MAGNETOSPHERIC ACCESS OF SOLAR PARTICLES
AND THE CONFIGURATION OF THE DISTANT GEOMAGNETIC FIELD

Thesis by
Lawrence Curtis Evans

Volume Two
APPENDIX A

Additional Observations
This appendix provides a summary of all proton events observed with OGO-4 and observed flux profiles for several events which can be referred to in the context of the discussion in Section VII. Due to the time-sharing nature of the OGO-4 telemetry, it is not possible to obtain a single profile which illustrates all of the features necessary for Section VII. Table A-1 tabulates all of the proton events observed with OGO-4 and indicates pertinent data relating to the orientation of the interplanetary magnetic field. Most of the data in this table are also depicted in figure V-5.

The events whose profiles are presented here are divided into three classes: EDP events (normally associated with co-rotating features), solar flare events, and events having characteristics of both EDP events and flare events (class C events). A description of these classes of events and the criteria used to distinguish between EDP events and flare events are discussed in Sections V and VI. In addition, the 1 December 1967 EDP event and the 2 November 1967 solar flare event are discussed in some detail in Section V. Accompanying the profiles of each event here is a brief list of the more notable observational features of the event. Events are presented chronologically to facilitate finding any specific one.

All presentations of profiles in this thesis conform to the following conventions (the assignment of the terms α-pole and β-pole is
Table A-1

OGO-4 -- Observed Persistent Polar Cap Features: 1-40 MeV Protons

<table>
<thead>
<tr>
<th>Date</th>
<th>Univ. Time (HHMM)</th>
<th>Total Elpsd. Time (hrs.)</th>
<th>max ((\frac{P}{P_{pl}}))</th>
<th>Pole</th>
<th>Sector</th>
<th>% Southern Solar Field</th>
<th>Event Phase</th>
<th>Enhancements</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 Jul 67 1820*</td>
<td>>13.2</td>
<td>12.5</td>
<td>N - 58%</td>
<td>D</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Aug 67 1745</td>
<td>> 5.7†</td>
<td>4.0</td>
<td>N - 0%</td>
<td>R</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11 Aug 67 0155*</td>
<td>> 8.2</td>
<td>1.7</td>
<td>N - 33%</td>
<td>E</td>
<td>Y</td>
<td>1.3</td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td>12 Aug 67 1620*</td>
<td>> 5.7</td>
<td>1.4</td>
<td>N - 100%</td>
<td>R</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19 Aug 67 0320*</td>
<td>>10.4†</td>
<td>6.8</td>
<td>N - 44%</td>
<td>E</td>
<td>Y</td>
<td>1.7</td>
<td>>2.0†</td>
<td></td>
</tr>
<tr>
<td>19 Aug 67 0410*</td>
<td>> 3.1</td>
<td>3.4</td>
<td>S - 44%</td>
<td>E</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24 Aug 67 1345</td>
<td>> 5.8†</td>
<td>37.0</td>
<td>N - 75%</td>
<td>R</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19 Sep 67 0305*</td>
<td>>29.2†</td>
<td>6.6</td>
<td>N - 47%</td>
<td>R</td>
<td>D</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 Oct 67 0040</td>
<td>> 1.2†</td>
<td>3.0</td>
<td>N - 100%</td>
<td>R</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27 Oct 67 1730*</td>
<td>> 6.8</td>
<td>2.8</td>
<td>S + 15%</td>
<td>D</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Nov 67 1540</td>
<td>14.7</td>
<td>4.0</td>
<td>N - 97%</td>
<td>R</td>
<td>D</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Nov 67 1115*</td>
<td>>24.4†</td>
<td>7.2</td>
<td>N - 90%</td>
<td>R</td>
<td>D</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11 Nov 67 1150*</td>
<td>> 3.2†</td>
<td>3.9</td>
<td>S - 100%</td>
<td>R</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33 Nov 67 1730*</td>
<td>> 1.9</td>
<td>1.0</td>
<td>S - 100%</td>
<td>R</td>
<td>Y</td>
<td>2.3</td>
<td>>1.9</td>
<td></td>
</tr>
<tr>
<td>4 Nov 67 2200</td>
<td>8.8</td>
<td>2.2</td>
<td>S + 66%</td>
<td>D</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 Nov 67 2025</td>
<td>3.2</td>
<td>2.3</td>
<td>S + 100%</td>
<td>E</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2110</td>
<td>> 3.3†</td>
<td>2.7</td>
<td>N + 100%</td>
<td>E</td>
<td>Y</td>
<td>1.3</td>
<td>>1.4†</td>
<td></td>
</tr>
<tr>
<td>14 Nov 67 0330*</td>
<td>>42.5†</td>
<td>1.7</td>
<td>N - 37%</td>
<td>R</td>
<td>Y</td>
<td>1.1</td>
<td>>1.6†</td>
<td></td>
</tr>
<tr>
<td>1210</td>
<td>> 1.6†</td>
<td>0.9</td>
<td>S - 50%</td>
<td>R</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18 Nov 67 0200*</td>
<td>>11.5</td>
<td>1.3</td>
<td>N - 87%</td>
<td>D</td>
<td>Y</td>
<td>1.3</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>24 Nov 67 1730</td>
<td>> 6.5†</td>
<td>3.2</td>
<td>N - 69%</td>
<td>R</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A-l (continued)

<table>
<thead>
<tr>
<th>First Observation Date</th>
<th>Univ. Time (HHMM)</th>
<th>Total Elpsd. Time (hrs.)</th>
<th>$\frac{L_P}{H_P}$ max</th>
<th>Pole Sector</th>
<th>Southern Solar Field</th>
<th>Event Phase</th>
<th>Observed Enhancements</th>
</tr>
</thead>
<tbody>
<tr>
<td>27 Nov 67</td>
<td>0900</td>
<td>14.7</td>
<td>6.3</td>
<td>N + 46%</td>
<td>R</td>
<td>D</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>0950</td>
<td>>38.0†</td>
<td>15.9</td>
<td>S + 73%</td>
<td>R</td>
<td>D</td>
<td>N</td>
</tr>
<tr>
<td>1 Dec 67</td>
<td>1800*</td>
<td>>13.0</td>
<td>5.6</td>
<td>S + 82%</td>
<td>E</td>
<td>Y</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>1850</td>
<td>> 4.7†</td>
<td>1.3</td>
<td>N + 100%</td>
<td>E</td>
<td>Y</td>
<td>2.2</td>
</tr>
<tr>
<td>2 Dec 67</td>
<td>0700</td>
<td>11.5</td>
<td>2.1</td>
<td>S + 46%</td>
<td>E</td>
<td>Y</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td>0935</td>
<td>> 4.7†</td>
<td>1.9</td>
<td>N + 43%</td>
<td>E</td>
<td>Y</td>
<td>1.9</td>
</tr>
<tr>
<td>5 Dec 67</td>
<td>0015</td>
<td>>13.8</td>
<td>1.2</td>
<td>N - 27%</td>
<td>D</td>
<td>Y</td>
<td>1.3</td>
</tr>
<tr>
<td>17 Dec 67</td>
<td>0105*</td>
<td>>24.5</td>
<td>6.6</td>
<td>N - --</td>
<td>RE</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0825</td>
<td>5.0</td>
<td>0.8</td>
<td>S - --</td>
<td>E</td>
<td>Y</td>
<td>1.7</td>
</tr>
<tr>
<td>18 Dec 67</td>
<td>1610</td>
<td>>16.2†</td>
<td>2.0</td>
<td>N - --</td>
<td>R</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0715</td>
<td>>13.2†</td>
<td>1.6</td>
<td>S - --</td>
<td>RE</td>
<td>Y</td>
<td>1.8</td>
</tr>
<tr>
<td>30 Dec 67</td>
<td>1045</td>
<td>6.8</td>
<td>4.5</td>
<td>S + 0%</td>
<td>E</td>
<td>Y</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td>1130</td>
<td>6.5</td>
<td>6.2</td>
<td>N + 0%</td>
<td>E</td>
<td>Y</td>
<td>1.9</td>
</tr>
<tr>
<td>10 Jan 68</td>
<td>2150*</td>
<td>>10.5†</td>
<td>1.8</td>
<td>N - 60%</td>
<td>D</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>1 Feb 68</td>
<td>2010</td>
<td>11.4</td>
<td>1.2</td>
<td>N - 26%</td>
<td>R</td>
<td>D</td>
<td>Y</td>
</tr>
<tr>
<td>8 Feb 68</td>
<td>1805*</td>
<td>>31.0†</td>
<td>25.2</td>
<td>N - 100%</td>
<td>D</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>9 Feb 68</td>
<td>1515*</td>
<td>>11.2†</td>
<td>15.8</td>
<td>N - 100%</td>
<td>R</td>
<td>D</td>
<td>N</td>
</tr>
<tr>
<td>12 Feb 68</td>
<td>0640</td>
<td>3.2</td>
<td>1.4</td>
<td>N - 38%</td>
<td>R</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>13 Feb 68</td>
<td>1335</td>
<td>> 3.2†</td>
<td>2.1</td>
<td>N + 53%</td>
<td>R</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0930*</td>
<td>> 6.6†</td>
<td>1.8</td>
<td>S + 24%</td>
<td>R</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>14 Feb 68</td>
<td>0630*</td>
<td>> 8.3†</td>
<td>1.3</td>
<td>S + 0%</td>
<td>D</td>
<td>Y</td>
<td>1.4</td>
</tr>
<tr>
<td>15 Feb 68</td>
<td>1015</td>
<td>>13.8†</td>
<td>2.0</td>
<td>S - --</td>
<td>R</td>
<td>D</td>
<td>N</td>
</tr>
<tr>
<td>26 Feb 68</td>
<td>1120</td>
<td>5.7</td>
<td>15.8</td>
<td>S + 0%</td>
<td>R</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1210</td>
<td>1.6</td>
<td>17.8</td>
<td>N + 0%</td>
<td>R</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1700</td>
<td>8.0</td>
<td>1.6</td>
<td>N - 62%</td>
<td>D</td>
<td>Y</td>
<td>1.6</td>
</tr>
<tr>
<td></td>
<td>2415</td>
<td>1.5</td>
<td>1.6</td>
<td>S - 100%</td>
<td>E?</td>
<td>Y</td>
<td>1.6</td>
</tr>
</tbody>
</table>
Table A-1 (continued)

