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TECHNICAL MEMORANDUM X-64662 .

CONJUGATE GRADIENT DETERMINATION OF OPTIMAL
PLANE CHANGES FOR A CLASS OF THREE-IMPULSE
TRANSFERS BETWEEN NONCOPLANAR CIRCULAR ORBITS

INTRODUCTION

Recently the problem of optimally distributing three plane changes
when impulsively transferring between two noncoplanar, circular orbits was
reconsidered. The particular version studied involves a velocity impulse at
the inner circular orbit that places the vehicle at the perigee of an ellipse
whose apogee is greater than the radius of the outer circular orbit. At the
apogee of this ellipse, another velocity impulse places the vehicle on an
ellipse whose perigee coincides with the outer circular orbit. At the perigee
of this ellipse, another velocity impulse occurs to place the vehicle in the
outer circular orbit. Each of the three impulses can involve a plane change,
and the problem is to minimize the total velocity impulse, i.e., the sum of
the velocity impulses, by defining the optimal plane change at each impulse,
This problem is interesting from two standpoints. First, when the radii of
the two circular orbits and the transfer ellipse apogee are close in magnitude,
obtaining numerical solutions with current computer programs which are
demonstrably very good programs was very difficult, if not impossible, for
reasons discussed later. Secondly, the near-earth on-orbit maneuvering
done by the Space Shuttle vehicle or Space Tug could involve just exactly the
conditions leading to numerical difficulties; therefore, it is important for
planning and other purposes that accurate numerical results be obtainable
and available. The first point primarily instigated this report, and led to
the development of an extremely good numerical algorithm.,

PROBLEM DESCRIPTION

To fix ideas, consider the sketch in Figure 1 of the geometry involved.
At point 1, sufficient velocity isimparted to the vehicle to achieve perigee
velocity of the first half of the transfer ellipse. At point 2, velocity is added
to obtain apogee velocity of the second half of the transfer ellipse. At point 3,

the vehicle velocity is circularized. The following formulas define the various
velocities: '
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where the subscripts ¢, a, and p refer
to circular, apogee, and perigee,
respectively, and p is the gravitational
parameter of the earth.

Figure 1. Geometry of
the orbital transfer.

The velocity impulses in question are
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where Vaé and Va—é refer to the apbgee velocities of the first half and

. second half of the transfer ellipse. Including the possibility of noncollinear .
velocity impulses, the AV's may be written as
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where 191 defines the angle between the plane of the initial, inner circular

orbit and the plane of the first half of the transfer ellipse; 192 defines the angle

between the planes of the first half of the transfer ellipse and the second half
of the transfer ellipse; and &3 defines the angle between the plane of the second

half of the transfer ellipse and the plane of the outer circular orbit. Factoring

out -1"1 and performing other manipulations allow these equations to be written:

and
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and if it is referenced to the initial circular velocity, /—IF‘L— , Avtotal may be
1
written as
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and

the nondimensional (normalized) total impulse (also_ referred to as the
payoff) is

t : 2 1 2 1
AV., = (1 + H,Z - 2H COS191)/2 +H2(1 +H3 - 2H cos&z)/2

T 1 1 3 _
+H(1+H2-2H cos19)1/2 . -(1)
4 5 5 3
The problem statement reads as follows: Choose + 1 2,4 and 193 to
] : .
minimize AV T subject to the equality constraint
Yty g =dp I | @

where &T is the angle between the planes of the initial and final circular orbits,

and the inequality constraints are

S = 0,8 = 0,4 =0 . (3

Reasons based on physical grounds indicate that the inequality constraints
can be neglected in the mathematical solution. However, in a later section,
it is demonstrated how even more restrictive inequality constraints are
treated and solved. The equality constraint is easily accounted for by solving
equation (2) for 193, for example, and substituting into equation (1). The

minimization then proceeds with only two free variables, ¢ 1 and ¢ 9 Since
_ o A

the free variables enter into AV _ in the arguments of trigonometric functions,

T
a aumerical procedure is indicated for the minimization process. Invariably
the gradient of the payoff will enter into the minimization process either to
establish a descent direction or to indicate when a minimum has been achieved,
since a necessary condition for a minimum is that the gradient equal zero.

