
Report No. 72-001,2
Contract No. NAS8-27359

(NASA-CR-123559) MULTI-PROCESSING CONTROL
SYSTEM FOR THE SEL 84CMIP (MPCS/1) USERS
GUIDE. VOLUME 1: PROGRAMMING GUIDE (M&S
Computinq, Inc.) 27 Mar. 1972 91 p

N72-25216

Unclas
G3/08 15495

MULTI-PROCESSING CONTROL SYSTEM

FOR THE SEL 840MP

(MPCS/1)

USERS GUIDE

VOLUME I - PROGRAMMING GUIDE

March 27, 1972
Reproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE

U S Deportment of Commerce
Springfield VA 22151

Prepared for:

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
George C. Marshall Space Flight Center
Marshall Space Flight Center, Alabama 35812

(& OMPUTING, INC. _

J

0

PREFACE

This document provides the information required by an appli-
cation programmer to fully utilize the SEL 840MP Multi-Processing
Control System - Version I (MPCS/1). This system was developed
by M&S Computing under Contract No. NAS8-27359 for NASA/MSFC.

Participating personnel were:

W. F. Anderson
J. R. Conway
L. C. Keller
M. L. Williams

Approved by:

J,

T. .c ~nsman

TABLE OF CONTENTS

Section Page

List of Figures VI

1. INTRODUCTION 1

1.1 General 1

1.2 Task Control 1

1.3 Input/Output Control 3

1.4 Display Support 6

2. TASK CONTROL 9

2.1 General Description 9

2.2 Task Scheduling 13

2.3 Job Task Table 16

2.4 JTT Generation Control Cards 17

2. 4. 1 COMMON Allocation Control Cards 18

2. 4. 2 TQI Definition Control Cards 18

2. 4.3 TQI Periodic Option Control Card 19

2.4.4 TQI Cross-Processor Option Control 20
Card

2. 4. 5 TQI Inter- Task Communication Option 20
Control Card

2.4. 6 TQI Next Task Option Control Card 21

2.4. 7 TQI Multiple Entry Option Control Card 21

2. 4. 8 END Control Card 22

i

TABLE OF CONTENTS
(continued)

DEFININING DISPLAYS

3. 1 Display Design

3.2 Display Coding

3.2.1 INPUT OPTION Card (I)

3.2.2 OUTPUT OPTION Card (O)

3.2.3 NAME Card (N)

3.2.4 PEN Card (P)

3.2.5 COMPOSE Card (C)

3.2.6 LEGALITY Card (X)

3.2.7 LINE Card (L)

3.2.8 TEXT CONTROL Card (*)

3.2. 9 TEXT Card (T)

3.2.10 END Card (E)

3.2.11 DELETE Card (D)

3.3 Display Data Input Deck Setup

MPCS CALLS FOR TASK CONTROL FUNCTIONS

4. 1 Schedule Task, Periodic (M$01)

4.2 Schedule Task, Priority (M$02)

4.3 Set Pointer to Task TQI (M$03)

ii

Section

3.

4.

Page

23

25

25

30

30

31

31

32

32

34

35

35

36

36

36

39

45

46

47

TABLE OF CONTENTS

(continued)

Section Page

4.4 Initialize Task Communications Pointers 48

(M$04)

4.5 Delete Task (M$05) 49

4.6 Terminate Task (M$06) 50

4.7 Check Status of Task (M$07) 50

4.8 Schedule Priority Task, Multiple Entry (M$08) 51

4.9 Schedule Periodic Task, Multiple Entry (M$09) 53

4.10 Suspend Task, Indefinite (M$10) 55

4.11 Specify Next Task Name (M$11) 56

4. 12 Suspend Task, Specified Time (M$12) 57

4.13 Task Communications (M$13) 58

4.14 Connect Task to Interrupt (M$14) 64

4.15 Cross Processor Communications (M$15) 65

5. MPCS CALLS AND SYSTEM INTERFACES FOR 67
DISPLAY FUNC TIONS

5.1 Display Input Data Formats 67

5. 1. 1 Compose Field Input Format 67

5.1.2 Light Pen Option Input Format 71

5. 1.3 Function Switch Input Format 72

5.2 Task Display Requests Formats 72

iii

TABLE OF CONTENTS
(continued)

Section

5. 2. 1 M$20 - Display Request for Tabular
Data

5. 2. 2 M$21 - Display Request to Position
the Data Cursor

5.2.3 M$22 - Display Request for a One-
Line Message

5.2.4 M$23 - Display Request for a New
Di splay

5.2.5 M$24 - Display Request Function
Switch Attach/Detach

MPCS CALLS FOR I/O FUNCTIONS AND SERVICES

6.1 General I/O Services

6.2 Hybrid Interrupt Services

6. 2.1 Interrupt Enable/Disable

6. 2.2 Connect Interrupt Direct

6.3 Hybrid I/O Services

6. 3.1 Read Real Time Entry (RTE)

6. 3.2 Write Digital to Analog Converter (DAC)

6.3.3 Write Clock Word and Select Mode

6.3.4 Read Clock Word

6o 3.5 Clock Mode Control

6.3.6 Read Digital Word

6.3.7 Write Digital Word

iv

Page

73

76

78

81

83

87

87

91

91

9Z

93

93

94

95

96

97

97

98

I

6o

TABLE OF CONTENTS
(continued)

Section

6. 3.8 Write Control Lines

6.3.9 Read Sense Lines

6.4 Analog Setup and Control Services

6. 4. 1 Read Digital Ratiometer

6.4.2 Read Analog Component

6.4.3 Read AD-4 Status

6.4. 4 Set AD-4 Mode

6.4.5 Set Potentiometer

7. MPCS CALLS FOR FILE MANAGEMENT

8. MPCS CALLS FOR UTILITY SERVICES

8.1 Normal End of Job

8.2 Abnormal End of Job

8.3 File Assignment

8 4 Magnetic Tape Mode Control

8.5 Set BARs

8.6 Get Current Sector of Disk Scratch Area

8.7 Snapshot Dump

8.8 Convert Binary to TASCII

8.9 ASCII to AD-4 Address Conversion

8.10 Floating Point to AD-4 Integer Conversion

v

Page

98

99

100

100

100

101

103

104

105

107

107

107

108

108

109

109

109

110

110

110

TABLE OF CONTENTS

(continued)

Page

1118. 11 Digital Delay

9. MPCS ASSEMBLY LANGUAGE CALL SEQUENCE

SUMMAR Y

vi

Section

LIST OF FIGURES

No. Title Page

1-1 Task Control Process Flow 4

1-2 840MP Hardware Configuration 5

1-3 Display Generation Procedural Flow 7

2-1 Job Task Table (JTT) 10

2-2 Job Task Mixture 12

3-1 Display Layout 27

3-2 Typical Display 28

3-3 Display Data Input Deck Setup 37

4-1 Task Control Function Symbolic Names 41

4-2 Task Control Error Summary 42

4-3 MPCS Task Status Codes 52

4-4 Task Communication Function Code Assignment 59

4-5 Communication Data Format 62

5-1 Display Request Summary 68

5-2 Display Return Code Summary 69

.vii

.PR-!AD A6

1. INTRODU C TION

1. 1 General

Multi-Processor Control System (MPCS) is the operating system
specifically designed for the SEL 840MP. In addition to the functions pro-
vided by CHANE (reference "CHANE SEL 840MP", Code Research Corpor-
ation, July 15, 1970), MPCS provides the functions summarized below.
To enable users to gain a mastery of MPCS services and functions, explicit
details are provided in subsequent sections of this user's guide.

1. 2 Task Control

MPCS/1 is a "TASK-oriented" system. A TASK is a program
module, whose scheduling can only be controlled through MPCS/1. This
is in contrast to subroutines which are called directly by a TASK. One
or more TASKS form a JOB or application program.

The user may declare a TASK to be PROCESSOR DEPENDENT.
This means that the TASK must be executed by a particular processor.
This would be necessary, for example, if a TASK is stored in a private
memory. Conversely, the TASK may be declared to be PROCESSOR IN-
DEPENDENT; i. e., it mnay be executed by any available processor.

The memory available and accessible by a particular processor
is called a PROCESSOR DOMAIN, and includes a processor's private
memory as well as all of shared memory.

TASK execution is scheduled through MPCS/1 based on PRIOR-
ITY and/or PERIODIC criteria. PRIORITY is assigned by the user to
a TASK and reflects its execution priority relative to other TASKs.
PERIODIC means that a TASK is to be scheduled at a specific time incre-
ment. The latter may, in addition, be specified to be SINGLE MODE -
scheduled once for each execution request - or be specified to be ITERA-
TIVE MODE - scheduled repetitively at a specified time interval.

MPCS/1 is also a "shared operating system". That is, each
processor executes its own operating system functions either from shared
memory or its own private memory as appropriate. This allows each
processor to execute its own job, as well as execute tasks of jobs assigned
to other processors with minimal problems of interprocessor coordination.

MPCS/1 does not force an application into a particular scheduling
scheme. The application may use, for example, time/interrupt driven

-1-

asynchronous sequences, major/minor loop, fully synchronous, or any

other scheme suited to its requirements. Task Control does provide the

basic control functions necessary to execute the scheduling specified over

one or more processors.

The tasks communicate with Task Control, and each other,

through a set of Task Control Commands. The detailed formats are

described later in this document; the purpose of the individual commands

is described below.

EXECUTE

TERMINATE

DELETE

SUSPEND

- This signals that a task should be dispatched for execu-

tion in accordance with scheduling criteria provided

in the call parameters.

- A task signals that it has completed its execution.

- To signal that a task, previously requested to be EX-

ECUTEd, should be set to a non-scheduled state.

- To signal that execution of a task should be temporar-

ily halted and should be restarted as indicated in the

call parameters provided. The parameters may indi-

cate:

o Restart based on time

o Restart when requested by other task

CHECK TASK - To allow a task to interrogate the execution status

of another task. This could be used for synchroni-

zation.

TRANSMIT/ - To allow transmission of data between tasks.

RECEIVE

In addition a "NEXT TASK" may be associated with a task. The

NEXT TASK information defines the task to be executed when a task com-

pletes its execution. NEXT TASK information may be modified during

execution.

Each processor may accept a single job (i. e. set of tasks) at
a time. No additional jobs can be assigned to a processor as long as

the currently executing job has not been completed. However, if no jobs

are assigned to a particular processor it will automatically execute pro-
cessor-independent tasks that are part of a job assigned to another pro-
cessor. Even if a job is assigned to a processor, but no tasks are ready
for execution, the processor will also assist another processor in the
execution of its tasks. In addition, a processor may be forced by another
processor to execute the other processor's tasks, regardless of the status
of its own tasks.

Figure 1-1 depicts the general process flow of the Task Control.
The processor dispatcher is responsible for obtaining the highest priority
and/or earliest requested task from the Priority Schedule Queue and to
put it in active execution on the appropriate processor.

Tasks are added to the Priority Schedule Queue by the Timer
Processor or the Priority Scheduler. The Timer Processor adds the
tasks to the Priority Schedule Queue from the Periodic Queue as the
specified time criteria are met. Tasks are added to the Periodic Queue
by the Periodic Scheduler as requested by the application task. Tasks
that do not use time as a scheduling criteria are handled through the
Priority Scheduler. All other Task Control commands are also handled
through the Priority Scheduler.

1. 3 Input/Output Control

A detailed description of the SEL 840MP can be found in "Refer-
ence Manual, SEL 840MP General Purpose Computer System", Form No.
301-095098-001, System Engineering Laboratories. Of interest here is
the functional systems configuration depicted in Figure 1-2.

Each processing element has access to its own private memory
as well as all of shared memory. Simultaneous access of a shared mem-
ory module by the processors, is resolved by assigning fixed priorities
to the processors. This particular access resolution scheme may result
in the dominance of a particular processor, making true simultaneous
execution from a shared memory module impractical.

Input/output devices may be attached to a processing element
channel or to shared memory. When they are attached to a processing
element channel, they can access a particular private memory and all of
shared memory, but can only be commanded by the particular. processing
element. When the devices are attached to a shared memory channel,
they can only access shared memory, but may be commanded by any
processor.

To support the potential I/O configurations described above,
it is necessary to provide "Remote Input/Output". This allows any task

-3-

TASK CONTROL

PROCESS FLOW

Exe cute
Terminate
Delete
Suspend

S uspend
Exe cute

Priority

Schiedule
Queue

Exe cute

Queue

I '

Timer
Processor

! !

! !
I /

! -I

Proces sor

Dispatcher

Central Processor

(task execution)

Figure 1-1

-4-

0

0

- I.,

.o.
,-.4
M 0
a ')

UO

-5-

3
Z
0

g
0

C-4

0

Fo4

to request Input/Output, without regard to where the devices are actually
attached. When all devices are attached to a shared memory channel,
however, it has to be specified at systeminitialization time. The devices
cannot be switched to a shared memory channel without reloading the
operating system.

The actual I/O functions that can be performed are identical
to those currently provided by CHANE. However, when a task requests
an I/O function and specifies WAIT, the task is SUSPENDed by the system,
such that other tasks can be executed. The suspended task is rescheduled
by the system upon I/O completion.

1.4 Display Support

To enhance the man-machine interface of the SEL 840MP, MPCS
provides a display support package. Section 3 provides details for gen-
erating application display libraries and Section 5 provides details that
will enable users to employ these capabilities in their application programs.

The general procedural flow is depicted in Figure 1-3. The
application programmer defines the fixed data of the Display Descrip-
tions required for the application, and adds these off-line to the Display
Library. The Display Library is accessed on request of either the
application program or the console operator. The application program
uses the Display Description to communicate with the console operator
and provides variable data for displays whenever required during its
execution. The console operator in turn uses the Display Description to
communicate with the system through the actions predefined in the Display
De s c ription.

In the Display Description, the application programmer may
specify any or all of the following.

Fixed Text Data - data to be presented each time the display
is used.

Variable Text Data Locations - character positions on the dis-
play where variable data provided by the tasks should be
displayed.

Compose Field Data Parameters - Compose Field Data is data
to be entered from the keyboard. For each compose field used,
the following parameters can be provided:

-6-

DISPLAY GENERATION
PROCEDURAL FLOW

|Application
Task

Figure 1-3

-7-

Sheaf_4 -

o Position and length of field - to identify a particular
compose field.

o Legality check data - to insure that major errors in
data input are detected.

o Actions - the functions to be performed when the com-
pose field is used by the console operator.

- Initiate new task and transfer entered data to it.

- Present a new display.

Photopen Sensitive Areas - positions on the display that signal
a specific area if indicated by the photopen.

Resulting actions may be:

- Initiation of a task

- Presentation of new display

In addition to the data and functions defined by the application
programmer, each display has a standard two-line "Message Area. "
One line is used to present an option to return to the previous display.

One line is used for error and other messages from the system or from
the application program.

An additional feature specified in the package is the support of
the Function Switches located on each side of the CRT. Facilities are
provided which permit tasks to be attached to, or detached from, the
switches such that a task attached to a given switch is scheduled each
time the switch is set by the console operator.

-8-

2. TASK CONTROL

2. 1 General Description

Task control functions define the operational environment pro-
vided by MPCS/1. This environment features a design that exhibits an
extremely powerful control, and yet is highly adaptable. Tasks speci-
fically designed for the MPCS/1 environment perform most efficiently
in that environment. However, performance of the system may also be
enhanced for those tasks or functions that have been designed for other
operating environments.

Task control functions have been designed for a JOB-TASK
hierarchy. Jobs consist of one or more tasks, where a task is defined
as a program module consisting of one or more subroutines that may
be initiated by MPCS/1 in response to programmer defined specifica-
tions. Before loading, a job is not identified or associated with any
particular processing unit or other system resource. After being loaded,
however, a job is identified to the system by the processor domain in
which it resides. This identity is valid for the period of time that the
job is resident in that processor. Task division, priority, and definition
within a job are the responsibility of the programmer.

