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FOREWORD ’

A

Physics of the Solar System is based on lectures given at the Fourth Sumri;ler
Institute for Astronomy and Astrophysics held at the State Univeristy of New York at
Stony Brook, from June 17 to July 15, 1970. The Summer Institute, sponsored by the
National Aeronautics and Space Administration, was directed by Dr. Hong-Yee Chiu
and Dr. S. I. Rasool.

The material covers a broad range of topics in the physics of the Sun, the
structure of the planets and their atmospheres, and the origin and evolution of the
solar system and of planetary atmospheres, and presents a view of current problems
associated with these fields.

The editor is grateful to the authors for their respective contributions; to Dr.
J. Hardorp. Department of Earth and Space Sciences at SUNY, for his valuable
assistance during the summer institute; to N. Hartunian, R. Russell, and J. Warman
for their assistance in preparing the lecture notes from the taped lectures; to Miss
Mary Yastishak for her administrative assistance in the planning of the conference
and in coordinating the manuscript; and to Miss Margaret Kavanau for the typing of
the manuscript.

S. I. Rasool
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- CHAPTER 1
INTRODUCTION TO SOLAR PHYSICS

J. C. Brandt
Goddard Space Flight Center
Greenbelt, Maryland

I. OVERVIEW

The purpose of this introductory chapter is to sketch the basic physics involved
in the large-scale structure of the Sun’s interior and atmosphere. Details and
necessary refinements are given in the chapters that follow.

Our great interest in the Sun is dictated by its proximity. The Sun can
influence the Earth directly; for example, storms on-the Sun often disrupt radio
communications and produce auroras. In addition, the Sun serves as a representative
of stars in general, with the considerable advantage of nearness. If the Sun were
removed to the distance of the nearest star, quantities such as flux (which decreases
as the inverse square of the distance) would be smaller by a factor of 10!, In
addition, we can study details of surface processes on the Sun which are inaccessible
to us in the distant stars.

Because we can gather so much more information about the Sun than other
stars, we need to know whether or not the Sun is typical of other stars, i.e., whether
we can apply knowledge of solar properties to the study of stars in general. The Sun
is indeed representative of the stars that lie in the disk of the Galaxy. Its chemical
composition and kinematic properties are typical of the stars that make up the flat,
rotating disk of the Galaxy. The Sun lies at the inner edge of a spiral arm, at a
distance of approximately 10 kpc from the center of the Galaxy. In one respect, the
Sun is atypical: It is not part of a double- or multiple-star system, whereas about
two-thirds of all stars in the Galaxy belong to such systems.

Some of the fundamental physical properties of the Sun are as follows:

(1) The mass of the Sun is 1.99 X 1033 g, designated by the symbol M... The
mass of the Sun is very well determined compared to those of other stars because we
can use the orbital parameters of the planets to determine it. Masses for double-star
systems are difficult to determine with comparable accuracy.
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2 PHYSICS OF THE SOLAR SYSTEM

(2) The mean radius of the Sun is 6.96 X 1010 cm, designated by the symbol
R,. The Sun departs very slightly from a spherical shape, as is discussed by R.
Dicke.* -

(3) The Sun rotates differentially, having an equatorial period of 25.36 days
(tangential velocity of 2 km-s~1) and a polar period of approximately 30 days.

(4) The Sun’s luminosity (L) is determined from measurements of the solar
constant, defined as the amount of energy received per square centimeter by a
surface in space perpendicular to the Earth-Sun line at the Earth’s mean distance
from the Sun. Rocket and mountain-top measurements have yielded values close to
1.95 cal/cm2-min, which integrates to a solar luminosity of about 3.9 X 1026
joule/s.

(5) The Sun’s age has been determined from radioactive-dating schemes used
on meteorites and lunar material. They generally yield an age of 4.5 X 109 years.
Stellar-evolution calculations are consistent with a similar age for the Sun.

All knowledge of the solar interior is indirect, so that we cannot discount
proposals that the Sun also rotates differentially as a function of distance from the
center. Neutrino measurements hold out spome hope of direct observations of the
solar interior, but so far these have departed significantly from the initial predictions
of measurable fluxes.

The Sun can be divided roughly into six zones (Figure 1): (1) the energy
producing core; (2) a region of radiative equilibrium ending at r/R5 =~ 0.86; (3) a
convective zone called the hydrogen-convective zone; (4) a thin radiative zone,
called the photosphere, which is approximately 300 km thick; (5) a few-thousand-
kilometer-thick zone called the chromosphere; and (6) a tenuous outer region called
the corona. As the corona.expands into the interplanetary medium, it is called the
solar wind. The temperature of the core is approximately 15 X 106 K. Energy is
transmitted in the region above the core by radiation until it reaches the
hydrogen-convective zone, where convective energy transfer takes over. In the
photosphere, radiative transport again becomes dominant. At the boundary between
the photosphere and chromosphere, the photons are largely decoupled from the
matter; the temperature here is the minimum solar temperature of about 4300 K.
The boundary defined by the chromosphere and corona is at a temperature of about
106 K, so that the chromosphere, and particularly the ‘“transition zone” between
the chromosphere and the corona, possesses an extremely high temperature
gradient. Energy is transferred to the outer atmosphere by the mechanical energy of

*See Chapter 2, “Internal Rotation of the Sun”, by Dicke.
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Figure 1.—Different zones of energy transport in the Sun (see Section 1).

wave motions; in the corona, conduction is important alsb. The corona has a
temperature of about 2 X 106 K; it expands and becomes the solar wind, with a
velocity of about 400 km-s~!, electron and proton densities of 5 to 10 per cm3,
T, of 2X 10° K, and Tp of 5 X 10* K at the Earth’s orbit. Although the major out-
ward energy flow from the Sun is the photon flux, the matter outflow is also
important for certain calculations such as those concerning the Sun’s rotation rate.

IL INTERIOR

The structure of the solar interior is calculated on the basis of standard
assumptions and equations:

(1) Hydrostatic equilibrium. -

(2) The mass equation (relating the change of mass with radius to the density).
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(3) The luminosity equation (relating the change of luminosity with radius to
the energy generation rate).

(4) An equation of state. The perfect-gas equation is a good approximation in
the solar interior.

(5) Equations specifying the rates of energy generation. The principal source
of energy is the proton-proton chain, although the carbon cycle may contribute a
few percent of the energy in the central region.

(6) An equation of energy transport. In the deep interior, energy transport is
by radiation. The source of opacity is primarily bound-free transitions of the heavier
ions which are not completely ionized. Nearer the surface, however, convective
transport becomes important, as is discussed in Section III.

Analytical solutions to the equations for stellar interiors are available only for
idealized cases of little practical interest. Models of the solar interior are computed
with the aid of high-speed computers, subject to the conditions that the solar radius,
mass, and luminosity are reproduced and that the model matches onto the solar
atmosphere.

II. HYDROGEN CONVECTION ZONE

Convective energy transport can become important if the temperature gradient

tends to become too large. This can be seen from the Schwarzschild instability
criterion,

dar
ar

dTr

= M

str ad

Consider a small bubble of gas that is adiabatically displaced upward while remaining
in pressure equilibrium. If the structural gradient is greater than the adiabatic
gradient, the gas in the test bubble would cool less and thus be at a higher
temperature than the surrounding gas. Since the bubble and the surroundings are in
pressure equilibrium, the bubble must be less dense than the surroundings and,
hence, subject to a buoyancy force. The result is that a bubble displaced upward
produces a force that accelerates. its upward motion. This situation is convectively
unstable, and the process of convection tends to reduce the temperature gradient to
the adiabatic value. In practice, one needs to consider the effects of viscous forces
and heat exchange (i.e., the range of values of the Rayleigh number) to see if
convection actually occurs.
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The zone beneath the Sun’s surface is convective because the opacity increases
sharply. A high opacity means a short mean free path for photons, so that a high
temperature gradient is needed to move the entire solar luminosity through the
subsurface layers. The gradient needed is so high that the Schwarzschild criterion is
met, and convection occurs.

~ Why does the opacity increase sharply below the photosphere" Consider the
Saha equation for the abundance of H™, which is the principal source of opacity in
this region. We can write

N(H)N,/N(H™) = constant X T¥2¢”//kT = f(T) , 2)

where f(T) is a slowly ‘varying function in the region of interest. Since
N(H™) /N(H) ~N,/f(T), the opacity can vary substantially only if N, does. For the
photosphere, N, /N(H) = 1074, since most of the electrons come from the easily
ionized metals. Below the photosphere, T rises to about 10000 K, hydrogen
becomes substantially ionized, and N(H™)/N(H) = N, increases by several orders of
magnitude. Below the convection zone, all the hydrogen is ionized, and other
opacity sources are important. It should be pointed out that the temperature
gradient in the convective zone does not approach the adiabatic gradient, because of
the relative inefficiency of the convective process in the Sun.

These convective motions produce observable features on the solar surface:
granulation and supergranulation. Solar granulation is a small-scale pattern observed
on the solar surface in high-resolution photographs. The mean diameter of the
granules is about 700 km, and mean half-life is about 4 minutes; the granules are
bright in the middle and dark near the edges. If a spectrograph slit is placed over this
pattern, one obtains a ‘‘wiggly” line image, indicating motion toward and away from
the observer. These velocities are approximately 1 km-s~1. Figure 2 shows the type
of systematic motion believed to be present in these convective cells. A detailed
study of convection using the so-called “mixing-length” theory leads to similar
velocities, but there are problems with this derivation.

Supergranulation is characterized by cells with diameters of about 30 000 km
and periods of the order of 1 day. Furthermore, they seem to be related to the Ca-1I
chromospheric network. The Ca-Il chromospheric network is studied from
observations of the emission that occurs in the center of the Ca-II K absorption line.
A portion of a photograph taken in the Ca-II K-line center is schematically indicated
in Figure 3. One finds clumps of bright emission, called plagettes, defining an
apparent “‘supercell”. These bright clumps coincide with intense regions of magnetic
field strength (as high as 100 gauss or more). Intense magnetic fields can enhance the
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Figure 2.—Schematic of convection cells (vertical section).
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Figure 3.—Schematic of supergranulation celis on the solar surface.
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generation and deposition of mechanical energy; such mechanical energy could be
generated by the motions in the hydrogen convection zone and penetrate into the
photosphere and the chromosphere to form the bright clumps. The magnetic fields
in the clumps are “frozen” in the solar plasma and are convected to the cell
boundary by the supergranulation motions themselves. Thus, the bright chromo-
spheric regions should be found concentrated in the boundaries of the supergranula-
tion cell, as observed. ‘

As a final observation on convective energy transfer, it has been found that the
entire photosphere moves up and down with a period of approximately 300 s and an

amplitude of 0.5 km-s~!. These pulsations could be driven by the hydrogen
convection zone.

IV. PHOTOSPHERE

The photosphere is the source of almost all of the photons we receive from the
Sun. A step in the direction of understanding the physics of how they are emitted is
the construction of a model atmosphere. A crucial observational step is to determine
the “temperature” of the photosphere as characterized by the radiation emitted.
There are three ways to do this:

(1) We can fit a Planck curve to the continuum spectrum. This method yields a
temperature of 6000 K. '

(2) We determine the solar constant and use Stefan’s law (flux ~ T%) to get an
effective temperature T, = 5750 K. ' ‘

(3) We can look at the ionization states of various elements in the spectrum
and define an ionization temperature.

Obviously, a good model of the solar photosphere must reproduce the
continuum spectrum, the total flux, and the observed lines. A good model
atmosphere of the Sun is very important because it is the cornerstone of our
understanding of the atmospheres of all other stars.

A. Radiative Transfer

Model atmosphere construction starts with a discussion of the equations of
radiative transfer. Let us begin with some definitions (Figure 4). If we consider the
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GG

Figure 4.—Quantities used in the definition of intensity.

do

radiant energy dE,{ in a cone of solid angle dw ﬁassing through a surface of area do
in time dt, and if axis of the cone makes an angle § with the normal to the surface,
the intensity I, is defined by '

dE,=1, cosf dwdvdtdo . (3)
We define a mass absorption coefficient K, by
dl,=-K,pl, ds, 4)

where dl, is the change in intensity of a pencil of radiation passing in the normal di-
rection through a slab of material of density p and thickness ds (Figure 5).
Similarly, we may define an emission coefficient i, by

dl,=jpds. )

Then, we may derive the equation of transfer from the change in intensity (Equa-
tions 4 and 5):

dl |ds=-pK, I +jp. (6)
We may also define the source function as
3,=1,IK, @

and rewrite the equation of transfer (Equation 6) as

-dl K pds=I -9, . = ®)
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If we further consider only problems of axial symmetry and plane parallel layers, we
may introduce the optical thickness (Figure 6)

T, =]:° K, pdz . ©))
Thus, we may rewrite Equation 6 as

==1,-94,, (10)

X 3
)
3
©

where we have let u=cos 6. Note that Equation 10 is a first-order differential
equation with a known solution. The solution for the radiation emerging from the
top of an atmosphere is

L, +u) = f g, +u)e"/"-‘f7‘. (11)
0

—_—,(Iy-dly)

|

AN
N

Figure 5.—Quantities used in the definition of the absorption coefficient.
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pol
A
p =cos 8

Z increases

Figure 6.—Schematic showing directional quantities and the optical depth in a model
atmosphere.

Equation 11 shows that the emergent radiation is simply the radiation emitted
at each point decreased by the opacity between that point and the top of the
atmosphere; note that a detérmination of ﬂp is a complete solution to the transfer
problem. There are two cases of special interest:

(1) Local thermodynamic equilibrium. If at each point in an atmosphere we
may write

j,=K,B,(T), (12)

where B (T) is given by Planck’s law, then we may say the atmosphere is in local
thermodynamic equilibrium (LTE). This assumption is really exact only if there are
no anisotropies, i.e., reasonably deep in the interior. Since the wings of most
absorption lines are formed sufficiently deep in the atmosphere, LTE is often a good
assumption for this part of the line. For LTE we have the source function,

§,=B(T). (13)

..
v
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(2) Scattered radiation. For this case, the emission coefficient is completely
due to scattered radiation. Thus, for isotropic pure scattering we may write the
source function in terms of the mean intensity Jv:

1 - .
3v=-’u=2;/ I dw. (14)
4n

B. Particular Solutions

Consider an atmosphere that satisfies LTE. We may rewrite Equation 10, the
equation of transfer, as

a, I -B(T 15
ME-I,,'S,,- ,~B(T). (15)

Thus, the determination of 7((z) determines the solution, through Equation 11.

If we then consider the photosphere to be in radiative equilibrium; and if we
take a layer that has a thickness which is small compared to R, we may define the
total upward flux as

aF = ﬂfw F (z)dv = constant . (16)
0
A constant net flux over all frequencies immediately implies
[0 JK,dv =[0 B,K,dv. an

In other words, every mass element must absorb as much energy as it emits.

