PERFORMANCE OF CONVOLUTION CODING CONCATENATED WITH MFSK MODULATION IN A GAUSSIAN CHANNEL

A. K. CHOUDHURY

DECEMBER 1971

GODDARD SPACE FLIGHT CENTER
GREENBELT, MARYLAND

Reproduced by NATIONAL TECHNICAL INFORMATION SERVICE U S Department of Commerce Springfield VA 22131
PERFORMANCE OF CONVOLUTION CODING CONCATENATED WITH MFSK MODULATION IN A GAUSSIAN CHANNEL

A. K. Choudhury

December 1971

Goddard Space Flight Center
Greenbelt, Maryland
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>2. Channel Model</td>
<td>3</td>
</tr>
<tr>
<td>3. R_{comp} for Unquantized Outputs</td>
<td>5</td>
</tr>
<tr>
<td>4. R_{comp} with Q-level Quantization</td>
<td>5</td>
</tr>
<tr>
<td>5. $E_0(\cdot)$ vs ρ with Q-level Quantization</td>
<td>6</td>
</tr>
<tr>
<td>References</td>
<td>7</td>
</tr>
</tbody>
</table>
1. Introduction

In a m-ary frequency-shift-keyed communication link (MFSK) one of the M messages, $x_\ell; (\ell = 1, 2, 3, \ldots M)$ is transmitted during each T second interval as a sinusoidal tone at frequency f_ℓ. This tone is then modulated onto a carrier frequency f_c to produce the single transmitted frequency $f_c + f_\ell$. Ideally, at the receiver the carrier frequency f_c is removed and the resulting signal frequency f_ℓ is detected using a spectral analysis receiver. In order to reduce the probability of a bit error and to increase the available bit rate for the same system parameters (error rate, transmitter power, range etc.), concatenation of convolution coding with coded MFSK communication link has been proposed. In this report we shall study the improvement in db due to concatenation over the conventional m-ary coding. The performance of convolution coded system depends on the channel parameters R_{comp} [1] and $E_0(\rho)$ [2]. For a discrete memory less channel with M inputs and J outputs,}

$$E_0(\rho) = \max_{\{p_j\}} \left[-\log_2 \sum_{j=1}^{J} \sum_{k=1}^{M} p_k q_{jk}^{-1/(1+\rho)} \right]^{1+\rho} \tag{1}$$

where $\{p_j\}$ are the a priori input probabilities, and

$$R_{\text{comp}} = E_0^{-1}(1) \tag{2}$$
It can be shown by random coding arguments that the undetected error probability using Fano decoding algorithm satisfies the following bounds:

\[
P_E \leq \begin{cases}
A2^{-K \frac{R_{\text{comp}}}{R_N}} & \text{for } R_N \leq R_{\text{comp}} \\
A2^{-K \rho} & \text{for } R_N > R_{\text{comp}}
\end{cases}
\]

where \(A \) is a constant in the order of unity.

\(K \) is the code constraint length. \(R_N \) is the code rate in bits per transmitted waveform. \(\rho \) is the pareto exponent. The pareto exponent \(\rho \) is the solution of the equation

\[
\frac{E_0(\rho)}{\rho} = R_N
\]

The decoder computational distribution must be known to determine the necessary buffer size. If \(c \) is a random variable equal to the number of decoder computations required to decode an information bit, then \(c \) has a pareto distribution, i.e.,

\[
\text{Prob}(c > L) = B L^{-\rho}
\]

where \(B \) is a constant in the order of unity. It follows from eq. (4) that \(\rho \) must be greater than 1 for finite average computation. Therefore \(E_0(1) = R_{\text{comp}} \) is called the computational cut off rate.

A space communication channel can be accurately modelled on an additive Gaussian noise channel. Digital data is transmitted over this channel by coding it into a set of analog waveforms suitable for transmission over the channel. A demodulator converts the received signal back into digital form. From the point
of view of the encoder and decoder the channel consists of the combination of the modulator, white Gaussian noise channel, and demodulator. The relative efficiency of various modulation and demodulation schemes can be compared by calculating E_b/N_0 necessary for $R_{comp} = R_N$, where E_b is the signal energy per information bit and N_0 is the one-sided noise spectral density. In this report the results of calculations for orthogonal modulation with non-coherent detection and Q-level correlator quantization are presented.

2. Channel Model

It will be assumed that the signal transmitted is one of the M equal energy, orthogonal signals

$$s_j(t) = e_j(t) \sin \omega_0 t, \quad j = 1, 2, \ldots M$$

and

$$\int_0^T s_j(t) s_i(t) \, dt = E_N \delta_{ji}, \quad \delta_{ji} = 1, \quad y_j = i$$

$$= 0, \quad y_j \neq i$$

The received signal is

$$y(t) = e_j(t) \sin (\omega_0 t + \theta) + n(t)$$

where θ is a random variable uniformly distributed over $(0, 2\pi)$, $n(t)$ is white Gaussian noise with spectral density $N_0/2$.