When currently implemented programs and functions are visual-
ized as single jobs containing one task, they are immediately and directly
compatible with MPCS/1.o For these programs, certain restrictions and
limitations will exist, both for the program and for MPCS/1. An example
of such a restriction would be in the use of the interval timer. It is not
possible for both MPCS/1 and a job to directly control this device.
Current programs and future tasks requiring direct control of the timer
will prohibit MPCS/1 from providing control for that device during those
periods when this requirement exists. It will be possible for MPCS/1 to
perform during these periods with priority scheduling only. Conflicts
will also arise when two separate jobs resident at the same time require
the same resource. This or any similar conflict must be resolved by the
programmer.

Each task of a particular job has an entry in a central table which
has been defined as the Job Task Table (JTT)o Unique entries in the JTT
are defined as Task Queue Items (TQI). Figure 2-1 illustrates the general
configuration and relationship of a job, task, JTT, and TQIo After a job
is loaded into a particular processor domain, every element of the job is
resident in that domain and is, therefore, accessible by MPCS/1 or any
task within the job.

-9-

JOB TASK TABLE (JTT)

Figure 2-1

-10-

Task 1

Task 2

Task 3

Task N

JOB

JTT

TQI 1

TQI 2

TQI 3

TQI N

-.

L

I

Tasks within a job may be designated processor-dependent or
processor-independent. Tasks in the processor dependent category speci-
fy that, because of certain conditions, they must be executed by the processor
in whose domain they reside. Processor-independent tasks, though loaded
and identified with a particular job in a particular processor domain, may
be executed by any processor. Tasks of this type must be loaded in shared
memory.

It should be noted here that the resources required by a job are,
in fact, a summation of the resources required by its tasks. Thus, a
job containing one processor-dependent task becomes a processor-depen-
dent job. Job definitions should be carefully formulated to insure that
when jobs are loaded and executed, system resources will be efficiently
utilized.

Task control functions have been designed to automatically
distribute processor-independent tasks over available processors.
Distribution is accomplished in the following manner. Processors,
which for this discussion can be designated 1, 2, and 3, first search
for tasks waiting for execution from a list within their own domain.
Finding no tasks waiting, the processor moves to a list for another
domain. From this list, a processor must first find tasks waiting and
then determine if the task type is processor-independent. Finding a
processor-independent task waiting, the processor executes that task.
Finding no task waiting, the processor moves to the next list. In this
manner, a job containing processor-independent tasks loaded into pro-
cessor 1 domain could have its tasks executed by processor 1, 2, or 3
as they became available.

Figure 2-2 illustrates the three possible mixtures of processor-
dependent and processor-independent tasks within a job. In processor
domain 1 (which consists of private memory 1 and all of shared memory),
a job containing both types of tasks has been loaded. Tasks 6-10 of the
job could be executed by processor 1, 2, or 3. Tasks 1-4 of the job
residing in processor 2 domain could also be executed by 1, 2, or 3.
All tasks of the job residing in processor domain 3 must be executed by
that processor since each task resides in private memory. It should be
noted that tasks in job 1 and 2 may be restricted to the loaded processor
domain simply by designating that each task be of the processor-dependent
type. It should also be noted that JTT's are accessible by any processor
since they reside in shared memory.

If requirements for a job exceed the capacity of a single processor,
some of the tasks within the job may be specifically assigned to another

-11-

JOB TASK MIXTURE

Private 1_ -
i- --

I

I~~~~~~~~~~~~~~~

i __Task 1

I Task 2 I

Task 3

Task 4
Task 5 I

I Task 5

r Private 3 - -.F
l I

Task 1

Task 2

l l
Task 3

Task 4

_ _ _1_TL_ _

I- I
L-.

3 t

I

I

I
!

1 2 3 1

PriorityI
)ointers

_ _ - -_ J… - - -- Shared.- - -

Figure 2-2

-12-

processor. An assignment of priority level "16" to a task indicates
that it is to be executed by another processor, As tasks of this type
are scheduled, cross processor interrupts are issued to the other pro-
cessors of the system. When the interrupt is received by another pro-
cessor, any task being executed by that processor is suspended and
execution of the priority "16" task is initiated. When all level "16" tasks
are completed, the requested processor is released.

2. 2 Task Scheduling

To be eligible for execution, a task must be entered in the
Priority Schedule Queue. A task is entered in the queue by one of the
scheduling functions and remains there until it is either deleted or
terminated. Details of all scheduling functions will be discussed in
following paragraphs and in Section 4. When a task is entered in a sched-
ule queue, it is linked to those tasks having the same priority. A task
is thus eligible for execution based on its priority and its relative position
within its priority chain. Execution of a task is initiated when it becomes
the highest priority waiting in the Priority Schedule Queue. Tasks of the
same priority are executed on a first in, first out basis.

The process of initializing task execution generally proceeds
sequentially, starting with higher priority tasks. Once initiated, execution
of a task will normally continue until it completes or terminates. Execu-
tion of a task will be suspended, however, if tasks of higher priorities
are scheduled during its execution. This is possible when a task schedules
a higher priority task, when a timer interrupt causes a periodic task
to be scheduled, or when an I/O completion is received for a higher
priority task.

It is also possible for one processor to force execution of its
tasks on another processor. When this occurs, the processor being
forced suspends any task it is executing and responds to the schedule
queue of the requesting processor. Such forcing occurs whenever a
task of priority "16" is scheduled.

Except for forced execution, all tasks scheduled in one processor
domain are completed before a task in another processor domain can be
executed. The effect of this is that any task scheduled within its own
domain is higher in priority than any task in any other domain.

A status for each task scheduled is maintained by MPCS/1.
Tasks registered in the Priority Schedule Queue may be in one of the
following conditions:

-13-

o Executing

o Scheduled, Waiting

o Suspended

o Scheduled, Waiting after Suspension

o Not Scheduled

o Deletion Requested

Executing - This status indicates the task is currently being executed.

Scheduled, Waiting - This status indicates the task is waiting to be
executed. Execution of a task is started when it becomes the highest
priority waiting in the task schedule queue.

Suspended - This status indicates the task has been voluntarily or
involuntarily suspended from execution. Executive calls to MPCS/l
are provided to enable a task to voluntarily suspend itself indefinitely
or for a specified length of time. A task may be voluntarily suspended
to wait for the completion of an I/O operation. Execution of one task
may be involuntarily suspended to execute another task of higher pri-
ority. This type of suspension may occur when a higher priority
task is scheduled, when an I/O completion is received for a higher
priority task, or when forced execution is requested.

Scheduled, Waiting after Suspension - This status indicates the task
has ended its voluntary or involuntary suspension. When execution
is resumed, it will be at the point of suspension.

Not Scheduled - This status indicates the task is no longer registered
in the schedule queue.

Deletion Requested - This status indicates that a delete request has
been received while the specified task was either Executing or Sus-
pended. Since a task may be deleted only when it is Scheduled/Waiting,
this status enables a task to be deleted automatically whenever it
terminate s.

MPCS scheduling functions permit complete control of task
execution. These enable a task to schedule, suspend, delete, and ter-
minate execution; communicate information; or check status of any task
resident in a processor domain. Details of these functions will be

-14-

presented in following paragraphs.

Scheduling functions provide two basic methods for adding task
items to the Priority Schedule Queue. These are Priority Scheduling
and Periodic Scheduling.

Priority Scheduled - Priority Scheduled items are added directly
to the Priority Schedule Queue. Each task to be executed must
appear in this control queue.

Periodic Scheduled - Periodic Scheduled tasks are scheduled
in the Priority Schedule Queue after a specified time incre-
ment. Either single or iterative mode may be specified.
Periodic Scheduled, single mode tasks are scheduled once for
each entry in the periodic task queue. Periodic Scheduled,
iterative mode tasks are repetitively scheduled at the specified
time increment.

Access to scheduling functions are provided by Executive Calls
to MPCS/1. These calls enable the following functions to be performed.

o Schedule Task, Priority - adds designated task to Priority
Schedule Queue.

o Schedule Task, Periodic - adds designated task to Peri-
odic Schedule Queue to await the specified time incre-
ment. At the end of the increment, the item is added to
the Priority Schedule Queue.

o Delete Task - enables a task to be removed from either
or both the Periodic or Priority Schedule Queues. A
task may be deleted only when scheduled/waiting.

o Terminate Task - indicates to MPCS/1 that a task has
completed its execution and it will be removed from
the Priority Schedule Queue. If it is a Periodic, Iter-
ative Mode Task, it will remain entered in the Periodic
Schedule Queue.

o Schedule Multiple Entry- enables a specific entry from
a list to be designated. This entry will receive control
when the task is executed. Both Priority and Periodic
Scheduling may be requested.

- 15-

o Suspend Task, Indefinite Time - enables a task to sus-

pend its execution. The suspension must be removed

by another task. When execution resumes, it is at

the point of suspension.

o Suspend Task, Specific Time - enables a task to be sus-

pended for a specified increment of time.

o Sequential Scheduling - permits one task to be scheduled
at the termination of another task.

Details of scheduling functions as well as other task control functions

are discussed in detail in Section 4.

2. 3 Job Task Table

Every job designed to utilize MPCS task control functions is

required to have a Job Task Table (JTT) which defines the job's task

structure for the operating system. The JTT contains an entry called

a Task Queue Item (TQI) for each task in the job.

A TQI is a table that contains both required and optional para-

meters, pointers, and flags that enable items to be referenced and
maintained by the operating system. Items required by each TQI in-

clude:

o Task Name

o Task Type (processor dependent or independent)

o Priority

o Optional Parameter Flags

o Initial Task Entry Point

o Status

o Task Save Area

o Pointer to next TQI

-16-

Currently defined optional parameters include:

o Periodic Task Item (required for periodic scheduling)

o Cross-Processor Communication

o Task Communication (required for communication of
data from task to task and for tasks that support display
functions)

o Identity of next task to be scheduled

o Multiple entry list

MPCS provides facilities for generating the JTT (reference
Volume II, Section 3) from programmer supplied TQI definition cards
discussed in the following sub-section. However, before TQI defini-
tions are elaborated upon, the physical nature of the JTT and its
associated tasks should be thoroughly understood by the programmer.

The JTT, in actuality, is the MAIN program for a job. As
such, it must provide for the allocation of FORTRAN COMMON storage
in addition to supplying TQI entries for the tasks. Each task is a sub-
routine or group of subroutines coded in either FORTRAN or Assembly
Language. Task entry points are defined in FORTRAN through use of
the SUBROUTINE statement and in Assembly Language via a NAME
statement which references the task entry point. Note that MPCS will
activate the task with an SPB instruction to the task entry point. The
task name may or may not be the same as the initial entry point for
the task.

When a job is loaded for execution, MPCS automatically sche-
dules the task associated with the first TQI in the JTT. This task can
then perform any additional scheduling required by the application.

2. 4 JTT Generation Control Cards

There are three basic types of control cards which can be
used to define the JTT:

o COMMON allocation cards,

o TQI definition cards, and

o TQI option specification cards.

-17-

These cards must be provided by the programmer using the formats

illustrated below. They are processed as discussed in Volume II,

Section 3 to produce a properly formatted JTT.

2. 4. 1 COMMON Allocation Control Cards

All COMMON storage requirements for a job must be specified

using JTT COM control cards in a manner analogous to that used in a

FORTRAN MAIN program. COM control card formats are shown below.

Field 1 - COM defines the card type.

Field Z - Specifies the name of the COMMON block (left-adjusted).

Unnamed COMMON is specified using four blanks.

Field 3 - Specifies the size of the COMMON block (right-adjusted

with leading zeroes).

All COM cards must be positioned before any of the TQI control cards

in the input deck. The COMMON blocks are allocated in the order in

which the cards appear.

2. 4. Z TQI Definition Control Cards

One TQI definition control card must exist for each task in the

job. Each must be immediately followed by the option specification con-

trol cards required by the associated task.

Field 1 - TQI defines the card type.

Field 2 -

Field 3 -

Specifies the task name (left-adjusted).

Specifies the initial entry point for the task (left-
adjusted).

-18-

Specifies task type:

0 = processor-dependent
1 = processor-independent

Field 5 - Task priority ranging from 01-16. Tasks with a
priority of 16 must be processor independent.

2. 4. 3 TQI Periodic Option Control Card

Periodic tasks require this TQI option for specification of
timing parameters.

1 4 5 6 7 11 12 80
Time Execution

TQIP Mode Units Time Not Used

Field 1 - TQIP defines the card type.

Field 2 - Specifies whether the task is to be executed once
or repetitively:

0 = single execution
1 = repetitive

Field 3 - Specifies the units for the execution time:

1 = milliseconds
2 = seconds
3 = minutes
4 = hours

Field 4 - Specifies the time at which the task is to be executed

(right-adjusted, leading zeroes). For repetitive tasks,
it represents the repetition rate. For single-shot tasks,
it represents a delay time referenced from the current
time. Depending on the time units specified in Field 3,
this field is restricted to the following limits:

32767 milliseconds

32767 seconds

2640 minutes
44 hours

-19-

Field 4 -

2.4.4 TQI Cross-Processor Option Control Card

Tasks which utilize cross-processor communication services
require this TQI option for specification of communication buffers.

1 45 8 9 12 13 80
Buffer Number

TQIC Name of Words Not Used

Field 1 - TQIC defines the card type.

Field 2 - Specifies the name of the communication area (left-
adjusted).

Field 3 - Specifies the number of words in the communication
area (right-adjusted, leading zeroes).

2. 4. 5 TQI Inter-Task Communication Option Control Card

Tasks utilizing cross-task communication services require
this TQI option for specification of communication buffers. This in-
cludes tasks which are scheduled in response to display consoleoperator
actions, since the MPCS Display Controller uses cross-task communica-
tion to pass display input to the task.

Field 1 - TQII defines the card type.

Field 2

Field 3

Field 4

- Specifies the name of the communication area (left-
adjusted).

- Specifies the number of words in the communication
area (right-adjusted, leading zeroes) and is limited
to 4095.

- Specifies the format of the information to be trans-
mitted or received:

-20-

1 - character (6 bits)
2 = half-word (12 bits)
3 = word (24 bits)
4 = double word (48 bits)

2. 4. 6 TQI Next Task Option Control Card

This TQI option is required by tasks which utilize the sequential
scheduling services.

Field 1 - TQIN defines the card type.

Field 2

Field 3

- Specifies the name of the task to be scheduled for
execution following termination of the current task
(left-adjusted).

- Specifies the type of the task to be scheduled:

0 = priority
1 = periodic

2. 4.7 TQI Multiple Entry Option Control Card

Tasks which utilize multiple entry point scheduling services
require this control card for each of the entry points in the task. Care
should be taken to sequence these control cards properly so that the
correct entry point is referenced when it is scheduled by number. The
number of entry points for a given task is limited to 64.

1 45 89 80
Entry Point

TQIE Name Not Used

Field 1 -

Field 2 -

TQIE defines the card type.

Specifies the entry point name (left-adjusted).

-21-

2. 4 8 END Control Card

An END control card must follow the last JTT control card

to notify the JTT processor that all cards have been processed. The

format is shown below:

-22-

3. DEFINING DISPLAYS

Applications utilizing MPCS display support services will
require development of Display Descriptions for those applications. In
the system, Display Descriptions provide the man-machine interface
with the application program. They enable the display console operator
to communicate with the application program, and with the system, and
they enable the application program to display fixed and variable task
data.

The Display Description is a specifically formatted display that
is designed and coded by the application programmer. The first step in
its development is definition of the data content. The data content for a
display is a function of the application and will be determined by the
application programmer as he defines his program design. That is,
the application programmer will include displays strategically in his
program design to enable input of data and control parameters to his
program from the display console, and to output program computational
results (task data) to the display.

The data which can be included in a display is summarized below.
Additional details of this data, such as limitations and restrictions, are
given in Section 3. 2.

