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ABSTRACT

An analytical technique is developed to solve nonlinear longitudinal
combustion instability problems associated with liquid propellant rocket
motors. The analysis produces the transient and limit-cycle behavior of
unstable motors and the threshold amplitude required to trigger a linearly
stable motor into unstable operation. The limit cycle waveforms are
found to exhibit shock wave characteristics for most unstable engine operating
conditions. A method of correlating the analytical solutions with experi-
mental data is developed. Calculated results indicate that a second order
solution adequately describes the behavior of combustion instability
oscillations over a broad range of engine operating conditions, but that
higher order effects must be accounted for in order to investigate engine

triggering.
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SUMMARY

This report describes an analytical technique for the analysis of
nonlinear longitudinal combustion instability. The applications of this
technique, which is based on the Method of Weighted Residuals, 1s demonstrated
for a liquid propellant rocket combustor with a high impedance injector and a
short nozzle. Crocco's time lag theory is used to describe the unsteady
combustion response. .

The methodology developed in this report can predict the linear stability
limits of the engine, triggering limits, and both the transient and final
periodic behavior of the combustion instability oscillations. It is shown
that the final periodic behavior of the instability is only dependent upon the
engine operating conditions (i.e., the Mach number, the combustion parameters n
and T, etc.), and is independent of the characteristics of the initial
disturbance. Computed results show that in most cases the final waveforms
exhibit shock-wave-type behavior, and that the number of shocks present within
the combustor is determined by engine operating conditions. It is also found
that the waveform of the resulting instability depends upon the proximity of
the operating point to engine resonant conditions (i.e., to the minimum point
on the linear stability limit). The predicted waveforms are used to develop

a technique for correlating the analytical solutions with experimental data.



INTRODUCTION

Experimental observations of rocket motors experiencing high frequency
longitudinal conmbustion instability show that in a majority of cases the
oscillations of the gas inside the combustor exhibit shock-wave characteristics.
These flow oscillations can be initiated in two ways. In an intrinsically
unstable engine the instabilities are spontaneous in nature and they result
from any perturbation of the steady state flow field. On the other hand, some
engines require the introduction of a finite amplitude disturbance to produce
unstable combustion. In either case, the oscillations experience a transient
phase prior to the establishment of stable, periodic (i.e., stable limit cycle)
waves with oscillation frequencies that are usually close to the frequency of
one of the chanber's acoustic modes. These observations suggest that a
nonlinear analysis, capable of predicting the limit cycle waveforms and the
conditions for which unstable combustion can be initiated by finite amplitude
disturbances of the steady state flow, is required.

In this report, the Galerkin method, that is a special application of
the Method of Weighted Residuals (see Ref. 1 for discussion of this method) ,
is used to develop an approximate mathematical technique for analyzing the
nonlinear behavior of rocket engines susceptible to longitudinal mode
combustion instabilities. The desired mathematical techniques are developed
by investigating longitudinal conbustion instabilities in liquid propellant
rocket combustors with a high impedance injector and a short nozzle. The
Mach number of the combustor mean flow is assumed to be small. Crocco's

pressure sensitive time lag model2 is used to describe the unsteady conmbustion

process.

The problem is analyzed by solving the conservation equations describing
the behavior of large amplitude combustion-driven osecillations in low Mach
number mean flows. Because the solution of these equations requires a
relatively large amount of computations, a simpler but more restrictive
second order analysis is developed concurrently. In this second order analysis,
the amplitude of the flow oscillations are restricted to be of the order of
the steady state flow Mach number, and terms of order higher than second order

are neglected. Hereafter, the former problem formulation will be referred to



as the third order theory, and the latter analysis will be called the

second order theory. The applicability of the second order theory will be
determined by comparing its results with third order solutions. It will be
shown that from a practical point of view, the results predicted by the second
order theory are comparable to those found by the solutions of the third order
theory.

The results obtained in this investigation are used to develop a
technique for correlating the analytical results with experimental data. An
empirical method for predicting the nonlinear waveforms is also discussed.

A User's Manual for the required computer programs is included in the

appendices of this report.

SYMBOLS

Ak(t), Bk(t), time-dependent coefficients in the series defined in
Fas. (10) through (1

Al semi-empirical peak amplitude of the first harmonic
defined in Eq. (28)

B> By BS, B), boundary conditions defined in Egs. (5), (6), (8), and (9)
c sonic velocity
E)> E» E3, B, flow equations, defined by Egs. (1), (2), (3), and (7)

Il(k,{), I2(k,m,{), space integrals defined in Egs. (22) through (26)
I3(k>m9’t’) s Iu(kpma’&) s

I (k}m’&)

5
k,m,4 summation indices and axial mode numbers
L combustor length
N number of terms used in series expansions
n . interaction index

. . %, ¥ *D

D dimensionless pressure, Yp /pocO

q dimensionless acoustic-type velocity, defined in Eq. (1kL)



. % %
T dimensionless wave period, T co/L

. - * *
t ' dimensionless time, t cO/L
to time correlation parameter

- 0 * *
u dimensionless velocity, u /cg
w’ unsteady combustion mass source

*
z dimensionless axial coordinate, z /L
z., dimensionless axial coordinate used in experimental
correlation

o power exponent in experimental correlation
Y specific heat ratio
Apéax dimensionless peak-to-peak amplitude
6n vertical displacement at constant T in the n-T plane
€ ordering parameter

- . . * *
v dimensionless specific volume, Vv Po

*
P dimensionless density, p/pO
— ¥ %
T dimensionless pressure sensitive time lag, T co/L
¢ velocity potential
%, %

w dimensionless angular frequency, ® L/cO
wl correlation parameter
Subscripts
e evaluated at the nozzle entrance
k,m,4 axial mode numbers
IS evaluated at the linear stability limit
R evaluated at retarded time, t = t-T
t time derivative
Z - 8pace derivative



0 injector face stagnation quantity

Superscripts

! perturbation quantity
- steady state quantity
* dimensional quantity

~ approximate solution

DEVELOPMENT AND SOLUTION OF THE EQUATIONS

Problem Formulation

An analytical technique for investigating the nonlinear stability of
combustion-driven axial mode oscillations in liquid propellant rocket
combustors is developed. The combustor geomeﬁry is shown in Fig. (1) . The
liquid propellants are injected uniformly through a high impedance injector,
converted by a complex combustion process into hot gases, and the gas products
are exhausted through a short nozzle. The nondimensional coordinate system
is defined with the origin at the injector face and the nozzle entrance plane
at z = z*/L = 1. The thermodynamic variables are normalized by the correspond-
ing injector face stagnation quantities, the velocity is nondimensionalized
by the injector face steady state stagnation sonic velocity, and time is
normalized by a characteristic time defined as the ratio of the combustor
length to the injector face stagnation sonic velocity.

In order to develop a problem formulation that is both simple and
physically meaningful, the following assumptions are made:

1. The flow is one-dimensional, with the velocity vector parallel to the
combustor axis.

2. The mean flow Mach number and its derivative are small.

3. The flow consists of a single constituent perfect gas and liquid

droplets of negligible volume.
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Figure 1. Combustor Geometry and Boundary Conditions



4. Viscosity, diffusion, and heat conduction are negligible.

5. The liquid droplet specific stagnation enthalpy remains constant as
the droplets move through the combustor.

6. The momentum sources arising from gas-droplet interaction are
negligible.

Even with these restrictions, the equations describing the behavior of
axial combustion instability oscillations are quite complexs. A simplification
of the analysis results when the relative importance of the various terms in
the conservation equations is established by using order of magnitude
arguments. In this analysis, the magnitude of each term appearing in the
conservation equations is evaluated and all terms whose magnitudes are
smaller than a certain threshold value are neglected. To accomplish this
task, two ordering parameters are used. One parameter, ﬁé, is a measure of
the effect of the presence of mean flow upon the oscillations. The second
parameter, €, is a measure of the amplitude of the flow oscillations. This
investigation is concerned with the behavior of moderate and large amplitude
instabilities in combustors having low Mach number mean flows. Consegquently,
terms of order higher than O(ﬁi) and O(ﬁéez) are neglected. Under these
restrictions, the equations describing the behavior of the combustion
instability oscillations can be written as follows3:

1. Continuity:

’ _ 7 aa s Y, ’ ’ [ 7 an /2]
= + 1 — - - + — =
By =V t v, + = v viu, - u W+ 2v w, + =V 0 (1)
2, Momentum:
7 - 7 do s ¢ 7 1, 1
= + + == + + = + = =
E, =u, +Uu, +g-u u'u, +S VP, t TP, 0 (2)

3. Energy:

’ — 7 11 ’ ’ aa s 11 [’Y (y-1) au /2]
= + + - —= AN e/ =
E3 Py * Up, T U Py, Yy = Y, Ty az ¥ TP uz+ 2 az * J o (3



- In writing these equations, the specific volume, v, is used instead of the
density, p, in order to simplify the numerical solution of the ordinary
differential equations that result from the application of the Galerkin
method3. ;

The term %% represents the unsteady mass generation by the burning fuel.
In the present analysis this unsteady mass source (or combustion response
function, as it is sometimes referred to) is desgribed by Crocco's pressure
sensitive time-lag hypothesise. Accordingly, gg is then given by the follow-

ing relation:

ow da

5, =0 (2 - p'(2,8-7) ] ()

where n and T are the two parameters that Crocco used to describe the unsteady
combustion process. The interaction index, n, is a measure of the sensitivity
of the combustion process to flow oscillations and the sensitive time lag, T,
is representative of the time required for the unsteady combustion process to
respond to flow perturbations.

The computed solutions must satisfy the so0lid wall boundary condition at

the injector face; that is

B, = u’(0,t) =0 (5)

35k

and the quasi-steady short nozzle boundary condition at the nozzle entrance

By =u'(L,6) - B a2’ (1) + (G070 ] =0 (6)

Additional simplification of the conservation equations is possible when
© the amplitude of the instability is moderate. Under this condition, it is
possible to assume that the ordering parameters ﬁé and € are of the same order
of magnitude and all terms of order higher than second (e.g., terms of

O(ﬁie) or 0(e3)) are negligible; all such terms are bracketed in Egs. (1)
through (3). When these terms are neglected, Egs. (1) through (3) can be

com'bined5’6 into the following nonlinear wave equation:



awl
-5, = 0 (7)

— an
Eh B CPzz - wtt - Eucht_Y daz cpt - 2C'chpzt - (Y-l)¢t¢zz
where © is the velocity potential defined by QZ = u'(z,t). The bracketed term

in the short nozzle boundary condition is also neglected, and the boundary

conditions are written in terms of the velocity potential @6:

B, = 9,(0,) =0 (8

= y-1 - =
Bu = sz(l,t) + 5 ueCPt(l,t) 0 (9)
Tt has been shown> that solutions of Egs. (7) through (9) adequately describe
the behavior of moderate amplitude axial instabilities, but that solutions of
Egs. (1) through (6) are required to investigate axial mode triggering.

Solutions of both formulations of the problem are developed in this report.

Solution Technique

Closed-form mathematical solutions of the equations developed in the
preceding section are not known. As a result, it is necessary to resort to
the use of either numerical solution techniques or approximate analytical
techniques. The former approach is generally quite complex and its application
requires excessive computation time; furthermore, the use of numerical
solution techniques in general provides little physical insight into the
problem. An appealing approximate analytical technique has been developed by
Zinn and Powell6>7 who investigated nonlinear transverse combustion insta-
bility problems. In these investigations, the undetermined function form of
the Galerkin method, that is a special application of the Method of Welghted
Residualsl’8 (MWR) , is used to find the desired solutions.

In ordef to use the Galerkin method, it is necessary to represent the
dependent variables by means of approximate series expansions. The proper
choice of the series expansion is critical to the usefulness of the Galerkin
method. Various guide lines for the choice of the approximate series expansion

. . 1 . )
are offered in the literature ’8. In studies of combustion instabilities it



~ is convenient to use available experimental data, which indicates that the
behavior of high frequency combustion instability oscillations resembles the
behavior of the chamber's acoustic modes, as a guide. This information
suggests that the dependent varisbles of the problem be expanded in terms of
the natural acoustic modes of the chamber; each having an unknown time-
dependent coefficient. Using available acoustic solutions as a guide, the
following approximate series representations for the dependent variables are

used:

N

V(z,t) = ¥ o 10

vi(z,t) k=lAk(t) cos (kmz) (10)

- N

p(z,£) = % B, (t) cos(kmz) (11)
k=1

o N

a'(z,t) = % Ck(t) sin(kmz) (12)
k=1

- N

¥(z,t) = Z D (t) cos(kmz) (13)
k=1

the variable q’ represents the "acoustic portion” of the velocity perturbation

u’ that is given by

~ -1 _~, 2—1 ~ /2 ~y
e = 5 a3 - S aE 0 J o+ T (1)
Y

The particular choice of an expression for’a', as given in Eq. (14), was
dictated by the requirement that the dependent variable satisfy the problem's
boundary conditionsd (i.e., Egs. (5) and (6)).