C. Gray Atmosphere

We can now discuss a very idealized problem of interest. Consider an
atmosphere where K is independent of frequency; this is not a bad approximation
for absorption by the H™ atom. This is called a gray atmosphere, and the optical
thickness is given by

1=[ Kodz, (18)
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where the method of determining the mean opacity K is left undetermined. By
integrating the equation of transfer (Equation 8) over », we obtain

dl
u-(-l-;—l B. (19)

If the flux is constant, we find B =J, and the integrated intensity in a gray
atmosphere is given by a solution of the constant-net-flux problem. The
constant-net-flux problem is an old “war horse” of radiative transfer theory and has
well-known exact solutions. The average intensity at the surface is

J(r=0)= "3—/-6 F. (20)

Since the integrated Planck intensity is related to the local temperature by

nB(T)=1r[0°°Bv(T)dv=oT4, Q1)

we find a relation between the effective temperature T.¢ and the boundary
temperature T :

3%

4 - 4
TO 4 Teff >
or
T,=0.81T,; . (22)

For the Sun, this gives us T\, & 4600 K, which is fairly close to the minimum
observed solar temperature between the photosphere and chromosphere. To
determine the temperature distribution in a gray atmosphere, we utilize the source
function for the constant-net-flux problem:

§)=2Fr +q@), (23)

where g(7) = 0.58 at 7= 0 and q(r) = 0.71 at 7 =>oo, Thus, if we assume q(1)~ 2/3,
and if we use the Stefan-Boltzmann equation (Equation 21), we find

T4=-%Teff<]+%7) , (24)
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which is the temperature distribution in a gray atmosphere.
By using this relation and Equations 9 and 19, we find the distribution of
brightness as a function of u:

I+p, 7=0) = / B(t)e"/"ﬂ
=0

— F = [Thhedd

0
=B, (1 +—;-p) : (25)

This produces a limb-darkening relation of the form

dw ,
=D 1-u+tuu, (26)

where u = 3/5. The observational value is u = 0.56.

Limb darkening occurs because of the temperature gradient in the solar
atmosphere. That is, an observation effectively penetrates to one unit of opacity;
but because of the angle of observation, observations near the center of the disk are
of deeper or hotter regions.

Thus, the simplest ideas concerning the transfer of radiation and the photo-
spheric absorption coefficient are sufficient to produce some quantitative insight
into the variation of temperature (or intensity) with optical depth in the photo-
sphere.

D. Photospheric Structure

We have a relationship between the temperature and the optical thickness, but
we need additional equations to determine the structure of the photosphere. The
equation of hydrostatic equilibrium

dP=-pgdz 27
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and the equation for the mean optical depth

dr=-Kpdz (28)

can be combined to obtain

><!I°°

(29)

318

Since K is a function of temperature T, gas pressure P, electron temperature P,, and
composition A;, we need to know these parameters everywhere. The composition is
taken as known, and we already have a relation between T and 7. Furthermore, we
can derive a relationship for P, in terms of P(T). Thus, we can write the mean
opacity in terms of P and T. Finally, if we use the ideal-gas law as an equation of
state, we can establish a relation between optical and geometrical depth by
integrating Equation 29. This completes the logical specification of a model solar
atmosphere. -

E. Absorption Lines

The solar spectrum shows many absorption lines. The formation of the
absorption lines in the photosphere is handled as is shown in Figure 7. We introduce
pure absorption coefficients per unit mass K , and [ for the continuum and the line,
respectively. Scattering coefficients i, (noncoherent) and o, (coherent) are also
introduced. The equation of transfer then becomes

I (x,, 1)
Ho&, v+ 1,50, par

=1,(x,,m)-J,(x,,18), (30)

where the new, combined opacity is dx,=-(K,+1 +i +g¢,)pdr. It is then
necessary to specify the coefficients and the source function in order to solve the

problem. Consider the case of no scattering, i.e., pure absorption. Then, o,=i,=0.
If we assume the line is formed in LTE, then J, = B,. Physically, the atoms
absorbing at the line wavelength increase the opacity there, so we do not see as far
into the atmosphere as we do in the continuum. Since the temperature of the
photosphere increases with depth, we get a larger intensity in the neighboring
continuum than in the line.



INTRODUCTION TO SOLAR PHYSICS 15

Continuum

Absorption line

Equivalent width

“«—— VY

Figure 7.—Absorption line schematic.

A second case of interest is line formation by continuous absorption and line
scattering. In this case, i, = [/, = 0, and the source function is

K o

14 14
A TR A e (31)
14 1 4 14 v

Solution of transfer equation with this source function leads to somewhat different
predictions than with pure absorption. First, strong lines will be almost black at the
center (residual intensity = 0), whereas when LTE is assumed, the maximum line
strength corresponds to a residual intensity given by B,(T)/B,(T,¢c) = 1/4. Second,
absorption lines formed by absorption and line scattering do not disappear at the
limb, a conclusion in agreement with the observations. Absorption lines formed in
LTE should disappear at the limb. In addition, the formation of lines by scattering
in an absorbing atmosphere does not depend on a temperature gradient. Physically,
the scattering process increases the total effective path length of a photon, thereby
increasing the probability of absorption by H™ or some other absorbing constituent.
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F. Abundances

For the Sun, one uses model atmospheres to determine theoretical equivalent
widths for absorption lines. The theoretical equivalent widths are then compared
with observed equivalent widths, by the use of the curve of growth method. to
determine solar abundances. The principal uncertainties in the abundance
determinations appear to arise not from the photospheric models but from the lack
of reliable atomic parameters, which are needed to determine the curve of growth
accurately. '

A case in point is the recent redetermination of the solar Fe abundance, which
had been the cause of some controversy. The coronal Fe abundance apparently was
an order of magnitude higher than the photospheric determination. A recent
reevaluation of the Fe-I f~value showed that the previous determinations had been in
error and that the photospheric and coronal values are now in much closer
agreement. In general, f~values are usually uncertain by at least a factor of 2, and this
leads to similar abundance uncertainties.

V. CHROMOSPHERE

The chromosphefe is a most difficult and perplexing region of the Sun. It is as
much as 10* km thick and lies just above the photosphere. The temperature runs
from S000 K at the bottom to 10% K at the corona-chromosphere boundary. The
chromosphere is very inhomogenous in every variable, including time.

Most chromospheric information is provided by observations of the flash
spectrum during a solar eclipse when, as is shown in Figure 8, the Moon occults the
chromosphere. The raw data consist of measurements on a particular atomic line or
on many lines as the Moon’s limb moves across the chromosphere.

Interpretation of the flash-spectrum observations have shown that the
chromospheric temperature rises from about 4300 K at the lower boundary to about
6000 K at an altitude of some few thousand kilometers. At this distance, we enter a
region called the transition zone, in which the temperature rises to the coronal value
at the top. It is worth mentioning that because of the great difficulty in studying
this zone, the width of the transition zone is not well established; however, it seems
to become smaller with better data.

The chromosphere is best studied in Ha light up to about 4000 km. In the
lower part of the chromosphere region, the gas can be treated as approximately
homogeneous. From this lower layer emerge the brilliant streamers called spicules,
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which are a property of the quiet Sun. They extend some 10 000 km above the limb
and have a lifetime of about 5§ minutes. They rise and seem to fall along the same
path, indicating they are probably aligned with magnetic fields. It is likely that the
spicules are rising material from the lower chromosphere; but as is typical of what is
known of chromosphere, this fact is not well established.

In this very inhomogeneous region of the Sun, we can find CN lines and Fe-XI
lines appearing simultaneously. This indicates how important the fine structure must
be to an adequate understanding of the chromosphere. The fine structure manifests
itself in the bright chromospheric network. These bright regions are similar to plages,
and it is likely that the network arises from the breaking up of plages. :

The upper chromosphere may be heated primarily by conduction down from
the corona, whereas the fower chromosphere is probably heated by mechanical
energy. The source of heat is very difficult to analyze, because we do not really
know the shape of the boundary at the corona. Two alternative boundaries have
recently been suggested and are shown in Figure 9.

Chromosphere
g N line of sight ——»
MOON |
Moon's
motion

Figure 8.—Geometry of a solar eclipse.

W—LA J\)\ Spicules %
Transition Zone /\
' Most of boundary is vertical;

Transition Zone
Boundary is horizontal; therefore, heat flow is
therefore, heat flow is vertical. predominantly horizontal.

Figure 9.—Two suggestions for the shape of the transition zone.
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VL CORONA

The solar atmosphere above the chromosphere (r = 1.03R) is called the

corona. The light of the corona is generally divided into three components:

(1) The K corona, which is the continuum due to electron (or Thomson)
scattering of photospheric light.

(2) The E (or emission) corona, which is the total light of the coronal emission
lines.

(3) The F corona, which is solar radiation diffracted by interplanetary dust.
The K (electron-scattering) component is the most important one for determination
of large scale structure, and we shall examine it more closely next.

A. Densities

One tries to determine the coronal electron density from the intensity of light
from the corona. The difficulty is that we have to determine a three-dimensional
distribution from two-dimensional observations. Generally, one is forced to assume a
spherically symmetric distribution because almost any other assumption is too
difficult to work from or too arbitrary. Another problem is that the absolute
photometry is usually accurate only to a factor of 2 because of the difficulties of
doing photometry on extended areas.

A relationship for the intensity can be derived (assuming spherical symmetry)
as a power series:

I~ a,lr". (32)

From this, another power series, also in r, can be written for the electron density. In
practice, we find that only two or three terms are sufficient. In particular, we find
N, ~ 108 cm™3 in the lower corona, whereas N, =~ 106 cm™3 at 2R,

If we look at the corona during different times in the solar sunspot cycle, we
observe structural changes as shown in Figure 10. At solar maximum the corona is
almost spherically symmetrical, and it is appreciably flattened at sunspot minimum.
Polar streamers are also ‘quite apparent during sunspot minumum. At intermediate
stages, fans or large streamers approximately 1R long or greater can be seen as the
principal coronal features. '
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From the observations cited above, it can be seen that the assumption of
spherical symmetry is certainly not justified by observation. In particular, many
observers report electron densities separately for the poles and for the equator. In
the method generally used, an equatorial density is calculated and used to correct
the high-latitude polar data. Figure 11 shows why this is necessary. The line of sight
to the polar region passes through much of the corona at lower altitudes, so it is
necessary to know the electron densities there to correct the so-called ‘“‘polar”
observations. Some eclipse observations are consistent with there being no electrons
between the latitudes of 70 and 90 degrees. Thus, the polar electron data can be
considered to be in question.

Before considering temperature determinations for the corona, let us briefly
discuss the fan structures in the corona. Fans are the large streamers that determine
the general form of the corona at any given time. Fans are usually associated with
quiescent prominences, as shown in Figure 12. The base of the structure probably is

e ple

MAXIMUM MINIMUM INTERMEDIATE

Figure 10.—Schematic showing coronal structure during different parts of the solar
cycle.

Figure 11.—Schematic line of sight through the polar regions.
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DARK REGION
Prominence

Figure 12.-Schematic showing the relationship between quiescent prominences
' and coronal fans.

comparable in width and length, but it quickly tapers into a two-dimensional vertical
structure. The fan is composed of thin streamers, as shown in the magnified view.-
The prominence is probably formed by material condensing out of the fan.

B. Temperaturcs

The lines present in the emission spectrum of the corona are quite different
from the lines of the Fraunhofer spectrum. They are primarily forbidden lines and
arise from highly ionized atoms in a low-density medium. The three important lines

are given in Table 1.
If we assume N(1 -~ x) ions per unit volume in the stage p of ionization and Nx

in stage p + 1, we may write

x _Cp—-optl)

x"RGT1=p) = f(T, atomic parameters) (33)

for a steady-state condition, where C and R are the ionization rate and recombina-
tion rate, respectively. Note that the ratio does not depend on the electron density.
The most important recombination process for the corona is dielectronic recombina-
tion. In this process, one of the atom’s electrons is first excited; then recombination
takes place, leaving two excited electrons. This process turns out to be more effi-
cient than simple photo-recombination. Temperature determinations based on these
results yield an average coronal temperature of 2 X 106 K. ,
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Table 1.—Some lines in the corona with ionization potentials for the corresponding

ion.
A Ion Ionizatidn Potential
A) (eV)
5303 Fe-X1V 355
5694 Ca-XV 820
6375 Fe-X 235

The width of the coronal emission lines can also be used to determine
temperature. If we assume the line is broadened only by the thermal Doppler effect,
we may write an expression for the line profile:

I=I,exp[-(\- )\0)2/(57\0)2] , 34
where

8 = (\e)2KT/uM)!/? . (35)

If we call the full width at half intensity 4, then & = 1.678)\0 and

2
T=%ux 1.95 X 1012, (36)

For the Fe-X redline, u = 55.85, A = 6375A, h = 0.894, and T = 2.1 X 106 K.
Actually, a temperature range of 1.2 X 106 K <7 <4.5 X 10% K is observed using
this method, indicating that the fine structure is present. The hottest temperatures
are usually found over flaring regions.

When line ratios are used ‘to determine temperature, caution must be used
because there is no reason to believe both lines are fomed in the same region. Only if
two lines of the same element can be found that differ by one ionization state
should the method be attempted.

In principle, one can look at the thermal broadening of photospheric
Fraunhofer lines to determine the coronal temperature. Here, we use the Doppler
broadening equation (Equation 36), but with u =1/1836, the electron mass. The
best solar lines are the H and K Ca lines; but at 2 X 106 K, » = 170A. This large
width produces an exceedingly shallow and hard-to-measure depression. Thus, we
can set only a limit of 7> 105 K by this method.
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We can also try to determine the coronal temperature from structural
considerations. If we assume that the corona is isothermal, spherically symmetrical,
and in hydrostatic equilibrium, its density distribution follows the generalized

barometric relation
N GM _uM
e _ HMuf1 1
N ‘e"p[ R KT <r ro)]' G7)

e,0

By taking logarithms, differentiating, and solving for T, we find

_1.004 X 107u
d(log,o N,)/d(1/r)

(38)

If we assume He:H = 1:10, then u = 0.608. The observed function log N, (r) implies
a temperature of 1.5 X 106 K, which apparently is a little low. The problem is
probably caused by the fact we assume a spherical distribution to determine N, (r),
whereas in fact the matter is somewhat confined to rays. Thus, the observed
line-of-sight decrease in column electron density is caused both by a real decrease in
N, and a decrease in the fractional volume of the rays. When we take this into
account, the tendency is for a slower decrease in N, and for higher temperatures
(e.g., close to 2 X 106K).

C. Origin

The source of these high temperatures still remains in question. The convective
motions of the hydrogen convection zone no doubt generate acoustic waves, or
noise, which carry mechanical energy to the transition zone, where it is dissipated.
This process produces high temperatures because of the low densities present in the
corona. The most efficient way to lose this energy would be for the hydrogen to
radiate it away; however, the hydrogen is completely ionized, so we must find other
processes. One of these is conduction back into the chromosphere; the other is the
expansion of the solar wind.
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CHAPTER 2
INTERNAL ROTATION OF THE SUN*

R. H. Dicke
Joseph Henry Laboratories
Princeton University, Princeton, New Jersey

L. INTRODUCTION

The question of whether rotation occurs in the deep solar interior is a
controversial subject of considerable importance to relativity theory as well as to
solar physics. The survival of Einstein’s general relativistic theory of gravitation or
the establishment of the scalar-tensor theory may hinge upon the absence or
presence, respectively, of rapid rotation in the deep solar interior. If a rapidly
rotating solar core exists, with a rotational period under 2 days, it could be the
source of angular momentum supplied to the solar wind, of internal mixing through
the transport of matter along with angular momentum, and perhaps of solar activity
leading to the sunspot cycle.

