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FOREWORD

This final report presents the results of a nine-month conceptual
design study performed by the Vought Missiles and Space Company (VMSC),
LTV Aerospace Corporation, to determine the most economical approach for
an Advanced Small Launch Vehicle (ASLV) for use over the next decade. The
design study was conducted under NASA Contract NAS1-10848 during the period
from May 1971 to February 1972 and monitored by the Scout Project Office at
the NASA Langley Research Center. The Technical Representative was W. C.
Hoggard, with T. L. Owens assisting. Other key Scout Project Office contacts
were R. D. English, S. J. Ailor, A. Leiss, J. L. Allen, Jr., and V. D. Crowder.
VMSC also wishes to express its appreciation to the following companies for
their contributions to this study: Hercules, Incorporated, Bacchus Works;
Thiokol Chemical Corporation; Aerojet General Corporation; United Technology
Center, Division United Aircraft Corporation; Kearfott Division, Singer-
General Precision, Inc.; Hamilton Standard Division, United Aircraft Corpora-
tion; Teledyne Systems Company; Litton Industries; General Electric Company;
Honeywell; and TRW Systems.
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1.0 SUMMARY

A conceptual design study was conducted to determine the most
economical (Towest cost/launch) approach for the development of an Advanced
Small Launch Vehicle (ASLV) for use over the next decade. The ASLV design
objective was to place a 340 kg (750 1b) payload into a 556 km (300 n.mi.)
circular orbit when launched due east from Wallops Island, Virginia. The
investigation encompassed improvements to the current Scout Taunch vehicle;
use of existing military and NASA launch vehicle stages; and new, optionally
staged vehicles. Staging analyses includec use of liquid, solid, and hybrid
propellants. Improvements in guidance, controls, interstages, telemetry,
and payload shroud were also considered.

It was concluded that the most economical approach is to progres-

sively improve the Scout launch vehicle in three phased steps, as shown
below.

CURRENT SCOUT
i{ 163 kg (360 Ib ) PAYLOAD

STEP 1
177 kg (390 Ib ) PAYLOAD

STRAP ONS
MOVABLE NOZZLE

H STEP 2
1 290 kg (640 1b)
H pAYLOAD

STEP 3
340 kg
(750 Ib)
PAYLOAD

72 ] 73 | 74 | 75 I 76 ! 77 1 78 L
CALENDAR YEAR



This approach was selected because it:

(1) Provides improved orbit injection accuracy at an early
date and preserves Scout payload capability,

(2) Exhibits a suitable, economic means for performing pay-
load missions in the current Scout range (deletion of
Strap-on),

(3) Incorporation of third and fourth stage motors as the
final steps permits consideration of any improvements
in propulsion stage-of-the-art during the first five
years (ISP’ Mass Fraction and Stop/Start),

(4) Requires commitment for only one step at a time and
permits periodic redirection of launch vehic]e objec-
tives, if desired or required,

(5) Keeps peak fiscal year funding under $2.5 million, and

(6) Yields the design payload and improved orbital accuracy
at an average unit launch cost of $2.97 million.
(Includes $0.25 million of amortized development cost.)

The end product is a four stage ASLV with an optional fifth stage
for high velocity missions. The first stage consists of the Scout Algol
ITI, augmented with two Castor II strap-ons. The second stage is a shor-
tened Algol III. Both first and second stage Algol III motors have movable
nozzles. The third stage uses the Scout HP X259 motor with a modified
nozzle to increase chamber pressure and the fourth stage consists of a shor-
tened X259 with a contoured nozzle. When a fifth stage is required, the
FW5 motor provides near maximum performance. For missions in the current
Scout payload range, the two Castor II strap-ons are deleted.

Vehicle improvements include replacement of the Scout third stage
open loop guidance by an improved fourth stage guidance system; fourth stage
attitude stabilization and vernier velocity control capability. To accom-
modate the larger payloads, the shroud diameter was increased from 107 cm
(42 in) to 152 cm (60 in). Total ASLV 1ift-off weight is approximately
36400 kg (80200 1b) compared to 21500 kg (47400 1b) for the current Scout.

Required changes to ground suppoft equipment (GSE) and facilities
included guidance system checkout equipment and modifications to the




Tauncher and transporter because of the increase weight and configuration
profile. The impact on the remaining GSE was minor. Required GSE modifica-
tions can be accomplished without impairing the ability to assemble, check-
out and launch the present Scout with the modified GSE.



2.0 INTRODUCTION

Since its first operational flight in 1960, the NASA/DOD Scout
has launched a wide variety of small scientific and applications satellites
on orbital, reentry, and probe missions. During this period of operation,
planned improvements have increased both the payload carrying capacity and
flight reliabijlity. For example, payload into a 556 km circular orbit has
been stepped-up three-fold to the current 163 kg. This performance improve-
ment has been carefully programmed to preserve the high demonstrated flight
reliability of 52 successes in 55 flights, with 23 consecutive successes
presently. At the same time, the average unit launch cost of Scout has
risen only moderately during this period.

Looking ahead toward the next decade, however, the role of the
small Taunch vehicle must be re-examined in anticipation of more diverse
and increasingly stringent mission requirements. The relationship between
Scout and the other launch vehicles within the NASA inventory, including
the space shuttle, also plays an integral part in establishing the require-
ments for a Scout-class launch vehicle for use during the next decade.

2.1 OBJECTIVE AND SCOPE

The objective of this study was to define the most economical
approach of meeting Scout-class launch vehicle requirements - Tlaunch
requirements which cannot be economically met by other space booster
systems. In ascertaining the most economical approach, the whole spectrum
of configurations was considered - ranging from an updated Scout which
capitalizes on existing hardware, facilities and GSE, to development of a
completely new launch vehicle designed specifically to fulfill the mission
requirements defined herein.

2.2 STUDY GUIDELINES
This study was performed under the following technical guidelines:
(1) Payload capability up to 340 kg for an easterly launch
from Wallops Island, Virginia, into a 556 km circular
orbit.
(2) Provision for elliptical orbit, planetary probe, reentry,
and transfer missions.




(3) Payload step-down capability to the current Scout
performance range. |

(4) No single configuration is required to satisfy all
vehicle missions.

(5) Use of solid, liquid, and hybrid propellants was to be
considered. Motor cut-off and shut-down capabilities
and their effect on mission performance were also to
be investigated.

(6) Emphasis was to be placed on inherent reliability in
the development of the corceptual design.

(7) In consideration of upgrading the present Scout launch
vehicle, cost comparisons were to consider modifications
of vehicle subsystems in addition to motors.

(8) Expected launch rate of five launches per year over a
ten-year period.

(9) Vehicle costs were to be amortized over the anticipated
launch rate. Costs of currently planned Scout subsystem
improvements were to be noted but kept separate and not
amortized.

(10) Consideration was to be given only to launch vehicle
subsystems within the state-of-the-art. SOA is defined
as subsystems which will require no new development for
availability consistant with Taunch date requirement.
Modifications or changes to existing flight hardware
are not considered development improvement in the SOA.

(11) Launch complex and ground support equipment requirements
were to be determined, but associated costs were to be
listed separately and not amortized.

(12) Reliability and launch accuracy as well as improvement
of payload capability were to be considered.

2.3 STUDY APPROACH

VMSC's approach to determine the most economical Taunch vehicle
for Scout-class mission requirements was to (1) establish additional Taunch
vehicle requirements, (2) synthesize and analyze candidate launch vehicles,

5



(3) screen the various configurations on the basis of performance, design
and cost, (4) select the most promising and economical launch vehicle con-
cept, (5) lay out a conceptual design and appraise its detailed performance,
reliability, and cost, and (6) prepare a development plan for the ASLV.

To insure an objective study, two approaches, each with a similar
baseline performance, were developed and evaluated. The first approach
emphasized a logical growth pattern for Scout through a series of incre-
mental improvements. Various combinations of stage improvements, strap-ons,
and new stages, coupled with other subsystem improvements, were investigated.
The second approach emphasized new vehicles based on optimized arrangements
of motors, including consideration of those available in the national inven-
tory, together with state-of-the-art subsystems.

The decade, or 10 year program, as discussed above is interpreted
to be the time period 1975 to 1985.




3.0 LAUNCH VEHICLE REQUIREMENTS

Looking back at the first fourteen years of space flight, certain

trends have been observed in regard to payloads and missions. As larger
payload capability becomes available, spacecraft designers soon seize the
opportunity to take advantage of these gains, either through inclusion of
more scientific equipment or by relaxing weight and volume restrictions.
As a result, the trend has been toward larger and heavier payloads and this
trend is expected to continue into the next decade. At the same time, the
trend has shifted towards more diverse and sophisticated missions, placing
ever-expanding requirements on launch vehicle versatility and accuracy.

In establishing requirements for the ASLV, it was imperative.
therefore, to (1) obtain the best possible mission model for the intended
operational period, (2) establish accuracy goals to aid in the definition
of guidance hardware, and (3) examine past and planned spacecraft dimen-
sions to determine payload volume requirements and shape parameters for the
ASLV payload shroud design.

A 1list of data sources, which provided the bulk of the informa-
tion on projected missions and launch vehicle requirements, is given in
Table 1.

3.1 MISSION ANALYSIS

A comprehensive review of total projected NASA unmanned launch
vehicle requirements was undertaken to determine launch schedules, fre-
quencies, and mission distributions, including the occurrence of missions
with special orbits - orbits that demand unique launch vehicle features.
Scout missions, both past and planned, were also analyzed. A mission model
was then constructed for the ASLV to assist in definition of vehicle sub-
system requirements. A quantitative assessment of the impact of the shuttle,
as it becomes operational, has also been made.

3.1.1 Launch Schedules and Frequencies.

Estimates of unmanned Taunch vehicle requirements represent, to
a large extent, a compromise between overall NASA planning activities and
budget projections. It is not uncommon, therefore, to see a spectrum of
mission models which reflect variations in emphasis on the space topics



“S3|Npayds UOLSSL) uo
9133nyS 9oedS JO JUBWSSASSY ¢Sdeak gz 2IX3U Y3

(LL "43Y) 0661

40} SUOLSSLY 3IN0DS pue e3]18Q 40y] palrdaloud -1/6] 404 S|SpOl§ UOLSSLW d|DOLYIA youne] [|ewS O
CTEINETRITEN (0L °39Y) suoLssLy
youne] 3s0) MO 404 |SPOW UOLSSLY AdeuULWL|[BUd pajewolny 40) SaL|Llwe{ d[ILY3A yduney 3sS0) MO O
6 "3y
SjuswadJ Lnbay BuLuue|d 9[OLYSA youne] yYSyN uL asn LoM‘m_muo&
9O LY\ youne ] €s|Spo UOLSSLK 9ALSuayaudwo) UOLSSL) 9oedS pojewolny a4njngd JO S93RWLYSI O
Sjusw L4adx3 (8 °43Y) SLeoy |euoLieN 03 uoLje|ay
9oedg snoldep 404 ej3eq UOLSSLY B 34e403deds ALdY] B SOAL3O9[qQ B S|Leoy soedg poajoa|as o
APN3S ASW 404 3SLT UOLSSLY (£ _38Y) Apn3S 8[JLYap 3j4eud3deds Je[NPOj O
(9 *49y) SUOLSSLW
SUOLSSLW suotjedt|ddy @oedS J0j eIRQ 21QU(Q uorjeoLjddy aoedg ulL s93L[|@3eS ||ewS JO 9|0y O
suoLledL|ddy SIYS 404 S3ILQUQ [euswladdx] - (G *39Y) 340day Apnis 3jeddadeds § wedbodd S[yS O
©le(] UOLSSLy “SaLILYsA
youneq ¢adA] °3dx3 €sayoune] pauuewun parouaddy (b °49Y)(YSSO) suoijedl|ddy § 8duaLds adeds /6l ©
e1e(Q UOLSSLY °SjususuLnbay (€ "494) (dS3S)
1jed090edg ¢soLisituajoedey) § adA] juawiaadx3 weuaboud 3da0ddng sjuawiuaadx3y asedg juaduan) o
(2 *49y) 9pedsQ 0/61 dY3 40}
S3|NPaYdS youne] pue sjuswadihbay a|dLYsp youneT weabodd d[OLYIA youne pauuewun SLMOT YSYN 8961 O
(L "48Y4) 340ddy dnouay xsel adedS YSYN [961 O

"sue|d UOLSSLW £ 404 Sa[npaydS youne] pazdalodd

NOTLYWYOAINI NOISSIW

324N0S v.iva

SINIWIYINDIY NOISSIW 40 NOILINIA3Q ¥04 $32¥NOS Yiva -

L 378vl




(e.g., physics, astronomy, planetary, applications, etc.) as well as
forecasted funding levels. A representative cross-section of total 0SSA
Taunch vehicle requirements is presented in Table 2. The first three
models were derived from Reference 9, the NASA Lewis model was obtained
from Reference 2, and the mission model for the Low Cost Launch Vehicle
Family was excerpted from Reference 10. The latter model does not include
Scout-class launches. The Battelle Memorial Institute report (Reference 9),
recommended the first three mission models for future planning purposes.
These models reflect nominal, low, and high flight activity, respectively,
for the next eleven years. Since these models correspond to fluctuations
in funding levels, it should be expected that, as funding varies, emphasis
will shift between space projects and, hence, requirements for the types
of launch vehicles will also vary. This aspect is illustrated in Table 3,
which identifies Scout launch vehicle requirements for various mission
models.

The Battelle Mission model for the nominal funding level calls
for a larger number of Scout launches than the one for the high funding
level, where emphasis shifts towards the larger, more costly launch
vehicles. With low funding levels, Scout launches are reduced along with
launches of all other NASA launch vehicles. Nonetheless, the lowest
projected Scout Taunch rate is still 6.7 per year. The 1968 NASA Lewis
model shows an average launch rate of 4.9 per year. Review of Scout launch
schedules, including future planning for the 1970-75 time frame, indicates
an average launch frequency of 8.8 per year. Thus, it appears that a
launch rate of 5 per year established in the guidelines is a conservative
number for the ASLV mission model, particuiarly in view of the planned
payload increase that was not apparent when these models were drafted.

The effect of the Space Shuttle on the ASLV mission model was
assessed from the information of reference 11. This study shows that the
number of Scout missions in the 1971-1990 time period is reduced only slight-
ly by introduction of the Shuttle in 1979 from a total of 146 (7.3/yr)
launches without the Shuttle to 135 (6.8/yr) with the Shuttle. This small
reduction is not unanticipated since current indications that the space
transportation system of the 1980's will consist primarily of the Shuttle

9
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and the Scout would portend a high Scout utilization. While the forecast
of reference 11 did not specifically consider the effect of increased
Scout capability such as being considered for the ASLV, the same reasoning
would apply. Consequently, it is felt that the introduction of the Shuttle
will have little impact on the number of ASLV launches.
3.1.2 Mission Classification and Distributions

Those mission models - the nominal funding Tevel Battelle Model,
the 1968 NASA Lewis model, and the Low Cost Launch Vehicle model were
analyzed in further detail with the objective of categorizing the missions
into general and special earth orbits, probe and reentry launches, and
earth escape trajectories. Past and presently planned Scout Taunches were
also categorized in the same manner. The resulting distributions of
missions in the various orbit categories are given in Table 4.

Missions were categorized and subdivided as shown, because each
of the entries places varying requirements on a launch vehicle and these
requirements, in conjunction with the distribution of missions, are useful
in establishing ASLV requirements. Special earth orbits, which constitute
a large percentage of the missions, were categorized separately because
they impose more demanding requirements on the launch vehicle than the
remainder of the missions. These special orbits, their applications, and
related special requirements are outlined in Table 5.

A11 special orbits require accurate orbit insertion. For
example, Atmospheric Explorer-type missions generally require tolerances
of about 10 km on perigee altitude (Reference 3). Similarly, sun-
synchronous missions dictate tolerances of 35 to 55 km on altitude and 0.3
degrees on inclination (Reference 12) in order to achieve desired opera-
tional lifetime. Accuracy requirements are discussed in greater detail
in Section 3.2.

Restart on the injection stage is desirable, though not essential
for all but the first special orbit category in Table 5 because it improves
payload capability. Elliptic orbits with specified arguments of perigee
and injection into synchronous transfer orbits require use of a high
velocity upper stage for injection into these orbits. A parking orbit
capability is also necessary for the latter two missions in order to
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orient the vehicle for injection into the desired orbit.
3.1.3 Selected ASLV Mission Model

Using the mission models of Table 4 as guides, the ASLV mission
model presented in Table 6, was developed. In arriving at this model,
consideration was given to the mission trends in Table 4, the projected
improvement in payload capability, and the peculiar attributes and short-
comings of a small Tlaunch vehicle of the Scout-class. For example, Scout

has historically been a good candidate for reentry and probe missions
and it is anticipated that Scout will continue to launch a small number of
these types of payloads for both NASA and DOD. Thus, two and three missions
have been assigned to probe and reentry, respectively, in the ASLV model.

Scout has never been used to place a payload into an earth escape
trajectory, although capability exists to inject about 45 kg into a solar
probe trajectory with the five stage Scout. The ASLV, with a projected
escape capability in excess of 90 kg, is expected to launch a limited
number of these missions and four launches have been allocated. This might
include such potential spacecraft as advanced solar electric propulsion for
out-of-the-ecliptic excursions.

The Targe number of launches assigned to the special orbits is
in consonance with the projected trends of future missions and correlates
directly with both the NASA and Scout models. The relatively large number
of missions in the "specified orbit precession" category is attributed to
the Navy's Transit navigation satellites and applications-type missions in
sun-synchronous orbits. The ASLV, with a synchronous transfer payload
capability between 135 and 160 kg is expected to launch a number of space-
craft into this type of orbit.
3.1.4 Requirements for Special Launch Vehicle Features

Table 6 also outlines the areas where improvement or new features
are required, or desired, over those of the current Scout. In view of the
total number of missions that are flagged for additional accuracy, an
improvement in this area is deemed necessary. Likewise, a parking orbit
requirement with attendant attitude control and reorientation capability is
indicated for a substantial number of launches. Restart capability will
improve payload capability significantly for medium to high circular orbits

~

15



ST300W LSO3 MOT ANV

“3773LLv8 “SIMIT 40 IOVYIAYx

V101 0§ !
v 318y 318y
J SIA IEVYISIA | -¥ISIC | -¥IS3C g€l 3d¥2S3 HINY3
SNOISSIW T
€ IW0S ON ON ON 0"l AJINITY
SNOISSIW
2 IW0S ON ON ON 9'0 $3904d
@ SHILSITIVE HLdv3
S S3A IIav¥ISIA| SIA | SIA 9°12 YIASNVYL HONAS OLNI NOILDICNI
b SIA J19vdISIa|  S3IA S3A £°0 339143d 40 INIWN9YY GII4193dS
2L ON 37941530 ON S3A 2°ve (wy G656 <) NOISSI)
; -4d 11940 0314133dS
€ ON ON ON SIA 9'9 (WY 842 > 3391¥3d) SLISY0 JILdIT13
w S1I940 1vI23dS
0 | ON 318v41530 ON ON G*0 (wy 955 < 33I9IYId)
g ON ON ON ON 2'S (956-8/2 339I¥3d) 21141113
f
L ON 379vy¥1s3a ON ON 2 vl (wy 566 < 3ANLILTY)
s ON ON ON S3A L'8 (wy 955 >3IANLILTY) ¥YINDHID
SITRI0 HIidv=
SNOTSSIW J9V1S
YIGWON © ¥3ddn | ALITISVdYD | LISHO | ADVYNDOY | SNOISSIW
03L0I0Rd  ALIDOTIA|  LYVISTA | ONINYYd | GIAOYAWI | »INID¥Id NOISSIW
 H9IH

1300W NOISSIW ATSY Q3L2373S 9 378yl

16




and will also provide payload gains for missions requiring a parking orbit.
While restart presents no problem for liquids, this feature is considered
borderline insofar as current state-of-the-art in solid propellant motor
technology and is therefore treated as a growth item - one that should be
available in the second-half of this decade. Requirements for a kick stage
on high velocity missions are also noted in Table 6. A synopsis of launch
vehicle requirements, discussed above, is given in Table 7.

3.2 ACCURACY REQUIREMENTS

3.2.1 Approach and Ground Rules - The mission model Section 3.1.3
disclosed a need for improved guidance accuracy on future missions. The
approach taken in establishing accuracy requirements for the ASLV was to
examine the experimentors' requirements and compare these with analysis

where possible. Accuracy requests for both past and projected missions were
collected from experimentors and reviewed. Care was exercised to insure
that accuracy data thus obtained reflected initial user requirements and
not the launch vehicle accuracy. When accuracy data were lacking for speci-
fic missions, requirements were estimated based on the knowledge of the
mission objectives. The combined accuracy information was then analyzed,
grouped, and correlated with the ASLV mission model.

Payload accuracy data were obtained from Scout records, SAMSO/
SESP reports (Reference 3), and discussions with spacecraft designers and
experimentors. In all, accuracy requirements for a total of 82 missions
were compiled, including 47 Scout launches, 16 SAMSO/SESP payloads, 14
missions identified by spacecraft designers and 5 missions for which
accuracies were estimated. The last five missions encompass gravity
gradient, 12 hour communication satelilite, sun-synchronous, synchronous
transfer, and quasi-synchronous. Each of these types of missions have
specific requirements, but accuracy data were not found in the list of
spacecraft designer's requests, except for the sun-synchronous missions.
Rationale for establishing accuracy requirements on these five missions is
given below.

Gravity Gradient - To achieve adequate pointing accuracy with
satellites that are stabilized via gravity gradient booms, orbit eccentri-

city must be minimized. Using an allowable pointing error of 3 degrees as

17
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an acceptable maximum deyiation the maximum allowable orbit eccentricity
becomes 0.0525.