1
The gradient of AVT is
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Comparing equations (1) and (4) shows that the same radlcals are involved
{¢;in each. Previous experience showed that when the apogee of -the ‘transfer
ellipse was much larger than the radius of the inner circular orbit, the
numer1ca.l mmumzatlon proceeds w1thout 1n01dent . However, for the close-
i “Srbit” transfers cons1dered herem' one and PO Slbly two d1fflcult1es ar1se
o Ti) the f1rst evolves because the radlca.ls "of “equatlons (1) .and (4) mvolve
the deferencmg of quant1t1es, each’ of wh1c 1s,aibo'ut two rhagmtude aud
thls subtractlon results 1n a ‘serious loss of s1gn1¥1cant d1g1ts and (2) 1f the
numemcal mm1m1zat1on procedure is 4 zeTo finding algor1thm wherem the
wdaninimum is.defined by- finding the roots of equation.(4); ‘the:Jacobian of :
equatlon (4) can be involved. As it results, for the close-in transfers con-
VIO Sa e re ) two-of the angles are very small, Interms of the small e
yicdifference- between the cosines of these 'small ‘angles.and one,: it can.be: shown
that-terms appear-in-the Jacobian.whose ordei’of magnitude is.the square'
hoo-of-these differences. - Typically, for differences-of the: order 10 =3, térms-ob-
tained’'by-subtraction appear in the Jacobian: of the.order of 107 Th1s extreme
loss of precision dictates that most standard grad1ent or Newton_Raphson
techniques will behave erratically and, when they do converge, will converge
to false minima. This type of performance was in fact observed with some
very good existing computer programs.

iy
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The answers to both difficulties lie in a ‘detailed inquiry into and analy-
sis of the underlying conditions causing the loss of precision. This task is
simplified if an analysis of the Jacobian can be eliminated and consideration can
be limited to the payoff and its gradient. This is the case for conjugate gradi-
ent numerical minimization techniques of which a Sorensen [1] modified
Fletcher-Reeves [2] version was chosen for the numerical results reported
here. The version used here will be discussed and compared extensively
with other techniques in a separate report. Let it suffice to say that conjugate
gradient algorithms proceed along successive paths of descent with local
minima of the payoff being found along each path. At each iteration, only the
payoff and its gradient need be known. Assuming accurate numerical infor-
mation, successive iterations are guaranteed to decrease the payoff until
final convergence is achieved. A basic property is that a payoff quadratic
in n variables will be minimized in n iterations. '

NUMERICAL ANALYSIS

The numerical analysis begins by observing that H 1 H3, and H 5 are |

all greater than one for the problem considered. Taking H g s typical, let
H =1+ A . (5)

Now,

2 2
H1 - 2Hicosé‘1 = H1 - 2H1vcosé‘1 + cos 191 - cos 191

2 2
= (H1 - cos 191) - cos 191 .
Thus,.

(1+H2-2H

1 1
T2 _ 2 _ 2 /2
‘ | €os 191} = {1 + (H1 cos 191) cos «.91

_ _ 2 .2 Y
= [(H1 cos 191) + sin 15‘1]



Substituting equation (5) into the right side of the preceding equation yields

2 %o 2 .2 1%
(1 + H, 2H, cos 191) = [(1 + oA cos 191) + sin 191] .
Further, let cos 191 = 1 - 61;then,
(1+H2-2Hcos&)1/2— [1+A-(1-6)2+'21.91/2
o1 1 7 1 1] T
2 .2 4|
= (A1 + 61) + sin” S . (6a)
Similarly,
2 Y 2 2 1/
(1 + H3 - 2Hq cos 192) = [(A3 + 63) + sin «.92 2, (6b)
and
' 1 2 1
(1 + H52 - 2H_ cos 1.93) 7 [(A5 + 65)2 + sin 1.93:| 7 . (6c)

Equations (6} are accurately computable if Ai and 61 are accurately available.