<table>
<thead>
<tr>
<th>First Observation Date</th>
<th>Total Elpsd. Time (hrs.)</th>
<th>Polar Sector</th>
<th>Southern Solar Field</th>
<th>Event Phase</th>
<th>Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 Mar 68</td>
<td>>24.4†</td>
<td>4.8</td>
<td>N - 45%</td>
<td>R D N</td>
<td></td>
</tr>
<tr>
<td>21 Mar 68</td>
<td>>13.2†</td>
<td>2.5</td>
<td>S + 43%</td>
<td>R D N</td>
<td></td>
</tr>
<tr>
<td>15 Apr 68</td>
<td>>3.4</td>
<td>0.9</td>
<td>S + --</td>
<td>D Y 1.5 >3.4</td>
<td></td>
</tr>
<tr>
<td>24 Apr 68</td>
<td>>40.5†</td>
<td>5.0</td>
<td>N - 67%</td>
<td>R D N</td>
<td></td>
</tr>
<tr>
<td>26 Apr 68</td>
<td>>6.6</td>
<td>3.2</td>
<td>S - 46%</td>
<td>R N</td>
<td></td>
</tr>
<tr>
<td>27 Apr 68</td>
<td>34.2</td>
<td>2.2</td>
<td>N - 36%</td>
<td>R D N</td>
<td></td>
</tr>
<tr>
<td>29 Apr 68</td>
<td>>3.2†</td>
<td>1.6</td>
<td>N - 9%</td>
<td>R N</td>
<td></td>
</tr>
<tr>
<td>5 May 68</td>
<td>>4.8†</td>
<td>1.4</td>
<td>S + 38%</td>
<td>D N</td>
<td></td>
</tr>
<tr>
<td>13 May 68</td>
<td>>45.5†</td>
<td>1.0</td>
<td>S + --</td>
<td>D Y 1.6 >45.5†</td>
<td></td>
</tr>
<tr>
<td>10 Jun 68</td>
<td>>29.2</td>
<td>1.4</td>
<td>N - 63%</td>
<td>D N</td>
<td></td>
</tr>
<tr>
<td>9 Jul 68</td>
<td>4.8</td>
<td>1.4</td>
<td>N + 67%</td>
<td>R N</td>
<td></td>
</tr>
<tr>
<td>12 Jul 68</td>
<td>>38.9†</td>
<td>>4.2</td>
<td>N - 20%</td>
<td>R D Y 1.2 >27.6†</td>
<td></td>
</tr>
<tr>
<td>14 Aug 68</td>
<td>>6.5†</td>
<td>4.0</td>
<td>S + 85%</td>
<td>R N</td>
<td></td>
</tr>
<tr>
<td>28 Sep 68</td>
<td>>6.5†</td>
<td>1.4</td>
<td>N - 39%</td>
<td>D N</td>
<td></td>
</tr>
<tr>
<td>29 Sep 68</td>
<td>>3.5†</td>
<td>1.1</td>
<td>N + 100%</td>
<td>R N</td>
<td></td>
</tr>
</tbody>
</table>
Table A-1 (continued)

| First Observation Date | Univ. Time (HHMM) | Total Elpsd. Time (hrs.) | \(\frac{\text{max}(|\text{PL}|)}{|\text{HPL}|} \) | Pole Sector | % Southern Solar Field | Event Phase | Enhancements |
|------------------------|-------------------|--------------------------|---------------------------------|-------------|-----------------------|------------|-------------|
| 29 Sep 68 2345 | 8.0 | 1.8 | N - 25% | R D N | | | |
| 2745 > 3.2 | 1.5 | S - 31% | | D N | | | |
| 30 Sep 68 1420* | > 8.1† | 1.8 | N - 72% | R D N | | | |
| 4 Oct 68 0400 | >37.5† | 2.2 | N - 32% | R D N | | | |
| 0815 > 9.8 | 1.6 | S - 51% | | R N | | | |
| 3410 3.3 | 1.5 | S - 62% | | D N | | | |
| 4 Nov 68 2340* | > 1.6† | 1.8 | S + 0% | D N | | | |
| 18 Nov 68 2330* | >24.2 | 2.5 | N - -- | D N | | | |
| 2600* > 3.2† | 1.5 | S - 100% | | D N | | | |

*Observation of the beginning of the event was prevented by the unavailability of the pertinent data.

†Persistent feature was observed in the last appropriate polar pass prior to a period during which the pertinent data were unavailable.
1. The horizontal axis is always time, expressed in terms of hours of universal time. Tick marks are placed every hour, and are labelled every six hours, consistent with clarity.

2. The vertical axis is always observed flux of 1.2-40 MeV protons \((V_1V_3)\) expressed in units of \((cm^2\text{-sec-sr})^{-1}\).

3. Error bars are indicated for representative points for flux levels below 10 \((cm^2\text{-sec-sr})^{-1}\), and all other points of comparable flux can be assumed to have comparable precision. If no error bars are indicated, they may be assumed to be smaller than the size of the dot used to indicate the observation, which is the case for all flux levels greater than 10 \((cm^2\text{-sec-sr})^{-1}\).

4. The region in which a profile was observed is indicated by the type of line connecting the data points:
 - solid line --- low polar latitudes (LPL)
 - dashed line --- \(\alpha\)-pole high polar latitudes (\(\alpha\)-HPL)
 - dotted line --- \(\beta\)-pole high polar latitudes (\(\beta\)-HPL)

5. Separate observations of \(\alpha\)-HPL fluxes are not indicated unless significantly different than the flux at LPL.

6. Interplanetary sector structure (positive, negative, or uncertain) is indicated at each sector reversal or change (indicated by long vertical lines). If no sector changes occur during the period covered by the profiles, the predominant sector for the period is stated in the legend.

7. The roles of \(\alpha\)-pole and \(\beta\)-pole are assumed to change coincident
<table>
<thead>
<tr>
<th></th>
<th>North Pole</th>
<th>South Pole</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive Interplanetary Sector</td>
<td>α-pole</td>
<td>β-pole</td>
</tr>
<tr>
<td>Negative Interplanetary Sector</td>
<td>β-pole</td>
<td>α-pole</td>
</tr>
</tbody>
</table>

TABLE A-2

Correspondence Between α-pole/β-pole North/South Geomagnetic Poles
with a sector reversal. If a period of uncertain sector is encountered, the previous assignment of \(\alpha\)-pole and \(\beta\)-pole roles is maintained until the sector becomes definable.

8. Missing data are indicated by arrows pointing downward near the top of the figure. The arrows are labelled to indicate the pole for which data are missing due to a gap in the available data \((G)\), or due to a pass which does not reach a sufficiently high invariant latitude to penetrate the high polar latitude region \((L)\). In the latter case, of course, only HPL data should be missing; LPL observations should not be affected. The occasional exception to this is the south polar pass which does not reach a high enough invariant latitude to be above the rigidity cutoff latitude at any time. Such missing data are labelled \(V\) (very low pass) to indicate that LPL data are also unavailable. If the data are available but are contaminated by telemetry noise, the label \(N\) is used.

9. Sudden commencements and sudden impulses are indicated in the same manner as on the OGO-4 Data Coverage Plots: sudden commencements are represented by a triangle, sudden impulses by a diamond. Confirmed observations are represented by solid symbols, unconfirmed by open symbols.

