allowable leakage was 8.33 x 107 m3/sec (50cc/min)

None of the first-stage seals were received with the antirotation pin installed to lock
the inner sealing ring to the outer compression ring. The impulse tests were initiated with
the seals as received, with the intention of returning them for pin installation only if test
results showed that the pins were essential.

During testing, differential rotation of 3.141 rad (180°) between the sealing and
compression rings produced lineup of the step cut in the sealing ring with the gap in the
compression ring resulting in extreme external leakage. This occurred three times with the
0.0254 m (1.0 in.) 30% balanced seal, three times with the 0.0254 m (1.0 in.) 50% balanced
seal, and once with the 0.0635 m (2.5 in.) 30% balanced seal. As a consequence, two sets of
seals were returned to Koppers to have the antirotation pins installied in preparation for
other tests.

The 0.0254 m (1.0 in.) 70% balanced and 0.0635 m (2.5 in.) 50% balanced seals were
accepted as satisfactory under the impulse requirement by similarity to the seals that were
tested. This was justifiable since the impulse test was performed for structural integrity of
the sealing element cross section at the step cut. Since the 0.0254 m (1.0 in.) 30% and 50%
balanced seals passed impulse with the same step cut section as the 70% balanced seal, it was
statistically safe to assume that the 0.0254 m (1.0 in.) 70% section would also pass. Since
the 0.0635 m (2.5 in.) 30% and 70% balanced seals passed the impulse test and bracket the
50% balanced section, it was also safe to assume that the 50% section would pass the same
test.

Second-stage impulse results.—Tests were conducted to evaluate the second-stage
chevron and K-section cross sections in both the 0.0254 m (1.0 in.) and 0.0635 m (2.5 in.)
sizes. The seal leakage obtained during testing is shown in table X and is comparable to an
allowable leakage of 5 x 10'8 m3 (1 drop) per 900 sec (15 min) or an equivalent 1050
cycles. The completion of these tests, with no more than the above leakage, verified the
acceptability of the seals tested for the application requirements.

Examinations were made of the tested seals subsequent to completion of 200 000
cycles of impulse. The examinations revealed some structural cracks in the legs of the sealing
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elements. Details of the locations of these cracks and interpretations of their significance are
described in figures 37 through 42. Despite the cracking, the seals retained the ability to
provide fluid containment during a test more severe than expected in normal service. There
was no evidence of chips or broken pieces from the seal parts.

An attempt was made to determine when the cracks developed during the impulse
sequence. This was accomplished by testing single sealing elements from the 0.0635 m (2.5
in.) K-section assembly and the 0.0254 m (1.0 in.) chevron assembly. It was anticipated
that, under these conditions, cracking would be accompanied by a measurable increase in
external leakage because the second or redundant element in both configurations was not
used. Results with the K-section test were that 3.33 x 109 m3/sec (4 drops/min) leakage
was evidenced during startup cycles following a weekend shutdown. This occurred after
40 000 cycles at 311° K (100° F) plus 28 206 cycles at 408°K (275° F) were completed. A
disassembly inspection was conducted showing cracks on the outer leg of the seal very
similar to those described in note 3 in figure 39.

Cracking with only the indicated number of cycles accumulated could be attributed to
a number of causes, all equally plausible separately or in combination. Those causes judged
most significant are listed below.

e A near-constant stress level existed throughout the tapered leg under any given set
of operating conditions due to similarly proportional changes in both the bending
moment and area moment of inertia from tip to apex of the leg. As a result there
was no particular reason why cracks should have occurred at one location or
another, except where material notch sensitivity caused increased local stress at
machine marks.

® A comparison of seal design data against flexural fatigue data from DuPont and
mean stress data approximations from figure 11 showed that it was remotely
possible that flexural failure could occur at a life as low as 20 000 cycles with the
0.0635m (2.5 in.) K-section seal. The validity of quantifying failure in this
manner is questionable due to the origin of the curves in figure 11, but the
inference of low cycle life has qualitative value as an explanation.

e Progressively accumulated fatigue cycles reduce seal leg cross-section strength.
When this effect of reducing the allowable stress matches the stress produced by
preset, failure will occur. The stress allowable due to preset was less than
optimum with the 0.0635 m (2.5 in.) seal because preset and pressure load
requirements could not be equally satisfied with a single seal configuration, as
shown in figure 25.

@ The evidence of wear on the outer leg tips of some 0.0635 m (2.5 in.) seals
showed that contact with the gland extended downstream of the machined
contact surface. Under this condition localized loading was developed in excess of
normal, possibly exceeding the fracture strength of the material.
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No contact was noted, indicating that the gland was long enough so that the thermally expanding seal did not
completely fill the cavity.

The contact surface appeared different than @ Since this was the last chevron component fabricated, tool
wear may have been contributor to roughness.

A crack on the outside of the outer leg, 6.283 rad (360°) in circumference, was at the extreme downstream
edge of the polished area due to contact. The contact surface was between the crack and the downstream
end of the machined flat on the OD indicating wear was farther downstream than expected and the leg pivot
point was not at the place anticipated in design.

The wear surface was only one-half as wide as on the outer leg and occurred at the extreme downstream edge
of the machined flat, indicating that the leg pivot point for flexing was different than anticipated in design.

A crack, 6.283 rad (3609 in circumference, on the inside surface was cracked through to the outside along
6.109 rad {350 at the downstream edge of the machined flat. The crack was attributed to loading transferred
through the -4 and -2 parts. The polished area of contact was just downstream of the machined flat and the
crack, as was anticipated in the design.

A crack, 6.283 rad (360°) in circumference, was about midway between the downstream edge of the machined
flat and the tangent point of the tapered leg and apex curvature. The polished contact area was only on the
machined flat. The crack was attributed to load being transferred thorugh the -4, -2 and -3 parts.

«
Edge cracks appeared at four random locations within a 0.438 rad (30°) section of the seal circumference.
Contact area was on the machined flat only, as evidenced by polishing.

Contact was noted by polishing as expected on the downstream surface.

*See figure 41 for photograph of this area.

Figure 37.—0.0635m(2.5in.) chevron inspection following impulse
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No contact was noted, indicating that the gland was long enough so that the thermally expanding seal did not
completely fill the cavity.

This contact surface appeared different than @ Since this was the last chevron component fabricated, tool
wear may have been the contributor to roughness.

Very small random cracks were evidenced, possibly due to notch sensitivity. These may have been due to
original material imperfections since the cracks had random direction orientation with the average direction
progressing around the circumference.

This surface had a very minutely cracked inner edge, possibly attributable to notch sensitivity, or loading
from pressure on part -4, or both.

This contact surface was smooth, indicating contact between parts to have occurred between the downstream
edge of the face and approximately 2/3 of the depth from the upstream edge.

Small 0.146 rad (10"} cracks occurred in four places, approximately 90 degrees apart on the circumference,
and appeared to start in machine grooves, indicating a notch sensitivity effect.

Small cracks describable as in @ above occurred on this surface.

Contact was noted in the form of polishing as expected on this downstream surface.

* See figure 41 for photograph of this area

Figure 38.—0.0254m (1.0 in.) chevron inspection following impulse
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The contact area noted on this surface may be attributable to the gland length being too short to account for
full thermal expansion of the seal.

Roughness on the surface may be attributable to this being the last fabricated part of the seal and tool wear
could cause a rougher surfacing.

Surface cracks on the inside and outside of the outer leg, approximately 6.283 rad {360°) in circumference, were
at the downstream edge of the polished wear surface. The wear surface was between the crack and the downstream
end of the machined flat on the OD, indicating wear had produced an extension of this flat due to high loading.

Small randorg cracks were evidenced approximately 0 524 rad (3(5)) in arc around the circumference and

1.57 rad (90°) apart. This appeared to be similar to (3) above, but of lesser magnitude, since thermal expansion
of the seal tends to load the outside leg and unload the inside leg.

This seal surface was not polished as expected, indicating the contact wear as described in @) was occuring.

This seal surface was polished as expected on the machined flat.

A contact area was noted as expected for the downstream contact with the seal gland.

E ]

* See figure 42 for photograph of this area

Figure 39.—0.0635m (2.5in.} K-section inspection following impulse
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No contact was noted, indicating that the gland was long enough so that the thermally expanding sea! did not
completely fill the cavity.

Roughness of this surface may be attributable to this being the last fabricated part of the seal and tool wear
could have caused the rougher surfacing.

The polished contact surface was at the downstream edge of the machined flat indicating wear had produced
an extension of the flat due to high loading.

This leg was damaged in installation due to pressure against the key slot in the end of the actuator rod. The
damage was a crack the full depth of the leg. Contact with the rod was maintained on the machined flat of

the leg.

This seal surface was not polsihed as expected indicating the contact areas was as described in @ above.
This seal surface was not as highly polished as expected on a machined flat in contact with the gland.

This seal surface was polished as expected on a machined flat in contact with the rod.

Figure 40.— 0.0254m(1.0 in.)K-section inspection following impulse
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Small chevron—0D leg {see fig 38 @) L.arge strongback (see fig 37 @)

Figure 41.— Typical material cracks from chevron seal impulse testing



Large K—(see fig 39 @)

Large K—{see fig 39 @)

Figure 42.—Typical material cracks from K-section seal impulse testing
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Results with the 0.0254 m (1.0 in.) chevron test were that 40 000 cycles at 311° K
(100° F) plus 87 998 cycles at 408° K (275° F) were completed with leakage not in excess of
the 5 x 107! m3/sec (1 drop/15 min) allowable. The test was terminated with this number
of cycles to release the test fixture for use in endurance testing. There was no evidence of
cracking.

Friction Testing

Static friction is the measure of force necessary to produce rod breakaway from a
stationary position. Dynamic friction is the measure of force necessary to overcome running
friction at specific rod velocity. Tests of both static and dynamic friction were conducted to
determine the quantitative relationship between the friction forces developed by all three
pressure balancing conditions, for both sizes of first-stage seals and for both sizes of chevron
and K-section configurations of second-stage seals. The test facility, shown in figure 43, was
utilized to perform the friction testing. Descriptions of the test sequences and instrumen-
tation are provided in appendix 5.

First-stage friction test results.—Figure 44 provides the results of the friction testing of
the 0.0635 m (2.5 in.) ID first-stage rod seals. The results of the dynamic friction tests show
that higher temperatures and pressures are associated with higher friction, as expected.
Higher pressure balancing is associated with reducing friction. The maximum dynamic -
friction, at the highest temperature and pressure, with the lowest pressure balancing, did not
exceed the 1.335x 103 N (300 Ibf) friction level established as a criterion earlier in the
report. With the highest pressure balancing the friction was less than one-half the criterion
goal.

The static breakout friction data for the 0.0635 m (2.5 in.) seals did not show friction
as a uniform linear function with pressure as was evidenced with dynamic friction. This was
caused by a number of phenomena, presumed to be primarily associated with stick-slip
friction (or chatter) and differences between breakout in the extend and retract directions.
Because the extend and retract data were averaged to provide the overall trend, the curves in
figure 44 break, and crossovers are evidenced. By obtaining more data to provide a larger
statistic base, these phenomena would not be as significant. The data obtained were,
however, sufficient to show that the pressure balancing was reciprocally proportional with
friction.