12 Hr. Communication Orbit - Another mission of interest is a

12 hour highly elliptic communication satellite which, for example, could
dwell over the U.S. for an extended period on every revolution to permit
continuous communication between the east and west coast during this dwell
period. Tight control on both period (and, hence, apogee/perigee altitudes)
and inclination are required to control apsidal advance and orbit precession
so that the orbit remains in a propitious orientation for communication. In
establishing accuracy requirements for this mission, it was assumed that
orbit parameters would be controlled to permit communication between the
east and west coast of the U.S. on every revolution for a period of one
month. '

Sun-Synchronous Orbit - A mounting number of spacecraft, parti-
cularly in the applications area, are being placed into sun-synchronous
orbits due to the inherent advantage of this type of orbit for geological,
agricultural, and meteorological mapping. In view of this, an analytical

investigation was conducted to complement, as well as verify, the accuracy
data obtained from the payload agencies. The key to success of this mission
lies in close control of the orbital precession rate, which is functionally
dependent on orbital period (or altitude) and inclination.

A 15 degree deviation in the orbital precession over a period of
a year was selected as an accuracy goal because an angular drift of this
magnitude appears to be acceptable for the success of most missions.

Synchronous Transfer - Another prominent mission involves the

placement of a spacecraft on a synchronous transfer trajectory. The ASLV
with a projected payload weight between 135-160 kg for this mission,
appears attractive for concept test and validation of new communication,
meteorology, and navigation equipment. The approach would be to retain
the spacecraft in the synchronous transfer orbit, rather than injecting it
into the synchronous orbit, since this orbit partially simulates the
environment of a true synchronous orbit. Accuracy requirements for this
mission were thus formulated to permit the spacecraft to achieve near
synchronous altitudes for approximately 2 hours each side of apogee.

19



Alternately, if injection into a true synchronous orbit is desired, an
apogee kick motor, usually considered part of the spacecraft, is used to
inject into the true synchronous orbit. Since orbit maneuvering and
stationkeeping is generally considered necessary for this mission, it was
assumed that the above accuracy requirements for the synchronous transfer
orbit would be sufficient because onboard propulsion could be used to
eliminate remaining injection errors.

Quasi-Synchronous Orbits -Closely related to the synchronous
transfer mission, the quasi-synchronous orbit offers complementary
advantages. While this orbit does not reach synchronous orbit altitude,
it permits the spacecraft to dwell over a fixed location on the earth for
extended periods with very little relative motion. Apogee altitude must
be controlled to +1850 km or less to obtain success on missions of this
type.

3.2.2 Accuracy Summary

Accuracy information on the 82 missions fell into various mission
categories as outlined in Table 8. Allowable altitude deviations are
presented in terms of percent. This method was found most advantageous
in the correlation of the accuracy data from the many sources and indivi-
dual missions. Both average and minimum accuracy requirements are indi-
cated. The average value represents a weighted average of all data points
within each category, while the minimum value corresponds to the most
stringent requirement observed within each group. Prior to tabulation,
requirements in each category were reviewed and those which were found to
have either very loose or unrealistically tight requirements (due to special
applications) were eliminated; hence, information in Table 8 represents
weighted values.

To aid in the definition of orbital accuracy requirements, data
from Table 8 were converted into dimensional units. Figure 1 depicts
accuracy requirements for circular and near-circular orbits. The cross-
hatched areas in this curve are bounded by mean and minimum accuracy
requirements. The allocation of the number of missions in accordance with
the ASLV mission model is also shown.

Low altitude, circular orbits are usually employed in exploratory-
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type missions where accuracy is not critical, provided the desired 1ife
time is achievable. This is substantiated in Figure 1. Applications
satellites, however, favor higher altitudes and require closer tolerance

in percent of orbital altitude to fulfill mission objectives. The tightest
tolerances are demanded by spacecraft that rely on a specified orbital
precession rate for accomplishment of their mission objectives.

Information on orbits with specified orbit precession, shown in
the related cross-hatched area, is based only on the accuracy data received
from payload agencies. For comparison, three curves for the same mission,
but representing various inclination accuracies, have been superimposed
on Figure 1. These curves were calculated analytically and are based on
a three sigma deviation of 15 degrees in the precession of the orbital
plane over a period of a year.

The current Scout three-sigma deviations in altitude and inclina-
tion are about +340 km and +1.2 degrees, respectively, for a 1111 km cir-
cular orbit. Improvements in both parameters are necessary to meet the
indicated requirements. If full inertial guidance is incorporated in the
ASLV design, an inclination accuracy on the order of 0.1 degrees can be
expected. With this accuracy, altitude errors up to about +90 km can be
tolerated on sun-synchronous mission. If augmented open-loop guidance,
with a forecasted inclination accuracy of about 0.3 degrees, is implemented,
orbit altitude errors must be limited to about +50 km for this mission.

Analysis of accuracy requirements for the sun-synchronous mission
and those for the remainder of the missions in Table 8 showed
that the sun-synchronous mission placed the most stringent accuracy require-
ments on the launch vehicle. This mission, therefore, defined the accuracy
requiréments for the ASLY. This mission was therefore chosen to define the
accuracy goals for the ASLV. However, it should be kept in mind that the
degree to which such requirements are met needs to be tempered with trade-
offs in guidance subsystem cost, weight, and technical risks, as well as
with judgement based on past experience in meeting user requirements.
Guidance subsystem trade-offs as related to accuracy requirements are
reviewed in greater detail in Section 5.0.
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3.3 PAYLOAD SHROUD REQUIREMENTS

A survey of spacecraft densities and dimensions was made to
establish envelope requirements for the design payload of 340 kg. Informa-
tion was compiled on a total of 40 spacecraft within the weight region of
interest.

Spacecraft densities resulting from this survey are illustrated
in Figure 2. A selected average density of 192 kg/m3 was used as a
reasonable design number for payload shroud design purposes. For the 340
kg payload weight, the required payload volume with this density is 1.77
m3. Payload dimensional data are presented in Figure 3 in terms of length-
to-diameter ratio (L/D). A selected average value of 0.94 for L/D was
used as a guide for payload shroud design purposes.

It was considered desirable, as a design goal, to define the
payload shape as cylindrical. With the selected volume and L/D values
derived above, the corresponding payload cylinder diameter is approximately
1.32 m and the associated length is 1.25 m. An allowance of 20.3 cm was
added to the basic payload diameter for shroud structure and payload
clearance giving a shroud outside diameter of 1.52 m.

Additional detail shroud design requirements for nose radius, nose
cone angle, and boattail angle were defined as shown in the sketch below.

10° 50
1 ) K9

221

PAYLOAD/’132m

3 A -
// 1.77m% % (52in)

1.62m R
(60 in) (12.5in)

These factors were based primarily on aerodynamic drag and buffet consider-
ations stemming from experience with the design of the Scout 1.066 m dia-
meter payload shroud.
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4.0 LAUNCH VEHICLE SYNTHESIS AND ANALYSIS

Definition of the most economical apbproach for satisfying the de-
sign payload launch requirements dictated careful consideration of a broad
range of launch vehicle configurations - from upgrading the current Scout
vehicle to development of a completely new vehicle tailored specifically
to the guidelines and requirements delineated in Sections 2.0 and 3.0.
Accordingly, an orderly, systematic approach was taken to (1) identify
potential staging arrangements, (2) synthesize conceptual configurations,
and (3) select and evaluate the most practical and economical launch
vehicle.

Staging arrangements were grouped into two categories: Improved
Scout configurations and New Launch Vehicles. In the Improved Scout cate-
gory, stage improvements, replacement of current motors with new motors,
and use of strap-ons were considered individually and collectively. Two
avenues were pursued in the definition of New Launch Vehicles. The first
was directed towards definition of new, optimally staged vehicles to satis-
fy mission requirements. Both liquid and solid propellant configurations
were considered. The second focused on adaptation of existing booster and
launch vehicle hardware; specifically, Minuteman, Polaris/Poseidon, and
Thor Delta stages.

Synthesis of individual configurations was accomplished by sizing
selected stages so as to allow the launch vehicle to place a 340 kg payload
into a 556 km circular orbit. For new, optimally staged vehicles, all
stages were sized to satisfy this mission requirement at minimum launch
weight; for configurations characterized by a mix of existing and new
stages, the new stages were sized to complement the existing stages in
satisfying the design mission. Characteristics of the new stages, thus de-
fined, aided in locating other existing motors, or engines, in the desired
size range. When available, these newly located motors and engines were
substituted for the new stages and performance was reappraised in terms
of the design mission.

In support of the configuration synthesis, trade studies and
analyses in the propulsion, control, guidance, structural design, cost and
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other disciplines were carried out to (1) review applicable state-of-the-
art design and hardware developments, (2) identify characteristics of can-
didate propulsion and guidance systems, (3) generate parametric subsystem
size data and sensitivities, and (4) provide subsystem performance, weight,
dimensional, GSE, operational, reliability, and cost data.

Configurations were subjected to three sequential levels of
screening to narrow the Tist of candidates to two configurations. Screen-
ing criteria included such factors as performance, cost, impact on GSE,
design aspects, technical risk, and complexity associated with step-down

payload missions. A winning configuration was then selected after a final
evaluation.

4.1 STAGING ANALYSIS
4.1.1 Staging Ground Rules and Assumptions ~ Prior to configuration

synthesis a number of ground rules were established and appropriate assump-
tions were made to facilitate the sizing effort and, at the same time,

provide a common basis for configuration comparison. These are summarized
below.

Design Mission

A11 launch vehicles are sized to place a 340 kg payload into a
556 km orbit when launched due east from Wallops Island, Virginia.

Injection Stage

The injection stage is attitude stabilized about all three axes
and contains a guidance and control system. Velocity control is provided
by thrust termination or vernier correction with the reaction control sys-
tem. Candidate vehicles with Tiquid injection stages will use the inherent
and proven capability for engine restart by injecting into a Hobmann trans-
fer orbit from an initial altitude of 185 km. Restart on solids, on the
other hand, has not been space qualified at this point and vehicles with a

solid propellant injection stage assume a direct ascent to the desired
altitude.

High Velocity Upper Stage

A high energy solid propellant upper stage is employed on high
characteristic velocity missions, such as earth escape, synchronous trans-
fer and reentry flights. This stage, mounted above the normal injection
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stage, is spin stabilized and sized to maximize payload into the synchronous
transfer orbit. A number of considerations led to selection of the syn-

chronous transfer mission for upper stage sizing. First, a number of syn-
chronous transfer missions are forecasted in the ASLV mission model. Next,
selection of this sizing point eliminates the requirement for restart on
the injection stage for this mission, because the fifth stage can be sized
to provide the discrete velocity increment needed to inject into the trans-
fer orbit. Finally, an upper stage sized for synchronous transfer injection
exhibits reasonable escape performance, as revealed in Figure 4. This fig-
ure shows fifth stage payload curves based on two upper stage sizing points
- synchronous transfer and earth escape - for a typical four-stage launch
vehicle that is optimally staged for the 340 kg payload/556 km orbit design
mission. '

Vehicle Sizing

To assist in the general Tlaunch vehicle sizing, subsystem weights
were divided into fixed and variable weights. Subsystem weights that re-
main essentially fixed regardless of stage size were handled as discrete
weights. In contrast, subsystem weights which vary with stage size were
included in the stage structure factor, defined as the ratio of stage burn-
out weight to total stage weight (excluding fixed weights). Distribution of
subsystems in these two categories is denoted in Table10.

The fixed weights used throughout the staging analysis, except
in the final refinement of the conceptual design, are given in Table 9.

TABLE 9
FIXED WEIGHT SUMMARY
Weight
(kg) (1bs)

Intermediate Stage (Payload Shroud) 249-408 550-900
Injection Stage

o Without upper stage 55 121

0 With upper stage (incl. spin table) 80 154
High Energy Upper Stage 11 24
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The shroud is allocated to the last stage which accelerates it prior to
ejection. While discrete weights were used, shroud weight varies from con-
figuration to configuration due to the peculiar characteristics of each
vehicle.

Variable weights, expressed in terms of stage structure factor,
were obtained from correlation of existing stage data, projected character-
istics of current state-of-the-art motors and engines, and specific require-
ments imposed on individual stages. A synopsis of the stage structure
factors used in sizing launch vehicles stages is provided in Table 11.
Corresponding values of vacuum delivered specific impulse are also denoted.
In sizing individual stages, these parameters were, of course, varied due
to the effects of stage size, operating regime, and stage equipment and
iteration on structure factor and specific impulse was generally required.

TABLE 11 SUMMARY OF STAGE STRUCTURE FACTORS AND SPECIFIC IMPULSES

STAGE STRUCTURE VACUUM DELIVERED
PROPELLANT FACTOR SPECIFIC IMPULSE
N-sec 1bf-sec
kg 1bm
SOLID
1ST STAGE 0.700 2565 262
2ND STAGE 0.140 2771 283
3RD STAGE 0.150 2814 287
4TH STAGE 0.185 2821 288
LIQUID-STORABLE
1ST STAGE 0.049 2814 287
2ND STAGE 0.093 3020 308
3RD STAGE 0.114 2971 303
LIQUID - LOX/RP
1ST STAGE 0.059 2834 289
2ND STAGE 0.124 3069 313
LIQUID - LOX/LH»
1ST STAGE 0.134 3755 383
2ND STAGE 0.145 4353 444
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When existing stages were integrated into a launch vehicle con-
figuration, actual stage weights and propulsion performance were used.
Equipment, such as control, destruct, etc., was added when required.
Likewise, weight variations were estimated for stage modifications (e.g.,
attachments for strap-ons) and adapter size.

In integrating existing motors, rather than stages, stage sub-
system weights were based on Scout components, updated to current state-of-
the-art, and scaled on the basis of weight above the stage and stage dia-
meter. In the design of the configuration finally selected, weights were
based on engineering analyses and vehicle layouts rather than component
scaling or stage structure factors.

Payload Weight Definition

Launch vehicle performance is customarily presented in terms of
weight in orbit, or useful load, instead of net payload weight. In this
study, however, the ASLV was sized for a net payload, or spacecraft weight,
of 340 kg. In differentiating between weight in orbit and net payload,
weight in orbit is the sum of net payload weight and injection stage fixed
weight, i.e., net payload plus 55 kg. When a high energy upper stage is
required, weight in orbit corresponds to net payload plus 11 kg. This
distinction becomes valuable during the evaluation cycle because injection
stage or upper stage fixed weights trade one to one with payload and thus
allow immediate evaluation of the impact on top stage fixed weight on pay-
Toad. At the same time, this definition avoids fictitiously high payload
weight indications. Current Scout net payload weight corresponding to this
definition is 163 kg (360 1b) in the 556 km (300 n.mi.) orbit with the 107
an (42 in) diameter shroud.

4.1.2 Candidate Staging Concepts - The initial step in the configuration
synthesis was directed toward definition of candidate staging concepts. A
staging concept is identified by the number of stages, the type of propellant
in each stage, and, in some instances, specific motors or engines. Uniden-
tified stages may be either new or existing motors/engines and their sizes
are not specified. In relation to a staging concept, all stages of a '
launch vehicle configuration are identified by motor designation or stage
characteristics such as size, propellant performance, etc., of a new motor.
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The aggregate of staging concepts considered in this study is
presented in Table 12. Each of the concepts is explored in the following
sections. Concepts with stages denoted by "solid" or "liquid" were first
evaluated by optimizing stages so noted, in conjunction with the designated
stages, for a 340 kg payload in the 556 km orbit. Characteristics of the
optimized stages were then applied in surveying existing motors/engines
for applicable propulsion systems. If existing motors close to required
size were available, they were integrated into the staging stack, and
payload performance was reassessed. Use of existing motors was, of course,
stressed throughout the configuration synthesis to minimize technical risk
and development cost.

Hybrid Propulsion

Hybrid stages do not appear in Table 12 because they were with-
drawn from consideration early in the study. A review of hybrid propulsion
systems, based primarily on information in Reference 13, indicated (1)
conventional propellant hybrids are non-competitive in performance to solids,
(2) development of cryogenic oxidizer hybrids is not far enough along to
merit consideration for ASLV application, and (3) both development and
recurring costs are higher than those of solids.

Hybrids using conventional oxidizers such as RFNA, N204, or H202,
deliver a propellant specific impulse in the same range as current solids,
i.e., between 2750 and 2940 n-sec/kg. However, motor structure factors
(motor inert wt./loaded wt.) of hybrids (.13) are poorer than those
of solids (.08) and hybrids thus achieve less performance for a motor of
the same weight.

Hybrids with cryogenic oxidizers provide comparable, and in some
cases, better performance than solids. For example, a FLOX/LITHIUM hybrid
will deliver up to 3730 N-sec/kg of specific impulse and, even with its
poor motor structure factor (.15),will provide better performance than
solids. However, cryogenic hybrids are still in the technology demonstra-
tion phase and are not considered within the state-of-the-art guidelines
for the ASLV.

Development and recurring costs of solid motors and cryogenic
hybrid systems, ascertained from Reference 13, are compared in Table 13
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for a total impulse of 2.4 x 106 N-sec, corresponding to a typical fourth

stage motor. Development costs include the number of test firings required
to achieve a reliability of about 98-99%.

TABLE 13 COST COMPARISON OF SOLID AND HYBRID PROPELLANT MOTORS

DEVELOPMENT COST RECURRING COST

Solid Motor $4.0 M $50K
Cryogenic Hybrid System 12.0 75

Based on the above data, hybrids were not included as candidate
propuision configurations.
4.1.2.1 Improved Scout Concepts - In deriving staging concepts for the
Improved Scout, the objective was to retain as much Scout hardware as
possible and minimize motor development. Accordingly, concepts in this
category feature, as a minimum, either the Algol III or Scout upper stages,
or both.

Strap-ons appear attractive for the Improved Scout because they
provide an effective means of increasing the payload capability to the re-
quired 340 kg and may be deleted for step-down missions in the current
Scout payload range. Castor II strap-ons of the type used by Thor/Delta
are readily adaptable to the Scout Algol III and are prime candidates.
Stretched Castor II-A strap-ons are currently being considered as a
growth step for Thor/Delta, if a requirement for further performance capa-
bility arises. Should this motor go into development and production, it
might also be very attractive for the ASLV and is therefore included in
the Improved Scout concepts.

Other strap-on motors such as Algol IIB, Castor IV, and Algol III,
as well as two Algol III stages side-by-side, were excluded from considera-
tion for numerous reasons. First, configurations using these motor combina-
tions became rather heavy. Second, first stage thrust-to-weight will re-
sult in dynamic pressures of about 200 000 N/m2 (4180 and higher, lb/ftz)
depending on the specific configurations, and significant structural modi-

fications and weight 1increases would be required for the resulting loads.
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Another detracting factor for configurations with either two or three Algol
ITT motors in the first stage is that one motor may burn out before the
other, making vehicle control difficult.

Choice of existing motors for the second stage is constrained by
total impulse and stage diameter. The current Castor IIA second stage on
Scout was considered too small in diameter and, in most cases, total impulse;
however, it was included in some configurations as a matter of interest.

Diameter becomes an important parameter on the second stage be-
cause payload diameters established in Section 3.3 dictate a payload shroud
diameter of around 1.52m and a second stage with small diameter may have
difficulty in sustaining the resulting bending moments. If the third stage
has a large diameter, the second/third stage adapter must be relatively
Tong to minimize the flow expansion angle to avoid buffeting. On the other
hand, if the third stage has a small diameter, it must be encased by the
payload shroud to sustain the loads and avoid buffeting. In this case,
the shroud boattail must taper from 1.52m into a second stage with small
diameter, or a cylindrical section with second stage diameter that surrounds
the third stage. In either case, the length of the boattail, governed by
the maximum allowable flow expansion angle and second stage diameter, re-
sults in a relatively Targe and heavy shroud.

A minimum second stage diameter of about 1.0 m was selected
because it represents a compromise in that adapters or payload shrouds for
second stage diameters less than this value are considered too long and
heavy, but choice of this diameter does allow inclusion of existing motors
such as the Algol IIB and Castor IV.

The Algol IIB and Castor IV motors have the same dimensions and
approximately the same total impulse; hence, only the Castor IV was con-
sidered for second stage application. Further, the Castor IV manufacturer
has stated that, with some engineering modifications, the higher perform-
ance Castor IIA propellant could be used in the Castor IV. Thus, this high
performance version of the Castor IV (with altitude nozzle) was used in the
performance analyses.

Other candidate second stage motors are the Minuteman III second
stage with an outside diameter of 1.32m, the Algol III, modified with an
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altitude nozzle, and a shortened version of the Algol III with an altitude
nozzle. These last two versions, when used in combination with an Algol
IIT first stage, offer the same diameter as the first stage and thus
simplify the interstage design.

In considering third and fourth stage motors, either existing or
new ones, the number of stages in the configurations was Timited to no more
than three when a Tiquid stage was used as an upper stage and to no more
than four when only solid motors were addressed. This limitation was made
because stage structure factors for liquids deteriorate rapidly as stages
become small, while stage structure factors of solids remain favorable,
even for relatively small stages.
4.1.2.2 New Launch Vehicle Concepts - Staging concepts for new launch
vehicles were divided into (1) new, optimized vehicles and (2) existing
booster/launch vehicle derivatives. For new, optimized solid propellant
vehicles, three and four stage configurations were considered. Past exper-
jence shows that due to the relatively poor specific impulse and stage
structure factors of lower stage solids, solid propellant launch vehicles
require at least three stages to preclude excessive 1ift-off weight and to
achieve adequate mission flexibility. Liquid stage structure factors and
specific impulse, on the other hand, are considerably better than those of
solids as stages get large and liquids therefore require fewer stages than
solids. In this study, two stage liquids using N204/Aerozine, LOX/RP, and
LOX/LH2 were considered. A three stage storable Tiquid was also sized as
a matter of interest.