The unknown time-dependent mode-amplitudes (e.g., An(t), Cn(t), ete.)

are determined by the following mathematical procedure. The assumed series

10



expansions are substituted into the conservation equations and boundary
conditions to form differential equation residuals and boundary residuals.

If a residual is identically zero, then the corresponding equation or boundary
condition is identically satisfied. On the other hand, when the equation or
boundary residuals are not identically zero, the residuals are the errors

that resulted from using the approximating expansions of the dependent
varisbles. According to the Galerkin method, these errors (i.e., residuals)
can be minimized in some average sense by requiring that the residuals satisfy
certain orthogonality conditions.7’6’9 In the solution of the problem defined
by Egs. (1) through (3), the boundary conditions, Egs. (5) and (6) are
identically satisfied by the chosen series expansions, Egs. (10) through (12) ,
and the required orthogonality conditions ére defined by the following

relations3:

1
I’Ei cos(Amz)dz = 0 L =1,0..,N (15)
0
1
I i% sin(4mz)dz = O L=1,...,N (16)
0
1
j;ﬁg cos(£mz)dz = 0 L =1,...,N (17

On the other hand, the expansion of the velocity potential used in the
second order solution (i.e., Eq. (13)) does not satisfy the quasi-steady short

nozzle boundary condition, Eq. (9). In this case, the required orthogonality

3,9,

condition is
v 1
I'ﬁ cos (4mz)dz - Y53 (1,t) cos(4m) =0 L =1,...,N (18)
0 3 2 et ?
The last term in the above equation represents the effect of the nozzle boundary

condition residual.

11



Performing the operations indicated in Eqs. (15) through (17) yields the
following system of quasi-linear ordinary differential equations desecribing
the behavior of the unknown mode-amplitude functions:

dA&—

w - F

L= (LTr)C& +QB, - ﬁeA& - nﬁ'e(B&-

B LR)

2

N
2 v & A - )
ve % {ue(kﬂ)Il(k ), - ) (k) T, (5, )3,

N
+ mil I:(mTr) Iz(k,m,L) CA, + () I3(k,m,£)Aka
- ﬁeIS(k,m,L)AkAm + Ql(mrr) Iu(k,m,&)BkAm
- Q (mm 1) (k,m,)AB + QlI3(k,m,L)AkBm

- 2nﬁeI3(k,m,»f,) (Bk-BkR)Am

+ Q213(k,m,L)BkBm - 2Q2(mrr) Iu(k,m,&)BkBm]} (19)

3 =F, =-v(mc, - Y2 B, - Y@ B, + ynﬁe(BL-BLR)

N

+ 2 kzl {ﬁe(k:rr) Il(k,JL)Bk + le(kn) Il(k,L)Bk

N
' m§1 [(m) I,(kom, ) OB, - y(mm) I, (k,m,4) B, C

2 yy-D)
5 uele(k,m,&) ¢cC, - 'lels(k,m,&)BkBm

+ (v41) Q) (wm) I, (k,m,4)B, B - yQ213(k,m,&)BkBm

12



+ 2ya, () 1, (km,0) 3,3, [} (20)

e 2 (x,4) £ 1, (k4o (21)
——=-22{Q1 k,)F. +2Q,21I k,&,mBF}+F 21
at ko U1 1 2, 2 el Ly K2 3¢

where
F =£TIB - TC +21§ {-ﬁ(k:n)I(&k)c
3 Y £ e 4 k=l e 1Y 7 Tk

N
1
+ mzl [7 (o) 12(&,m,k)AkBm - (mm) Iz(k,{,,m) ¢Cy

- Q) (o) I), (k,4,m)B,C + Q (k) 15(k,%,m)Bkcm

- @1, (4,m,K) e |}

In the derivation of Egs. (19) through (21) a linear steady state velocity

distribution, U = ﬁez , has been assumed, and the following definitions have

been used:

Il(k,&) = Ilz sin(kmz) cos (4m1z) dz (22)
0
Iz(k,m,&) = Jlsin(kﬂz) sin(mmz) cos (4mz) dz (23)
0]
I3(k,m,&) = J;lcos(k‘rrz) cos (nrz) cos (4rz) dz (2k)

13



Iu(k,m,{) = Ilz cos (kmz) sin(mmz) cos (4mz) dz (25)

0
Is(k,m,{) = Ilz sin(kmz) sin(mmz) sin(4mz) dz (26)
0
and
2
= Y1 - . =- Y-l
9 = oy e > Q = 8y2 Ue

The second order solutions are found by performing the operations
defined by Eq. (18). The following equations describe the behavior of the
mode-amplitude function of the velocity potential:

aD aD, 4D
_ 2 - _ L, = [_*J 4 ]
5 == (M™Dy - v&, 7= + Wi, |55~ - 7 (¢-7)

N dap,
23 {250z 6,0 - g (-] =
k=

N aD
+ 3 [(y-l) (mﬂ)zls(k,m,&) =

m=1 n
daD
- 2(em) (@) Ty(em,t) 20 b (27)

The space’integrals defined in Egs. (22) through (26) are evaluated
numerically using a Simpson's rule algorithmlo (see Appendix A). The
nonlinear behavior of axial mode instabilities are found by numerically
integrating either Egs. (19) through (21), or, in the case of moderate
amplitude oscillations, Eqs. (27). In order to carry out these computations,
engine operating conditions (i.e., v, ﬁé, n and T), and initial conditions
must be specified. The behavior of the mode-amplitude functions is followed
through the transient phase to the establishment of periodic oscillations.
The perturbation flow field is then calculated using either Egs. (10) through
(12) or Eq. (13). When Egs. (27) are used to describe the unsteady flow, the

14



pressure perturbation at any location within the chanmber is related to Esby
5,6

the following second order momentum equation
o) = ¥ [7,F2) - 7,5 0)] (29)

A more detailed description of the solution technique outlined in the
preceding discussion is included in Appendix B. Typical numerical solutions

of these equations are presented and discussed in the following section.

RESULTS AND DISCUSSION

Nonlinear Solutions

Extensive computations have shown that the predicted nonlinear insta-
bilities are dependent upon the engine operating conditions and independent
of the nature of the initial disturbances. However, the computation time
required to reach limit cycle conditions is reduced when the waveform of the
initial disturbance is "close", in some sense, to the waveform of the limit
cycle oscillation. For example, the computation time required to reach a
discontinuous fundamental mode (1L) limit cycle oscillation is reduced when
the assumed initial disturbance has a 1L discontinuous waveform. In this
investigation it has been assumed that the engine is operating smoothly until
t =0, at which time a pressure disturbance is impulsively introduced inside
the chamber. The velocity perturbation is assumed to be initially zero. Both
spacially continuous and spacially discontinuous initial disturbances have
been used.

Typical transient and the resulting limit cycle oscillations are shown in
Fig. 2. Here, initial continuous fundamental mode perturbations distort
themselves ihto a discontinuous oscillation. When the amplitude of the initial
disturbance is larger than the amplitude of the limit cycle oscillation, the
transition to shock-wave-type behavior occurs within two cycles. On the other
hand, when the initial amplitude is small a longer time period elapses before
a shock wave is formed. In either case, the initial disturbances reach the

same limit cycle conditions. These data were generated by solutions of the
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second order wave equation (i.e., Eq. (27)); however, the same behavior is
exhibited by the solutions of Egs. (19) through (20). It can also be shown>
that during the transient period the waves can change from one mode of
oscillation to another. Consequently, if for given engine operating conditions
the initial disturbance is not in the "proper" mode, then the solutions will
adapt themselves to the operating conditions and the final periodic solution
will be in the mode of oscillation that is unstable. In other words, no a
priori knowledge of the behavior of the resulting instability is required in
order to use the analytical technique developed in this report.

The pressure envelope of the combustion instability oscillations is also
defined in Fig. 2. The pressure envelope is simply the band of the peak-to-
peak pressure amplitudes of the oscillations. The temporal behavior of the
pressure envelope will subsequently be used to investigate engine triggering.

It has been found in the course of this investigation that while the
second order. theory is capable of predicting the behavior of the final
instabilities in linearly unstable engines, it is unable to predict the
engine's triggering limits. It is shown elsewhere6 that this difficulty is
related to the mathematical structure of the resulting second order equations
for the mode amplitudes. In view of these results, it was decided to use the
second'order theory, that requires considerably less computation time, to
investigate the behavior of stable limit cycles in linearly unstable engines,
while the third order theory will be used to study the behavior of triggering
limits. A justification for this approach is presented in Fig. 3 where
predictions of the second order and third order theories, for limit cycle
peak-to-peak pressure amplitudes, are compared. It is shown in Fig. 3 that
the predictions of both theories are in fair agreement over a wide region of
peak-to-peak pressure amplitudes. A possible reason for the observed
discrepancies is the different treatment of the nozzle boundary condition in
the two theories3. It has also been shown3 that the waveforms predicted by
the two theories are in good agreement.

To determine the engine triggering limits, the minimum value of an initial
disturbance required to initiate instability in a linearly stable region was
determined numerically. For operating conditions where no disturbance can

cause instability, the engine 1s said to be absolutely stable. Due to the
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above-mentioned shortcomings of the second order theory, the third order
analysis is used herein to investigate the behavior of the triggering limits;
the results of this investigation will determine the manner in which the
problem's nonlinearities modify the engine linear stability limits. The
behavior of oscillations near a triggering limit are shown in Fig. 4., The
upper plot in Fig. 4 was obtained for an initial disturbance larger than the
triggering limit; it shows the growth of a pressure envelope. The lower plot
in Fig. U shows the behavior of an initial disturbance whose magnitude is
smaller than the triggering limit; the plot shows the decay of a pressure
envelope. The plots presented in Fig. 4 indicate that the threshold
disturbance amplitude required to trigger a linearly stable motor, at the
operating conditions in question, lies between the amplitudes of these two
initial disturbances. The threshold amplitude can be found by requiring a
zero growth rate of the threshold disturbance and linearly interpolating the
data shown in Fig. L.

The nonlinear behavior of fundamental mode instabilities can be summarized
in an amplitude map of the type shown in Fig. 5. This figure shows linear and
nonlinear stebility limits, and lines of constant peak-to-peak pressure
amplitude. According to Fig. 5, triggering can be obtained in the narrow
region between the linear stability limit (solid line) and the nonlinear
stability limit (broken line). The small extent of the triggering region is
evident at T = 1.623. Here, the vertical displacement of the nonlinear limit
from the linear stability limit is only 6n =n-ng=- .02. The triggering
region for above resonant conditions (i.e., T < 1) is also narrow, and is
terminated at T = 2/3 where the second longitudinal mode becomes linearly
unstable. It can be shown3 that the concept of triggering becomes meaningless
in a region where one of the modes present in the series expansion is
linearly unstable. The significance of the parameter tO/T, also shown in
Fig. 5, will be discussed in the following section.

The objective of the preceding discussions was to provide an indication
of the type of data that can be generated by the solution technique developed
in this report. Detailed presentations of these and related studies can be

found in Ref. 3.
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Correlation with Experimental Data

It has been shown in Reference 3 that the shape of the pressure waveforms
depends upon engine operating conditions. Specifically, the pressure waveforms
are dependent upon the proximity of the operating point to engine resonant
and T . ). The observed behavior of the stable

n min
limit cycle pressure oscillations can be used to correlate the analytical

onditions (i.e., ton .
condi ( s 5

results with experimental data. To accomplish this task, two waveform
parameters are defined in Fig. 6. In this figure, the solid line shows the
numerically computed pressure waveform, and the broken line is the mean pres-
sure waveform used to determine the correlation parameters Apéax(zr) and
tO/T(zr); z, is the normalized axial location for which experimental pressure
data is available.

Once z,, is specified, the analytical solution technique can be used to
determine both the limit-cycle amplitude map and the dependence of tO/T on T.
Typical results are shown in Fig. 5. The values of Apéax(zr) and to/T(zr)
found from experimental pressure data are then used, in conjunction with the
data presented in Fig. 5, to determine the engine operating conditions in

terms of n and T.