Figure 45 provides the results of the friction testing of the 0.0254 m (1.0 in.) ID
first-stage rod seals. The static breakout data show the same nonlinearities that were experi-
enced in testing the larger size seals. These results are also attributed to chatter and data
averaging in the same manner as indicated above. The dynamic friction for the small seals was
higher than the criterion of 2.447 x 102 N (55 Ibf) established as an objective under design
requirements. This may be attributed to a larger seal axial dimension than that necessary to
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Figure 44.— 0.0635m (2.5 in) first-stage rod seal friction
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ensure only the friction level stated above. The larger dimension was required to properly
design a step cut that was structurally capable of the application impulse life requirement.

The results of both static breakaway and dynamic friction tests with the 0.0254 m
(1.0 in.) seals show a different trend than that obtained with the 0.0635 m (2.5 in.) seals.
This trend was that increased balancing with the smaller seals was directly related to
increased friction rather than the expected inverse relationship as shown with the larger
seals. A lack of separation of data at higher percent balancing and higher temperatures
indicated a relationship between seal contact area and friction. Contact area for the 30% seal
was less than that for the 50% and 70% seals, which were about equal in a given size.

The nature of the small-size-seal friction test results, with data contradictory to the
design objective, was examined using the seal dimensions from appendix 3 and the first-stage
pressure balancing computer program described in section III. This analysis is described in
detail in appendix 6. The analysis showed that seal dimensional variations influence contact
pressure. which in turn significantly affects seal friction. The manner that friction is
influenced is also affected by an inverse relation between contact pressure and coefficient of
friction as well as by the distribution of contact pressure, which depends on surface
characteristics and seal distortion under load. Because a definition of these characteristics

was not quantifiable in the dcsign stage for these seals, there could be no guarantee that

increased balancing would result in reduced friction.

Friction testing with the 70% balanced first-stage seals was randomly interrupted by
instances of extreme external leakage resulting from the seal becoming unseated. Reseating
could be accomplished by a sudden application of high pressure. This condition was
attributed to exceeding the practical limit of axial balancing for a linear rod seal application.
By adding radial balancing, using the design approach described in section III, it may be
possible to provide a 70% balanced seal that will not encounter lifting under static, and
near-static, loads. There is reservation that such a seal would be effective under dynamic
pressure surge environments.

Second-stage friction test results.—The friction screening test results for the evaluation
of all second-stage seals are contained in figures 46 and 47. Dynamic data were as expected,
with friction increasing with temperature. This was particularly evident with 0.0635 m
(2.5 in) seals.

The dynamic friction levels recorded were about double the goals established in the
requircments stated earlier in the report. This is consistent with the evolving design method,
which in final form required use of high preset interferences after it was determined that
loading springs could not be used successfully. The dynamic friction also showed the trend
that friction with the K-section seal was higher than with the chevron.
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Breakout data for the 0.0254 m (1.0 in.) seals showed no difference between the
friction of the chevron and K-section configurations when instrument accuracies are
considered. There was an indication that this size K-section seal friction varied slightly more
with temperature than did the chevron in the same size. This may be attributed to the
K-section being a stiffer section than the chevron. Breakaway data for the 0.0635 m
(2.5 in.) size seals were equivalent for both geometries within the accuracies of repeatability.

Recommended Seals for Endurance Testing

The selection of seals for installation in the endurance test actuators was based on the
results of the screening tests. The significance of the impulse test in this selection was that it
was the only test measure available that allowed fatigue evaluation per the exact
requirement used in design. As a result, structural integrity of all seals was proven to be
satisfactory by completing the 200 000 impulse cycles without leakage exceeding the
allowable. Because material cracking in seal parts did not result in any condition where fluid
containment was jeopardized, the evidence of cracks was not considered a negating effect on
the success of impulse testing.

The 0.0635 m (2.5 in.) K-section second-stage seal configuration was considered the
least conservative design of the seals being developed. Because this seal successfully

completed impulse testing it was recommended for use in the endurance tests. The alternate

chevron configuration was recommended for endurance testing in the 0.0254 m (1.0 in.)
actuator to provide test data for this, the second, configuration of second-stage seals.

The function of friction testing was to determine a performance distinction between
seals that could not be provided through impulse testing. Results from these tests were the
basis for recommending that a 50% balanced first-stage seal with the antirotation pin
installed should be used during endurance testing. The 0.0635 m (2.5 in.) 30% balanced seal
was less attractive due to higher than desirable friction, and the 70% balanced seals in both
sizes were considered calculated risks due to the intermittent erratic leakage conditions
observed at low pressures. The 50% balanced condition was also advocated for the 0.0254 m
(1.0 in.) ID seal to have a uniform test condition during the endurance tests, because data
scatter between the 30%, 50%, and 70% friction tests with the 0.0254 m (1.0 in.) seal was
not large, and because it was not within the scope of work to establish the seal size where
the friction data pattern inverts.

ENDURANCE TESTS

The objective of the endurance test was to provide data on the life of polyimide seals
in a typical fatigue environment for flight control actuators of a high-performance aircraft.
Testing was accomplished using the test facility shown in figure 48. This facility was used to
simultaneously operate actuators with 0.0254 m (1.0in.) and 0.0635m (2.5in.) rod
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diameters against torque loads of aircraft magnitude. Seals tested in the larger actuator were
the 50% balanced first stage and the K-section second stage; these were installed in a
modular retainer. Seals tested in the smaller actuator were a separately installed 50%
balanced first stage and a chevron second stage. Descriptions of the test sequences and
instrumentation are provided in appendix 7.

The test actuator rods contacting the seals were fabricated from 4340 steel with a
minimum of 5.08 x 10 m (0.002 in.) chrome plate ground to a 4.06 x 107 m (16
microinch) surface finish. The condition of these surfaces prior to and following the
endurance test is shown in figure 49. Longitudinal marks accumulated during testing were
primarily due to cycling the first-stage polyimide seal. These wear marks passed beneath the
second-stage seal during long stroke cycling but did not appear to adversely affect
second-stage wear characteristics. '

First-Stage Results

After completing 436 758 cycles of a scheduled 3 850 000, the first-stage seals were
removed from both actuators to determine the cause of excessive interstage leakage.
Disassembly inspection revealed that wear on the polyimide sealing surfaces was sufficient
to allow the contraction of the inner sealing ring to the position where no further gap

remained at the step cut. Because further contraction could not occur as wear progressed -

from the above condition, a clearance between the polyimide ring and the rod resulted,
accompanied by increasing leakage. Wear was measured as the change in polyimide ring cross
section depth and is shown in figure 50 compared with new ring dimensions. This wear was
accumulated under conditions averaging 2.0684 x 107 N/m2 (3000 psig) and 450° K (350° F)
at the first-stage seal, with the rod traversing 3328 m (131 027 in.) across the seal. This wear
resulted in a maximum material wear rate of 1.832 x 10”7 m/m (in./in.) travelled, which was
7.26 times the rate stated for the material in table I1I. A photograph comparing the new and
worn seals in the 0.0635 m (2.5 in.) size ring is shown in figure 51.

A new second set of 50% balanced first-stage seals was installed in each actuator to
continue cycle testing. After completing 158 000 additional cycles (572 892 total cycles)
excessive leakage was evidenced at the interstage of the 0.0635 m (2.5 in.) actuator.
Similarly, after 455 923 cycles with the new set (892 681 total cycles) excessive leakage was
evidenced at the interstage of the 0.0254 m (1.0 in.) actuator. Disassembly inspection
showed that the seals from both actuators had excessive wear at localized spots on the inner
circumference that contacted the rod. These wear positions are shown in the photographs in
figure 52.

The wear evidenced with the second set of seals did not duplicate the results with the
first set. A possible explanation is that wear occurred in both cases at localized positions but
was not evidenced with the first set because the wear at a single location was not to a
sufficient depth to produce excessive leakage before wear progressed at other locations.
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0.065 0.089 all locations

Aligning pin ‘
- location
0.080
0.073 — Test seal New seal
™ 0.081
{

0.067
0.0635 m (2.5 in.) first stage
polyimide ring
0.069 0.074 all locations
Aligning pin {
location
0.069
0.069 Test seal New seal
0.069 )
-y
0.068
0.0254 m (1.0 in.} first stage

polyimide ring

Note: All thickness dimensions are given in inches: No Sl conversion was made on dimensioned parts (see appendix 9)

Figure 50.—Wear: First set of first-stage endurance seals
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Figure 51.—0.0635m (2.5 in.) first-stage seal wear
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Figure 52.—Wear:

Clearance indicated by light visible through gaps

0.0635 m(2.5 in) first stage

i

Cleagance indication’s

o

0.0254 m (1.0 in) first stage

Second set of first stage endurance seals
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Because of such action the first seal removed appeared to exhibit more even wear. It is
suggested that wear developing in this manner is a random instance and that a conservative
design approach would be to expect wear as was evidenced with the second set of seals.

Second-Stage Results

Cyclic testing, in the endurance rig, subsequent to first-stage failures, was continued to
the extent allowable by contract schedule and funding. Cast iron first-stage rod seals, of the
configuration shown in appendix 1, were used to perform the sealing function of the first
stage but were not considered to be under test. The second-stage seals originally installed for
endurance testing were retained and monitored for performance. At the completion of
testing the second-stage seals had completed the cycling indicated in table XI.

The results shown indicate that a 42% life test was completed for the K-section
0.0635 m (2.5in.) seal and a 38% life test for the chevron 0.0254 m (1.0 in.) seal. The
average leakages obtained during testing were all within the allowable of 107 m3 per 25
cycles (2 drops/25 cycles) except during 100% stroking with the smaller actuator. The
leakage during this 100% stroking condition should not, however, be considered by itself
since a typical flight profile contains only a small portion of 100% strokes. The overall mean
for leakage during the entire endurance test approaches the short-stroke leakage with very
little error. Posttest inspection of the second-stage seals from both actuators showed no
abnormal wear patterns, no evidence of cracking, and polished contact areas as expected on
the inside and outside diameter faces.

SUMMARY DISCUSSION OF TEST RESULTS
First-Stage Seals

The satisfactory completion of impulse testing of the first-stage seals showed that the
step-cut cross-section was not overstressed in the dynamic impulse environment. The
friction testing of the first-stage seals indicated that, within qualified restriction, balancing
effectively reduced friction. The qualification for the use of 70% axial balancing was the
concern that, though friction level was reduced, seal lifting occurred unpredictably, resulting
in excessive and uncontrollable leakage. Further evaluation of a correction for these
occurrences was not within the scope of the contracted work. It was believed, however, that
a 70% axially balanced seal with a proper percentage of radial balancing might provide a
more acceptable seal configuration.