In adapting existing boosters for use on ASLV, only production
Minuteman III and Poseidon stages appear attractive because earlier ver-
sions of these boosters are reaching the end of their projected shelf Tife
and would also require refurbishment. Redirection of the Minuteman I and
IT or Polaris A2 and A3 boosters to a launch vehicle praogram with launch
schedules into the mid-1980's would entail an extensive program, including
test firings, to ascertain the potential shelf life extensions of these
motors and was, therefore, considered undesirable.

Second stage candidates for the Minuteman III first stage consist
of the Castor IV with Castor IIA propellants and altitude nozzle, the Algol
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IIT and of course, the Minuteman III second stage.

Concepts based on the Posejdon booster utilize both existing
first and second stages, in conjunction with new upper stages, because the
1.88n first stage diameter, in combination with the first/second stage
adapter design on this vehicle, precluded use of other existing second
stages.

Two derivatives of the Thor/Delta launch vehicle were also in-
cluded in the category of launch vehicle derivatives. These are an off-
Toaded "Straight 8" Thor first stage and a fully loaded "Straight 8" first
stage with three Castor strap-ons. A TE364-2 motor was added as a second
stage and serves as the injection motor.

4.1.3 Improved Scout Configurations - The Improved Scout staging con-
cepts indicated in Table 12 have been expanded into specific configurations
comprised of new and/or existing stages. These configurations are listed
in Tables 14 and 15, which serve to identify the staging stack, shroud
weight, total vehicle Taunch weight, and the payload that can be placed
into a 556 km circular orbit.

New motors, as indicated previously, were optimized to permit
the configuration to place a 340 kg payload into a 556 km orbit at the mini-
mum launch weight. If a 340 kg capability could not be achieved with a
particular configuration thus optimized, the new motor was sized to maxi-
mize payload for that configuration.

New solid propellant motors are denoted by one of three abbrevia-
tions - Optimum Solid, Optimum 71 Solid, and Optimum 75 Solid. "Optimum
Solids" typify structure factors and propellant performance levels of exist-
ing motors as given in Table 11. As such, configurations containing
"Optimum Solids" provide a guide for exploring the use of existing motors
that can replace the "Optimum Solids" in those configurations, but do not
define characteristics of motors that could be built with 1971 state-of-
the-art propulsion technology. If new motors were required or desired for
a configuration, new stages were optimized for 1971 state-of-the-art motor
characteristics in order to take advantage of recent performance and design
improvements. Stages thus optimized are symbolized by "Optimum 71 Solid."
If the resulting design was marginal and the integration of a motor was far
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enough downstream in time, advantage could be taken of projected improve-
ments in the next few years, i.e., "Optimum 75 Solids." When existing
stages or motors are used, the motor designation is used to describe the
stage.

In sizing 1iquid stages, no distinction was drawn between current
propellant performance and Tiquid engine/stage design status and that pro-
jected in the immediate future; rather, information given in Table 11 was
used throughout. Further, all liquid stages in Improved Scout configura-
tions assume storable N204/Aerozine propellants.

For uniformity, all configurations contain an improved guidance
system on the injection stage. The Hohmann transfer was assumed for
configurations with 1iquid injection stages while the direct ascent route
was used for configurations with solid upper stages, as discussed previously.
Variations in payload shroud weights shown in these tables are attributed
to the relationships between upper stage diameter and shroud diameter as
well as the structural load carrying capabilities of the various stages.
4.1.3.1  Configurations with New and Algol III First Stages

New First Stages

Improved Scout configurations characterized by new first stages
and selected Scout upper stages are depicted in the upper portion of Table
14. Configuration 8, a four stage vehicle, features a new solid propellant
first stage in conjunction with a Castor IIA, modified with a 1ight weight
nozzle, a high pressure X259, and the standard FW4. Later considerations
indicated that the 249 kg shroud weight initially estimated for this stack
would have to be increased to approximately 408 kg because both the HP X259
and FW4 will have to be encased due to (1) structurai load probiems with
the HP X259 and (2) the long boattail necessary to taper from a 1.52m shroud
to the 0.788 m diameter Castor IIA. Hence, the first stage would have to
be enlarged to compensate for this increase in shroud weight.

Configuration 11 of Table 14, a three stage vehicle, achieves
the design payload at a comparable launch weight to that of Configuration 8
through use of a new liquid first stage in conjunction with Scout upper
stages. As in Configuration 8, the 249 kg shroud appears inadequate and
will have to be increased by approximately 45 kg which will, in turn,

44




require a somewhat larger first stage. Also, the small diameter of the
Castor IIA may induce bending load problems for this motor.

Algol III First Stage

Configurations distinguished by the Algol III as a first stage
motor and various combinations of new and existing upper stages are listed
in the lower portion of Table 14. The "Optimum 71 Solids" in this table
were sized for specific impulse values of 2810, 2930, and 2900 N-sec/kg
and motor structure factors (empty motor weight/loaded motor weight) of
0.122, 0.084, and 0.088 in the second, third, and fourth stages, respective-
ly. Similarly, "Optimum 75 Solids" are based on specific impulses of 2950,
3070, and 3060 N-sec/kg for corresponding stages. No improvement in motor
structure factors over those for the "Optimum 71 Solids" is forecasted for
1975. Since Taunch vehicle weight will grow quite rapidly if this motor
performance cannot be met, configurations with "Optimum 71 Solids", and
certainly configurations with "Optimum 75 Solids", exhibit an element of
risk.

Aside from the optimized second stages, a modified Castor IIA,
an Algol III, and a shortened version of the Algol III were also considered
as second stage candidates. Problems with the small diameter of the Castor
ITA were discussed previously; further Configuration 7T1, which utilizes
this motor, does not meet the required payload capability. A full size
Algol III (Configuration 7A) weighs down the first stage and results in an
inefficient vehicle. However, a shortened Algol III (Configurations 23,
23R, 23B) is attractive because it has the same diameter as the first stage
and alleviates the problem of weighing down the first stage. Discussions
with the motor manufacturer disclosed that reduction in length does not
present a major problem and can be accomplished economically.

Use of a stretched Algol III in the first stage was also con-
sidered initially, but subsequent vendor information revealed that propel-
Tant erosion would be a major problem. Thus, Configuration 23, was dropped
from further consideration.
4.1.3.2 Strap-On Configurations - Configurations comprised of the Algol
ITI first stage, augmented by various numbers of Castor strap-ons, exhibit
a practical approach toward definition of an economical, cost-effective
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Taunch vehicle. First, these protean configurations satisfy the step-down
payload requirement with least impact on the Tauncher and ground support
equipment by simple deletion of the strap-on motors on the less demanding
missions. Second, strap-ons avoid development of a new first stage which
is considerably more costly than upper stage motor development. Improved
Scout configurations featuring two, three, and four Castor strap-ons are
listed in Table 15.
Candidate Second Stage Motors

Second stage candidates for these configurations include the
Castor IIA, the Castor IV with the Castor IIA propellant, the Minuteman
IIT second stage, the Algol III, short Algol III, and an Optimum 71 Solid.

Review of Configuration 2K disclosed the requirement for a
second stage motor with around 8160 kg propellant for configurations with
two strap-ons. Two applicable existing motors which approach this pro-
pellant weight are the Minuteman III second stage with a 1.32m diameter
and the Castor IV with a 1.02m diameter, but both deviate from this weight
by several thousand kilograms.

The Castor IIA with approximately 3760 kg propellant is thus
inadequate for meeting the required payload as verified by Configurations
2D, 2E, 2B, and 2. The propellant weight of the Minuteman III second stage
falls several thousand kilograms short of 8160 kg and this configuration
does not meet the design payload.

Configurations with Castor IV (7F, 7M, 70, 7L, 7N), Algol III
(7E, 2F, 7H, 7K, 71, 7J), and a shortened version of the Algol III with
8160 kg propellant (7U6, 7U2, 7U3, 7U) yield payloads near 340 kg. The
full-sized Alge? III
configuration could not be flown without the two strap-ons for the step-
down payload missions. Since some development is involved for both the
Castor IV and the short Algol III, advantages in diameter and shorter

is the least desirable of these motors because the

length, performance, and cost (discussed in Section 4.2.1) favor the
short Algol III.

Streteched Castor Strap-Ons

Streteched Castor IIA strap-ons with approximately 4980 kg pro-
pellant show an increase of nearly 45 kg payload over comparable con-

figurations with two regular Castor (TX354-5) strap-ons and raise the
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payload weight to, or slightly above, the required level on some configura-
tions. When used with the short Algol III second stage (7U4, 7U5), excess
payload capability exists. With an estimated development cost on the order
of $IM, this motor also becomes an attractive candidate.

Three and Four Castor Strap-Ons.

Payload capability of configurations with three and four regular
Castor Strap-ons is indicated on the last page of Table 15. Scout D,
appropriately modified for improved guidance on the 4th stage and larger
payload shroud, is unable to achieve the design payload with either three
or four regular Castor Strap-ons, as shown by Configurations 3 and 4A.

In the case of three Castor strap-ons, use of an Algol III as a
second stage, concomitant with various upper stages, does advance the pay-
load above 340 kg as indicated by Configurations 3B, 3D, and 3C. The
design payload can also be obtained via a Castor IV or short Algol III
second stage, as may be inferred from the payload trends in Table 15 by
comparing configurations 7M, 70, 7L, 7N with 7H, 7K, 7I, 7J, respectively.
Howeyer, since the design payload can be achieved with only two Castor
strap-ons and proper combinations of existing and modified upper stages,
implementation of three strap-ons is considered a back-up option and/or
a growth item. Furthermore, configurations with three strap-ons that
satisfy the design payload tend to be heavy and complicate the ground
support equipment.

In synthesizing configurations with four strap-ons, maximum
utilization of existing Scout hardware is stressed because recurring costs
will be relatively high due to the four added strap-on motors. If addi-
tional motor development and integration are required, these costs must be
amortized, thereby further increasing the average unit launch cost.

Only one of the three configurations with four strap-ons shown
in Table 15 delivers a 340 kg or larger payload. But, this configuration
is not considered a viable launch vehicle because it encounters maximum
dynamic pressures of around 240 000 N/m2 (5020 1b/ft2) which, in combina-
tion with the small second stage diameter and 1.52m heat shield, would
produce unacceptable loads.
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Liquid Upper Stages

Use of Tiquids was also investigated for Improved Scout configura-
tions to reduce the number of stages. The payload goal could not be
achieved, however, with existing lower stage motors and a liquid third
stage. Since at least one new solid lower stage motor and a liquid upper
stage engine would have to be developed, Tiquid third stages were withdrawn
from the 1ist of candidate upper stages. This conclusion is further
supported by the fact that two new solid upper stages can be developed at
a lower cost than a lower stage solid motor and an upper stage liquid
engine, as shown later in Section 4.2.1.3.

4.1.4 New Launch Vehicles - The category of New Launch vehicles covers
two disparate groups of configurations - new, optimally staged Taunch
vehicles and booster/launch vehicle derivatives. In the first of these
two groups, both solid and Tiquid propellant Taunch yehicles were sized
to deliver the design payload into a 556 km circular orbit at minimum
launch weight. In the second group, Minuteman III and Poseidon booster
stages and the “Straight 8" Thor first stage provide lower stage propul-
sion units which are supplemented with other new and/or existing motors

to define candidate configurations.

New Optimally Staged Launch Vehicles

The assortment of optimally staged launch yehicles evaluated in
this study is depicted in Table 16. In the area of solid propulsion,
both three and four stage vehicles were synthesized. Liquid propellant
configurations utilized the common prope]]anfs - storable N204/Aerozine,
LOX/RP, and LOX/LHZ.

Analysis of stage characteristics of Configuration 18 disclosed
that the Titan first and second cere stage engines provide approximately
the desired thrust Tevel and could possibly be adapted for use in the
respective stages of this configuration, thereby reducing engine develop-
ment cost. Applicable existing engines do not exist, though, for the
remainder of the liquid configurations.

Booster/Launch Vehicle Derivatives

Configurations derived from existing booster and launch vehicles
are denoted in Table 17. In converting the Minuteman and Poseidon stages
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into Tower stages of launch vehicles, two modifications were made. First,
destruct systems were added to all stages, and, second, a coast control
system was added to the second stage for payload shroud separation and
also mission flexibility (e.g., reentry missions which require extensive
coast periods between second and third stage burn phases). Further, a new
payload shroud was required and a new, common guidance system was assumed
for uniformity.

Launch vehicle configurations with the Minuteman III first stage
are presented on the first page of Table 17. Second stage candidates in-
clude the Castor IIA, the Minuteman III second stage, Castor IV, and Algol
I[II. Staging stacks with the Castor IIA do not satisfy payload require-
ments. Similarly, the Minuteman III second stage is too small, in terms
of propellant weight, to achieve the design goal with existing upper stages.

Vehicles with Minuteman III first stages and Castor IV or Algol
III second stages satisfy the payload objective with certain combinations
of existing upper stage motors. The Castor IV second stage motor is pre-
ferred, from a performance standpoint, over the Algol III, because it
provides a larger payload, as verified by comparing configurations 22M
with 22F; however, the Algol III appears more attractive because of its
1.14 m diameter which must be adapted to the 1.66m first stage dijameter.

A short Algol III, not shown in Table 17, offers the most favorable com-
promise between payload and diameter, and is preferred for integration
with the Minuteman III first stage. Launch weight would be slightly less
than with the Castor IV.

A three stage vehicle comprised of the Minuteman III first and
second stages and a liquid third stage was also sized, but did not achieve
the 340 kg design payload.

Launch vehicles consisting of the Poseidon first and second stages
and combinations of new and existing upper stages, shown on the second page
of Table 17, offer the design mission capability at lowest launch weight,
except for the new, optimally staged configurations discussed previously.
The second stage in these configurations was modified by deletion of thrust
termination and related hardware and addition of a coast control system.

Three stage vehicles using the Poseidon first and second stages
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and either a solid or liquid third stage (not shown) did not produce a 340
kg payload capability; however, several four stage configuration matched
or exceeded the payload design goal.

Two Thor Delta derivatives were also considered for the small
Taunch vehicle role. The new "Straight 8" first stage and a modified,
attitude stabilized, Burner II second stage provide the baseline for these
configurations. In the first case, Castor II strap-ons are deleted and the
first stage propellants was off-loaded to increase the initial thrust-to-
weight ratio to approximately 1.3. In the second version, a fully loaded
first stage, augmented by three Castor strap-ons, was used. The Burner II
stage, comprised of the TE 364-2 motor, structure, and control system,
but with a new guidance system, serves as the second stage in both cases.
The first configuration fell short in payload performance, but the latter,
fully Toaded version with strap-ons provided more than adequate payload
capabijlity.
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4.2 CONFIGURATION SCREENING AND SELECTION

The Improved Scout configurations and New Launch Vehicles were
subjected to three sequential levels of screening to narrow the list of
candidates and a final selection was made as outlined in Table 18, 1In
each successive screening level,configuration data were penetrated in
greater depth.

The screening criteria, rationale, and supporting data are
denoted in the following sections and screening results for each level
are summarized at the end of each section.
4.2.1 First Level Screening - The objective of the first level screening

was to filter out configurations with inadequate payload performance,
obvious design problems, and substantial cost impacts. As such, the
screening thresholds on design aspects and costs are set relatively high

so as not to arrogate the elimination of marginal configurations, Criteria
for first level screening are depicted in Table 19.

4.2.1.1 Payload - The 340 kg payload requirement into a 556 km circular
orbit, established in the initial ground rules, was used for the initial
screening.

4.2.1.2 Design Items - Two screening criteria were introduced as part

of the preliminary vehicle design evaluation. These are dynamic pressure
and the relationship between stage diameters. Maximum dynamic pressure

was Timited to 167 500 N/m2. This value strikes a balance between eontro}l
requirements, bending loads and payload shroud design considerations on one
hand and maximum utilization of existing motors in the synthesis of candi-
date configurations on the other.

The relationships between successive stage diameters, or payload
shroud diameter and adjoining stage diameter, become important from the
standpoints of bending loads and aerodynamic buffeting, as discussed in
Section 4.1.2. Since first stages of all candidate configurations have
diameters of at least 1.14 m and the payload shroud diameter was estab-
lished at 1.52 m, intermediate stage diameters less than around 1.02 m
present difficulties. First, bending loads on smaller diameter motors,
such as the 0.76 m diameter Castor IIA, become critical. Second, abrupt
diameter changes from the 1.52 m payload shroud to an adjoining motor of

small diameter portend potential buffeting problems.
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Choice of a minimum stage diameter of 1.02 m represents a reason-
able compromise because it allows retention of such motors as the Castor IV
and Algol II for second stage candidates, but, at the same time, forestalls
the need for excessively long interstage sections in order to achieve
satisfactory boattail angles. On four-stage configurations where the
third stage motor diameter is Jless than 1.02 m, the payload shroud was
designed to house the payload, the fourth stage, and the third stage, but
was jettisoned from the second stage before third-stage ignition. '
4.2.1.3  Costs - In the first level screening, parametric cost data were
applied to eliminate configurations that do not measure up to an economical
approach for satisfying ASLV missions. This first level cost screening was
based only on propulsion stage costs (motor/engine, attitude control and
interstage). Payload shroud, guidance system, vehicle integration, and
launch support costs were assumed invariant from vehicle to vehicle. Pro-
pulsion stage costs were deemed valid for first level cost screening
because (1) they proyide a uniform basis for comparing solid stages with
liquid stages, and (2) they constitute by far the largest hardware invest-
ment for the remaining part of a launch vehicle, both in terms of develop-
ment and recurring costs,

Stage Development Costs - Liquid engine and propulsion stage
deyelopment costs are presented in Figure 5. This information was extrac-
ted from the USAF Space Planner's Guide (Reference 14) and denotes cost
to the government. (Liquid cost information in Figure 5 was found to com-
pare fayorably with similar parametric cost data in Reference 13). Engine
development costs are broken out separately from the remainder of the pro-
pulsion system deyelopment costs. If neither engine nor propulsion system
(which includes airframe, interstage, pressurization and feed systems, and
controls), were available among existing already developed hardware, these
costs must be added to obtain stage development costs, As indicated,
engine deyelopment costs for LOX/LH, propellants are between one and two
orders of magnitude higher than those for LOX/RP and storable propellants
and are obviously not economically justifiable development costs for an
ASLY.

Deyelopment cost information on solid propellant stages is
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graphically illustrated in the upper portion of Figure 6 for the thrust

and total impulse ranges of a typical four stage solid propellant ASLV.
Costs are indicated for propulsion development status in 1971 and projected
status :in 1975 and reflect costs to the government. First and second stage
development costs include movable nozzle, roll control, and interstage.
Upper stage costs cover H202 reaction control systems in lieu of movable
nozzles and separate roll control systems. The length of each cost bar
encompasses variations in estimated development costs by different pro-
pulsion vendors.

Development costs for 75 state-of-the-art stages are signifi-
cantly higher than those for equivalent size 71 state-of-the-art motors;
however, this cost increase is largely offset by smaller stage sizes
afforded through improvements in 75 state-of-the-art stages.

For comparison, development costs of storable and LOX/RP propul-
sion stages are depicted in the Tower portion of Figure 6. These costs
are based on the data in Figure 5 and are broken out for complete stage
deyelopment as well as for development of the propulsion system around
existing engines.

Taking the midpoint of each cost bar, development costs were
totaled, as shown below, for four stage 71 and 75 state-of-the-art solids
and two stage liquids, both with and without engine development.

Total Development Cost ($M)

o Four Stage Solid

- 71 SOA Motors 22.9

- 75 SOA Motors 26.8
o Two Stage Liquid

- Propulsion System Only 39.3

- Engine plus Propulsion System 60.5

These costs clearly favor development of an all new four-stage solid over
a two stage liquid, even if engines in the required thrust ranges exist
and Tiquid stage development is reduced to propulsion system development
only.

Data in Figure 6 also show that combined development of 71 state-
of-the-art solid propellant third and fourth stages ( $4.6M) is less than
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development of the propulsion system of a liquid third stage ( $6.3M).
Further, development of 75 state-of-the-art solid propellant third and
fourth stages ( $6.3M) can be achieved at a lTower cost than complete
development of a liquid third stage ( $9.8M).

Stage Recurring Costs - Liquid stage recurring costs are pre-
sented in Figure 7. These costs are all inclusive, i.e., they contain
both engine and propulsion system costs, and denote cost to the government.
Recurring costs of LOX/LH2 systems, typified by the Centaur stage, are
about two times higher than those of other conventional Tiquid stages.
In view of the considerably higher development and recurring costs,
LOX/LH2 stages are obviously not consistent with the most economical

approach for development of an ASLV and were deleted from further consider-
ation.

Recurring cost ranges of new and modified existing solid pro-
pellant stages are identified in the upper portion of Figure 8. Stage
recurring costs include motor, attitude control and interstage, On new
stages, movable nozzles and roll control systems were included in the first
and second stages. All Poseidon and Minuteman stages, as well as Algol III
stages with strap-ons and the short Algol III, were also costed with
moyable nozzle and roll control. The Algol III first stage, however, when
used without strap-ons, is priced with jet vanes and fins for control. Two
second stage candidates, the Scout Castor II and the Castor IV, were costed
with H202 reaction control systems because configurations using these
stages did not require movable nozzles. Third and fourth stage recurring
costs for both new and modified existing stages include H202 reaction con-
trol systems.