Semi-Empirical Pressure Waveforms

A semi-empirical method for predicting the pressure waveforms has been
developed. The objective of the semi-empirical method is to provide design
engineers with a straightforward technique, requiring relatively little
computation time, for predicting the nonlinear pressure waveforms. The semi-
empirical correlation method is based on the o'bservationll that the velocity
potential, P, can be approximated, at least for resonant oscillations, by the

following series expansion:

N
G Alkzlk-acos(kwlt)cos(kﬂz) (29)

where Al’ o, and w, are found from computer-generated data. The nonlinear
pressure waveform is then found from Eq. (28).
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The parameters A., ¢, and W, are found from the behavior of the mode-

s
amplitude functions cimputed usiig Eq. (27) with a five term series expansion
(i.e., N =5 in Eq. (13)). The parameters A, and ®, are the maximum amplitude
and the frequency of the fundamental harmonic, respectively. The exponent, «,
accounts for the decrease in maximum amplitudes of the higher harmonics; it is
found from an empirical log-log plot of maximum mode amplitude versus the mode
number.

Normally, a ten term series (i.e., N = 10, in Eq. (13)) is required to
adequately predict the discontinuous waveforms3. The required computation
time is approximately proportional to the square of the number of terms
retained in the series expansion. Consequently, the computation time required
for the semi-empirical method is considersably .shorter than that required to
solve directly for the pressure waveforms using the series solutions containing
the unknown time-dependent mode amplitudes.

Semi-empirical pressure waveforms are compared with computer generated
solutions in Fig. 7. Ten terms were retained in Eq. (28) in the computation
of the semi-empirical waveforms (i.e., N = 10 in Eq. (28)). Tt is evident
from the data shown in Fig. 7 that the semi-empirical method fails to
reproduce the waveforms at off resonant oscillations. The probable reasons
for this failure are: '

1. There is a slight phase shift between the various modes at off-resonant
conditions.

2. For off-resonant oscillations, the higher harmonics are both frequency and
amplitude modulated.

3. For off-resonant oscillations, the higher harmonics may not obey the
amplitude power law found by considering the behavior of the first few
mode-amplitude functions.

DISCUSSION AND CONCLUDING REMARKS

An analytical technique has been developed for the analysis of nonlinear
longitudinal combustion instebilities in liquid propellant rocket motors. The
technique requires relatively little computation time and provides considerable

insight into the physics of the problem. The method does not require any
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a priori knowledge of the final form of the instability. The method can
predict triggering limits as well as the transient and final periodic
behavior of the instability. Results predicted with the aid of this method
agree with available experimental dats.

Results obtained with a second and a third order analyses show that the
second order analyses describes the behavior of longitudinal combustion
instability over a broad range of engine operating conditions. The third
order theory showed that longitudinal instabilities can be triggered in a
very narrow region outside the linear stability limits. The extreme
narrowness of the nonlinearly unstable fegion suggests that from a practical
point of view, the longitudinal stebility limits of most engines are adequately
described by the linear stability limits.

A correlation technique, that can be used to correlate the analytical
results with experimenfal data, and a semi-empirical method for predicting

the waveforms of the instability, have been developed.
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APPENDIX A

PROGRAM SPAINT: EVALUATES THE SPACE INTEGRALS RESULTING

FROM THE APPLICATION OF THE GALERKIN METHOD

Statement of the Problem

Program SPAINT uses a Simpson's rule integration algorithm to
evaluate the space integrals resulting from the application of the
Galerkin method. A linear ramp Mach number distribution, T(z) = ﬁe X Z,
is used. The computed integrals are stored in a data file which is
used as input data in Program WAVES. The program user must specify
the step size to be used in the numerical integration, and the number
of terms retained in the series expansion(s) of the dependent varisble(s).

The space integrals to be evaluated are given in Egs. (22)
through (26) . The following definitions are made for the purpose

of computer s‘to'ra.ge assignment:

Array Integral Index (K)
7(1,N,I) = le sin(nmz) cos (4rz) dz 0 (A.1)
0
T3(l,vN,M,L) = Jlsin(nﬂz) sin(mmz) cos (4mz) dz 1 (A.2)
0
m™(2,N,M,L) = J.lcos (nmz) cos (mmz) cos (£mz) dz 2 (A.3)
o .
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Array Integral Index SK}

1
m3(3,N,M,L) = ]z cos (nmz) sin{mmz) cos (411z) dz 3 (A.L)
0
L
T3(4,N,M,L) = | z sin(nnz)sin(mmz) sin(4nz) dz L (A.5)
0

The array indices N, M, and L vary from one to NEQ, where NEQ
is the number of terms retained in the series expansion(s) of the
dependent variable(s). As coded in this report, NEQ < 10. It is
recommended that a value of NEQ = 10 be used regardless of the nunber
of terms in the series. The reason for this choice i1s discussed in
the section of this appendix entitled "Recommendations on Program
Usage".

A standard Simpson's rule numerical integration algorithm (see,
for example, Contelo) is used to evaluate the integrals. In this
procedure, the interval [O,l] is divided into 2N subintervals of

length h and the integral is evaluated using the following equation:

ff(z)dz =%[fo +l;f:L + 2f, +hf3 + ... +Lf
0

oN-1 * sz]

The error involved in this numerical integration scheme is of the
order of hu. The user specifies h, and h must be such that the interval

[O,l] is divided into an even number of subintervals.



Input and Output

The required input data consist of the number of terms in the
series expansion(s) of the dependent variable(s), NEQ, and the integra-
tion step size, HI. The input data is read into the computer from
two data cards:

Card 1: NEQ, integer, is right justified in columns 1-10 (Format I10)
and NEQ < 10
Card 2: HI, floating point number, in columns 1-10 (Format F10.0)

The computed integrals are stored in an assigned data file (see
the section on the Deck set-up) and are printed in a straightforward
output format. The notation used in the printed output is self-
explanatory: L, N, and M are array indices (M = O for integral (A.1))
and K is the index which defines the integrand (e.g., X = O for
integral (A.l), etec.).

A typical set of input data and a portion of the printed

output are respectively shown in Tables A.l and A.2.

Deck Set-up

The deck set-up described herein is for the Univac 1108 Exec 8
system used at Georgia Tech. The manner in which data files are
assigned might be different at other computer facilities. The important
thing to note is that the data file number (I/O unit) assigned to the
output data of this program is used as the input data file number in
program WAVES. This program uses I/O unit 2 to store the data file.
Deck Set-up:

1. Run Card (I.D. Card)
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TABLE A.l. Sample Input For Program SPAINT

COLUMN

1-10

11-20

.02

10
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2. I/0 unit assignment cards.

3. Main Program, MAIN. This program reads the imput, calls subroutine
SUMM, and outputs the computed integrals.

4. Subroutine SUMM. This program specifies the integrand function,
f(x) , and calls subroutine SIMPSN.

5. Subroutine SIMPSN. This program performs the Simpson rule integra-
tion of f(x). f(x) is defined in the External Real Function
Subprogram FOFX.

6. Real Function Subprogram FOFX. This program defines the integrand
function f(x) according to the integral index, K.

7. Input Data Cards.

Recommendations on Program Usage

Experience with this program has shown that an integration step
size of HI = .02 produces good results. Although NEQ can be varied
from 1 to 10, it is recommended that NEQ = 10 be used for the following
reason: Using this approach, one data set can be used to compute
nonlinear solutions (using program WAVES) for values of NEQ between
one and ten. Program WAVES is set-up to use the output generated by
program SPAINT in this manner. In summary, it is recommended that
values of HI = .02 and NEQ = 10 be used. Approximately 60 seconds of

computation time on a U-1108 are required in this case.



FORTRAN Listing of Program SPAINT

(e XeXaXsXsRaXeXsXekekaKkeXeXsksXsXeXeEeEeNaRe!

400
ko2
403
405
406
407
408
410
430

440
450
460
800

THIS PROGRAM EVALUATES THE INTEGRAL OF F(X) FROM 0 TO 1
USING SIMPSON RULE

THE MAIN PROGRAM READS THE INPUT» CALLS SUBROUTINE SUMM»
AND OUTPUTS THE COVPUTED INTEGRALSe THE INTEGRALS ARE
PRINTED AND STORED IN FILE 3 USING THE FASTRAN SYSTEM.
THE F(X) ARE DEFINED wWITH THE PRINTED OUTPUT

-THE SIMPSON RULE INTEGRATION IS PERFORMED IN

SUBROUTINE SuUMM, THE F(X) ARE DEFINED IN THE EXTERNAL
FUNCTION SUBPROGRAM FOFX.

INPUT DATA
CARD 1 1IN COL., 1-10 THE STEP SIZE+ HI (ABOUT .01 TO .02)
CARD 2 RIGHT JUSTIFIED IN CCLe 1=-10 THE NUMBER OF
TERMS IN THE SERIES EXPANSION NEQ< OR = 10

THE OUTPUT DATA 1S DEFINED IN THE PRINTED OUTPUT

THE COMPUTATION TIME ON THE U-1108 IS ABOUT 60 SEC FOR
HI = 402 AND NEQ = 10.

COMMON/INTER/ T2(1,10¢10)¢T3(4s10»10+10)
FCRMAT (8I10)
FORMAT (10X»'OUTPUT FORMAT . INTEGRAL FROM 0 TO 1 OF F(X)'e/ )

FORMAT (10X»'K=0 IS F(X)
FORMAT (10Xr'K=1 IS F{X)
FORMAT (10Xs'K=2 IS F(X)
FORMAT (10Xr'K=3 IS F(X)
FORMAT (10Xr'K=4 IS F(X)

A«SIN(*PI*X) %COS(L*PI*xX)*)

SIN(N¥*PI*X) *STN(M¥PT*X) *COS(L*PI*X) ")
COSIN#PTxX) xCOS (M*xPI#X) *COS(L*PI*X) ")
XkCOS(H*PI*X) *SIN(M*PIxX) *COS(L*PI%X)*)
XESIN(N*PI*X) *SIN(M*¥PI*X) *SIN(L*PI%X) ")

FORMAT (8F10.,0)
FORMAT (1H1» 10X *SPACE INTEGRALS STEP SIZE = '+F5.3¢

4xXe 'l =09 124/)

FORMAT (2IS5+10E10.4)

FORMAT (/+»83X22HN=? 15, 9110¢ )
FORMAT (¢ K M'/)

FORMAT (5E15.8)

READ (5:1410) HI

READ (5:400) NEQ

INTEGRATION OF SPACE INTEGRALS

CALL Suvv (NEQ» HI)
DO 200 L=1/NEQ

WRITE (6:430) HIsL

WRITE (6,402}

WRITE (6+403)

wRITE (60405)

WRITE (6,406)

wRITE (60407)

WRITE (6,408)

WRITE (6,450) (I,I=1eNZQ)

WRITE (60460)

M= 0

K =1

J =0 .

WRITE (2+800) (T2(KeNeL) s NZ1MEQ)
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230
220
200

=

220
210
200
100

WRITE (6:440) JrMr(T2(KsNeL)#N=1,NEQ)

DO 220 K=1+4

DO 230 M=1/NEQ

WRITE (2,800) (T3(KeNeMrL) 1 N=12NEQ)
WRITE (6e440) KeMe(TI(KoN/MeL) o N=1#NEQ) ~
CONTINUE

CONTINUE

WRITE (2,800) HI

SToP

END

SUBROUTINE SUMM (NEQ» HI)
COMMON/INTER/ T2(1,10,10)9T3(4,10+10¢10)
NSM=1+/HI + 1.01

L0 100 K=1¢5

IF (K.GT41) GO TO 1

MSTP=1

GO TO 3

MSTP=NEQ

DO 200 L=1/NEQ

AL = L#*3,14159

DO 210 N=1/NEQ

AN = N*3,14159

DO 220 M=1,MSTP

AM = M*3,14159

CALL SIMPSN (KrAL#»AWsANISUMY NSM»HI)
IF (KeGT.1) GO TO 4

T2(KrNsL) = SUM

60 TO 5

KK = K=1

T3(KK/NeMoL) = SUM

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

RETURN

END



100

SUBROUTINE SIMPSN (KrALeAM/ANISUM?, * NSM»HI)

EXTERNAL FOFX

X = 0.0

SUM = 0.0

DO 1 I=1,NSM
C = 1.0

IF (I.EQ.1) GO TO 2
IF (I.EQ.NSM) GO TO 2
C = 4.0

ID = 2%(1/2) = 1

LF (ID.E0.0) GO TO 2
C = 2.0

SUM = SUM + C*FOFX(WeXrALrAMeAN)
X = X+HI

SUM = HI*SUM/3.0
RETURN

END

REAL FUNCTION FOFX (KeXoALo»AM?rAN)

GO TO (1¢2¢39405)¢X

FOFX = X*SIN(AN#X)*COS(AL*X)

GO TO 100

FOFX = SINCANXX)*SIN(AV%X)*COS{AL*X)
60 TO 100

FOFX = COS(AN*X)*COS(AV%X)*COS(AL*X)
GO TO 100

FOFX = COSCAN*X)*SIN(AV%X) *COS(AL*X)*X
G0 TO 100

FOFX = SIN(AN*X)*SIN(AV*X)*SIN(AL*X) *X
CONTINUE

RETURN

END

35



36

APPENDIX B

PROGRAM WAVES: COMPUTES THE COMBUSTION

INSTABILITY OSCILLATION WAVEFORMS

Statement of the Problem

Program WAVES computes the combustion instability oscillation
waveforms for combustors having a linear steady state velocity distri-
bution, u(z) = ﬁéz, for which ﬁé is small. Before this program can be
used, the space integrals must be evaluated using program SPAINT. The
computed integrals, together with the specification of the engine
operating conditions (i.e., n, T, ﬁé, v, etc.), initial conditions,
and certain program control numbers, make up the required input data
for program WAVES.