A second qualification in the relationship between balancing and friction level was
related to seal size. The larger (0.0635 m) seal showed that increased balancing percentage
resulted in lower friction levels while the smaller (0.0254 m) seal showed the reverse.
Analyses performed to evaluate these results indicated a possibility of seal distortions
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causing a redistribution of pressure areas. These analyses indicated that it is desirable to
perform an analysis of a first-stage balancing design prior to fabricating the seal. Such an
analysis would assess the conditions of optimum balancing, since it is not necessarily true
that higher balancing percentage provides a preferable design for reduced leakage and
friction. An analysis tool with these features is described in appendix 6.

The .excessive wear of the polyimide first-stage rings during endurance testing was
unexpected. A second test to verify the high wear rate confirmed that SP-1 polyimide
material wear accelerates at pressures above 2.0864 x 107 N/m2 (3000 psig) when at elevated
temperatures. Tests performed under the NAS 3-11170 contract (ref. 2), indicate acceptable
performance at 2.0864 x 107 N/m2 (3000 psig). These results would indicate a need for
further evaluation by the material manufacturer of the wear characteristics of the material
as a function of both higher pressures and temperatures. With.such data, the design of
polyimide seals could be based on less risky property information and would undoubtedly
show better performance.

Second-Stage Results

The impulse testing of second-stage seals was completed successfully, as evidenced by
leakage rates being well within the requirement allowables. Cracking of the polyimidc
material during impulsing was attributed primarily to material notch sensitivity, as’
illustrated in microphotos taken during posttest inspections (see figs. 41 and 42). There was
some evidence that the modes of flexing of the sealing legs for both the chevron and
K-section seals were not as anticipated. The unnatural flexing could have contributed to
additional stresses.

The design of the seal leg provided stress distribution in proportion to the variation in
cross-sectional area of the tapercd legs, assuming that local stresses were neglected. These
distributed stresses were at the upper margin of the fatigue allowable for the SP-21 material,
as nearly as could be determined. Thus, the addition of local stresses due to machining
scratches (notch sensitivity), or stresses resulting from inaccurate prediction of leg bending,
would possibly result in cracking of the material. The cracking only occurred because there
was a small tolerance margin between the design distribution stress and the fracture
allowable under fatigue impulse cycling. This condition was further complicated due to a
lack of material data on polyimide fatigue, making it difficult to establish a safe level for
maximum allowable stress.

The fact that cracks occurred during impulse did not negate the successful completion
of the test because the structural integrity of the total seal was not weakened. The impulse
test accumulated 200 000 cycles of the most severe environment expected in the life of the
seal. As such, this was a much more severe test than the seal would experience in actual
service, where maximum impulse cycles would be accumulated in random sequence and



only during environmental conditions involving a few aircraft in a total fleet. The fact that
the seals continued to provide fluid containment in this severe environment is sufficient
proof of their structural integrity.

The second-stage seal friction test results indicated friction levels near twice those
projected as an objective for design. These friction values obtained in test were not
predictable based on manufacturers’ information. The test data show that the friction
coefficient for SP-21 changes substantially with temperature and load and could also
indicate that the friction coefficient for a polyimide-on-chrome combination varies
significantly with temperature. A further consideration for higher-than-anticipated friction
is the fact that under increasing pressure, more complete contact between the uneven seal
and rod surfaces is obtained, resulting in higher friction.

The endurance test operation was not conducted to second-stage failure. Thus, the
fatigue limitation in cycling, or quantitative data relating wear to leakage, could not be
provided. Posttest inspection showed no evidence of material cracking or unusual wear
patterns, indicating that fatigue life had not been reached. The polished areas on the inside
and outside diameters were as expected for these seal designs, indicating that under normal
second-stage pressure loading there was no distorted flexing of the seal legs as experienced

during the impulse tests. The average leakages measured during testing were well within the

allowables set as seal requirements but did not approach zero. Though the zero leakage was
mentioned as a theoretical goal it was not considered a practical objective. To attempt
reduction of the external leakage obtained in test it will be necessary to use smoother
finishes on both the rods and seals, which will increase cost. The practical limit of the
improvement that might be expected by this modification has not been determined.

VI. CONCLUSIONS AND RECOMMENDATIONS

The three primary objectives of the reported effort were to:

° Determine second-stage chevron and K-section polyimide seal optimum geometry
with a goal of not exceeding MIL G-5514F (ref. 16) gland dimensions and
high-performance aircraft requirements

e Evaluate pressure balancing of polyimide first-stage seals

e Develop a modular retainer for a two-stage seal to allow unit installation in a
linear actuator

These objectives were all satisfactorily completed, with the following conclusions.
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CONCLUSIONS
—On Second-Stage Seals

Seal size reduction to MIL G-5514F gland depths precluded the use of springs to
provide seal leg expansion to fill the gland at design temperature extremes,
necessitating design to higher stress conditions.

The seal dimension having the highest impact on stress optimization was the leg
cross-section thickness.

Chevron seal geometry was optimized for severe fatigue requirements by
compromise design between pressure stresses and preset interference stresses.

The K-section seal design was more critical than the chevron due to less flexibility
in the sealing element legs.

A polyimide material with a balanced combination of high ultimate stress
allowables and low coefficient of thermal expansion was preferred rather than one
with superior characteristics in one or the other of the above properties.

Thé life capabilities of the second-stage seals were not fully evaluated because
fatigue failures were not encountered and testing was limited to less than the
fatigue design life of the seals.

—On First-Stage Seals,

Axial balancing of 70% was shown to be in near proximity to the condition of a
neutrally balanced seal in the radial direction. Without the addition of radial
balancing, erratic leakage as experienced in test will be encountered.

The critical stressed step-cut section in the polyimide sealing ring of the two-piece

contracting seal was proven adequate by satisfying impulse requirements during
test.

An antirotation pin was proven mandatory between the concentric sealing ring
and compression ring of the two-piece contracting seal. This pin prevents
co-rotation which, if allowed to occur, can result in uncontrolled leakage, as
evidenced during test.



e A design analysis is needed, prior to seal fabrication, which includes the effects of
coefficient of friction and contact pressure variations and distribution. These
quantifications have not been accomplished and present practice in analysis only
considers the force variation as a function of area.

e The excessive wear data collected during testing was not considered sufficient to
conclude that polyimides are not useable at 2.758 x 107 N/m2(4000 psig). These
data should be used to update manufacturers’ design data for polyimide
applications at high pressure and applied to future seal designs.

—On the Modular Retainer

° A modular retainer was satisfactorily designed, fabricated, and tested to
demonstrate unit installation of a complete two-stage seal in a linear actuator. For
new aircraft design the modular approach incorporating the gland bearing,
two-stage rod seals, and required static seals has definite advantages in both
reliability and maintainability. In specific cases a module excluding the gland
bearing may also have aircraft application.

RECOMMENDATIONS

Continued research is recommended to complete the assessment of the practical use of
polyimide seals in aircraft actuator applications. Efforts toward the following recommen-

dations are specifically encouraged.

e Complete the endurance validation of the chevron and K-section second-stage
seals to their design requirements, by testing these seals to failure. This testing will
provide results quantifying the design analysis tool and provide data to update the
tool for any design conservatism, making it dependable for future use.

e Develop polyimide material property data for fatigue allowables at other than
zero-mean stress, for wear at pressures of 2.758 x 1o’ N/m2 (4000 psig) and
greater, and for the relationship between friction coefficient and contact pressure
for a family of temperature and lubrication conditions. This information is
needed for any design work with polyimides. It is directly applicable to rod seal
design of both first and second stages using the tools developed in this program.

e Extend the development testing of polyimide first-stage seals designed to
incorporate updated material property information. These tests will determine
whether seals, designed for a known wear characteristic at high pressure, actually
perform in the manner designed. This testing contrasts the program being
reported where the wear characteristic of SP-1 material at 2.758 x 107N/m2
(4000 psig) was not known.
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Determine limitations for the practical use of polyimide rod seals at higher
temperatures. The advantages of polyimides as rod seals are realized at high
temperature where other less costly seals are not adequate. The fatigue limits for
these seals in a type 11l hydraulic system (219°K, -65°F to 505°K, 450°F) are
currently important since there is immediate potential for application in this
environment.

Complete and document the design tools for both first- and second-stage rod seals
for which initial development was conducted in the reported program. The

completion of these tools would relieve the costly design development and
validation testing required to date to establish the primary parameters and

dimensions for each individual seal with merit for an application.
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APPENDIX 1

BOEING STANDARD, SEAL ASSEMBLY, ROD, METALLIC

Figure 53 shows the specification data for the Boeing seal used as a pattern for the

contract first-stage seals.
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330 56746 [2.217 .067-.077 .25 R.121 .043-.053 .oub5 .130-.180
331 56749  |2.342| .0920 | .067-.077|.295] [?.246 | .0910 | .043-.053 [.05d] . |.0475 046 020 (.035 |.130-.180
332 86752 |2.b79 .074-.084 | . 320, .37 043-,059 .1b2-.192
333 56755 {2.614 .078-.088 . 320f000 k. 496 .054-.064 167 .142-.192
334 56758 J2.7m1 .084-.094 |. 360K 0302.621 055-.,065 . 157-.217
335 56761  f2.874 .088..098 {. 375 2.6 059-.069 {055 165-~.225
3 56764  [2.999 088-.098 |, 375 p.871 056-.066 165-.225
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Figure 53.—(continued on page 106)
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18 MAR 70 REV.

DATE

BOEING

[T END CLEARANCE OF EACH RING TO BE MEASURED IN A GUAGE OF "A," $.0005 DIAMETER.
[TEND CLEARANCE OF EACH RING TO BE MEASURED IN A GUAGE OF "A" £.0005 DIAMETER,
[IOTENSION CONTROLLED BY OUTER RING GAP, RING IN FREE STATE.
1.D. EDGES OF TNNER RING MAY HAVE A RADIUS OF .003 MAX FOR SIZES THROUGH BACS11AM345, SIZES LARGER % 345 MAY HAVE

A RADIUS OF .005 MAX. 0,D. EDGES OF OUTER RING MAY HAVE A RADIUS OF .015 MAX, INNER RING O,D. AND O RING I.D.
EDGES SHALL BE SHARP, ALL EDOES SHALL BE FREE OF BURRS.

MATERTAL: INNER: KOPPERS K-6E, ALLOY GREY IRON PER AMS 7310 EXCEPT CHROMIUM AND MOLYBDENUM ALLOYING ELEMENTS ADDED.
OUTER: 17-4PH CRES PER AMS 5643 OR AMS 5398, HARDNESS - R, 30-40.
PIN: 18-8 CRES PER AMS 5688.

PINISH: INNER RING ONLY. PARCO LUBRITE NUMBER 2 PER BAC5810, CLASS 1. THE RING SHALL THEN BE IMMEDIATELY IMMERSED
TN HYDRAULIC FLUID WHICH MEETS THE REQUIREMENTS OF BMS3-10 AND PACKAGED WHILE DRIPPING WET WITH FLUID.