Review of vendor cost information revealed that there is no
appreciable difference in the recurring costs of 71 and 75 state-of-the-
art motors; hence, only one rangé is given for each stage. For existing

NASA motors, recurring costs were taken from Reference 15 and updated,

as required, for modifications. Military stage recurring costs were
estimated by VMSC on the basis of vendor information on applicable motors
and cost information from previous programs involving Minuteman and Poseidon
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boosters. Movable nozzle, reaction control system, and interstage costs
were developed from vendor information as well as cost data on similar
systems on the Scout launch vehicle,

The Poseidon and Minuteman stage costs shown are based on current,
relatively high, production runs and will undoubtedly rise significantly
when purchased in small quantities after completion of military production.
Section 4.2.2.6, Military Procurement, discusses this aspect in greater
detail.

Liquid stage recurring costs, inclusive of engine and propulsion
system, are shown in the lower portion of Figure 8 for comparison. These
recurring costs are representative of typical ASLV liquid stage sizes
indicated in Figure 7. Costs of existing liquid stages, exclusive of
guidance and mission peculiar items, are superimposed for reference. Due
to the small differences in recurring costs of typical liquid second and
third stages, both are represented by a common cost bar.

Examination of Figure 8 discloses that stage recurring costs of
a two stage liquid, even using the low end of the cost ranges, exceed
recurring costs of any four stage solid by at least $0.5M.

Average Unit Stage Costs

In comparing candidate launch vehicle stage costs, development
costs were amortized over 50 1aunches'in conformance with the guidelines
in Section 2.2 and added to the stage recurring costs. The sum of recurring
plus amortized development costs, referred to as average unit stage costs,
are illustrated in Table 20 for new launch vehicles, both solid and liquid,
and representative launch vehicles developed around existing stages.

For new stages, development costs are based on the information
in Figure 6; development costs associated with modifications of existing
stages were derived from vendor data and VMSC cost analyses. Recurring
costs were taken from Figure 8.

The following conclusions were drawn from the foregoing cost
discussions and comparative data in Table 20, and applied in screening
configurations on the basis of cost:

(1) Development of new, optimally staged 1iquid or solid
propellant launch vehicles is unjustifiable in view

of the large number of configurations with existing
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stages that satisfy design mission requirements at
considerably Tower average unit stage costs;

(2) Development of a new first stage, either solid or
Tiquid propellant, is not justifiable because of existing
candidates 1ike the Minuteman, Poseidon, Algol III
(with and without strap-ons), and the Straight "8"

Thor first stages;

(3) Only existing upperstage motors are considered economically
competitive for configurations comprised of Minuteman III
or Poseidon first and second stages due to the relatively
high recurring costs of these stages;

(4) Both development and recurring costs of a liquid upper
stage are higher than the combined development and
recurring costs of solid propellant third and fourth
stages. Liquid propellant upper stages were therefore
eliminated from further considerations.

Configurations utilizing the Straight "8" Thor first stage were
not eliminated on the basis of cost in the first level screening, even though
they exhibit rather high average unit stage costs. This exception was made
because the total launched costs, including integration and launch support -
not evaluated in this screening, should consider these factors as affected by
an on-going Thor Delta program.
4.2.1.4 Back-Up Configurations - There are a number of configurations

that are categorized as back-up configurations. The term back-up implies
that a particular configuration either includes new upper stages whereas

a similar configuration in the same family achijeves the design payload

with one or two existing motors, or a similar configuration provides the
design payload at less risk, e.g., with optimum 71 rather than optimum 75
state-of-the-art motors. For example, Configuration 2K which consists of

an Algol III first stage with two Castor strap-ons and optimum 71 state-
of-the-art upper stages is rated as a back-up configuration to Configurations
70 and 7N which have the same first stage but satisfy the design missions
with existing upper stages. A back-up configuration thus involves development
of more motors, more advanced performance upper stages, or a more costly

stage than a similar configuration at less development, risk, and cost.
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4.2.1.5 Configuration Rating - Rating of the candidate configurations is
accomplished in Table 2] where an "X" denotes a deficiency in a particular

category. A single "X" in any of the rating categories eliminates a con-
figuration from further consideration.
As a result of the first level screening, the initial 1list of 69

candidate configurations in Tables 14, 15, 16 and 17 was narrowed to 19
configurations which were subjected to more thorough evaluation in
the second level of screening. This first level screening eliminated con-
figurations with:

o A1l new solid stages

o All new liquid stages

0 New liquid/solid first stages

o Liquid upper stages

Surviving configurations are highlighted in Table by a dashed

line box.
4.2.2 Second Level Screening ~ Configurations that survived the first
leyel screening were analyzed in greater depth for the second level screen-
ing and rated on the criteria in Table 22,
4.2.2.1 0ff-Design Performance - While configurations must satisfy the
design mission, performance on other missions, i.e., off-design performance,
is equally important in the design of an ASLV. This factor was accentuated
by the trends in projected missions, outlined earlier in Table 4, and the
subsequently derived ASLV mission model in Table 6. These trends indicate
proportionately large percentages of missions in the high altitude circular
orbit (including orbits with specified orbit precession), synchronous trans-

fer and earth escape categories. Accordingly, configuration performance
was evaluated for these missions.

Off-design performance of the suryiving configurations from the
first level screening is illustrated in Table 23. A 1111 km (600 n.mi.)
altitude was chosen for payload performance evaluation on the high altitude
circular orbit mission because this altitude typifies application satellite
orbit altitudes, including sun-synchronous missions. Payload capability
on the synchronous transfer and earth escape missions was based on a high
energy  upper stage sized for the synchronous transfer injection velocity
increment of approximately 2470 m/s.
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Examination of Table 23 shows that configurations which demon-
strate superior payload capability on the high altitude mission generally
yield relatively low payload performance on the synchronous transfer and
earth escape missions, and vice versa. This behavior is attributable to
the relative sizes of the stages in each configuration. Since ASLV launches
are projected for all three of these missions, it is desirable to strike a
balance between payload performance on the three indicated missions. There-
fore, in rating configurations on off-design performance, minimum desired
payload weights of 182 kg (400 1bs) for the high altitude mission, 136 kg
(300 1bs) on the synchronous transfer and 91 kg (200 1bs) on escape tra-
jectories were selected as payload screening criteria. These magnitudes
were chosen because payload weights much less than these are not considered
attractive, nor practical, for future space launches on these types of
missions.

Configurations downgraded on of f-design performance are denoted
by an "X" before the configuration number in Table 23,
4.2.2.2 Phased Growth - A phased-growth approach represents a practical
avenue for gradual step improvement in payload capability and vehicle
accuracy from.the present Scout to the ASLV. This is important in evaluat-
ing configurations because it (1) permits time-phased integration and
evaluation of individual hardware items and thus eliminates the need for
development flights, (2) provides flexibility for redirection of growth
objectives, if deemed necessary, (3) allows for timely incorporation of
new adyances in technology, e.g., new high performance propellants, and
(4) avoids large spikes in fiscal funding for vehicle development. For
these reasons, a configuration aiienable to the phased growth approach was

preferred over one that replaces the current Scout at a certain point in
time in one step.

In judging configurations suitable or unsuitable to this approach,
the rationale was based on the number of stages, or motors, that are
replaced at one time. If a single stage could be replaced at a time, the
configuration was considered adaptable to a phased growth; if more than
one stage had to be integrated at one time, it was downrated in the phased
growth category.
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Approximately one half of the configurations in Table 23 required
integration of more than one stage or motor at a time. Configurations 70,
7N, 7K, and 7J, for example, required addition of Castor strap-ons at the
same time that the new second stage was integrated, otherwise the initial
thrust-to-weight became marginal for Configurations 70 and 7N, and un-
acceptable for Configurations 7K and 7J. Strap-ons cannot be added prior
to integration of the second stage because the dynamic pressure rises to
unacceptably high values. The 22-series configurations, likewise, required
simultaneous incorporation of the first and second stages to constrain
dynamic pressure.
4,2.2.3 Step-Down Complexity - The requirement for handling current Scout-
class missions in the 136-181 kg payload range ostensibly favored configura-
tions with strap-ons due to the simplicity of deleting these performance
augmentors for the Tower payload missions. However, those strap-on con-
figurations that were thrust-to-weight limited without strap-ons, as well
as the non-strap-on configurations, must rely on stage deletion (usually
the third stage) for step-down performance. Launch vehicle electrical and

mechanical interface problems, as well as operating procedure changes
associated with stage deletion detract from the advantage of the step-down
capability. Thus, configurations that required stage deletion for the
step-down payloads are downgraded in the category of step-down complexity.
4.2.2.4 GSE and Launcher Impact - A qualitative assessment of the impact
of each configuration on the current Scout ground support equipment and
overall launch complex was also used in the comparative evaluation of the
candidate launch vehicles. Configurations using the Algol III, with or
without strap-ons, as first stage motors have much less of an impact on the

launcher, transporter, and related handling equipment than configurations
with Minuteman and Poseidon stages which require major modifications to all
of the ground support equipment. An assessment of launcher modifications
can be obtained from the size relationships between several of the candi-
date launch vehicles and the current Scout launcher, graphically illustrated
in Figure 9. In addition to new ground support equipment, the "Straight 8"
Thor configuration would also require new propellant and fueling facilities,
if deployed at Wallops Island, since this launch site is not equipped for

handling LOX/RP.
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Configurations that achieve the step-down capability via stage
deletion also pose a larger problem in terms of the Tauncher because
retaining clamp and umbilical locations will differ between full-size and
step-down configurations. Similarly, the transporter will require adapters
to handle the different configurations.
4.2.2.5 Technical Risk - Vehicles that employ "Optimum 75 Solid" stages
to satisfy the design mission demonstrate a higher element of risk in that
some advances in solid propulsion technology are necessary to achieve the
quoted motor performance and design. Even though programs currently under
development are expected to provide these advances, configurations that
require these improvements nevertheless exhibit some risk and are thus down-
rated in the category of technical risk.

4.2.2.6 Military Procurement - Reliance on military motors or stages
(Minuteman III and Poseidon) results in some problems, when used in a non-
military launch vehicle that, in many cases, is used for international and
cooperative-venture spacecraft.

First, many details of the motors, including performance, are
generally classified for security reasons. This would result in problems
in flight planning with the payload agencies, especially foreign users.
Next, military production schedules will probably not be compatible with ASLV
procurement requirements. Cost shown for military boosters are based on best
information available reflecting current relatively high production runs. It
is unlikely that these boosters will be in production over the time span of
ASLV procurement. Best estimates for small quantity buys of Minuteman III
after production runs are completed show an increase of 20 to 30% over the
costs in Figure 8. Algol III costs, on the other hand, are based on small
quantity buys typical of Scout and ASLV procurement.

For the reasons cited above, configurations that rely on Minuteman
IIT and Poseidon stages are downgraded.
4.2.2.7 Configuration Costs - Total vehicle costs were determined for use
in the second level screening. The build-up of vehicle costs was based on
the following considerations.

(1) Propulsion stage costs were based on data in Figures 6
and 8 which account for motor (or engine and propulsion

system for liquids), control system, and interstage.
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(2) A common improved guidance system with a $1.0M develop-
ment and $213K recurring cost was used on all configura-
tions.

(3) Payload shroud costs were determined for the various
shroud sizes.

(4) A uniform launch support cost of $1.0M was included in
the recurring cost of each vehicle, except for the
Straight "8" Thor/TE 364-2 (Configuration 24). Launch
support cost for this latter configuration was estimated
at $900K.

(5) Engineering and tool design, fabrication and vehicle
integration were not costed for each configuration;
however, a cost of $6.0M was assessed for these items,
and this number was used on all configurations for
uniformity. The lone exception was Configuration 24
which had no cost assessed to it for these functions.
While some costs would no doubt be incurred for these
functions, the total cost would be considerably less on
Configuration 24 than for the remaining configurations
since the upper stage motor is already in the Thor/Delta
Taunch vehicle motor inyentory.

Costs for each of the configurations remaining from the first
level screening are summarized in Table 24, The average unit Taunch costs
shown in this table represent recurring costs plus development amortized
over 50 Taunches. Launch support costs are included in the recurring costs.
Average unit launch costs for Scout are provided for reference.

Average unit launch costs of the surviving configurations in
Table 24 fall in a relatively narrow range, except for Configuration 24,
4,2.2.8 Configuration Rating

The second level screening is accomplished in Table 25, which
displays the rating of the remaining configurations for each of the seven

criteria discussed above, Since more detailed analysis of screening factors
was utilized in the second level screening, only those configurations that
are downgraded in two or more categories were eliminated from further
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consideration.

The second Tevel screening reduced the number of candidates from
19 to 6. This screening eliminated all configurations utilizing Minuteman
ITI and Poseidon stages and the Straight "8" Thor configuration. Configura-
tions comprised of military stages were each downgraded in four categories
and the Straight "8" Thor configuration was eliminated primarily on cost
which was significantly higher than those of the remaining configurations.
If deployed at Wallops Island, as stipulated in the guidelines (Section
2.2) the impact on GSE would also be rather extensive and Configuration
24 was therefore also downgraded in this category.
4,2.3 Third Level Screening - Selection of the most promising configu-
ration from the remaining candidates entails determination of the best
overall compromise between performance, design considerations, and cost.
The six remaining candidates, representing the 7U and 23A configuration
families, were thus further refined and rated on the criteria on Table 26.

4.2.3.1 O0Off-Design Performance - The off-design performance of the six
remaining configurations is shown in Table 27. In assessing relative
worths in the area of performance, attention is directed to the ASLV
mission model in Table 7 which purports the dominance of high altitude
circular orbit missions (19 out of 50 missions or 38%). A minimum payload
capability of about 182 kg was previously designated in Section 4.2.2 for
missions in this category. Al11 of the five 7U configurations deliver pay-
loads in excess of 182 kg into a 1111 km orbit, as shown in Table 27;
however, the 179 kg payload of Configuration 23A falls slightly short of
this value.

Configuration 23A and three of the 7U configurations (7U, 7U2,
7U3) satisfy the synchronous transfer and earth escape payload requirements
of 136 and 91 kg, respectively, that were specified in the second level
screening. Those configurations down-rated on off design performance are
denoted by "X" in front of the Configuration number in Table 27.
4.2.3.2 Technical Risk - Configuration 23A is sensitive to weight since
this configuration relies only on the Algol III for first stage thrust.
The configuration contains two new 1971 state-of-the-art motors. If the
projected propellant performance and stage wéights assumed in sizing this
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configuration cannot be achieved, stage sizes will have to be increased
to meet the cesign payload objective and launch weight will increase pro-
portionately. The initial thrust/weight of Configuration 23A is already
marginal, however, and any increases in weight would decrease the initial
thrust/weight to the point where gravity losses would off-set any gains
derived from increased stage sizes. Thus, Configuratiorn 23A exhibits an
element of risk.

Configurations in the 7U family, on the other hand, either have
an adequate performance margin to cover design contingencies or, if not,
provide the latitude to compensate for contingencies through slight
increases in the size of the Short Algol III, Optimum 71 solid, or short
X259 motors since these configurations have more than adequate thrust at
vehicle 1ift-off.
4.2.3.3 Step-Down Complexity - The simplicity, in terms of vehicle inter-
faces, ground support equipment, and launcher, afforded by strap-on con-
figurations in conversion to the step-down payload configurations was
previously covered in Section 4.2.2 and clearly favors configurations in
the 7U family.
4.2.3.4 Payload Shroud - Due to the small diameters and limited load
carrying nature of the third stage motors in the 7U configuration family,
the payload shroud was designed to house both third and fourth stage motors.
This results in somewhat longer and heavier payload shrouds than that for
Configuration 23A because the third stage motor of this latter configura-
tion can be designed to the same diameter as the second stage (1.14m) and
its payload shroud can be mounted to the top of the third stage motor.

Payload shrouds fer four of the five configurations in the 7U
family are illustrated in Figure 10. The TE364-4 and -3 combination shown
on the right side of the figure results in the shortest overall payload
shroud length because both motors are packaged in a compact manner, i.e.,
they both feature submerged nozzles and larger diameters than the HP X259
motor versions. Total shroud length of the HP X259/TE364-3 combination in-
creases nearly 1.22 m (4 ft) over the TE364-4/TE-364-3 shroud due to the
length of the HP X259 motor, and another 0.76 m (2.5 ft) when the short
HP X259 is used as the fourth stage motor. Total shroud length for

Configuration 7U4 which uses the FW4 as the fourth stage motor is
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essentially the same as that for Configuration 7U2, shown in the center

of Figure 10, since the FW4 is approximately of the same length as the
TE364-3. 1In contrast, the payload shroud of Configuration 23A is approxi-
mately 2.54 m (100 in) shorter than those for Configuration 7U and 7U1 due
to the 1.14 m diameter, load carrying third stage motor of Configuration 23A.

While long shrouds lead to a moderate reduction in interstage
structure between the third and fourth stages, additional weight and com-
p]éxity in shroud design more than off-set this reduction in interstage
weight. (It may be possible to beef up the third stage motors to the point
where they can carry the required flight bending loads; however, analyses
in this conceptual study did not penetrate to sufficient depth to determine
the required motor modifications). Configurations in the 7U family were
thus downgraded relative to Configuration 23A.
4.2.3.5 Cost - Cost data for the six remaining configurations were up-
dated from the second level for the third level screening to reflect refine-
ments in the configurations and final cost inputs from guidance and pro-
pulsion vendors. These costs are summarized in Table 28.

Comparison of configuration costs in Table 28 indicates that (1)
Configuration 23A is the lowest cost launch vehicle, (2) average unit costs
of Configurations 7U2, 7U3, and 7U4 are only about 2.5% higher than those
of the lowest cost configuration, and (3) the highest cost configurations,
7U and 7U1, differ less than 10% from the lowest cost configuration. Even
though development costs of two new motors and those associated with the
short Algol III were amortized, Configuration 23A resulted in the lowest
average unit launch cost because this configuration is not burdened by the
recurring costs of the two Castor strap-ons.

In view of the limited depth of configuration analysis and the
preliminary nature of the costing information in this conceptual design phase,
cost differences on the order of 2.5% are considered inadequate for a clear
cut selection of one configuration over another on the basis of cost; how-
ever the cost differences exhibited by Configurations 7U and 7U1 are con-
sidered indicative of a trend towards a Tess economical configuration and
these configurations were downgraded on cost in the third level screening.
4.2.3.6 Configuration Rating - The comparative rating of the six remaining
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configurations is summarized in Table 29. Configurations with two or
more "X" were eliminated, lTeaving Configurations 7U2 and 7U3 for final
selection.

Configuration 23A, with a 2.5% lower average unit cost than the
two remaining candidates, was withdrawn from further consideration pri-
marily for reasons of technical risk associated with the two new motor
developments discussed previously in this section, and the complexity of
stage deletion for step-down payload missions.

Elimination of Configuration 7U and 7U1 stemmed from cost con-
siderations, and, in the case of the latter configuration, from cost-
related risk associated with new motor development. Recurring costs of
the TE364-4 and -3 motors are both higher than those of the HPX259 and
short X259 third stage motors, resulting in higher average unit costs for
these configurations.,

In the case of Configuration 7U4, development and somewhat higher
recurring costs of the stretched Castor strap-ons, in conjunction with
below-par off-design performance, were the factors that eliminated this
configuration.

4.2.4 Final Selection - The final evaluation and selection of the
winning configurations was based on overall mission performance and costs
of the final contenders - Configurations 7U2 and 7U3.

Review of design mission and off-design performance, as denoted
in Table 30, clearly shows that configurations 7U3 yields higher payloads
on all missions. It also has approximately an 11% payload margin for the
design mission to allow for contingencies in the detailed design, whereas
the corresponding design margin of Configuration 7U2 is less than 29.
Average unit launch costs, shown on the right hand side of Table 31, differ
by only about $1.0K, with Configuration 7U3 being the lower cost vehicle.

Configurations 7U2 and 7U3 were penalized only for their lengthy
shroud in the third level screening. While the shroud of Configuration 7U3
is about 0.76 m longer than that of Configuration 7U2, neither shroud
presents a serious design problem and the difference is shroud length does
not become a deciding factor.
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Configuration 7U3 was therefore selected as the winning configura-
tion. This configuration consists of:
1st Stage: Scout Algol IIT with Movable Nozzle and 2 Castor
Strap-Ons.
2nd Stage: Short Algol III with 8160 kg (18000 1b) Propellant
and Movable Nozzle
3rd Stage: Scout X259, Modified with Smaller Throat Diameter
Nozzle
4th Stage: Short X259 with 770 kg (1690 1b) Propellant and
Contoured Nozzle
Payload Shroud: 1.52 m (60 in) diameter; 9.3 m (30.3 ft) length,
The fourth stage of the ASLV is attitude stabilized about all three axes
and contains the guidance and reaction control systems. It was found that
the FW5 motor is an excellent candidate for the spin—stabi]ized fifth stage
on synchronous transfer and earth escape missions. It can also be used on
highly elliptic orbit and reentry missions.
4.2.5 Growth Plan - With the ASLV configuration selected, determination
of logical growth plan that permits buildup of the ASLV from the current
Scout through time-phased integration of individual stages was undertaken.
The obvious advantages of such an approach are (1) control of peak fiscal
year funding, (2) elimination of flight test vehicle(s) since individual
improvements are sequentially flight proven, and (3) commitment of only
one growth step at a time which permits redirection of ASLV objectives,
if required, and/or incorporation of new improvements in propulsion, as
they become available. 4
Emphasis on guidance accuracy was stressed in the ASLV Program
Plan and verified by the accuracy requirements analysis in Section 3.2.
Early improvement in guidance, concurrent with increased payload capability,
therefore represents a desirable approach toward a phased growth program.
Accordingly, improved guidance was introduced in the first growth step.
Three options are available for motor integration in the initial growth
step - addition of strap-on motors, incorporation of the short Algol III,
or parallel integration of the HP X259 and short X259 upper stage motors.
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Addition of strap-ons does not present a viable first step improvement
because dynamic pressures become excessive and extensive modifications
are required to the Scout upper stages to sustain the resulting loads
and provide adequate control.