Table A-3 lists all symbols and abbreviations used on the profiles.
Table A-3a

Standard Symbols Used on Event Profiles

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>α-pole (See Table E-2)</td>
</tr>
<tr>
<td>β</td>
<td>β-pole (See Table E-2)</td>
</tr>
<tr>
<td>·-----</td>
<td>Low polar latitude profile</td>
</tr>
<tr>
<td>·-----</td>
<td>α-pole high polar latitude profile</td>
</tr>
<tr>
<td>·-----</td>
<td>β-pole high polar latitude profile</td>
</tr>
<tr>
<td>+</td>
<td>Data not available</td>
</tr>
<tr>
<td>▲</td>
<td>Confirmed sudden commencement</td>
</tr>
<tr>
<td>△</td>
<td>Unconfirmed sudden commencement</td>
</tr>
<tr>
<td>✤</td>
<td>Confirmed sudden impulse</td>
</tr>
<tr>
<td>✤</td>
<td>Unconfirmed sudden impulse</td>
</tr>
<tr>
<td>I</td>
<td>Representative $\pm 1\sigma$ error bars</td>
</tr>
<tr>
<td>+</td>
<td>Positive interplanetary magnetic field sector</td>
</tr>
<tr>
<td>-</td>
<td>Negative interplanetary magnetic field sector</td>
</tr>
<tr>
<td>0</td>
<td>Indeterminate interplanetary magnetic field sector</td>
</tr>
</tbody>
</table>
Table A-3b

Standard Abbreviations Used on Event Profiles

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>Data gap</td>
</tr>
<tr>
<td>HPL</td>
<td>High polar latitude</td>
</tr>
<tr>
<td>L</td>
<td>Low pass (HPL data unavailable)</td>
</tr>
<tr>
<td>LPL</td>
<td>Low polar latitude</td>
</tr>
<tr>
<td>N</td>
<td>Data degraded by noise</td>
</tr>
<tr>
<td>SR</td>
<td>Sector reversal in interplanetary magnetic field</td>
</tr>
<tr>
<td>UT</td>
<td>Universal time</td>
</tr>
<tr>
<td>V</td>
<td>Very low pass (HPL and LPL data unavailable)</td>
</tr>
</tbody>
</table>
1. Very high fluxes: statistical errors are much smaller than dots used to represent data points.

2. The extremely rapid decay is a strong indication that this is not a flare event. The sudden commencement at 0555 UT and the weak depression in the sea level neutron monitor [48] tend to confirm that this is an EDP event. The absence of a feature in the α-HPL profile is, however, inconsistent with normal appearance of an EDP event. In addition, the delay between the LPL peak and the β-HPL peak (\approx 2.0 hours) is much smaller than that normally associated with EDP events (\approx 6.6 hours).
1. This event is superimposed on the decay phase of an earlier flare event.

2. The LPL peak and α-HPL peak are clearly delineated.

3. The β-HPL flux continues to decay normally during the period of peak flux in the other two regions.

4. The data gap at \sim2200 UT prevents the observation of the complete β-HPL peak, although the beginning of this peak is observed at \sim1940 UT. Because of the low rates, the probability that this flux is a statistical variation from the LPL flux is $\leq 4.2 \times 10^{-8}$. Although this is not as statistically significant as most observations of features, and although there is only the one point, it is nonetheless consistent that the β-HPL flux at \sim1940 UT is part of the β-HPL EDP peak.
1. This is an excellent example of a persistent feature. The feature in the β-pole is observed to last for the entire period from \sim1120 UT on 2 November to \sim1140 UT on 3 November (24+ hours). The data suggest that, but for the data gaps before and after this period, the feature might have been observed for a slightly longer period.

2. While the last north pole (β-pole) observation prior to the sector reversal at \sim1300 UT on 3 November contained the feature, the first north pole observation after this sector reversal did not show the feature.

3. A significant persistent feature is observed in the α-pole lasting for \sim3 hours starting with the observation at \sim1200 UT on 2 November.

4. The onset of the flare event is delayed in both HPL regions.
SECTOR: AS INDICATED
1. This EDP gives a good resolution of the LPL flux peak and the α-HPL flux peak. The appearance of a higher value for the α-HPL flux peak may be somewhat misleading: the actual maximum LPL flux may not have been observed due to the mechanics of the satellite orbit.

2. The β-HPL flux peak is not observed for this event. It should, of course, be noted that a sector reversal occurs before (~0100 UT on 11 November) one might expect to observe a peak in this region (perhaps ~0300 to ~0600 UT on 11 November). Any conclusion drawn here should, however, be tempered somewhat by the degradation of the observations caused by the two data gaps following the sector reversal: 50% of the observations pertinent to this point are missing.

3. It is interesting that the flux in the post-sector reversal β-HPL region does not fluctuate in the same manner as that in the LPL region, but instead remains rather constant. This is consistent with a picture in which, immediately after a sector reversal, the access region associated with the new β-HPL region propagates with the solar wind, thus continuing to sample the same interplanetary flux, for the time necessary for the solar wind to carry the access region to a position consistent with the newly-established field
configuration (4-8 hours for a position 1000-2000 \(R_e \) behind the previous position). Again, this observation must be tempered by the precaution mentioned above.
FLUX (cm2-sec-sr)$^{-1}$

- LPL
- \(\alpha\)-HPL
- \(\beta\)-HPL

SECTOR: AS INDICATED

\(\beta\) \(\beta\) \(\beta\)
\(L\) \(L\) \(N\)

\(\alpha\beta\) \(\alpha\beta\)
\(GG\) \(GG\)

10 NOV 1967 11 NOV 1967
0600 UT
1. This profile is a definitive illustration of an EDP event being observed first on the LPL region, shortly thereafter in the α-HPL region, and finally, after a delay of $\approx 6\frac{1}{2}$ hours, in the β-HPL region.

2. The flux observed in the β-HPL region gives every sign of being independent of variations in the fluxes observed in the other two regions. The reverse also appears to be true.

3. Indications of the independence of the fluxes in the LPL region and the α-HPL region with respect to each other are also clear.

4. The width of the α-HPL flux peak as presented in figure A-5 is misleading: an inherently poor time resolution (≈ 100 minutes between points) is compounded by the ubiquitous spectre of a data gap.

5. Poor time resolution may also be partly responsible for the much lower peak flux observed in the β-HPL region.
FLUX (cm2-sec-sr)$^{-1}$

- LPL
- α-HPL
- β-HPL

1800 0600 UT
1 DEC 1967 2 DEC 1967
1. All of the expected three peaks (LPL, α-HPL, and β-HPL) are resolved and appear in the expected order. The observation of the precise temporal relationships among these flux peaks is seriously degraded, however, by the two data gaps at ~1100-1200 UT and ~1500-1600 UT. In spite of this expected degradation, at least the following two observations are clear:

 a. Both HPL flux peaks begin after the beginning of the LPL flux peak.

 b. The LPL flux peak ends before, or at least coincident with, both of the HPL flux peaks.
1. Profiles of LPL flux and α-HPL latitude flux both show a double-peaked structure.

2. The observation of the second β-HPL flux peak may have been prevented by the configuration of the satellite orbit: during the β-pole (south pole) passes at ~2030 UT and ~2210 UT, the satellite orbit did not reach a maximum invariant latitude large enough for penetration of the HPL region.
1. This is a particularly good example of a flare event in which the β-HPL flux "crosses over" the LPL and α-HPL flux (at \sim0220 on 2 February). Unfortunately, the omnipresent data gap nearly destroys observations of the event. Nevertheless, there are indications that the β-HPL flux remained at a higher level than the LPL flux until the small LPL enhancement at \sim0640 on 2 February. This higher β-HPL flux is, of course, observed as an enhancement in the high latitude region of the β-pole.
1. This profile illustrates a long period observation of a persistent feature which is, with a few exceptions, quite large. The ratio of the LPL flux to β-HPL flux reaches a maximum in excess of 25:1. The feature persists from the beginning of the profile at \sim1720 UT on 8 February to \sim0100 UT on 10 February, a period of $\geq 31\frac{1}{2}$ hours (see no. 2, below).

2. The duration of this persistent feature is interrupted by the period of uncertain sector structure from \sim0230 UT to \sim1400 UT on 9 February. During this "uncertain" period there would appear to be times (\leq0530 UT and, perhaps, \sim1200 UT to \sim1400 UT on 9 February) when the β-HPL flux tends to approach the LPL flux more closely. Unfortunately, the behavior of the β-HPL flux vis-à-vis the LPL flux from \sim0230 UT to \sim0530 UT on 9 February is somewhat less definitive due to the data gap. The β-HPL peak at \sim1400 UT on 9 February is possibly a flux enhancement, considering the continuous appearance of the β-HPL decay from \sim0530 UT to \sim2330 UT on 9 February if the observations at \sim1200 UT and \sim1330 UT are omitted.

3. A sector reversal occurs at \sim0550 on 10 February, and, although it is significant that the first north polar observation after the
sector reversal shows no feature, the period of missing data immediately preceding the sector reversal (includes two β-HPL passes) somewhat clouds the question of the simultaneity of the feature disappearance and sector reversal.
1. A β-HPL feature (depression) is observed for a period of ≈ 34 hours during the rise and decay of this event.

2. A α-HPL depression is observed for $\approx 6\frac{1}{2}$ hours beginning at ≈ 0000 on 28 April.

3. The flux increase observed at ≈ 0130 UT on 29 April at LPL is not observed at α-HPL until 0200-0340 UT, and not at β-HPL until later still.