To obtain Ai’ consider H 1 as typical again. From its definition,

, 1 - 1
, ~< 2r2v /2= r, +r, +ory r1>/2
r

where

Since al < 1, the binomial series converges and represents Hl:

N

Pl
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2,3,.ocf .
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and

All these series are valid for lozil < 1,

The Maclaurin series for cos #is

-1
PR S S g20n-1)
cos ¢ = 3 ) e (2n-2)!
+ e n = 1,2,3,... ’
so that
1912 1914 i 191Zn
op = 1 meosdy = grt g e U0
+ see n = 1,2’3,'° )
3 2 15‘24 ] 1922n
63 = ? = '—4—!_ + .. (-1) (Zn) .. n = 1!2’3" .
and
g 2 2 4 r11932n
65 = ——2!— - ‘—4—!—' + e (—1) W + .. D= 1’12’3""

These series are valid for all finite .

(8a)

(8c)

The series in equations (7) and (8) are alternating series so that the
error committed by truncating them at any term is less than the value of the
first term in the remainder, Assuming that equation (7) will be used only
if | o | = 0.1, an estimate of the number of terms required to limit the

10

>
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error to < 10-18 is obtained as ,followls. It is easily seen that the magnitude |

of each coefficient, an, in equation (7) is = -:n . Thus,
la_1 (0.1)" = 1(—%1—1111— =10 %
2
or
-n - nlog2 = -18;
however,
log 2 ~ 0.3 .
Therefore, |
1;3n = 18
or
n~ 14,

Therefore, 13 terms of the series in equation (7) are more than sufficient
to compute Ai with an error less than 10 *° when a = i, The magnitude

|20

of the coefficients in equation (8) is -EIHF- . Limiting Idil =2

(~114,6°), an error estimate for 13 terms is

2?8 a7 x 10°

T~ 29
(28)! 3 x 10

- 0.9 x 1074

That is, 13 terms are more than sufficient to limit the error to less than 10-18 .
No effort was made to sharpen these error estimates or economize the series
used.

11



UNCONSTRAINED NUMERICAL EXAMPLES

The foregoing simple analysis is sufficient to eliminate the difficulties
discussed earlier. Interestingly, numerical results indicate multiple solutions,
the solution obtained being dependent on the starting point since a gradient
technique will, or at least should, go to the bottom of whatever valley it begins
in, Recalling the implicit inequality constraints of equation (3), the solution
points lie on a plane as shown in Figure 2, The payoff along the boundary of
this plane can be explicitly computed. As it results the true minima lie on

' the interior of this plane. These were

% 9s found by beginning the algorithm at
each of the vertices in turn and proceed-
(0,0, 9) ing to the local minimum, All of the

minima lie close to a vertex, and only
a maximum of three was ever found,
even though in some cases many starting
points within the plane were attempted.
N The global minimum is found by compar-
9. ison of the local minima, 1If is not the
purpose of this report to present an
analysis of close-in orbital transfer;
(94.0,0 therefore, Tables 1 through 8 are pre-
sented only to show the speed and accu-
9 racy with which solutions are obtained
' Figure 2. Solution plane. . for representative situations. A general
feature of these tables is that the global
minimum occurs when the maximum plane change takes place at the maximum
radius, i.e., apogee, of the transfer ellipse.

CONSTRAINED NUMERICAL EXAMPLES

An easily applied transformation technique can be used to account
for even more general inequality constraints than those in equation (3).
Consider inequalities of the form

L. <=4, =T, i=12,3 ,
1 1 1

where Li and Ui are lower and upper bounds respectively on &i. Then, the

12
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following transformations autbmatically satisfy these inequalities: .
. .2 .
¢, = L, + (U, - L)sin" x, |,
i i i i i
where X becomes the new minimization variables. These transformations
need to be carefully applied, To avoid an unnecessarily complicated expla-

nation, the application used here is to consider explicit limitations on { and
15‘2 of the form