Time-phased ASLV Growth Plans for the remaining two options
are presented in Figure 11, which shows sequential payload performance in
terms of calendar years for a 556 km (300 n.mi.) circular orbit mission.
The cross-hatched areas represent the contingency margin, Table 31. The
upper bound corresponds to currently predicted payload performance, while
the Tower bound denotes the lowest estimate of the ASLV payload capability.

The approach on the left of this table concentrates on early
implementation of improved fourth stage guidance in conjunction with the
HP X259 third stage and short X259 fourth stage motors, and delays inte-
gration of the short Algol III and Castor strap-ons until the latter half
of the decade. While early improvement in guidance accuracy is obtained
with this option, payload drops during the first phase and shows only a
modest gain when the new second stage is added at the end of 1977.

The growth option depicted on the right hand side of Figure 11
also provides early inclusjon of improved fourth stage guidance, but
accompanied by the Short Algol III as the first step. Castor strap-ons
are integrated in the second growth step and incorporation of the HP X259
and short X259 represents the last step.

The growth option on the right hand side exhibits an early im-
provement in guidance accuracy as well as steady improvements in payload
performance. Delay in integrating the short X259 until mid 1979 also
improves the opportunity for incorporation of state-of-the-art improve-
ments such as higher specific impulse, restart system, etc., on this stage,
should the development status warrant incorporation at that time. A dis-
advantage of this option is that the guidance system will have to be inte-
grated initially with the current FW4 and then later on with the short
X259. However, in view of the favorable payload performance, this approach
has been selected for the ASLV Program. Fiéure 11 présents a pictorial
view of the selected growth approach. Shaded areas in this figure indicate

the sequential hardware improvements. Payload performance presented is
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conservative in that it reflects the lowest estimate, i.e., it assumes
that the total contingency margin has been lost during design,

The performance curves in Figure 13 indicate circular orbit
capability for the growth steps of the option selected above. As a matter
of interest, the predicted gains for a Hohmann transfer that would be
possible with a restartable short X259 are also shown. Al1l curves show both
predictions and the lowest estimate of payload performance based on no
contingency margin. Scout D orbital performance is also presented for
reference.
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5.0 GUIDANCE

A need for improvement over the current Scout guidance accuracy
was identified previously in Section 3.2. This section discusses the analy-
sis and comparative evaluation of various guidance approaches for the ASLV.

Three basic guidance approaches were considered:

(1) Complete inertial system in an attitude stabilized,
non-spinning fourth stage;

(2) Modular additions, or sequential improvements, to the
existing Scout third stage, open-loop, preprogrammed
system in conjunction with a spin-stabilized fourth
stage; and

(3) Open-Toop inertial reference package located in an
attitude stabilized fourth stage.

Equipment utilization, performance, weight, and cost data are
discussed in the following sections for the candidate systems considered
in each guidance approach. Projected orbital accuracies achievable with
the various implementations/systems are also provided for two representa-
tive circular orbits that cover the spectrum of anticipated altitudes.
Finally, the three approaches are compared on the bases of predicted
orbital accuracy, weight, and cost.

5.1 INERTIAL GUIDANCE

The first approach investigated the use of an inertial guidance
system (composed of an inertial measurement unit, computer and associated
electronics) to control the launch vehicle throughout the boost and final
injection phases.

5.7.1 Equipment and Utilization - Inertial guidance hardware data were
requested from six vendors to ascertain the physical, cost and equipment

performance data for the most promising candidates. The ground rules and
guidelines outlined to govern the guidance system operation and performance
were:
(1) Existing state-of-the-art to be used.
(2) Guidance to be located in the injection stage of the
launch vehicle
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(3) Injection stage will be attitude stabilized.
(4) Environmental and qualification requirements for fourth
stage equipment will parallel those of existing Scout.
) Maximum axial acceleration will be 295 m/s2 (30 g's).
) Production or near-production status preferred.
) No gyro or accelerometer development to be considered.
) Minimum platform and computer development or modifica-
tion.
(9) Sensor calibration cycle: 30 days minimum, 60 to 90
days preferred.

(10) Maximum guidance operating time: 900 second boost (to
fourth stage burnout), followed by a maximum coast time
of one hour. Only attitude and timing functions needed
during the one-hour coast.

(11) Near-vertical vehicle orientation at launch.

(12) System weight goal: 23 to 27 kg (50 to 60 pounds)

The summary characteristics of the candidate guidance systems are
shown in Table 31. The vendor information requests indicated no preference
for gimballed or strapdown inertial measurement units (IMU) and, as noted
in the table, three gimballed and three strapdown systems were proposed.
The system production status, platform sensors, system linear acceleration
design values and test levels are shown in Table 31. Each production IMU
and computer has completed or is currently involved in a qualification test
program, but none completely satisfies the anticipated ASLV operating
environment. The indicated guidance system weights include additional
weight increments to account for increases in control electronics, power
conditioning and switching relays that will be needed in an ASLV applica-
tion. Since the vehicle design is at the conceptual level, the detailed
interface requirements of the control electronics which show signal char-
acteristics for discretes, proportional attitude error signals and control
motor commands have not been defined. Some of the guidance system configu-
rations as provided by the vendors include partial control electronics and

others include none. The added increments were adjusted to account for these

variations. Any filtering that is not mission dependent would be accom-
plished by analog means in the control electronics. Also, some weight
98
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margin is included to account for possible computer weight increases when the
final required capacity is established and the input/output capabilities are
defined. The total guidance system weights are considered conservative and
can be achieved in production systems.

Equipment error budgets for each of the candidate inertial systems
were established following several discussions with each of the vendors.

The sensor error sources are defined in terms of expected (standard devia-
tion) values. Definition of the expected values required a number of
iterations because many vendors use the maximum error magnitude, especially
in procurement specifications, since significant number of test measurements
are needed to establish the characteristics and properties of the individual
error distributions. The error budgets assigned to each of the inertial
guidance systems are shown in Table 32.

Table 32 lists separate values of non-g sensitive gyro drift,
accelerometer bias, and accelerometer scale factor for the level and verti-
cal sensors. The terms "level" and "vertical" refer to the launch site
orientation, with "vertical" being along the local gravity vector and
"level" in the earth's tangent plane. The reason the error budgets are
expressed in this manner is that some systems employ different sensors
within the same cluster or block and this must be reflected in the simula-
tions. Also, a few vendors quoted gyro drift as a function of the orienta-
tion of the gyro spin axis relative to the gravity vector.

The analyses and equipment data from Reference 16 were used for
supplementary and comparative purposes in establishing guidance system
characteristics. Error budget values from this source are shown in
parentheses in Table 32.

5.1.2 Accuracy Analysis - The objective of the accuracy analysis was to
obtain a statistical description of orbital accuracies achievable with the
various candidate guidance implementations. Orbital accuracy was evaluated
for 185 km (100 n.mi.) and 1111 km (600n.mi.) circular orbit missions,
launched due east from Wallops Island, and is displayed in series of joint
apogee/perigee distributions and cumulative distributions of inclination
deviation. The 185 km altitude is typical of parking orbits, while the
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1111 km orbit is representative of high altitude applications missions,
including sun-synchronous missions.

First, standard deviations in position and velocity vectors were
determined at orbit injection using VMSC's Guidance Accuracy Analysis Routine
(GAAR). This program considers all equipment uncertainties Tisted in Table
32 and uses preprogrammed attitude and acceleration time histories to compute
position and velocity deviations throughout the boost and coast phases of the
trajectory. These deviations are a function of time and the applied, non-
gravitational forces and are assumed to be statistically independent and
normally distributed.

Preprogrammed attitude and acceleration time histories for the
two circular orbits were based on two Scout pre-flight trajectories for
similar orbits. These time histories, which are required input to GAAR,
served as a reference in the evaluation of the inertial guidance system
error sources. Pertinent orbital characteristics resulting from these tra-
jectories are denoted below:

1. Scout 173C

- Perigee = 213.5 km (115.5 n.mi.)
- Apogee = 800.1 km (432.0 n.mi.)
- Inclination = 2.9 deg

2. Scout 176C
- Perigee = 1089.5 km (588.3 n.mi.)
~ Apogee = 1175.8 km (634.9 n.mi.)

- Inclination = 90.0 deg

While Scout 173C was targeted for an elliptic orbit, the launch-
to-injection phase of this mission is quite similar to that for an 185 km
circular orbit and the resulting attitude and acceleration time histories
of this mission are therefore considéred valid for evaluation of guidance
system accuracy on the low altitude circular orbit mission. The Scout 176C
pre-flight orbit is very close to the desired high altitude circular orbit
and associated time histories of attitude and acceleration would be practically
identical to those of a 1111 km circular orbijt.

Injection deviations (at the end of fourth stage boost) for the
six guidance systems defined in Tables 31 and 32 are shown in Tables 33 and 34
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for Scout trajectories 176C and 173C respectively. The deviations are expressed
in a launch point vertical coordinate system with X being downrange in the
earth's tangent plane at the launch point, Z contained in the trajectory

plane and parallel to the launch gravity vector, and Y completing a right-
handed system. The columns titled "o Vel" and "o Pos" depict the magnitudes

of the standard deviations in total velocity and position. Table 33 includes,
for comparison, the values of "o Vel" and "o Pos" from Reference 16 for the
same trajectory.

A comparison of the error budgets plus the injection position
and velocity deviations shows that the Kearfott KT-70, Litton LN-30, GE SIR
and Teledyne TDS-2 are all very closely grouped in terms of system errors
at injection. The Hamilton Standard DIGS is the most accurate system of
all. The least accurate is the Honeywell H-487 which utilizes lower preci-
sion instruments, or sensors, but it has an attendant advantage of lower
hardware cost. The comparison also reveals that significant variations can
occur in the individual equipment error terms and yet achieve almost equiva-
lTent injection accuracies. The constrained, or non-acceleration sensitive,
gyro drift rates of the GE SIR, KT-70 and H-487 are essentially an order
of magnitude higher than any of the other systems. Significant differences
also occur in the acceleration dependent gyro drift rates resulting from
mass unbalance. The accelerometer terms are more comparable (differences
not exceeding a factor of about three) except for the bias error of the
H-487 Tevel accelerometers.

The final step in evaluating the performance of the inertial
guidance systems was to determine the orbital deviations resulting from the
injection deviations. The K7-70 and H-487 systems were used in the computa-
tion of the orbital deviations because they represent systems with medium
and maximum sensor error budgets. The intent was to bracket the performance
achievable with this range of inertial systems. Obviously, the DIGS would
result in smaller orbital deviations because of the more accurate injection
conditions. The injection deviations, as shown in TableS 33 and 34, are due to
equipment measurement uncertainties only; an additional contribution of 15%
of the total measurement errors was included to account for guidance logic,
computational, corrective delta velocity, and similar type errors. It was
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assumed that this error contribution was independent of the velocity
control technique - either thrust termination or velocity correction with
the attitude control system.

Combined injection deviations in position and velocity were
translated into bivariate apogee/perigee altitude distributions and cumulative
inclination distributions using VMSC's Statistical Orbit Analysis Routine
(SOAR). Injection conditions are sampled some 10000 times to provide an
adequate statistical description of the population density. Isoprobability
contours of apogee/perigee deviations were then generated which define the
percent of the population within the area bounded by each contour. These
contours thus indicate the probability that a random bivariate apogee/perigee
deviation will be equal to or less than that defined by the contour,

Apogee/perigee deviations for the 1111 and 185 km circular orbits
are given in Figures 14 through 17 for probability levels of 0,997, 0.95,
and 0.75. Related inclination deviations for corresponding orbits are
illustrated in Figures 18 and 19. These data provide excellent visibility
of the deviations in the orbital parameters. The 0.997 apogee (or perigee)
deviations for the 1111 km orbit are 31.5 km (17 n.mi.) with the KT-70 system
and 63 km (34 n.mi.) with the H-487. The corresponding inclination deviations
are 0.05 deg and 0.08 deg, respectively.

5.2 AUGMENTED SCOUT

The second guidance option considered modular or sequential improve-
ments (augmentations) to the existing Scout third stage open-loop system.

In addressing this option, the major open-loop contributors to the Scout
injection errors were examined and an attempt was made to reduce or provide
compensation for each major contributor. Since the ASLV design is conceptual
at this point, magnitudes and characteristics of the uncertainties in p;e-
dicting nominal performance data, which define the magnitude of the error
contributions, have not been established. The basic Scout data were therefore
used as a reference to evaluate this concept and establish orbital accuracies.
The major Scout error sources and resulting standard deviations in injection
parameters are listed in Table 35. These values have been adjusted to provide
agreement with Scout flight results as obtained from a sample of 24 flights.
The basis for the adjustments is the variation in velocity, flight path angle,
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TABLE 35 - INJECTION DEVIATIONS - CURRENT SCOUT, 556 km (300 n.mi.) ORBIT

Standard Deviations (10)

Flight
Error Source Path | Azimuth
Velocity Angle Angle Altitude
m/s | ft/s deg deg m ft
Algol IIB Performance 6.4 121.1 . 081 .002 4465 | 14650
Castor II Performance 1.3 4.4 .051 .001 1981 | 6500
X-259 Performance 3.4 [11.2| .068 .002 2195 | 7200
FW-4S Performance 11.7 1 38.4| .008 .001 26 85
Guidance System (Pitch) 6.9122.8] .100 .001 1682 | 5520
Guidance System (Yaw) .61 1.9 .004 .065 51 166
Thrust Misalignment (Pitch) 8.5(27.8| .006 .002 701 | 2300
Thrust Misalignment (Yaw) 1.4 | 4.6 .008 .190 53 174
Aerodynamic Drag 2.1{ 6.8 .047 .001 1667 | 5470
Atmosphere 2.0 6.5| .047 .001 1707 | 5600
Tailwind 5.3[17.41 .017 .002 180 590
Crosswind 2.0| 6.6 .030 .067 509 ( 1670
Stage 2 Boost Deadband (Pitch)| 10.333.8( .043 .001 2393 | 7850
Stage 2 Boost Deadband (Ro11) .51 1.5 .003 .058 65 212
Stage 2 Boost Deadband (Yaw) S5 1.6 .004 .035 99 324
Stage 2 Coast Deadband (Pitch)| 0.0 0.0{ .000 .000 1 3
Stage 2 Coast Deadband (Rol11) 11 0.2( .000 .005 6 20
Stage 3 Boost Deadband (Pitch)| 10.0| 32.9{ .060 .001 2630 8710
Stage 3 Boost Deadband (Roil) .21 0.8 .001 017 10 32
Stage 3 Boost Deadband (Yaw) 71 2.2 .004 .055 102 334
Stage 4 Tipoff (Pitch) 6.0 19.8| .442 .010 722 2370
Stage 4 Tipoff (Yaw) 5.9119.5{ .014 .404 22 72
RSS TOTAL 25.1( 82.5| .480 .466 7163 ] 23500
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azimuth angle and altitude between analytical and observed flight data.
Accordingly, the individual error sources, as defined by analytical simu-
lations, were changed (ratioed) to correspond to the flight results. The
individual error sources were then grouped in a manner compatible with
possible improvements.

5.2.1 Equipment and Utilization - The basic assumption in establishing
the modular improvements was that the current Scout inertial reference
package (IRP) and its associated equipment would be retained in the third
stage and that the fourth stage would remain spin-stabilized. The following
improvement approaches, or augmentations, were considered:

(1) Addition of a separate attitude reference and control
system in the spinning fourth stage - This system would
provide a means of correcting the attitude disturbances
resulting from the fourth stage separation and motor
ignition (tip-off). The fourth stage system would
obtain its initial reference from the third stage IRP,
It would be aligned mechanically to the IRP prior to
launch and use the predicted fourth stage separation
attitude as its initial condition. Equipment measurement
uncertainties and spinning body control errors associated
with this system were used to replace the current Scout
fourth stage tip-off values.

(2) Reduction of boost deadbands - Second and third stage
boost deadbands cause injection errors that can be
decreased in direct proportion to the reduction in the
magnitude of the deadbands. No additional equipment is
needed to accomplish this improvement.

(3) Addition of a fourth stage velocity control system -
A velocity meter with an attendant fourth stage thrust
termination or velocity correction system would provide
a means of reducing the error in the magnitude of the
injection velocity vector which results from variations
in motor performance, drag, winds and atmosphere. The
approach considered in utilizing a velocity meter was

114




to operate the unit from Taunch. The delta velocity

(or axial velocity which is the measured parameter)

of each stage would be measured and compared with a
nominal or reference value. The difference, together

with a predetermined sensitivity factor, which accounts
for the propagation of the axial velocity deviation of
that stage into injection velocity, would provide an
adjustment, or corrective velocity magnitude, at fourth
stage burnout. The adjustment values for each stage would
be added to the stored velocity cutoff to define the
thrust termination point or vernier magnitude. A
technique of this type would account for the differences
in sensitivity of injection velocity error to variations
in each stage. Using only the magnitude of the axial
velocity to determine the correction could be detrimental
rather than helpful. For example, a second stage velocity
variation may result primarily in flight path and azimuth
deviations at injection, thus a change in the magnitude
of the velocity vector would not reduce the total system
error.

(4) Addition of a third stage digital computer - The addition
of a small third stage computer would permit compensation
of the IRP roll gyro g-sensitive and elastic restraint
drift terms plus fin misalignment and pitch program
uncertainties. These compensations would require accelera-
tion inputs from the fourth stage velocity meter and
attitude errors from the IRP.

(5) Addition of lateral accelerometers to the velocity meter -
A measure of cross-axis accelerations would be needed
to compute corrections for first stage thrust misalign-
ment plus flight path and azimuth angle errors caused by
deviations in motor performance, drag, winds and atmosphere.

5.2.2 Accuracy Analysis - Injection and orbital deviations were computed
for 1111 km and 185 km circular orbits. The analyses considered the reduction
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achievable in injection deviations by implementing the individual augmenta-
tions. However, the system, or approach, identified as "Augmented Scout"
incorporates all five improvements outlined.

Injection deviations were first determined for the existing Scout
by using previous Scout accuracy analyses and the flight adjusted error
contributions depicted in Table 35. Using flight experience values as
a reference, the Scout injection deviations for the two orbits are given
in Tables 36 and 37. The error sources are grouped according to areas of
potential improvement rather than the individual contributors. The reductions
in injection deviation expected from the implementation of the modular
improvements are given in Tables 38 and 39. No detail logic was developed
for each augmentation; instead, the affected error sources were reduced to
the expected uncertainties in the measurement and processing equipment.

The isoprobability contours of apogee-perigee deviations corres-
ponding to the final injection deviations, as given in Tables 38 and 39,
are shown in Figures 20 and 21. The 0.997 deviations of 148 km (80 n.mi.)
for the 1111 km orbit are considerably larger than those obtained with inertial
guidance. The inclination deviations for the Augmented Scout approach are
shown in Figure 22.

5.3 OPEN-LOOP FOURTH STAGE

The final guidance option examined was an open-loop approach
equivalent to the current system except the inertial reference would be
located in an attitude-stabilized fourth stage. The primary reason for
considering this method was to eliminate some of the hardware duplication
inherent in the Augment Scout approach, The addition of a velocity control
system and reduction of second and third stage boost deadbands was also
included in the open-loop fourth stage approach.

5.3.1 Equipment and Utilization - The operation of the fourth stage
open-loop system would be exactly the same as that for current Scout except
the inertial reference would operate through the entire boost trajectory
and the fourth stage would be stabilized at the desired thrusting attitude.
The tip~off errors would then be completely eliminated but additional

errors would result from the fourth stage attitude control system deadbands.
Errors associated with the guidance system would increase because it would
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TABLE 36 - INJECTION DEVIATIONS - CURRENT SCOUT, 1111 km (600 n.mi.) ORBIT

Standard Deviations (1o)
Flight
Error Source Path Azimuth
Velocity Angle Angle Altitude
m/s | ft/s deg deg m ft
Fourth Stage Tipoff 10.2 | 33.5 | .568 .514 847 2778
Second and Third Stage 15.4 | 50.6 | .089 .072 5680 | 18634
Boost Deadbands
Motor Performance 16.9 | 55.3 | .174 .018 10128 | 33227
(4 motors) ,
Drag Winds, Atmosphere 4.4 | 14.5 | .078 .067 5400 | 17715
Guidance 7.5 1 24.5 | .120 .065 3812 | 12506
First Stage Thrust 9.1 { 29.8 | .045 .146 1525 5002
Misalignment
RSS TOTAL 28.0 | 91.9 | .619 .547 13474 | 44206
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TABLE 37 -~ INJECTION DEVIATIONS - CURRENT SCOUT, 185 km (100 n.mi.) ORBIT

Standard Deviations (10)
Flight
Error Source Path Azimuth
Velocity Angle Angle Altitude
m/s | ft/s deg deg m ft
Fourth Stage Tipoff 8.2 | 26.9 | .403 .404 570 1871
Second and Third Stage 13.9 | 45.7 .067 .089 2808 9213
Boost Deadbands
Motor Performance 13.4 | 43.9 .107 011 4225 13863
(4 motors)
Drag Winds, Atmosphere 5.8 1 19.1 .063 .067 1888 6194
Guidance 6.7 | 22.1 .091 .067 1328 4357
First Stage Thrust 8.3 | 27.3 | .017 .190 555 1820
Misalignment
RSS TOTAL 24.3 | 79.7 .436 .465 5630 18472
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be subjected to the fourth stage acceleration environment and the operating
time would increase. The areas of improvement included in this approach
were:

(1) Addition of a fourth stage velocity control system -
The equipment and its usage would be the same as that
for the Augmented Scout approach. The velocity meter
and the velocity correction system would be subjected
to the same operating environment and the corrections
would be accomplished in a similar fashion.