In prerelativity days, the observed excess motion of Mercury’s perihelion
(43" £ 0.4” per century) (Clemence, 1943; Duncombe, 1958; Wayman, 1966) was a
mystery and led to several unsuccessful attempts to find a perturbation that could
account for the effect (Leverrier, 1859; Chazy, 1928). The suggested sources include
interplanetary material, Vulcan (a hypothetical and still undiscovered planet), and
the flattened mass distribution of an oblate Sun (Newcomb, 1897).

All of these suggestions must now be discarded. The interplanetary dirt and
spare planet have not appeared, and a solar gravitational quadrupole moment large
enough to generate the full excess centennial motion of 43"’ in Mercury’s perihelion
would also cause a 43" regression of the node on the plane defined by the Sun’s
equator, far too large to be allowed.

The urge to find a prosaic source for the excess motion of Mefcury’s perihelion
disappearéed with the appearance of Einstein’s general relativistic theory of
gravitation. This accounted for the full 43" motion as a relativistic effect; but with
the recent increased interest in the scalar-tensor theory of gravitation (Jordan, 1948,
1959; Thirry, 1948; Bergmann, 1948; Brans and Dicke, 1961; Dicke, 1962), the

*A similar version of this paper appeared in Annual Review of Astronomy and Astrophysics 8:297-328, 1970.
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question of a possible nonrelativistic origin for part of the 43" motion is of interest.
The scalar-tensor theory is a general relativistic theory for which the relativistic
perihelion rotation of Mercury’s orbit is

3wt4
3wté6

X 43" per century , a

where w is the coupling constant of the Brans-Dicke (1961) form of the theory. This
constant w has been estimated on various grounds to fall in the range 4 <w <7
(Brans and Dicke, 1961; Dicke and Peebles, 1965; Dicke, 1966).

If the “observed” excess motion, calcul_élted from planetary perturbations only,
is as accurate as claimed (43.0” + 0.4" (see Duncombe, 1958)1, Einstein’s theory is
favored; but some additional perturbation, such as that from a flattened Sun, -
generating a motion of 4" per century would favor the scalar-tensor theory with
w =35,

With these facts in mind, the author suggested (Dicke, 1964) that the Sun may
have a distorted interior induced by a rapidly rotating core, the fossil remnant of the
rotation of the young Sun. (Rapid internal rotation was also discussed by Roxburgh,
1964; Plaskett, 1965; Deutsch, 1967.) It was assumed that in the density-stratified
interior, below the convective zone, quasi-stable rotation of a core was possible with
angular momentum diffusing to a thin shell of instability lying below the convective
zone. This shell and the outer convective zone were assumed to have been rapidly
rotating initially, but subsequently slowed by a solar-wind torque. In collaboration
with P. J. E. Peebles, the author formulated a theory of the solar-wind torque along
lines similar to the ideas of Schatzman (1959) and Cowling (1965) and used the
resulting formulas in the 1964 paper to estimate the solar-wind torque. Equivalent
formulas were independently derived by Modiesette (1967), Weber and Davis
(1967), and Alfonso-Faus (1967). ,

The estimated torque (4 X 1030 dyne-cm) was based on early and preliminary
measurements of the solar-wind flux and an estimated strength at the Sun of the
magnetic field drawn out by the solar wind (=3/4 G). Later, when observations were
available, this field strength was found to be in reasonable agreement with
observations of the field in the solar wind at the Earth, if a purely radial flow of the
solar wind was assumed. It was also shown in the 1964 paper that the estimated
solar-wind torque was in reasonable agreement with that derived from an
approximate solution to the diffusion equation applied to the diffusion of angular
momentum from the core to the outer stlowly rotating shell.
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One interesting aspect of stellar-wind braking concerns the old problem posed
by the apparent break in the rotational distribution at spectral type F5. Stars much
bluer than FS are rapid rotators, and old stars much redder than F5 are slow
rotators. Schatzman (1959, 1962) pointed out that the transition between stars with
deep radiative envelopes and those with deep subsurface convective zones occurs
among the early F-type stars, and he developed a theory of stellar braking using
magnetic fields derived from jets or flares associated with such subsurface convective
zones. Kraft (1967) noted that the connection between such subsurface convection
and a stellar wind could explain why stellar-wind braking of young stars is limited to
stars redder than F4.

It was noted in the 1964 paper that a solar gravitational quadrupole moment
large enough to induce a centennial motion of 4"' in Mercury’s perihelion (needed
for w =5) would also induce an oblateness [Ar/r = (req -, )r]of 5 X 1073 in the
Sun’s atmosphere. This oblateness would be in addition to the 1 X 107% due to
surface rotation. It was also noted that the 4’ regression of the node on the solar
equator expected from such a distorted Sun, when referred to the plane of the
ecliptic, represents principally a centennial decrease of the inclination (0.21"'). The
observed residual in the rate of increase of the inclination (-0.12"' £ 0.18"";Clemence,
1943) is to be compared with the above (-0.21"). (See later discussions of this
question by Shapiro, 1965; Audretsch et al., 1967; Gilvarry and Sturrock, 1967; and
O’Connell, 1968.)

In the spring of 1963, H. Hill, H. M. Goldenberg, and the author designed and
built a new type of instrument designed to measure the solar oblateness (Figure 1).
This was installed in its own observatory at Princeton and put into operation in- the
late summer of that year. The summers of 1964 and 1965 were used for studying
and improving the instrument. The first high-quality measurements were made in the
summer of 1966 and published in an abbreviated form (Dicke and Goldenberg,
1967a). A full treatment of these measurements will soon be given. These
measurements showed the Sun to have the oblateness (5 £ 0.7 X 1073 ) expected if it
possesses such a rapidly rotating core. Associated with an oblateness of 5 X 1073 (if
our interpretation is correct) is a perihelion rotation of 3.2"", making the ‘“‘observed”
relativistic rotation 39.8" * 0.4 consistent with the value 38.9"' expected under the
scalar-tensor theory with w = 5. Unpublished measurements during the summer of
1967 gave the same oblateness with comparable precision.

The publication of these preliminary rg_sults was followed by a rash of
criticisms, comments, and reinterpretations. Opik (1967) and Ashbrook (1967)
suggested that our observations may not have been as accurate as we thought. (See
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Figure 1.—The optical system of the solar-oblateness telescope. An image of the Sun
is projected on a stationary occulting disk that stops all the light except that
from the outer 6.5, 12.9"”, and 19.2". Light passing the occulting disk is
“chopped™ at = 100 cycles per second by a spinning disk. Light from the
center of the Sun’s disk provides a normalization signal. Calibration is carried
out by replacing the circular occulting disk by one with a stepped edge.

Dicke, 1967a and 1967b, for replies to these comments.) Roxburgh (1967a, 1967b),
Cocke (1967a), Sturrock and Gilvarry (1967), and Durney and Roxburgh (1969)
suggested that the excess solar oblateness did not imply a gravitational quadrupole
moment. (See Dicke and Goldenberg, 1967b, and Dicke, 1970a, for discussions of
these suggestions.) Howard et al. (1967) and Goldreich and Schubert (1967a,
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1967b) suggested that a rapidly rotating core was impossible because of spin-down
by Ekman pumping or a thermally driven instability, respectively. (For comments on
these papers see Dicke, 1967c, 1967d; McDonald and Dicke, 1967; Colgate, 1968;
and Clark et al., 1969.) The instability argument of Goldreich and Schubert depends
upbn a model of the interior and is no more certain than the model.

In general, observations of the solar surface which have a bearing on the
existence of a rapidly rotating core are more valuable than detailed calculations on
the unknown solar interior. The important observations concern the solar
oblateness; the velocity fields, including rotation in the “‘seen layers’ of the Sun; the
magnetic fields in the “‘seen layers”; the abundance of lithium and beryllihm; and
the structure of the solar wind. In the absence of magnetic and velocity fields at the
solar surface, the oblateness yields the gravitational quadrupole moment unambig-
uously. It must be emphasized that magnetic and velocity fields must be in the
“seen layers” of the Sun, hence observable, if they are to affect this relationship.
This will be discussed later.

The history of the solar system casts some light on the solar rotation problem.
Although the Sun’s past may seem more hidden than its interior, the assumption
that it is a typical main sequence star of 1 solar mass means that observations of
young solar-type stars are capable of showing the appearance of the Sun at the same
age. We make this assumption.

Kraft (1967) has shown that stars of 1.2 solar masses in the Pleiades have
surfaces rotating with (V) ~ 40 km-s~! with the same angular velocity as that of the
postulated rapidly rotating solar core. The extrapolation of the observation to G2
spectral-type stars in the Pleiades indicates that these solar-type stars may have an
average surface velocity of ~ 10 km-s'_l. This represents an angular velocity only
one-fourth that needed in the solar core. With the assumption that such stars possess
solar-type rapidly rotating cores, stars redder than F5 probably arrive on the main
sequence rotating differentially. For the Hyades, approximately 5 X 108 years older,
the rotation Has decreased by a factor of 2. For very old stars, the rotation is almost
imperceptible, as shown in Figure 2, based on Figure 17 of Kraft (1968). These
observations suggest that the Sun was originally rotating with a 1- to 2-day period
and that the solar wind has slowed the rotation of either the whole Sun or an outer
shell.

A compelling argument in support of the contention that only an outer shell is
slowed is provided by observations by Herbig (1965) and others of the abundances
of lithium and beryllium in solar-type stars of various ages. (See survey article by
Wallerstein and Conti, 1969, for references.) Apparently, solar-type stars -arrive on
the main sequence with abundances of both lithium and beryllium that are
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Figure 2.—The logarithm of angular momentum per unit mass of stars various ages.
and masses versus log M; rigid rotation is assumed. For stars bluer than F,
(more massive than log M = 0.2) the surface rotation is independent of age.

This figure is based on Figure 17 of Kraft (1968).

characteristic of chondritic meteorites. The lithium becomes depleted as the star
ages, with a mean life of 7 X 108 years (Danziger, 1969), but the beryllium does not
become depleted. Danziger (1967) has noted that the e-folding times for the
decrease of lithium and of the rotational velocity are equal for young solar-type
stars, which suggests that the two processes may be related.

The observations seem to imply that solar-type stars are mixed as deep as
r =0.6R, but not as deep as r= 0.5R; where beryllium is burned, but some type of
mixing seems to be required if angular momentum is to be removed from the deep -
interior by the transport of material, for angular momentum will diffuse only to
-about r = 0.05R during the life of the Sun.

Goldreich and Schubert (1967a) used this argument to conclude from the
presence of lithium and beryllium in the Sun that the Sun arrived on the main
sequence slowly rotating. If their argument were valid, it would imply that.the late
F-type stars and early G-type stars in the Pleiades must be slow rotators, for the old
stars of these types are invariably slow rotators and they contain the normal amount
of beryllium. Apparently, the most reasonable interpretation to make of the
observations is that the solar-wind torque slows only an outer shell (Dicke, 1964)
approximately 0.4R, thick (Dicke, 1970c).
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Eighty-four percent of the moment of inertia of the Sun falls inside the radius
r=0.6R, (see Table 1). Hence, if the solar wind slows only an outer shell, in
thickness only 0.4R, the total angular momentum is substantially unaffected, and
there is no great difference between the angular momentum per unit mass of
solar-type stars and more massive stars. An enigma in old theories of the origin of
the solar system has disappeared. These theories could not explain the slow rotation
of the solar-type stars. The approximate equality of the angular momentum of the
planetary system with the assumed initial total angular momentum of the solar
system, an apparently fortuitous relation, compounded the difficulty, for it seemed
necessary to find a mechanism to concentrate the angular momentum in the planets.
Hoyle’s (1960) theory of the solar system provides an effective means of transferring
angular momentum out of the proto-Sun through magnetic torque; but the:
observations of rapid rotation in young solar-type stars show that these stars initially
have a great deal of angular momentum. Most of this remains in the deep interior if
our picture is correct.

A difficult question concerns an internal magnetic field. One might expect a
strong magnetic field to be trapped in the interior of the proto-Sun; but with the
alternating sunspot cycle, a 22-year period, the present solar field appears

Table 1.—The slowing of rotation of a shell by a solar wind of equatorial torque

density 108 dyne-cm™!.

. T T
re L/ (rigid rotation) 9
, (109 years) (10?7 years)

0.86 0.0122 0.173 0.173
0.78 0.034 0.48 0.51
0.70 0.074 1.04 1.28
0.62 0.140 : 1.98 2.88
0.54 0.241 3.40 6.05

Note: Decay time in years and fractional moment of inertia as functions of the inner radius of a uniformly
rotating outer solar shell; it is assumed that only the shell is slowed by an equatorial solar-wind torque
density of 108 dyne-cm™!. The decay time for the whole Sun rotating rigidly is 14.1 X 10° years,
In the last column the decay time is calculated for a rigidly rotating convective zone and a differentially
rotat_ing inner zone, with w = (rl,/r)2 wg for re<r<r,= 0.85R,.
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superficially to have its origin in the convective zone. It has been suggested that
convective mixing during the Hayashi phase might convert the long-lived low
magnetic modes to short-lived high modes that would decay after the cessation of
convection in the interior but persist in the outer convective zone (Dicke, 1964;
Cowling, 1965). To eliminate low modes by this mechanism sufficiently to permit
internal differential rotation no longer seems feasible to the author. At least two
other possibilities remain. The internal magnetic field might be eliminated by a type
of “beer foam process”. If the internal field should become highly contorted during
an initial convective phase, the radiative core might grow outward from the center
by filling with field-free gas flowing along substantially field-free canals. Being free
of the magnetic pressure, this field-free gas would tend to be denser than its
surroundings and settle to the center.

A second possibility seems more likely. It will be the subject of a future
publication and is mentioned here only because of its relation to a rapidly rotating
core. It is possible that the Sun arrives on the main sequence with its magnetic field
oriented perpendicular to the rotation axis and cut off from the convective zone by
a shell of differential rotation. Such an orientation might be expected because of an
instability associated with the Hoyle (1960) magnetic braking of the proto-Sun. For
simplicity, assume that the magnetic field is trapped in a-dipolar configuration and
links the central condensation with the outer solar nebula. The rapidly rotating
proto-Sun is flattened because of the tension (pr? in the direction of fluid motion).
As the energy of rotation is converted into toroidal magnetic energy, the negative
motional tension is converted into the positive magnetic tension B?/4w. When
roughly half of the kinetic energy is lost, the proto-Sun becomes prolate and is
probably unstable. It should then precess to the quasi-stable perpendicular position.
This position may remain stable after the decay of the toroidal field. With a
magnetic field in this perpendicular configuration, it penetrates only a few
kilometers into the shell of differential rotation. Magnetic A-type stars might be
exceptions where, for some reason, the shielding by differential rotation has not.
appeared, or has been lost, exposing the strong internal field at the star’s surfaces.