.2
4, = ¢ smx1

| 1i

and
. 2
4 g T €, Sin xz ,
h : = | .
werecl> Oandcz> 0andc1+c2 &T
. 59 58 |
These introduce the partials 3_X— and _8)( into the gradient equations (4)
| 1 2 A
1 [} ' .

in a simple way; i.o SAVT _ BAVT 8«31 o 8AVT ) aAVT 8192

The constrained minimization results depend on the values given cy and ¢ 99

and it might be expected that either, both, or neither ¢ 1 and $ 9 lie on their .

respective boundaries. Table 9, which can be compared to Table 1, illu-
strates all four possibilities. It shows that this type of constrained minimi-
zation is no more difficult than unconstrained minimization.

‘ CONCLUSIONS

~ The numerical difficulties of determining optimal plane changes associ-
ated with a particular class of three-impulse transfer between noncoplanar,

13



circular orbits have been eliminated using simple series. The conjugate
gradient algorithm developed resulted in an ideal tool to obtain very accurate
solutions, simply and rapidly, for unconstrained and constrained angles.

TABLE 1. DISTRIBUTION OF PLANE CHANGES FOR IMPULSIVE

TRANSFER BETWEEN 100 AND 150 N, MI, CIRCULAR ,
ORBITS INCLINED AT 28.5 DEGREES (TRANSFER APOGEE IS 200 N, MI.)

14

Iteration 4 9 193 Gradienta Payoff
0 0.0 0.0 28.5 0.56E-03 0.50013379
i 1.46114 1.46114 25.5777 0.15E-08 0.49216636
2 1.51796 1.40452 25.5775 0.43E-09 0.49216479
3 1.49644 1.33453 25.6690 0.53E-11 0.49216410
4 1.49324 1.33551 25,6712 0.11E~-12 0.49216410
5 1.49344 1.33683 25,6697 0.50E-18 0.49216410
6 1.49344 1.33683 25,6697 0.0 0.49216410
0 0 28.5 0.0 0.28E-03 0.49333864
1 0 27.8431 0.656886 0.28E-03 0.49091133
2 1.22383 26.6175 0.658645 0.20E-08 0.48613730
3 1.22387 26.6016 0.674486 0.20E-12 0.48613706
4 1.22401 26.6016 0.674347 0.73E-13 0.48613706
5 1.22423 26.6013 0.674492 0.72E-19 0.48613706
0 28.5 0.0 0.0 0.29E~03 0.50096085
1 27.5403 0.0 0.959736 0.29E-03 | 0.49823819
2 1.23454 26.2510 1.01448 0.27E-06 0.48621170
3 1.43016 26.2553 0.814521 0.39E-07 0.48617471
4 1.42698 26.3974 0.675637 0, 44E-07 0.48615935
5 1.22422 26,6023 0.673492 0.74E-11 0.48613706
6 1.22423 26.6013 0.674492 0.11E-16 0. 48613706
7 1.22423 26.6013 0.674493 0.39E-17 0.48613706
8 1.22423 26.6013 0.674492 0.43E-23 0.48613706
'\ 2 ') 2
N TAN VT BAVT
a. Gradient &91 + "’*’2




TABLE 2. DIST_R_IBUTION OF PLANE CHANGES FOR IMPULSIVE

- TRANSFER BETWEEN 100 AND 150 N, MI. CIRCULAR

ORBITS INCLINED AT 60 DEGREES (TRANSFER APOGEE IS 200 N, MI.)