SURFACE ROUGHNESS: 63 RHR PER USAS BU6.]1 UNLESS OTHERWISE SPECIFIED, ROUOHNESS TO BE MEASURED PRIOR TO PARCO LUBRITE
TREATMENT,
MARKING: EACH PACKAGE SHALL BE MARKED WITH THE SUPPLIER'S NAME, TRADEMARK OR CODE NUMBER, THE SUPPLIER'S PART NUMBER,
AND THE BOEING STANDARD NUMBER.
CLEANING: PER KOPPERS COMPANY SPECIFICATION E-3803 TITLED "CLEANING AND PACKAGING PARTS TO BE USED IN PRECISION SEAL
APPLICATIONS." CHLORINATED SOLVENT SHALL NOT BE USED IN THE CLEANING PROCESS.
PACKAGING: RING SETS CONSISTING OF AN OUTER AND INNER RING IN MATCHED SETS SHALL BR INDIVIDUALLY PACKAGED IN A HEAT
SEALED POLYETHYLENE BAO, THE BAG SHALL THEN BE PLACKD IN RIGID OR SEMI-RIOID BOXES.
INSPECTION: 100% TNSPECTION BY THE MANUFACTURER. ASSEMBLY TO BE 100% LIGHT TIGHT BETWEEN INNER RING AND GAGE IN A GAGE
OF "A," £.0005 DIAMETER, AND 100% LIGHT TIGHT BETWEEN INNER AND OUTER RINGS FOR A DISTANCE EXTENDING 20 ° EITHER
SIDE "OF INNER RING STEP JOINT. LIGHT WHICH CAN BE PRESSED OUT WITH A RADIAL FORCE NOT EXCEEDING 5 LES/INCH OF
RING DIAMETER SHALL NOT BE CAUSE FOR REJECTION. EACH ASSEMBLY SHALL BE INSTALLED IN A TEST FIXTURE WITH A ROD
FINISH OF 8 RHR AND A DIAMETER EQUAL TO THE MINIMUM ALLOWABLE PER MIL-0-5514, TABLE'I, COLUMN "B". THE FOLLOWING
TESTS SHALL BE CONDUCTED: MAXIMUM STATIC LEAKAGE USING MIL-F-7024, TYPE II AT ROOM TEMPERATURE AT 750
AND 40OO PST SHALL NOT EXCEED 10 CC/MIN UP TO 2.500 INCH ROD DIAMETER, 25 CC/MINUTE FOR RODS 2.501 TO 5.000
INCH AND 50 CC/MINUTE FOR RODS OVER 5.000 INCH DIAMETER.
PROCUREMENT: KOPPERS COMPANY INCORPORATED, METAL PRODUCTS DIVISION, BUSH AND HAMBURG, BALTIMORE, MARYLAND 21203 (CODE
IDENT NO. 75370)
THE SUPPLIERS LISTED AND THEIR AUTHORIZED DISTRIBUTORS ARE THE ONLY APPROVED SOURCES FOR THE ABOVE QUALIFIED
PRODUCTS. CHANGES IN PRODUCT DESIGN OR QUALITY WITHOUT PRIOR BOEING APPROVAL MAY RESULT IN SUPPLIER DIS-
QUALIFICATION., SUPPLIERS OF COMPETITIVE FRODUCTS MAY APPLY TO A MATERIEL DEPARTMENT OF THE BOEING COMPANY
FOR QUALIFICATION.

USAGE AND APPLICATION INPORMATION
THESE SEAL RINGS ARE INTENDED AS ROD SEAL RINGS IN HYDRAULIC ACTUATORS WITH FLUID PER BMS 3-10 AT OPERATING TEMPERATURES

OF 350° WITH EXCURSIONS TO 500°F. THESE SEALS TO BE USED WITH QROOVES PER BACD2040, THESE SEALS ARE NOT INTENDED FOR
ZERO LEAKAGE APPLICATIONS,

SEE PREFACE FOR GENERAL USAGE NOTES.

M —————
CODE IDENT NO. 81205

[B-Hc ST1AM i SEAL AS'fEETIAAL?jIéY, ROD, [HHE ST11AM s

BOEING STANDGARSPLOD

PAGE 60.15.6.8.2 PAGE 60.15.6.8.2

Figure 53.—(continued)
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Seal

APPENDIX 2
PRELIMINARY SECOND-STAGE STRESS ANALYSES

dimension optimization was accomplished using stress analysis computer

techniques embodied in the Boeing SAMECS program, reference 15. The problem was
initially coded to evaluate the following conditions.

Use of DuPont Vespel SP-21 material.

Seal ID=0.0254 m (1.0 in.)

Seal section thickness (t) = 4.064 x 10'4 and 5.080 x 104 m (0.016 and
0.020 in)).

Radial interference at the ID (8§) = 1.524 x 104 and 3.048 x 1074 m (0.006 and
0.012in.).

Both one- and two-piece mechanical load blocks.

ROUGH DESIGN ANALYSIS

Figure 54 shows the scal idealization for SAMECS computer simulation. The cross
section of cach of the 0.5236 rad (30°) V chevrons were divided into nodes designated by
X—. Beams were used to connect nodes between chevrons at positions where two chevrons

were in contact with each other. These beams allowed limited sliding motion of one seal on

the other, but not seal separation.

The initial computer program evaluation used the variations in the force and

compression interference parameters as listed in table X1 to solve the following design cases:

Cases | to 8: A condition where there was no leakage by the first-stage seal. The
normal force of the seal on the rod was detegmined tor cach case and compared
with the hand calculation result of 1.891 x 10° N/m (10.8 Ib/in.).

Cases 9 to 16: Simulate a seal where leakage under 1.379 x 100 N/m2 (200 psig)
pressure passed the primary seal. The maximum stresses were determined for
these cases and compared against 1.034 x 107 N/m2 (1.500ksi) tension and
2137 x 107 N/m2 (3.100 ksi) static compression allowables with the use of

Vespel SP-21 material.

Validation: Simulate the most satisfactory seal design using the minimum normal
torce determined above the 1.891 x 103 N/m (10.8 Ib/in.) requirement and
within the maximum stress level allowables.
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The stress analyses performed indicated the degree of severity of the stresses expected
in the chevron seal designed for SST applications and having similar geometry to the
reference 2, B-1 seal. Figure 55 shows stresses in a two-chevron second-stage seal
configuration on a 0.0254 m (1.0 in.) diameter rod with an interstage pressure of
1.379 x 100 N/m2 (200 psig). The seal was considered to rest in its free shape as it occupied
a Military specification (ref. 16) standard depth gland and was able to move in the gland
without resistance in the direction indicated by the rollers at the fixity points. The dashed
line near the upstream element represents the deformed shape of the element under the
loads stated. Maximum pressure stresses produced are shown for the inner fiber (pressure
side) and outer fiber (atmospheric side) of each chevron.

Figure 56 shows stresses in the same seal configuration with a total interference
deflection of 2.032 x 10'4 m (0.008 in.) compression from free state. The compression was
equally distributed with 1.016 x 10'4m (0.004 in.) on both ID and OD of the seal.
Maximum stresses produced are shown on the diagram for the inner fiber (pressure side) and
outer fiber (atmospheric side) of each chevron. The seal had no hydraulic pressure applied
to the interstage cavity and was allowed to move freely in the gland, as shown by the
rollers at the points of fixity. The maximum stress levels obtained in the plates due to
pressure loading, figure 55, are additive to the static deflection stresses shown in figure 56,
this swn providing the majority of the stress load for the static seal condition. The total
stress showed the outer fiber of the inner seal was critical for the plates nearest the apex
(plates 2037 and 2046). Total bending stress at these plates was approximately 5.447 x 107
N/m2 (7.900 ksi). Considerations of the properties of Vespel SP-21 used in the chevron seal
configuration indicated that a reasonable ultimate allowable stress would be 4.137 x 107
N/m2 (6.000 ksi). The computer idealization indicated 32% greater stress, this being too
large a discrepancy to remain within the band of uncertainty for the idealization.

Figure 57 shows a plot of reversal load conditions resulting from 356 N (80 Ibf) of
friction between the seal ID and the actuator rod with 1.379 x 106 N/m2 (200 psig)
hydraulic pressure applied to the interstage cavity (refer to fig. 55). The plot is for the outer
(atmospheric side) chevron seal only and shows stress vs the plate identification indicated at
the top of the figure. Maximum alternating stress is shown as the difference between
stresses, at the critical plate, for the two directions of actuator rod motion. Alternating

 stress was linear with friction.

The friction case described was typical but not optimized for the seal design
application. The result of £3.082x 107 N/m2 (£4.470 ksi) was compared to an endurance limit
of +6.895 x 108 to #1.034 x 107 N/m?2 (£1.000 to +1.500 ksi) allowable for the Vespel
SP-21 material in a chevron seal configuration. A

The conclusion reached was that geometry modifications to the seal cross section were
required to reduce stresses to within the material allowables.
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Material = Vespel SP-21
Thickness = 4.064 x 10 m (0.016 in
= 1.379 x 106 N/m2 {200 psig) hydraulic pressure on inner seal

Load condition

Maximum stress at plate no. 2073

3.448 x 105; -9.308 x 10°
(-0.050; -1.350)

3.999 x 108;.1.407 x 107

5.757 x 10°; -4.068 x 108

(0.580; -2.040)
.1.655 x 105; -8.274 x 10°

(-0.240; -1.200)

{-1.580; 0.130}

8.274 x 10°; -0.929 x 108
1.440)

(-0.120;

3.034 x 10%; -1.393 x 107
(0.440; -2.020)

1103 x 10%; -9.515 x 10°
(-0.160; -1.380)

2XXX
3XXX

-1.089 x 10; 8.964 x 10° @

-6.

(-0.835; -0.590)

()

-~
> /R @ 8.274 x 10°; 3.048 x 108

YA

137 x 105 -4.964 x 108

(-0.890; -7.20)

Nomenclature
XXX ; XXX =

wononn

Plate stress in

N/m 2
{ksi)

On upstream fiber; downstream fiber

+ Tension, -

Node no.
Plate no.
Beam no.

compression

Figure 55.—Pressure stress loads: 0.524 rad
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/—-Downstream seal

eleJelokele

.l".ﬁl Upstream seal

7 L

| -1.048 x 107;1.331 x 107
| (-1.520; 1.930)

-8.964 x 10%; 1.310 x 107
(-1.300; 1.900)

ner fiber ~—1.0.120; 0.442)

A (J
QS / @) 3.379 x 105, 5.309 x 108
[ v o’}
7 o’ «— Pressure {0.490; 0.770)
-1.358 x 10" 1 Ye—— Inner 6 5
9.032 x 108 fiber | 6.895 x 10°;-3.448 x 10
{-1.970, 1.310) 3 @ [7.000; -0.500
Outer fiber =y | | ‘é 7.378 x 10°; -3.930 x 108
6 :s 2, S’ ' (1.070; -0.570 Loads acting on a typical plate
-0.515 x 10°; S @ %  Outer 5 5
ST ANEN- I o fiber—” \ 4.137 x 105;-2.758 x 10
(-1.380; -0.040)

> 0.600; -0.040)
‘ 2754 A OS @ :

1.656 x 108; 2,275 x 10°
(0.240; 0.330)

1.027 x 107; 1.455 x 107
| (1.490; 2.110)

ojelelelelole

elojojo]ejo]e

: 6 7
-9.929 x 10°; 1.282 x 10
(-1.440; 1.860)

—

(30° Two-chevron V-seal SAMECS model



Material = Vespel SP-21
Thickness = 4.064 x 10°%m (0.016 in.)