The data which can be included in a display may be any or all
of the following:

o Text Data - This is the data that will appear on the dis-
play whenever the display is used by the application pro-
gram. It constructs the content of the display and is
comprised of character data. The characters which may
be used as text characters are any legal 840 ASC II
characters except[-- : ; @ $ %n &\. These ASCII
characters are used by the 816 hardware to perform
certain hardware functions and are not available for use
in constructing the display.

o Task Fill-In Data Locations - Character positions in the
display where variable task data output by the application
program is to be displayed. These character positions
are specified by use of # characters in the Text Data.

o Compose Field Data Locations - Character positions in
the display reserved for data to be entered on-line from
the display keyboard. These character positions are

-23-

specified by use of / characters in the Text Data.

For each compose field specified in the Text Data,
the following parameters are also included in the dis-
play data: number of compose subfields, length of the
compose field, next display, next task, and legality
checking data.

When keyboard data is entered into a compose field
of a display, one or more of the following actions will
be taken by MPCS/i:

- Check the data entered for errors.

- Initiate a new task and transfer the data to it.

- Present a new display.

o Photopen Sensitive Areas - Character positions in the
display that signal a specific action when selected on-
line by use of the Light Pen. These character positions
are specified by use of the < and > characters in the
Text Data. Characters sensitive to a light pen detect
are contained within these two characters. The resulting
action taken by the system when a photopen area in the
display is selected on-line by use of the Light Pen will
be one or more of the following:

- Continue presentation of the current display.

- Present a new display.

- Initiate a new task.

o Line Vectors - Lines specified in the display presented
along with the Text Data.

The following subsections give the necessary display data for-
matting details required to enable the application programmer to design
his displays.

-24-

3. 1 Display Design

First the display data must be formulated using the Display
Layout example shown in Figure 3-1. Character positions 1 through 75
and lines 1 through 35 can be used to design the display. Line 36 is
reserved for the 'RETURN TO PRIOR LEVEL' option and line 37 is re-
served for the application program one-line message option.

An example of a typical display is shown in Figure 3-2 to further
illustrate display design. Note in this illustration that each compose
field specified in the Text Data is addressed by a Compose card containing
the number of subfields, the length of the compose field, next display,
and next task data parameters. Likewise, each photopen area specified
is addressed by a Pen card containing the next display and next task data
parameters.

The number of compose fields which may be included in a dis-
play is limited only by the physical space contained therein. That is,
as many compose fields as can be contained within the thirty-five lines
provided for display construction may be included in a display. A com-
pose field may consist of more than one line of Text Data. In Figure 3-2,
the second compose field is an example of this.

The second compose field in Figure 3-2 is also an example of
the use of compose subfields. Compose subfields are defined as parts
of a compose field separated in the Text Data by a character or characters
other than the / character. In this particular example, the compose
subfields are contained in different text lines.

The number of photopen sensitive areas (or pen fields) which
may be included in a display is limited only by the size of the thirty-five
lines provided for display construction. A photopen sensitive area must
be contained within one Text Data line.

3. 2 Display Coding

Once preliminary design of the display is completed, coding of
the display contents may begin. A language which defines data types and
associated options of any display is provided to enable easily generated
displays. This coding language is the Display Librarian Language (DLL).
DLL is an easy to use language consisting of eleven operators.

These operators are:

-25-

j~tVCsKING PAG BLANNOT FIIJMfE1

CT,,

r¢~
II II ,.0 7 II ~~~~~~~~~~~~II

II

AA.

0rA

~~~~~~~~~~~~~~~~~~~~~~~,,

I~~~~~~~~~~~

C12(4

o~~~~~~~~~!

o ,4
~~~~~~~~~0