Program WAVES performs the following functions:

1l. For an initial peak pressure amplitude, initial values of the mode-
amplitude functions are computed.

2. The time-dependent mode-amplitude functions are found by a Runge-
Kutta-type numerical integration.

3. Perturbation pressures and velocities are computed.

4. A check for limit cycle conditions is made.

5. Printed and/or plotted output data is generated.

The program provides the user with various options. TFor instance,

function (3) may be omitted if only the behavior of the mode-amplitude

functions is desired. Similarly, function (4) is omitted when only the



transient behavior of the instabilities is required. The use of
these and other user options are discussed in this appendix.

Two nonlinear solutions have been developed in this report:
(1) a second order analysis using a nonlinear wave equation, and (2) a
large amplitude analysis using a set of three conservation equations.
Consequently, two computer programs are required. These programs
have been written in a manner which permits a good deal of commonality.
In particular, the required input data is the same for all programs.
In order to achieve the commonality between the programs, the
definitions shown in Table B.1l have been made.

The relations defining the behavior of the functions An(t),
B, (t) , and ¢, (t) are listed in Table B.2.

Program WAVES consist of 11 elements: MAIN, START, POFX, TREND,
FLOW, POUT2, POUT, RUNG, EQIN, PRMIRS, and WOUTl. The first seven
elements are the same for the three nonlinear solutions. The last four
elements are different for each nonlinear solution technique. The
functions performed by these elements are discussed in the following
paragraphs.

MAIN: Element MAIN serves the twofold functions of (1) reading
the data required to compute the nonlinear waveforms, and (2) calling
the required subroutines.

START and POFX: These two subroutines provide the initial wvalues

of the mode-amplitude functions required for the integration of the

ordinary differential equations describing the behavior of the mode-
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TABLE B.l.

Definition of the Mbde-Agglitude Functions

Array Parameter

A(N) An(t)
B(N) B, (t)
c(N) cn(t)

Used in Program WAVES

Description

Specific volume mode-amplitude function, used
only in the large amplitude analysis.

Pressure mode-amplitude function. In the analysis
using the nonlinear wave equation, B_(t) represents
the time derivative of the velocity potential
mode-amplitude function.

Acoustic-type velocity mode-amplitude function.
In the nonlinear wave equation solutions, C_(t)
represents the velocity potential mode-ampl%tude
function.

TABLE B.2. Equations Governing the Mode-Amplitude Functions

Parameter Equation Number
Wave Equation Third Order Equations
A (%) — ' 19
B, (t) 27 20
¢, (t) 27 21
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amplitude functions. It is assumed that the combustor is operating

in a steady manner until time t = O, at which time a pressure disturb-
ance is impulsively introduced inside the combustor. The perturbation
velocity at t = O is zero. The user may specify a spacially continuous
initial pressure disturbance in any axial mode, or a spacially discon-
tinuous fundamental mode disturbance, with the discontinuity located

at z = .5 at t = O. The analytical expressions used to find the initial
conditions, found by a Fourier analysis of the initial waveform, are
given in the following equations:

(1) Spacially Continuous Pulse in the 4th Axial Mode.

O) =O &=1,...,N (Bul)

(@]
S

3

I

ws]
N

ct

H

0) ={gi Efﬁ | (8.2)

(2) Spacially Discontinuous Pulse.

C&(t=0) =0 L=1,.0.,N (B.3)
bp,
Byt = 0) = 1y sin(F) (5.1)

where in both cases,

I
=
“
=

C&(t) =B&(t) =0, for -T<t<0, 4= (B.5)
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An initial condition on A&(t) is required for the large amplitude

analysis. Consideration of the linear behavior of the system shows

that v = -p/Y; consequently the following relation is used for an

initial condition on AL(t =0):

Ay (t =0) = -B,(t =0) /v (B.6)

In the solution using the nonlinear wave equation, Eqs. (B.2) and

(B.4) merely approximate the spacial dependence of the initial impulse.

Specifically, these equations are based on a linear representation of

the initial disturbance, and the computed wave amplitude differs by a

factor of y from the specified P,

TREND: This subroutine determines whether or not limit cycle

conditions have been reached. This task is accomplished by evaluating

NEQ
the summation S = ngl Bn(t) and examining the behavior of the summation.

Note that S represents the behavior of the injector face pressure.

Subroutine TREND performs the following functions:

1)

2)

3)

k)

Determines the maximum (positive) peak amplitude of one cycle of S.

Finds two successive average values of S for two cycles, Sl and 82,
respectively.

Compares the absolute difference, lA§',’between the two successive
averages with a user specified percentage, €, of the latter value of the
average 3. If the |A§I < e§2 then limit cycle conditions have been

reached.

Makes the appropriate change in the internal program control index



which tells the program that limit cycle conditions have been
reached.
FLOW: Subroutine FLOW computes the summations used to find the
perturbation flow field, outputs the computed pressure and velocity,

and calls subroutine POUT2. The summations computed are:

EQ
T An(t)cos(nnz)

SUMA =
n=1
NEQ
SUMB = % B_(t)cos(nmz)
n=1 2
NEQ
SUMC = % Cn(t)sin(nﬂz)

n=1

SUMU

NEQ
£ (am)c_(t) sin(nmz)
n=1 n

These summations are used in subroutine PRMIRS to calculate the
perturbation flow field.

POUT2 and POUT: Subroutines POUT and POUT2 plot the temporal

behavior of B(N) (the pressure mode-amplitude functions) and the

temporal behavior of the pressure oscillations, respectivelj. The mode-
amplitude functions to be plotted are specified by the user. The axial
location(s) of the pressure plots are also user specified. The programs

have been developed for use on a CALCOMP plotter.
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RUNG: Subroutine RUNG is a modified Runge-Kutta numerical
inﬁegration algorithm. The modification accounts for the presence
of the retarded time variable. 1In this modification, the retarded
variable is treated as a known quantity; that is, it is treated in
the same manner as the independent variable. Two algorithms, based
on the Runge-Kutta equations developed in reference (12), are used.
One algorithm is used to integrate a set of second order 0.D.E.'s;
the other is used to integrate a set of first order 0.D.E.'s. The
required expressions are given in the following equations:

(1) First order 0.D.E.'s; y}é(j) = fgj)[yn, yn(t-’T'):]:

(3+)) _ () .1
vl =y 4 z {Kl& + K% + QI:KQL + 1%&]}

where

KlL = hféé)[yn’ yh(t'E)]

KQ& = hféj)[(yn+Kln/2)’ yn(t'$+h/2)]

K3& = hfiq) (yn+K2n/2)’ yn(t-?+h/2)]

K% = hfij)[(ynﬂ{?)n), yn(t—'?-!-h>:|



and where

(3)

y&(t)

(3+1)

<
o
|

= YL(t"'h)

and f,(LJ) is the function evaluated at t.

(2) second order 0.D.E.'s; yé' = f‘tl:yn, yrll, yr'l(t-'?')]
+(j+1) (3) 1 ]

N =y + K + K + 2| K + X
2 ' 6 { 1,y [ 2p 3y }

3+ _ _(3) (3) 1
vy =Yy +h{y& *8[1{1&“{2&”{3&]}

where

= 057 [ v 9169 ]



K’-UL - hf}(,j)[(yn + hyI; + %‘ K3n), (yri + K3n>, yr;(t -F + h):]

and where

N SR (S B (Ch P 109

The equations defining the numerical integration of a set of
first order 0.D.E.'s is used in the solutions of the conservation
equations. The second order 0.D.E. equations are used to solve the
nonlinear wave equation. The functional form of f& is defined in
element EQTN.

In order to use the equations with the retarded varisble, the
integration step size, h, must be selected such that h divides the
time lag, T, into K equal increments. Thus T = Kh, and the retarded

variables become:

o
o
]
el
n

v, (t - Kn)

o
~—~
ct
[
|
+
A5
]

h
Yn(t - Kh *'EQ

-

V(6 - T+h) =y (t - Kn +h)



It has been found that an integration step size of the order
h ~ .05 produces satisfactory results. The program selects the
integration step size by forming the ratio T/.OS, rounding off the
result to the nearest integer, and dividing T by the resulting integer,

that is:
integer = (¥/.05) + .01
h = T/integer.

The computation of h is performed in element MAIN.

EQIN: Subroutine EQIN defines the functions, f&’ used in
subroutine RUNG to evaluate the K terms. The particular equations
defined in EQTN depend upon the problem under consideration (i.e.,
nonlinear wave equation, etc.). These functions are defined in Table
B.2.

PRMTRS: Subroutine PRMTRS uses the summations, SUMA, SUMB,
SUMC, and SUMU, computed in subroutine FLOW to calculate the perturbed
flow field. The current program is coded to compute the perturbation
pressure and velocity, using the following equations:

(1) Nonlinear wave equation solutions:

u'(z,t) = -suMU

p'(z,t) =32ﬁ [suMB (suMB-2) + suMU(2d(z) - SUMm) |
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(2) Second order conservation equation solutions:
p'(z,t) = SUMB
7 _ -1
u'(z,t) = suMC +3(-—2Y 1,2 SUMB
(3) Large amplitude solutions:
p'(z,t) = SUMB

7 _ +1 y-_l -
uw'(z,t) =suMe + [1 - 3&7 SUMB ] o B2 SO

WOUT1l: This program writes the output of the mode-amplitude

functions.

Ingut Data

The required input data consist of the integral values computed

by program SPAINT, the engine operating conditions, and program control

numbers. The data from program SPAINT is automatically read from data

file 2. The remaining data is read from user supplied data cards.

These cards are described in this section.



Card 1 (Format 8I10)

Columnl Term Data Type2
10 NEQ T
20 NX I
30 LIN I
Lo IPLOT I
50 INPT I

Card 2 (Format 8I10)

Column Term Data Type
10 1Cl I
20 c2 I
30 Ich I
4o C5 I

1. For integer data,
Justified.

5. T denotes integer data; F denotes floating point (

No. of terms in the
series expansion of the
dependent variables

No. of axial locations
at which flow field is
to be computed

LIN = 1 to compute
linear solutions
LIN # 1 nonlinear
solutions

IPIOT = 1 if any data
is to be plotted
IPLOT # 1 no plots

INPT = 1 to write the
space integrals

INPT # 1 space integrals
are not written

Information

ICl = 1 to write the
mode-amplitude functions
ICLl # 1 mode-amplitude
functions are not written

Ic2 = 1 to plot pressure
mode-amplitude functions
Ic2 = L4 no plot of mode-
amplitudes

Number of terms to be
plotted

Incremental index between
terms tovbe plotted

Restrictions

<10

<11

Restrictions

<10

=9

indicates the column in which data is right

decimal) data.
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Card 3 (Format 8I10)

Column Term Data Type
10 pl I
20 p2 I
30 p3 I
Lo P4 I

Card 4 (Format 8I10)

Column Term Data Type

10 NTAU I

Card 5 (Format 8F10.0)

Column Term Data Type
1-10 UE F
11-20 'GAMMA F
21-30 EPS F

Card 6 (Format 8F10.0)

Column Term Data Type

1-10 TBEGIN F

L8

Lgl =1 go calculate
p and u

LP1 # 1 flow field is
not calculated

P2 =
and u
IP2 # 1 p’ and u’ are
not written

,l to write p'

IP3 = 1 to plot p' vs t
LP3 = 4 no flow field
(p°) plot

Number of axial locations

at which p vs t is to
plotted

Information

Number of T to be run

Information
Exit Mach number
Specific heat ratio

Limit cycle amplitude
percent error

Information

Normalized time at which
output is begun, and at
which flow field calcula-
tion is started

Restrictions

<k

Restrictions

Restrictions

small, << 1

EPS = (.01)

Restrictions

see
discussion



Column Term Data Type Information Restrictions

11-20 TEND F Normalized time at which see
computations are discussion
terminated

21-30 TIMCY ' F Normalized time at which see
limit cycle check is discussion
begun

31-40 DELTAT F Normalized time increment see
for output of limit cycle discussion
conditions

41-50 TSMP F Normalized time at which

plot of pressure mode-
amplitude is begun

51-60 DELPT F Normalized time increment see
for plot of pressure mode- discussion
amplitude, B(N) vs t
Discussion of Card 6:

(1) BEGIN must be greater than or equal zero. TEND must be such
that the ratio (TEND-TBEGIN)/H is less than 300. This ratio can be
estimated using a value of H = .05. Experience has shown that a time
increment of TEND-TBEGIN # 12. is sufficient to determine the behavior
of the solutions.