The maximum likelihood receiver for this non-coherent channel calculates the M quantities

$$y_i = \sqrt{x_i^2 + \omega_i^2}, \quad \text{for } i = 1, 2, \ldots M$$
where

\[x_i = \sqrt{\frac{2}{N_0 E_N}} \int_0^T y(t) e_i(t) \sin \omega_0(t) \, dt \] (9)

\[\omega_i = \sqrt{\frac{2}{N_0 E_N}} \int_0^T y(t) e_i(t) \cos \omega_0(t) \, dt. \] (10)

The device that performs these calculations is known as an envelope detector.

The correlator outputs are statistically independent and have probability densities

\[f(y_i / s_i) = y_i e^{-\frac{(y_i^2 + a^2)}{2}} I_0(ay_i) u(y_i) \]

\[= f_{s+n}(y_i), \quad j = i \] (11)

\[f(y_i / s_i) = y_j e^{-\frac{y_j^2}{2}} u(y_j) \]

\[= f_n(y_j), \quad \text{for } j \neq i \] (12)

where

\[a = \sqrt{\frac{2E_N}{N_0}}, \quad u(\cdot) \text{ is the unit step function.} \]

In this study the correlator outputs are quantized to one of the Q levels. The receiver output is a vector consisting of a list of the M correlator quantum levels. Therefore the channel has \(Q^M \) possible outputs and M possible inputs.

With this method the optimum output can be approached by increasing fine quantization.
3. R_{comp} for Unquantized Outputs

R_{comp} for the exact optimum correlator output case can be found by letting the quantization become infinitely fine. From eqs. (1) and (2) it follows that

$$R_{\text{comp}} = \max_{\{p_i\}} \left\{ -\log_2 \int_0^\infty \left[\sum_{i=1}^M p_i \sqrt{f(Y|s_i)} \right]^2 dY \right\}$$

where Y is the correlator output vector and $f(Y|s_i)$ is the joint density for the correlator outputs given input s_i. For symmetric channels R_{comp} is a maximum for equally likely inputs, i.e., $p_i = 1/M$ for all i. On substituting eqs. (11)-(12) in eq. (13) it follows that

$$R_{\text{comp}} = \log_2 \frac{M}{1 + (M-1)e^{-u^2/2}} \left[\int_0^\infty xe^{-x^2/2} I_0^{1/2}(ax) dx \right]^2.$$

R_{comp} vs E_N/N_0 for $M = 2, 4, 8, 16, 32, 64$ is plotted in the enclosed figures.

4. R_{comp} with Q-Level Quantization

To approximate the exact output case the half line $(0, \infty)$ can be divided into a disjoint set of intervals Δ_j such that $U_j \Delta_j = (0, \infty)$. If the correlator output $y_\ell \in \Delta_j$, then the quantized value is taken to be $\hat{y}_\ell = j$. Let

$$P(\hat{y}_j = i/s_\ell) = \int_{\Delta_i} f_{s+n}(x) dx = P_{s+n}(i)$$

for $\ell = j$

$$= \int_{\Delta_i} f_n(x), \alpha = P_n(i)$$

for $\ell \neq j$
From eqs. (1) and (2) it follows that

\[
R_{\text{comp}} = \log_2 \left(\frac{M}{1 + (M-1) \sum_{i=1}^{Q} \sqrt{P_{s+n}(i)P_n(i)}} \right)^2
\] \hspace{1cm} (14)

For simplicity equal width quantization intervals were chosen. The quantizer input-output relationship is illustrated below. Optimum thresholds were searched for by trial and error. The optimum thresholds depends on the signal-to-noise ratio. Therefore, sub optimum thresholds good for a wide range of signal-to-noise ratios (0-19) were chosen and shown in Table 1. R_{comp} vs E_N/N_0 for these thresholds are plotted.

![Quantizer Thresholds Table]

<table>
<thead>
<tr>
<th>Q</th>
<th>T_1</th>
<th>T_2</th>
<th>T_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2.0</td>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1.5</td>
<td>3.0</td>
<td>4.5</td>
</tr>
</tbody>
</table>

Quantizer Thresholds

5. $E_0(\rho)$ vs ρ with Q-level Quantization.

For symmetric channels equally likely inputs, i.e., $p_i = 1/M$ for all i, maximize the expression for $E_0(\rho)$. Using the fact that the correlator outputs are statistically independent, equation (1) reduces to

\[\text{...}\]
\[
E_0 = \log_2 \left(\frac{M^{1+\rho}}{\sum_{i=1}^{Q} \cdots \sum_{y_m=1}^{Q} \sum_{\ell=1}^{M} \prod_{i=1}^{M} P(\tilde{y}_\ell/k)^{1+\lambda}} \right)
\]

using the sub optimum thresholds of Table 1 calculated values of \(E_0(\rho) \) vs \(\rho \) for various values of \(E_N/N_0 \) and \(M \) are plotted.
REFERENCES

5. R. Teoste, "M-ary Channel Quantization for Sequential Decoding," Lincoln Laboratory, M.I.T., JA 2817, June 28, 1966

FIGURE 1

M = 64, Q = 4.
Figure 12

$E = 4$, $M = 64$, $Q = 2$
Figure 19

E = 20, QUANTIZATION TWO LEVEL, M = 64