~P~~~~~~~ Z
' ~ H0 li-

U0rn C) o0cn Cq (-

C0

i(C a~~~~ mZ (4 F

: c~
OMO~~~~~~~~~~~~~~~~:(

cc~~~~~~~~~~ -4(

(4~~~~~~

o0
'0 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ¢

II - -~~~~~~~~~~~~~

-27- II~~~~~~~~~~~~~~~ I II

~~~~~~~~~~~~~~~~~~~~~~~~~IIII I

-27-



z

(M

4
-cx

-I

:n

U
I

0~

SN N,

N~ N
I. N,
%NN,

Nl N.

NN,

X Nr-

S3~I-

-j LUI
n *

#U #
# #t

I- n

c:m :

o

Q LU
it #

#

#- cn n

# #

w V

U 1

# n-

# LU

#

9 Ut

Ut U

am 

o= #
#t
#t

#
#
#
#

#

r..)

LU

;tl

#U

U
U
U

U

0

#l

# #
# U
# U

# #
U

# U
# #

<1-3

-J t

# U
# #
# U
# #
n U
# 42U U

X >-

<-c
m L..

* -u U

:t 'U Utrt # **

#m* #
. - -

V

-.

L,
.J

LU

I-
A

LA "I Ex 1 it (~1 a =-
. Z U t- -l .- - - ' W W U(- N' L. : L U Lu : LU LU LA-

-^ Nt I I I -F~ $ -' 0I c
0 N .- C~J I, .I- Z

o 4~X m N

* N - ~~ ~~~~~ ~~~U Lu f Li Ut ..j~~~~~~U t i t 3j rr _' a: U < a:c :r >- 

M - C 4. U 0. tU U- 1*titc
In .Qv U m U t 4 U J 0.

- \ Z #J U .U UF rU . #-.

- LUC - UUU X # -U, #. I 
_ LU - U #U JU C} t0 t& J 4 U #U # # # # # t .

H . O L q- LU a 0 F- U #U 4 #- #U LU #

m-cn z - - > mU IX I #U -. U ## >- 
-cIJc LU ^ ) -- AX -.

I * z * 4 > I L U I t L ) - 0 . 4 * - > -t f t 4

M )-4 -^4 - _ .J - C3 - :- F-44 . :r -- LU:
O- - 0 CL L0J -- b - _ P.j B- & _j >. - ->j

OD) - ^-a X Ln W _ LUL U W u >- LUJLU i( LU LU Z '1
c -0 - 4 - - cm m Co CDCm 0 m - c)

-4Pt ')N jPV7 0 0 Q

-~ . - . ?- . - - - - - - - - - - - - - - - -.- - - - -- z
u u) XC a XL * 1- t t o . . ! - p F- F- I-- tF- t - F I. t F1- F- F I P- - t- - LU

-Z8-

I
!

bD
.,m



LU

.-I
En)

* a * * ** 

LU LL 0

U.1 .4' C0
U) L/~~~~~~~~~~~~) G)

a a a a a. a a * * * a a. * as a a * a a a a a aa**

2,- L
LU 7
cr 
EL. .* -0. U)*

V V

7

I--

L.4

-j

Cd)

U'

C)
'-4
in
VC)

-q

Ca
U,

C)

4*

LU
zt

LU

LU

LiU
Nr

NM
N-

N N1
,% N
LN
N .

7.
cr

Lftr
a.

-j

I.4

LU
in

I.-
U)

u-

wD

LU1

l*

I-1

LU

I,'-

.IZt
LU

LU -
CD cc

C)
.4

:a j

F.-..x
1--
-Iu
23

1*

4*
4*

7f
47

.4c

7 3
7* ;l
7 CD

it
7t

4t 79 Z
7 7 7ll~f

' 7 7 7k l
77l 

4 7 7t:V
I-- 7 7 4
LM 7 7:t
m 1* :

IT. C . -. 3
C .) .4
3- 3-A 4

0l- WULU L
C) CD CD

7t71

7*
7t
7
7m

1-
LUI
m

1*4t

.4
rU

cnt

It

4*

7t

..x

LU
23

:t

zf
7

rl
*m

.4C

tt;! It-

&,- L %l LLI

7 3-
X d It

7~ _ CD
7-LILIJW
7m

{-}

:1t

I'.-

I.--

"'M

:*

ci=.

C)

._,

W

.4

4 4*
*tjI.
Za

w
C)

* *
* *

7
* 7
* *
* 7
77

I>-
a
.4

777
777
777
777
* 77
777
777
7 * 7

3- �9J

.4 Z� '-

0�
-J
.4

7 77
777
777
777
777
777
777
777

3.- U)
U)

.� �.4
3- ,> 7
LU
m

I--

-i
LU
Cl)_u

CU

x

-..
.- I

C)

LU

-J

Z,

LU'

W

C,
.4

U)
Cd)

LlU
x

Lu
Z

.J

cr

W

ir'

C) EL~U

LO~~~~~L

_.4

.. J LU Ui

IW
cLU

LlJ

,'
C) xU)

L I-
cr-

1)

a aa 

Ia

41

at

* *. a * * * * * * a a s a* * * * * aaa a a. a a a a a a a a s a s a a a * * * * * * *

eq -I M

to C

-29-

!

!
I

U/)

_..I

LJL

I-

!U

1a
!
!

I
I

*
U

(,'

a

ac

sa

*

-4
pq

U)

n



o INPUT OPTION

o OUTPUT OPTION

o NAME

o PEN

o COMPOSE

o LEGALITY

o LINE

o TEST CONTROL

o TEXT

o END

o DELETE

These DLL source records are input to the Display Librarian

Program on 80-column punched cards. Columns 1 through 72 will con-

tain the input data and each record will contain an indentifier character
in column 1.

3.2.1 INPUT OPTION Card (I)

I, T Input normally is from cards. If, however,
card image magnetic tape input is desired,
this option card is used. Column 1 contains
the identifier "I", column 2 contains a comma,
and column 3 contains the character "'T". The
input tape is mounted on magnetic tape drive 2.

3.2.2 OUTPUT OPTION Card (O)

O, S, P, L Column 1 contains the identifier "O" followed
by a comma in column 2. The output options
are punched beginning in column 3. The output
options are: "S"-list the source cards; "P"-
print the formatted display(s) on the line printer;
and "L"-write (add) the display(s) to the dis-
play library.

-30-



If the OUTPUT OPTION card is not included in the input deck,
the Display Librarian Program will assume the "P" option was selected.

When the "L" option is selected, that display or displays will
be written to the display library only if no errors are detected in the source
card input. If an error is detected, that display will be printed, and if
the "S" option was selected, the source records will be listed.

All errors detected in the source records by the Display Libra-
rian Program will result in error messages being printed, regardless
of which output options were selected.

3. 2. 3 NAME Card (N)

N, XXXX Column 1 contains the identifier "N" followed
by a comma in column 2. The Display Name
Tag is contained in columns 3 through 6.
Display Name Tags can be any four digit num-
bers in the range of 0001 through 9999.

The Display Name Tag of 0001 must be specified by the user as
the first display in the display library. The Display Librarian Program
will not begin compilation of the display library until a Display Name
Tag of 0001 is detected. Display Name Tags of 0002 through 9999 are
then used for all subsequent displays to be included in or added to the
display library.

Display Name Tags of 0001 through 8999 are used for normal
displays and 9000 through 9999 are used for "special message displays"
(see Section 3.2. 9 for explanation of special message display).

3. 2.4 PEN Card (P)

P, XXXX, YYYY - Column 1 contains the identifier "P" followed
by a comma in column 2. Columns 3 through
6 contain the Next Display Name. The Next
Display Name may be any legal Display Name
Tag (see Section 3.2. 3) or "SAME" or "PREV".
This defines all of the required data for the
PEN card.

There is, however, an optional data field.
This data field contains the Next Task Name,
where the Next Task Name can be any legal

-31-



MPCS/1 Task Name (reference Sections 2
and 4). The Next Task Name is one to four
alphabetic characters beginning in column 8
of the card.

PEN cards are required only if there are pen fields defined in
the text data (Section 3. 2. 9) for the display. The Next Display Name and
Next Task Name designate the next display and next MPCS/1 task to be
displayed and executed, respectively, when the associated pen field of
the display is selected by the light pen. "SAME" or "PREV" in the Next
Display Name data field indicates that the same or the previous display
is to be presented when the associated pen field in the display is selected.

The PEN cards must appear in the input deck in the same order
as the associated pen fields appear in the text data input.

3. 2. 5 COMPOSE Card (C)

C, VV, WW, XXXX, YYYY - Column 1 contains the identifier "C"
followed by a comma in column 2. The four
required data fields begin in column 3, and
they are: number of compose subfields - one
or two digit number; number of compose char-
acters - one or two digit number; Next Dis-
play Name; and Next Task Name.

COMPOSE cards are required to be input only if there are com-
pose fields defined in the text data (Section 3. 2. 9) for display. The Next
Display Name and Next Task Name specify the next display and next
MPCS/1 task to be displayed and executed, respectively, when the asso-
ciated compose field in the display is filled by keyboard data. "SAME"
or "PREY" can be used for Next Display Name which specifies that the
same or the previous display is to be presented in response to the com-
pose field data.

The COMPOSE cards must appear in the input deck in the same
order as the associated compose fields appear in the text data.

3. 2. 6 LEGALITY Card (X)

X(LlTlR1)(L2T2R2)---(LNTNRN) - Column 1 contains the identi-
fier "X" followed by the legality data beginning
in column 2. "L" is the length of the legality
subfield, where a legality subfield is that data

-32-



enclosed by parentheses in the format example
shown above. "T" is the type of the restriction

data. "T" can be any of the following:

"10" - octal,
"B" - binary,

"D" - decimal,
"A" - alphabetic,
"X" - no checking,

" S" - special characters.

The special characters allowed for keyboard

entry to a compose field character position
when "S" checking is specified for that char-

acter position are: b " ' ( ) * = --. , ? /
< and > . "R" is the restriction data and can

be explicit magnitudes, magnitude ranges, or
combinations of both.

An additional example of the LEGALITY card format is shown

below to show how the legality data for a typical compose field might be

specified:

Compose field: / / / / / / 1 / / /I b-/5 b-U/ / /
AAAABB CCCCC DDD

where:

A= Decimal Display Name Tag
B= Binary ID Code

C= Octal Unit Address Code
D= Alphabetic End Key

LEGALITY Card: X(4D0001-0005, 0010)(2B)(5010077)(3AEND)

The first subfield of this LEGALITY Card specifies
that when four characters of data are entered via

the keyboard to the first four character positions
of the associated compose field, they must be
decimal characters in the range of 0001 through
0005 or the explicit decimal character sequence
0010. Likewise, the second subfield must be two
characters of valid binary data of any possible
combination 00, 01, 10, or 11. The third subfield

-33-



will accept only the five character octal number
10077. The fourth subfield will only accept the
three alphabetic characters END.

LEGALITY cards are optional. If included in the input deck, a
LEGALITY card must immediately follow the COMPOSE card to which
it applies. If no LEGALITY card is input with a COMPOSE card, no
legality checking (validation) will be performed by the Display Processor
for keyboard data input to this compose field.

LEGALITY cards can require more than 71 card columns for
data. To accommodate this, a continuation card is allowed and is in-
dicated by a non-blank character in column 72 of the LEGALITY card.
The column 72 character is not interpreted as a data character by the
Display Librarian Program, and is used only to indicate that there is
a continuation card for this record. The LEGALITY continuation card
contains the identifier "X" in column 1 followed by the continued legality
data beginning in column 2.

3. 2. 7 LINE Card (L)

There are two types of line format specifications allowed.
The first specifies a Line Vector to be included in the display and is
specified in terms of display screen coordinates:

L, C, IIII, JJJJ, KKKK, LLLL - Column 1 contains the identifier
"L" followed by a comma in column 2. Column
3 contains the character "C" followed by a comma
in column 4. The four line specification data
fields begin in column 5 and each can be a one to
four digit number in the range of 0 through 1023.
They are:"From" X ordinate, "From" Y ordin-
ate, "To" X ordinate, and "To" Y ordinate.

The second line format specification specifies a Text Underline
to be included in the display and is specified in terms of text character
and line numbers:

L, L, MM, NN, OO, PP - Column 1 contains the identifier "L"
followed by a comma in column 2. Column 3 con-
tains the character "L" followed by a comma in
column 4. The four line specification data fields
begin in column 5 and each can be a one or two data
number in the range of 1 through 75 for the char-

-34-



acter numbers, and 1 through 35 for the line num-

bers. They are: "From" Text character number,
"From" Text line number, "To" Text character

number, and "To" Text line number.

3. 2.8 TEXT CONTROL Card (*)

'T - Column 1 contains the identifier "*" followed by

the character "T" in column 2.

This control card is used by the Display Librarian Program to
initiate TEXT card processing and validation processing of previous con-
trol cards. It appears in the input deck immediately following all input
card types thus far discussed, and immediately preceding the first TEXT

card.

3. 2.9 TEXT Card (T)

T, JJJJJ .......... JJJ - Column 1 contains the identifier "T"

followed by a comma in column 2. The text char-
acters are punched in columns 3 through 71.

TEXT cards contain the data that is to appear on the display.
They also contain data areas on the display defined as pen fields contained

within < and > characters; compose fields and subfields which are de-
fined by / characters, and task fill-in fields which are defined by # char-
acters. All TEXT cards must follow the TEXT CONTROL card in the
input deck and must be in the order that the text is to appear on the dis-
play. A TEXT record can contain a maximum of seventy-five text char-
acters. To accommodate this, a TEXT continuation card is allowed and

is indicated by a non-blank character in column 72 of the TEXT card.
The TEXT continuation card contains the identifier "T" in column 1

followed by a comma in column 2, and followed by the continued text
data beginning in column 3.

Text characters may be any legal 840 ASCII characters except
] 4-- ! : ; @ $ % &\. These ASC II characters are used by the816 hard-

ware to perform certain hardware control functions and will be detected
by the Display Librarian Program as an Illegal Text Data Character when

they are included in the text data.

A maximum of thirty-five TEXT records are allowed for a normal
display. A maximum of twelve TEXT records are allowed for a "special
message display". The special message display is used only when the
application program needs to output a message that is longer than seventy-

-35-



five characters. It may contain no pen, compose, or task fill-in fields.
It cannot be updated in on-line execution as a normal display.

3. 2. 10 END Card (E)

END - Contains the identifier "E" in column 1 followed
by the characters N and D in columns 2 and 3.
This operator indicates end of the input data for
a display.

3. 2. 11 DELETE Card (D)

D, XXXX - Contains the identifier "D" in column 1 followed
by a comma in column 2. The Display Name Tag
of the display to be deleted from the display lib-
rary is contained in columns 3 through 6.

3. 3 Display Data Input Deck Setup

The input deck setup shown in Figure 3-3, details the input data
set required for one display. Input data sets for any number of displays
can be stacked contiguously and processed in a single run. When multi-
ple input data sets are stacked, the EOJ card is included only after the
END card for the last display in the run.

The DELETE card is a special case and the input data set re-
quired to delete a display from the display library is comprised of only
the DELETE card itself.

-36-



DISPLAY DATA INPUT DECK SETUP

Card
(optional)

COMPOSE 
Card

(optional

(PEN Cards 

(optional)

'NAME Card

(required) 
UTPUT
PTION Card

(optional)

fNPUT OP-
TION Card
(optional

EOJ Card

INPUT DATA SETS FOR

'OTHER DISPLAYS CAN

BE STACKED HERE.

INPUT DATA SET FOR

ONE DISPLAY

Figure 3-3

-37-

?-- ?~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



PRECEDING PAGE BLANK NOT FILME

4. MPCS CALLS FOR TASK CONTROL FUNCTIONS

MPCS calls for task control functions provide the capability
to schedule, suspend, delete, terminate or check status of tasks designed
to be controlled by MPCS/1. The call sequences for the task control
functions have been designed so that they may be easily implemented
for tasks written in either FORTRAN or assembly language. Each
MPCS task control function has been assigned a unique system name.
The general format of the name is:

M$NN

where:

M$ are the two characters reserved by the system for exclusive
use by MPCS calls. Users should not use these two characters
as the first two characters of a FORTRAN subroutine name or
or of a six character symbolic external name.

NN is a two character number that specifies the particular task
control function.

Figure 4-1 provides details of task control functions and their
associated symbolic assignments.

FORTRAN CALLS

The syntax of the FORTRAN call sequence for MPCS task control
functions is as follows:

CALL M$NN (PARAMETER 1, PARAMETER 2, ... PARAMETER N)

where:

M$NN (M$01-M$15) specifies a particular task control function
and PARAMETER 1 - PARAMETER N specify arguments required
by the particular function.

Generally, the first argument in a task control function call
is the name of the task for which the particular service is to be performed.
The last two arguments are generally the error code address and the
error return statement number. Figure 4-2 provides a summary of all
assigned error codes. Error return statement numbers may be coded
as follows:

-39-



PREC1)ING PAGE BLANK NOT FILMED

TASK CONTROL FUNCTION SYMBOLIC NAMES

EXTERNAL NAME TASK CONTROL FUNCTION PAGE

M$01 Schedule task, periodic45

M$02 Schedule task, priority 46

M$03 ~~~~~~~~~~~~47
M$03 Set pointer to task TQI 47

M$04 Initialize Task Communications 48

pointers 49

M$05 Delete Task 

M$06 Terminate Task 50

M$07 Check Status of Task 50

M$08 Schedule Priority Task, 51

Multiple 'Entry 

M$09 Schedule Periodic Task, 53

Multiple Entry

M$10 Suspend Task, Indefinite 55

M$11 Specify Next Task Name 56

M$12 Suspend Task, Specified 57

Time.

M$13 Task Communications | 58

M$14 Connect Task to Interrupt 64

M$15 Cross Processor Communica- 65

tions

Figure 4-1

-41 -



TASK CONTROL ERROR SUMMARY

FUNCTION CODE EXPLANATION

SCHEDULE 1 Task not in JTT

PERIODIC TASK
2 Task is scheduled in periodic queue

3 Periodic parameter not present in TQI

6 Increment type error

7 Task is active in priority queue

(no error return)

SCHEDULE 1 Task not in JTT

PRIORITY TASK
2 Task is scheduled in priority queue

3 Invalid priority

SET POINTER 1 Task not in JTT

TO TASK TQI
3 Optional parameter not present

INITIALIZE TASK 1 Task not in JTT

COMMUNICATIONC
POINTERS 3 Optional parameter not present in TQI

DELETE TASK 1 Task not in JTT

TERMINATE TASK NONE

CHECK STATUS 1 Task name not in JTT
OF TASK 

SCHEDULE 1 Task name not in JTT
PRIORITY TASK,

MULTIPLE 2 Task is scheduled in priority queue

ENTRY

3 Parameter not present in TQI

________ _ ~4 Specified entry not valid

Figure 4-2

-42-



TASK CONTROL ERROR SUMMARY

(continued)

I FUNCTION CODE EXPLANATION

SCHEDULE PER- 1 Task name not in JTT
IODIC TASK,
MULTIPLE 2 Task is scheduled in periodic queue
ENTRY

3 Periodic parameter not present in TQI

4 Specified entry not valid

6 Increment type error

lt~ ~ ~ 7 Task is active in priority queue
Ii|~~~~~ ~(no error return)

ISUSPEND TASK, NONE
1INDEFINITE

SPECIFY NEXT 1 Task name not in JTT
TASK NAME

3 Parameter not present in TQI

SUSPEND TASK, NONE
SPECIFIED TIME

TASK 1 Task name not found in JTT
COMMUNICATIONS

2 Task is active (executing)

3 Parameter not present in TQI

4 Requested task has not executed since
last communication

5 Limit of information has been exceeded

Figure 4-2
(continued)

-43-



TASK CONTROL ERROR SUMMARY
(continued)

FUNCTION

CONNECT TASK TO
INTERRUPT

CROSS PROCESSOR
C OMMUNICATIONS

EXPLANATION

Task name not found in JTT

Periodic parameter notpresent

Incompatible task type

Invalid interrupt level

NONE

Figure 4-2
(continued)

43a



$NNN

where:

the statement number (NNN) is the statement that is to be
executed in response to an error condition and is precedure
by a $ character.

Call sequences for those functions that require no arguments
have the following syntax:

CALL M$NN

ASSEMBLY LANGUAGE CALLS

Assembly language call sequences have the following syntax:

SPB $M$NN
DATA PARAMETER 1
DATA PARAMETER 2

DATA PARAMETER N

where:

$M$NN specifies the external name of the particular task con-
trol function.

PARAMETER 1 - PARAMETER N are the addresses of the
arguments required by the particular function.

Call sequences requiring no arguments take the form:

SPB $M$NN

The following subsections provide details for all task control
functions. Each subsection provides call sequence requirements, including
function names and parameters required, and details of error codes and
error code definitions. Examples illustrate typical FORTRAN and Assembly
Language call sequences.

-44-



Schedule Task, Periodic (M$01)