The rapidly rotating core containing a magnetic field in the perpendicular
orientation is capable of a torsional oscillation of high Q for which the north and
south magnetic poles oscillate back and forth between the northern and southern
hemispheres of the rapidly rotating core, and toroidal fields of opposite sign and
alternating polarity are generated in the two hemispheres. Magnetic buoyancy might
cause this toroidal field to float up to the convective zone, providing an explanation
of the sunspot cycle as an effect of this oscillation. With reasonable magnetic-field
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strengths, the period of this oscillation can be made to 22 years. Owing to the
stability of the frequency of the oscillating core, this model has implications that
can be tested with observations of the sunspot cycle. These analyses have been
carried out and will be reported elsewhere. (See Dicke, 1970c, for a brief dis-
cussion.) A torsional oscillation in the rapidly rotating core may have implications
for the Goldreich-Schubert instability, for the 6-component of velocity can be as
great as 1 m-s"! eliminating these slow-growing axial modes (Goldreich and

Schubert, 1967a).

II. THE SOLAR OBLATENESS

In earlier days, the Sun’s oblateness was measured photographically (see
discussion by Schaub, 1938) and, more accurately, with the heliometer, a telescope
with a split objective (e.g., the work of Schur and Ambronn, 1895, at the Gottingen
Observatory). Opposite limbs of the two solar images could be brought into contact
by adjusting the two halves of the objective, whose separation provides a measure of
the corresponding diameter.

Several possible difficulties with these measurements are apparent. The solar

limb frequently has a width of 3" to 5 when the Sun is high in the sky, where it
should be if atmospheric refraction is to be manageable, but the anticipated
oblateness represents a difference between equatorial and polar radii of only 0.05",
1 percent of the ‘“‘seeing” width. Owing to an expected small anisotropy in the
seeing disk associated with anisotropy of the turbulence near the ground, the
-northern and southern limbs of the Sun might be more (or less) diffuse than the
" eastern and western limbs near the meridian, causing a systematic error. Further-
more, problems of personal bias are very difficult when the measured effects are so
small relative to seeing widths. Also, the heliometer may not have been free of
systematic errors associated with gravitational distortion. These instruments required
a 90-deg rotation of the objective system in the Earth’s gravitational field. Any
gravitational distortion would change with such a rotation.

The instrument designed by H. Hill, H. M. Goldenberg, and the author
incorporated a number of improvements. This system is shown in Figure 1. Instead
of measuring the position of the solar limb, the light flux was integrated from the
edge of an occulting disk, a position near the limb, outward beyond the limb to an
aperture stop a few tens of seconds of arc beyond the limb. Anisotropic seeing
induced near the ground would be expected to spread the light but not change the




32 _ PHYSICS OF THE SOLAR SYSTEM

flux. Anisotropy can still introduce some error because of the gradient in limb
darkening at the edge of the occulting disk, but the effects are much reduced. The
telescope was vertically mounted to avoid a change in gravitational distortion with
rotation.

The problem of separating the signal from the noise was solved by measuring
photoelectrically. A rapidly spinning wheel perforated by two apertures of different
sizes at the ends of a diameter scanned the light flux passing the occulting disk. The
photoelectric signals were analyzed electronically in an impersonal way to measure
the amplitudes of the sine and cosine terms of the second harmonic of the rotation
frequency of the wheel. One-min averages were recorded on a punched magnetic
tape, and the vertical telescope was rotated through 90 deg between the 1-min runs.
The results recorded on the punched tape were analyzed by a computer. The
scanning wheel also provided an error signal fed back to the main mirror to
servolock the Sun’s disk to the occulting disk, causing the Sun’s disk to be
accurately centered.

During a typical day of 6 hours, the Sun’s image rotated through 90 deg
relative to the telescope. The sine and cosine amplitudes were combined linearly to
give the north-south (or vertical) component of the oblateness (Ar/r) cos 2P and the
northeast-southwest (or diagonal) component (Ar/r) sin 2P, where P is the angular
position of the Sun’s rotational north pole measured eastward from the north point
of the disk.

The two mirror cells were rotatable about the mirror axes, and the mirrors were
cycled with a 2-day period through all four combinations of positions to permit the
elimination of errors due to mirror astigmatism. The only astigmatid error not
eliminated is the off-axis error associated with a slight curvature of the main mirror
viewed obliquely. This error contributed to the vertical component of oblateness
only; the diagonal component was unaffected. Except for the effect of this off-axis
astigmatism, the instrument is believed to be free of significant systematic errors,
and measurements of the diagonal component are believed to be reliable. The
telescope aperture was about 6.35 cm and was stopped below 2"'. The instrument

" probably has the largest ratio of pounds of electronics to pounds of telescope of any
telescope in existence.

The instrument permitted checks for systematic errors, and there was an
accurate and reliable means of calibration that was repeated several times during
each day. In addition, several internal checks of the data were possible. The
contribution from atmospheric refraction to the measured diagonal component of
the oblateness is usually large, ranging for September 1 from -4 X 10”4 at 9 a.m. to
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zero at noon to +4 X 10"% at 3 p.m. On July 16, the corresponding values are
-2 X 10'4, 0, and +2 X 10™ 4. This refractive contribution to oblateness is large, but
it can be computed from atmospheric conditions measured in the observatory. For a
laminar atmosphere, it is independent of conditions above the ground. After
subtracting the computed values, the residuals are observed to be constant through
the day (except for a small time-varying residual late in the summer when the Sun
was low in the sky). On July 16, the residual in the diagonal component, (Ar/r) sin
2P, is approximately 7 X 1076, or only 3 percent of the refractive effect. That this
small residual should be constant during the day indicated that the instrument has
been correctly calibrated.

The most important internal check of the data is based on the change in
orientation of the Sun’s axis through the summer season. On July 7, the axis is in
the nortli-south direction and the diagonal component should be zero. Also, for any
assumed constant oblateness along the rotation axis, the variation of the diagonal
component with date (through the term sin 2P) is predictable. For an oblique
distortion axis the oblateness should vary with the solar-rotation period. This
variation is not present to any marked degree. The change of the observed diagonal
component with time through the summer of 1966 is shown in Figure 3. The curve
is calculated with the assumption that the solar oblateness is equal to Arfr=
(r, e~ )r=15X 1073, During 1967, the observational period was longer, but the
weather was substantially worse. The same oblateness was obtained with comparable
precision.

One interesting interpretation of the data of Figure 3 is based on least-squares
fits of the curve shown in Figure 3 to data representing different amounts of
exposed limb averaged in various ways. In permitting the curve to float up and
down, the date for crossing the abscissa will vary, and this change in crossing date
can be interpreted as equivalent to an angle between the rotation axis and oblateness
axis. Based on 15 different analyses of the data, the average crossing date is July
5.4, * 3.4 days, whereas it should be July 7. This corresponds to the oblateness axis
leading the rotational axis by 0.7 + 1.4 deg as they rotate together counterclockwise
on the sky through an angle of 40 deg. It is difficult to believe that these results are
fortuitous, that instrumental and atmospheric effects would so conspire as to yield
the curve of Figure 3 with a crossing date differing only a few days from July 7.

Measurements were made with three different distances from the edge of the
occulting disk to the limb. This permits a separation of a signal due to the variation
of brightness with latitude from the oblateness signal. The oblateness signal is
proportional to the brightness of the photosphere at the edge of the occulting disk,
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Figure 3.—The solar oblateness, diagonal component, for 1966. Observations are
averages over a 7-hour day. Points are approximately 10-day averages at three
different amounts of exposed limb. The curve was calculated by assuming
Arfr=5X 1075,

but the intensity signal (associated with a variation with latitude of the photospheric
brightness) is proportional to the integrated flux passing the occulting disk. For the
edge of the occulting disk to be at the three distances 6.5", 12.8"', and 19.1" from
the Sun’s limb, the photospheric brightness at the edge obtained from a
limb-darkening curve is proportional respectively to 0.380, 0.400, and 0.432. The
integrated flux is respectively 3.1, 5.4, and 8.34 (Dicke, 1970a). Measurements were
made at these positions referred to the “extrapolated limb”. With the measured
values of edge brightness and light flux, the signals obtained at any two of the three
positions are easily separated into the two parts.

‘ Later measurements made with an annulus on the solar disk near the limb
permitted a determination of oblateness from the limb-darkening effect and
eliminated the chromosphere as a significant source of signal. The annulus technique
was also used far from the limb to investigate the dependence of solar brightness
upon latitude. None was found. Measurements of the solar oblateness were made
with two broadband filters in the red and green; in 1967, these filters were
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frequently switched. No systematic dependence of oblateness on color was found. A
few oblateness measurements were also made with an Ha filter as a separate check
on the contribution to the oblateness signal from the chromosphere and from
chromospheric lines on the disk.

One frequently raised question about the solar oblateness concerns solar
activity and the effect of active patches, faculae, and sunspots on the measurements.
" There are two aspects to this question: (1) Is the shape of the solar surface distorted
by the solar activity a distortion not mirrored in the gravitational quadrupole
moment, and (2) does an active patch at the Sun’s limb adversely affect the
measurement of solar oblateness? The first question will be discussed in the next
section; the answer to the second question is yes. A large sunspot lying on the limb
can induce a 20- to 30-percent error in the results for that day, but this happened
only infrequently in 1966 and 1967, when the Sun was reasonably quiet.
Furthermore, the error would be interpreted largely as an intensity signal, and the
absence of a significant signal of this type provides an internal check for the
insignificance of this effect. The systematic error in average oblateness from this
effect is negative in sign (i.e., prolate) but is too small to be significant.

The conclusions from these observations are as follows:

(1) The values of the solar oblateness during 1966 and 1967 were equal, and
Arfr=5X1075.

(2) This photospheric oblateness was independent of color.

(3) The contributions from the chromosphere and corona to the oblateness
were unimportant.

(4) The contribution from chromospheric lines on the solar disk was
‘unimportant.

(5) During 1966 and 1967 the effective temperature of the photosphere was
remarkably free of variation with latitude. There was no convincing stationary
dependence on latitude (< 3 K).

III. SOLAR OBLATENESS AND THE GRAVITATIONAL
QUADRUPOLE MOMENT

In this section it will be assumed that the solar oblateness has been measured to
be 5 X 1073. The implication of this measurement for the existence of a quadrupole
moment will be considered. This question has been discussed in detail (Dicke,
1970a).
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The direct and umambiguous relation between the oblateness of the Sun and
the solar gravitational quadrupole moment under certain conditions hinges upon a
functional relationship used by von Zeipel (1924). As used here, it can be stated: In
the absence of magnetic and velocity fields in the ‘seen layers” of the Sun, surfaces
of constant P, p, T, and ¢ (gravitational potential) coincide; i.e., pressure, density,
and temperature can be considered to be functions of gravitational potential. Also,
as will be discussed below, for uniform rotation (or rotation on cylinders), these
relations hold with ¢ replaced by ¢ plus a centrifugal potential. This functional
relation was used by von Zeipel (1924) to derive his well-known paradox. Unlike
von Zeipel, we are here interested in the validity of these relations only in a limited
region of the Sun, the part actually seen. If only a part of the solar surface is free of
magnetic and velocity fields, the functional relation is applicable to this part.

The proof of this relation is trivial. In the absence of magnetic and velocity
fields,

0=VP+pVy. 2)

Thus, the vector normal to a surface of constant P coincides with the normal to a
surface of constant ¢, which implies that two such surfaces coincide everywhere if
they touch anywhere. Taking the curl of Equation 2 shows that surfaces of constant
p and ¢ coincide. For a uniform composition, T is a function of P and p, and
surfaces of constant P, p, T, and ¢ coincide; or P, p, and T are functions of ¢. This
result follows for any patch on the Sun’s surface, simply connected or not, that is
free of these fields.

" Inasmuch as the gravitational potential has a simple, layered structure, the
atmosphere must have the same layered structure in pressure, density, and
temperature wherever the theorem applies. It has been verified that the effect on the
shapes of surfaces of constant ¢ due to the presence of the gravitational quadrupole
moment in question is so minor as to not affect noticeably this simple layered
structure (Dicke, 1970a). Hence, the limb-darkening curve would be substantially
independent of latitude. Furthermore, an analysis of the factors affecting the
position of the solar limb shows that if such a quadrupole moment exists and von
- Zeipel’s assumptions are valid, the position of the solar limb is determined by the
position of a surface of constant density with an accuracy of approximately 3 m
(Dicke, 1970a). The expected brightness at the limb under these conditions should
be free of any noticeable dependence on latitude. In summary, when von Zeipel’s
relations are applicable, and with the oblatenéss of a surface of constant
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gravitational potential at the Sun’s surface being of the order of 10~ the location
of the limb of the Sun is determined to high precision by a surface of constant
density and, hence, gravitational potential.

In an expansion of the gravitational potential outside the Sun in spherical
harmonics the gravitational quadrupole moment is determined by the second zonal
harmonic, falling off inversely as the cube of the distance from the Sun’s center. The
oblateness of surface of constant gravitational potential at the Sun’s surface is given
by

@rir)y = oyl =315, )

where

3
0y =54,(GMy[r)rg

is the coefficient of the term (1/3 - cos? 8) in the expansion. The limb temperature
is expected to be remarkably uniform, and the variation of disk brightness with
latitude should be less than 0.01 percent (Dicke, 1970a).

The limb occurs at an optical depth of about 0.004 and a density of
approximately 2 X 10~8 g-cm™3. One might think that a very strong magnetic or
turbulent velocity field just below this layer would affect the oblateness of the limb;
but as shown above, such is not the case. Similarly, one might think that the tension
of the strong magnetic field of a sunspot would depress the level of the photosphere

-over a large area surrounding the sunspot; but as shown above, such a strong
field cannot affect the height of the photosphere anywhere except at the location of
the magnetic field. Also, the only significant effect of the sunspot on the measure-
ment is induced by the darkening of the sunspot, not the change in level (Dicke,
(1970b).

As was noted above, von Zeipel’s functional relations include the effects of
rotation whenever the rotation of the surface layers is on cylinders, i.e., the angular
velocity w is a function only of distance from the rotation axis. If, and only if,
purely rotational motion is on cylinders, the “centrifugal force” term is derivable
from a potential, and the inertial term can be added to Equation 2 by including a
centrifugal potential. Then, the equation is still valid with ¢ replaced by

rsin@
P=p- /; wr sin 0d(r sin 6) . “4)
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Including the effects of rotation of the Sun’s surface, the oblateness of a
surface of constant p is also the oblateness of a surface of constant . From this
oblateness, the contribution of the centrifugal potential (8 X 107¢) must be
subtracted before the oblateness of the surface of constant ¢ is obtained.