(2) If a limit cycle check is not desired, then set TLYMCY >
TEND.

(3) DELTAT must be such that DELTAT/H < 300. Usually, a
DELTAT %= 6 is sufficient to verify that limit cycle conditions have
peen reached. 1In this case, approximately three fundamental mode cycles
are computed.

(4) If a limit cycle check is made, and if limit cycle condi-

tions are found, TSMP is automatically set equal to the initial time at



50

whigh limit cycle conditions are found, if IC2 =

(5) DELPT must be such that DELPT/H < 100. Good results have
been obtained using DELPT = 3.9.

(6) If a limit cycle check is made, and limit cycle conditions

are not found, the data output begins at TBEGIN and ends at TEND.

Card 7 (Format 8F10.0)

Column Term Data Type Information Restrictions
1-10 X(1) F Axial location at which <1

p and u’ are computed

11-20 X(2) F Axial location at which <1
p and u’ are computed

: X (%) . :

Discussion:
If NX > 8, then two cards are required to complete the input of

X(I). In this case, X(9) is in columns 1-10 of card 7B, and so on.

Card 8 (Format 8I10)

This card is included in the data set only when LIP3 =

Column Term Data Type Information Restrictions
10 IPX(1) T Index of X(I) at which . =10

ap vs t plot is made

20 IPX(2) I Index of X(I) at which <10
a p vs t plot is made

Lo IPX(LPL) I Index of X(I) at which <10
a p vs t plot is made



Discussion:
Plots can be made at any four (or fewer) axial locations at which

p' ig calculated.

mwd9(&l (F10.0, 2I10)

Column Term Data Type Information Restrictions
1-10 TAU F Sensitive time lag
20 NNB I Number of n to be run =10

at the specified T

30 LCUT I Highest mode in which see
energy feedback is discussion
permitted

Discussion:

This number is used to eliminate the secondary zones of insta-
bility. For fundamental mode investigations, ICUT = 2 is usually
appropriate. For T > 1, energy feedback is only permitted in the

fundamental mode.

card 10 (9) (8F10.0)

Column Term Data Type Information Restrictions
1-10 ANR(1) F First value of n
11-20  ANR(2) F Second n
: ANR (NNB) F Final value of n
Discussion:

If NNB > 8, then two cards are used to input the ANR(I).

T TNamber in parenthesis is the card number if card 8 (IPX(I) card) is
omitted. :
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Card 11 (10) (8110)

Column Term Data Type
10 NPT I
Card 12 (11) (F10.0, 8I10)
Column Term Data Type
1-10 PI F
20 IPOP I

Information

Restrictions

Number of initial
disturbances for each
n-T condition

Information

Restrictions

Initial disturbance
peak amplitude

If IPOP < 10, then an
initial disturbance in
the TPOP mode is gener-
ated

If TPOP = 11, then s
spacially discontinuous
fundamental mode wave,
with the discontinuity
at z = .5, is generated

This completes the description of the input data cards. If

NPT > 1, then card 12(11l) is repeated NPI times.

cards 11(10) and 12(11) must be repeated NNB times.

When NNB > 1, then

Similarly, when

NTAU > 1, card 10(9) through 12(11) must be repeated NTAU times. An

example input data set is shown in Table B.3.

Using the imput data shown in Teble B.3, program WAVES performs

the following functions:

1. DNonlinear solutions are found at two axial locations using eight

term expansion(s). The exit Mach number is &_ = 0.2, and y = 1.2,

2. The mode-amplitude functions are printed, and the first pressure

mode-amplitude function is plotted.

3. The perturbation pressure and velocity are computed at z = 0.0 and



s

TABLE B.3. Sample Input Data For Program WAVES
COLUMN
1-10 11-20 21-30 31-40 41-50 51-60
8 2 2 1
1 1 1 1
1 1 1 1
2
Oe2 le2 0.01
3060 4240 50 6.0 3000 349
0«0 0e25
1
130 2 2
1.18 130
2
«025 1
+05 1
1
«15 11
ls0 1 2
1,10
1 .
ol 11
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(1)

(2)

z = 0.25. The results are printed and the temporal dependence of

the pressure oscillation is plotted at z = 0.0.

A limit cycle check is initiated at t = 5.0. If limit cycle
conditions are reached prior to t = 30.0, the required data is
output in a time interval of At = 6.0 after the establishment of
limit cycle conditions. On the other hand, if a limit cycle is not
reached by t = 30.0, the data is output in the time interval

30 £t < 42,0, The pressure mode-amplitude function is plotted
over at time interval of At = 3.9.

Solutions are to be calculated for two values of T. At the first
T (T = 1.30), the computations are to be made for two n (n = 1.18
and n = 1.30) . The computations at T = 1.30, n = 1.18 are to be
made using two initial disturbances; a .025 and a .05 peak
amplitude 1L pressure wave. The computations at ¥ = 1.30, n = 1.30
are made for a discontinuous 1L pressure wave of peak amplitude
equal to .15. At the second T (T = 1.0), the computations are made
for an n = 1.10 and a discontinuous, .1 peak amplitude pressure
wave.

In both cases, energy feedback is only permitted in the first two

axial modes.

Output Data
The following data output options are available:
INPT = 1 causes the space integrals used in the computations to be
written.

LCLl = 1 results in a tabulated output'of the mede-amplitude



functions.
(3) IP2 = 1 results in the listing of p’! and u’ as functions of t at
each axial location specified by X(I).
(4) L2 = L causes plots of B(N) vs time to be made, with the N's
specified by the user.
(5) LIP3 = 1 causes plots of p’ vs time to be made at the axial
locations X(I) specified by the indices IPX(I).
Tne output limitations have been discussed in the data input section of
this appendix. The output symbols are described in Table B.4. Portions
of an example output is shown in Table B.5.
Deck Set-up
The data set described herein is for the Univac 1108 Exec. 8
system as used at Georgia Tech. The important points are:
1. Unit 2 must be assigned to the data file SPAINT.
2. Unit 3 must be assigned to the CALCOMP PLOT subroutines.
It is convenient to group the program elements in the sequence
in which they are discussed in the first section of this appendix
(i.e., page 37). The program is then adapted to the solution of a
particular formulation of the problem (i.e., second order wave equation,

etc.) by changing the last four subroutines.
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Symibol

NEQ
P
PINITTAL
TAU

Z
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TABLE B.4. Output Symbols

(1) potential mode-amplitude function, or
(2) specific volume mode-amplitude function

time derivative of the potential mode-amplitude
pressure mode-amplitude function
velocity mode-amplitude function

LINEAR = 1, solutions are linear
LINEAR # 1, solutions are nonlinear

axial mode number
axial mode number

(1) axial mode number, or
(2) interaction index

nunber of terms used in the solutions
normalized perturbation pressure

peak amplitude of the initial disturbance
sensitive interaction index, T

axial station
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TABLE B.5 (cont.). Sample Output From Program WAVES:

Initial Pressure Pulse

INITIAL PRESSURE DISTRIBUTION -

4 P
«00000 «09216
210000 10684
«20000 009628
230000 2109790
«40000 «11386
250600 « 000090
«60000 "-011386
270000 -,09790
80000 -o 19428
190000 -.10684

1.00000 =,N9216
1.10000 =-.10684
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TABIE B.5 (concluded). Sample Output From Program WAVES :

Part of the Perturbation Flow Output

FLOW PRARAMETERS 2= «000
LINEAR= 2 NEQ= 8 N= 1.10000 TAU= 1,0000¢
ExXIT MACH=" ,290 GAMMA =1,200 PINITIAL =,1000 :
TIME  PRESGURE  VELOCITY
___=+000 ~.1055+00_ ,0000
¢« 050 =¢1linu+00 L0000
.100 -.1185+00 10000
0150 -.1135+00 00000

__m__LZOQW:LlQ52+OQ__;OQOO

0250 =,96p4=01 «NU0O
4300 =,9807-01 __ L0000
¢350 =,1142+00 L0000
0400 '|1213+UO IOOOO
450 =-,8656-01 LN00O
2500 _=,28p1=02 L0000
«550 +9295-01 L0000
600 ,1479+0n ,0000
.650 '14“7+00 «+NO0Y
« 700 o1ly4+400 L,0000
0750 09950‘01 00000
0800 o1125+00 0000
«850 J1308+00 <0000
2900 _,1309+00 0000

«950 «11568+00 + 0000
1,000 ,L,1003+00 ,0Q09
1,050 «1143+00 «0000

1,10y ,1176+00 L0000
1.150 «1094+00 + D00V
— l.200 ,9893=-01 L0000
1,250 +9826-01 L0000
1300 ,1007+00 _,0000
1.350 «9221-01 + 0000

1,400 |7Q71:Q1“_LQQDO

1.450 +58690=01 «0000

1-500 .3819‘0] 10000

1.550 -,4975-02 ,0000

1,500 -,6246=01 L0000

1.650 -41002+00 «+0000

1,700 ~+1030+00 0000

1e7506 =.3786=01 L0600 .

_1.800 -,9498=01__,.0000 :

1.850 =.1201+00 « 0000 )
1.200 =,1309+00  ,0000

14950 =,1133+0¢ .0000

24000 =,9116=01__.0000

2.050 -.9565-01 «0000



FORTRAN Listing of Program WAVES

nnnnnnnnhnnnnnnnnnnnnnn

C
C
c

THE SPACE INTEGRALS ARE STORED IN THE ARRAYS T2 AND T3. PROVISION
IS MADE FOR ONE N BY N INTEGRALr AND FOUR N BY N BY N INTEGRALS.
MORE INTEGRALS CAN BE TREATED BY CHANGING THE APPROPRIATE DIMENSION

STATEMENT
THE VODE AMPLITUDES ARE STORED IN THE ARRAYS A+ By AND C. THE RETARDED
VARIABLE IS STORED IN ARRAY BS. THE RETARDED VARIABLES REQUIRED AT
THE INTEGRATION STEP IN QUESTION ARE STORED IN ARRAYS BR1e BR2¢ AND BR3.
THE TERMS STORED IN THESE ARRAYS DEPENDS ON THE PROBLEM FORMULATION.
1. FOR THE NONLINEAR WAVE EQUATION
A = BLANK
B = TIME DERIVATIVE OF MODE AMPLITUDE
C = MODE~AMPLITUDE FUNCTION
2. FOR THE SECOND ORDER CONSERVATION EQUATIONS
A = BLANK .
B = PRESSURE MODE=-AVPLITUDE
C = VELOCITY MODE~AMPLITUDE
3. FOR THE LARGE AMPLITUDE ANALYSIS
A = SPECIFIC VOLUME MODE-AMPLITUDE
B = PRESSURE MODE-AVPLITUDE
C = VELOCITY MODE-AMPLITUDE

DIMENSION ANR(10)+DATA(2500)

COMMON/COMPY/ QP11+ QP2+ 3P3 QP4 QP5+QP7

COVMMON/COMS1/ G19s32:GP19GT1

COMMON/FLODA/ NEQ!UEvANBoTAU:GAWMA.PI'LIN'TN(10)'IPOP
COMMON/PLTDA/ TARY(100)¢BARY(10r100)

COMMON/COM2/ 8(10)0C(1O)rBRl(lO)vHRZ(lO)18R3(10)lBS(lOvllO)oA(lO)
COMMON/COM3/ HrHD2/HD6,HDB :

COMMON/COMU/ T2(1010710) e T3(4r10+10010)

COMMON/COMS/ X(11)IPX(H)