(2) Reduction of boost deadbands - Second and third stage
boost deadband reductions would be implemented with no
equipment modifications.

5.3.2 Accuracy Analysis - Assessment of the accuracies achievable with
the open-loop fourth stage options followed the same procedure as that

for the Augmented Scout approach. One assumption made in moving the IRP
to the fourth stage was that there would be no change in the guidance
components. It is recognized that some improvement could be realized from
the use of more accurate gyros; however, this would not be significant
when compared to the other error sources. The injection deviations corres-
ponding to incorporation of a velocity control system in the open-loop
fourth stage guidance and subsequent reduction in deadbands are listed in
Tables 40 and 41. The grouping of the error contributors is identical to
the Augment Scout analysis.

The apogee-perigee deviations resulting from these two guidance
techniques are shown in Figures 23 and 24. The 0.997 deviations are about
262 km (142 n.mi.) when the velocity control system is included and 154 km
(105 n.mi.) with the additional deadband reductions. The inclination
deviations are given in Figure 25.

No further additions to the open-loop fourth stage guidance were
considered. The next logical step would be the addition of cross-axis
accelerometers and a computational capability to correct for first stage
thrust misalignment and reduce the flight path and azimuth angle errors.
However, these additions would result in basic elements equivalent to those
of a full inertial system and all components would be Tocated in the fourth
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TABLE 40 - INJECTION ERRORS - OPEN LOOP FOURTH STAGE
GUIDANCE WITH VELOCITY CONTROL SYSTEM

Standard Deviations (1c)

Flight
Error Source Path Azimuth

Velocity Angle Angle Altitude

m/s | ft/s deg deg m ft
Fourth Stage Tipoff 0 0 0 0 0 0
Second and Third Stage 15.4 | 50.6 | .089 .072 5680 | 18634
Boost Deadbands
Motor Performance 174 .018 10128 | 33227
(4 motors)

} 3.3 | 10.8
Drag Winds, Atmosphere .078 .067 5400 | 17715
Guidance 8.1 ] 26.5 | .140 .076 3812 | 12506
First Stage Thrust 9.1 | 29.8 | .045 . 146 1525 5002
Misalignment
Fourth Stage Deadbands 0.2 0.5 | .074 .074 79 260
RSS TOTAL 19.9 | 65.3 | .267 . 206 13448 | 44120
* 1111 km Circular Orbit
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TABLE 41 - INJECTION ERRORS - OPEN LOOP FOURTH STAGE GUIDANCE
WITH VELOCITY CONTROL SYSTEM AND REDUCED DEADBANDS

Standard Deviations (1)

Flight
Error Source Path Azimuth

Velocity Angle Angle Altitude

m/s | ft/s deg deg m ft
Fourth Stage Tipoff 0 0 0 0 0 0
Second and Third Stage 4.4 | 14.6 | .025 .021 1609 5280
Boost Deadbands
Motor Performance 174 .018 10128 | 33227
(4 motors)

} 3.3 ] 10.8

Drag Winds, Atmosphere .078 .067 5400 | 17715
Guidance 8.1 | 26.5 | .140 076 3812 | 12506
First Stage Thrust 9.1 | 29.8 | .045 .146 1525 5002
Misalignment
Fourth Stage Deadbands 0.2 0.5 | .074 .074 79 260
RSS TOTAL 13.4 | 43.8 | .253 .183 12295 | 40338

« 1111 km Circular Orbit
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stage. In this case, the most advantageous usage of the equipment would be
the implementation of the inertial guidance approach with appropriate
guidance and control logic.

In subsequent discussions, the system identification "Open-Loop
Fourth Stage" will be used to refer to the most accurate approach within

this option. This includes both the velocity control system and the reduced

second and third stage boost deadbands.
5.4 GUIDANCE COMPARISONS

5.4.1 Accuracy - The 0.997 isoprobability contours of apogee-perigee
deviations and three sigma inclination deviations for the current Scout and
the three basic guidance approaches are shown in Figure 26. Orbital
accuracy requirements from Section 3.2 have also been superimposed on
Figure 26 and are indicated by the cross-hatched area. The outer bound of
this area indicates permissible apogee-perigee deviations with a three-
sigma inclination deviation of 0.1 degrees; whereas the inner bound defines
permissible apogee-perigee deviations with a three-sigma inclination devia-
tion of 0.3 degrees.

The accuracies achieved with inertial systems fall well inside
the requirements area. Obtainable accuracies with the Augmented Scout and
Open-Loop Fourth Stage approaches fall outside the indicated requirements
and also exceed required accuracies for the high altitude application
missions indicated in Figure 1. Both Augmented Scout and Open-Loop Fourth
Stage approaches, however, offer significant improvements over the current
Scout system.

5.4.2 Weight - Comparison of guidance systems on the basis of weight is
an important factor since every pound of guidance system weight trades one-
for-one with payload weight. A comparison of representative fourth stage
weights for each of the three guidance approaches is shown in the following
tabulation. For the Augmented Scout approach, all guidance system related
weight in the third stage was translated into equivalent fourth stage
weight to allow a comparison on a common basis. Attitude and orbital
correction system weights are also included because the weight for this
system differs between approaches since the fourth stage in the Augmented
Scout approach is spin-stabilized.
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GUIDANCE OPTION
Inertial Augmented Open-Loop
Guidance Scout Fourth Stage
kg 1b kg 1b kg 1b
Guidance Equipment 33.1 73 18.1 40 30.4 67
Attitude & Orbital 29.5 65 18.1 40 29.5 65
Correction System
3rd Stage Guidance -- 0 17.2 38 -- 0
Equipment (Equivalent
4th Stage Weight)
TOTAL 62.6 138 53.5 118 59.9 132

In arriving at representative guidance system weights, weight
estimates of inertial guidance systems were based on an intermediate weight
of 27.7 kg (61 1b) plus 5.4 kg (12 1b) for a battery. This intermediate
guidance system weight was determined from Table 31 which indicates a
weight range from 20 to 38 kg (44 to 84 1b) for inertial guidance systems,
excluding batteries.

The weight of the current Scout open-loop system was used for the
Augmented Scout and Open-Loop Fourth Stage appraoches. Weight estimates for
additional equipments were obtained from vendor data. The 18.1 kg guidance
equipment weight in the Augmented Scout system includes the attitude refer-
ence and correction subsystem for the spinning fourth stage plus the
velocity meter. Estimated weight of the orbital correction system for this
option is an additional 18.1 kg. The total weights in the above table
indicate no significant advantage of one approach over another on the basis
of weight.

5.4.3 Losts - An assessment of total guidance system costs including
hardware and software development costs plus recurring unit costs was made
for each of the three approaches. Costs for inertial guidance systems were
based on vendor estimates. Costs of the basic open-loop equipment used in
the other two approaches were assumed to be the same as those of the current

Scout system; however, vendor cost estimates were obtained for each of the
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improvements.
' Variations in estimated equipment costs are summarized below:

Inertial Augmented Open-Loop
Guidance Scout Fourth Stage

Non-Recurring Hardware| $1.3M to $2.59M | $560K to $840K| $280K to $420K
Development (Vendor
Design, Integration
and Tests)

Unit Recurring Cost $112K to $266K $232K to $269K| $150K to $164K
(50 Systems)

This cost comparison considers only the guidance equipment and control
electronics. No increments are included for the actuators and electronics
associated with first stage, gimbal nozzle control, rate gyro units, or
attitude control hardware. Costs of these equipments would be essentially
equivalent for all options and the intent is to provide a relative guidance
comparison.

An overall cost comparison is provided in Table 42. The software
development costs include associated analyses; development of all guidance
and control logic and equations; plus the generation, verification, and
validation of all flight computer programs. The equipment cost for the
Augmented Scout includes an integral nitrogen attitude correction system
to correct fourth stage separation and motor ignition disturbances, but
does not include the velocity correction capability.

Since the Augmented Scout and Open-Loop Fourth Stage systems both
utilize the existing Scout IRP, the lower cost bounds were used for compari -
son. No full inertial system has been used in a Scout-type environment,
thus the costs for this approach were assumed to be near the maximum values.

Table 42 shows a total cost savings of slightly over $100K per
system for the Open-Loop Fourth Stage system relative to inertial guidance.
The cost of the Augmented Scout, however, is almost equivalent to that of
inertial guidance.
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TABLE 42 - GUIDANCE COST SUMMARY

Guidance Option
Inertial Augmented Open-Loop
Guidance Scout Fourth Stage
Development:
Hardware $2.1M $560K $280K
Software 1.25M 800K 280K
Amortized Development $67K $27.2K $11.2K
(50 Systems)
Unit Recurring $210K $232K*> $150K
Total (Recurring Plus $277K $259.2K $161.2K
Amortized Development)

* Includes Nitrogen Attitude Correction System for Spinning Fourth Stage.

5.5 GUIDANCE CONCLUSIONS
Results of the accuracy evaluation of the guidance options (Figure
26) show that an inertial guidance system with an attitude stabilized fourth
stage can satisfy all accuracy requirements. Both the Augmented Scout and
Open-Loop Fourth Stage options offer significant improvements in apogee-
perigee deviations and inclination accuracy. The cost comparison shows no
major difference between the Augmented Scout and inertial guidance. The
cost penalty for the inertial system relative to the Open-Loop Fourth Stage
system is approximately $100K per system.
The following conclusions were drawn from the guidance comparisons:
(1) The Augmented Scout is the least desirablie approach. It
suffers from equipment duplications and increased costs,
and yet does not meet all the accuracy requirements.
(2) If the accuracy requirements established in Section 3.2 are
to be met, the choice is full inertial guidance.
(3) The Open-Loop Fourth Stage will reduce the current Scout
deviations by a factor of two and inclination error by a

factor of four at a lower cost than the full inertial approach.
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The weight and cost of the inertial guidance system were used in
the ASLV Development Plan in order to be conservative in the planning phase.
A11 six inertial guidance systems proposed will satisfy the orbital accuracy
requirements. A representative inertial guidance system is shown in the
general arrangement drawing at the back of this report. The objective was
to show a realistic system installation and provide sufficient space for any
of the candidate systems. The system shown in the drawing includes the
KT-70 platform, associated power conditioner, electronics package, and the
Kearfott SKC-2000 computer. A detailed weight statement for this guidance
system is shown below.

Subsystem: Weight:
ka  1bs

o IMU (Platform 7.2 16.0
o Computer 10.0 22.0
o Power Conditioner 5.5 5.5
o Electronics (Platform + 29 6.5

Partial Control) . ’
0 Rate Gyros .9 2.0

Additional Control Electronics 2.3 5.0

(Including Filters and Power

Switching?
0 Additional Power Conditioning 1.8 4.0

and Expanded Interface

TOTAL 27.6 61.0
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6.0 CONCEPTUAL DESIGN

6.1 CONFIGURATION DESCRIPTION

This section contains a summary description and mass properties
of the major components of the ASLV selected conceptual design. This design
is shown on the general arrangement drawing which is included as the last
page of this volume. This drawing is a fold out and the description herein
starts at the first stage and flows up to the payload, stage by stage. It
should be noted that the conceptual design derived in this section is intend-
ed to provide a guide for the detail design of an ASLV at a later date. The
choice of subsystems in no way indicates a final selection. During the
conceptual design, engineering judgement was used to select subsystems that
would satisfy the intended usage and be representative of the weight,
volume, performance, and cost characteristics of the design phase. During
the detail design phase final subsystem selections will be made based upon
more detailed design investigations.

The launch vehicle configuration resulting frem the conceptual
design study is a solid propellant rocket motor four stage vehicle with
first stage thrust augmentation provided by strap-on motors. These motors
are current Scout motors or modification thereof as shown in Figure 27.
Vehicle total length is 25.3 meters (82.9 feet). The maximum diameter of
the vehicle is 152 centimeters (60 inches). First stage motors are the
current Scout Algol III with two strap-on TX 354-5 Castor motors. The
second stage motor is a short Algol III. Third and fourth stage motors are
the High Pressure (HP) X-259 and shorf X-259. The short X-259 is a modifi-
cation of the HP X-259. These motors are connected by the conventional
interstage structure which also provides volume for stage subsystem instal-
lations.

A jettisonable payload shroud covers the payload and the third
and fourth stages of the vehicle. External tunnels along the first and
second stages cover the instrumentation and guidance electrical wiring and
destruct systems over this portion of the vehicle. Electrical wiring and
destruct systems for the third and fourth stages are located under the pay-
load shroud.
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The nozzles of the first and second stage Algol III motors are
movable and provide pitch and yaw control during firing of these motors.
Vehicle roll control during first stage boost is obtained by reaction
control systems mounted in the nose cone of each strap-on motor and in
the base section of the first stage. The roll control system in the base
section of the first stage is used when the strap-on motors are dropped.

A reaction control system on the second stage provides roll control during
second stage motor firing and vehicle complete control during second

stage coast. Pitch, yaw, and roll control of the third and fourth stages
is accomplished by reaction control systems mounted on the transition
sections between second and third, and third and fourth stage motors. The
fourth stage reaction control system also provides vernier velocity correc-
tion after stage burnout.

6.1.1 Strap-On Castor Motors - Two TX 354-5 strap-on Castor motors are
attached to the first stage Algol III motor. These motors are located 180
degrees apart and are positioned such that the aft end of the Castor motor
case skirt is aligned with the aft end of the Algol III motor case skirt.
Loads from the strap-on motors are transmitted to the Algol III motor case

by means of a thrust ball and sway brace fittings located in the forward
region of the strap-on motor case and rollers with a track arrangement at
the aft end of the Castor motor case.

A conical shape aerodynamic fairing is attached to the forward
end of the Castor motor case. Housed within this fairing is a reaction
control system and auto destruct. The RCS provides roll control for the
vehicle during the time of Castor Strép-on motor firing.
£.1.2 First Stage - The first stage base section is a cylindrical
section consisting of metal skins, longitudinal members and circular frames
with access doors as required. The diameter of the section is 114.3 centi-
meters (45 in). The section houses the movable nozzle of the first stage
Algol III motor, the hydraulic supply and actuation system for the nozzle,
and a RCS for roll control. The RCS provides roll control for the vehicle
during first stage boost after ejection of the TX 354-5 Castor motors. Also
contained within the base section are two hoist and launch fittings. The
vehicle to launcher interface points are located the same as on Scout.
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However, the base section pin interface points are forward of the Scout
location because of the need for a shorter base section to provide clearance
for the movable nozzle actuation. Thus, the ASLV Taunch pins must be longer
than the current Scout pins.

The construction, manufacture and processing of the first stage
will be very similar to the current Scout. The first stage motor, Algol
III, is the same as Scout except for the movable nozzle and strap-on
fittings.
6.1.3 Second Stage - The transition section between the first and second
stage motors provides the primary structure for this portion of the vehicle.
This section is configured to interface with the current Scout first stage
Algol III because step 1 of the phased growth approach uses the Scout first
stage. The forward portion of the section is a cylinder of 114.3 centimeters
(45 in) diameter which tapers to a diameter of 101.6 centimeters (40 in) at
the aft end to interface with the current Scout Algol III motor flange. The
transition section consists of metal skins, longitudinal members and circular
frames with access doors as required. The section houses the movable nozzle
of the second stage short Algol III motor, the hydraulic supply and actua-
tion system for the nozzle and a reaction control system. The RCS provides
vehicle roll control during second stage motor firing and pitch, yaw and roll
control during second stage coast between second stage burnout and third
stage ignition.

A hoist ring and lug, for erecting the vehicle on the Tlauncher,
are an integral part of this section. The hoist ring is at the aft end of
the tapered portion of the section at the interface of the transition
section and the first stage Algol III motor case.

The construction, manufacture and processing of this stage will be
similar to current Scout because the short Algol III motor is similar to the
Scout first stage except for the movable nozzle.

6.1.4 Third Stage - The second and third stage motors are joined by a

transition section that provides the vehicle primary structure between these
motors. The section is conical with a diameter of 114.3 centimeters at the
interface with the second stage and tapers to a diameter of 75.2 centimeters
(30 in) at the interface with the HP X259 third stage motor. The transition
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section consists of metal skins, longitudinal members, circular frames, and
access doors as required.

This section houses the nozzle of the third stage, HP X259 motor,
reaction control system for pitch, yaw, and roll control, telemetry relay
box, ignition and destruct batteries, destruct antennae and receiver.

The construction, manufacture and processing of this stage will
be the same as the current Scout.

6.1.5 Fourth Stage - A cylindrical transition section connects the third
and fourth stage motors. It is 76.2 centimeters (30 in) in diameter and
provides the vehicle primary structure between these two motors. The

section consists of metal skins, access doors, longitudinal members and
circular frames.

A reaction control system for vehicle fourth stage pitch, yaw and
roll control is mounted on this transition section. This RCS provides the
orbital correction for vernier velocity control after fourth stage burnout.

The construction, manufacture and processing of this stage will
be similar to current Scout but more complex because of the addition of
reaction control and destruct systems.

6.1.6 Payload Adapter - A cylindrical adapter section 76.2 centimeters
(30 in) in diameter joins the payload to the fourth stage motor case. This

section consists of metal skins, Tongitudinal members, circular frames, and
access doors as required. Included in the items mounted on this section
are the guidance system, telemetry transmitter and associated equipment,
radar transponder, batteries, and the payload separation system.

6.1.7 Payload Shroud - The payload shroud covers the payload and the

third and fourth stage motors. This shroud provides protection for the
payload and third and fourth stage motors from aerodynamic heating and
serves as the major aerodynamic load carrying structure during first and
second stage boost. This shroud is jettisoned as one piece.

The forward 433.45 centimeters (170.65 inches) of the shroud
covers the payload and payload adapter. This part has a conical nose sec-
tion 281.05 centimeters (110.65 inches) long with a half cone angle of 10
degrees and a nose radius of 31.75 centimeters (12.5 inches). The aft
portion is a cylinder 152.4 centimeters long and 152.4 centimeters in -
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diameter. The shell of the conical and cylindrical sections is a solid
laminate phenolic reinforced fiberglass with a metal nose cap. The shell
is reinforced with circular frames and contains venting, umbilical, and
access doors as required.

The shroud continues aft covering the third and fourth stages and
interfaces with the transition section between second and third stage motors
at a point located 52.07 centimeters (20.5 inches) forward of the forward
face of the second stage short Algol III motor case. The forward portion
of this third and fourth stage part is shaped as a frustum of a cone 223.8
centimeters (88.1 inches) long. It tapers from a diameter of 152.4 centi-
meters at the payload to fourth stage interface plane to a diameter of 114.3
centimeters at the interface with the second stage. The shell of the for-
ward portion of this part is solid laminate phenolic reinforced fiberglass
and is reinforced with circular frames. The aft portion is a metal shell
cylinder 256.24 centimeters (100.88 inches) long with a diameter of 114.3
centimeters and it is reinforced with circular frames.

6.1.8 Structure - The structural arrangement resulting from the concep-
tual design study provides good structural continuity with direct structural
load paths throughout the vehicle. Also, this arrangement will result in
use of commonly used methods of analysis and fabrication which have been
used on the current Scout vehicle. The design ultimate load used to
determine structure size was 1.25 x limit load.

Cork insulation will be applied to the external surfaces of the
vehicle as required to protect the structure, equipment, and instrumentation
from aerodynamic heating.

6.1.9 Separation - Separation of the vehicle components and stages occur
in the following sequence: Strap-on Castor motors, first stage, payload
shroud (after second stage burnout), second stage, third stage, fourth stage,
and payload.

Separation of the two strap-on Castor motors is initiated by the
release of a Marman type clamp at the thrust ball joint and separation
occurs simultaneously. Release of the clamp is accomplished by the discharge
of an explosive nut attaching the clamp. As these motors start to fall away,
two jettison bars located forward on the Castor motor case force the forward
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end of the motors to rotate out and away from the first stage Algol III
motor. Rollers on the aft end of the motor cases mate to a track arrange-
ment which is mounted on the first stage base section. This arrangement
assures rotation of the strap-on Castor motor and also guides them away
from the first stage base section and the Algol III motor nozzle. This
attachment and separation arrangement of the strap-on motor is the same as
that used on the thrust augmented Thor vehicle.

ATl other structural joint separations on the vehicle as shown
on the drawing, except payload separation, are accomplished by the use of
the Super Zip Linear Separation System which is manufactured by Lockheed.
This linear separation system, Figure 28, is an integrated, structural,
frangible joint containing a dual length of detonating cord. The detonat-
ing cord is confined in a plastic and is surrounded by a metal jacket.
Upon detonation of the cord, the plastic and metal jacket expands without
rupturing and fractures the separation joint. A1l products of combustion
are retained. The linear charge separation provides a system with no
contamination and fragments. The system has been flight tested and is
used on the Titan III and Atlas Agena launch vehicles. The length of the
payload separation on the Titan IIID is 18.2 m (59.5 feet) compared to 9.1 m
(29.9 feet) for the ASLV.

After separation of the first stage, a part (33.5 cm) of the
second stage interstage structure is separated to provide clearance for
the movable nozzle actuation. This same function is accomplished on other
rocket stages having movable nozzles, e.g., Minuteman.

The payload is attached to fhe fourth stage adapter by means of
a vee-band clamp and separation is initiated by discharge of explosive nuts
attaching the clamp. As the clamp is released, compressed springs housed
within the fourth stage adapter section assure separation by pushing the
payload away from the adapter and the expended fourth stage.