Load condition = 2.032 x 10‘4m (0.008 in.) interference fit
Maximum stress at plate no. 2037

7.929 x 106 -1.069 x 107

(1.150; -1.550) Y
7 Downstream seal
1.214 x 107; -1.496 x 107 NAIAAA
(1.760; -2.170) CXIOD) Upstream seal
1.634 x 10;-1.834 x 107 QIO
(2.370; - 2.660) e | 4344 5 105 6
' 4, x 107;-5.999 x 10
2.951 x 107;-3.213 x 10’ O M 1630 -.870)
(4.280; -4.660) 1.262 x 107, -1.372 x 107
4.137x 107 -4.413 x 107 (1.830, -1.990
(6.000; -6.400) 3.089 x 107; -3.123 x 107
. (4.480; -4.530)
Inner fiber
4551 x 107; -4.661 x 107
4302x107; O (67'600"6'760) ;
4771x107_ X 4730 x 107;-4.882 x 10
(6.240; -6.920 X 3& (6.860; -7.080)
4.723 x 107;-4.854 x 107
Outer fiber "!“ 6,850, -7.040]
- YD 4.558 x 107; -4.620 x 10’ .
3.758 x 107; ! 16.610. -6.700) Loads actingon a
4.130x10° O —= N IYPical plate
(5.450; -5.990) A 3.041 x 107, -3.020 x 10
- ;@ 4.410; -4.380]
2.848 x 107; -3.123 x 107 ¥ 7 ;
14.130, -4.530) 1.234 x 107, -1.296 x 10
7 7 (1.790; -1.880)
1.620 x 10";-1.889x 10 ’ ) 6 (g
(2.350. 2,740 23 .@ 3.379x 107, -4.758 x 10
. {.490; -.690})
1.303 x 107;-1.669 x 107 N @
(1.890; -2.420)
o000 000
6.895 x 10°; -1.083 x 107 AN
Nomenclature ) 1.00; -1.570) .
;g) XXX; XXX = Plate stress in
= on upstream fiber; downstream fiber Z
=+ Tension, - Compression — — — —= Approximate deflected shape, no scale
®= Node no.

2;’XX = Plate no.
3XXX = Beam no.

Figure 56.—Interference fit: 0.624 rad (30° ) two-chevron V-seal SAMECS model
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Tension

Stress (ksi)

Compression

Extend

”
Upstream fiber

Frictio,n load Hydraulic pressure loading

Retract

Load condition = 1.379 x 107 N/m? (200 psig) pressure

Seal ID and rod friction 356 N (80 Ibf)

4 30 Note: Typical fatigue loads and alternating stress vary
linearly with friction load
— — 7
20k - "\ 2.131 x 107(3.090) Seal OD
/ 8
2} / \
/ \
'\A 1.0 - / \
= / \
< /7
o~ / \
o £ o A :
2 M \ 7/
P \ /7
$ 7
) Maximum alternating stress = \ //
10 3.082x 107 (+4.470) 7
2 - /
7
\ //
2.0 t+~ \\ //
4 - /
Maximum fatigue stress at plate 2145
30 Omean = 9.515x 108 N/m? (-1.380 ksi)
Oalt = +856 N/m2/100 N
(£.560 ksi/10 Ibf of friction)
| 40 b
6 -4.034 x 107 (-5.850)

Nomenclature
= Plate stress in N/m2 (ksi} on outer fiber during rod retraction

v et mm o= = Plate stress in N/m2 (ksi) on outer fiber during rod extension

Figure 57.—Friction load: 0.524 rad (30°) downstream V-seal SAMECS model



ANALYSIS WITH HIGH COMPRESSION INTERFERENCE

Gland Depth Analysis

Figure 58 shows results of computer stress analyses for corresponding plate elements of
both the upstream and downstream seals in the mathematical model. These plates are defined
as numbers 2017 on the upstream seal and 2051 on the downstream seal, as described in figure
15. The data showed that gland depth did not affect material stress values nearly as much as did
hydraulic pressure loading. The initial 2.286 x 104 m (0.009 in.) compression interference fit
of the chevron seal in the gland, needed to ensure sealing at both high-and low-temperature
extremes of 450°K and 228° K (+350°F and -50° F), respectively, imposed the stress values
located on the abscissa of each curve. All stresses on plate 2017 of the upstream seal were in
tension, and this condition produced the worst stress case for either chevron. The stresses on
plate 2051 of the downstream seal were initially tension stresses which reduced and then
crossed over to compressive stresses as hydraulic pressure loading was increased. Because this
crossover existed, the critical stress of 4.137 x 107 N/m2 (6.000 ksi) in the downstream seal
was obtained at a much higher pressure loading than could be applied to the upstream seal
to create the same stress. The critical maximum allowable pressure for the upstream chevron
was 2.096 x 100 N/m2 (304 psig) at plate 2017 for the maximum gland depth in the availa-
ble test actuator. The maximum test actuator gland depth of 3.581 x 103 m (0.141
in.) was less than that stated as allowable in figure 10 for the large actuator rod, 0.0635 m
(2.5 in.). This reduction was necessary to allow sufficient material thickness for the seal
module installation.

Leg Thickness Analysis

Figure 59 shows the results of computer analysis to determine whether variations
in chevron leg thickness would benefit designing for higher fluid pressures than the
2.096 x 100 N/m2 (304 psig) limitation determined above. It was initially thought that
increased thicknesses would provide the desired benefit. The data showed that, due to
the nature of the slope of the curves and their intersection with the 4.137 x 107
N/m2 (6.000 ksi) limiting stress level, the lesser thicknesses allowed higher pressure
utilization. The curve for optimum thickness at plate 2017 was developed because this was
the critical plate for seal stress design. The optimum leg thickness, i.e., the thickness
allowing usage of the highest hydraulic pressure at a stress level of 4.137 x 10”7 N/m2 (6.000
ksi), was 4.394 x 10°% m (0.0173 in.) allowing use of 2.137 x 106 N/m2 (310 psig) hydraulic
pressure. It was easily concluded from this result that leg thickness variation from the
reference 2 seal dimensional proportions provided only slight benefit toward use of greater
hydraulic pressures.

Leg Angle Analysis

Figure 60 shows the results of stress analysis of a seal with optimum chevron leg
thickness, installed in the maximum size test actuator gland with three variations of
chevron leg angle: 0.698 rad (40°), 0.524 rad (30, and 0.344 rad (20°). The data showed
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that reduced leg angle provided the largest benefit toward increasing the tolerable pres-
sure level at the critical stress level because greater leg flexibility produced less stress with
the large compression preset. Care was exercised in applying this result as a broad state-
ment since at higher stress levels, i.e., 5.516 x 107 N/m2 (8.000 ksi), the pressure-stress
slopes created higher stress levels with lesser leg angles for a given hydraulic pressure. The
reduction of leg angle resulted in a longer seal, which was a result opposite to the intent of
design for minimum size.

The length of the chevron seal using a 0.349 rad (20° leg angle was found to be
acceptable within available volumes for the contract test actuators. This configuration was
tentatively accepted as a beneficial design choice, increasing the allowable hydraulic pressure
at the seal to 3.906 x 100 N/m2 (449 psig). There was hesitancy that using a 0.349 rad (20%)
leg angle might cause seal chatter problems during testing due to flexibility and the shallow
angle with the rod. No conclusive statement as to the severity of this effect could be made
based on the result of the stress analysis.

It was interesting to note that the change from a 0.698 rad (40°) angle to a 0.524 rad
(30° angile at 1.379 x 106 N/m2 (200 psig) pressure loading caused a change from a non-
acceptable seal, i.e., greater than 4.137 x 107 N/m2 (6.000 ksi) stress, to one that was
acceptable, less than 4.137 x 107 N/m2 (6.000 ksi) stress. These data correlated well with
the reference 2 design development, where leg angle was changed from 0.785 rad (45%) to
0.524 rad (30°).

Trends of Comparison

The data in figure 61 show some trends of stress values along the upstream and
downstream faces of the seal’s two chevrons. These data show stress variations with changes
in gland depth and leg thickness. The data illustrate trends only, and were not intended to
determine critical design stresses.

The original establishment of 2.286 x 10‘4 m (0.009 in.) of seal preset interference fit
was to prevent leakage resulting from differential expansion between the polyimide seal and
steel actuator parts over the required temperature range. This interference condition is
illustrated for the application temperature limits in figure 62 for the reference 2 B-1 seal
configuration. The results show that stresses directly attributable to interference are 2>60%
of the SP-21 material allowable for fatigue loading. Methods of reducing interference were
therefore investigated which would allow a greater percentage of the material allowable to
react against application reversal stresses.

ANALYSIS WITH OPTIMUM PRESET INTERFERENCE

The majority of the high stresses observed in the stress model results were due to the
large compression preset required to retain sealing characteristics at minimum and maximum
temperatures for the application. Reductions in this preset benefit raising the allowable
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Condition at Condition at
228°K (-50°F) 450°K (350°F)

_t

4 Original 4
2,286 x 10" m |preset SP-21 2286 x10" m
(0.009 in.) (0.009 in.)

|
b

6.604 x 10° m 5
(0.0026 in.) 6.604 x 109 m
Optimum {0.0026 in.)
5 preset SP-1
5'(()8.%32131.) " 5.080 x 108 m
i (0.002 in.)
6.604 x 10°m ! 5
(0.002 in.) 6.604 x 10° m
Optimum (0.002 in.)
preset SP-21]
4.064 x 10 m 4.064 x 10° m
{0.0016 in.) (0.0016 in.)

=
I 2

N

2032 x 10° m 1 5
(0.0008 in.) 2.032 x 105 m
Optimum (0.0008 in.)
[preset SP-22
1.524 x 10?5 m 1.524 x 10'5 m
(0.0006 in.) (0.0006 in.)

N\t
-+

Figure 62.—Preset evaluation results
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hydraulic pressure loading. A substantial reduction in preset stress could be achieved by
considering nominal seal dimensions at a temperature midway between the minimum and
maximum for the application. This resulted in minimum interference fit requirements at the
temperature extremes. Further stress reduction was feasible by considering the properties of
DuPont SP-22 polyimide, reference 3, in place of SP-21 as a baseline for the stress analysis.
The preset stresses would be reduced because SP-22 had a 30% reduction in coefficient of
thermal expansion compared to SP-21. Part of the stress reduction would be negated
because there was also a 16% reduction in ultimate tensile strength of SP-22, which
contained 40% graphite filler.