COMMON/COMB/ TSTART.TSTOPTLYMCY

400 FORMAT
402 FORMAT
403 FORMAT
405 FORMAT
406 FORMAT
407 FORMAT
408 FORMAT
410 FORMAT
430 FORMAT
1
431 FORMAT
432 FORMAT
433 FORMAT
450 FORMAT
460 FORMAT

(8110)

(10X *OUTPUT FORMAT INTEGRAL FROM 0 TO 1t OF F(X)*%e/ )
(10xXe'K=0 IS F(X) X*SIN(N*PI*X)*COS(L*PI*X)')

(10Xr'K=1 IS F(X) SIN(N*PI*X)*SIN(M*PI*X)*COS(L*PI*X)')
(10Xe'K=2 IS F{X) COS(N*PI*X)*COS(M*PI*X)*COS(L*PI*X)')
(10X *K=3 IS F(X) X*COS(N*PI*X)*SIN(M*PI*X)*COS(L*PI*X)')
(10X*'K=4 IS FX) X*SIN(N*PI*X)*SIN(M*PI*X)*SIN(L*PI*X)’)
(8F10.0)

(1M1 10X+ *SPACE INTEGRALS STEP SIZE = '"+FS5.3»

UXe 'L =te12./)

(/9+8Xr2HN= 15, 9I10¢ )

( K Mt/)

(2I5¢10E10.4)

(1H19¢//+10Xe *DIVERGENT SOLUTION'+//)

(/+10XsSHTAUZ »F10.575%X»BHNBAR= PF10.5¢eSX e 4HUE= ¢F10.5¢

15X s THGAMMAZ »F10.5¢5X210HPINITIALS tF1045¢
2//110Xr6HTIMES ¢F10.5¢5Xr6HB(N) = 1ELO«4 15X BHCINI= +E1044)

800 FORMAT
420 FORMAT

(5£15.8)
(F10,0¢2110)

READ SPACE INTEGRALS FROM FILE 2

61



DO 200 L=1,10
K =1
READ (2»800) (T2(KeNosL)eN=1»10)
DO 210 K=1.4
D0 220 M=1.10
220 READ (2+:800) (T3(KeNoMIL)IN=1r10)
210 CONTINUE
200 CONTINUE
READ (2+800) HI

READ INPUT DATA (EXCEPT COMB. PARAMETERS AND INITIAL DISTURBANCE

FIRST DATA CARD
NEQ = NO. OF TERMS IN EXPANSIONS
NX = NO. OF X/L AT WHICH FLOW FIELD CALCULATED
LIN = 1 TO CALCULATE LINEAR RESULTS
IPLOT = 1 TO PLOT ANY OUTPUT : .
INPT = 1 TO WRITE THE SPACE INTEGRALS READ FROM FILE 2
SECOND DATA CARD

LC1 = 1 TO WRITE C(N) AND B(N)
LC2 = 1 TO PLOT 8](N)
= 4 NO PLOT OF B(N)
LC4 = NUMBER OF TERMS TO RE PLOTTED
LC5 = INCRIMENTAL INDEX BETWEEN TERMS TO BE PLOTTED
THIRD DATA CARD
LP1 = 1 TO CALCULATE U AND P
'LP2 = 1 TO WRITE U AND P
LP3 = 1 TO PLOT p
= 4 NO PLOT OF P
LP4 = NO. OF X/L AT WHICH P OR U TO BE PLOTTED

FORTH DATA CARD
NTAU = NO. OF TAU TO BE RUN
FIFTH DATA CARD
UE = EXIT MACH NUMBER
GAMMA = SPECIFIC HEAT RATIO
EPS = AMPLITUDE PRECENT ERROR
SIXTH DATA CARD
TBEGIN = TIME TO START COMPUTATION OF FLOW VARIABLES AND
: TO START OUTPUT
TEND = STOP TIVE
TLMCY = START TIME OF LIMIT CYCLE CHECK _
DELTAT TIME DELTA FOR OUTPUT OF LIMIT CYCLE OSCILLATIONS
TSMPI = START TIME FOR PRESSURE MODE=AMPLITUDE PLOT
DELPT = TIME DELTA FOR PLOT OF P MODE-AMPLITUDE
SEVENTH DATA CARD
X(I) = AXIAL LOCATION AT WHICH FLOW FIELD IS TO BE CALCULATED
EIGHTH DATA CARD (USED ONLY IF LP3#4)
IPX(I) = INDEX OF X(I) FOR WHICH PRESSURE IS TO BE PLOTTED

READ (5¢400) NEQ/NX,LIN?IPLOT*INPT
READ (50400) LC1sLC2¢ LC4sLCS5
READ (5+400) LPLILP2+LP3sLPYU
READ (59,400) NTAU
- READ (5:410) UE)GAMMAEPS '
READ (5,410) TBEGIN:TENDOTLMCYIDELTAT'TSMPI'DELPT
READ (5¢410) (X(I)eI=1oNX)
1F (LP3+EQ.4) GO TO 100



READ (5¢400) (IPX(I)sI=1sLP4)
100 CONTINUE
c
C  WRITE SPACE INTEGRALS IF INPT = 1
c
IF (INPT.NE«1) GO TO 110
DO 700 L=1/NEQ
WRITE (6¢430) HIsL
WRITE (6,402)
WRITE (6,403)
WRITE (6+405)
WRITE (6+406)
WRITE (60407)
WRITE (6+408)
WRITE (6,431) (I,I=1¢NEQ)
WRITE (60432)

M =0
K=1
J=0

WRITE (6+433) JeMr(T2(KsNrL) ¢eN=1,NEQ)
DO 710 K=1l.4 ° :
DO 720 M=1/NEQ

720 wWRITE (60433) KoeMe (TI(KeNeMoL) s N=1sNEQ)

710 CONTINUE

700 CONTINUE

110 CONTINUE
c CALL PLOT SUBROUTINE IF IPLOT =1

IF (IPLOT.NE.1l) GO TO 600
CALL PLOTS (DATA(1),2500¢3)
600 CONTINUE

CALCULATION OF SOME TERMS USED IN SOLUTION OF ODES

o000

P2 = 3.14159*%3.14159
OP1=6428318+%UC
QP2=(GAMMA=-1,)*UE/2,
QP3=(GAMMA-1,) %P2

QP4=2. %P2

GP5=GAMMA*UE

QP7=pP2

Q1 = «5*(GAMMA=1,)*UE/GAMMA
GP1 = GAVMA + 1.

GT1 = GAMMAX,5*(GAMMA~=1.)*UE
Q2 = =Ql*.25%GP1/GAMMA

DO 1000 KTAU =1/NTAU

READ COMBUSTION PARAMETERS

OO0 (g}

READ (5+420) TAUINNBeLCUT
READ (5r410) (ANR(I)eI=1+NNB)

LTEMP = TAU/.05 + .01
H = TAU/LTEMP :
HD2 H/2.

HO6 H/6.
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510

340

160
150

140

900

370
320

HD8 = H/8.

LTR = (TAU/H) + 1.01

DO 2000 KK=1sNN3 .

READ (5:,400) NPI

ANB= ANR(KK)

DO S10 LLL =1¢NEQ

TN(LLL) = ANB

IF (LLL. GT LCUT) TN(LLL) = 0.0
IF (TAULLT.1) GO TO 510

IF (LLLeNE«1) TN(LLL) = 0.0
CONTINUE

DO 3000 KKK=1r¢NPI

READ (5+420) PIfIPOP

TSTART = TBEGIN

TSTOP = TEND

TSMP = TSMPI

KMT = 0

KMTS = DELPT/H + 1.01
KPLT = 2

K2 = 2

LGO = 2

LOUT = 1

CALL START (LTR¢TXeH)

KONTRL = 2

Lt = LTR

TSTOP1 = TSTOP + .10

IF (TX.GT.TSTOP1) 60 TO 130
IF (LeNE.101) GO TO 140
LTMP = 102 = LTR

DO 150 L=1/LTR

DO 160 I=1/NEQ

85(IsL) = BS(I+LTWP)
LTMP = LTMP + 1

L = LTR

CONTINUE

TEST = AB5(TX = TLMCY)
IF (TEST.LT.0.03) K2=1
IF (K2.NE+1) GO TO 320
IF (LGO.EQ.1) GO TO 320
PHIO = 0.0

DO 900 I=1/NEQ

PHIO = PHIO + B(I)

CALL TREND (TEST+PHIO»LGO(EPS)
IF (LGO.EQ.2) GO TO 370
TSMP = TX

TSTART = TX

TSTOP = TX + DELTATY
TSTOP1l = TSTOP + .10
CONTINUE

CONTINUE

CHECK = ABS(TX=TSTART)
IF (CHECK«LT+0.04) KONTRL = 1
IF (KONTRL.NE.1) GO TO 330



500

504

501
502
330

180

300

130
3000
2000
1000

IF (LCleNE.1) GO TO 500

CALL WOUT1l (H»TX)

1F (LC2.EQ.4) GO TO 501

1F (KMT.GT.KMTS) GO TO 501

CHK1 = A3S(TX~-TSMP)

IF (CHK1,LE«0.04) KpLT = 1

IF (KPLT.NE+1) GO To 501

KMT = KMT + 1

TARY (KMT) = TX

DO 504 Kv=1:10 "

BARY (KMrKMT) = B(KM)

CONTINUE

IF (KMT.NE.KMTS) GO TO 501
CALL POUT (LCUsLCS5,KMT)

KPLT = 2

IF (LP1.NE.1) GO TO 502

CALL FLOW (NXeHr TXPLP2¢LP3sLP4sLP5LOUT)
CONTINUE

IF (LOUT.EQ.2) GO TO 3000
CONTINUE

L = L+l

TX = TX + H

LP0 = L-LTR

LDl =

DO 180 I=1/NEQ
grR1(1) = BS(I.LDO)
B8R3(I1) = BS{I.LD1)
BR2(I) = (BR1(I)+BR3(I}))/2.

CALL RUNG (NEQ)

DO 300 I=1/NEQ

BS(IsL) = B(I)

CHK1 = B(I)

CHK2 = C(I) .

IF (CHK1.LTe10.04AND+CHK2.LT.10.0) GO T0 300
WRITE (60450)

WRITE (60460) TAUrANBrUErGAMMAPI»TX»CHK1 9 CHK2
60 TO 130

CONTINUE

G0 TO 340

CONTINUE

CONTINUE

CONTINUE

CONTINUE

STOP

END
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SUBROUTINE START (LTR+TXrH)
EXTERNAL POFX
COMMON/FLODA/ NEQrUEsANB» TAU»GAMMASPIVLIN'T(10) s IPOP
COMMON/COM2/ B(lO)vC(lO)oBRl(lO)'RRZ(IO)'BR3(10)vBS(lOollO)rA(lO)
400 FORMAT (1H1+//+10Xsv*INITIAL PRESSURE DISTRIBUTION',//)
410 FORMAT (12Xe'Zt's 9X 'Pt,/)
420 FORMAT (5X+4F10.5)

TX = =TAU
DO 1 N=1/NEQ
A(N) = 0.0
CI(N) = 0,0

1 B(N) = 0.0
DO 100 L =1,LTR
TX = TX + H
DO 110 N=1/+NEQ
110 85(N+L) = 0.0
100 CONTINUE
TX = TX = H
DO 120 I=1,NEQ
B(I) = POFX (I+PI+IPOP)
c(I) 0.0
A(I) -3(I)/GAMMA
120 BS(I¢LTR) = B(]I)
WRITE (60400)
WRITE (6,410)
X = 0.0
150 SuUMB = 0,0
DO 140 Iz=1,NEQ
ARG = 3.14159%X%1
Cl1= COS(ARG)
SUMB = SUMB + B(l)=*Ct
140 CONTINUE
P = SUM3
WRITE (69420) XyP
IF (X.GE.1.,0) 60 TO 200
X =X t+ ,1
G0 TO 150
200 CONTINUE
RETURN
END

REAL FUNCTION POFX (I+PIyIPOP)
IF (IPOP.EQ.11) GO TO 1

CONTINUOUS WAVE IN IPOP MODE
POFX = 0.0
IF (IPOP.EQ.I) POFX = PI
60 T0 2
1 CONTINUE
DISCONTINUOUS 1L WAVE
C = 2.%P]
A = 1.5708%]1
POFX = C*SIN(A)/A
2 CONTINUE
RETURN
END
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SUSROUTINE TREND (TEST+PHIOrLGOEPS) -

DIMENSION PHIMAX(6)

IF (TEST.GT.0.03) GO TO 1
K=1

M=1

IF (M.NE.1) GO TO 10

1F (PHIO.LE.O0) GO TO 4
PHIBIG = PHIO

mM=2

GO TO 2 :

1IF (PHIO.LE.PHIBIG) GO TO 3,

‘PHIBIG=PHIO

60 TO 2

IF (PHI0.6T.0) GO To 2
SIGN = PHIQ*PHIML

IF (SIGN.GT.0) GO To 2
PHIMAX (K)=PHIBIG

M=1

KSK+1

PHIM1=PHIO

IF (K+LE.4) GO TO &
AV1=0,0

AV220.0

DO 5 I=1s2

AV1Z AV1 + PHIMAX(I)
IP2= 1+2

AV2 = AV2 +PHIMAX(IP2)
K=1

DELTA = ABS((AV2=AV1)/2.0)
CHECK= EPS*AV2/2.0

IF (DELTA+GT.CHECK) GO TO 4
L60=1

G0 TO 6

LG0=2

CONTINUE

RETURN

END
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" SUBROUTINE FLOW (NXsHeTXrLP2/LP3,LP4sLPsLOUT)

400

COVMMON/FLODA/ NEQ+UErANBe TAU»GAMMAPILIN»T(10) ) .
COvMMON/COM2/ 8(10)vC(lO)vBRl(lO)okRZ(lO)'8R3(10)vBS(lOullO)vA(lO)

COMMON/COMS/ X(11)rIPX(H)
COMMON/COVE/ TSTART,TSTOP»TLYMCY

COvMON/CoMB/ ASC(303)+ORDP(11¢303)»O0RDU(11,303)
FORMAT (1H1s /Z+10Xs *FLOW PRARAMETERS' »10Xe3HZ= 'F6e30/ )
410 FORMAT (10Xs'LINEAR= '»12,9Xs*NEG= 'rI2¢ 9Xr'N= *oF75¢ OX2'TAU= ?