This function provides the capability to schedule a periodic
task. Six parameters are required for this MPCS call:

Parameter 1 - the address of the name of the task to be
scheduled.

Parameter 2 - Address of a location containing an integer that
designates the unit of time, where the integers have been
assigned as follows:

1 - designates milliseconds
2 - designates seconds
3 - designates minutes
4 - designates hours

Parameter 3 - Address of a location containing an integer that
specifies the increment of time in the units specified by Para-
meter 2 above.

Parameter 4 - Address of a location containing an integer which
may be either 1 or 0. 1 designates an iterative periodic task
(one that is executed repetitively at the specified period) and
0 designates a single execution at the specified period of time
where the time of scheduling assumes a time reference of
zero. A task scheduled in the iterative mode (Parameter 4
equals 1) having a period of 40 milliseconds would be executed
every 40 milliseconds. If the same task were scheduled in
the single mode, it would be executed once 40 milliseconds from
the time of scheduling.

Parameter 5 - Address that will receive any error codes re-
turned. Error codes have been assigned as follows:

1 - Requested task is not resident
2- Requested task is currently scheduled
3- Periodic parameter is not present for requested task
6- Error in specifying increment of time
7- Task is active in priority scheduling queue

Error codes 1, 2, 3, and 6 cause an error return; error code
7 does not.

-45-

4. 1



Parameter 6 - Statement number or address that receives con-
trol for any error return.

Example s:

FORTRAN

CALL M$01(4HTS02,2, 10,1,IRC,$200)

ASSEMBLY LANGUAGE

SPB $M$01
DATA ='TS02
DATA = 2

DATA =10

DATA =1
DAC IRC
DAC ERR

The above examples schedule task TSOZ in the iterative mode
for a period of execution of 10 seconds. Symbolic address IRC specifies
the error code address and statement 200 or symbolic location ERR
will receive control if error conditions are detected.

4.2 Schedule Task, Priority (M$02)

This function enables a priority task to be scheduled for execu-
tion. Three parameters are required for this function call:

Parameter 1 - the address of the name of the task to be scheduled.

Parameter 2 - the address that is to receive any error codes.
Error codes have been assigned as follows:

1 - Requested task is not resident
2 - Task is currently scheduled
3 - Requested task has been assigned an invalid priority.

Priorities may range from 1 to 16.

Parameter 3 - Statement number or location that is to receive
control for any error return.

Example s:

-46-



FORTRAN

CALL M$02(4HTS03,IRC,$210)

ASSEMBLY LANGUAGE

SPB $M$02
DATA = "TS0 3"
DAC IRC
DAC ERR

The above examples schedule task TS03 in the priority queue.
Location IRC will receive any error codes if errors are detected.
Statement 210 and location ERR will receive control if error conditions
are detected.

4.3 Set Pointer to Task TQI (M$03)

This function enables an application task to locate its Task Queue
Item (TQI). Any of the parameters contained within the TQI may be
examined by the task but may not be altered in any way since the TQI's
reside in protected memory. Four parameters are required for this
MPCS function:

Parameter 1 - Location containing the address of the name of
the requested task.

Parameter 2 - Location containing an integer that designates
the control or initial entry within the TQI or one of the five
optional parameters which may be contained within the TQI.

The integers have the following designation:

0 - initial TQI pointer (start of the TQI)
1 - optional parameter one (Periodic Task Item)
2 - optional parameter two (Task Data Save Area)
3 - optional parameter three (Task Communication Option)
4 - optional parameter four (Name of Next Task to be

Scheduled)
5 - optional parameter five (TQI Entry List)

Parameter 3 - Location that is to receive the address or pointer
to the TQI requested. If errors are detected, this location re-
ceives the error code. Assigned error codes are as follows:

-47 -



1 - Requested task is not resident
3 - Requested optional parameter is not contained in the

TQI of the specified task.

Parameter 4 - Statement number or address that receives con-

trol for any error return.

Examples:

FORTRAN

CALL M$03 (4HTEST, 3,IRC,$201)

ASSEMBLY LANGUAGE

SPB $M$0 3
DATA ="' t TEST"
DATA =3

DAC IRC
DAC ERR

The above examples request the location of Parameter 3 of the

TQI of task TEST. Location IRC will receive either the TQI pointer or

error codes if error conditions are detected. Statement 201 and location

ERR will receive control if error conditions are detected.

4.4 Initialize Task Communications Pointers (M$04)

This function enables a task containing a communications area

to initialize the data pointers and counters contained within the optional

TQI parameter for the area. Three parameters are required for this

MPCS function:

Parameter 1 - Location containing the address of the name of

the requested task.

Parameter 2 - Location that is to receive any error code.

Error codes have been assigned as follows:

1 - Requested task is not resident

3 - Task communications parameter is not contained

within the requested task.

-48 -



Parameter 3 - Statement number or address that receives con-
trol for any error return.

Examples:

FOR TRAN

CALL M$04 (4HTASK, IRC, $220)

ASSEMBLY LANGUAGE

SPB $M$04
DATA --- 'TASK"
DAC IRC
DAC ERR

The above examples illustrate that the task named TASK will
have its communications area parameters initialized. Location IRC
will receive error codes for any detected errors and statement 220 and
location ERR will receive control if error conditions exist.

4. 5 Delete Task (M$05)

This function enables a task to delete itself or another task
from the schedule queues. In particular, this function is designed to
remove iterative mode periodic tasks from the periodic schedule queue.
The necessity for this function exists because as an iterative mode task
executes to termination, it remains registered in the periodic queue,
and unless deleted, will execute at the specified scheduling period in-
definitely. Three parameters are required for this function:

Parameter 1 - Location containing address of the requested
task name.

Parameter 2 - Location that is to receive any error code,
where the only assigned error code is:

1 - Requested task is not resident

Parameter 3 - Statement number or address that receives
control for any error return.

-49-



Examples:

FORTRAN

CALL M$05 (4HTST1, IRC, $230)

ASSEMBLY LANGUAGE

SPB $M$ 05
DATA -'" TST"
DAC IR C
DAC ERR

These examples request that task TST1 is to be deleted. Lo-
cation IRC receives any detected error codes. Statement 230 and
location ERR receive control when error conditions are detected.

4.6 Terminate Task (M$06)

This function enables a task to terminate execution. This is
the normal task exit as a task completes execution. No parameters
are required by this function.

Examples:

FOR TRAN

CALL M$0 6

ASSEMBLY LANGUAGE

SPB $M$06

These examples illustrate the MPCS calls to terminate execu-
tion of a task.

4.7 Check Status of Task (M$07)

This function enables one task to check the status of another
task. Three parameters are required for this function:

Parameter 1 - Location containing address of the name of the
requested task.

-50-



Parameter 2 - Location that will receive the status code or,
if the requested task is not resident, will receive the error
code. The error return will be taken if an error is detected.
Status codes for each task are maintained by MPCS and are
required parameters in each task TQIo Status codes are
maintained in bits 0 - 5 of the second word of each TQI. Status
codes are returned to the user as right-adjusted integers (bits
18-23) in the specified location. Assigned status codes are
illustrated in Figure 4-3. There is one possible error code,
1, which denotes that the requested task is not resident. If
present, the error code is set in the designated location.

Parameter 3 - Statement number or location that receives
control when an error condition is detected.

Examples:

FOR TRAN

CALL M$07 (4HTEST, IRC, $210)

ASSEMBLY LANGUAGE

SPB $M$0 7
DATA =" TEST"
DAC IRC
DAC ERR

These examples illustrate the method of checking the current status
of task TEST. Location IRC receives any detected error codes. State-
ment 210 and location ERR receive control if error conditions are detected.

4.8 Schedule Priority Task, Multiple Entry (M$08)

This function enables the specification of a particular entry
from a list of entry points contained in the TQI of the task. The speci-
fic entry point will be valid at the next and subsequent executions of the
task. Lists of entry points are specified by optional parameter five
for the JTT Generator Program. (See Section 2). This function requires
four parameters:

Parameter 1 - Location containing the address of the name
of the requested task.

-51-



MPCS TASK STATUS CODES

BIT NUMBER

18 19 20 21 22 23

Status Code See Below

1 = Delete Requested

0 = No delete requested

I 1 = Involuntary Suspension
0 - No Suspension

_1 Processor Independent
0 = Processor Dependent

STATUS CODE BITS 21, 22, 23 ABOVE

Figure 4-3

-52-

BITS
21 22 23 STATUS
0 0 0 Not Scheduled
0 0 1 Scheduled, waiting initial entry
0 1 0 Active (Executing)
0 1 1 Scheduled, waiting entry after

suspension
1 0 0 Voluntary Suspension
1 0 1 Suspended in MPCS mode



Parameter 2 - Location containing an integer that specifies
a particular entry point from the list contained in the task
TQI.

Parameter 3 - Location that will receive any error codes
returned. Error codes have been assigned as follows:

1 - Requested task is not resident.
2 - Requested task is presently scheduled in

priority schedule queue.
3 - Optional parameter five which is a requirement

for multiple entry tasks is not present in the task
TQI.

4 - Requested entry point is not valid. Number of
entry points exceeds the size of the list contained
in the task TQI.

Parameter 4 - Statement number or location that is to re-
ceive control when error conditions are detected.

Examples:

FORTRAN

CALL M$08 (4HTASK, 7, IRC, $700)

ASSEMBLY LANGUAGE

SPB $M$08
DATA ="' TASK"
DATA = 7
DAC IRC
DAC ERR

These examples illustrate the method of scheduling task TASK
designating entry point 7 as the initial entry. Location IRC has been
designated as the location to receive any detected error codes. State-
ment 700 and location ERR have been designated to receive control if
error conditions are detected.

4.9 Schedule Periodic Task, Multiple Entry (M$09)

This function enables the specification of a particular entry
from a list of entry points contained in the TQI of the requested task.

-53-



The specified entry point becomes valid at the next and subsequent
executions of the task. Lists of entry points are specified by optional
parameter five for the JTT Generator Program (See Section 2). This
MPCS function requires seven parameters:

Parameter 1 - Location containing the address of the name of
the requested task.

Parameter 2 - Address of a location containing an integer that
specifies the particular entry point requested from a list con-
tained in the task TQI.

Parameter 3 - Address of a location containing an integer that
designates the unit of time, where the integers have been
assigned as follows:

1 - designates milliseconds
2 - designates seconds
3 - designates minutes
4 - designates hours

Parameter 4 - Address of a location containing an integer that
specifies the increment of time in the units specified by Para-
meter 3 above.

Parameter 5 - Address of a location containing an integer which
may be either 1 or 0:

1 - designates iterative mode task or one that is executed
repetitively at the specified period.

0 - designates a single execution at the specified time
of scheduling.

Parameter 6 - Address that will receive any error codes re-
turned. Error codes have been assigned as follows:

1 - Requested task is not resident.
2 - Task is currently scheduled in periodic queue.
3 - Optional Parameter 1 (Periodic Task Item) which

is required for periodic scheduling is not present
in the TQI of the requested task.

4 - Requested entry point is not valid. Number of entry
point exceeds the size of the list contained in the task
TQI.

-54-



6 - Error in specifying increment of time.
7 - Requested task is active in the priority queue. (This

is a possible error condition; therefore, no error
return is taken).

Parameter 7 - Statement number or address that receives con-
trol in the event error conditions 1, 2, 3, 4, or 6 are detected.

Examples:

FORTRAN

CALL M$09 (4HSCAN, 63,1,60, 1,IRC, $900)

ASSEMBLY LANGUAGE

SPB $M$09
DATA :='"SCAN"
DATA =63
DATA - 1
DATA =60
DATA ::- 1
DAC IRC
DAC ERR

These examples illustrate the method of scheduling task SCAN
designating entry point 63 as the initial entry. The task will be executed
60 milliseconds from the time of scheduling and, since the iterative
mode has been specified, every 60 milliseconds thereafter. Location
IRC has been designated as the location to receive any detected error
codes. Statement 900 and location ERR have been designated as error
return locations.

4. 10 Suspend Task, Indefinite (M$10)

This function enables a task to suspend itself indefinitely. The
suspension can only be removed by a scheduling function. When execution
resumes, control is transferred to the first statement or location following
the suspension call. No parameters are required for this function and no
error conditions are detected.

Examples:

FOR TRAN

CALL M$10

-55-



ASSEMBLY LANGUAGE

SPB $M$10

These examples illustrate MPCS calls to suspend tasks.

4. 11 Specify Next Task Name (M$11)

This function enables a task to specify the name of a second

task that is to be scheduled when the first task terminates. The task

to be scheduled next may be either a periodic or priority type. The

type is designated when specifying optional Parameter 4 for the JTT

Generator Program (see Section 2). This MPCS function requires

three parameters:

Parameter 1 - Location containing address of the name of the

requested task.

Parameter 2 - Location that will receive any error codes

returned. Error codes are as follows:

1 - Requested task is not resident.

3 - Optional Parameter 4 is not present in the TQI
of the task requesting this MPCS function.

Parameter 3 - Statement number or address that receives

control in the event error conditions are detected.

Examples:

FORTRAN

CALL M$11 (4HALOG, IRC, $456)

ASSEMBLY LANGUAGE

SPB $M$1l
DATA ="ALOG'"
DAC IRC
DAC ERR

These examples illustrate how task ALOG is designated as the

next task to be scheduled when the current task terminates. Location

IRC has been designated as the location to receive any error codes.

Statement 456 and location ERR have been designated to receive control

if any errors are detected.

-56-



4. 12 Suspend Task, Specified Time (M$12)

This function enables a task to suspend itself for a specified
length of time. When the suspension period has elapsed, the execution
of the task resumes at the first statement or location following the sus-
pension call. A suspension may be removed by a scheduling function
request from another task. Tasks requesting this function must contain
optional Parameter 1 (Periodic Task Item) in their TQI. This function
requires two parameters:

Parameter 1 - Address of a location containing an integer
that designates the unit of time where the integers have the
following designations:

1 - designates milliseconds
2 - designates seconds
3 - designates minutes
4 - designates hours

Parameter 2 - Address of a location containing an integer that
specifies the increment of time for the suspension in the units
specified by Parameter 1 above.

No error codes are returned. However, if the requesting task
does not contain the required optional Parameter 1 in its TQI, an in-
definite suspension is assumed.

Examples:

FORTRAN

CALL M$12 (4HSCAN, 2, 1)

ASSEMBLY LANGUAGE

SPB $M$12
DATA ="SCAN"
DATA = 2
DATA 1

These examples illustrate how task SCAN is suspended for a
period of 1 second.

-57-



4. 13 Task Communications (M$13)

This function enables one task to communicate with another
task. Communicated information may consist of virtually any data,
parameters, constants, or flags. Although this function has been de-
signed as a general service available to any task, it will be of a parti-
cular value for those tasks that support display functions. Display
data can be transmitted or received efficiently by these tasks. Inform-
ation to be transmitted is limited only by the number of words which
may be contained within a task communication area. This limit is set
at a maximum of 4095 words. The task that initiates or requests a
transfer of data specifies in the call sequence the array or buffer that
is to receive or provide the data. The second task, which is indicated
in the call sequence, must contain optional parameter P3 in its TQI.

One condition must be met before this executive function can
be employed. If the task that initiates the transfer of information is
processor independent, shared memory must be designated as the
area to receive or send the information.

Six parameters are required for this MPCS function:

Parameter 1 - Location containing name of the task that is
to receive or transmit the requested data.

Parameter 2 - Address of a location containing an integer that
is a six bit function code. Figure 4-4 provides details of the
function code assignment. It will be noted from the figure that
data to be transmitted or received may be one of four types:

(1) Byte (6 bits)
(2) Half-word (12 bits)
(3) Word (24 bits)
(4) Double word (48 bits)

It will be noted from the figure that the least significant bits
designate the data type as follows:

1 - denotes byte
2 - half-word
3 - word
4 - double word

FORTRAN calls for this MPCS service must specify the decimal
integer for function codes.

-58-



TASK COMMUNICATION FUNCTION CODE ASSIGNMENT

Byte

Half-word

Word

Double word

T/R: 1 = transmit
0 = receive

Mode: 0 = initialize
1 = sequential

Figure 4-4

-59-

Format
iI r

0 0 1

I 0 0 1 1I
1 0 0 1 1

I 01 I__

0 1 0 0
,__ _ _ __ _ _ _ _ t__ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

T/R



PRECEDING PAGE BLANK NOT FILMED

Data is always maintained in the task communication area in
a packed format. Upon receipt, data is packed and stored into
the area. Upon transmit, data is unpacked and stored in the
requested receiving area in an unpacked format, right-adjusted
within the word. Figure 4-5 illustrates the format of the types
of data.

Two modes of information transfer may be specified - initialize
mode and sequential mode. The initialize mode specifies that
the information transfer operation should start at the beginning
of the data. The sequential mode specifies that the information
transfer should begin at the point where the previous operation
ended. When this parameter is reset (0), it specifies initialize
mode; set (1), sequential mode.

Parameter 3 - Address of location containing pointer to area
that is to receive or transmit data to the requested task.

Parameter 4 - Address of location containing number of incre-
ments to be transmitted or received.

Parameter 5 - Location containing address that is to receive
error codes, where error codes have been assigned as follows:

1 - Requested task is not resident.
2 - Requested task is active (executing).
3 - Optional Parameter 3 (Task Communications) which

is required for a requested task is not present in the
TQI.

4 - Requested task has not executed since the last com-