4. The beginning of another persistent β-HPL feature is observed at ≈ 1600 UT on 29 April, but no data are available past ≈ 2200 UT.
1. An example of a persistent β-HPL enhancement. This feature lasts for ~ 40 hours. A small increase (probably an EDP event) is superimposed on the LPL flux and α-HPL flux near the beginning of the profile.
Figure A-12

13 July 1968 -- Solar Flare Event

1. Flux levels are very high on these rates, and errors are consequently very small.

2. The temporary disappearance of the persistent β-HPL feature between \sim0700 UT and \sim0840 UT on 13 July is probably related to the period of uncertain sector structure near \sim0730 UT.

3. After \sim0840 UT on 13 July the β-HPL flux decayed for \geq5 hours while the LPL and α-HPL fluxes were increasing.

4. The small increase in the β-HPL flux at \sim1500 UT on 13 July might be associated with the increase seen at LPL at \sim1100 UT.

5. The most notable feature of this profile is the event which reaches a maximum flux at \sim1800 UT on 13 July at LPL. The following observations can be made about this event:
 a. The gap in the LPL and α-HPL fluxes at \sim1900 UT is due to overscaling (see Section IV).
 b. The event reaches a maximum at β-HPL \sim3 hours later than at LPL. The maximum flux is lower, and the "width" of the peak is much greater.
 c. The transition from β-HPL depression to β-HPL enhancement
occurs prior to the β-HPL peak.

d. During the decay of this event the β-HPL flux remains greater than the LPL and α-HPL fluxes, with the exception of the broad feature (EDP?) superimposed on the decay from ~0400 UT to ~1400 UT on 14 July.
APPENDIX B

Particle Trajectories in a Turning Magnetic Field
The configuration of the geomagnetic field in the presence of significant merging between the geomagnetic and interplanetary magnetic fields has been the subject of a good deal of effort on the part of several investigators (see Sections VI and VII and the pertinent references cited therein). The access of charged particles into the magnetosphere with such a configuration is rather straightforward: the direct connection between the fields implies that trajectories probably exist whereby particles in interplanetary space can more or less "follow" the field lines into the geomagnetic tail. The assumption which is normally made is that these interplanetary particles gain access to the geomagnetic tail adiabatically, which means that the magnetic moment is conserved and that consequently the pitch angle of the particle in the tail, ϕ_{gt}, is related to that in interplanetary space, ϕ_{ip}, by

$$\sin^2(\phi_{gt}) = \frac{B_{gt}}{B_{ip}} \sin^2(\phi_{ip})$$

(B.1)

where B_{gt} and B_{ip} represent the magnitude of the geomagnetic field and the interplanetary magnetic field, respectively.

One of the implications of the assumption summarized in (B.1) is that the particles observed over one polar cap will be those whose interplanetary pitch angles were $\leq 1^\circ$, while the particles observed over the other polar cap will be those whose pitch angles in interplanetary space
were ≈179°. The interplanetary pitch angles observed at a given pole would be dependent on the sector of the interplanetary field: a detector in the northern polar region would observe \(\phi_{ip} \approx 0° \) particles during a positive sector and \(\phi_{ip} \approx 180° \) particles during a negative sector. Although unimportant if the interplanetary flux is isotropic, the implications of the assumption of adiabatic motion are very significant in the presence of large interplanetary anisotropies: one would expect the differences between the fluxes observed in the two polar regions to follow a field-directed interplanetary anisotropy rather closely.

The mapping of interplanetary pitch angles onto the polar caps will be altered, however, if the assumption of adiabatic motion is relaxed. In order to simplify the following discussion, we will refer to the scale over which the magnetic field is changing direction in terms of the radius of curvature of a typical line of force for this field: i.e., the more rapidly the field changes direction the smaller the radius of curvature would be. In the limit of a minimum radius of curvature which is much larger than the gyroradius of the particles, one would expect adiabatic motion to be a rather good approximation. The gyroradius of a 1 MeV proton in a 50 \(\mu \)G interplanetary field is, however, 6.8 \(R_g \), while that for a 10 MeV proton is 21.5 \(R_g \). Since the geomagnetic tail itself has a radius of about 20-30 \(R_g \), adiabatic motion may require a transition region between the interplanetary field and the geomagnetic field of 70-220 \(R_g \). In order to place constraints on the size of this transition region based on particle observations in the polar cap regions and in interplanetary space in the presence of large interplanetary anisotropies,
Figure B-1

Schematic representation of a "turning" magnetic field.
A good deal of insight into the pitch angle mapping problem can be gained by analyzing the behavior of particles in the field configuration illustrated in figure B-1: two regions, each containing a uniform, homogeneous magnetic field of the same magnitude, separated by a transition region in which the constant magnitude field changes direction (in the plane of the two fields only) at a constant rate (i.e., the radius of curvature, \(\kappa \), of a line of force in this region is a constant throughout the region). The total angle through which the field turns is designated by \(\gamma \). The equation of motion of a proton in such a field is given by the Lorentz force:

\[
\frac{d\mathbf{v}}{dt} = \frac{e}{mc}(\mathbf{v} \times \mathbf{B})
\]

(B.2)

The solutions of this equation in Regions I and III are helices whose axes are parallel to the magnetic field. In region III this is given by

\[
x = [v \cos(\phi)\cos(\beta)]t + \rho \sin(\phi)\sin(\beta)\cos(\omega t+\delta)
+ [x_0 - \rho \sin(\phi)\cos(\delta)\sin(\beta)]
\]

\[
y = \rho \sin(\phi)[\cos(\omega t+\delta) - \cos(\delta)]\cos(\beta) - [v \cos(\phi)\sin(\beta)]t + y_0
\]

\[
z = \rho \sin(\phi)[\sin(\omega t+\delta) - \sin(\delta)] + z_0
\]

(B.3)
and

\[v_x = v[\cos(\phi)\cos(\beta) + \sin(\phi)\sin(\beta)\sin(\omega t + \delta)] \]
\[v_y = v[\sin(\phi)\cos(\beta)\sin(\omega t + \delta) - \cos(\phi)\sin(\beta)] \]
\[v_z = v \sin(\phi)\cos(\omega t + \delta) \]

(B.4)

where \(\beta \) is the angle between the field and the \(x \)-axis, \(\phi \) is the pitch angle of the particle, \(\rho \) is the gyroradius of the particle, and \(x_0, y_0, z_0 \) and \(\delta \) specify the initial position of the particle and phase of its motion. An almost identical set of equations can be written for the solution in region I. These equations can be used to determine whether a proton which is leaving region II will re-enter region II and, if so, where and with what velocity. The situation within region II is, on the other hand, completely different: (B.2) is no longer amenable to an analytic solution, but the computational simplicity of (B.2) makes the use of a digital computer natural.

Using the techniques outlined above, a digital computer was programmed to determine charged particle trajectories in the magnetic field configuration shown in figure B-1. Since the motion of the particles after they have gained access to the geomagnetic tail is assumed to be adiabatic, the particles observed at the orbit of a low altitude, polar orbiting satellite will have had pitch angles very near 0° (north pole) or 180° (south pole) in the geomagnetic tail near the access windows. The problem was therefore delimited to one of finding the interplanetary
(region I) pitch angle, ϕ_{ip}, which would result in a 0° pitch angle in the northern geomagnetic tail (region III) for various values of the pertinent parameters. Solutions for the southern geomagnetic pole can be obtained by taking the supplement of the pitch angle found for the northern tail.

Figures B-2 and B-3 show typical results from these calculations. Figure B-2 shows ϕ_{ip} as a function of κ/ρ for five values of γ, where κ is the radius of curvature of the field, and ρ is the gyroradius of the particle. Figure B-3 shows ϕ_{ip} as a function of γ for six values of κ/ρ. It is interesting that for a configuration in which the field is turning too sharply (κ/ρ small), no interplanetary particles are seen at the polar caps if $\gamma \geq 90^\circ$.

It is immediately obvious from figures B-2 and B-3 that the mapping of interplanetary pitch angle distributions into particles observed over the polar caps is by no means a simple one. From these data one can generate contours of the minimum κ/ρ and the maximum γ which insure that a given interplanetary pitch angle will be observable over the polar caps. Such contours are presented in figure B-4. Contours such as these can be used in conjunction with polar cap and interplanetary pitch angle distribution observations to place constraints on the magnetic field configuration in the access window region. Suppose, for instance, that it were established from observations that only those protons with interplanetary pitch angles $\leq 4^\circ$ were observed in one polar cap, while only those with interplanetary pitch angles $\geq 176^\circ$ were observed in the other polar cap.
Figure B-2

Interplanetary pitch angles giving a 0° pitch angle in the northern geomagnetic tail as a function of the radius of curvature, κ, of the field in the transition region (see figure B-1) and the gyroradius, ρ, of the particle. Results are shown for five different field configurations, represented by different angles, γ, through which the field turns.
Interplanetary pitch angles giving a 0° pitch angle in the northern geomagnetic tail as a function of the angle, γ, through which the magnetic field turns (see figure B-1). Results are shown for six values of κ/ρ.
Contours of the minimum κ/ρ for a given value of γ (or maximum γ for a given value of κ/ρ) which will insure that the particles observed in the polar cap region represent interplanetary pitch angles no greater than the specified values.
Considering that the field will "turn" through an average angle of either 48° or 132° (48° is the average Archimedian spiral angle at 1 AU, while the geomagnetic tail field is either parallel or antiparallel to the solar wind, which flows radially away from the sun), then the $\phi_{ip} \leq 4^\circ$ contour on figure B-4 would imply that we must have $\kappa \geq 27$ for the transition regions for both poles. For 1 MeV protons, this means $\kappa \geq 184 \text{R}_\oplus (1.17 \times 10^6 \text{ km})$, while for 10 MeV protons this means $\kappa \geq 580 \text{R}_\oplus (3.7 \times 10^6 \text{ km})$. For comparison, the tail, itself, is probably 40-60 R$_\oplus$ in diameter (see the discussion by Evans [101] for a more detailed consideration of the tail size and shape).
APPENDIX C

Magnetic Merging at the Polar Neutral Points
Frank [4] has recently proposed a magnetospheric model (see Section VII) which is of special interest to the study of low rigidity particle access to the polar regions: a direct consequence of the model is the possible formation of geomagnetic tails of different lengths for the two polar regions. It is the purpose of the study presented in this appendix to investigate the mechanisms which give rise to this consequence with a view toward determining what constraints must be placed on the model in order to yield the LaB access window configuration discussed in Section VII.