a
Gradient

Iteration 4 1 3, 4y Payoff
0 0.0 0.0 60.0 0.45E-03 1.0051436
1 0.546747 0.546747 58.9065: | 0.17E-05 1.0000558
2 0.707780 0.404563 58.8877 0.61E-07 .0.99991549
3 0.688537 0.376323 58. 9351 0.63E-08 0.99991119
4 0.678625 0.383077 58.9383 0.34E-09 0.99991071
5 0.676701 0.381311 58.9420 0.10E-12 0.99991069
6 0.676738 0.381284 58.9420 0.14E-18 0.99991069
7 0.676738 0.381284 58.9420 0.50E-20 0.99991069
0. 0.0 60,0 0.0 0.22E-03 0, 99138951
1 0.0 59,6739 0.326106| 0.22E-03 0.98974128
2" 0.641237 59, 0316 0.327157| 0.24E-08 0. 98646520
3 0.641244 59, 0287 0.330028| 0.24E-14 0. 98646515
4 - 0.641246 59, 0287 0.330026| 0.10E-14 0. 98646515
5 0.641251 59. 0287 0.330028| 0.44E-21 0. 96640515
0 60.0 0.0 0.0 0.23E-03 1.0103875
1 59,6427 0.0 0.357284| 0.23E-03 1.0086236
2 59,2477 0. 394300 0.357992| 0.84E-09 1.0067450
3 59,2456 0.394303 0.360086| 0©.68E-14 1.0067449
4 59, 2456 0.394308 0.360082| 0.20E-14 1.0067449
5 59,2456 0.394313 0.360086| 0.44E-21 1.0067449
AV, 2 AV, "\?
a, Gradient = T + T
8‘91

15




TABLE 3. DISTRIBUTION OF PLANE CHANGES FOR IMPULSIVE

TRANSFER BETWEEN 100 AND 150 N, MI., CIRCULAR

ORBITS INCLINED AT 28.5 DEGREES (TRANSFER APOGEE IS 151 N, MI,)

Iteration 8 1 192 193 ,Gradienta Payoff .
0 0.0 0.0 28.5 0.56E-03 | 0,49593920
1 0.799631 0.799631 26. 9007 0.14E-07 | 0.49066539
2 0.734489 0.865430 26.9001 0.23E-09 | 0.49065984
3 0.742474 0, 875737 26.8818 0.36E-11 | 0.49065974
4 0.741365 0. 876595 26. 8820 0.17E-12 | 0.49065974
5 0.741536 0. 876955 26. 8815 0.55E-18 | 0.49065974
6 0.741536 0. 876956 26. 8815 0.40E-26 | 0.49065974
0 0.0 28.5 0.0 0,.28E-03 | 0.49155631
1 0.0 28, 4847 0.015318 0.28E-03 | 0.49150473
2 0.703079 27,7816 0.0153418 | 0.54E_09 | 0.48894035
3 0.703080 27,7813 0.0155842 | 0.18E-16 | 0.48894035
4 0.703080 27,7813 0.0155842 | 0.17E-16 | 0.48894035
5 0.703082 27,7813 | 0.0155842 | 0.29E-21 | 0.48894035
0 28.5 0.0 0.0 0.29E-03 | 0.49675259
1 28,4811 0.0 0.0189021 | "0.29E-03 | 0.49669797
2 27.4330 1.04801 0.0189459 | 0.12E-08 | 0,49389062
3 27,4324 1.04801 0.0196373 | 0.50E-15 | 0.49389061
4 27. 4324 1.04801 0.0196367 | 0.48E-15 | 0.49389061
5 27.4323 1. 04805 0.0196374 [ 0.50E-23 | 0.49389061

"\2 N\ 2
AV AV,
. T T
a, QGradient = 53 + wz
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TABLE 4, DISTRIBUTION OF PLANE CHANGES FOR IMPULSIVE

TRANSFER BETWEEN 100 AND 150 N. MI. CIRCULAR

ORBITS INCLINED AT 60 DEGREES (TRANSFER APOGEE IS 151 N, MI. )