Seal design stress requirements for fatigue were determined for the SP-22 polyimide

material in the same manner as performed with SP-21 and described under Stress Analysis
Modeling.

e For SP-22 Allowable fatigue stress

(using verbal property information obtained from DuPont)

=2.896 x 107 N/m2 (4.200 ksi) @ 2 x 103 cycles, room temperature
(for 1.043 x 107 N/m2 (1500 psig) impulse during ground servicing) Impulse
=1.724 x 107 N/m? (2.500 ksi) @ 2 x 10> cycles, 450° K (350° F) Life

(for 6.895 x 106 N/m2 (1000 psig) impulse during flight service)

=2.413x 107 N/m2 (3.500 ksi) @ 8 x 106 cycles, room temperature
(for 1.379 x 106 N/m2 (200 psig) steady state ground service) Fatigue
=1.379 x 107 N/m2 (2.000 ksi) @ 8 x 108 cycles, 450°K (350° F) Life

(for 2.758 x 106 N/m2 (400 psig) steady state flight service)

The envelope formed by the interconnection of the above points on a pressure vs stress
graph was the locus of requirements that had to be satisfied by the seal to withstand the
reversal stresses imposed by the application. This envelope was used to illustrate the degree

of configuration acceptance in each iteration of the stress analysis described in the report
sections.

The amount of preset required to keep the chevron seal in contact with the actuator
rod and gland was directly proportional to the linear coefficient of thermal expansion for
the material. These coefficients for SP-1, SP-21, and SP-22 materials were 50.4, 40.4, and
28.8 x 1070 m/m°K (28, 23, and 16 microin./in.°F), respectively, with the material grain
pattern aligned for minimum expansion. Data for SP-1 are presented to provide comparison
to reference 2. Steel has an average coefficient of 12.6 x 106 m/n°K (7 microin./in.°F). By
balancing the interference fit at one temperature limit with the clearance fit at the other
limit for both the ID and OD of the seal, and using an upstream loading block to force
closure of clearance fits, it was possible to significantly reduce the preset required for

sealing. These optimum presets for each of the three materials stated above are also shown
in figure 62.
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The optimum presets for SP-21 and SP-22 materials were incorporated in the
mathematical model for the chevron seal stress analysis to obtain pressure/stress

relationships.

Stresses With Optimum Preset Using SP-21

Figure 63 illustrates the relationship of stress with applied hydraulic pressure for three
seal gland depths. The results show that optimum preset allows a 147% increase in allowable
hydraulic pressure for the same stress in the G2 groove when compared to the 2.286 x
104 m (0.009 in.) preset interference. Figure 64 illustrates the effects of seal leg thickness
variations with optimum preset and the test actuator gland (G2). Optimum thickness lines
for critical stress conditions show that room temperature requirements could be met
without further optimization, but additional steps were necessary to meet 450°K (350°F)
temperature requirements. Figure 65 illustrates the effects of variation of seal leg angle using
optimum thickness and the G2 gland. Results show that temperature requirements were
nearly met for tension loading using a 0.349 rad (20°) leg angle, but stresses were too severe
to satisfy compression loading requirements. Figure 66 illustrates the effects of variation of
the angle of contact between the downstream chevron and the support block downstream to
this chevron. The stress effects were only evident on plates in the downstream chevron. The
data illustrated are for the critical plate, which in all cases was the plate at the position
where contact between the chevron and the support block terminates. Two sets of curves
are shown. The high-stress curves illustrate backup angle variations corresponding to the
analysis with a 2.286 x 104 m (0.009 in.) preset. The lower stress curves show that, by
optimizing preset, considerable increase in hydraulic compression loading can be allowed.
This increase, however, was not sufficient to fully meet the maximum fatigue requirements
for the application.

Stresses With Optimum Preset Using SP-22

Figures 67, 68, 69, and 70 illustrate the same information as shown in the figures for
previous evaluations but with the material being SP-22. This material has a more desirable
coefficient of thermal expansion but a lower allowable stress envelope. It was significant to
note that optimum leg thickness was again sufficient to provide a configuration that would
satisfy room temperature impulse and endurance requirements. The exercise of evaluating
leg angle variation showed that all tension requirements and room temperature compression
requirements could be satisfied. Further optimization by increasing downstream support
block contact angle provided the increased capability needed to satisfy the high-temperature
compression loading requirements.
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APPENDIX 3
KOPPERS SPECIFICATIONS, BALANCED CONTRACTING TWO-PIECE ASSEMBLIES

Specifications for the first-stage seals, fabricated by Koppers Company, Inc., are shown
in the following figures:

Figure 71 0.0254 m (1.0 in.), 30% balanced
Figure 72 0.0254 m (1.0 in.), 50% balanced
Figure 73 0.0254 m (1.0 in.), 70% balanced
Figure 74 0.0635 m (2.5 in.), 30% balanced
Figure 75 0.0635 m (2.5 in.), 50% balanced

Figure 76 0.0635 m (2.5 in.), 70% balanced

Figure 77 is a photograph of the six seals defined in the above specification drawings.
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Figure 71.—Balanced contracting two-piece assembly (80527)
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Figure 72.— Balanced contracting two-piece assembly (80518)
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Figure 73.— Balanced contracting two-piece assembly (80524)
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Figure 74.— Balanced contracting two-piece assembly (80530)
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Figure 75.— Balanced contracting two-piece assembly (80521)
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Figure 76.— Balanced contracting two-piece assembly (80533)

138



$81jquIasse |eas 1531 abels-1si14 —'// ainbi4

s|eas poy
a1 ('wgZ) wse90'0

s|eas poy
ai (uro’L) wyszoo

0L

abeiuaouad bujoue)eq aunssauy

)
(<]

139



140

APPENDIX 4

PRESSURE IMPULSE TEST—SYSTEM DESCRIPTION AND OPERATING SEQUENCE

TEST SYSTEM DESCRIPTION
Test Article

Each article to be tested by impulse cycling consisted of a single second-stage chevron
or K-section assembly or a first-stage pressure balanced seal installed in a housing to retain
the seal in a manner duplicating an aircraft installation. Existing hardware was used to the
greatest extent possible to provide the necessary housings as illustrated in figure 78. Only
one seal was tested in a single housing end. Thus, when a second-stage configuration was to
be tested the first-stage gland was left empty. When the first-stage seal was tested, a Boeing seal
was installed in the second-stage gland only to allow collection of leakage and was not
considered to be under test. '

Test Operation Components
The hydraulic system shown in figure 78 was the test rig used and is an existing rig

developed primarily for impulse testing of tubing, fittings, and hoses. It consists of the
following major components.

Hydraulic power supply Denison 8-gpm pump unit

Hydraulic relief valve Denison

Hydraulic filter Purolator, T type (25 micron absolute)
Servovalve block Boeing laboratory equipment (SK11{-96025)
Intensifier (3-to-1 area ratio) Boeing laboratory equipment

Heat exchanger Harrison, water cooled

Accumulator Hydrodyne, 3.785 x 103 m3 (1 gal),

6.894 x 107 N/m?2 (10 000 psig)

Isolation Tube 0.013 m (1/2 in.) OD for first-stage test
0.0064 m (1/4 in.) OD for second-stage test
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The hydraulic power supply consists of a 5.047 x 1074 m3/sec (8 gpm)
3.442 x 107 N/m2 (5000 psig) variable-displacement pump with reservoir. A high-pressure,
piston-type accumulator is located in the supply line just upstream of the servovalve
manifold to provide peak flow requirements beyond the maximum dynamic response of the
pump. Ports within the servovalve block are oversized to reduce pressure drop. For tests
requiring pressure rise rates below 1.033 x 109 N/m2/sec (150000 psig/sec), a 3-to-1
intensifier is placed between the servovalve and the test manifold. This allows the pump and
servo to be operated well within their working pressure range while impulsing the test article
at rather high pressure peaks.

For this series of tests reported, the fluid on the servo side of the intensifier was
MIL-H-5606 and the fluid on the test article side of the intensifier was Humble WS 8228.
(ref. 4). The test articles were attached to a distribution manifold which was located in an
environmental chamber. The test article temperature was provided by controlling the
ambient temperature within this chamber. Because the fluid in the test article was almost
dead-ended, no preheating of the supply fluid was required. The test chamber was
positioned approximately 1.524 m (60 in.) from the intensifier and connected by a suitable
section of hydraulic tubing. This tube was used to isolate the test article temperature from
the intensifier.

Control Circuit and Instrumentation

The control system for impulsing was based on an electrohydraulic closed-loop
pressure control servo system. Components of this system were arranged as shown in figure
79. The control actuating device was the four-way, pressure control servovalve with one
cylinder port blocked. The servo controller was a Boeing-built controller with an adjustable
servo loop gain from unity to a multiplication of one hundred. The controller output stage
was a voltage driver which also provided damping for the servovalve.

The servovalve was driven by two superimposed square waves of variable amplitude and
period. The basic wave provided a signal corresponding to the desired working, or plateau,
pressure level. The second wave with the same leading edge, a greater amplitude, and a
shorter duration was superimposed to provide the overshoot pressure peak. The shape of the
overshoot peak pressure wave was varied between a single damped wave to that of a nearly
zero damped oscillatory wave by varying the controller loop gain. Additional fine
adjustment of wave shape, rate of pressure rise, and pressure level was made by varying the
servovalve input wave shape, hydraulic supply pressure, pressure loss in the supply line to
the intensifier, and the test article volume. A Boeing-built fail-safe panel provided for system
shutdown at loss of 10% of the peak pressure for one cycle or loss of 3% to 5% for several
cycles.
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Data

A data system was used to determine that proper adjustment had been made to the
control system for the specific impulse profile. Cycle programmer output and servovalve
current were used as reference control information. Qutput from a data system transducer,
mounted on the test specimen manifold, provided a dynamic impulse pressure trace for
visual monitoring. Oven temperatures were controlled automatically and monitored on a
vertical temperature indicator. Instrumentation data accuracy is reported in appendix 8.

IMPULSE TEST PERFORMANCE SEQUENCE
Test Article Assembly

Test articles were assembled for four impulse test sequences. This was accomplished
using double-ended housings with a central pressure supply port to test first-stage seals and
two capped, single-ended housings ganged in parallel to test second-stage seals. The
configurations tested together were:

e  First-stage 0.0254 m (1.0 in.) 30% balanced and 50% balanced seals
® First-stage 0.0635 m (2.5 in.) 30% balanced and 70% balanced seals
e Second-stage 0.0254 m (1.0 in.) chevron and 0.0635 m (2.5 in.) K-section seals
e Second-stage 0.0254 m (1.0 in.) K-section and 0.0635 m (2.5 in.) chevron seals

Seals were installed by wetting the seal and gland surfaces with hydraulic fluid and
using finger pressure to position the individual parts on the rod. The seal housing bushing
was then used to push the seal assembly into its proper position in the gland. No sticking
or binding was encountered during installation.

Test Operation

After the test article and data transducer were installed on the test manifold, a system
pressure of 6.894 x 109 N/m2 (100 psig) was applied to the intensifier and test article to

allow air to be bled from the system. Full system pressure was thereafter applied and the
servo controller used to manually vary pressure from zero to maximum to check for system
leaks and control system stability.