munications function request. This implies that the
previous data has not been processed.

5 - Requested data exceeds limits of the communications
area.

Parameter 6 - Statement or location that is to receive control
if error conditions are detected.

Examples:

FOR TRAN

CALL M$13 (4HTST1, 35,INFO, 100,IRC,$500)

-61 -



COMMUNICATION DATA FORMAT

RECEIVE MODE

Task Communications Area Requesting Task Receive Area

Figure 4-5

-62-

_~~~~~~~~~~~~~~~~

BYTE i | 2 | 3 |4 |1
B 6 Bitsj6 Bits(6 Bits16 Bits 2

3
4

18 Bits 6 Bits

HALF _l 1
WORD 1 2 1

12 Bits 12 Bits 2
12 Bits 12 Bits

WORD
~I ~1 I - 1

24 Bits 24 Bits

DOUBLE 1 ] 1 i
WORD 2 2

48 Bits 48 Bits



COMMUNICATION DATA FORMAT
(continued)

TRANSMIT MODE

Task Communication Area Requesting Task Transmit Area

Figure 4-5
(continued)

-63-

BYTE 1 2 |3 | 4 | 1
6 Bits 6 Bits 16 Bits 6 Bit 2

3

4
12 Bits 6 Bits

HALF 1 | 2 1
WORD 12 Bits 1Z Bits 2

12 Bits 12 Bits

WORD 1 1
24 Bits 24 Bits

WORD 2 2
D~OUR48 Bits 48 BitsL48 Bits 48 Bits



ASSEMBLY LANGUAGE

SPB $M$13
DATA = "TST1"
DATA = '43
DAC INFO
DATA = 100
DAC IRC
DAC ERR

These examples illustrate task communications functions.
Task TST1 has been designated to receive 100 words from a block named
INFO. The function code (Parameter 2) specifies the transmit word
request in the initialize mode. Location IRC has been designated as the
location to receive any detected error codes. Statement 500 and location
ERR have been designated to receive control if error conditions are
detected.

4. 14 Connect Task to Interrupt (M$14)

This function enables a task to be connected to an external inter-
rupt. The connection is indirect in the sense that when the specified
interrupt occurs, the connected task is scheduled for execution rather
than executed directly. Facilities for connecting a subroutine directly
to an interrupt are discussed in Section 6. It should be noted, however,
that a directly connected subroutine is not executed as a task and there-
fore should not attempt to use MPCS facilities provided solely for tasks.

Care should be taken to insure compatibility between the type
of the connecting task and the type of the connected task. If the connecting
task is independent, the connected task must also be independent. Also
note that if the task to be connected is periodic, the timing parameters
used will be the ones in the TQI at the time the interrupt occurs.

Parameter 1 - Location containing the address of the task name.

Parameter 2 - Location containing the address of an integer
which specifies the interrupt level and whether priority or
periodic scheduling is required by the task. The absolute
value of the level must range from 1 - 15. A positive value
signifies priority scheduling. A negative value specifies
periodic scheduling.

Parameter 3 - Location containing the address of a variable
which will receive any error codes. Error codes are defined

-64-



as follows:

1 - Requested task does not have a TQI.

3 - Periodic option is not specified in TQI.

5 - Requestor is an independent task but specified task

is dependent.
6 - Interrupt level is not in range of 1-15.

Example s:

FORTRAN

CALL M$14 (4HTET1, 12, IRC, $670)

ASSEMBLY LANGUAGE

SPB $M$14
DATA ="TETI"
DATA = 12
DATA IRC
DATA ERR

These examples illustrate that task TET1 is to be connected

to interrupt level 12. The taskwill be scheduled in the priority queue when

the interrupt is received. Location IRC will receive any detected error

codes. Statement 670 and location ERR will receive control if error

conditions are detected.

4. 15 Cross Processor Communications (M$15)

This function enables a task resident is one processor to

communicate with a task resident in another processor. This function

requires six parameters:

Parameter 1 - Location containing the address of the task name

that is to receive or transmit the requested data.

Parameter 2 - Location containing the address of an integer

which specifies the communications function code. Function

codes have been assigned as follows:

-65-



Function codes 1-3 above may not be used by application tasks.
Codes 4-63 are not presently assigned.

Parameter 3 - Location containing the address of a word count
specifying the number of data words to be received or trans-
mitted. The word count may not exceed 512.

Parameter 4 - Location containing the address of the receive
or transmit area.

Parameter 5 - Location containing the address that is to receive
error codes, where error codes have been assigned as follows:

1 - Requested task is not resident
3 - Optional Parameter 2 (Cross Processor Communication

Parameter) is not present in the TQI of the requested
task.

4 - Invalid parameter
5 - Requested data exceeds limits of the cross processor

communications area.

Parameter 6 - Location or statement number that is to receive
control if any error condition is detected.

NOTE:

Currently used only for remote I/O and forced execution request.

-66-

CODE DEFINITION
1 Request for I/O

2 I/O Completion

3 Processor request for priority level 16 task

4-63 Not assigned. Available for future assignment
and use by application task.



5. MPCS CALLS AND SYSTEM INTERFACES FOR DISPLAY

FUNCTIONS

Applications utilizing MPCS display support services must be

concerned with system interfaces for both receiving display console

requests and issuing display update requests to the console. Both are

discussed in the following subsections. A summary of program display

requests is presented in Figure 5-1 and a summary of error return codes

is presented in Figure 5-2.

5. 1 Display Input Data Formats

Input data from the display console are generated as a result
of one of the following actions by the console operator:

(1) Depressing the keyboard "Return" key.

(2) Using the light pen to select an option which was defined

to have an associated task.

(3) Raising a console function switch to which a task is
attached.

The format of the data presented to a task in response to each of these
actions is described in the following subsections.

Cross-task communication services are used by the MPCS

Display Controller to pass the input data to the receiving task. There-

fore, each application task designed to receive data from the display

console must have the cross-task communication option specified in

its TQI (reference Section 3, VolumeII) with a communications area

(buffer) large enough to hold the data.

Another factor to consider is the priority of the receiving task.

Since each input request received from the display console is stored

into the cross-task communication area of the receiving task immediat-

ely, data from a previous request will be lost if it has not yet been

processed. Such tasks should be assigned a relatively high priority

(above 7) to help prevent data loss. A high priority; however, is not

always sufficient. For example, if the task is suspended for any reason,

data may be lost during the suspension period. The overall task structure

of an application should be designed to prevent data loss or, at least to

minimize its effects.

5. 1. 1 Compose Field Input Format

The data received by a task from a display compose field entered

by the console operator varies in length according to field size as speci-

-67-



DISPLAY REQUEST SUMMARY

Figure 5-1

-68-

EXTERNAL NAME DISPLAY REQUEST FUNCTION PAGE

M$20 Tabular Data Display 73

M$Zl Position Data Cursor 76

M$ZZ Display One-Line Message 78

M$23 Request New Display 81

M$24 Function Switch Attach/Detach 83



DISPLAY RETURN CODE SUMMARY

R ut Tabular Data Cursor Move One-Line Msg. New Display Function Switch

Attach/Detach

ReturnM$20 M$21 M$22 M$23 M$24Code M$20 M$21 M$22 M$23 M$24

Wrong proces-

sor

Reque ster
has no TQI

Succe s sful

completion

Display name
does not

match

840-810

error in

ransmis sion

Character

count too

large

No fill-in

fields in

display

Wrong pro-

cessor

Requester
has no TQI

Successful

completion

Display name

does not

match

840-810

error in
transmission

Invalid com-
pose field no.

No compose

fields in dis-
play

Wrong pro-
cessor

Requester

has no TQI

Successful

completion

Display name
does not
match

840-810

error in

transmission

Character
count is invalid

Wrong pro-

cessor

Requester

has no TQI

Succe s sful

completion

Display name

does not

match

840-810

error in

;ransmis sion

Invalid pre-
vious display
request

Display not
found in lib-
rary

Requested
task has no

TQI

Task is active

Task has no

input buffer

Task has not

processed pr

vious request

Task input

buffer is too

small

I I~~ I__ _ _ I__ _

Figure 5-2

-69-

-2

-1

0

1

2

3

4

5

6

7

8

9

Ii

I

I

1
3

1

4

F

I

I

I

I

7

I

I

.



fied at display definition time. The format of the data is shown below:

Word 0 Display No.

1 Compose Field No.

2 No. of Data Words

3 Data Word 1

4 Data Word 2
! !

! !

I !

N+2 Data Word N

Word 0 is the first word of the cross-task communication area speci-
fied by the TQI option for the receiving task. It contains the display
number which is an integer value representing the number (tag) of the
display from which the compose field request was issued by the operator.
The compose field number is an integer specifying which compose field
was entered. Compose fields are numbered from left-to-right, top-to-
bottom as they appear on the CRT. The number of data words is also
an integer and specifies the number of data words to follow.

The remaining data words contain the actual data entered by
the operator. Data are packed,6-bit characters (4/word) and are stored
in the order in which the characters appeared on the CRT. Compose
field character positions for which no data were entered will contain blanks.
For compose fields which contain subfields, each subfield is started on
a word boundary with the preceding subfield padded on the right with
blanks.

Example:

Consider a display defined with the following Display Librarian
Language statements:

N, 0257
C, 3, 6, 0 300, TSKX
C, 3, 9, 0302, TSKY

-70-

I - .



COMPOSE FIELD 1 //

COMPOSE FIELD 2 /// / II1

If the operator enters ABC=12345 into compose field 2, task TSKY will
receive the following data:

Display 257

Compose Field 2

4 Data Words

Subfield 1 (ABC)

Subfield 2 ( = )

Subfield 3 (1234)

Subfield 3 (5

5. 1.2 Light Pen Option Input Format

When the operator initiates a task through use of the light pen,
the three words of data shown below are stored in the first three words
of the cross-task communication area specified in the task TQI. Note
that the task name is an optional parameter in the specification of light
pen options at display definition time. Pen options which are defined
without a task name will simply result in the loading of a new display
when selected.

Word 0 Display No.

1 Option No.

2 00000000

-71-

II II

00000401

00000002

00000004

01020340

75404040

61626364

65404040

*T
I

T.
I

T.
!



The display number is an integer specifying the number (tag) of the dis-

play from which the console operator made the pen selection. Option

number is an integer value which specifies the number of the option

selected. The options are numbered sequentially from one to N, left-

to-right, top-to-bottom. The last word containing zeroes is provided

to enable the receiving task to differentiate between an option number

and a compose field number originating from the same display.

5. 1. 3 Function Switch Input Format

Each time the operator raises a function switch to which a task

has been attached, the following two words are stored into the first two

words of the task cross-task communication area.

Word 0

1

Display No.

Function Switch No.

The display number is an integer specifying the number (tag) of the

display on the CRT at the time the switch was raised by the operator.

The second word is a negative integer (ranging from -1 to -16) specify-

ing the number of the function switch raised. It is presented as a nega-

tive value to enable the receiving task to distinguish function switch

requests from compose field and pen option requests.

5. 2 Task Display Requests Formats

MPCS provides five basic display services which can be requested
by application tasks:

(1) BCD data can be displayed in predefined tabular data fill-

in fields in a given display.

(2) The data cursor can be positioned to any compose field

in a given display.

(3) A message can be displayed via the standard one-line

message area which appears at the bottom of each normal

display. Additionally, a new display and task can be

assigned to the one-line message pen option.

(4) A new display can be loaded in either a delayed mode

(requiring selection of a pen option by the CRT console

operator) or an immediate mode. The request can also

-72-



specify the name of a task to be scheduled at the time the
display is loaded.

(5) An application task can be attached to or detached from
a display console function switch.

Statement formats for requesting these services are discussed in the
following subsections.

For each of the first four services listed above, the requesting
application task must be suspended while the request is transmitted to
the 810B for processing. When a return code is received from the 810B,
the task is reactivated. Since a task must have a TQI by definition, display
services are available only to MPCS tasks. Ordinary programs execu-
ting under MPCS without a TQI will receive an abnormal return from
any display request.

5. 2.1 M$20 - Display Request for Tabular Data

The caller specifies the number of the display to receive the
data, the number of characters to be processed, the character string
itself, the name of a variable to receive a return code, and an option
selection indicator. Depending on the option specified one of the
following will be performed:

(1) Add-On - The character string will be inserted into the
predefined tabular data character fields of the display
on a one-for-one basis from left-to-right, top-to-bottom.
If a previous call has already caused characters to be
displayed, the new character string will be concatenated
to the previous characters, assuming that enough pre-
defined character fields are available to receive the new
data. The character fields need not be adjacent to each
other in the display. For example, a single request with
a ten-bit character string can be used to display 10 one-
bit character fields in the display.

(2) Reset - All predefined tabular data character fields will
be reset to their initial status (their contents replaced
with #). A reset request can also include a character
string to be displayed as discussed in the preceding
paragraph. In such a request the new characters are
added to the display after the reset is performed.

-73-



(3) Update - Beginning at a specified relative character posi-
tion, the character string will be inserted as in paragraph
1 above. This enables one or more tabular data fields
in a display to be updated independently of other fields.
The relative position for the update is determined by
considering all N predefined tabular data characters in
a given display as a character string with characters
numbered 1 through N.

After performing the requested service, the system returns to the caller
with either a normal or abnormal return and a return code.

Call: FORTRAN CALL M$20 (IRC, IDSP, ICOD, NC, CHAR, $SN)

ASSEMBLY LANGUAGE

CALL M$20
DATA IRC
DATA IDSP
DATA ICOD

DATA NC
DATA CHAR
DATA ERR

where:

IRC - is the name of the variable to receive the integer return
code.

IDSP - is the integer variable or constant specifying the number
(tag) of the display to receive the character string.

ICOD - is the integer variable or constant code specifying the
desired option as follows:

+-1 - add-on
0 - reset

-N - update beginning at character N

NC - is the integer variable or constant specifying the number
of characters of data to be displayed. The number of char-
acters that can be processed in a single request is limited to
72 regardless of the number of predefined character fields in
the display.

-74-



CHAR - is the variable or constant BCD character string to be
displayed.

$SN - represents the number of the FORTRAN statement to
which the system returns control in the event of an error (non-
zero return code).

ERR - is the name of the assembly language statement (instruction)
to which the system returns control in the event of an error
(non-zero return code).

Return Codes:

-2 Display processing is being performed in another processor.

-1 Indicates the caller does not have a TQI and, consequently,
cannot have his request serviced.

0 The request was serviced successfully, and the system
will perform a normal return.

1 The display specified by IDSP was not the current display
when the request was processed. The requested service
was not performed.

2 I/O errors in 840-810 transmissions made it impossible
to service the request or to determine whether or not it
was serviced properly.

3 The character count was too large. Characters were
stored in the remaining available predefined fields of
the display until all available fields, if any, were filled.

4 There were no predefined tabular data fields in the
specified display.

Examples:

CALL M$20 (IRET, 256,0,8,8HOVERFLOW, $210)

or

CALL M$20
DATA IRET
DATA =256

-75-



DATA : 0
DATA = 8
DATA ="OVERFLOW"
DATA ERR1

This request will cause all tabular data fields of display 256
to be reset with their initial contents and subsequently have the char-
acters OVERFLOW inserted into the first 8 predefined character posi-
tions of the display. If an error occurs, control will be returned to
the FORTRAN statement 210 or the assembly language statement ERR1
with the appropriate return code stored in IRET.

CALL M$20 (IRC, 8002, -5,6, DATA, $900)

This request will cause 6 characters to be displayed from
DATA. It will be inserted into character positions 5 through 10 of
display 8002.

Note that the contents of DATA must be in BCD format.

5. 2. 2 M$21 - Display Request to Position the Data Cursor

The caller specifies the number of the display for which the
cursor is to be positioned, the number of the compose field to which
the cursor is to be positioned, and the name of the variable to receive
a return code. After positioning the data cursor to the first character
of the specified compose field, the system returns control to the caller
with either a normal or abnormal return and a return code.

Call: FORTRAN CALL M$21 (IRC, IDSP, NCF, $SN)

ASSEMBLY LANGUAGE

CALL M$21
DATA IRC
DATA IDSP
DATA NCF
DATA ERR

where:

IRC - is the name of the variable to receive the integer return
code.

IDSP - is the integer variable or constant specifying the num-

-76-



ber (tag) of the display for which the cursor is to be positioned.

NCF - is the integer variable or constant specifying the number
of the compose field to which the cursor is to be positioned.
Must range from 1 to N where N is the number of compose fields
in the display.

$SN - represents the number of the FORTRAN statement to
which the system returns control in the event of an error (non-
zero return code).

ERR - is the name of the assembly language statement (instruc-
tion) to which the system returns control in the event of an error
(non-zero return code).

Return Codes:

-2 Display processing is being performed in another processor.

-1 Indicates the caller does not have a TQI and, consequently,
cannot have his request serviced.

0 The request was serviced successfully and the system
will perform a normal return.

1 The display specified by IDSP was not the current display
when the request was processed. The requested service
was not performed.

2 I/O errors in 840-810 transmissions made it impossible