The major assumption of this model is the postulation that all merging between the geomagnetic field and the interplanetary magnetic field occurs at the polar neutral points. The location of these neutral points with respect to the magnetosphere is indicated in figure VI-5. Both open and closed geomagnetic field lines are assumed to merge with the interplanetary field at the neutral points, but the lines which were originally closed subsequently remerge in the neutral sheet. Since the interplanetary field lines with which open geomagnetic field lines merge are convected away from the earth with the solar wind, the length of the geomagnetic tail is proportional to its "age" (i.e., the time required for these open field lines to complete one cycle from merging to merging again). This age is, in turn, inversely proportional to the rate at which open field lines merge at the appropriate polar neutral point. In order to evaluate this model with respect to observational results, it
is necessary to investigate this merging process and the relative open field line merging rates at the two poles in some detail.

Assumptions

The field configuration at the polar neutral point is represented in figure C-1, which shows the geomagnetic field at the northern neutral point, over which the interplanetary magnetic field has been pulled by the solar wind. The geometry of the field clearly contributes greatly to the complexity of the problem in this configuration. It is sufficient at this point, though, to consider the plane configuration shown in figure C-2, which may be related to the more complex geometry by considering the situation in the immediate vicinity of the neutral point in figure C-1. These figures can be transformed into a representation of the southern polar neutral point by reversing the sense of the geomagnetic field.

Figure C-2 also illustrates two of the parameters which will be used in this study:

ϕ: the angle between a field line and the projection of the earth-sun line in the plane of the field interface, measured from the anti-solar direction.

ψ: the angle between a given geomagnetic field line and the direction of the interplanetary magnetic field.

This study is predicated on the following assumptions:

1. The boundary between open and closed geomagnetic field lines
Figure C-1

Schematic representation of the field configuration at the northern polar neutral point. A possible configuration for the interplanetary magnetic field near the neutral point is indicated by the heavier lines.
Figure C-2

Schematic representation of a plane interface between a uniform magnetic field and a magnetic field with a neutral point. This field configuration is essentially the same as that shown in figure C-1, while the geometry is greatly simplified.
ALL ANGLES ARE MEASURED IN A PLANE PARALLEL TO PLANES OF INTERFACE BETWEEN THE TWO FIELDS.

\[\phi = \pi/2 \]

\[\phi = -\pi/2 \]

TO SUN
is assumed to be perpendicular to the earth-sun line, with open field lines being those lines with \(\phi \) in the interval \([-\pi/2, \pi/2)\).

2. The angular configuration of the interplanetary magnetic field in the plane of the interface between the two fields is assumed to vary randomly, over a period of a few hours, according to a Gaussian-like distribution:

\[
P(\phi) = \frac{C}{\sigma \sqrt{2\pi}} e^{-\left(\frac{\phi-\phi_0}{2\sigma}\right)^2}
\]

where \(C \) is defined by normalization:

\[
\int_{-\pi}^{\pi} d\phi \, P(\phi) = 1
\]

which implies

\[
C = \left[\text{erf}\left(\frac{\pi}{\sigma \sqrt{2}}\right) \right]^{-1}
\]

3. The rate at which a given geomagnetic field line merges with the interplanetary magnetic field is dependent only on the solar wind velocity, the maximum merging rate for any two field lines based on plasma parameters, and the angle, \(\psi \), between the geomagnetic field line in question and the direction of the interplanetary field.

4. The rate at which plasma is supplied for the merging process is limited by the solar wind velocity in the vicinity of the neutral point.

5. The rate at which the interplanetary field merges is the same at both polar neutral points.
Since the interplanetary field is "frozen into" the solar wind plasma, magnetic merging rates can be expressed in terms of equivalent plasma velocities. This equivalence conforms to the nomenclature used by Petschek [e.g. 86], Sonnerup [87], and Yeh and Axford [88]. One of the results of these previous studies which is of most significance here is the determination of the maximum equivalent plasma velocity, \(U_m \). There is some disagreement, however, as to the proper dependence of \(U_m \) on plasma parameters:

\[
U_m = \frac{V_A}{4 \ln \left(\frac{16 U_m^2 \pi \sigma L}{V_A^2} \right)} \quad \text{(Petschek)}
\]

\[
U_m = V_A [1 + \sqrt{2}] \quad \text{(Sonnerup)}
\]

\[
U_m < \infty \quad \text{(Yeh and Axford)}
\]

Without attempting to choose among these, we will express our results relative to \(U_m \). Although all of these studies have dealt with the configuration of exactly anti-parallel fields, the results are applicable to the present configuration if the fields which are at an angle \(\psi \) to each other are resolved into parallel and anti-parallel components. Since the superposition of a constant magnetic field perpendicular to the antiparallel fields considered in the above studies has no essential effect on their derivations, we can write the maximum possible merging rate for fields at an angle \(\psi \) as
\[U_{\text{max}}(\psi) = U_m \sin(\psi/2) \quad (C.5) \]

so that the actual merging rate for these fields obeys

\[u(\psi) \leq U_{\text{max}}(\psi) \quad (C.6) \]

The only other information available about the form of \(u(\psi) \) is the normalization implied by the fourth assumption above:

\[2 \int_0^\pi u(\psi) \, d\psi \leq V_{\text{sw}} \quad (C.7) \]

As a consequence, the specification of an exact form for \(u(\psi) \) in the case of \(V_{\text{sw}}/U_m \) sufficiently small is somewhat arbitrary. The question, of course, is whether the interplanetary magnetic field merges preferentially with more nearly antiparallel geomagnetic field lines. Since the answer to this is not clear, three assumptions will be made about the angular dependence of the merging rate, each of which will, of course, lead to different results. Figure C-3 illustrates the general form taken by \(u(\psi) \) under each of these assumptions.

Assumption A

The probability that two field lines will merge is taken to be independent of the angle between them. This means
General behavior of $u(\psi)$ for each of the three assumptions made in the text.
\[
\frac{V_{sw}}{U_m} \geq 4
\]

\[
\frac{V_{sw}}{U_m} < 4
\]

ASSUMPTION A:

ASSUMPTION B:

ASSUMPTION C:
where ψ is determined by the normalization given by (C.7), which gives

\[
(\pi - \psi) \sin(\psi/2) + 2[1 - \cos(\psi/2)] = \frac{V_{SW}}{2U_m} \quad ; \quad V_{SW}/U_m < 4
\]

\[
\psi = \pi \quad ; \quad V_{SW}/U_m > 4
\]

Assumption B

Under this assumption, the likelihood that two field lines will merge is assumed to be a function of the angle between them, with the likelihood varying directly with the angle. Since the choice of this function is at this point completely arbitrary, however, the merging likelihood will be chosen to be proportional to $\sin(\psi/2)$ in order to take advantage of the consequent simplifications in the derivations to follow. Hence we have

\[
u(\psi) = \frac{V_{SW}}{\pi} \sin^2(\psi/2) \quad ; \quad \frac{V_{SW}}{U_m} \leq \pi
\]

\[
u(\psi) = \frac{U_m \sin^2(\psi/2)}{\sin(\psi/2)} \quad ; \quad \psi < \psi
\]

\[
u(\psi) = U_m \sin(\psi/2) \quad ; \quad \psi > \psi
\]
where, from (C.7), \(\psi \) is given by

\[
\frac{\psi + \sin(\psi)}{\sin(\psi/2)} = \frac{V_{sw}}{U_m} \quad ; \quad \pi < \frac{V_{sw}}{U_m} \leq 4
\]

(C.11)

\[
\psi = 0 \quad ; \quad \frac{V_{sw}}{U_m} > 4
\]

Assumption C

For this case it is assumed that the interplanetary field will merge preferentially with the most nearly antiparallel geomagnetic field available. This assumption, which is the converse of Assumption A, yields

\[
u(\psi) = 0 \quad ; \quad \psi < \psi
\]

(C.12)

\[
u = U_m \sin(\psi/2) \quad ; \quad \psi > \psi
\]

and (C.7) yields the following definition of \(\psi \):

\[
\psi = 2\cos^{-1}\left(\frac{V_{sw}}{4U_m}\right) \quad ; \quad \frac{V_{sw}}{U_m} \leq 4
\]

(C.13)

\[
\psi = 0 \quad ; \quad \frac{V_{sw}}{U_m} > 4
\]
The solutions for ψ from (C.9), (C.11), and (C.13) are shown in figure C-4.