Separation of electrical wiring across the stage separation joints
is accomplished by disconnect plugs and lanyard pulls. Electrical connec-
tions between the payload and the fourth stage are disconnected by plugs
across the Vee band clamp joint. This type of payload separation has been
used very successfully on Scout.
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6.1.10 Reaction Control Systems - The control systems evaluated were

current Scout hydrogen peroxide (H202), Solid Gas Generator (GG), Liquid
Injection Thrust Vector Control (LITVC), and Hydrazine (N2H4). The current
Scout H202 systems were selected for the ASLV for the following reasons:

(1)

(2)

(3)

(4)

The Scout hardware (thrusters, tanks, pressure regulators,

and N2 supply) without modification could be used for all
requirements, e.g., first stage roll control with and with-
out strap-on motors; second stage roll control during boost
phase and pitch, yaw and roll during the coast phase; third
stage pitch, yaw and roll for boost and coast phase; and
fourth stage pitch, yaw and roll for boost and coast phase

and vernier velocity control after fourth stage motor burnout.
The Scout hardware is flight proven and no development phase
with its associated cost is necessary.

The N2H4 system would require development. Because of the

high cost of the catalyst bed, the recurring cost of N2H2
thrusters is five times that of the Scout H202 thrusters.

The density of N2H4 is about two-thirds that of H202. Thus,
for a given total impulse, the volume will be the same.

Hence, no weight reduction in the tankage and associated
hardware weight.

Because the Solid GG must burn throughout the total time

a stage must be controlled (no start-stop operation possible),
this approach exhibited no payload weight improvement when
used on the first and sécond stages and a payload loss when
used on the third and fourth stage. Also, a 2-1/2 $M develop-
ment cost would be necessary to develop a system for the ASLV
requirements. The LITVC systems are only effective during the
boost phase since the reaction is obtained by injecting a
fluid into the boost motor nozzle exhaust gases. Thus, an
H202 or some other system would be required for the cost
phase. The weight trade offs showed no payload improvement
over the H202 system. In addition, a 3/4 $M development
phase would be necessary to developed ASLV hardware.
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6.1.11 Telemetry - The selection of a PCM telemetry system over the
present Scout PAM system was made because of the use of the interial
guidance system. It was considered that more accurate telemetry data

would be required for monitoring the inertial guidance.

6.1.12 Mass Properties - The current mass properties data for the selected
conceptual design with a 340 kg payload weight is shown in Tables 43 and 44.
The Scout vehicle S-178, with actual weights of transition sections, was
used as the basis for scaling data for the ASLV. Where the structural or
subsystem requirements differ from Scout, appropriate analyses were made to
produce nominal weight data. Motor mass properties are considered nominal
since they are either vendor inputs or estimates based on existing motors.
6.1.13 Payload Volume - A schematic arrangement of the four and five
stage vehicles is shown in Figure 29. The conversion to a five stage
vehicle requires the addition of a fifth stage motor, spin table, payload
separation, adapter, spin rockets, electrical and other equipment as re-
quired. The combined weight of this fifth stage installation including the
payload must not exceed the design payload capability of the basic four
stage vehicle.

6.1.14 Motor Performance - The performance and physical characteristics
of the selected solid rocket motors are shown in Table 45.
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TABLE 44
ASLV WEIGHT BREAKDOWN

STAGE WEIGHT

COMPONENT/EVENT The KOs
PAYLOAD 750 340.1
STEP 4
E-Section 128 58
Structure
Systems
Motor - Short 259
Burnout 155 70.3
Motor Section 20 9.1
Ignition & Guidance Harness, Misc.
Upper D 114 51.7
Structure
Systems
STAGE 4 BURNOUT 1167 529.3
Weight Consumed, Short 259 Motor 1690 766.4
STAGE 4 IGNITION 2857 1295.7
STEP 3
Lower D 25 11.3
Structure
Systems
Motor - HP-259
Burnout 213 9.6
Motor Section 41 18.6
T/M & Guid. Tunnels & Harness
Destruct; Noz. Shroud; Misc.
Upper C 199 90.2
Structure
Sys tems
STAGE 3 BURNOUT 3335 1512.4
Weight Consumed, HP-259 Motor 2603 1180.5
STAGE 3 IGNITION 5938 2692.9
P/L SHROUD 912 413.6
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TABLE 44 (Continued)

COMPONENT/EVENT

STAGE WEIGHT

1bs kgs
STEP 2
Lower C 90 40.8
Structure
Systems
Motor - Short Algol III
Burnout 2273 1030.8
Motor Section 61 27.7
T/M & Guidance Tunnels & Harness
Destruct
Upper B
Structure
drops with Stage 1
flies with Stage 2 87 39.4
Systems 210 95.2
STAGE 2 BURNOUT 9571 4340.4
Weight Consumed, Short Algol III 18000 8163.0
STAGE 2 IGNITION 27571 12503.4
Upper B - drop structure 47 21.3
STEP 1
Lower B 223 101.1
Structure
Systems
Motor - Algol III
Burnout 3586 1626.3
Motor Section 90 40.8
T/M & Guidance Tunnels & Harness
Destruct
Base A 533 241.7
Structure
Sys tems
STAGE 1 BURNOUT 32050 14534.7
Weight Consumed, Algol III 12024 5452.9
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TABLE 44 (Concluded)

COMPONENT/EVENT AGE WEIG:’(’ETIS
STAGE 1 INTERIM BURNING (CASTORS OFF) 44074 19987.5
STEP O
Motor - Castor 5 (2)
Burnout 3042 1379.5
Motor Section - Nose Fairing & RCS (2) 338 153.3
STAGE 0 BURNOUT 47454 21520.4
Weight Consumed, Castors (2) 16560 7510.0
Weight Consumed, Algol III 16180 7337.6
STAGE O IGNITION with 340 kg (750 1b) P/L 80194 36368.0
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6.2 VEHICLE PERFORMANCE

The ASLV performance capabilities are presented in this section
for orbit, reentry, earth and solar probe missions. The rocket motor perfor-
mance, physical characteristics, and vehicle weights important to ASLV
performance calculations are described in Tables 43, 44, and 45. These
values have been used for the generation of the ASLV performance. The
selected ASLV configuration includes approximately a 10 percent margin
above the required payload capability of 340 kg into a 556 km circular
orbit. The payload margin has been introduced to account for possible
component weight growth and changes in motor performance. The orbital,
reentry, and earth probe performance data is presented for the selected
four stage ASLV with thrust augmentation. To define the synchronous transfer
and solar probe cabability, a typical fifth stage (FW-4 or FW-5) was incor-
porated into the vehicle.
6.2.1 Trajectory - All trajectories utilized in developing the perfor-
mance data in this section were computed using the six-degree-of-freedom,
digital computer routine described in Reference (17). These trajectories
were based on nominal information and did not include any deviations in
vehicle systems operation or external disturbances.
6.2.2 Performance Data - The ASLV performance data presented in the
following sections reflects the use of a Wallops Island launch site and a
lTaunch azimuth of 90 degrees (due east). The orbit altitudes are based on
a mean earth radius of 6370.076 km (3439.566 n.mi.).

The characteristic velocity which can be achieved with the four
stage ASLV is presented in Figure 30. Also, presented in Figure 30 is

the characteristic velocity which can be cbtained with the addition of a
fifth stage sized for maximum payload into a synchronous transfer orbit.
The fifth stage motor size required to inject maximum payload into a
synchronous transfer orbit was 287.5 kg (634 1bs) with a propellant weight
of 262.6 kg (579 1bs). With the five stage ASLV configuration, approxi-
mately 157 kg (347 1bs) of payload can be injected into a synchronous
transfer orbit and approximately 105 kg (231 1bs) into an earth escape
trajectory.

Also presented is the characteristic velocity which can be
achieved with a FW-4 or FW-5 type fifth stage.
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Orbit Missions

For orbit missions the ASLV utilizes the first three stages to
boost the fourth stage and payload to the desired injection altitude.

The fourth stage then accelerates the payload to the desired injection
velocity.

The circular and elliptical orbital capability of the ASLV is
presented in Figure 31. The ASLV trajectories are designed so that
injection occurs at zero flight path angle and thus injection altitude is
perigee altitude. The due east launch from Wallops Island results in an
orbit inclination of about 37.7 degrees. The ASLV circular orbit payload
capability varies from 476 kg (1050 Tbs) into a 200 km (108 n.mi.) orbit
to approximately 23 kg (50 1bs) into a 1925 km (1040 n.mi.) orbit.

The ASLV's maximum elliptical apogee altitude of 73154 km (39500
n.mi.) occurs with a perigee altitude of 200 km (108 n.mi,) and a payload
weight of 23 kg (50 1bs).

Reentry Mission

Reentry trajectories represent a radical departure from orbit
trajectories after stage two burnout. The third and fourth stages are
generally used to drive the payload back into the atmosphere. The exact
ignition time and position of the third stage are determined by the reentry
test conditions. For convenience, reentry conditions are quoted at the
time of final stage burnout.

The reentry performance presented in Figures 32 and 33 were
obtained by simulating gravity turn trajectories. There are many factors
and special Timitations (i.e., altitude-range profile, shaped trajectories,
reentry range, etc.) which are normally specified for a reentry mission,
These factors and special Timitations are usually unique for each reentry
mission. However, to present the ASLV overall reentry performance capa-
bilities, data are shown for gravity turn trajectories only. The data
are calculated for a launch azimuth of 90 degrees from Wallops Island.

Because of the réentry range considerations needed to reenter in
the general area of the Bermuda tracking stations, the reentry performance
is presented for trajectories which incorporate two stages to boost and
two stages to drive the reentry vehicle through the specified reentry altitude.
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Figures 32 and 33 present the ASLV reentry capability for reentry altitudes

of 91440 meters (300000 ft) and 121920 meters (400000 ft), respectively,

These data are presented as a function of three different reentry angles.
Probe Missions

Usually, the objective for a probe mission is to impart the
maximum energy of the booster system to the payload, allowing the payload
to ascend to the highest altitude possible. Maximum performance results
from minimum coast times between stages during the boost phase of the

trajectory.

(1)

(2)

Earth Probe

Figure 34 presents the ASLV apogee altitude capability
as a function of payload weight and Taunch angle. Note
that below a payload weight of approximately 225 kg
(496 1bs), the trend in the curve reverses, with shallow
trajectories achieving higher apogee altitudes than
those launched in a "steep" trajectory. The higher
velocities reached with 1ight wéight payload, combined
with the effects of the smaller burnout flight path
angles of the shallow trajectories produces this result.
Smaller burnout f1ight path angles tend to reduce gravity
losses and earth's rotational velocity losses.

Figure 35 presents "zero g time", the time of
flight during which the payload is in a weightless
environment. This time is measured from fourth stage
burnout until the payload reenters the earth's atmosphere
on the descent leg of the trajectory. Atmospheric
reentry is assumed at 91440 kg (300000 ft).
Solar Probe Mission

The boost trajectory for an ASLV solar probe mission
requires a five stage configuration to achieve excess
velocity over the escape velocity of the earth. Generally,
a solar probe is designed to inject the maximum payload
weight into a specified solar orbit (perihelion,
aphelion, and inclination to the ecliptic). Therefore,
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the ASLV payload capability shown in the following

figures represents the use of minimum energy trajectories.
Figures 36 and 37 present the solar probe capa-

bilities for the five stage ASLV for burnout altitudes

of 185 km (100 n.mi.) and 370 km (200 n.mi.), respectively.

It is shown in Figure 36 that the maximum payload weight
capability into a solar orbit is approximately 98 kg
(215 1bs). Figure 37 illustrates that for a burnout
altitude of 370 km (200 n.mi.), the maximum ASLV solar
probe capability is approximately 86 kg (189 1bs).
6.2.3 ASLV Step-Down Performance - One of the stipulated performance
requirements of the ASLV is the requirement to place current Scout type
payload weight of the order of 136-181 kg (300-400 1bs) into orbit. To
accomplish this requirement, the ASLV can be flown without the two Castor
strap-on motors. With this configuration, the ASLV has the payload capa-
bility to place approximately 181 kg (400 1bs) into a 556 km circular orbit.
The present Scout payload capability for the same circular orbit altitude
is about 163 kg (360 1bs). The overall range of payload capability for the
ASLV step-down configuration is within the payload range of the present
Scout vehicle as shown in Figure 38.
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6.3 GSE AND LAUNCH COMPLEX IMPACT

The ASLV configuration selected will make use of existing Scout
GSE and facilities with modification as necessary at each assembly, check-
out and launch facility (Dallas, Wallops Island, and Vandenberg Air Force
Base). The greatest changes anticipated are in the area of guidance system
checkout equipment and in the launcher and transporter systems. Only minor
modification will be required on the remaining equipment, with some new or
additional equipment being required to facilitate checkout. These modifi-
cations to the current Scout equipment and facilities, both in-plant and
at the field sites to support the selected conceptual design, are technically
and economically feasible.

They can be accomplished without impairing the ability to prepare
and checkout the vehicles for launch and launch of either the current Scout
vehicle or the ASLV. To accomplish the capability to launch either vehicle
will require design criteria such as (1) current launcher "C" and "D" support
arms and umbilical modifications must be made reversible to fit either launch
vehicle, (2) vehicle to launcher support point for the launch fittings must
remain at the same reference point circumferentially and from the vehicle
centerline, and (3) transporter changes must permit the use of either the
Scout or ASLV motor cradles or payload shrouds.

A summary listing of changes and location are shown in Table 46.

A brief summary of the modifications required are discussed below.

6.3.1 Guidance and Control System - The vehicle inertial guidance system

will use three displacement gyros and three accelerometers on the stabilized

cluster. An integral part of the system is a programmable digital computer.

Additional rate gyros, similar to the current Scout units, will be required.
A two-axis servo table is required to calibrate the gyros and

accelerometers. The power switching and gyro monitor circuits now in use
can be adapted to the new gyros with minor modifications.

Vehicle computer checkout will require new equipment. A computer
equivalent to the one in the vehicle will be required for monitoring. Also,

an input-output device will be required to allow GSE operators to command
the airborne computer.
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TABLE 46 GSE AND PROCEDURE EQUIPMENT REQUIREMENTS

Dallas  Wallops Island Vandenberg
Sys tems Sets Sets Sets
Guidance
(1) Modify power switching and 1 2 2
gyro monitor circuits
(2) Two axis torque table to 1 1 ]
calibrate
(3) Guidance system c/o 1 2 2
(4) Miscellaneous system 1 2 2
components, switches,
meters, etc.
(5) Cables to pad - 1 1
(6) Alignment of guidance - 1 1
system to desired launch
azimuth
(7) Resurvey of Bench marks - 1 ]
Radar Beacon and C/D Receiver
(1) Modify GSE antenna to - 1 1
properly match vehicle
antenna
(2) Modify console wiring, 1 2 2
switches, meters, etc.
(3) Cables to pad - 1 1
Ignition Destruct
(1) Modify switching capacity ] 2 2
for additional pyrotechnic
functions
(2) Cable to pad - 1 1
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TABLE 46 (Continued)

Systems

Dallas
Sets

Wallops Island
Sets

Yandenberg
Sets

Reaction Control System

(1)

(5)

(1)

Modify existing consoles,
design and fabricate new
consoles and associated
cables, and switching for
additional monitoring
capacity for the additional
RCS installation for S3T only

Cable to pad

New RCS test panel in SLC
blockhouse to accommodate
additional RCS system

Additional auxiliary
equipment, N2 carts,
portable leak test set,
motor nozzle plugs and
flex hose

Double size of remote
fueling unit

Telemetry

New ground station decoding
and recording equipment,
minor mods to existing
antenna, receiver and power
switching

Hydraulic System

(1)

Modify hydraulic cart by
adding compatible wiring
and cabling mods to an
S3T equipment

Algol nozzle deflection
monitoring during servo
system testing
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TABLE 46 (Continued)

Systems

Dallas Wallops Island
Sets Sets

Vandenberg
Sets

Hydraulic System (Continued)

(3)

(1)

(2)

(3)

(4)

(5)

(1)

(2)

(3)

Modify SLC blockhouse
consoles to double capacity
plus cable increase to serve
two hydraulic systems

Transporter

General overall "beef-up"
to support increased weight

Extensive mods for second
and fourth stage motor cradles

Outrigger cradles to
support Castor strap-ons

Major mod to forward end
to accommodate 60" shroud

Existing rails moved to
provide proper clearance

Launcher

Overall beef-up for new
support arms and Castor
strap-ons

Relocation of C/D support
arms and umbilical supports

Additional screw jacks
launch beam pivot points,
azimuth bearing and outer
race attachment

Dther GSE - Mechanical

(1)

Minor mods to motor handling
dollies, hoist sling adapters,
new work stands and fixtures
for interstage
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TABLE 46 (Concluded)

Dallas Wallops Island Vandenberg
Systems Sets Sets Sets

Other GSE - Mechanical (Continued)

(2) Optical alignment tools 1 1 1
and equipment required to
align the thrust vectors of
the castors

Other GSE - Electrical

(1) Modify flight readiness - 1 1
consoles and monitor
consoles
(2) Modify power supplies 1 1 1
Procedures
(1) Provide new procedures for 1 - -
guidance system and Castor
strap-ons
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The remaining guidance system components, such as RCS control
electronics, power distribution, switching and monitor circuits will be
similar enough to current Scout systems so that existing equipment can be
used with only minor wiring and cabling modifications. Some additional
instrumentation readout and switches will be required to accomplish the
checkout.

Alignment of the guidance system to the desired launch azimuth
will be critical. It has been assumed that an auto-collimating type device
will be used for this purpose.

6.3.2 Radar Beacon and Command/Destruct Receivers - These systems will
be nearly identical to current Scout systems and only minor wiring and
cabling changes will be required. The GSE Antennae may require design
changes to properly match vehicle antennae.

6.3.3 Ignition-Destruct Systems - Electrically, these systems will be
similar to current Scout systems. The new configuration will have more
pyrotechnic functions because of the strap-on Castors and stage separation
functions. Therefore, greater switching capacity will be required. This
can be accomplished by modifications to existing equipment. The Scout
Standard System Test S3T equipment will require minor wiring and cabling
changes for new components associated with the additional fourth stage and
strap-on motors destruct systems.

6.3.4 Reaction Control System - With the 6 RCS installations in the
vehicle, more switching and monitoring capacity will be required. SLC
blockhouse equipment must be expanded to accommodate the four additional
systems. Additional cabling between the blockhouse and the launcher and

a new RCS test panel, or a major redesign of the existing panel, will be
required.

Existing auxiliary support equipment, such as N, carts, portable
lTeak test sets, motor nozzle plugs, and flex-hoses can be used, but some

additional units will be required to provide for efficient checkout operations.

A major change will be required to the Remote Fueling Unit (RFU).
The No and H202 capacity of the current unit must be at least doubled with
corresponding increase in monitoring, switching and plumbing functions,
or a second similar unit must be added.

171



6.3.5 Telemetry System - New ground station decoding and recording equip-
ment will be required to handle PCM/FM signals. Existing antenna, receiver
and power switching equipment will require only minor modifications. Other
commercial equipment such as counters, oscilloscopes, panoramic displays can
be used as is.

6.3.6 Hydraulic System - Existing equipment can be used with minor
modifications for hydraulic system and servicing, including frequency
response and gains checks on the servo systems. The current Scout hydraulic
carts have adequate pressure and flow capacity and existing power switching
and monitoring circuits can be made compatible with minor wiring and

cabling modifications.

Instrumentation will be required to allow monitoring of nozzle
deflection angles during servo-system testing,

The SLC blockhouse console contains switching and monitoring
circuitry for the one hydraulic system now used in Scout. This capacity
must be doubled, with corresponding cabling increase, to serve the first
and seocnd stage hydraulic systems.

6.3.7 Transporter - The transporters will require modifications to
provide adequate structural capability because of the increase in launch
weight from 21500 kg (47404 1b) to 36400 kg (80200 1b) and the major change
in physical shape, Figure 12. Cradles for the first and third-stage
motors will not require any changes since the same motors are used on
current Scout. The second and fourth-stage motor cradles will require
extensive modification, or perhaps new cradles because of the use of the
short Algol III and the short X-259 motors. Additional "outrigger" cradles
will be required to support the Castor strap-on motors. This extra weight
over the rear wheels may necessitate the addition of a third wheel set.

The transporter forward end will require major modification to
accommodate the increase in diameter from Scout at 1.07 m to ASLV with a
1.52 m shroud. The existing rails must be moved outboard and some structure
reworked to provide the necessary clearance.
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6.3.8 Launcher - Additional wiring and plumbing will be required on
existing launchers to serve the additional requirements of the ASLV
guidance, RCS, and hydraulic systems primarily.

Major structure modification will be required to support the
weights noted above and the addition of new support arms for the Castor
strap-ons support until the vehicle is elevated to the vertical position.

Relocation of the "C" and "D" support arms and the vehicle
umbilical support arms will be required. These modifications must be
reversible so that current Scout launch capability will not be lost.

Because of the increase in vehicle weight noted above, major
modification will be required in four critical areas: (1) screw jacks,
larger jacks may be required; (2) screw jack and launch beam pivot points;
(3) azimuth bearing; and (4) azimuth bearing outer race attachments.

6.3.9 Other GSE - Mechanical - Motor handling dollies, hoist slings
and adapters will require minor modifications to handle the short Algol III
and short X-259 motors.

New handling fixtures and work stands will be required for the
interstage sections.

Optical alignment tools and equipment will be required to accom-
plish alignment of the thrust vectors (nozzle centerline) of the Castors with
the centerline of the main rocket will be critical, particularly with regard
to induced roll moments. This equipment exists for attachment of and the
alignment of the Castor motors when installed on the thrust-augmented Thor.
With some minor modification, this equipment can be used for the ASLV.

6.3.10 Other GSE - Electrical - Most commercial equipment now used on
current Scout can be used on the ASLV.

6.3.11 Procedures - Processing for the ASLV will be the same as for
current Scout vehicles; therefore, similar operational procedures will be
used.

Most ASLV procedures will evolve from existing Scout Standard
Operating Procedures (SOP's). However, new procedures will be required for
guidance system and strab-on motors installation, checkout, and alignment.