Tteration 8 s S, Gradient™ Payoff
0 0.0 0.0 60. 0 0.45E-03 | 1.0001036
1 0.351493 | 0.351493 | 59.2970. .| 0.66E~-08 | 0.99659350
2 0.346132 | 0.356896 | 59.2970 0.47E-11 | 0.99659319
3 0.346273 | 0.357045 | 59.2967 0.14E-14 | 0.99659319
4 0.346270 | 0.357047 | 59.2967 0.31E-17 | 0.99659319
5 0.346270 | 0.357047 | 59.2967 0.73E-25 | 0.99659319
0 0.0 60.0 0.0 0.22E-03 | 0.99470577
1 0.0 59. 9931 0.00687260 | 0.29E-03 | 0.99467142
2 0.341285 | 59.6518 0.00688441 | 0.14E-09 | 0.99293887
3 0.341285 | 59.6518 0.00689966 | 0.88E-19 | 0.99293887
0 60. 0 0.0 0.0 0.23E-03 | 1.0053444
1 59. 9928 0.0 0.00716288 | 0.23E-03 | 1.0053089
2 59. 6249 0.367966 | 0.00717615| 0.83E-09 | 1.0035026
3 59. 6248 0.367966 | 0.00721726| 0.11E-18 | 1.0035026
4 59. 6248 0.367966 | 0.00721726| 0.12E-18 | 1.0035026
5 59. 6248 0.367966 | 0.00721726| 0.30E-19 | 1.0035026
2 1\ 2
| INA 8AVy
a. Gradi = + —
radient 53
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TABLE 5. DISTRIBUTION OF PLANE CHANGES FOR IMPULSIVE
TRANSFER BETWEEN 100 AND 110 N, MI, CIRCULAR
ORBITS INCLINED AT 28.5 DEGREES (TRANSFER APOGEE IS 150 N, MI,)

Iteration 4 { 192 193 Gradie nta Payoff

0 0.0 0.0 28,5 0.57E-03 0.49650885
1 0.638691 0.638691 27,2226 0.15E-06 0.49342843
2 0.975791 0.312526 27,2117 0.55E-07 0.49334451
3 0.947248 0.197258 27.3555 0.23E-07 0. 49332974
4 0. 807265 0.231993 27. 4607 0.43E-08 0.49331817
5 0.789268 0.208230 27.5025 0.46E-10 0.49331723
6 0.793417 0.206754 27,4998 0,24E-12 0.49331722
7 0.793476 0.206919 27.4996 0.11E-13 0,49331722
8 0.793554 0.206908 | 27.4995 0.34E-20 0.49331722
0 0.0 28,5 0.0 0.28KE-03 | 0.49361548
1 0.0 27.9421 0.557934 0.28E~03 0.49160491
2 0.689414 27,2518 0.558777 0,27E-09 0.48909007
3 0.689421 27.2465 0.564077 0.25E-13 0. 48909004
4 0.689460 27,2465 0.564038 | 0.72E-14 | 0.48909004
5 0.689507 27,2464 0.564078 0.18E-21 0.48909004
0 28.5 0.0 0.0 0.29E-03 0.496674

1 27.8294 0.0 0.670588 0.29E-03 | 0.49454219
2 27.6133 0.215837 0.670905 0.42E-11 0.49397078
3 27.6122 0.215837 0.672001 0.13E-14 0.49397078
4 27.6122 0.215846 0.671992 0.15E-15 0.49397078
5 27.6121 0.215851 0.672001 0.13E-21 0.49397078

1 1 2
. 3A Vop dA Vi
a. Gradient = wi + &92
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TABLE 6. DISTRIBUTION OF PLANE CHANGES FOR'IMPULSIVE :

TRANSFER BETWEEN 100 AND 110 N, MI, CIRCULAR

ORBITS INCLINED AT 60 DEGREES (TRANSFER APOGEE IS 150 N, MI,)