The test data system was calibrated and the pressure impulse profile set to the
requirements of figure 34 by:



e Adjusting the cycle programmer offset control to place the pressure plateau at the
correct level

e Opening the programmer’s leading edge width control just far enough to obtain
desired peak pressure

e Adjusting the power supply pressure as necessary to obtain the correct peak
pressure amplitude

e Adjusting the servo controller gain to shape the overshoot wave to the desired
profile

Recordings were made to determine pressure rise, which was calculated as follows:

P =  peak pressure in psig
Al = time at 10% P (sec)
A2 = time at 90% P (sec)

Rate of rise in N/mz/sec (psig/sec) = (0.9P - 0.1P)/(A2 - Al). This is the straight line
slope of the pressure-time trace.

The 3-to-1 intensifier used to boost peak pressure during first-stage seal testing was
reversed and used as a deboost cylinder for the low-pressure impulse test of the second-stage
seals. In addition, the accumulator precharge was adjusted and the isolation tube size
reduced to provide added correction to obtain the lower rate of rise for testing second-stage
seals.

Heater controls were adjusted to maintain seal housing temperatures at the level
prescribed for each segment of the impulse test as stated on table I1. During testing, leakage
was measured by collection in burettes or by visual monitoring where leakage was only an
infrequent drop.

Posttest Inspection

The seals that completed impulse tests were examined for structural damage, cracking
of the seal material, and contact surface polishing. The above were not considered as
conditions of seal failure unless the leakage during the test was greater than the allowable.
The inspection was performed by unaided visual observation to make a qualitative
description of the seal, supplemented by observations using a microscope.
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APPENDIX 5
SEAL FRICTION—TEST SYSTEM DESCRIPTION AND OPERATING SEQUENCE
TEST SYSTEM DESCRIPTION
Test Article

Each article to be tested to evaluate static and dynamic friction consisted of a pair of
identical configuration seals installed in a double-ended housing. Existing hardware was used
to the greatest extent possible to provide the necessary housings as illustrated in figure 80.
First-stage seals were tested separately from second-stage configurations such that when
first-stage seals were installed, second-stage glands were vacant, and vice versa. Friction test
measurements provided data for the combined friction force of both seals in the
double-ended housing.

Test Operation Components
The hydraulic system used in friction testing, shown in figure 80, is an existing test rig

used for research evaluations of rod and piston seal friction. It consists of the following
major components:

Hydraulic power supply Rucker 20-gpm pumping unit

Solenoids Adel three-way valves

Drive actuator Miller 0.1016 m (4 in.) bore

Transfer cylinder Miller 0.0508 m (2 in.) bore

Boost pump Sprague, air-driven unit

Pressure reducing valve Denison

Test actuator Boeing laboratory equipment (SK11-11751)
Environmental enclosure Boeing laboratory equipment

The MIL-H-5606 (red oil) hydraulic power supply was used to provide pressurized fluid
flow in the drive actuator loop and provide pressurization of the reference 4 seal test fluid in
the transfer cylinder. The drive actuator provided the mechanical power for motion of the
rod through the seals under evaluation in the test actuator. The load transducer was rigidly
attached to the test actuator rod and connected to the drive actuator with self-aligning
bearings. The solenoids were used to control the oscillatory movement of the rod.
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Fluid in the test actuator was kept under a static head controlled by the
pressure-reducing valve setting. The reservoir allowed refilling of the transfer cylinder, using
the air-driven pump, if volume became depleted due to seal leakage. The reservoir also acted
as a receiver tank for fluid expanded in the test actuator by elevating temperature.

Control Circuit and Instrumentation

The control system for the existing friction test equipment was assembled prior to the
reported contract for manual operation. A conversion to automatic control would have
made testing more convenient for the operator but was not accomplished in the interest of
economy. Components of the control system are shown in figure 81.

The solenoids, actuated through the stroke control limit switch circuit, controlled the
reversals of motion. Speed of translation was manually adjusted using a hand-operated
needle valve to achieve a given slope of the position-time trace on the direct-write
oscillograph. Breakaway was also determined from observation of the position-time trace.
Hydraulic pressure levels within the test actuator were set using the pressure-reducing valve
and measured by the pressure transducer output recording on the oscillograph. Friction
force was measured using the load transducer output reading on the oscillograph. The
accuracy of the data system is described in appendix 8.

FRICTION TEST PERFORMANCE SEQUENCE
Test Article Assembly

Test articles were assembled for ten friction test sequences. Only one seal configuration
was tested in each sequence; however, two seal assemblies of each configuration were used,
one on either end of the test actuator housing. The configurations tested were:

e First-stage 0.0254 m (1.0 in.) 30% balanced, 50% balanced, and 70% balanced
seals

e First-stage 0.0635 m (2.5 in.) 30% balanced, 50% balanced, and 70% balanced
seals

®  Second-stage 0.0254 m (1.0 in.) chevron and K-section seals
@ Second-stage 0.0635 m (2.5 in.) chevron and K-section seals

Seals were installed by wetting the seals and gland surfaces with hydraulic fluid and
using finger pressure to position the individual parts on the rod. The seal housing bushing
was then used to push the seal assembly into their proper positions in the gland. No
sticking or binding was encountered during installation.
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Testing Operation

The test actuator was installed in the system and aligned so that no side load would be
introduced to the seals being tested. This was accomplished by positioning the rod in the
test actuator at various rotational positions and checking for free movement of the attaching
pin between the rod and the load cell. Any binding indicated the presence of side load.

The test actuator was pressurized to 2.068 x 107 N/m2 (3000 psig) and the drive
actuator operated at 0.0635 m/sec (2.5 in./sec) to accumulate 100 cycles on the test seals as
a run-in prior to friction testing. The test sequence was then started by adjusting the test
actuator temperature and pressure to the desired conditions. At each set condition static
breakaway and running friction at 0.0635 m/sec (2.5 in./sec) were determined. Data were
recorded for five repeated tests at each condition to obtain a base for statistical averaging.

Data Reduction

The static and dynamic friction values for a single seal were determined from the test
data by averaging the data from the multiple runs to obtain a friction value for the pair of
seals tested. One-half of this value was considered to be the friction for one seal based on the
two seals of a single configuration being identical. The error introduced was that, within any
given rod stroke, motion along the face of one seal was in the opposite direction of the
motion (upstream to downstream) to that along the face of the other seal. This error was
considered to be within instrument measurement accuracy.

Seal stick-slip friction, or chatter, produced data as a band of high-frequency friction
oscillations within which a single clearly defined average was difficult to isolate. The best
determination was selected as the center of the darkest portion of the high-frequency band,
this being the statistical mean of the friction force within the chatter band. These average
measurements were compared against the friction criteria established under Design
Requirements in section I1I of this report.

Leakage was measured in a collecting tank and was not a major measurement in the
friction tests because the test time at any single condition was very short. Leakage was
qualitatively significant with the 70% balanced first-stage seal, where excessively high
leakage was noticed at intermittent intervals.

Posttest Inspection

The seals that completed friction tests were examined for structural damage, cracking
of the seal material, and contact surface polishing by unaided visual observation
supplemented by observations using a microscope.



APPENDIX 6

THEORETICAL PRESSURE BALANCING ANALYSIS
L: OF CONTRACTING FIRST-STAGE SEALS

INTRODUCTION

Pressure balancing of first-stage seals is desirable due to the otherwise large pressure
differentials across the seal interface. Prime advantages are to reduce the net radial and axial

forces acting on the seal. This feature tends to minimize the friction and wear between the
seal and the contacting surface.

A high-speed digital computer program was written to evaluate the radial and axial
sealing forces for various degrees of balancing. The model used for the analysis is shown

below:
F
High E . ¢
pressure ;/ |
w| A4S ‘, £
_ - Low :
1 1 pressure “R1Fs (
Osp F
D, 3D, > pR(ZFA)' 4
HAF 4
_______ 2 E Fg

%]
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EQUATIONS

Forces in the Radial Direction

F2 =P1 1TD2A(A-A1)
‘FC = jnitial preset compression
F3 =[(P;+Py)/2]1 7D (A-A})

By balancing the forces in the radial direction the resultant force obtained is:

FR =F2+Fc-F3

Forces in the Axial Direction

=P (n/4) (D52-D ;)
= (P| +P,) (7/4) (D32 - D4?)/2
= spring force

= P2 (17/4) (D42 - D12)

By balancing the forces in the axial direction the resultant force obtained is:

FA =F1+Fs- F4'F5

Net Sealing Forces

Net sealing forces in the radial direction (Fgp) and in the axial direction (F AN) are
dependent on the sealing forces Fp and F 4 and on the values of coefficients of friction.

FRN =FRr-#rFp-up Fs

FAN

where:

Hr

KA

My

1

=Fa-#AF3

downstream radial friction coefficient (along the axial sealing face)
axial friction coefficient (along the radial sealing face between the seal and
the rod)

upstream radial friction coefficient (between the spring and the axial sealing
force)



-+

In developing these equations, it was assumed that there was a very thin hydrodynamic
film layer of oil between the inside surface of the seal and the rod, and between the
downstream surface of the seal and the gland.

Net Pressure Forces
Net pressures in the radial direction (Pgyy) and in the axial direction (P ) are:
Prn = FRN/ 7D (A-Ap) = [P(D4/Dy) - (P+Py)/2] -u FA/mDjA(l - A[/A) -#r Fg
PAN = FAN/@/4) (D32 -D4%)

These pressures are indicative of the unit pressures on the sealing surfaces and may affect
the values of friction coefficients.

Leakage Flow

Seal leakage flowing through the annular gap between the seal and the rod can be
computed with the program. A gap width of b= 5.08 x 100 m (50 000 angstroms) was
assumed. This is equivalent to a finish grind on the rod surface. Assuming a fully developed
laminar flow in the fluid film between the rod and the seal, the ideal leakage flow Q is given
by

aD| (P| - Py) b3

12u (A-A))

Q =

The effect of unit contact pressure is to reduce the leakage flow. Thus the effective flow Q
may be written as

(Py -Py)-PRN
U= F
1-P2
APPLICATION

Inputs needed to the program are the seal dimensions, friction value, and the radial gap
clearance. The computer program calculates all the forces .in the axial and radial direction,
leakage flows, and contact pressures.

The first-stage seals used in the reported contract were evaluated on the computer.
Input data was as follows:
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Smaller Seal
ID =0.0253 m (0.996 in.)
0}3) =0.0291 m (1.146 in.)
Width  =0.0023 m (0.0895 in.)

paxial =0.05 (assumed value—actual value is variable with contact
pressure by an as yet undetermined relationship)

uradial =0.10 (assumed value)
Larger Seal

ID =0,0570 m (2.496 in.)

oD =0.0679 m (2.674 in.)

Width =0.0031 m (0.1205 in.)

waxial  =0.05 (assumed value)

uradial '= 0.10 (assumed value)

The computer program was run for various axial and radial balancing percentages and

different system pressures. However, since the test seal was fabricated with zero axial
balancing only those results pertaining to that configuration are reported.

RESULTS

Figure 82 shows net radial sealing forces for different system pressures and different
degrees of balancing for the small and large seals, respectively.

The data show that the net radial sealing forces decrease with increasing balancing

percentages at any given system pressure. The net sealing forces are larger for the 0.0635 m
(2.5 in.) diameter seal than for the 0.0254 m (1.0 in.) diameter seal.