Only one thing more is needed for a complete description of the connection
between the observed solar oblateness and the gravitational quadrupole moment.
When magnetic and velocity fields exist in the “seen layers’ of the solar surface, von
Zeipel’s relations are not exactly satisfied, and the effects of these fields must be
included. Such fields may contribute generally different amounts to the oblateness
of surfaces of constant density and pressure. The surface rotation discussed above is
a special case for which these two contributions are equal and the temperature hence
constant on the surface.

The surface fields usually induce different oblateness in density and pressure
surfaces, and the contribution to the oblateness of a constant density surface is
usually accompanied by a variation of brightness with latitude. Only for a carefully
selected stress distribution in the surface layers is the surface brightness independent
of latitude.

For an arbitrary distribution of magnetic and velocity surface stresses, these
contributions to the oblateness of constant density and pressure surfaces are known
(Dicke, 1970a). They are conveniently expressed in terms of integrals over the
surface of a set of basic stresses. These are Pf, the field pressure;S,, the radial shear;
S}, the transverse shear; and S,, , the meridional shear. The defining equations are

P .=

1.1 5
f 81rB+3pv,

21 2 2_,2_.2
S, =-=7- (2B} -Bj-B)) +p(2v; = v5=v,),

()
1 1
S, =- Py (Bg -Bi) +§p(v§ - v:) ,

and

_ 1
S, =- Z;_B,Be +pvv,.
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In Legendre polynomial expansions of p and P over a surface of constant ¢, 5p, and
8P, the coefficients of the second Legendre polynomial (1/3 - cos?6) are given by

45
6P—§ (P ——s) (cosze-%) sin 6d6 - — fs sin3 646
0

15 5,d 5 P
Y jSm cos 8 sin? 0d6 (6)

and

_‘El.‘iz 201 15d .3
g6p 16,2 dr r jS (cos 0 6)sm6d0+ 3 dr S, sin” 6d0

15/ 4 1 d? . 3
+ S(r rz)f Sm cos 0 sin- 0do . N

The quantities 8P and 6p can also be interpreted as contributions to the
-equatorial excesses of pressure and density on surfaces of constant ¢. The
contributions to the oblatenesses of surfaces of constant pressure and density in-
duced by these fields are

(Ar/r)p = 8P|rgp (8)

and
(Arfn), =\, [r)(8plp) , ®

where )\p is the density scale height and g is the gravitational acceleration. The
temperature excess at the equator on a surface of constant density is

8T =-[(Ar/r)p - (Ar/r)p]ugrR'l , (10)

where u is molecular weight and R is the gas constant,.



40 PHYSICS OF THE SOLAR SYSTEM

The oblateness of the Sun is observed at the limb at an optical depth of
approximately 0.004, but the whole of the Sun is observed to be remarkably free of
a variation of brightness with latitude. This implies that any acceptable distribution
of surface fields must generate equal oblateness in the observed surfaces of constant
p and P, and this oblateness must be substantially independent of optical depth over
the range of 0.004 to 1. Thus,

(Ar/r)p = (4r/r), = constant . an

Equation 11, in turn, implies that such a distribution of surface fields induces a
force per unit volume of the form -pVW, where W is some scalar function of the
polar angle 8 and is only weakly dependent on r. A variation of W with latitude by
an amount 6W generates an outward displacement of a surface of constant p, P, and
T by an amount '

r=-58Wg . (12)

In order that the surface fields induce an oblateness (Ar/r)f,

W =gr(Ar/r)f(cos20-%). (13)

Equations 6 and 7 can be solved subject to the constraint of Equation 11 to
give the three independent solutions. The first is

3p.=oW, (14)

P -=S, =P

dg 23
f76°r 2

with W given by Equation 13 and with S, and S,, zero. Note that these equations
refer to second Legendre polynomials. Other nonzero terms could be present. The
second solution is

1 .
S, = =5 pgr (&rfr); sin® 8, (15)

with P, =S = §,, = 0 and W given by Equation 13. The third is

S, = PEr(Ar[r) (\, [r) sin? 6, (16)
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with P, = § = §, = 0 and W given by Equation 13. Any linear combination of
Equations 14, 15, and 16 are also suitable.

Roxburgh (1967a), Cocke (1967a), and Sturrock and Gilvarry (1967)
suggested, respectively, that the observed excess oblateness was due to variation with
radius of the angular velocity, meridional currents acting against turbulent vis-
cous forces, and magnetic fields. Equations 6, 7, and 14 to 16 have been used to
analyze these suggestions. Roxburgh (1967a) suggested that Coriolis forces acting on
the convective zone induce a heat-transfer imbalance that in turn causes a strong
increase of the angular velocity with radius. The stresses associated with convective
transport can be ignored since they occur below the optical depth of 0.004 of the
limb. At the limb, only the rotation is significant. From equations similar to
Equations 6 and 7, it was shown that Roxburgh’s assumed rotational distribution
reduces, rather than increases, the oblateness, and a large variation of brightness with
latitude is generated, contrary to the observations (Dicke and Goldenberg, 1967b).
(See later rediscussion by Roxburgh, 1967b.) In similar fashion, through the use of
Equations 14, 15, and 16 it was shown that meridional currents and magnetic fields
strong enough to generate the excess oblateness without generating a variation of
brightness with latitude were incompatible with the observations (Dicke, 1970a). It
is concluded that the observed surface stresses do not generate the observed excess
oblateness.

The great uniformity in surface brightness is probably no accident. Any
inequality between the radiation rate at the surface and the rate of heat transport to
the surface from the interior would generate circulation currents that would
transport magnetic fields over the Sun’s surface to redistribute surface stresses.
Probably, surface stress distributions are automatically adjusted by this feedback
mechanism until the stress distribution is sufficiently uniform for the surface to be
uniformly bright (except when sunspots appear where the magnetic field is strong
enough to inhibit the convective transport of heat from below). Whatever the
mechanism, the observations show the random-velocity field and the background
magnetic field to be independent of latitude. For the weak-background magnetic
fields of the quiet Sun, this uniformity is strikingly shown by Livingston’s (1966)
pictures. An analysis of one of his pictures shows no systematic variation of the
background field with latitude (Dicke, 1970a). '

In summary, the oblateness of the undisturbed Sun’s surface is very nearly that.
of a surface of constant density. After subtracting the contribution from surface
. rotation, the remainder represents the oblateness of a surface of constant
gravitational potential. This oblateness in turn uniquely determines the gravitational
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quadrupole moment. Magnetic and velocity fields in the “seen layers” ‘could’ chﬁng'e?'

these conclusions, but no such fields capable of seriously affecting these relations are
found.

-IV. THE SPIN-DOWN PROBLEM AND OTHER e

- QUESTIONS OF STABILITY

. It has been claimed (Howard, Moore, and Spiegel, 1967) that the Sun probably
could not have a rapidly rotating core, because of loss of angular momentum by
dynamically driven circulation currents associated with the formation of an Ekman
layer, .i.e., the spin-down .effect. It has also been claimed that. because of an
instability due to a thermally driven turbulence, associated with a thermal diffusivity
large compared with that of angular momentum, a rapidly rotating core is precluded

(Goldreich -and ,Schubert, .1967a, 1967b;- Fricke, 1968). This firm .position-of

Goldreich and Schubert was later modified somewhat (Goldreich and .Schubert,
1968)- after Colgate (1968) showed that a compositional gradient in the zone of
dlfferentlal rotation could stabilize a rapidly rotating core.

. The. spin-down. effect is easily seen in a cup of tea where a rotatlon of - the

stlrr_ed tea -ceases in a time short compared with the diffusion time. The rapid.

slowing is due to pumping of the tea through a thin (Ekman) layer at the bottom of
the cup.*
unaerstand the significance of an important difference between a cup of tea and the
solar mterlor The density of tea.is constant, whereas .the. solar medium is
compre551b1e Furthermore, there is an important difference between the outer
convective _zone of the Sun andits radiative core. In the convective zone, ;pressure
and densxty are functlonally connected through the adiabatic condition, but.not in
the radlatlve core. If we neglect viscous forces, purely rotational motion is on

cyhnders in the convectlve zone. This is seen by noting that for P = P(p) and. for,

purely rotatlonal motion with the angular velocity w,

vy,
St

t
i

*For additional treatment of the teacup analogy, see Chapter 3, “A History of Solar Rotation”, by Spiegel.

In attemptmg to relate this phenomenon to the solar. interior 1t is essentlal to,

VP+pVo+pwx (wxr)=0, T 1Ty

. . . .
3T - v ’ . . P T A Pr,

&
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and, dividing through by p,

P
V] %dP+V¢+wx(wxr)=0, (18)
0

Equation 18 is valid also for the incompressible tea. From Equation 18, w x (w x7r)
must be the gradient of a scalar, and normal to circular cylinders :

wx(wxr)=-V lwzrsined(rsinﬂ). (19)

Thus, w is constant on circular cylinders.

In the stirred cup of tea, because of the boundary condition on the bottom of
the cup, purely rotational motion on cylinders is impossible. The inclusion of the
viscous-force term significantly affects the motion in a thin layer (Ekman) at the cup

- bottom and permits the boundary condition to be satisfied. Owing to the reduction
of the centrifugal-force density in this thin layer, fluid is propelled inward, pumping
the whole content of the cup through the Ekman layer where viscous dissipation is.
great. This causes a slowing of the rotation in a time approximately equal to

_af(wv)%, where a is the cup dimension, w is the angular velocity of the fluid, and »
is the kinetic viscosity of the fluid. This is much less than the diffusion time a2 /v.

Spin-down would be expected in the convective zone of the Sun, but other
complications are associated with the functional relation between pressure and
density. Angular momentum per unit mass could not increase inward -toward the

rotation axis because of the Kelvin-Helmholtz instability. Also, for an appreciable. o

variation of angular velocity, turbulence would be excited, the Reynolds criterion
being easily satisfied.
In the presence of turbulence, the spin-down phenomenon becomes modlﬁed a -
phenomenological turbulent viscosity playing a role similar to molecular viscosity.
The presence at the Sun’s surface of differential rotation in spite of the enormous
turbulent-viscous force has long been something of a mystery. To drive this
differential rotation, a large torque is required. The best candidate for this force
seems to be the viscous force itself, the extra component added through anisotropic
turbulence providing the driving force (Kippenhahn, 1963; Cocke, 1967b).

Just below the convective zone, the temperature gradient is nearjy adiabatic,
but a-few thousand kilometers deeper the temperature gradient has greatly decreased
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and the gas is strongly density stratified. The appropriate criterion for stability
against turbulence for an angular-velocity gradient normal to con;tant-density
surfaces is not that of Reynolds, but rather that of Richardson:

rdw\ _4/(sg d d ] 3 - t
<—-{= -1)— -— .
(w dr) 7<w2) [(7 1~)dr Inp e InT| B (20)

This stability criterion holds only for rotation on spheres @ = w(r). From the
Weymann (1957) solar model, the values of +r/w dw/dr for equality in Equation 20
are -90, -1230, and -1730 at r = 0.84, 0.76, and 0.64, respectively. If w is not
constant on spherical surfaces (ie., if it depends upon 8), turbulen'ce should be
excited. It might be expected that this turbulence would ellmmate the dependence
of w ond.

Pressure and density are uncoUpled in the radiative core. The functional

relation between P and p, which leads to Equation 18 and forces purely rotational
motion to be on cylinders, is relaxed. For an arbitrary choice of w(r, 6), the
dependences of both P and p on 6 are separately determined by the function w (r,
8) (Dicke, 1967c). If the 8 component of Equation 16, defined to li¢ in a surface of
constant gravitational potential p, is integrated over the surface, the dependence of P
on § over this surface is obtained. By taking the curl of Equation 16, a similar
integration can be carried out for p. Thus, the 8 dependences of P and p (and hence
of T if the mean molecular welght is constant) arg detemuned by the rotatlonal
distribution.
"~ Purely rotational motion (no spin-down) is possible in the density-strdtiﬁed
solar interior if the temperature distribution is appropriate, but the adopted
rotational distribution need not be stable. The importance of density stratification
on spin-down has been discussed several times from different viewpoints hy Holton
(1965), Pedlosky (1967, 1969), Dicke (l967c) Holton and Stone (1968), Sakural
(1969a, 1969b) and Clark et al. (1969).

The effect of density stratification on spin-down was exhibited expenmentally
(McDonald and Dicke, 1967). A density-stratified fluid was establlshed in corotation
with a steadily rotating cylindrical dish. The rotational rate of the dish could be
changed by a fractionally large amount without inducing spin-down if the change
were made slowly in very small steps If the angular velocity ‘were changed
discontinuously by as much as 1 percent, spin-down would o_ccur_th‘iough a series of
complex events, starting with the excitation of gravity waves, followed by mixing in



INTERNAL ROTATION OF THE SUN 45

two layers and separate spin-down of each of the mixed layers. The sudden change
in the angular velocity of the dish imposes on the density-stratified fluid a rotational
distribution that, for purely rotational. motion, is incompatible with the actual
density distribution.

It is concluded that dynamically driven spin-down currents do not occur in the
density-stratified solar interior. The time scale, of the order of 10'° years for
slowing the solar rotation by the solar wmd, is extremely long compared with the
rotation period, and the inertial effects of the circulation currents that maintain the
correct density distribution are negligible. Thus, there is adequate time for the solar
temperature to automatically adjust itself to satisfy the dynamical requirements of a
purely rotational motion. Whereas dynamically driven Ekman-type currents
probably do not exist, Eddington-Sweet thermally driven circulation currents should
occur, unless there is a gradient in molecular weight in the zone of differential
rotation. In general, the dual requirements of the rotational distribution, on pressure
and density, lead either to a variation of molecular weight or else to a temperature
distribution that is incompatible with the requirements of heat balance. The
velocities of Eddington-Sweet currents associated. with differential rotation can be
orders of magnitude greater than the more familiar thermally driven currents
associated with uniform rotation (Schwarzschild, 1958). It is a common mistake to
apply the time scale associated with Eddington-Sweet currents under uniform
rotation to situations with differential rotation.

The instability dlscussed by Goldrelch and Schubert (I967a 1967b) and Fricke
(1968) takes place through the development of axially symmetric angular-velocity
variations on spherical surfaces. Thin toruses, approximately 1 km thick, are
t:ontinuously generated and destroyed, moving upward and downward and trans-
porting angular momentum. It was noted (Dicke, l967b) that the theory of this
instability assumed the absence of a magnetic field in the deep interior of the Sun.
Goldreich and Schubert had noted that a negligibly small 8 component of velocity
was requlred Clark et a] (1969) have proposed that the oscillating motion of
internal gravity waves driven by turbulence in the convective zone could provide the
0 velocity component that would stabilize the flow. Fricke (1969) has investigated
the effects of magnetic fields on the instability. He finds that a strong toroidal
magnetic field (=10% G) in the zone of differential rotation can stabilize the
rotation if the field strength increases outwardly. Colgate (1968) had shown that
this instability could be eliminated by the existence of a molecular weight gradient
in the shell of differential rotation (also see Goldreich and Schubert, 1968). The
requifed gradient in the mean molecular weight is slight and could be established by
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the production of helium in the core if a sufficiently rapid means of mixing.the core

were available. The gradnent in mean molecular weight necessary to stabilize the core
satisfies the equation (Goldreich and Schubert, 1968) *

2 o v ,
’d'““<2(‘..if>li(r2w). 21
g Jrwdr . S

dr

For the model of a rotating core to be discussed below, the right side of Equatlon 21
1s roughly 6 X 10-2, and the fractional increase in mean molecular welght i in the
core over that of the exterior need be only 3 X 10-3. Roughly 5 X 107 ‘years of
nuclear bummg w1th the products mlxed uniformly through the core would be
requlred to increase u by this amount in the core.