to service the request or to determine whether or not it
was serviced properly.

3 The specified compose field number is invalid. It is
either negative or larger than the number of compose
fields in the display. A value of zero will be accepted
and processed as if it were a one.

4 The specified display has no compose fields.

Examples:

CALL M$21 (IRC, 16,7,$600)

or

-77-



CALL
DATA
DATA
DATA
DATA

M$21
IRC
=16
=7
ERRZ

The data cursor will be moved to the first character of compose
field 7 of display 16. The return code will be stored in IRC and, in the
event an error is found, control will return to FORTRAN statement 600
or assembly language statement ERR2.

5. 2. 3 M$22 - Display Request for a One-Line Message

The caller specifies the number of the display to receive the
message, the number of characters in the message, the BCD character
string message itself, the number (tag) of the display and the name of
the task to be assigned to the standard one-line message pen option, and
the name of the variable to receive the return code. After inserting
the character string in the one-line message display buffer and assigning
the display number and task name to the pen option associated with the
one-line message, the system returns control to the caller with either
a normal or abnormal return and a return code.

Call: FORTRAN CALL M$Z2 (IRC, IDSP, NDSP, TASK, NC, CHAR, $SN)

ASSEMBLY LANGUAGE

CALL
DATA
DATA
DATA
DATA
DATA
DATA
DATA

M$22
IRC
IDSP
NDSP
TASK
NC
CHAR
ERR

where:

IRC - is the name of the
code.

variable to receive the integer return

IDSP - is the integer variable or constant specifying the number
(tag) of the display to receive the message. If it is desired to
issue the message to any display without regard for the display

-78-



number, this parameter should have a value of -1.

NDSP - is the integer variable or constant specifying the num-
ber (tag) of the display to be assigned to the one-line message
pen option. If no display is to be assigned, this parameter
should have a value of -1. If the preceding display is to be
assigned, this parameter should have a value of -2. The
latter value will cause the same display to be invoked as
would the "RETURN TO PRIOR LEVEL" pen option.

TASK - is the variable or constant BCD character string name
of the task to be assigned to the one-line message pen option.
If no task is to be assigned, this parameter should have an
integer value of zero.

NC - is the integer variable or constant specifying the number
of characters in the message. Maximum message size is 72
characters. Messages exceeding 72 characters will be trun-
cated.

CHAR - is the variable or constant BCD character string
message.

$SN - represents the number of the FORTRAN statement to
which the system returns control in the event of an error (non-
zero return code).

ERR - is the name of the assembly language statement
(instruction) to which the system returns control in the event
of an error (non-zero return code).

Return Codes:

-2 Display processing is being performed in another processor.

-1 Indicates the caller does not have a TQI and, consequently,
cannot have his request serviced.

0 The request was serviced successfully and the system
will perform a normal return.

1 The display specified by IDSP was not the current display
when the request was processed. The requested service
was not performed.

-79-



2 I/O errors in 840-810 transmissions made it impossible
to service the request or to determine whether or not it
was serviced properly.

3 The message size (character count) is invalid. A negative
value or zero will not be accepted. A message larger than
72 characters will be accepted but will be truncated such
that only the first 72 characters will be displayed.

Examples:

CALL M$22 (IRET, CDSP, NDSP, NTSK, 22, MSG1, $200)

or

CALL M$22
DATA IRET
DATA CDSP
DATA NDSP
DATA NTSK
DATA =22
DATA MSG1
DATA ERRX

The 22 character message stored in MSG1 (in BCD format) will
be displayed in the one-line message area of the display specified by
CDSP. The contents of NDSP and NTSK specify the display and task
to be assigned to the one-line message pen option. Error returns will
be to the FORTRAN statement 200 or assembly language statement
ERRX with an appropriate return code in IRET.

CALL M$22 (IRC, -1,-1,0,40,40HOUTBOARD ENGINE CUTOFF HAS
BEEN DETECTED, $300)

This request will cause the 40 character message to be inserted into
the one-line message buffer of whatever display is currently on the
screen. The new display and task names (-1 and 0 respectively)
assigned to the one-line message pen option will result in no action if
the option is selected (-1 specifies SAME display and 0 specifies no
task). Note that if a previous request had assigned values to the one-
line message pen option, the values would be reset by this request.

-80 -



5. 2.4 M$23 - Display Request for a New Display

The caller specifies the number of the display through which
the request is to be made, the number of the new display, the name of
the task to be scheduled when the new display is loaded, and the name
of the variable to receive the return code.

In the delayed mode, the system displays a standard display
request message in the one-line message display area and assigns the
new display number and task name to the one-line message pen option.

Control is then returned to the caller.

In the immediate mode, the system loads the new display and
schedules the task automatically before returning control to the caller.

Control may be returned either normally or abnormally and
will provide an appropriate return code.

Call: FORTRAN CALL M$23 (IRC,IDSP, NDSP, TASK, $SN)

ASSEMBLY LANGUAGE

CALL M$23
DATA IRC
DATA IDSP
DATA NDSP
DATA TASK
DATA ERR

where:

IRC - is the name of the variable to receive the integer return
code.

IDSP - in the delayed mode, is the integer variable or constant
specifying the number (tag) of the display through which the
request is to be made. If it is desired to make the request
through any display without regard for display number, this
parameter should have a value of -1. In the immediate mode,
this parameter must have a value of -2.

NDSP - is the integer variable or constant specifying the
number of the new display. If it is desired to retain the same
display, this parameter should have a value of -1. If it is de-

sired to re-load the previous display (as in "RETURN TO PRIOR

-81 -



LEVEL"), this parameter should have a value of -2.

TASK - is the variable or constant BCD character string
name of the task to be scheduled when the new display is
loaded. If no task is to be assigned, this parameter should
have an integer value of zero.

$SN - represents the number of the FORTRAN statement to
which the system returns control in the event of an error
(non-zero return code).

ERR - is the name of the assembly language statement (instruc-
tion) to which the system returns control in the event of an
error (non-zero return code).

Return Codes:

-2 Display processingis being performed in another processor.

-1 Indicates the caller does not have a TQI and, consequently,
cannot have his request serviced.

0 The request was serviced successfully and the system
will perform a normal return.

1 The display specified by IDSP was not the current display
when the request was processed. The requested service
was not performed.

2 I/O errors in 840-810 transmissions made it impossible
to service the request or to determine whether or not it
was serviced properly.

3 The automatic request for a previous display was invalid
due to the fact that the current display is the first entry
in the display history table.

4 The requested display could not be found in the display
library.

5 The requested task has no TQI.

6 The requested task is already scheduled.

-82-



7 The requested task has no Task Communication Option

in its TQI.

8 The requested task had not yet processed a previous re-
quest. The data for the new request was stored on top

of the previous request.

9 The task input buffer is too small.

NOTE:

Return codes 3-9 apply only to automatic (immediate mode)

requests.

Examples:

CALL M$23 (IRC, 706, 710,4HT1ZA, $120)

or

CALL M$23
DATA IRC
DATA =706
DATA =710
DATA ="T1ZA"
DATA ERR5

This delayed mode request will cause display 710 and task T12A
to be assigned to the one-line message pen option of display 706 if it is
currently being displayed. The standard display request message will
also appear on the screen. A return code will be stored in IRC and
abnormal returns will be to FORTRAN statement 120 or assembly lang-

uage statement ERR5.

CALL M$23 (IRET, -2, 9005, 0, $75)

This is an immediate mode request for display 9005. The new
display will be loaded immediately into the special display buffer.

5. 2.5 M$24 - Display Request Function Switch Attach/Detach

The caller specifies a task name and the number of the function
switch to which the task is to be attached or from which the task is to be
detached. A positive switch number indicates the attach option, a nega-
tive switch number indicates detach.

-83-



After performing the attach or detach, the system returns to
the caller with either a normal or an abnormal return.

Call: FORTRAN CALL M$24 (TASK, NFS, $SN)

ASSEMBLY LANGUAGE

CALL M$24
DATA TASK
DATA NFS
DATA ERR

whe re:

TASK- is the variable or constant BCD character string name
of the task to be attached to or detached from the specified
function switch.

NFS - is the integer variable or constant specifying the num-
ber of the function switch to be affected. It must have values
ranging from +1 through +16 for an attach and from -1 through
-16 for a detach.

$SN - represents the number of the FORTRAN statement to
which the system returns control in the event of an error.

ERR - is the name of the assembly language statement (instruc-
tion) to which the system returns control in the event of an error.

Return Codes:

There are no return codes for this service but error returns
are possible.

1. An error return will be made for an attach if the
specified function switch was not in the range 1
through 16.

2. An error return will be made for a detach if
the specified task name does not match the name
of the task currently assigned to the specified
function switch.

-84-



Example s:

CALL M$24 (4HTAX1, 14,$117)

or

CALL M$24
DATA -"1 TAXi"
DATA = 14
DATA ERRB

The Task TAX1 will be attached to function switch 14. In the
event of an abnormal return, control will be passed to FORTRAN state-
ment 117 or assembly language statement ERRB.

CALL M$24(TSK1,-2,$506)

The task named by the contents of TSKI1 will be detached from
function switch 2.

-85-



PRECDING PAGE BLANK NO

6. MPCS CALLS FOR I/O FUNCTIONS AND SERVICES

6. 1 General I/O Services

Input and output functions of the system peripheral devices are
provided by a central MPCS service routine. Application tasks and
programs written in assembly language request this service with an
explicit MPCS call, whereas tasks and programs written in FORTRAN
are linked to this central MPCS routine via subroutines. The descrip-
tions and definitions contained within this section pertain directly to
the assembly language user, but may benefit the FORTRAN user as a
source of general information.

The assembly language call sequence for this MPCS service
is:

LAA FCT

SPB 1

where:

FCT - is a pointer contained in the A accumulator which
specifies the start address of the user Function Control
Table (FCT).

SPB 1- is the specific MPCS entry for the general I/O
services.

The Function Control Table (FCT) consists of from 1 to 5 words
and contains all pertinent parameters required by the general I/O ser-
vice routine. Parameters contained within an FCT are as follows:

WORD 1

WORD 2
(C1)

WORD 3
(C2)

AfBC D |EJF IG I H
01 213J4151617'8 9 10 1 121131 '14115'1617h18 '19120'21' 22123 

J K I L I M

0 112 32 4151617'8 9110111112113I14115!16117'18119'20121122123

N P
..... . I . ... . . . . . I I . . .

0 112 3'4r5'6'78'9 10'i111 12' 13'14'15'16'17118119120121'22 '23

-87-



WORD 4
(C3)

WORD 5

(C4)

0l121314'5 6 7 '8 '91234567890 '11'12
'
13

'
14 '15 1 16

'
17 '1 8

'
19 2 0

'
2 1 

'
22 ' 2 3 l

0 11'2 T314 '5'6 '7'8'9 '10 ;11'12'13'14 115116'17'18'19'20 21'22'23

where:

A - Initialized to 0 by user and set to 1 by MPCS when device is
busy and reset by MPCS when operation is completed.

B - Set by user to 0 if MPCS is to wait for I/O completion be-
fore returning to user. If set to 1, return to user is immed-
iately after I/O is started and user must test bit 0 to determine
if his buffer is available for alteration. No error recovery is
accomplished by MPCS in the no wait mode.

C - Set by user to 0 for forward direction and to 1 for reverse
direction. This parameter is used only for disk and magnetic
tape control operations.

D - Function Code for
in the following table.

I/O Operation. Function codes are defined

CODE | FUNCTION
Read record

Write Record

Write end of file

Rewind, page eject and punch leader

Space record, upspace printer

Space file

Read (Special Mode)

12 bit mode for card device
16 bit mode for scope device

6 (SMA)

9 (BRU)

-88-

Q

1 (LAA)

2 (LBA)

3 (STA)

4 (STB)

5 (AMA)



E - If set to 1, optional words C1 and CZ as a pair are present.
If set to 0, C1 and C2 are not present.

F - If set to 1, optional word C3 is present and MPCS will re-
turn to the user specified abnormal address when an end of file
is sensed or if an error condition is encountered.

G - If set to 1, optional word C4 is present. C4 must be pre-
sent if the user desires to assign an LDN to the disk.

H - Logical Device Number

I - ___ I- I 7

-89-

CODE FUNCTION

10 (SPB) Write (Special Mode)

12 bit mode for card device
16 bit mode for scope device

LDN MNEMONIC I DEVICE
0 NO No Device (No I/O is performed)

1 KB ASR33 Teletype Keyboard

2 TP/TR ASR33 Teletype Paper Tape

3 PP/PR High Speed Paper Tape

4 CP/CR Card Reader/Punch

5 LP Line Printer

6 MO Magnetic Tape Drive Unit 0

7 M1 Magnetic Tape Drive Unit 1

10 SY Disk System Area

11 DC Disk Scratch Area

12 BO Disk Binary Object Area

13 M2 Magnetic Tape Drive Unit 2

_ _I_ _ _

I

f



J - Set to 1 for binary mode or set to 0 for TASCII (truncated
ASCII or 6 bit ASCII)

K - Not Used

L - Error or abnormal condition code

whe re:

CODE ERROR CONDITION

1 Mag tape parity error (read)

2 EOF during read

3 Mag tape parity error (write)

4 End of tape

5 EOF error from skip file reverse or skip
file forward

6 Line printer paper low

7 Disk check sum error

8 Disk full

9 FCT specification error

10 Card reader error

11 Card punch error

12 Data overflow or underflow

-90-

LDN MNEMONIC DEVICE

14 M3 Magnetic Tape Drive Unit 3

15 SC CRT Display

16 DO Line Printer

17 LI Disk Library Area



M - Address of user buffer

N - Number of data words transmitted

P - Number of words to transmit. A maximum word count of
4096 may be specified and is indicated by setting this parameter
to zero.

Q - Address of user routine to be entered if abnormal and/or
error conditions are detected.

R - Record Number. This word is set by the user initially to
zero and is updated by MPCS to reflect the number of sectors
read or written during an I/O request. The user may perform
random disk operations by altering Parameter R to reflect the
starting record to be read or written. The record number is
calculated by dividing the word count by the sector capacity
(64 words) and rounding to the next whole number.

If it is the intent of the user to assign his non-disk device to
the disk in the future, Parameter R must be present in the
FCT. Parameter R in an FCT does not interfere with I/O
operations to non-disk devices.

If Parameter R is present in an FCT used to position a device
(function code 5 or 6), it will be used to determine the number
of records, sectors, or files to position the device. If Para-
meter R is absent in the FCT, the default is one record, sector,
or file to be advanced or backspaced.

6.2 Hybrid Interrupt Services

6. 2.1 Interrupt Enable/Disable

This function enables a user to request that a specific interrupt
level be enabled or disabled. The FORTRAN call statement is:

CALL INTSER (CODE, INTNUM)

where:

CODE = Argument indicating the interrupt service to be per-
formed. If this argument is a positive one ( +1), the indicated
level will be disabled and if it is a positive two (+2), it will
be enabled.

-91-



INTNUM = The external interrupt level to be serviced. If
INTNUM is 0, interrupt level 1, group 2 is designated.

The Assembly Language call is:

SPB '17

where:

Caller's A accumulator must be set to positive to enable or
negative to disable the interrupt level and the B accumulator

set to define the level as follows:

15 1413 1211 10 98 17 615 1413211 1

9 10 1 2 13 141516'1718 19'20 Z122'23

BIT NUMBER

INTERRUPT LEVEL

where each bit on (1) will set or reset the specific interrupt
level.

6. 2. 2 Connect Interrupt Direct

This function enables an application program or subroutine
to be connected to one of the external interrupts. The FORTRAN call
statement is:

CALL CONINT (INTNUM, INTSUB)

where:

INTNUM = The external interrupt level to be connected.

INTSUB = The user's interrupt subroutine name.

The Assembly Language call is:

SPB '16

where:

Caller's A accumulator must be set to the interrupt number
and the B accumulator set to the address of the first instruction

to be executed when the particular interrupt is received.

-92-



6. 3 Hybrid I/O Services

6. 3. 1 Read Real Time Entry (RTE)

Sequential Mode - This service will enable a user to read a num-
ber of consecutive multiplexer channel addresses from the RTE
subsystem into a user specified memory buffer. The data will
be in the form of single precision floating point numbers.

The FORTRAN call statement is:

CALL RTES (ICHAN, NO, BUFF, SF)

where:

ICHAN - Address of the first multiplexer channel to be read.

NO - Number of consecutive multiplexer channels to be read.

BUFF - Name of array in the calling program into which data
will be read. The data will be single precision floating point
and will be normalized such that 100 volts is equal to unity in
the digital computer. The values stored in BUFF will be the
result of converting from fixed to floating point and multiplying
by the appropriate scale factor.

SF - Name of array in the calling program containing scale
factors to be applied to the multiplexer channel readings.

Random Mode - This service enables the user to read one
multiplexer channel into a specified memory location. The
data will be a single precision floating point number.

The FORTRAN call statement is:

CALL RTER (CHANUM, USRLOC)

where:

CHANUM - the multiplexer channel to be read.

USRLOC - variable into which the RTE data is to be stored.
The data will be normalized such that 100 volts is represented
by unity in the digital computer.

-93-



The Assembly Language call to read the RTE is:

SPB '35

where:

The A accumulator is set to the RTE address prior to calling
the monitor. If bit 0 of the A accumulator is set, one RTE
channel is read in the random mode and its fixed point value
is returned in the A accumulator. If bit 0 of the A accumulator
is not set, RTE channels are read in the sequential mode with
the RTE address in the A accumulator being the first read.
Index register 1 must be set with the negative count of the
number of RTE channels to read and the B accumulator must
be set to the buffer address where the fixed point values will
be stored.

6. 3.2 Write Digital to Analog Converter (DAC)

Sequential Mode - This service enables the user to set a number
of consecutive digital-analog converter (DAC) channels to values
defined in a user specified memory buffer. The data presented