| Iteration 4 1 & 9 4 3 Gradient™ Payoff
0 0.0 0.0 60.0 0.46E-03 1.0041913
1 0.233672 0.233672 59.5327 | 0.70E-05 1.0023947
2 0.411512 0.0950075 | 59.4935 | 0.86E-06 | - 1.0021102
3 0. 399695 0.0697055 { 59.5306 | 0.28E-06 1.0020961
4 0.367167 0,0848975 | 59.5479 | 0,23E-06 "1,0020868
5 0.344792 | 0.0753710 | 59.5798 | 0.42E-08 1.0020823
6 0. 346985 0,0740348 | 59.5790 | 0.72E-11 1, 0020822
7 0.347022 0.0740964 | 59,5789 0.14E-11 1.0020822
8 0.347115 0.0740836 | 59.5788 | 0.13E-17 1.0020822
9 0.347115 0.0740836 | 59.5788 | 0.81E-26. 1. 0020822
0 0.0 60,0 0.0 0.22E~03 0.99617013
1 0.0 59. 7323 0.267709 | 0.22E-03 0.99481282
2 0.334814 59,3970 0.268159 | 0.73E-09 0.99311326
3 0.334815 59.3957 0.269472 | 0.28E-14 0.99311324
4 0.334818 59,3957 0.269470 | 0, 86E~-15 0,99311324
5 0.334820 59. 3957 0.269472 | 0.86E-23 0.99311324
0 60.0 0.0 0.0 0.23E-03 1.0052485
1 59.7194 0.0 0,280566 | 0.23E-03 1.0038420
2 59, 6447 0.0745448 | 0.280749 | 0,43E-10 1,0034762
3 59,6444 0.0745449 | 0.281102 | 0.21E-15 1.0034762
4 59, 6444 0.0745451 | 0,281102 | 0,10E-16 1.0034762
'5 59, 6444 0.0745452 | 0.281102 | 0.20E-22 1.0034762
! ] 2
AV, 9AV
dient = T T
a. Gra &91 8‘92
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TABLE 7. DISTRIBUTION OF PLANE CHANGES FOR IMPULSIVE

TRANSFER BETWEEN 100 AND 110 N, MI, CIRCULAR

ORBITS INCLINED AT 28.5 DEGREES (TRANSFER APOGEE IS 111 N, ML)

Iteration & | 192 1.93 Gradient™ Payoff
0 0.0 0.0 28.5 0.57E-03" 0.49310948
1 0,167574 0.167574 28,1649 0.15E-08 0.49199596
2 0.172128 0.163036 28.1648 0.38E-11 0.49199583
3 0.171911 0.162796 28,1653 0.58E-14 0.49199583
4 0.171901 0,162804 28,1653 0.46E-18 0.49199583 .
5 0,171902 0.162805 28,1653 :_O.‘81E-‘26 ' 0.49199583
0 0.0 28.5 0.0 0.29E-03 0.49218163
1 0.0 28,4841 0.0158555 0.29E-03 0.49212881
2 0.169402 28,3147 0.0158615 0.91E-11 0.49155075
3 0.169402 28,3148 0,0158285 0,11E-17 0.49155075
4 0.169402 28,3148 0.0158285 0.94E~18 0. 49155075
5 0,.169402 28,3148 0.0158285 0,11E~-21 0.49155075
0 28.5 0.0 0.0 0,29E-~03 0,49327239
1 28.4835 0,0 0.0165287 0,29E-03 0.49321892
2 28,3165 0.166959 0.0165348 0.22E-10 0.49268099
3 28,3166 0.166959 0.0164769 0.32E-16 0.49268099
4 28.3166 0,166959 0.0164770 0.27E-16 0.49268099
5 28.3166 0.166958 0.0164769 0.21E-21 0.49268099
]
OAV . 2 O0AV 2
a, QGradient = T +
8191
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TABLE 8. DISTRIBUTION OF PLANE CHANGES FOR IMPULSIVE
. TRANSFER BETWEEN 100 AND-110 N. MI. CIRCULAR
ORBITS INCLINED AT 60 DEGREES (TRANSFER APOGEE IS 111 N, MI.)