" The ordinary Eddington-Sweet thermally driven currents associated with a
rigidly rotating core are too slow to mix the core, even if the core rotates as rapidly
as we postulate (Schwarzschild, 1958). But differential rotation in the core, or a
~ strong poloidal magnetic field buried in the core in- the perpendicular rotator
- configurations, could greatly increase the circulation rate, by several orders of
magnitude. Mixing by thermally driven currents might occur for a few hundred
mxlhon years but then be choked by the accumulated molecular weight gradlents If
this happened the evolutnonary tracks m the H-R dnagram might be only shghtly
modlﬁed

If the Goldrench-Schubert—Fncke instability does occur, what is the limiting

velocity d;strlbutlon, assuming an initially uniform and rapidly rotating Sun slowed
by the solar wind? This instability is very - effective at transporting angular
momentum as logig as the angular momentum per unit mass increases inward toward
the rotation -axis, but ordinary viscosity-driven turbulence would be expected to
develop if w were a function of 8. Thus, the quasi-stable limiting distribution would
“be expected to be of the form w ~ r=2 below the convective zone, with w constant
in that zone except for the above-mentioned differential rotation generated perhaps
by anisotropic ‘turbulence in the differentially rotating zone. The long-term stability
ot}- the distributioh:l}el_dw the convective zone depends upon the effectiveness of
thermally driven currents, upon whether or not they have been choked by gradients
in molecular welght and possnbly upon other complications, such. as' an mternal
magnetnc ﬁeld

One possible distribution, particularly interesting because it can’be tested
observationally, is a rapidly ‘rbtating core inside a shell of differential rotation (of



INTERNAL ROTAT[QN OF THE SUN 47

. thickness 8r/ry =~ 0.05) through which the angular momentum leads by molecular
d1ffus1on Outside of this to the convective zone is a thick shell through which the
angular momentum is transported by the Goldreich-Schubert process and in which
w~ ~r-2, Outside the shell is the convective zone.

This model differs from the one first proposed (Dicke, 1964) in that the zone
of molecular diffusion could lie substantially deeper. The observation that lithium,
but not beryllium, is depleted with time suggests that the outer radius of the zone of”

-molecular diffusion may fall below r = 0.58R;, where TLi is quickly burned, but
outside 0.5R,, if the Weymann solar model is correct. This new model will be
dlscussed in some detail below.

To summarize, it is the lack of observations of the deep solar interior that
makes conclusions about instabilities uncertain. Because of strong density stratifica-
tion below the convective zone and the mild nature of braking by the solar wind,
dynamically driven spin-down currents probably do not exist, but fairly rapid
therm'ally driven circulation currents in the zone of differential rotation are possible,

- though they would be very easily choked by gradients in mean molecular werght
"The Goldreich-Schubert-Fricke instability is easily inhibited by such a molecular
weight gradient or by oscillatory motion in the 6 direction: Density stratlfncatxon
stabilizes purely rotational motion on spheres, and it is concluded that w is a
function of r if a stable rapldly rotating core exists. Of more importance than these
theoretical arguments concerning.the deep interior are the observatlons of the solar
surface

V. THE SOLAR-WIND TORQUE

Although the structure of the solar wind is not directly of concern to us,
observations of the solar wind can provide a measure of the solar-wind torque, and
this is of importance to the problem of internal solar rotation. If we make the
-Questionable assumption that the solar wind blows substantially radrally out to the
vicinity of Venus and the Earth measurements of solar-wind flux (performed w1th
the Mariner space probes) and of the magnetic-field strengths in the wind permit an
evaluation of the solar-wind torque. The assumption of radial flow when the Sun-is
Quiet may be questionable in the llght of the appearance of the corona.

The solar-wind torque density on the solar surface at the equator is (Drcke
1964 ; Modiesette, 1967 ; Weber and Davis, 1967; Alfonso-Faus, 1967)

K=Jrtw,, ' (22)
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where J is the mass flux density at the solar surface, w, is the angular velocity, and r
is a “critical radius” for which

1
2 _—_p2 .
pv 2 B, _ | (23)

namely, the radius at which v, the radial component of the solar-wind velocity,
equals the Alfvén velocity calculated from B, the radial component of the magnetic
field

The magnetic field is trapped in the wind, and B falls off inversely as the square
of the radius. Equation 23 can be written as '

p=4nJB2, - Q4

where By = (r/ry)?B is the strength of the trapped magnetic field referred to the
solar surface. This is a particularly interesting way to express the field, for the
magnetic field at the solar surface cannot be too strong or trapping is unposmble
The physical properties of the chromosphere and lower corona limit the strength of
the trapped field. Before the strength of the interplanetary field was measured, B,
had been estimated to be 0.75 G (Dicke, 1964). This estimate was based on' the
assumption that the field strength would lie near its upper limits.

Measurements of the magnetic-field strength at 1 AU with the Mariner 2 space
probe gz_ive an rms value for the radial component of roughly 3.5 X 10-5 G,
By ~ 1.4 G (Coleman, 1966). If we make the simplified assumption that near the
Sun’s surface substantially cylindrical magnetic flux tubes are stretched out from the
solar surface by the solar wind, the magnetic pressure (1 /81r)B2 cannot exceed the gas
pressure outside these tubes. From Allen’ s model of the solar corona at the equator,
the rough upper limit for B, takes on the values 0.8, 0.7, and 0.5 G from gas
pressures at r = 1.01Rq, 1.1Rg, and 1.4R, respectively. The concentration of the
magnetic field toward the equatonal plane may have increased the field strength at
the Earth’s radius. - :

The mass flow in the solar wind is-determined by the rate of heating of the
corona. This heating is believed to be caused by acoustic noise generated by
turbulence in the convective zone. It would be expected to be more or less constant
in time, depending upon the relative importance of magnetohydrodynamic waves in
coupling the corona to the convective zone. There are observational reasons for
believing that young solar-type stars are more active magnetically than older stars
(Wilson, 1966). ‘
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The magnitude of the surface density of the mass flux in the solar wind, from
the Mariner 2 épace probe, isJ ~ 1.7 X 101! g-cm™ 271 (Neugebauer and Snyder,
1966). From Equation 24, combining the results obtained with the space probe with
Allen’s (1963) model of the corona gives r =20r, for the critical radius. From
Equation 22, K =9 X 107 dyne-cm-!. For the total solar-wind torque,

87 ,

3 7oK = 3.8 X 10% dyne-cm™ . (25)

One should not be misled by the apparent precision of this number, which may be
uncertain by a factor of 2. This precision and those of similar apparently accurate
numbers below are introduced only to make the arithmetic well defined.

. The torque (Equation 25) is proportional to the angular velocity of the solar
surface. With the assumptions that the magnetic field B, lies near its maximum value
and that the solar-wind strength J has been reasonably constant, the torque density’
per unit angular momentum, K/w,, would be reasonably constant over the life of
théﬂ Sun, but the greater magnetic activity in young solar-type stars would be
expected' to increase the torque. If magnetic coupling to the corona provides the
dominant means of heating the corona, the solar-wind flux in the young Sun could
have been substantially greater.

VI THE EVOLUTION OF THE RAPIDLY
ROTATING CORE IN THE SUN

: ~In this section, the picture developed above will be adopted as a working
hypothesis, and a quantitative history of the Sun’s rotation will be developed. The
radius of the core will be assumed to be r, = 0.54R, permitting rapid burning of
lithium at the core boundary, but not of beryllium (see Section VII). It will be
assumed that the solar core, of radius 0.54R, is rotating uniformly with the angular
velocity w = 20w, needed to generate the quadrupole moment associated with the
solar- oblateness.-(wq = 2.87 X-10~6 s-1), The angular velocity of 20wy corresponds
to a-1.27-day period; at a core radius of 0.8, an angular velocity of 15w, is
needed.* - : -

It is impossible to transport angular momentum from the outer bounds of such
a core-to the bottom of the convective zone at r, = 0.86R, (Weymann, 1957) by

*B. E. McDonald, 1969, in a piivafe cémmunication.
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‘molecular diffusion. It will be assumed that the. thermally. driven.-turbulence.
discussed by Goldreich and Schubert (1967b, 1968) permits the .-Atran,s'gort,.:by,_
. turbulent diffusion in the range r, <r<r,, a thin shell of molecular diffusion
limiting the flow of angular momentum from the core. As discussed above, thermal:
turbulence is easily inhibited. It will be assumed that the core boundary is stabilized,
~ probably by a molecular weight gradient or by oscillatory motion in the ¢ direction..
Thermal turbulence is so effective when it occurs that.the angular velocity.
gradient cannot appreciably exceed the threshold value r(dw/dr)/w =-2. This
gradient will be assumed, or wr? = constant in this shell. As discussed above, it will
‘be 5ssumed that ordinary mechanically driven turbulence keeps the angular-velocity
gradient parallel to the density gradient, i.e., angular velocity is a function of r only.
" It will be assumed that the Sun is a typical 'star. Thus, solar history might be.:
illuminated by Kraft’s (1967) observations of rotation in young stars. He finds that-
- the sufface rotation 20wy of stars of 1.2M, in the Pleiades, 3 X 107 years old, has.
: dropped to 10wy in the Hyades, 5 X 108 years old. Observations are:missing for G2
stars, but extrapolation curves suggest angular velocities as low as 5wq and 2.5wy -
~ for the Pleiades -and the Hyades, respectively. If the above picture is. correct,.
solar-type stars, with their deep convective envelopes, arrive on the main sequence
either with a substantial amount of differential rotation already present or with a

- strong stellar wind acting to slow the outer shell in a time as short as 3 X 107 years.
We assume that the angular velocity is substantially constant at'the surface
value 'w‘ in the convective zone (down to r, = 0.86Ry) and that for a fully
developed turbulent zone, w = (r,/r)? w, for r, <r <r,. A stellar-wind equatorial
_ torque density K, =108 (w, [wg) dyne-cm‘1 (substantially . the same as that

~ observed for the solar wind) must act for 1.63 X 109 years on.an mmally umformly
rotating star to develop the thermal turbulent zone down to the core radius
r. = 0.54Rq. At this time w = (rc/rv--)zwc =0.394w,. Subsequent slowing of the
fully developed shell, together with the convective zone, occurs with an e-folding
time of 6.05 X 109 years. This neglects the (initially small) contribution to the

‘solar-wind torque from angular momentum leaking out of the core (Table 1).

To account for the factor of 2 decrease of w, from the Pleiades to the Hyades

in § X 108 years would require that the solar-wind torque: density K =.8.35 X 108
- (wy/wg). The solar-wind torque may have been even greater in the first 3 X 107
-years. If the torque density were as great as K, = 150X 108 (w;/w,), the Sun could
_initially have been uniformly rotating on the main sequence. For reasons discussed
above, a torque this great seems unlikely, and a strong torque during the late
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Hayashi phase seems more likely. It will be assumed that the Sun‘arriyed on the
main sequence with the surface rotating with an angular velocity w, ~Sw,. -

The solar-wind torque density K, can be decomposed into two parts, K and
K Here, K, =-6.05 X 108 (w / wq) represents the contribution from the decelera-”
tron of the outer shell (w ‘means time derivative with 10° years as the unit of time):
and K, , the contnbutlon from the loss of angular momentum from the core, is-
eva]uated by solving the drffusron equatron .

a( aw)_ 40w : ,
wEr )=l ae

as a boundary-value problem assummg that (r,/r.)? w,, the angular velocrty at the
core boundary, is known as a function of the time. If pvr“ varies slowly enough
through the shell of molecular diffusion (thickness = 0. 05Rg), a good approxrma-;
tion ‘is obtained by replacmg it by its (constant) value atr, = 0. 54Ro /At this point,
v, 10 percent of the kinematic viscosity (143 cm2s" 1) is due to radiation transport,
and the remaining is due to transport by ions. In this approximation, for r<rg, -

w(r,t)==(,[r )2f (dw /dr){erf[(r - ’)/\/ZT(t_-‘r)] _ l} dr 4 o, : (27)

From Equation 27 the radial derivative at r, is calculated g1v1ng Cn
Kd"fo PV, (aw/ar) - .(28):. |

as. the core’s contribution to the solar-wmd torque denslty If w, aecreases'

exponentlally to zero with a decay constant A,

Kd=,’o(rc/ro)zpcwc(vc/m)“z:\/A‘t‘won, @9

where .
‘ _ x 12 : . - . .
Wx)=e "[o e’y 24y . : L 30)
The function D(x) has the value

D(x)=xi/2W(x)~l.3x(1—%x) for x<2

~l+l.2/(x+2) for x>2.
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Substituting numencal values g1ves

K =138 X 108 '1/21)()\:) dyne-cm ', 31)

where ¢ is in units of 107 years.-For At >0. 5 Kd varies slowly with time. The above
formalism is easily generahzed to cover the case

w,(r) = ]0 AQYeN A, L v

for which D(Af) in Equation 31 is to be replaced by

D= /ADd)\/ fA A (32)

The time dependence of the surface rotation 1s obtamed as a solution of the
d1fferent1a1 equation K, = K, + K,, namely, )

N X 108(w /wo) =-6. os X 108(w /wo) +K, 0, (33)

where N(t) is the ratio of the solar-wmd torque densrty to surface angular velocity,
expressed in units of 108 w, g-s-1 characterrzmg the present solar wind. The general
solution to this equation is easily written,if we assume that N(z) and. Kd(t) are
known, For sufficiently large values of N and slow. variation of K /N;.w, falls until
X, | << K. These conditions seem to be approximately satisfied. for. N, varying in
such a way as to give a satisfactory account of the surface rotations adopted for the
Pleiades and Hyades, and of that observed in the Sun. As a result, it is to be ex-
pected that the present value of the solar-wind torque is approximately. equal to,

Te i

K;~08 X_lOf &yne—_cm_"l_:,.': o if l 1(34)

whrch is in satlsfactory agreement wrth ‘the observations of ‘the soldt’ wmd

“Two variations of N with time seem to be partlcularly mterestmg The results
of numerical integrations with these choices are plotted in Fxgure 4 For the curves
A of Figure 4; N is assumed to fall exponentially’ with tune and the three
parameters characterizing N and the initial value of Wy are adjusted to glve ‘a
satrsfactory account of the three “known” values of w For the curvesB Nis the
sum of a constant and an exponentlal The mean hfe of the exponentral 1s arlntranly

R N
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Figure 4 —The slowmg of the ‘Sun’s rotation; assuming for curve ‘A, a solar-wind
- torque- ‘with N decreasmg exponentxally in- t1me and for curve B, N decreasmg
exponentxally to a constant value '
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.....

taken t& bé of the order of 109 years. This terim is introduéed to represent the decay
of the initially strong solar activity. The decay with time of magnetic activity in
solar-type stars, as exhibited by Ca-II emission (Wilson, 1966), might be due to the
decay of short-hved magnetic modes originally trapped in the Sun. As noted above,
'mcreased magnetlc actmty could result in a stronger solar wind, partlcularly if
magnetlc couphng to the corona is the primary source of coronal heatmg The initial
values of the two terms are adJusted to give surface rotatxons agreeing with, the

observatlons -

o Tt, should be remarked that the mtegratlons A and B requn'e the present
solar-wmd torque densxty to be- approxlmately 0.85 X 108 dyne-(:m'1 Thls is in
satlsfactory agreement with the observations of the solar wind.
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. VIL LITHIUM DEPLETION IN SOLAR TYPE STARS .