173



6.3.12 General - Since the selected ASLV conceptual design is an
improvement growth which will occur in three different steps over a 7 1/2
year period, no problem with storage of the current Scout and the ASLV
hardware is anticipated. Therefore, no cost impact has been included.

The Tength of the selected conceptual design is 25.3 meters
(82.8 feet) which is approximately 3 meters (10 feet) longer than current
Scout "D". This length increase or the diameter increase due to the first
stage Castor strap-on does not require any changes to the shelter.
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6.4 RELIABILITY

Reliability evaluations of vehicle elements and the total vehicle
consisted of both quantitative and qualitative analyses.
6.4.1 Quantitative Analyses - For the quantitative reliability estimates,
the sources of generic failure rates used in the analyses were MIL-HDBK-217A

and the RADC Reliability Notebook. Failure rate estimates were derived for
each ASLV system candidate assuming the exponential case of chance failure
distribution, i.e., equipment failures are assumed to occur by chance at
random intervals in time. The product law of reliability was then applied
to subsystem estimated reliability values to yield the estimated reliability
for the ASLV.

6.4.2 Reliability Goal - To provide a reference point for comparative

purposes with the reliability estimates, reliability goals were established
for the vehicle and the systems. A reliability goal of 0.95 was established
for the ASLV. This value is considered to be representative of current
technology state-of-the-art and is identical to an informal goal used for
the Scout Taunch vehicle.

The ASLV reliability goal was apportioned to the system level by
use of weighting factors. The weighting factors were obtained by ranking
the systems in terms of their relative reliability. The results of the
reliability goal allocation to the system level are shown in Table 47.

6.4.3 System Reliability Estimates - Failure rate estimates for each

system were made based upon consideration of generic failure data, historical
data, the qualitative ranking, and Scout experience. A summary of the
results of the ASLV system reliability estimates compared with the goals

N

and with Scout are shown in Tabie 48. A comparison of the reliability at
the vehicle level is as follows:

ASLV
Goal .95
Estimate .9516
Scout
Goal .95
Observed .9454
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TABLE 47
ASLV RELIABILITY GOAL ALLOCATION

Stage 2. . . . . .. 0o 0w o 0.9960

Stage 3. . . . . . . . 0 ... 0.9960

Stage 4. v v v v v e e e e 0.9960
(Short X259)

Other Subsystems. . . . . . . . . . « . . 0.9702
Structure. ... oo L 0.9993
Ignition . . . . . . . . . . .. L. 0.9987
Payload Shroud . . . . . . . . . .. 0.9980
RCS. « v v v v v s 0.9974
Destruct . . . . . . . .. .. .. 0.9967
Separation . . . . . . .. ..o L, 0.9960
Guidance . . . . . . .. .. ... 0.9954
L1 2 0.9947
Radar. . . . . . .. .. .. ... 0.9940
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TABLE 48 - COMPARISON OF ASLV AND

SCOUT RELIABILITY ESTIMATES

Configuration | Guidance | Propulsion E%ggl:}gg{ Destruct | Telemetry
ASLY Goals .9954 .9792 .9987 .9967 .9947
Esti-
mates .9992 .9725 .9993 .9976 .9988
SCOUT .9977 .9816 .9993 .9976 .9975
. . . Attitude Radar Payload
Configuration Separation Control Beacon Shroud Structure
ASLV Goals .9960 .9974 .9940 .9980 .9993
Esti-
mates .9996 .9871 .9990 .9979 .9999
Scout .9976 .9859 .9990 .9979 .9999

Some specific points of interest in this comparison are:

(1)

(2)

(3)

The ASLV system reliability estimates exceeded the goals

except in the area of propulsion and attitude control.

that for

the Scout.

The ASLV propulsion reliability estimate is less than
Since the rocket motors used are

the same or modifications of the Scout motors, this
is not caused by the use of less reliability motors.

The difference results from the number of motors used,
six for the ASLV and four for Scout.

Some ASLV systems which include more equipment than the

corresponding Scout system, exhibit reliability estimates
equal to or getter than Scout, e.g., Guidance, Destruct,
Telemetry, Attitude control and Ignition/Electrical.
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This results from the fact that for the ASLV operating
time period, the design state-of-the-art will
result in the availability of components having a higher
inherent reliability.
6.4.5 Vehicle Reljability - The Scout vehicle observed reliability
growth based upon the current 55 launch history and the ASLV projected
reliability growth are shown in Figure 39.

The data points for the projected ASLV reliability growth were
derived from analyses of Scout observed and generic reliability data.
Experience and state-of-the-art improvement factors were computed and applied
to the ASLV reliability estimate at accumulative launch intervals to yield
the ASLV growth curve. As noted, the projected ASLV reliability growth
closely approximates the observed reliability of the Scout vehicle, but
exceeds the established reliability goal of .95, at approximately the
45th vehicle.

The initial Scout observed reliability level of Figure 39 is a
demonstrated value. The initial, projected ASLV reliability level was
derived in the same manner as other points on the growth curve except that
it received less weighting based on the Scout experience.
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7.0 DEVELOPMENT PLAN

The ASLV development plan for the selected conceptual design is
presented in this section. The plan is based upon a phased growth improve-
ment approach (Section 4.2.5) and consists of a Preliminary Program Plan,
Development Funding and a Major Milestone Phasing Schedule.

7.1 PRELIMINARY PROGRAM PLAN

The program plan provides a summary task description of the major
program elements.
7.1.1 Management

The management of the Phased Growth Improvement Program will be
accomplished by the current Scout Program Management organization. This
is the most cost effective approach, because many of the functions, key
management personnel and procedures exist. The cost presented herein are
based on this management approach for the ASLV design and development
phase.

7.1.2 Program Task Summary

The ASLV will be organized into eleven major tasks as shown on
Table 49.

Task 1.0 System Integration

This task covers the establishment of organization responsibility

coordination of the effort of all participants, the preparation and main-
tenance of all control documents, development and checkout of all software,
and development of an integrated ground test plan to achieve compatibility
between all subsystems and GSE.

Task 2.0 Analysis and Design

This task will consist of the engineering required for the draw-

ings, specifications, test programs, procedures and software for the
fabrication, procurement, assembly, test, checkout and launch of the
launch vehicle.

Task 3.0 Rocket Motor Task

This task involves the analysis, design studies, procurement,
ground testing required to provide the propulsion motors for the ASLV.
This task includes the efforts of the Sub-Contractors. The ASLV motors
are all Scout motors or modifications thereof.
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First Stage Motors

This stage consists of the present Scout Algol III with modifi-
cations to accommodate the addition of a movable nozzle and attachments for
the Castor II thrust augmentation. The movable nozzle development will be
accomplished in conjunction with the short Algol III which will be used as
the second stage motor. The strap-on attachment requires local increase
in case thickness in the area of the ball joint. This is an engineering

modification type change which will require only a hydrostatic pressure
test for flight clearance. However, in conjunction with the movable nozzle,
one motor firing will be accomplished.

Second Stage Motor

This stage consists of the present Scout Algol III motor shorten-
ed by removing a cylindrical section of the case and the addition of a
movable altitude nozzle. The shortening of the motor is considered an
engineering change because the nozzle throat will be reduced in diameter
to retain a chamber pressure consistant with the Algol III grain and case
design. The movable nozzle design has completed some development testing.
The motor change will be evaluated during the test firings planned for the
movable nozzle development. This motor will be procured first and the
same movable nozzle design will be used for the first stage except it will
rave a sea level nozzle and the nozzle throat diameter will be larger.
This approach will reduce the movable nozzle and Algol III development
cost,

Third Stage Motor
This will be the high pressure X-259 which is a Scout "D" X-259
motor planned growtih development. There s

will be no changes reguired for
incorporation of this motor into the vehicle.
Fourth Stage Motor

This stage consists of the third stage motor High Pressure X259
shortened by removing a cylindrical section of the case and the addition
of a contour nozzle. The present X-259 propellant will be used but a
nozzle and a grain change are necessary to retain the chamber pressure
consistant with the X-259 grain and case design. The grain change also
provides a lower thrust level near motor burn out to reduce the peak "g"
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Tevel to within the selected guidance system current design requirements.
Task 4.0 Guidance Subsystem
This task involves the procurement, analysis, design studies, and
testing required to provide the improved guidance subsystem for the fourth
stage. The basic components are existing designs which will require test

and re-packaging to fit within the ASLV installation requirements. Typi-
cal components and installation are shown on the general arrangement
drawing which is the last page of this volume.

Task 5.0 Controls

This task involves the effort associated with the attitude con-

trol subsystems required for each stage, and the vernier velocity control
system for the fourth stages. The Scout hydrogen peroxide components will
be used for all stages. The characteristics of the subsystem for each
stage is shown in Table 50. The requirements for the control subsystems
will be defined under this task. However, the movable nozzles will be
procured under Task 3.0 Rocket Motors. The movable nozzle actuation sub-
system will be procured under this task.

Task 6.0 Other Subsystems

A1l the effort associated with the electrical, separation, range
safety, antennas, telemetry, beacon, instrumentation, payload shroud,
interstages, cabling, and adapter subsystems will be performed under this
task.

Task 7.0 Testing

A11 ground testing accomplished by the Contractor will be done
under this task. A listing of these tests, objective and hardware require-
ments are shown on Table 51. No separate flight test launches will be
used because the ASLV program will be accomplished by only incorporating

one or two of the improvement items before a vehicle flight occurs. There-
fore flight test data will be acquired during a payload launch. The number
of engineering changes to be incorporated on a given launch will be con-
trolled so that reliability confidence can be based upon ground test
results. The current Scout program changes have been accomplished in this
manner with good success.

Task 8.0 Assembly and Checkout

The ground test and flight hardware will be fabricated, assembled,
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TABLE 50 REACTION CONTROL HARDWARE
THRUST LEVEL & AXES

N
1b
STAGE TYPE Pitch Yaw Ro11 Hardware Origin
FIRST
oWith Strap-Ons  -Movable
Nozzle +6° X X Design Verified by
-RCS H20, 2224 test
Each Strap-0n (500) Scout
2 Motors
-Lower Base "A" 2224
RCS H20, (500)  Scout
oWithout -Lower Base "A" 2224
Strap-0ns RCS Ho0, (500)  Scout
2 Motors
SECOND
oBoost -Movable Design verified
Nozzle +3° by test
-RCS H202 - 195.7
8 Motors (44) Scout
oCoast -RCS H202 195.7 195.7 195.7
8 Motors (44) (44) (44)  Scout
THIRD
oBoost -RCS H»02
-4 Motors 213.5 213.5
(48) (48) Scout
-4 Motors 62.2
(14)
oCoast RCS H202
-4 Motars 62.2 62.2
(14)  (14)  Scout
-2 Motors 8.9
(2)
FOURTH
oBoost -RCS H202 213.5  213.5
4 Motors (48) (48) Scout
(Includes
Vernier)
-Nitrogen 4.45 Burner II
8 Motors (1)
oCoast -Nitrogen 4.45 4.45 4.45 Burner II
8 Motors (1) (1) ()

NOTE: A1l Thrust values are vacuum.
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and delivered to the designated test or launch site. The components and
subassemblies will be acceptance tested prior to assembly into a vehicle.
Prior to delivery, a complete checkout will be accomplished using dummy
rocket motors and pyrotechnic devices.
Task 9.0 GSE and Procedures Design and Fabrication
The GSE changes required to support the ASLV will be designed,
fabricated, installed, and checked out under this task. These changes
and modifications will be accomplished so that either the current Scout or
ASLV may be handled or launched with the same equipment. The major items
requiring changes or modifications are:
(1) Transporter - Strap-ons and Weight
(2) Launcher - Weight and Length
(3) Lifting Equipment - Weight and Length
(4) Guidance - Inertial Guidance Checkout and Alignment

Equipment.
(5) Movable Nozzle Checkout Equipment
(6) Strap-on Alignment Equipment
Task 10.0 Field and Flight Operations
The facilities and services required at the range will be docu-

mented. Procedures for receiving, assembly, checkout and launch of the
vehicle will be prepared. The launch support required will be provided for
the launch of all 50 vehicles over the planned program life. The flight
test data from all flights will be recorded, reduced and anomalies will be
investigated and corrective action taken. These data will be correlated
with ground test data and theoretical results to complete the development
of simulation routines and data catalog.

Task 11.0 Program Documentatijon

The documentation required and distribution thereof will be in
accordance with the current Scout program requirements.

7.2 DEVELOPMENT FUNDING
7.2.1 Guidelines

The following guidelines were used during the preparation of
this development plan.
(1) The scheduled incorporation of jmprovements will be
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phased to achieve a growth in payload capability for
each improvement while not requiring the expenditure
of a flight test vehicle for reliability verification.

(2) The phased growth steps will be accomplished in such a
relationship that redesign of interstage structure for
each step will not be necessary.

(3) For amortization purposes, the launch rate will be five
(5) Taunches per year over a ten-year period.

(4) The growth steps will be phased such that the current
Scout “D" payload capability will be preserved for the
first step.

(5) The funding and schedules will be based on the assump-
tion that an inertial guidance system will be installed
on the fourth stage. Therefore, funding and scheduling
requirement will be adequate regardless of the final
guidance decision.

(6) The launch complex and ground support equipment cost
shall be estimated but not amortized.

(7) The launch support costs will be estimated and included
as a part of the recurring cost.

(8) A1l costs will be based on 1971 dollars and will be
costs to the Government.

(9) The Launch Support Cost will be same as for Scout $IM.
7.2.2 Fiscal Year Funding

The phased growth approach presents a number of schedule options
with a wide range of peak fiscal year funding. A total of ten schedules
options having an ASLV Tlaunch date variation over a decade were investi-
gated. These schedule variations are shown on Figure 40. Taking into
consideration future NASA budgets, projected user demand schedule, total
development cost the most attractive funding schedules are likely to fall
to the right of schedule H. Discussion of these schedules follows:

Schedule H - Figure 41

(1) Improved orbit injection accuracy is achieved at the
earliest possible date.
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PEAK FISCAL YEAR FUNDING ($M)
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FIGURE 40 FUNDING REQUIREMENT AND ASLV LAUNCH DATES
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(2).

(3)

With Step 1, the Scout payload capability is preserved
with improved accuracy.

Upper stage (3rd and 4th) motors development delayed
sufficiently to permit consideration of any propulsion
improvement in State-of-the-Art (ISP’ Mass Fraction,
and Stop/Restart).

Minimum inflation impact because highest development
items are incorporated early.

Peak fiscal year funding is $3.27 million.

Total development cost is $12.649 million

The same points as schedule H except:

o Fiscal funding peak is $2.392 million

o Launch dates for each step occurs later. First
340 kg Taunch occurs two years later.

Guidance incorporated as the last step. Only one
integration of guidance with the fourth stage which
reduces total development cost by 543 $K.

Fourth stage motor development delayed sufficiently to
permit consideration of propulsion improvement in
State-of-the-art (ISP’ Mass Fraction, and Stop/Restart).
Peak fiscal year funding is $2.172 million

Total development cost is reduced 543 $K because the
fourth stage/guidénce integration occurs only once.

Total development cost increased by 543 $K because the
guidance is integrated with the fourth stage twice.
Peak year fiscal funding of $2.032 million.

The propulsion improvements (First, Second, and Third
stages) are incorporated before guidance improvement

(4)
(5)
(6)
Schedule B - Figure 42
(1)
Schedule I - Figure 43
(1)
(2)
(3)
(4)
Schedule J - Figure 44
(1)
(2)
(3)
is incorporated.
Schedule C - Figure 45

(1)

Upper stage (3rd and 4th) motors development delayed
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sufficiently to permit consideration of any propulsion
improvement in State-of-the-art (ISP’ Mass Fraction,
and Stop/Restart)
(2) Peak fiscal year funding of $1.296 million.
(3) Total development cost of $14.531 million because the
Program is stretched out over a 10 year period.
7.2.2.1 Selected Schedule. - Schedule B, Figure 42, is selected for the
ASLV development based on the following reasons:

(1) Provides a logical growth pattern as discussed in
Schedule B, above,

(2) The peak fiscal year funding of $2.4 million con-
sidered to be reasonable for current budget trends,

7.3 MAJOR MILESTONE PHASING SCHEDULE

The ASLV program major milestone phasing schedule for the
selected schedule B above is shown in Figure 46. The first phase is 45
months in duration and assuming a 1 April 1972 go-ahead the first launch
of step 1 occurs 1 December 1975. This configuration incorporates the
inertial guidance and attitude and vernier velocity control systems on
the Scout 4th stage as well as the short Algol III with movable nozzle
for the second stage. This vehicle can place a 170 kg (390 1b) payload
into a 556 km circular orbit when launched due east from Wallops Island,
Va. Step 2 incorporating the modified first stage (Algol III with movable
nozzle and Castor II strap-ons) and the large payload shroud has a first
launch of December 1977. This configuration can place a 260 kg (580 1b)
payload into the same orbit. The third phase, which incorporates the
high pressure X-259 for the thrid stage and short X-259 for the fourth
stage, achieves the design goal of 340 kg (750 1bs) payload capability
into the same circular orbit. The first Taunch with this full capability
occurs in July 1979. ‘
7.4 ASLV AVERAGE UNIT LAUNCH COST

The average unit launch sost of the ASLV based upon a 50 vehicle
procurement of 10 step 1 vehicles, 10 step 2 vehicles, and step 3 in 2
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units of 15 vehicles each is shown below: $M

Propulsion, Interstages and Payload Shroud 1.221
Inertial Guidance and Control 0.350
Production Checkout 0.148
Total Hardware Cost 1.719
Launch Support Cost 1.000
Total Hardware and Launch Cost 2.719
Amortized Development Cost over 50 Vehicles 0.253
Average Unit Launch Cost 2.972
7.5 GSE AND PROCEDURES COST

The cost of the GSE and procedures for the ASLV are shown on
Table 52 for Dallas, Wallops Island and Vandenberg. The number of sets
of equipment and modification are listed in Table 46, Section 6.3. The
procedures cost is based upon the preparation and release of new pro-
cedures for the guidance and the strap-on motors only. Al1 other pro-
cedure changes are assumed to be accomplished as addendum to current
Scout procedures prepared by the launch support personnel. Thus, these
costs are a part of the 1 $M launch support cost.

The fiscal year funding for the GSE and procedure cost is shown
in Figure 47 for Dallas and Wallops Island.
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TABLE 52 GSE

AND PROCEDURES COST

WALLOPS
SYSTEMS DALLAS  ISLAND SUBTOTAL VANDENBERG  TOTAL
Guidance 325.1K  523.0K 848.1K 523.0K 1371.1K
Radar Beacon and C/D
Receivers 13.3K 13.5K 26.8K 13.5K 40. 3K
Ignition-Destruct
System 17.6K 9.7K 27.3K 9.7K 37.0K
Reaction Control
System 62.8K 68.8K 131.6K 68.8K 200.4K
*Telemetry 130.6K  225.3K 355.9K 225. 3K 581.2K
Hydraulic 30.5K 20.9K 51.4K 20.9K 72.3K
Transporter* 34.3K 23.3K 57.6K 23.3K 80.9K
Launcher 50.5K 68.4K 118.9K 68.4K 187.3K
Other GSE-Mechanical
157.7K  130.6K 288. 3K 130.6K 418.9K
Other GSE-Electrical
9.8K 5.6K 15. 4K 5.6K 21.0K
Total GSE 832.2K 1089.1K 1921.3K 1089.1K  3010.4K
Procedures 146.7K - 146.7K - 146.7K
Total GSE 978.9K 1089.1K  2068.0K 1089.1K 3157.1K

Procedures and
Facilities.

*Required only if an inertial guidance system is used.
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Based on

8.0 CONCLUSIONS

the results of the study reported herein, the following

conclusions are presented:

(1)

(3)

(4)

(5)

(6)

The most economical approach to provide the specified
payload design objectives is to continue the current
Scout Taunch vehicle product improvement program. This
capability growth can be accomplished by modifications

to the current Scout hardware except for the inertial
guidance and telemetry systems.

A11 hardware involved in the product improvement program
is current design state-of-the-art.

The manufacturing, checkout, and processing of the launch
vehicle will be similar to current Scout.

A requirement exists for an improved Scout guidance
capability.
No new ground support equipment or facility procure-

ments are necessary to support the Taunch vehicle
except for the improved guidance strap-on motor align-
ment, and telemetry systems. They can be accomplished
economically without impairing the ability to assemble,
checkout and launch the current Scout vehicle.

A1l rocket motors are solid propellant and are existing
or modification of existing flight hardware.
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LIBRARY CARD ABSTRACT

NASA CR-XXxXXX
National Aeronautics and Space Administration
Advanced Small Launch Vehicle (ASLV) Study

G. E. Reins, J. F. Alvis,

8 March 1972

(NASA Contractor Report T186-1)
Contract No. NAS1-10848

A conceptual design study was conducted to define the most
economical approach for an Advanced Small Launch Vehicle (ASLV) for use
over the next decade. Payload design objective was 340 kg (750 1b) into
a 556 km (300 n.mi.) circular orbit when launched due east from Wallops
Island, Virginia. Investigation included liquid, solid and hybrid rocket
propellants using existing, modified, or new propulsion stages. Based
on the conceptual design study results, it was concluded that the most
economical approach is to progressively improve the current Scout launch
vehicle in three phased steps. Step 1 incorporates a modified Algol III
in the second stage, and improved guidance, and attitude and vernier
velocity control in the fourth stage. Step 2 consists of adding two
strap-on Castor motors to the first stage Algol III and 1.52 m diameter
payload shroud. A high pressure X-259 third stage and a modified X-259
fourth stage are added in Step 3.

Time phased growth plans and fiscal year funding options are
presented.