Iteration S 1 4, 9, Gradient” Payoff

0 0.0 0.0 60.0 0.46E-03 | 1.0001054
. 1 0.0735228 | 0,0735228 | 59.8530 0.50E-06 0. 99936690

2 0.0766450 | 0.0704655 | 59.8529 0.26E-10 0. 99936641

3 0.0765758 | 0.0703931 | 59.8530 0.59E~-13 0.99936641

4 0.0765724 | 0.,0703964 | 59.8530 0.73E-16 0.99936641

5 0.0765723 | 0.0703963 | 59.8530 0.81E-21 0.99936641

0 0.0 60.0 0.0 0.23E-03 0.99887366

1 0.0 59.9930 0.00698963 | 0.23E--03 0.99883858

2 0.0762936 | 59.9167 0.00699231 | 0.94E-10 0.99845353

3 0.0762936 | 59.9167 0.00697960 | 0.34E-19 0.99845353

0 60.0 . 0.0 0.0 0.23E-03 1.0011622

1 59, 9929 0.0 0.00705916 | 0.23E-03 1.,0011269

2 59,9221 0.0708007 | 0.00706168 | 0. 15E-09 1.0007720

3 59,9222 0.0708007 | 0.00704546 | 0. 11E-18 1,0007720

4 59, 9222 0.0708007 | 0.00704546 | 0.55E-19 1,0007720

2 1
9AV 8AVT 2
. =' +
a. Gradient &91 B9
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ORBITS INCLINED AT 28.5 DEGREES (TRANSFER APOGEE IS 200 N, MI,)

TABLE 9., DISTRIBUTION OF CONSTRAINED PLANE CHANGES FOR
IMPULSIVE TRANSFER BETWEEN 100 AND 150 N, MI, CIRCULAR

22

a a
Iteration ¢ f JZ 19; Gradientb Payoft
Case 1: 5 degree limit on 191, 5 degree limit on ‘92
0 1.25 1.25 26.0 -0.92E-06 0.49218937
1 1.4919609 1.2670539 25.740985 0.69E-08 0.49216474
2 1, 4929680 1.3367815 25.670251 0.23E-11 0. 49216410
3 1.4934366 1.3368224 25.669741 0.13E-16 0,49216410
4 1.4934363 1,3368255 25.669738 0.12E-17 0.49216410
5 1.4934366 1.3368256 25, 669738 0.40E-24 0. 49216410
Case 2: 1 degree limit on 61, 5 degree limit on \92
0 0.25 1.25 27.0 0,.43E-04 0.49432670
b 0.99999878 1.1942897 26.305712 0.12E-07 0, 49229098
2 0.99999969 1,2747884 26,225212 0.48E-12 0. 49228996
3 1. 0000000 1.2747736 26, 225226 0.45E-17 0.49228996
4 1 1,2747719 26.225228 0.12E-21 0, 49228996
Case 3: 5 degree limit on "1’ 1 degree limit on 62
[} 1.25 0.25 27 0.10E-04 0.49291871
1 1.9253040 0.78144550 25.793250 0,13E.05 0.49229192
2 1.4313804 0.83753959 26.231080 0.57E-07 0.49221594
3 1.5509740 0.99627414 25.952752 0.54E-07 0.49218585
4 1.4770807 0.99641748 26.026502 0.27E-09 0.49218394
5 1.4778344 1.0000000 26. 022166 0.55E-12 0.49218345
6 1.4776119 1 26.022388 0.11E-18 0.49218345
7 1.4776123 1 26.022388 0.15E-17 0.49218345
8 1.4776120 1 26,022388 0.35E-24 0.49218345
Case 4: 1 degree limit on .91, 1 degree limit on ;92
-0 0,25 0.25 28.0 0.52E-04 0. 49502071
1 0.98877934 0.76936973 26.741851 0,97E-07 0,49236042
2 0.99685410 0, 98658947 26. 516556 0.57E-08 0. 49230787
3 0. 99990077 0. 99604523 26. 504054 0.38E-09 0.49230480
4 0.99991152 0.99849260 26.50159% 0,22E-09 0. 49230450
5 0. 99999996 0, 99999993 26.500000 0, 71E-13 0.49230427
6 1. 0000000 1. 0000000 26. 500000 0.19E-18 0,49230427
7 1. 0000000 1.0000000 26, 50000 0.61E-49 0. 49230427
8 1 1 26,5 0.24E-27 0,49230427
a. Initially, Xp =Xy = 30 degrees
1 ]
3AVT 2 A VT 2
b. Gradient 3"1 + a‘,z
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