The depletlon of lithium in solar-type stars can be related to the deceleratron of
. their surface. rotations if the model developed above is reasonably correct In the
thermal-turbulent zone, the drffusmtres of angular momentum and hthrum are
equal But thrs diffusivity is. determmed by -two requrrements The angular
momentum flux must be correct, and wr2 ‘must be constant in thrs zone, with w
mdependent of latitude. :

Integratrng Equatron 26 from r. to r and usmg the relatron

‘ s ,Zw —rgws . : ' (35)
giyes o
. : ) . '
__1 (M M(r) - M(c) ,
o 2l ) [Kd * o) -M(c)'] ' o)

R 4
'ln Equatxon 36, M(r), M(c), and M(v) are stellar masses msrde the desrgnated radii;
-the mmor contribution from the corvective zone has been omrtted from K, (as
.deﬁned in the paragraph above Equatron 26). _ '

The drffusron of llthlum is controlled by the equatron

5‘(@357‘ =p,r25;, A . (37

r there F represents the fractional abundance of 7Li or 6 Li (by mass or number).

' -.The solution to Equition: 37 is eased by the simplifying assumptron that the
zone .of bummg has’a sharp boundary Thrs requrres F=0as a condrtron on the

--,A_boundary There is also a condrtron to be satisfied at the inner boundary of the
convective zone. This is determmed by the requrrement that the radial derivative of
F,. .which determmes the. flow of hthrum from the convectrve zone, be proportronal
to the time denvatlve of F, which grves the loss ‘of lithium in the convective zone.

.- A normal 'solution to Equatnon 37 wrth A as the decay constant satrsﬁes the

ergenvalue equatron ' : A - :

a;]fare.‘ _' S
B
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This is to¥be integrated subject to- the above-described -boundary’ conditions. .
. Equation 36 is first substituted in Equation 38. If the zone of burning is r <r_, the '
“riormal ‘Solutions depend upon the parameter K,/K,.  For 'the lowest mode, we '

“shall néed the slope-to-value ratio H(dF/dr)/F evaluated at r, ‘(as a function of .-

Kd/K ); this is'given in Table 2. , .
-All hngher normal modes decay rapidly, an order of magmtude faster for the"
“second mode, and the subsequent fractional decay rate is that of the lowest mode
providing K, /K varies slowly with time. . :
The decay rate of the-lowest mode is conveniently expressed in terms: of the -
solar-wind torque. Integrating Equation 38 from r, to r, the solar surface, gives

(pvr2 ) [orF,ar= —FV[M(O)-M(V)]. | - (39)

Substituting Equation 36 gives

K (ro\ rraFjar 1 |
A'“Z(Z) 7 )VM(O)-M(V)' - 40

§

Takmg K,/w, and K, /K, from Figure 4 and using Table 3 gives A as a functlon;
“of time. This permits the integration of F=-AF. The resultmg curves A and B are
plotted in Figure 5, which is based on Figure 2 of Danznger (1969). Note that these
curves contain no adjustable constants.

It should be emphasized that the above mtegranon is based on the assumptlon '
that the boundary of lithium burning is sharp and that it occurs at the bottom of the
zoné “of ‘turbulent diffusion. This may be reasonable if we assume that ‘the
outward-moving boundary is initially somewhat below 7,. Two corrections tending
slightly to-lower the upper ends of curves 4-and B of Figure S have been omitted.
The first“is ‘caused by-ithe_, delay in arrival of the outward-moving boundary of -

w+. Table 2.—The slope-to-value ratio of F versus K;/K,.

Ky/K,] 002 | 005 |o010]| 02 | 04 | 08 | 1.6.| 32 | 64

17%EF | 0.074 | 0.096 | 0.118 | 0150 | 0.193 | 0.234 | 0273 | 0.304 | 0.319 |
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Table 3. Fractlonal depth r,/r, at which burning takes place with mdlcated mean

life (based on Fowler et al., 1967, and the solar model by Weymann 1957)

PHYSICS OF THE SOLAR SYSTEM

‘%

Element 3 X 106 years 3 X 107 years 3 X lqsvyeérﬁ,_ .
6Li 0.57 0.60 o063
TLi 51 .55 Y58
9Be 42 45 47

4 T T T T
LOGARITHMIC ABUNDANCE RATIO,
[Li/Ca), RELATIVE TO
3 SOLAR VALUE. -

(Li/Ca) - (Li/Ca)g,,

v
2 3 4
.TIME (10° years)

1 1

Figure 5.—The depletion of lithium; the same turbulence viscosity_ as that associated
with the transport of angular momentum is assumed (curves A and B of Flgure
4). The turbulence is assumed to be driven in part by the thermal effect of
Goldreich and Schubert (1967b). The plotted points represent mdwndual stars
(Danziger, 1969). The three arrows are Dan7.1gers correctlons for “curve-of-

growth effects”.
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lithium burning at r_, possibly a time approximately 108 years. The second is caused
by the delay in the start of depletion caused by the necessity of the decay of the
higher decay modes of F, a time approximately 108 years.

If the boundary of burning extends somewhat outside 7, the upper ends of the
curves are raised slightly, but explicit integrations have not been carried out. If the
boundary of lithium burning occurs at least 0.lry above r., the right side of
Equation 36 is approximately independent of r, which simplifies the solution of
Equation 38. This case has previously beendiscussed by Dicke (1970c), assuming
that the zone of burning occurs at r=0.58R., for the adopted radii of the
convective zone r; = 0.86, 0.78, and 0.70R . For the “observed” present solar-wind
torque-ratio density the mean decay times for 7 Li are found to be roughly the same
as Danziger’s value of 7 X 108 years. But the decay times are almost a factor of 2
too small for a solar-wind torque density adequate to slow the outer shell with
r. = 0.54R,.

VIIL SUMMARY

The types of observations having a bearing on the rotation of the deep solar
interior are as follows:

(1) The observation of the solar oblateness of (7, eq = 7p)/r=5X10"5.

(2) The independence of latitude of the solar photospherrc brightness.

(€))] The magnetic- and velocity-field distributions in the photosphere.

(4) The structure of the solar wind, suggesting a present solar-wind torque
density, at the equator, of 108 dyne<cm-1. :

' (5) The rotation observed in F- and G-type stars in young clusters.

(6) The lithium and beryllium abundance in the Sun and in solar-type stars of
young clusters.

In the light of the uniformity of solar photospheric brightness, the solar
oblateness seems to require a gravitational quadrupole moment sufficient to advance
the perihelion of Mercury’s orbit by about 4" per century.

A reasonable account of all of the above observations can be given by assummg
the following: :

(1) That the Sun is a typical star of 1 solar mass.

(2) That it possesses a core of radius = 0.55R, rotating at an angular velocity
20 times greater than that of the Sun’s surface.
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(3) That it arrived on the main sequence wiih_ the surface rotation already
slowed to ~5 times the present surface value, but with the core rotating uniformly
at 20 times the present suiface rate.

(4) That the young Sun had a ratio of solai-wind torque to surface angular
velocity roughly an order of magmtude greater than its present value (an increase
probably associated with the increased magnetic activity of the young Sun).

(5) That this enhanced torque decayed with time, either quickly or more

. slowly.

It should be exphcltly stated that if the overall picture is qualitatively correct,.
the radius of the core is rather accurately fixed by the requirement that it fall
outside 0.5R, where beryllium is burned, but inside 0. 58Rq where 7Li is burned
[expressed in terms of Weymann’s (1957) solar model as given by Schwarzschild
(1958, see p. 259)].

* The radius of the rapidly rotating core is fixed by the requirement that the
outer parts of the Sun be mixed down to r = 0.58R, (to destroy lithium) but not to
o: 5Rq (to avoid destroying beryllium). The rotation of the core is fixed by the
observation of the solar oblateness, assuming that the oblateness implies a
quadrupole rriomeht due to a rapidly rotating solar interior. The past slowing of
surface rotatlon in the Sun is crudely fixed by observations on ‘young stellar clusters,
aSSummg that the Sun is a typical star. To slow the surface rotation by this amount
yields a present value for the solar-wind torque in agreement with observations of
the solar wind, but only if the Sun possesses such a rapidly rotating core. The
present value of the rate of loss of angular momentum from the core is substantially
independent of the time scale for slowing the young Sun. Without any adjuStable
parameters, the depletion of lithium in solar-type stars is determined by the loss of
angular momentum, if the model is correct. The resulting losses are found to be in
reasonable agreement with observations of lithium in young clusters and the Sun.
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. - CHAPTER 3.
A HISTORY OF SOLAR ROTATION*

E. A. Spiegel
Columbia University
New York, New York

L THE PREHISTORY

Stars form in the turbulent, magnetized interstellar gas in a way that is only
partly understood. However, it is clear that they tend to form in clusters and
associations that contain a spectrum of stellar masses and rotation rates. Thus, for an
individual star such as the Sun, we do not know the initial angular momentum. This,
of course, makes it difficult to produce a deductive account of the evolution of solar
rotation, even if the theoretical problems were not so formidable. Of course, at this
stage, one may even wonder whether rotational evolution occurs at all, and, even if
it does, why it should be worthy of the attention we are about to devote to it.

As to the occurrence of rotational evolution, there is, however, little doubt,
since solar-type stars show a clear correlation between parameters indicating their
ages and their surface rotation rates. Moreover, we know that the Sun loses mass,
which carries off angular momentum; unfortunately, we do not know how active
this process was early in the Sun’s lifetime, and this is one of the great uncertainties
of the subject. Finally, we know that stars change their radii with time (sometimes
abruptly), and this too must affect their angular velocities.

My own interest in solar rotation is related to questions of stellar evolution
which will be mentioned briefly later. However, in our present concerns with the
solar system, rotation has mainly nuisance value. Solar rotation produces solar
oblateness and a quadrupole moment in the density distribution. This is a small
effect, but in an accurate subject such as celestial mechanics, it might make itself
noticeable. This is especially true if one is interested in distinguishing among various
proposed theories of gravity. Hopefully, in time, when other tests of gravity are used
to make these distinctions, celestial mechanics might help us unravel the vexing

*Research supported by the National Science Foundation (NSF GP 18062).
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question of solar rotation; but the part of the problem that will be with us much
longer is concerned with the early stages, especially when the planets formed. If it is
" true that the planets originated in the solar nebula, then from the standpoint of
' cosmogony, we surely need a knowledge of the dynamics of the nebula. The
rotational part of the problem probably will not be the hardest to solve, but it will
certainly be crucial, and there is no promise of direct observational guides.
_ The problem of describing the Sun’s early years is at present approached, in the
. first approximation, by neglecting rotation. A spherically symmetric gas cloud-that
~is in its own gravitational well is considered. It is assumed to be cool so that its
‘pressure cannot support it against its own gravity. How the cloud got that way is by
no means understood, but this model seems to be a reasonable starting point.
Among astronomers, it is hoped that these initial conditions are not misleading.
However, the masses are important, and, unfortunately, it appears that the initial
radii also matter. .

The gas cloud, having no support, will collapse with essentially free_-fall
vélocity. Kinetic energy is dissipated into thermal energy,-and as long as the cloud is
tenuous, and hence transparent, the thermal energy is radiated away. In this phase -
the matter remains cool, and the pressure does not rise enough to impede the
collapse; but fairly soon, the density becomes large enough to trap photons, and the
temperature and pressure increase. The pressure then halts the collapse, and
: contractxon begins.

"In the contraction phase, the cloud (or star) is nearly in hydrostatic
- equilibrium, but it radiates, and this leads to a slow contraction. The contraction
- rate is governed by the rate at which radiation can leak from the star. The rate of
energy loss is the luminosity, and if this is divided into the energy available for
radiation (the thermal energy) the characteristic time for contraction is obtained— .
the so-called Kelvin-Helmholtz time. This period of time is typically millions of
~ years.

"~ For a theoretical discussion of solar rotation, a quantity of interest is the tlme
: spent in what is called the Hayashi phase of stellar contraction. This phase is
characterized by an opacity sufficiently large that photons diffuse very slowly
through the star. In that case, the star ‘“prefers” to transport the heat out by
convection: Hot material rises to the surface, radiates away much of its energy,
cools, and sinks back into the star. In the Hayashi phase, the star is fully convective,
and because the energy is removed so efficiently, the subsequent Kelvin-Helmholtz
- contraction is accelerated. (For discussions of these questions, see Larsen, 1969, and
Graham, 1969:)
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- The importance of this matter arises from the fact, to be explained later, that
s.convective stars lose mass and angular momentum. Hence, the time spent in the
+.Hayashi phase will probably be vital in determining the angular momentum that js
--left in a star when its contraction phase ends. The situation is such that until we sort
i,.out:these problems and carry through the contraction calculation for a rotating star,

we cannot predict the angular velocity distribution in, for example, the Sun at the
-+end of its-contraction phase. The story of solar rotation could not, therefore, be told
.~deductively even if other difficulties did not intervene. .
Let us assume, for the present purposes, that at the end of its HayashJ phase a
~star rotates rigidly. This initial rotation rate §2, corresponds to the beginning of the
. phase of .evolution in which the Sun, for example, now finds itself. The question we
shall consider here is how the Sun’s rotation rate evolves from such an initial state of
..rigid rotation. : .- : :

1L OBSERVED HISTORY OF SOLAR ROTATION

. The Hayash1 contraction phase of the Sun ends when the core becomes hot
.enough to produce nuclear reactions. These stabilize the Sun at a fixed radius since a
further contraction makes the reactions go faster, thus heating the Sun so that it
- reexpands. This is true for all stars above a given mass (approxunately 0. 07MQ)
They arrive at a static state with values of luminosity L and surface temperature T,
that. depend on their masses. For a given chemical composition, there is a relation
.-between L and T,, as is indicated in Figure 1. The solid curve, called the zero-age
. main sequence (ZAMS), shows L versus T,, with the mass as a parameter on the
- curve. Shortly after the Hayashi phase, a star arrives on the main sequence, where it
stays as long as it has hydrogen available for conversion into helium. This first
nuclear stage lasts about 10! 0 years for the Sun, during which the Sun changes very
little but moves slightly away from the ZAMS. "
-Most stars fall very near to the main sequence, but the band. they occupy is
fairly: broad. This is due partly to observational scatter, partly to a spread in ages,
and. somewhat to differences in initial composition, rotation, and magnetic fjeldé.
For. the Sun, observations and theory are good enough that its departure from the
ZAMS can be used to infer its age (= 6 X 10° years). For other stars, individual ages
- cannot readily be found, but for clusters of stars the ages can be determined from
-the distortion of their main sequences, on the supposition that the stars in a cluster
.. all .have the same age. If we can then measure the rotations of stars, a study. of
rotation versus age is possible.
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Figure 1.—Typical relation between luminosity L and surface temperature T,.