Figure 82 also shows the variation of average radial contact pressure on the sealing
surface. The radial contact pressure decreased with increasing balancing percentage for all
system pressures. As expected, the unit pressure was directly proportional to system
pressure for both seal sizes.
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Figure 83 shows the variation of the average contact pressure (Pgp) of both seals for
various pressure balancing percentages. The data trend for both seals was a decrease in
contact pressure for increased balancing percentages. The smaller seal had a larger contact
pressure than the larger seal. This was due to the effect of D2/D1 diameter ratio in the PRN
equation. Figure 83 shows that, beyond 60% balancing, contact pressure drops rapidly. This
occurs due to the decrease in contact area with higher balancing percentage. The sealing
force with increased balancing eventually becomes equal to the friction force along the
radial face of the seal. At this condition (Al/AzO.S) the net radial sealing force becomes
Zero,

CONCLUSIONS

The following conclusions may be derived from the analysis:
(1) Pressure balancing is desirable on all seals as it reduces the net sealing loads on the
seal and increases the life of the seal.

(2) The optimum degree of balancing is dependent on the seal size. It is desirable to
use as large a balancing percentage as permissible to reduce radial sealing forces.
There is approximately a 30% change in sealing force for a 20% change in pressure
balancing at 2.758 x 107 N/m2 (4000 psig).

(3) A realistic upper limit for only axial balancing is near 60% to maintain an
acceptable contact pressure for fluid containment and to avoid conditions of
rapid variation of contact pressure as a function of balancing.
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APPENDIX 7
ENDURANCE TEST-SYSTEM DESCRIPTION AND OPERATING SEQUENCE
TEST SYSTEM DESCRIPTION
Test Article

Each test article consisted of a two-stage rod seal configuration with the inner-stage
cavity vented to return pressure. Actuators with 0.0254 m (1.0 in.) and 0.0635 m (2.5 in.)
nominal rod diameters were evaluated. The larger rod seal configuration consisted of a 50%
pressure balanced, step cut, contracting ring first stage and a K-section assembly second
stage. These seals were assembled in the module configuration shown on figure 84, which
was in turn installed in the actuator as shown on figure 85. The smaller rod seal
configuration used the same first-stage design with a chevron assembly second-stage seal.
The seals in the smaller actuator were installed independently in the actuator end cap, as
shown in figure 86.

Existing test actuator components were used to the greatest extent possible. The
0.0635 m (2.5 in.) actuator minimum modifications needed to utilize the modular seal
concept are defined in reference 21. The 0.0254 m (1.0 in.) actuator assembly was modified
as shown in reference 22.

Test Operation Components

The test installation used in endurance testing is shown in figure 87 and is an existing
rig developed primarily for testing actuator seals. The test installation consists of a load
system, the hydraulic power supply with its associated plumbing, and the control
electronics. The major power and loading components are as follows:

Oven—Dispatch model 203

High-Temperature Power Supply—Auto Controls Lab, Inc. model 4586
Load Fixture—Boeing laboratory equipment

Filter—Micro Porous (25 micron absolute)

Relief Valve—Republic 604B-12-8-2

Servo Valve Block—Boeing laboratory equipment (SK11-9605-1)
Accumulator—Hydrodyne 6.895 x 107 N/m2 (10 000 psig)

The load system required for this series of tests consisted of a dual torsion bar rig
capable of providing resisting torque for two independent actuators. The individual torque
bar lengths were adjusted to provide a torsional load such as to require full system pressure
at full stroke for each actuator. The linear actuator output was reacted to the torsion bar



Second-stage seal

Static
0’ ring
seals

Figure 84.—0.0635m (2.5 in.) two stage seal module
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Fiure 85.— 0.0635m (2.5 in.) endurance test actuator
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Figure 86.— 0.0254m (1.0 in.) endurance test actuator
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through a lever arm and bearing assembly to simulate an airplane control surface hinge
point. Self-aligning bearings were used for both actuator head and rod end connection
points. No additional side load, other than bearing friction, was applied. The mounting base
of the load system and the actuators were installed in the test oven. The torsion bars, due to
their size, extended through the back of the oven and were supported externally at their
extreme ends by pedestals. Hydraulic power was supplied by the 1.262 x 10-3 m3/sec (20
gpm)Autocontrols Laboratory high-temperature power supply complete with all pressure and
temperature controls. This unit supplied WS8228 (ref. 4) hydraulic fluid at 2.758 x 107
N/m2 (4000 psig) and 450°K (350°F) to the test article. The 9.464 x 1073 m3 (2.5 gal)
accumulator was located in the supply line between the power supply and the test rig. In
addition to filtration within the power supply, a 25-micron-absolute filter was located in the
supply line downstream of the accumulator. The cavities between the first- and second-stage
seals in the test actuators were vented to return through relief valves to maintain
second-stage seal pressure at 1.379 x 106 N/m2 (200 psig). Additional check and isolation
valves allowed measurement of first-stage leakage without interrupting cycling.

Control Electronics

The control of test operation cycling was provided by a closed-loop electrohydraulic
flow control loop incorporating position feedback.

Components were arranged as shown in figure 88. The electrical loop consisted of the
feedback transducer (LVDT), carrier amplifier, Boeing standard controller, and servo valve
with the total loop completed mechanically through the fluid-powered actuator rod. The
servo controllers were driven with a common function generator with a sinusoidal cycle at
the required period. The actuator stroke amplitude and position were set at the servo
controller command for the flow control servo valve. A failure detection system was
provided which would sound an audible and visual alarm with loss of system pressure or an
overtemperature condition.

Actuator head and rod end cylinder pressures were measured for both actuators and
recorded on a direct-write oscillograph. The individual actuators’ positions were also
recorded on the oscillograph and monitored during test to ensure that proper position and
stroke amplitudes were maintained.

Oven ambient, oil, and component temperatures were recorded on a stamping-type
temperature recorder.

Instrumentation and recorded data accuracies are reported in appendix 8.
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ENDURANCE TEST PERFORMANCE SEQUENCE

The unpressurized assembled test actuators were manually inspected for binding. A
proof pressure was then applied and pretest leakage rates established for the first-stage seals

at room temperature.

Test Operation

After the test actuators and data transducers were installed in the loading fixture, a
reservoir pressure of 3.442 x 10° N/m2 (50 psig) was applied and air bled from the hydraulic
system. A room temperature checkout was conducted, starting with a system pressure of
6.894 x 100 N/m2 (1000 psig) and increased in incremental steps to working pressure while
cycling. The test sequence defined in table I was established by adjusting:

® The hydraulic power supply to 450°K (350°F) temperature and 2.758 x 107
N/m2 (4000 psig) nominal working pressure.

e The oven controls to maintain the test temperature for the mass of the actuators

and fixture.
o  The function generator to the cycle rate required by the test schedule.

e The servo controller to provide the desired actuator neutral cycling point and rod
stroke.

®  The interstage relief valve to maintain 1.379 x 100 N/m2 (200 psig).

During testing, first-stage leakage was measured by its collection in burettes. The
second-stage leakage was measured by visual observation.

Test cycles, supply and second-stage fluid pressures, seal leakage, and system
temperatures were recorded each hour. Cylinder pressures were recorded at the start of each
day, and actuator position and stroke length monitored continuously during test.

POSTTEST INSPECTION

The seals that completed endurance tests were examined for structural damage,
cracking of the seal material, contact surface polishing, and unusual wear. This was
conducted by unaided visual observation supplemented by observations using a microscope.
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APPENDIX 8

INSTRUMENTATION CALIBRATION AND DATA ACCURACY

Test instrumentation equipment calibrations are traceable through the Boeing flight

test calibration laboratory to the National Bureau of Standards. Strain gage bridge-type

transducers were calibrated to determine nonlinearity, hysteresis, and R-shunt calibration

transfer values. Position transducers were end to end calibrated in place by a calibrated

scale/visual technique.
PRESSURE

Transducer accuracy within
Power and balance/conditioning within

Oscillograph accuracy within
Pressure measuring system accuracy (RSS) within
DISPLACEMENT

Transducer accuracy within
Signal conditioning within
Oscillograph accuracy within

Displacement measuring system accuracy (RSS) within
TEMPERATURE

Thermocouple accuracy within

Temperature recorder within

Temperature measuring system accuracy (RSS) within

LOAD

Transducer accuracy within
Signal conditioning within
Oscillograph accuracy within

Load measuring system accuracy (RSS) within

+0.75% full scale
10.1% full scale
12.0% full scale

+2.1% full scale

+0.1% full scale
+0.1% full scale
+2.0% full scale

+2.0% full scale

. 11°K (¥2°F)
+2.5°K (#+4.5°F)
+22°K (+4.0°F)

+0.1% full scale
+0.1% full scale

12.0% full scale
12.0% full scale



APPENDIX 9
LIST OF SYMBOLS

Symbols identifying a measured quantity:

A area

A, B,C,D,E sequence of load types

B balancing ratio

b average clearance between rod and seal

c one-half cross-section thickness

D diameter

E modulus of elasticity

F force

[F] force matrix

f, alternating stress

fm mean stress

G gland depth

ID inside diameter

[K1 stiffness matrix

K] curved beam inside fiber stress correction factor
Ko curved beam outside fiber stress correction factor
Kt stress concentration factor due to notch sensitivity
L length of seal face

oD outside diameter

P pressure

Q flow

R radius

RSS root sum square value of the independent errors
T cross-section thickness

t cross-section thickness

X,V,2 coordinate planes of direction

X,¥,Z opposite coordinates to X, y, z

a leg angle

g backup block contract angle

A time

) preset compression of seal from its free shape

€ eccentricity between rod and seal

u friction coefficient

v fluid viscosity

[ o] displacement matrix
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Subscripts:

1,2,3,4,5,6,7

fatigue stress

percent

greater than or equal to
less than
approximately equal to

axial

axial

alternating
compression
downstream

net

optimum

radial

upstream radial
downstream radial
spring

upstream

plane of stress direction

various alternate configurations, sizes, or locations

Rl



Symbols indicating units of measure:

SI units | English units] Measurement of: Definition
N/m2 psig pressure, Newton per square meter = (pound per square
ksi stress inch) (6894.76)
kip per square inch = (pound per square inch)
(0.001)
m in. length meter = (inch) (0.0254)
ft meter = (foot) (0.3048)
m2 in.2 area square meter = (square inch) (6.944 x 10’3)
m3 in.3 volume cubic meter = (cubic inch) (1.639 x 10'5)
N Ibf force Newton = (pound force) (4.4482)
sec sec time second = (minute) (60)
min minute = (hours) (60)
hr
m3 /sec in.3 /min flow cubic meter per second = (cubic inch per
gpm minute) (2.73118 x 10'7)
gallon per minute = (cubic inch per minute)
(4.329 x 1072)
Hz Hz frequency Hertz = cycle per second
cps
T m m=3.141592
rad °(deg) angle radian = (degree) (0.01745)

All original calculations were performed in English units and converted to SI units for
documentation. Dimensioned parts are not expressed in SI units because such dimensioning

would reduce the usefulness of such drawings and sketches.
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