Derivation of Merging Rates -- General

We will now define the following symbolism:

- U_{ON} = merging velocity for open field lines at the northern polar neutral point
- U_{CN} = merging velocity for closed field lines at the northern polar neutral point
- U_{OS} = merging velocity for open field lines at the southern polar neutral point
- U_{CS} = merging velocity for closed field lines at the southern polar neutral point

From the symmetry implied from the assumption that the boundary between open and closed field lines at the neutral point is the plane through the neutral point and perpendicular to the projection of the earth-sun line into the plane of the field interface (see figure C-2), and the assumption that $U_{ON} + U_{CN} = U_{OS} + U_{CS}$, we have

\[U_{ON} = U_{CS} \quad \text{(C.14)} \]

\[U_{OS} = U_{CN} \]

Concentrating our attention on U_{ON} and U_{OS}, then, we can write
Critical angle, \(\psi \), as a function of \(V_{sw}/U_m \) for each of the three assumptions made in the text.
Case I: $\phi \in [-\pi/2, \pi/2]$:

\[U^I_{0p}(\phi, \sigma) = \int_{-\pi/2}^{\phi - \pi} d\phi \ P(\phi) v_{0p_1}(\phi) + \int_{-\pi/2}^{\pi/2} d\phi \ P(\phi) v_{0p_2}(\phi) \]

\[+ \int_{\pi/2}^{\phi + \pi} d\phi \ P(\phi) v_{0p_3}(\phi) ; \quad p=N,S \quad (C.15) \]

Case II: $\phi \in [\pi/2, 3\pi/2]$:

\[U^{II}_{0p}(\phi, \sigma) = \int_{\phi - \pi}^{\pi/2} d\phi \ P(\phi) v_{0p_2}(\phi) + \int_{\pi/2}^{3\pi/2} d\phi \ P(\phi) v_{0p_3}(\phi) \]

\[+ \int_{3\pi/2}^{\phi + \pi} d\phi \ P(\phi) v_{0p_4}(\phi) ; \quad p=N,S \quad (C.16) \]

where the $v_{0pi}(\phi)$ are given by

\[v_{ON1}(\phi) = \int_{-\pi}^{-(\phi+3\pi/2)} d\psi \ |u(\psi)| + \int_{-(\phi+\pi/2)}^{\pi} d\psi \ |u(\psi)| \quad (C.17) \]

\[v_{OS1}(\phi) = \int_{-(\phi+3\pi/2)}^{-(\phi+\pi/2)} d\psi \ |u(\psi)| \quad (C.18) \]
\[\nu_{ON2}(\phi) = \int_{-\phi - \pi/2}^{-\phi + \pi/2} d\psi \ |u(\psi)| \]
\[\nu_{OS2}(\phi) = \int_{-\pi}^{-\phi} d\psi \ |u(\psi)| + \int_{\phi}^{\pi} d\psi \ |u(\psi)| \]
\[\nu_{ON3}(\phi) = \int_{-\phi - \pi/2}^{-\phi + \pi/2} d\psi \ |u(\psi)| + \int_{-\phi + 3\pi/2}^{-\phi + \pi/2} d\psi \ |u(\psi)| \]
\[\nu_{OS3}(\phi) = \int_{-\phi + \pi/2}^{-\phi + 3\pi/2} d\psi \ |u(\psi)| \]
\[\nu_{ON4}(\phi) = \int_{-\phi + 3\pi/2}^{-\phi + 5\pi/2} d\psi \ |u(\psi)| \]
\[\nu_{OS4}(\phi) = \int_{-\pi}^{-\phi + 3\pi/2} d\psi \ |u(\psi)| + \int_{\phi}^{\pi} d\psi \ |u(\psi)| \]

In order to be able to expand the \(\nu_{Op1}(\phi) \), it is useful to at this time introduce the following integrals which will be needed later:
\[I_0(\alpha, \beta) = \frac{1}{\sigma \sqrt{2\pi}} \int_{\alpha}^{\beta} d\phi \ e^{-\phi^2/2\sigma^2} \]

\[= \frac{[\text{erf}(b) - \text{erf}(a)]}{2} \quad \text{(C.25)} \]

\[I_1(\alpha, \beta) = \frac{1}{\sigma \sqrt{2\pi}} \int_{\alpha}^{\beta} d\phi \ \phi \ e^{-\phi^2/2\sigma^2} \]

\[= \frac{\sigma}{\sqrt{2\pi}} \left(e^{-a^2} - e^{-b^2} \right) + \phi[\text{erf}(b) - \text{erf}(a)]/2 \quad \text{(C.26)} \]

\[I_s(\alpha, \beta) = \frac{1}{\sigma \sqrt{2\pi}} \int_{\alpha}^{\beta} d\phi \ \sin(\phi/2) \ e^{-\phi^2/2\sigma^2} \]

\[= \frac{e^{-\sigma^2/8}}{\sigma \sqrt{2}} \left\{ e^{i\phi/2} [\text{erf}(b-i\sigma/\sqrt{8}) - \text{erf}(a-i\sigma/\sqrt{8})] \right\} \quad \text{(C.27)} \]

\[I_c(\alpha, \beta) = \frac{1}{\sigma \sqrt{2\pi}} \int_{\alpha}^{\beta} d\phi \ \cos(\phi/2) \ e^{-\phi^2/2\sigma^2} \]

\[= \frac{e^{-\sigma^2/8}}{\sigma \sqrt{2}} \left\{ e^{i\phi/2} [\text{erf}(b-i\sigma/\sqrt{8}) - \text{erf}(a-i\sigma/\sqrt{8})] \right\} \quad \text{(C.28)} \]
\[I_{c2}(\alpha, \beta) = \frac{1}{\sigma \sqrt{2\pi}} \int_{\alpha}^{\beta} d\phi \cos(\phi) e^{-\left(\phi - \phi_0\right)^2/2\sigma^2} \]

\[= e^{-\sigma^2/2} \frac{\sigma}{2\sigma} \Re \left\{ e^{i\phi\left[\text{erf}(b - i\sigma/\sqrt{2}) - \text{erf}(a - i\sigma/\sqrt{2})\right]} \right\} \quad (C.29) \]

where

\[a = \frac{\alpha - \phi}{\sigma \sqrt{2}} \quad ; \quad b = \frac{\beta - \phi}{\sigma \sqrt{2}} \quad (C.30) \]

and where

\[\text{erf}(z) = \frac{2}{\sqrt{\pi}} \int_{0}^{z} dt \ e^{-t^2} \quad (C.31) \]

is the standard error function. The approximation used to evaluate \(\text{erf}(x+iy) \) is that given by Saltzer [114]:

\[\text{erf}(x+iy) = \text{erf}(x) + \frac{e^{-x^2}}{2\pi x} \left[1 + \cos(2xy) + i \sin(2xy) \right] \]

\[+ \frac{2}{\pi} \ e^{-x^2} \sum_{n=1}^{\infty} \frac{e^{-n^2/4}}{n^{2+4x^2}} \left[f_n(x,y) + ig_n(x,y) \right] \quad (C.32) \]

\[f_n(x,y) = 2x - 2x \cosh(ny) \cos(2xy) + n \sin(ny) \sin(2xy) \]

\[g_n(x,y) = 2x \cosh(ny) \sin(2xy) + n \sinh(ny) \cos(2xy) \]
The relative error in this approximation is about one part in 10^{-16}.

We must now evaluate these functions ($v_{0p1}(\phi)$) for each of the three assumed forms for $u(\psi)$.