1 ¢F7.517¢10Xs 'EXIT VACH= '+F54¢373Xs *"GAMMA =1 9F5.30 UXe *PINITIAL =
2 1FSdl40/) '

420 FORMAT (11Xr YHTIME,3X, BHPRESSURE»3X¢BHVELOCITY ¢/ )
430 FORMAT (10XrF7.3+11E10.4)

120

110

210

220
310
200

300

TEST = ABS(TX=TSTART)

IF (TEST.6T.0.03) GO TO 1
K=1

CONTINUE

GO 110 N=1»NX

Al = 3.14159%X(N)
VEL=X(N) *UE

SUMA = 0.0

SuMB = 0.0

SuvC = 0.0

SUMU = 0.0 .

00 120 I=1/NEQ

TA= Alx]

ST = SIN(TA)

CS = COS(TA)

SUMA = SUMA + A(I)=*CS
SUMB = SUMB + B(I)*CS
SUMC = SUMC + C(I)*ST
SUMU = SUMU + C(I)*1*3,14159%ST
CONTINUE

CALL PRMTRS (NrKsSUMA»SUMB»SUMCeSUMUs VEL)
CONTINUE

ABC(K) = TX

IF (TX.LT.TSTOP) GO TO 300

LOUT = 2

KSTOP = K

IF (LP2.NE.1) GO TO 200

D0 310 J=1sNX

KOUNT = ub4

DO 220 L=1+KSTOP

IF (KOUNT.NE.44) GO TO 210

WRITE (6¢400) X(J)

WRITE (6,410) LIN/NEQrANB¢TAUsUErGAMMA,PL
WRITE (6+420)

KOUNT = 1

CONTINUE

WRITE (6¢430) ABC(L)¢ORDP(JrL)sORDU(JIL)
KOUNT = KOUNT.- + 1

CONTINUE

CONTINUE

IF (LP3.EQ.4) GO TO 300

CALL POUT2 (LP3+/LP4,KSTOPINX)

CONTINUE

K = K+l

RETURN

END



_ SUBROUTINE POUT2 (LP3+LPU4sKSTOPINX)
COMMON/FLODA/ NEQeUE»ANS» TAUsGAMMAYPI*LINST(10)
COMMON/COM3/ H
COMMON/COMS/ X(11)+21PX(H)
COMMON/CoM8/ ABC(303) 0RDP(11'303)oORDU(110303)
COMMON/COM3/ ORD(303)

CALL PLOT (0«00240¢~-3)
CALL PLOT (0.0r11.0,3)
CALL PLOT (140¢0.50=3)
TERMS = NEQ
NPT = KSTOP
Ji = NPT + 1
Je = NPT + 2
SIZE = 0.,10%NPT .
CALL SCALE (ABC»SIZZ/NPTe1)
DO 1 J=1,LPu
DO 4 I=1sNX
ICHK = IPX(J)
IF (ICHK.NE.I) GO TO 4
2 = x(I)
DO 100 M=1.KSTOP
100 ORD(M) = ORDOP(IM)
GO TO 110
4 CONTINUEZ
110 CONTINUEZ
CALL SCALE (ORD+4+0¢NPTr1)
IF (JeNZe3) GO TO 2
DELX = SIZE + 4.0
CALL PLOT (DELXr=6439-3)

2 IF (JWEQ.2.0ReJeEQelt) G0 TO 3
CALL SYMBOL (2.90¢1.80¢0410232HNORMALIZED PRESSURE TIMF HISTORY:

1 OGUDJZ)

CALL SYM30L (2.30¢1.55¢/0+10¢ 3HN =00.0:3)
CALL SYM3O0L (3.30¢1.55¢04107 4HTAU=r 0.0¢4)
CALL SYMBOL (4:%001,55¢0.10¢ Y4HUE =r0e0¢4)
CALL SYMBOL (5.60¢1,55+0.10r BHGAVIMA=e 0.0+6)
CALL SYM30L (2¢30¢1.3000410¢ SHNEG =¢0.05)
CALL SYMBOL (3.30¢r1.30+04100s 3HHZ +0.013)
CALL SYM30L (4.50¢1.3000¢10¢ 4HPI =+0e0rlt)
CALL NUM3ER (2.0071.55¢0+10¢ANB20.024)

CALL NUMBER (3.75¢1.55+0+10¢TAU20.004)

CALL NUMBER (4.95¢1.55¢0410¢ UE*Q«0r3)
CALL NUMBER (6¢25¢1.55¢10107/GAMMA»0.013)
CALL NUMBER (2.80¢r1.30+0410/TERMS+0.07-1)
CALL NUMBER (3:¢559¢1.3000410¢Hr0¢0¢3)

CALL NUMBER (4¢95¢1.3000410¢/P100.00r3)

3 IF (JeEQe2.0ReJsEQY) DELY = 5.3
IF (JetEQeleOReJoER3) DELY = 4.0
DELX = 0.0
IF (JeEQeleORsJoEQe3) DELX
CALL PLOT (DELX!DELY?»=3)
CALL SYM30L (1.80r=1+7000.1U4s4HX/L=r 040 4)

CALL NUMBER (2.400=1.7020.14 Zv0e013)
CALL FACTOR (0.788) :
CALL AXIS (0.000,0r QHTIME»=42SIZEr0.0¢ABC(JL) e ABC(J2))

2.0



70

120

20
ilo

CALL
CALL
CALL
CALL
CONTI
RETUR
END

AXIS (0,0¢r~2.0,» BHPRESSURE*8r4¢¢90.00RD(J1)»0RD(U2))
PLOT (0.0r=240,=3)

LINE (ABCrORD»NPTs1r101)

FACTOR (1.0)

NUE

N

SUBROUTINE POUT (NMNEsISPeNPT)

DIMENSION COEF(100)

COMMON/FLODA/ NEQ'UE»ANBrTAU»GAMMASPI*LIN/T(10)
COMMON/PLTDA/ TIM(100), B8S(10+100)
COMMON/COM3/ H

EON =

J1ENPT+1

JZ2=NP

NES

T+2

CALL SCALE (TIMe4oO0/NPTr1)
CALL PLOT (0,0¢2.,0r=3)
CALL PLOT (0.001140¢3)

CALL
KOUNT
DO 11
L=1
D0 12
COEF (
L=L+1
CALL
IF (K
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
Y=2.5
CALL
CALL
CALL
CALL
TERM
CALL
CALL
CALL
CALL
IF (K
CALL
KOUNT
G0 TO
KOUNT
CONTI
CALL
CALL
RETUR
END

PLOT (0.0¢045r=3)
=1
0 I=1.NMDE»,ISP

0 K=1»NPT
K)=BS(I»,L)

SCALE (COEF+240¢NPTr1)
OUNT.NE.1) GO TO 1
SYMBOL (3.4001¢3¢0.10+27HTIME DEPENDENT COEFFICIENTS1040027)
SYMBOL (345¢141¢0.10214HTERM EXPANSION¢Q.0r14)
SYMBOL (3.0¢049¢0.10¢r29HTAU= NBAR= H=r040029)
SYMBOL (3¢0¢047¢0.10020HGAMMAS MACHZ=¢040020)
NUMBER (340¢14¢120,10¢ EGNr0O.Gr=1)
NUM3ER (3450¢04920.100TAU?00¢3)
NUMBER (44990¢9+0.,102ANB?0+0¢3)
NUMBER (660¢0¢990.109H?0e0?¢3)
NUVMBER (Se19¢07+0.10:UE »0,0¢3)
NUMBER (3¢7¢047¢0.100rGAMMA*0.0¢3)
PLOT (2.0'005"’3)
PLOT (0s0¢Yr=3)
AXIS (eO0reOQrUHTIME s =UrlU, 20,0 TIM(JL)»TIM(J2))
AXIS (0409=140,5H3N(T)+5¢2,0¢90.0+,COEF(JL1)COEF(U2))
SYV‘BOL (4.500.090.1092HN'—'00.(3'2)
=1
NUMBER (4.8¢0e000+.10¢TERM» (0e0r=1)
PLOT (040r=1.0/,=-3)
LINE. (TIMeCOEFsNPTr1e0r1)
PLOT (000'1t0"‘3)
OUNT«NE«3) GO TO 20
PLOT ( Be0r=840r=3)
=1
110
= KOUNT + 1
NUE
PLOT (800'000'-3)
PLOT (0.000.00r999)
N



Section of the Program Used to Solve the Nonlinear Wave Equation

o000

100

110

120
130

140

SUBROUTINE RUNG (NEQ)

INTEGRATION OF SECOND ORDER ODE WITH RETARDED VARIABLE.
USE WITH SECOND ORDER WAVE EQUATION ANALYSIS.

EXTERNAL EQTN

DIMENSION R(10+4)¢B8R(10)+BPB(10),RB1(10),B8PB1(10)

COMMON/COM2/ BP(10), 8(10)le(lO)'R2(10)0R3(10)oBS(IOcIIO)oDM(IO)
COMMON/COM3/ HrH2/HD6HB

DO 100 I=1r/NEQ

R(1+1) = H*EQTN{Ir R1¢B8,BP)

BPB(1) = BP(I)+ R(I,1)/2.