to the service routine must be in the form of single precision
floating point numbers.

The FORTRAN call statement is:

CALL WDACS (IDAC, NO, BUFF, SF)

where:

IDAC - address of the first DAC to be written.

NO - number of consecutive DAC's to be written.

BUFF - name of array in the calling program containing the
data to be written to the DAC's.

SF - name of an array of scale factors in the calling program.
The data values from BUFF will be divided by the corresponding
scale factor before being converted to fixed point.

The Assembly Language call is:

SPB '37

-94-



where:

The A accumulator is set to the address of the caller's buffer
and the B accumulator is set to the number of DAC's. The
caller's buffer must be in the following format:

Bits 0-13 define the value to be output
Bits 14-23 define the address of the DAC channel

It should be noted that random or sequential addresses may be
employed in the contiguous buffer.

Random Mode - This service enables the user to write one DAC
with the data from a user specified memory location. The data
must be a single precision floating point number.

The FORTRAN call statement is:

CALL WDACR (DACADD, USRLOC)

where:

DACADD - the address of the DAC to be written

USRLOC - the variable containing the data to be written.

The Assembly Language call is:

SPB '36

where:

The A accumulator is set to the following value prior to calling
the monitor.

Bits 0-13 define the value to be output
Bits 14-23 define the address of the DAC channel

The service routine outputs a fixed point value to the DAC chan-
nel whose address is specified by the application program.

6. 3. 3 Write Clock Word and Select Mode

This service enables application programs to set the real time
clock initial count register. One-shot or iterative modes for that device

-95-



may also be selected. It should be noted that application jobs that re-
quire control of this clock may not contain periodic scheduled tasks
(See Section 4 for Task Control Functions).

The FORTRAN call statement is:

CALL WCLK (ICOUNT, MODE)

where:

ICOUNT - The initial count (right-justified integer). This
count will be the time in microseconds between clock inter-
rupts.

MODE - Mode selection argument (0 = iterative, 1 = one-shot).

The Assembly Language call is:

SPB '33

where:

The A accumulator is set to the value to be written to the clock,
and the B accumulator is set to 0 to specify the iterative mode
or to 1 to specify the one-shot mode.

6. 3.4 Read Clock Word

This service enables application programs to read the current
count of the continuous running Real Time Clock (RTC). The continuous
running RTC counts down from positive full scale to negative full scale
and automatically recycles.

The FORTRAN call statement is:

CALL RCLK (COUNT)

where:

COUNT - The variable in which the right-adjusted integer re-
presenting the current RTC count is returned.

The Assembly Language call is:

SPB '32

-96-



where:

The A accumulator is set to the current clock value and is re-

turned to the calling application program.

6. 3.5 Clock Mode Control

This service enables application programs to control the modes

of the RTC.

The FORTRAN call statement is:

CALL CLKMOD (I)

where:

I - Integer selecting the mode as indicated below:

The Assembly Language call is:

SPB '34

where:

The caller's A accumulator is
or 2 to specify the Hold mode.

set to 1 to specify the Run mode

NOTE:

The previous value sent to MPCS for a Write Digital Clock

service is used to reset the clock prior to placing it in the

Run mode. If no previous call was made to set a clock
value, the control function for a Run mode is ignored.

6. 3.6 Read Digital Word

This service enables a user to read 24 sense lines in parallel
and stores the result as a 24 bit integer in a user specified memory
location.

-97-

I Mode

1 Run
2 Hold



The FORTRAN call statement is:

CALL RDW (IW)

where:

IW - The variable into which the result is to be stored.

The Assembly Language call is:

SPB '26

where:

The A accumulator is set to the value read and is returned
to the caller.

6. 3. 7 Write Digital Word

This service enables the user to set the 24 control lines in
parallel to a configuration defined by a 24 bit integer specified by an
application program.

The FORTRAN call statement is:

CALL WDW (IVAL)

where:

IVAL - An integer that corresponds to setting of control lines
0 to 23.

The Assembly Language call is:

SPB '30

where:

The caller's A accumulator must be set to the 24 bit value prior
to requesting this MPCS service.

6. 3.8 Write Control Lines

This service enables the user to selectively set a control line
whose address is in the range 0 to 23. These control lines may be

-98-



reset by service routine WDW (see Section 6. 3.7).

The FORTRAN call statement is:

CALL WCL (ICL)

where:

ICL - An integer that corresponds to the address of the line
that is to be set; the remaining control lines retain their

original setting.

The Assembly Language call is:

SPB '31

where:

The caller's A accumulator must designate the number of the
control line (0-23) that is to be set.

6. 3.9 Read Sense Lines

This service enables the user to determine the state of sense
lines whose addresses are in the range of 0 to 23. A user memory lo-
cation is set to 0 if the specified sense line is false and set to 1 if the

sense line is true.

The FORTRAN call statement is:

CALL RSL (IVAL, ISL)

where:

IVAL - The integer into which the result of the test is to be
stored.

ISL - An integer corresponding to the address of the sense line
to be read.

The Assembly Language call is:

SPB '27

where:

-99-



The caller sets the A accumulator to an octal integer in the
range of 0 to 23 that corresponds to the sense line to be tested.
Upon returning to the caller, the A accumulator will contain
0 if the sense line was not set or 1 if the sense line was set.

6.4 Analog Setup and Control Services

6.4. 1 Read Digital Ratiometer

This service enables the user to read the digital ratiometer
and have the reading stored in a specified memory location. The

reading will be returned to the user in floating point format with a
100 volt reading being normalized to unity.

The FORTRAN call statement is:

CALL RDRM (USRLOC) or
CALL RDVM (USRLOC)

where:

USRLOC - The real variable in which the DVM reading will
be returned to the user.

6.4.2 Read Analog Component

This service enables a user to read a number of sequential
AD-4 component addresses within a class and have them stored in a
specified memory buffer. The data will be stored in floating point
format with 100 volts being equal to unity in the digital computer.

The FORTRAN call statement is:

CALL READ (CXXX, BUF, NO)

where:

CXXX - The address of the first AD-4 component to read.

C is the class designator followed by XXX which are three
integers required to complete the AD-4 addresses exactly
as they exist on the AD-4 patchboard. Listed below are

the AD-4 class designators.

-100-



C Class

A +Amplifier

B - Amplifier

D Digital Coefficient

P Potentiometer Coefficient

S Summing Junction

F Function Generator Summing Junction

T Trunk (TR. A = D)

R Resolver

BUF - The name of the array into which the floating point
readings will be read.

NO - The number of consecutive AD-4 components to be
read within the designated class.

6. 4.3 Read AD-4 Status

This service enables a user to test the current mode status
of the AD-4.

The FORTRAN call statement is:

CALL RDANST (MODE, RESULT)

where:

MODE - The integer indicating which of the modes is to be
tested as indicated in the table below:

MODE Tested Status

1 Digital Control Possible

-101-



MODE Tested Status

2 Null Error

3 Servo

4 Invalid Address in AD-4

5 Control of AD-4 Clock System via Logic Exec

6 Analog Mode Operate

7 Analog Mode Hold

8 Analog Mode Initial Condition

9 Analog Mode Problem Verify

10 Logic Mode Run

11 Logic Mode Stop

12 Logic Mode Load

13 Time Scale X1

14 Time Scale X10

15 Time Scale X100

16 Time Scale X1000

RESULT - Variable into which the result of the test will be

returned. 0 will be returned if the tested mode is not ON and

1 will be returned if it is.

The Assembly Language call is:

SPB '21I

where:

Caller's accumulator must be set to the desired AD-4 mode.
Data from the AD-4 is returned in the A accumulator.

- 102-



6.4. 4 Set AD-4 Mode

This service enables a user to command the AD-4 to one of

the four computational modes, one of the three logic modes, or one

of the four available time scales.

The FORTRAN call statement is:

CALL MODE (I)

where:

I - Integer
below:

corresponding to the desired mode as indicated

Modes are additive: thus, I = 78 = 2+12+64 would yield analog

operate, logic run, and time scale X1000. The analog mode

is set with each call, but the logic mode and time scale remain
unchanged unless a change is specifically requested.

-10 3-

I~I ~Mode

0 Analog Initial Condition

1 Analog Hold

2 Analog Operate

3 Problem Verify and Initial Condition

4 Logic Load

8 Logic Stop

12 Logic Run

16 Time Scale X1

32 Timne Scale X10

48 Time Scale X100

64 Time Scale X1000



The Assembly Language call is:

SPB '20

where:

Caller's A accumulator must be set to the desired AD-4 mode
and the B accumulator bits 0-15 set to the output data.

6. 4. 5 Set Potentiometer

This service enables a user to set a sequential number of
potentiometers on the AD-4 to values obtained from a table supplied
by the user. The data in the table will be floating point numbers
normalized to unity.

The FORTRAN call statement is:

CALL SETPOT (PXXX, BUF, I)

where:

PXXX - The address (in ASCII code) of the first potentiometer
to be set by this call.

BUF - Name of the array in the calling program containing
the desired potentiometer settings.

I - The number of consecutive potentiometers to be set by
this call.

-104-



7. MPCS CALLS FOR FILE MANAGEMENT

This section will be added at a later date.

-105-



PRECEDING PAGE LANK NOT pjS

8. MPCS CALLS FOR UTILITY SERVICES

8.1 Normal End of Job

The termination of a user program for a normal end of job is
accomplished by a MPCS service. Upon request of the service, MPCS
resets all external interrupt levels (if any) and enters the Control Com-
mand Processor (CCP) for execution. This service does not reset any
of the system Logical Device Numbers to their standard assignments.

The call for this service is:

SPB 2

8. 2 Abnormal End of Job

This service performs the normal end of job functions with
the addition of a complete register dump of the caller's program at
the time of the request. If any external interrupt level service routines
were active (entered and not completed) prior to the call, the contents
of the individual registers are also dumped in the sequence in which
each interrupt became active. Output is made to the console teletype
of the processor in which the job resides.

The call for this service is:

SPB '3

The register dump is in the form of:

INST CTR XXXXXXXX INSTR. XXXXXXXX ZIP XXXXXXXX
REGS XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX

where:

REGS are in the following order: A accumulator, B accumulator,
Index one, Index two, and Index three.

ZIP is a special memory cell whose address is absolute '120,
and may be used as a pseudo register. It is saved and restored
by MPCS in processing interrupts.

-107-



8. 3 File Assignment

This service enables a user to accomplish the assignment or
re-assignment of standard or user Logical Device Numbers to any of
the physical devices associated with the system.

The call for this service is:

SPB '4

where:

The A accumulator contains the LDN currently assigned to the
physical device and the B accumulator contains the system or
user LDN that is associated with the application program FCT.

If the user LDN assignment table is full, MPCS will set the
A accumulator to a negative value and return to the caller. If the con-
tents of a user's A accumulator does not represent a valid system LDN,
the caller's program is aborted.

8.4 Magnetic Tape Mode Control

This service enables a user during the execution of his program
to alter the various modes for reading and writing magnetic tapes. The
mode that is set by the user remains in effect until the command to reset
standard system assignment is given to the Control Command Processor.

The call for this service is:

SPB '5

where:

The A accumulator must be set to the value of the CEU second
word format for magnetic tape as follows:

0 0 I 0 0 ** l

0 15 16 17 18 21 22 23

** Magnetic tape density and character per word

-108-



BITS 16 & 17

00 = 200BPI
*01 = 556BPI

10 = 800BPI

01 = 1 character per word
10 = 2 character per word
11 = 3 character per word

*00 = 4 character per word

* STANDARD SYSTEM MODE

8.5 Set BARs

This service enables a user to change Bank Address Register

(BAR) 1, 2, or 3.

The call sequence for this service is:

SPB 6

where:

The A accumulator is set prior to the call with the required

BAR configuration. Application programs may not alter

BAR 0.

101121314 5 617819 1011 12 131141 15 16117118 19 20121 22123

BAR 0 BAR 1 BAR 2 BAR 3

8. 6 Get Current Sector of Disk Scratch Area

This service enables application programs and system process-

ors to obtain the next available sector number for the disk scratch area.

The call for this service is:

SPB'7

where:

The next available sector number is returned to the caller in

the A accumulator.

8. 7 Snapshot Dump

The snapshot dump service causes MPCS to produce a listing of
the A and B accumulators, the three index registers, the pseudo register,

ZIP, and the program counter. The format of the output is similar to the

information printed for an Abnormal End of Job request. The listing device

is the console teletype of the processor in which the job resides.

The call for this service is:

SPB '13

-109-

BITS 22 & 23



Convert Binary to TASCII

This service converts a 24 bit binary word into 8 TASCII char-
acters. The A accumulator is loaded with the word to be converted prior
to calling MPCS. The 8 characters are returned to the caller in the A
and B accumulators.

The call for this service is:

SPB '14

8. 9 ASCII to AD-4 Address Conversion

These services provide users a means of converting the format
required by the AD-4, or of converting an address read from the AD-4
to ASCII code. These services must be called from an assembly language
routine.

The calling sequences are described below:

ASCII to AD- 4

LAA ASC ASCII address in A accumulator
SPB $ASAD4 Convert to AD-4 address
STA AD4 AD-4 address in A accumulator

AD-4 to ASCII

LAA AD4 AD-4 address in A accumulator
SPB $AD4AS Convert to ASCII
STA ASC ASCII address in A accumulator

8. 10 Floating Point to AD-4 Integer Conversion

These services provide users a means of converting between
single precision floating point data and the integer format required by
the AD-4.

These services must be called from an assembly language
routine. The calling sequences are described below.

For floating point to AD-4 integer conversion:

ELO VAL Load floating point value
SPB $FPAD4 Convert to AD-4 integer

-110-

8. 8



On return, the result is in the A accumulator.

For AD-4 integer to floating point conversion:

LAA VAL Load AD-4 integer

SPB $AD4FP Convert to floating point

On return, the result is in the EAU A accumulator.

8. 11 Digital Delay

This service enables a user to invoke a digital delay in milli-

seconds. Timing is based on the SEL840 MP cycle time.

The call statement is:

CALL DELAY (ICOUNT)

where:

ICOUNT - The number of milliseconds of delay.

-111-



PRCEDING PAGE BLANK NOT FILMED

MPCS ASSEMBLY LANGUAGE CALL SEQUENCE SUMMARY

CALL FUNCTION T EXPLANATION

Unassigned

I/O Requests

Normal end of
job

Abnormal end of
job

File assignment

Magnetic tape
mode control

Change BARs

Get current
scratch disk
sector number

Unassigned

Snapshot

Caller is aborted

Caller's A accumulator must be set
to the address of the Function Con-
trol Table (FCT).

Control Command Processor is
entered for execution.

Outputs a dump of caller's registers
and enters the Control Command
Processor for execution.

Caller's A accumulator must be set
to object system LDN and the B ac-
cumulator set to the user/system
LDN that is to be re-assigned.

Caller's A accumulator must be set
to the proper bit pattern of the CEU
second word format.

Caller's A accumulator must be
loaded with the new BAR addresses.
BAR 0 cannot be changed.

Caller's A accumulator is returned
set to the next available sector
number.

Caller is aborted.

Performs a dump of the caller's
registers similar to an abort dump
but returns to thecaller's next se-
quential instruction.

& _________________________ L

-113-

9.

SPB'0

SPB'1

SPB'2

SPB'3

SPB'4

SPB ' 5

SPB'6

SPB'7

SPB'10
through
SPB'12Z

SPB '13



CALL FUN C TION _EXPLANATION
Binary to TASCII

External Inter-
rupt Return

External Inter-
rupt Connect

Service External

Interrupts

Write to AD-4

Read from AD-4

Unassigned

Unassigned

Unassigned

Unassigned

Read Digital
Word

Read Sense Line

Caller's A accumulator is set to a
24 bit word to be converted to print-
able octal equivalence. The 8 char-
acters are returned in the A & B
accumulators.

MPCS restores the status of the in-
terrupted program and returns to its

exe cution.

Caller's A accumulator must be set
to the interrupt number and the B
accumulator set to the address of
the first instruction to execute at
interrupt time.

Caller's A accumulator must be set
to positive to enable or negative to
disable the interrupt level and the
B accumulator set to levels bit
pattern.

Caller's A accumulator must be set
to the desired AD-4 op code and the
B accumulator set to the output data.

Caller's A accumulator must be set
to the desired AD-4 op code. Data
from the AD-4 is returned in the A
accumulator.

Caller is aborted

Caller is aborted

Caller is aborted

Caller is aborted

MPCS sets the caller's A accumu-
lator to the 24 bit value read.

Caller's A accumulator must be set
to the number of the line to be sensed
(0-23). MPCS sets the caller's A
accumulator to 0 if not set or 1 if set.

-114-

SPB '14

SPB' 15

SPB '16

SPB '17

SPB'20

SPB'21

SPB 'ZZ

SPB '2 3

SPB ' 24

SPB '25

SPB '2 6

SPB'27

: _ - . - __ 



CALL FUN C TION EXPLANATION

Write Digital Word

Write Control Line

Read Digital Clock

Write Digital Clock

Set Digital Clock

Mode

Read RTE Random

Read RTE Sequen-
tial

Write DAC Random

Write DAC Sequen-
tial

Caller's A accumulator must be set
to 24 bit value prior to calling the

monitor.

Caller's A accumulator must be set
to the number of the control line (0-

23) to be acted upon.

MPCS sets the caller's A accumu-
lator to the value read.

Caller's A accumulator must be set
to the value to output to the clock and
the B accumulator set to 0 for itera-

tive or 1 for one-shot mode.

Caller's A accumulator must be set
to 1 for run or 2 for hold prior to

calling MPCS.

The A accumulator contains the RTE

channel to read with bit 0 set. The

fixed point value read is returned by
MPCS in the A accumulator.

The A accumulator contains the star-

ting RTE channel with bit 0 reset.
The B accumulator contains the ad-
dress of the buffer where the fixed

point values will be stored. Index 1

contains negative number of channels
to read.

Caller's A accumulator contains the

value in bits 0-13, bits 14-23 con-
tain the address of the DAC channel

to write.

The caller's A accumulator contains
the address of the buffer. Each word

in the buffer is set up like the SPB'
36 A accumulator. The B accumu-
lator contains the number of DAC's

to write.

-115-

SPB'30

SPB'31

SPB'32

SPB'33

SPB'34

SPB '35

SPB'36

SPB'37

I