Assumption A -- see (C.8) and (C.9)

From (C.17),

$$v_{0n1}(\phi) = \int_{-\pi}^{-(\phi+3\pi/2)} d\psi |u(\psi)| + \int_{-\pi}^{\pi} d\psi |u(\psi)|$$

$$= \int_{-\pi}^{-(\phi+3\pi/2)} d\psi u(\psi) + \int_{-\pi}^{\pi} d\psi u(\psi)$$

$$= \int_{-\pi}^{-(\phi+3\pi/2)} d\psi u(\psi) + \int_{-(\phi+\pi/2)}^{\pi} d\psi u(\psi)$$

This can be combined with (C.8) to give, for $\psi \leq \pi/2$,
\[
\frac{v_{ON1}(\phi)}{U_m} = (-\psi + 5\pi/2)\sin(\psi/2) - 2\cos(\psi/2) + \phi \sin(\psi/2)
\]
\[-\sqrt{2}[\sin(\phi/2) + \cos(\phi/2)] \quad \phi \in [-3\pi/2, \psi - 3\pi/2]
\]
\[= \pi \sin(\psi/2) \quad \phi \in (\psi - 3\pi/2, -\pi/2] \quad (C.34)
\]
\[= (-\psi + \pi/2)\sin(\psi/2) - 2\cos(\psi/2) - \phi \sin(\psi/2)
\]
\[+\sqrt{2}[\sin(\phi/2) + \cos(\phi/2)] \quad \phi \in (-\pi/2, -\pi/2]
\]

and, for \(\psi > \pi/2\),

\[
\frac{v_{ON1}(\phi)}{U_m} = (-\psi + 5\pi/2)\sin(\psi/2) - 2\cos(\psi/2) + \phi \sin(\psi/2)
\]
\[-\sqrt{2}[\sin(\phi/2) + \cos(\phi/2)] \quad \phi \in [-3\pi/2, -\pi/2]
\]
\[= 2[(\pi - \psi)\sin(\psi/2) - 2\cos(\psi/2)] \quad (C.35)
\]
\[-\sqrt{2}\sin(\phi/2)] \quad \phi \in (-\pi/2, \psi - 3\pi/2]
\]
\[= (-\psi + \pi/2)\sin(\psi/2) - 2\cos(\psi/2) - \phi \sin(\psi/2)
\]
\[+\sqrt{2}[\sin(\phi/2) + \cos(\phi/2)] \quad \phi \in (\psi - 3\pi/2, -\pi/2]
\]

Similarly, from (C.18),
\[\nu_{\text{OS1}}(\phi) = \int d\psi \, |u(\psi)| \]
\[= \int_{-\phi+\pi/2}^{-(\phi+3\pi/2)} d\psi \, u(\psi) + \int_{0}^{-(\phi+\pi/2)} d\psi \, u(\psi) \]
\[= \int_{0}^{\phi+\pi/2} d\psi \, u(\psi) + \int_{0}^{\phi+3\pi/2} d\psi \, u(\psi) \]

which, as before, can be expanded into, for \(\psi \leq \pi/2 \),

\[
\frac{\nu_{\text{OS1}}(\phi)}{U_m} = 4-\psi+\frac{\pi}{2}\sin(\psi/2)-2\cos(\psi/2)-\phi\sin(\psi/2) + \sqrt{2}[\cos(\phi/2)+\sin(\phi/2)] \\
= 4-\psi+\frac{\pi}{2}\sin(\psi/2)-4\cos(\psi/2) + \sqrt{2}[\cos(\phi/2)+\sin(\phi/2)] \\
= 4-\psi+\frac{\pi}{2}\sin(\psi/2)-2\cos(\psi/2)+\phi\sin(\psi/2) - \sqrt{2}[\cos(\phi/2)-\sin(\phi/2)] \\
= \psi+\frac{\pi}{2}\sin(\psi/2)-4\cos(\psi/2) - \sqrt{2}[\cos(\phi/2)-\sin(\phi/2)] \\
\]

and, for \(\psi > \pi/2 \),
\[
\frac{\nu_{OS1}(\phi)}{U_m} = 4-(\psi+\pi/2)\sin(\psi/2)-2\cos(\psi/2)-\phi\sin(\psi/2)
\]
\[+\sqrt{2}[\cos(\phi/2)+\sin(\phi/2)] \quad \phi \in [-3\pi/2,-\psi-\pi/2]
\]
\[= 4+2\sqrt{2}\sin(\phi/2) \quad \phi \in (-\psi-\pi/2,\psi-3\pi/2] \quad (C.38)
\]
\[= 4-(\psi-3\pi/2)\sin(\psi/2)-2\cos(\psi/2)+\phi\sin(\psi/2)
\]
\[\quad -\sqrt{2}[\cos(\phi/2)-\sin(\phi/2)] \quad \phi \in (\psi-3\pi/2,-\pi/2]
\]

These rather cumbersome equations can be written in a simplified form if we introduce the following notation ("<" refers to \(\psi \leq \pi/2\), while ">" refers to \(\psi > \pi/2\)):

\[
f_0(\phi) = 1
\]
\[
f_1(\phi) = \frac{\pi}{2} \sin(\psi/2)
\]
\[
f_2(\phi) = 2\cos(\psi/2)+\sin(\psi/2)
\]
\[
f_3(\phi) = \phi\sin(\psi/2)
\]
\[
f_4(\phi) = \sqrt{2}\sin(\phi/2)
\]
\[
f_5(\phi) = \sqrt{2}\cos(\phi/2)
\]
\[\alpha_0 = \alpha_0 = \phi - \pi \]
\[\alpha_1 = \alpha_2 = \max[\phi - \pi, \psi - 3\pi/2] \]
\[\alpha_2 = \alpha_1 = \max[\phi - \pi, -\psi - \pi/2] \]
\[\alpha_3 = \alpha_3 = \max[\phi - \pi, -\pi/2] \]
\[\alpha_4 = \alpha_5 = \max[\phi - \pi, \psi - \pi/2] \]
\[\alpha_5 = \alpha_4 = \max[\phi - \pi, -\psi + \pi/2] \]
\[\alpha_6 = \alpha_6 = \pi/2 \]
\[\alpha_7 = \alpha_8 = \min[\phi + \pi, \psi + \pi/2] \]
\[\alpha_8 = \alpha_7 = \min[\phi + \pi, -\psi + 3\pi/2] \]
\[\alpha_9 = \alpha_9 = \min[\phi + \pi, 3\pi/2] \]
\[\alpha_{10} = \alpha_{11} = \min[\phi + \pi, \psi + 3\pi/2] \]
\[\alpha_{11} = \alpha_{10} = \min[\phi + \pi, -\psi + 5\pi/2] \]
\[\alpha_{12} = \alpha_{12} = \phi + \pi \]

In addition, let \(A_{ijp}^\geq \) be defined as in table C-1.

With this notation (C.34), (C.35), (C.37), and (C.38) can be expressed as
Table C-1
Definition of $A_{i,j,p}^\xi$

<p>| | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>j</td>
<td>p</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>-1</td>
<td>-1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>-1</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td>-2</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td>-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-1</td>
<td>-2</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td>-2</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-1</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td>-2</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td>-2</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>-1</td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>-1</td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>-2</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>-1</td>
<td>0</td>
<td>-1</td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-1</td>
<td>-2</td>
<td>-1</td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>-2</td>
<td>-1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
The rest of the \(u_{0p} \) functions can be evaluated in a like manner, and comes as no surprise that they can all be combined and written as

\[
\frac{u_{0p}(\phi)}{U_m} = \sum_{j=0}^{5} A_{ijp} f_j(\phi) ; \quad \phi \in [\alpha_{i-1}, \alpha_i] ; \\
i = 1, 2, 3 \quad ; \quad p = N, S \quad (C.41)
\]

We can now combine (C.42) with (C.15) and (C.16) to give an expression for \(U_{0p} \):

\[
\frac{u_{0p}(\phi, \sigma)}{U_m} = \frac{1}{\sigma \sqrt{2\pi}} \sum_{i=1}^{12} \int_{\alpha_{i-1}}^{\alpha_i} d\phi e^{-(\phi-\phi)^2/2\sigma^2} \sum_{j=0}^{5} A_{ijp} f_j(\phi) ; \quad p = N, S \quad (C.43)
\]

Using the integral definitions given in (C.25) through (C.30), we now have
\[
\frac{U_{Op}(\phi, \sigma)}{U_m} = \sum_{i=1}^{12} \left\{ \sum_{j=0}^{2} A_{ij} f_j(\phi) \right\} I_0(\alpha_{i-1}, \alpha_i) + A_{i3}^p \sin(\psi/2) I_1(\alpha_{i-1}, \alpha_i) \\
+ \sqrt{2} A_{i4}^p I_c(\alpha_{i-1}, \alpha_i) + \sqrt{2} A_{i5}^p I_s(\alpha_{i-1}, \alpha_i) \right\} ; \\
p = N, S \quad \text{(C.44)}
\]

Figure C-5 shows \(U_{ON}/U_m\) as a function of \(\phi\) for a range of values of \(\sigma\) and of \(V_{sw}/U_m\). \(U_{OS}/U_m\) can be related to these curves by the relationship

\[
U_{OS}(\phi, \sigma) = U_{ON}(\pi - \phi, \sigma) \quad \text{(C.45)}
\]

Assumption B -- see (C.10) and (C.11)

\(V_{sw}/U_m < \pi\).

In this case the forms of \(U_{ON}\) and \(U_{OS}\) are particularly simple; it can be shown that

\[
\frac{U_{ON}}{U_m} = \frac{V_{sw}}{2\pi U_m} [\pi I_0(\phi - \pi, \phi + \pi) - I_2(-\pi, \pi)] \quad \text{(C.46)}
\]

\[
\frac{U_{OS}}{U_m} = \frac{V_{sw}}{2\pi U_m} [\pi I_0(\phi - \pi, \phi + \pi) + I_2(-\pi, \pi)]
\]

\(V_{sw}/U_m > \pi\).