BB(1) = B{I) + H2*BP(I) + HB*R(I,1)

DO 110 I=1sNEQ

R(I1+2) = H*EQTN{I» R2 +B8BrBPB)

BPB1(I)= BP(I)+ R(I,2)/2,

B31(I)= B(I)+ H2*3P(I1) +HB*R(Ir1}

DO 120 I=1/NEQ

R(I+3)= H*EQTN(I» R2 »B8B81,8PB1)

BPB(I)= BPII)+R(I1+3)

BB(I) = B(I) + H*BP(I)} +H2*R(I+3)

DO 130 I=1+NEQ

R(Is4)= H*EQTN(I» R3 +BB8PB)

D0 140 I=1sNEQ

g(I) = H*(BP(I)+(R(1p1)+R(Io2)+R(Iv3))/6.) + gl1)
BP(I)= (REIs1)42.%(R(LIe2)+R(T+3))I+R(Ir4)) /6. +BP(I)
RETURN

END

REAL FUNCTION EQTN(LsYPR+Y»YP)

c SECOND ORDER WAVE EQUATION

110
100

DIMENSION Y(10),YP{10)sYPR(1D)

COMMON/COMP1/ Q1+,32,03+Q4+Q5,Q7

COMMON/COM4/ T2(1s10¢10)»T3(4+10,10¢10)
COMMON/FLODA/ NEQ+UEsANBe TAUs GAMMASPI+LINsT(10)

D1 = =L*L*Q7*Y(L) = G5*(YP(L) = T(L)*(YP(L) = YPR(L)))
SUM=.0 .
DO 100 N=1¢NEQ

S1 = Q1N *YP(N)*T2(1eNeL)

§2 =((=1)%*x(N+L ))*YP(N)*Q@2

SUVIz.0

IF (LINJEQ.1) GO TO 1

DO 110 M=1eNEQ

S3 = Q3% M*V XYP(N}*Y(MI*T3(2+/NeMsL)

S4 = QU N*¥V =Y (N)*YP(M)*T3{(1eNoMoL)

SUMLI= SUM1+S3-54%

CONTINUE

SUM = SUM + SUML +51=52

EQTN = D1 +2.%SUM

RETURN

END
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SUBROUTINE PRMIRS (N,K,SUMA,SUMB,SUMC,SUMU,VEL)

c
C SUBROUTINE FOR CAICUIATING FLOW PARAMETERS FOR WAVE EQUATION
c
- COMMON/FLODA/ NEQ,UE,ANB,TAU,GAMMA ,PT,LIN,T(10)
COMMON/coM5/ X(11) ,IPX(L)
COMMON/COM8/ ABC(303) ,ORDP(11,303) ,0RDU(11,303)
ORDU(N,K) = -SUMU
IF (LIN.EQ.1l) GO TO 1
ORDP(N,K) = GAMMA*(SUMB*(SUMB-2.) +SUMU* (2. *VEL-SUMU) ) /2.
GO TO 2
1 ORDP(N,K) = GAMMA*(-SUMB + VEL*SUMU)
2 CONTINUE
RETURN
END
SUBROUTINE WOUT1 (H,TX)
COMMON/FLODA/ NEQ+UE+ANBe TAU»GAMMASPI+LIN/T(10)
COVMON/COM2/ B(10)rc(10)93R1(10)+5R2(10)»3R3(10)+35(10,110)1A(10)
COMMON/COM&/ TSTART,TSTOP»TLYMCY
420 FORMAT (3XsF743010E10.4)
430 FORMAT (1iH )
440 FORMAT (1H1+10Xs*TIME DEPENDENT COEFFICENTS OF THE *'»
1 * 'NONLINEAR WAVE EQUATION  PHI = A(T)*COS(N*PI*Z)%s/ )
451 FORMAT (5Xs'TIME AP1 AP2 AP3 APY APS
1 APe AP7 APB AP9 AP10*)
452 FORMAT (SXs'TIVE Al A2 A3 A4 AS
1 A6 A7 AB AQ A10')
410 FORMAT (10Xs'LINEARZ '+I2+9X»*NEQG= "+I2+ OX+*N= ',F7,5, OXe'TAUZ ¢

1 ¢F7.5
2 tFS5.4
TEST =

#/110X» YEXIT MACHS "9FS5e3¢3Xs'GAMMA ='sF5,3 UX *PINITIAL =
v /) : _ . :

ABS(TX=TSTART)

IF (TEST.GT.0.030) GO TO 10

K = 16

10 IF (KeNE+16) GO TO 2

WRITE
WRITE
WRITE
WRITE
K=1
2 WRITE

WRITE
WRITE
K=K+t
RETURN
END

(62440)
(6+410) LIN/NEQrANB»TAUIUE+GAMMAPI
(6rl452)
(6e451)

(6¢r430)
{6+420) TXe (C(I)eIZ11NEQ)
(60420) TXe(B(I)rI=1+NEQ)



Section of the Program Used in the Analysis of large Amplitude

Oscillations

OoOOnNO0

SU3ROUTINE RUNG (NEG)

INTEGRATION OF FIRST ORDER ODE WITH RETARDED VARIABLE
USE wITH LARGE AMPLITUDE ANALYSIS

DIMENSION RAl(10)vRA2(10)vRA3(10)vRA4(10)vRBl(lO)uR82(10)vRB3(10)v
1RBQ(10)vRC1(10)rRC2(10)vRC3(10)oRC“(10)oAl(lO)oAZ(lO)vBl(lO)o
282(10)¢£1(10)¢C2(10) '

covMoN/com2/ B(lO)oC(lO)vRRl(lO)v%RZ(lO)vBRB(lO)vBS(lOvllO)rA(lO)

COMMON/COM3/ HrHD20HDBE : .

CALL EQTN (ArBrCeBR1?RAL/RBLIRC1)

DO 100 I =1+NEG

AL(I) = A(I) + HD2*RA1(1)
81(1) = 8(1) + HD2*RB1 (1)
c1(I1) = c(1) + HD2*RC1 (1)

100 CONTINUE

CALL EQGTN (AlvBvalpBRevRA2oR82vRC2)
DO 110 I=1rNEQ

A2(I) = A(I) + HD2%RA2(1)
g2(1) = 8(I) + HD2*RrRB2(1)
ce(1) = c(n) + HD2*RC2(1)

110 CONTINUE

CALL EQTN (A2'BZ!CZ'BRZ'RAB'RBSORCB)
DO 120 I=1,NEQ

A1(I) = A(I) + H*RA3(I)
B1(I) = B(I) + H¥RB3(I)
C1(1) = C(I) + H*RC3(I)

120 CONTINUE

CALL EQTN (A1+B1sC1,BR3I+RAUPRBUIRCH)

DO 130 I=1/NEQ

ACI) = A(I) + HD&*(RAl(1)+RAu(I)+2.*(RA2(I)+RA3(I)))
(1) = B(I) + HD6*(R81(I)+RBu(I)+2.*(R82(I)+RB3(I)))
C(I) = C(I) + Hoe*(am(I)+Rcu(1)+2.*(Rc2(1)+Rc3(1)))

130 CONTINUE

RETURN
END
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SUBROUTINE PRMTRS (N,K,SUMA,SUMB,SUMC,SUMU,VEL)

o
C SUBROUTINE FOR CALCULATING FLOW PARAMETERS FOR LARGE AMPLITUDE WAVES
c .

COMMON/FLODA/ NEQ,UE,ANB, TAU,GAMMA,PT ,LIN,T(10)

COMMON/coMS1/ Q1,Q2,GP1,GT1

COMMON/cOM5/ x(11) ,IPX(L)

COMMON/COMB/ ABC(303) ,0RIP(11,303) ,0RDU(11,303)

ORIP(N,K) = SUMB

Ir (LIN.EQ.1) GO TO 1

ORDU(N,K) = SUMC + (QL + Q2*SUMB) *SUMB*X(K)

GO TO 2
1 ORDU(N,K) = SUMC + QL*SUMB*X(N) |
2 CONTINUE

RETURN

END

SUBROUTINE WOUT1 (H,TX)

COMMON/FLODA/ NEQrUErANBr TAU/GAMMAPI+LIN!T(10)

COMMON/CoOM2/ B(lO)oC(lO)t%Rl(lO)05R2(10)'8R3(10)vBS(lOvllO)vA(lO)

COMMON/COMS1/ Q19Q2,GP1+6GT1

COMMON/COM6/ TSTART, TSTOP»TLYMCY
420 FORMAT (3X»F7¢3¢10E1044)
430 FORMAT (1H ) .
440 FORMAT (1H1¢10Xs*TIME DEPENDENT COEFFICENTS OF THE '

1 'LARGE AMPLITUDE SOLUTIONS':/)

450 FORMAT (5X»'TIME 81 B2 B3 B4 BS
1 B6 BY B8 B9 B10*)

451 FORMAT (5X» 'TIME c1 c2 c3 cu cs
1 ce - c7 cs c9 c10°)

452 FORMAT (5Xs'TIME Al A2 A3 AY AS
1 A6 A7 AB A9 A10')

410 FORMAT (10X»'LINEARS *'+I2+9Xs*NEQ=S *»I2 OXe'N= *+F7e5¢r OXetTAU= ¢
1 +F7.50/910X0 YEXIT VACHS *+FS5¢303X 0 'GAMMA =',F5.3, UXe 'PINITIAL =¢
2 *F5441¢/)
TEST = ABS(TX-TSTART)
IF (TEST.GT.0.030) GO TO 10
K =12
10 IF (KeNE«12) GO TO 2
WRITE (6:,440)
WRITE (6+410) LINeNEQrANBs»TAUrUE»GAMMA,PI
WRITE (6,452)
WRITE (6+450)
WRITE (6,451)
K=1
2 WRITE (6,430)
WRITE (62420) TXo(A(I)eI=1:.NEQ)
WRITE (6,420) TX,(B(I)sI=1/NEQ)
WRITE (60420) TXe(C(I)oI=1/NEQ)
K=K+1
RETURN
END



SUBROUTINE EQTN (A¢3¢CsBReRA,RB/RC)
C LARGE AMPLITUDE EQUATION

DIMENSION A(10)oB(lO)vC(lO)rBR(lO)pRA(lO)vRB(lO)vRC(lO)-Fl(lO)r
1F2(10)F3(10) . :

COMMON/COMS1/ Q1+Q2:GP1¢GT1

COMMON/FLODA/ NEQ:UEoAVBvTAU:GAWMA:PI!LIN'T(IO)

COMMON/COMY/ T2(1010010) ¢ T3(49r10¢10010)

U0 100 L=1/NEQ

PIL = L*3.14159 : '

501 =PIL*C(L) + @1*R(L} - T(L)Y*UE*(B(L) = BR(L))

50 = -UE*A(L) + SO01
RO = =GAMMAX(S01+ UE*8(L))
UD = PIL*B(L)/GAMMA - UE*C{L)

SUMN1 = 0.0
SUMN2 = 0.0
SUMN3 = 0.0

DO 110 N=1r¢NEQ
PIN = N*3.14159

51 = PIN*T2(1/NsL)*A(N)
g2 = PIN*T2(1/NsL)*R(N)
RL = PIN®T2(1rileL)*B(N)
ul = PINX¥T2(1sL»N)*C(N)
SUvMML = 0.0

SUMM2 = 0.0

SUMM3 = 0.0

1F (LIN.EQ.1) GO TO 200

DO 130 M=1.NEQ

PIM = M%3,14159 :
PIMET3(1oNsMeL)%C (NI kA (M)

S3 =

S4 = PIMET3(2¢/NsMeL)*A(N)%C (M)

S5 = T3(2:NoMe L) XA (N) ¥A (M) )

S6 = PIM*Ts(BvNonL)*(a(N)*A(M) - B{M)*A(N))

S8 = T3(2eNeMeL) XA (N) ¥83(M)

59 = T3(2¢NeMeL)*(B(N)=BRIN))*A(M)

510 = T3(2¢NeMrL) %8 (N} *B(M)

S11 = PIW*T3(3vaMnL)*S(N)*B(M)

§12 = S10 = 2.%S11

R2 = PIMAT3(1eNeMrL)*C(N)%3(M)

R3 = PIW*T3(20NerL)*B(N)*C(M)

R4 = T3(LoNe Mo L) *CIN) *C (W)

ye = PIW*TS(le'M-N)*A(N)*R(M)

U3 = T3(1eNeLeM)IXCIN)*C (M) *PIM

Ut = PIM*T3(3'N'L'M)*3(N)*C(M)

us = PIN*T3(QON!LOM)*B(N)*C(M)

U6 = Ta(1eLeMeN)®BINI*C (M)

SUMME = SUMM1 + S3 + S4 = UE*S5 + a1*(56+58) =2.*T(N)*UE*S9
1 + Q2%512 '

SUMM2 = SUMM2 + R2 = GAMMA*R3 - GT1*R4 = Q1% (GAMMAXS10 - GP1*S11)
1 - Q2%2GAMMAXS512 :

SUVMM3 = SUMM3 + U2/GAMMA - U3 = P1* (U4 = US + UB)
130 CONTINUE
200 CONTINUE

GUMN1 = SUMN1 + SUMML + UE*S1 - Q1%52

5
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110

100

330
320

310

300

SUMN2 = SUMN2 + SUMw2 + UE*R1 + GAMMA*Q1%S2

SUMN3 = SUMN3 + SUMM3 - UE*Ut
CONTINUE :

F1(L) = S0 + 2.*SUMNL
F2(L) = RO + 2.xSUMNn2
F3(L) = UD + 2.%SUMN3
CONTINUE '

DO 300 L=1,NEOG

UBN = 0.0

DO 310 N=1+/NEQ

U8 = T2(1rLeN)*F2(N)

UBM = G0

IF (LINSEQ.1) GO TO 320

DO 330 M=1,NEQ

U9 = T3(3eNeLeM)*B(N)*F2(V)
UBM = UBM + U9

CONTINUE

UBN = UBN = Ql*U8 = Q2+%UBM*2,
CONTINUE

RA(L) = F1(L)

RB(L) = Fa2(L)

RCIL) = F3(L) + 2.#8N
CONTINUE

RETURN

END
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