The derivation of \(U_{ON}\) and \(U_{OS}\) in this case parallels that given in
U_{ON}(\phi, \sigma) = U_{OS}(\pi-\phi, \sigma)

and

U_{ON}(\phi, \sigma) + U_{OS}(\phi, \sigma) = \min[V_{sw}, 4U_m]

we have

U_{ON}(\phi, \sigma) + U_{OS}(\pi-\phi, \sigma) = \min[V_{sw}, 4U_m]

and, as a consequence,

U_{ON}(\pi/2, \sigma) = \min[V_{sw}/2, 2U_m]

In plotting U_{ON}/U_m, therefore, the vertical scales were chosen so as to reflect these symmetries. On all plots, the midpoint of the vertical scale corresponds to $V_{sw}/2U_m$, while the distance between each pair of tick marks on the vertical scale corresponds to $V_{sw}/10U_m$.
detail for Assumption A to the extent that it is sufficient to merely specify the results of the derivation. In order to do so concisely, we will use the notation of (C.40) and define $g_j(\phi)$ as

\[g_0(\phi) = V_{sw}/2U_m \]
\[g_1(\phi) = \pi/[4\sin(\psi/2)] \]
\[g_2(\phi) = \phi/[2\sin(\psi/2)] \]
\[g_3(\phi) = \sqrt{2}\cos(\phi/2) \]
\[g_4(\phi) = \sqrt{2}\sin(\phi/2) \]
\[g_5(\phi) = \cos(\phi)/[2\sin(\psi/2)] \]

With this notation and the definition of B_{ijp}^{\leq} given in table C-2, we have (as before, "<" refers to $\psi \leq \pi/2$, while ">" refers to $\psi > \pi/2$):

\[\frac{v_{0pk}(\phi)}{U_m} = \sum_{j=0}^{5} B_{ijp}^{\leq} g_j(\phi) ; \quad \phi \in [\alpha_{i-1}^{\leq}, \alpha_i^{\leq}] ; \]
\[i = 3k-2, \ldots, 3k \quad ; \quad p = N,S \quad ; \quad k = 1, \ldots, 4 \quad (C.48) \]

which can be shown to yield
Table C-2
Definition of $B_{ijp}^{<}$

<table>
<thead>
<tr>
<th>j</th>
<th>$p \psi_{\pi/2}$</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2 3 4 5 6 7 8 9 10 11 12</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 0 1 1 2 1 1 0 1 1 2 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 2 1 1 0 1 1 2 1 1 0 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 0 1 1 2 1 1 0 1 1 2 1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-3 0 1 1 0 1 1 0 -3 -3 0 5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-3 -2 1 1 2 1 1 -2 -3 -3 2 5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-3 2 -1 -1 -2 -1 -1 2 3 3 -2 -5</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-1 0 1 1 0 -1 -1 0 1 1 0 -1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-1 0 1 1 0 -1 -1 0 1 1 0 -1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-1 0 1 1 0 -1 -1 0 1 1 0 -1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-1 0 1 1 2 1 1 0 -1 -1 -2 -1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-1 0 1 1 2 1 1 0 -1 -1 -2 -1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-1 0 1 1 0 -1 -1 0 -1 -1 0 -1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-1 0 -1 -1 0 -1 -1 0 1 1 0 -1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-1 0 -1 -1 0 -1 -1 0 1 1 0 -1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-1 0 -1 -1 0 -1 -1 0 1 1 0 -1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-1 0 -1 -1 0 -1 -1 0 -1 -1 0 -1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-1 0 -1 -1 0 -1 -1 0 -1 -1 0 -1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-1 0 -1 -1 0 -1 -1 0 -1 -1 0 -1</td>
<td></td>
</tr>
</tbody>
</table>
\[
\frac{U_{Op}(\phi, \sigma)}{U_m} = \sum_{i=1}^{12} \left\{ B_{i0}^0 g_0(\phi) + B_{i1}^1 p g_1(\phi) \right\} I_0(\alpha_{i-1}, \alpha_i) \\
+ \frac{1}{2} B_{i2}^2 p I_1(\alpha_{i-1}, \alpha_i) + \sqrt{2} B_{i3}^3 p I_c(\alpha_{i-1}, \alpha_i) \\
+ \sqrt{2} B_{i4}^5 p I_s(\alpha_{i-1}, \alpha_i) + \frac{1}{2} B_{i5}^5 p I_{c2}(\alpha_{i-1}, \alpha_i) \right\} ;
\]

\[p = N, S \quad (C.49) \]

Figure C-6 shows \(U_{ON}/U_m \) (and, hence, \(U_{OS}/U_m \)) as a function of \(\phi \) for a range of values of \(\sigma \) and of \(V_{SW}/U_m \).

Assumption C -- see (C.12) and (C.13)

Here again the derivation of \(U_{ON} \) and \(U_{OS} \) parallels that for Assumption A closely, and we will once again define a convenient notation:

\[
h_0(\phi) = 2\cos(\psi/2) \\
h_1(\phi) = \sqrt{2}\cos(\phi/2) \\
h_2(\phi) = \sqrt{2}\sin(\phi/2)
\]

and we will let \(C^5_{ijp} \) be defined as in table C-3. Then the resultant expression for \(U_{Op} \) can be written as
Resultant relative merging rates for open field lines at the northern polar neutral point for Assumption B. The vertical scale convention specified in the caption for figure C-5 is observed here as well.
<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td>-2</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td>-2</td>
<td>-1</td>
</tr>
<tr>
<td></td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-1</td>
<td>-2</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td></td>
<td>-1</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td>-2</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
\[
\frac{U_{0p}(\phi, \sigma)}{U_m} = \sum_{i=1}^{12} \left\{ C_{i0p} h_0(\phi) I_0(\alpha_{i-1}, \alpha_i) + \sqrt{2} C_{i1p} I_C(\alpha_{i-1}, \alpha_i) \right. \\
+ \sqrt{2} C_{i2p} I_S(\alpha_{i-1}, \alpha_i) \left. \right\} ; \quad p = N, S \quad (C.51)
\]

\[
U_{ON}/U_m, \text{ as given by (C.51), is shown in figure C-7.}
\]

\textit{Results}

Since the uncertainty concerning the proper value of \(U_m\) and the interplanetary plasma and magnetic field parameters at the polar neutral points prevents the determination of \textit{absolute} merging rates, the purpose of this study is to determine whether the \textit{relative} merging rates for open field lines at the two poles is sufficient to yield the relative access window locations observed with the OGO-4 data. Results from the EDP observations (see Sections VII and VIII) indicate that the ratio between the position of the \(\beta\)-high polar latitude access window to the position of the \(\alpha\)-high polar latitude access window is typically \(\sim 5:1\) (\(\sim 1500 R_\oplus : \sim 300 R_\oplus\) behind the earth). For this field configuration, this ratio would necessitate a similar ratio between the length of the \(\beta\)-geomagnetic tail and the length of the \(\alpha\)-geomagnetic tail. This could be accomplished if the ratio of \(\alpha\)-pole open field merging rate to \(\beta\)-pole open field merging rate were comparable to 5:1.

Figures C-8 to C-10 show the north to south open field line merging rate ratio for each of the three assumptions and for a range of
Figure C-7

Resultant relative merging rates for open field lines at the northern polar neutral point for Assumption C. The vertical scale convention specified in the caption for figure C-6 is observed here as well.
Figure C-8

Ratio between the open field line merging rates at the northern and southern polar neutral points for Assumption A.
Figure C-9

Ratio between open field line merging rates at the northern and southern polar neutral points for Assumption B.
Figure C-10

Ratio between open field line merging rates at the northern and southern polar neutral points for Assumption C. Note the change in vertical scale between the sixth and seventh graphs (i.e., between \(V_{sw}/U_m = 3.00 \) and \(V_{sw}/U_m = 3.50 \)).
values of σ and of V_{SW}/U_m. Note that for values of V_{SW}/U_m greater than 4.0 these ratios will not change. These figures indicate that a 5:1 ratio between the open field merging rates at the two poles is possible only with Assumption C. The maximum value of U_{ON}/V_{OS} shown is 2.38 for Assumptions A and B ($\phi=\pi$, $\sigma=\pi/18$, $V_{SW}/U_m=4.0$). Figure C-11 indicates the range of parameters which will give $U_{ON}/U_{OS} \geq 5$ for Assumption C.

These results are discussed further in Section VII.
Contours of $U_{ON}/U_{OS} = 5.0$ in $\phi-(V_{SW}/U_m)$ space for Assumption C. The range of ϕ and V_{SW}/U_m corresponding to $U_{ON}/U_{OS} > 5$ for a given value of σ is represented by that region below and to the right of the appropriate contour.
Assumption C

Contours of \(\frac{U_{ON}}{U_{OS}} = 5 \)

\[\frac{U_{ON}}{U_{OS}} < 5 \]

\[\frac{U_{ON}}{U_{OS}} > 5 \]
REFERENCES

7. J. A. Van Allen, "Energetic Particle Phenomena in the Earth's Magnetospheric Tail," in Particles and Fields in the Magnetosphere; Summer Advanced Study Institute, Symposium, University

for Experiments C-08 and D-08 Rate Plots," Space Radiation Laboratory Internal Report No. 11, January, 1970.

38. Cain, *et al.*, *Computation of the Main Geomagnetic Field from*
Spherical Harmonic Expansions, NSSDC 68-11, Goddard Space Flight Center, Greenbelt, Md., 1968.

91. M. Siebert, "Magnetic Activity Differences between the Two Hemispheres following the Sector Structure of the Interplane-