The rotation rates of stars (of at least of the stellar surfaces) can be inferred
from the widths of absorption lines in their spectra. Suppose that if there were no
rotation the lines would be narrow. Then, for a star with rotation axis normal to
our line of sight and with constant surface angular velocity, a strip of projected
surface parallel to the rotation .axis would by itself produce a line shifted in .
wavelength from that produced by the central strip (Figure 2).

The contribution of a given strip. to the total line is proportional to the area of
the strip for a uniform brightness over the face of the star. In that case, if the
individual contributions are very narrow, the resuiting profile is an ellipse whose
width indicates the rotational velocity at the star’s equator. Now we should back up
and worry about the effects of line widths of the individual strips and of the
darkenmg of the stellar -disk near the edge. These effects blur. the profiles and the
various effects have to ‘be unraveled suffice it to say that this can be done
reasonably well. : :

A difficulty with this solutnon of the problem hes in our assumption that the
axis of rotation is in the plane of the sky: In general, one really measures not the
equatorial velocity, V, .but ¥V, sin i, where i is the angle the xjotationﬂax-is;emakes,wit_hz
the sky plane. Except for-eclipsing binary stars, which are of no help here, we have
no way to find i. Thus, if we want to measure and compare rotation-rates of
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different kinds of stars, we must proceed statistically and attempt to average out the
sin i under the assumption that rotation axes are randomly oriented.

Given that the appropriate measurements and corrections are made, one can
look at (¥, sin i) or (V) if you assume random orientation, for main sequence stars.
The summary of the data by Kraft (1970) is very useful. The more massive stars
rotate rapidly {(V,)= 200 km-s" ! ] whereas the less massive main sequence stars
rotate slowly [(V )< 30km-=s~ 1], More striking is the variation of angular
momentum per unit mass as a function of mass. For M2 1.3M, the angular
momentum per unit mass varies as M °-57, according to Kraft; but for M < 1.3M_,

Figure.2.=Shift in wavelength of a line, produced by rotation of proje'cted strip of.
- “surface -parallel to the stellar axis of rotation and normal to viewer’s line of
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the angular momentum J per unit mass falls very sharply with mass. The break in the
curve occurs at a surface temperature T, ~ 8000 K, and it is significant that stars
with 7, < 8000 K have powerful convective zones in their outer layers Before this
fact was stressed and its importance realized (see the next two sections), it- was
suggested that the break in J/M versus M was a result of'planet‘ary formation:- THis
remark was based mainly on the solar system, for which it was observed that if the
angular momenta of the planets were added to that of the Sun, the value of J/M for
the Sun would fall fairly near the curve extrapolated from data for stars with large
masses. (It should be noted here that the -curve given by Kraft is based on the
assumption of rigid rotation; Dicke has’ proposed -another model Wthh 1s glven
elsewhere in this volume.*) ' - : L

An interesting application of observations of ‘stellar rotation is the attemptito
see how stars like the Sun but of differingages differ in rotation rate. To obtain stars
of given age we must go to clusters. We need clusters with enough stars like the-Sun
to be able to average out the sin i factor and also to obtain a good value for the
stellar ages. To get enough stars to average over, we must include stafs somewhat
different in mass from the Sun. At present, we have data for this problem for the
Hyades and the Pleiades which were given by Kraft (1967), and we adopt the
averages suggested by Conti (1968) (Table 1). In the case of the Sun, thereis no
problem with sin i; but, on the other hand, if stars of a given age have d spread in V,
only one star is dangerous to use. Still, it seems an inescapable conclusion that stars
like the Sun rotate more slowly (at least at their surfaces) as they age -Let us now
see why. '

Table -1.—Stellar ages and rotational velocities.

Object (;:iis) 1. (kr:-/:;)l) S

Pleiades . o 5x107 | 19
. Hyades - 5x 108 | 9 ,

sun 5 X 10° il C

*See Chapter 2, “Internal Rotatién of the Sdn", by Dicke.

ey
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IIl. SOLAR FLUID DYNAMICS

Perhaps the most basic fluid dynamical activity in the Sun is convection. This is
a familiar phenomenon and occurs when a fluid is heated sufficiently intensely_ from
below. The criterion for the onset of convection is that

dT/dr <-g/C., o (1)

~ where dT/dr is the vertical temperature gradient, g is the local acceleration of
gravity, and Cp is the specific heat at constant pressure. The term adiabatic gradient
(or adiabatic lapse rate) is used for g/C,. The meaning of this criterion (called the
Schwarzschild criterion by astronomers) is that the potential energy per unit mass,
gdr, gained by a parcel displaced vertically by an amount dr should be more than
the internal enérgy o dT it loses in adiabatic expansion. Equation 1 must be modi-
fied to allow for d1s31patlon rotation, and magnetic fields (Chandrasekhar, 1961),
but in the case of the Sun, these modifications are generally small (with the main
exception of corrections for sunspots).

' Near the surfaces of relatively cool stars like the Sun Condition 1 is easﬂy met
because the temperatures just below the surfaces are such as to partially ionize
" hydrogen. This causes C_ to be large. Moreover, the material near the surface is
highly opaque because negative hydrogen ions are formed; this would force -dT/dr
to be large if the photons are to get through. It is also worth noting that some stars
have convection in their central regions. This would occur when the rate of nuclear
burning is very sensitive to the temperature, as it is in the CNO cycle. In that case,
the temperature gradient becomes large, and efficient convection is produced. On
these grounds, we do not expect convection in the core of the Sun, but it should
occur in the cores of massive stars. However, it is important to realize that according
to Iben’s (1966) calculations, the Sun supported the CNO cycle during its first 30
million years on the main sequence, and thus had a convective core during this
period.

The effect of convection on the structure of the Sun is difficult to compute,
and astronomers do not always agree even on its qualitative aspects; but it is clear
that the instability is very pronounced and that in a fairly extensive part of the outer
layers of the Sun, convective heat transfer dominates over radiative transfer; this is
. likely to be true for about 150 000 km into the Sun. When convective transfer
dominates, a large value of ~dT/dr is not needed to force out the photons, and the
gradient drops. It cannot go below the value g/Cp, since that would stabilize the
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convectlon so the gradient takes on the value of g/C over the bulk of the
convection zone.

At the edges of the convection zone, transition layers occur in ‘which
convection is not very efflclent and the gradient goes somewhat above g/C This is
especmlly true at the top, where the material is becommg more transparent and less
able to carry the heat. There, a fairly marked instability is maintained. This has two
effects. First, the convective velocities become moderately large (of the order of a
kilometer per second), so the turbulent stresses can deform the medium and
generate’ waves. Second, even without such stresses, sound waves may become
unstable ‘in the transition layer and thus can be self-generated from thermal noise. I
do ‘not know which process dominates, but I suspect that in different frequency
ranges differént processes win out. In either case, such waves are believed to travel’
outward in the Sun, steepen into shocks, and dissipate their mechanical energy into
heat in the low-density regions (see the discussion by Schatzman and Souffrin
in Annual Reviews of Astronomy and Astrophysics). This gives rise to the
chromosphere and the corona.

Though the waves carry off relatively little energy from the convection zone,
this small amount is adequate to raise the corona to a high temperature (=10% K)
since the density is so low. The corona then becomes ionized, and heat is
transported by electron conduction. The failure of various people to find a static
solution for the corona led Parker to propose a dynamic solution with an expanding
corona (see Cowling, 1969). Schematically, we may say that the waves continually
bring energy into the corona, and it is unable to get rid of this energy fast enough.
Thus, it heats up and expands off the Sun, giving rise to the solar wind.

" The picture outlined here seems qualitatively reasonable, and different parts of
it have been calculated. However, a complete theory is still lacking; in particular, a
prediction of the mass loss rate from the Sun cannot be made with any accuracy.
Observations indicate that if the Sun continued to lose mass at its present rate, it
would lose all of its 2°X 1033 g.in about 10 13 years.

IV. BRAKING OF SOLAR ROTATION

. We have seen, schematically at least, how strong convective instability near the
surface of a star gives rise to a wind. The association between slow rotation and low
surface temperature, and hence strong surface convection, might then be explained
by the loss of angular momentum resulting from the wind. But the mass-loss rate
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involved in creating the solar wind is so slight that it might not produce a significant
braking were it not for magnetic effects, as Schatzman recognized. The role.of the
magnetic field is to impart rigidity to the gas for some distance above the solar
surface and thus keep it in approximate corotation with the solar surface even after
it has left it. (For a summary of these matters see Brandt, 1970, and Mestel’s
discussion in the 16th Liége Symposium.) Of course, after the matter is far enough
from the Sun, the field becomes too weak to maintain corotation with the Sun, and
Kepler’s law of areas is obeyed.

The importance of the corotation is that the gas has the angular veloclty of the
solar surface £ out to a distance R, , which is generally greater than R . Therefore,
at R - the gas has an angular momentum per unit mass = n2Q, where l'I =Rgpcos ¢
and ¢ is the solar latitude. Hence, the solar wind removes angular momentum from
the Sun at a rate

dJldt=-M_R2Q . ()

Here,
J=aM_R:Q, (3)

where « is a pure number and M and R are the solar mass and radius. Normally,
would be taken to be of order 0 1, but chke s (1967) proposal that only the outer
layers of the Sun slow down would imply a €0.1; this matter will be discussed
below. In any case, we then have

dQ/dt = - oM /M )R IR VS . 4)

Effective braking results when (R c /RQ)2 21, and we must now estimate this
quantity (see Mestel’s discussion in the 16th Liége Symposiuin).

We assume that the flow in the solar wind is steady and that the flux of mass is
uniform over the solar surface. Conservation of mass requires :

4nPpu=M,, 5)

where u is the radial component of velocity. Conservation of magnetic flux demands
that : :

4nr’B = constant = Q = 47R2B,, (6)
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where B is the rad1a1 component of magnetic field and B is its, surface value This
field can keep the gas rotating rigidly as long as the magnetic pressure exceeds the
dynamlc pressure, or, qualitatively speakmg, as long as v

BYl4n = pu? . )

In the present solar wind, the matter is accelerated off the solar surface by pressure;
thus, thermal energy is converted to kinetic energy. The main thrust of  this
acceleration should thus be accomplished when u climbs above the sound speed c,
which we will take to be constant. Thus, in the nelghborhood of R, we have the
crude estimate; foru = ¢, s

)
Ve

p.~Mg/4mR2c . S e (8

If we take the equality in Equation 7 and use it w1th Equation 6, this leads us to the
estimate

2p2
2 o s
R R ~—

Q

“.SBsze — &)

with B in gauss, for ¢ ~ 107 km-s~!. With values of B, in the neighborhood of 10
gauss, we obtain a reasonable agreement with more precise estimates of ‘the

enhancement facto_r. This does not mean that we should take this discussion too

literally. It is ’ merely intended to show the various parameters: that enter ‘the
calculation and to stress the uncertainties. In any case, current theories used in
connection with satellite measurements of the solar-wind particle flux and the field
in the Earth’s neighborhood suggest that (R c/Ro)z is approximately 102 or 103, -~
To solve Equation 2 we need also to know how B varies with time. Most
experts assume that the field in the convection zone is caused by some dynamo
mechanism. Cowling (1969) has given dimensional arguments that suggest that in
this case B, ~ Q2. but I am not sure that these arguments' properly allow for the
possible effects of a strong rotation on the convective motions that must be involved
in the process. Another problem is that we do not know how ¢ depends on B, and,
hence, on .§2, but since the waves that heat the corona probably have hydromagnetic
aspects, such a dependence is to be expected. It is likely that ¢ goes up with B_ and,
hence, with 2, but this suspicion is based only on the observed increase of calcmm
emission with enhanced fields, and the interpretation here is very compllcated Thus,

PR
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about all we can conclude is that B 2/c probably increases with  but does so more
slowly than Q*. Other uncertamtles in the estimates exist, but we have seen enough
to shake our confidence in any conclusion about what these processes might have
been during epochs for which the parameters cannot be determined from
observation.

Thus, surrendering all pretense of a deductive theory, we must admit that all
we can say is

dl=-f(R,.. ), (10)

where the braking factor f depends on £ and the ellipsis indicates a possible
dependence on other parameters that describe stellar structure, such as the mass of
the star. As mentioned previously, the hydromagnetic theory of the solar wind,
when combined with observations, yields at present

;l, (é%%) ~ Sa X 1010 years . (1

For a = 0.1, the half-life of the solar angular momentum is comparable to the age of
the Sun. (The value 0.1 comes from estimating the moment of inertia of the Sun,
allowing for its density and structure. ) I feel that we must consider the possxbxhty
that this agreement is not just a chance one, but is a clue to the nature of the
process. To see how this can be so, let us make the simple assumption that f varies as
a power of £ (Spiegel, 1968) so that f=8 Q", where B is a constant and the crude
physics of the problem indicates that » is in the range of about I to 4. Then,

' ddr =-pam | (12)
and we find that, forn # 0,

' Q=9,/(1+1/TH, (13)

where £ is an integration constant (the initial rotation rate) and the time
T=@mpg) " . (14)

Now, if ihese formulae are to represent the change in Q from Pleiades to Hyades
(assuming an approximately constant ), we should have T = 10® years, for n in
the range of values suggested by the theory. Moreover, from Equation 13 we find a
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half-life for Q , 1.e

l(n dStZ =n(t+T), ‘ (15)
and for the present Sun, this half-life is nt. Thus, the apparent coincidence of the
solar age and angular momentum follows from Equation 10 and the crude estimates
for n. However, for Dicke’s model, « <1, and we would require n < 1, which does
not work. (The value n = 0 gives an exponential decay curve which does not fit the
data and is not really consistent with our primitive understanding of the process; but
at the present level of understanding, nothing is reliable.) Of course, this merely
implies that if only a small fraction of the solar mass is acted on by the solar wind, it
would long ago have stopped rotating. However, the bulk of the Sun would then be
rotating with essentially its original angular velocity. To save his model, Dicke would
réquire some coupling between the inner and outer parts of the Sun, in order to
keep the surface angular velocity from going to zero. Thus, the problem raised by his
views is one of the coupling between the inner and outer parts of the Sun when the
surface is being decelerated by the solar wind torque. We now turn to a discussion of
this question.

V. SOLAR SPIN-DOWN

Several years ago Temesvary (1952) suggested that hydromagnetic brakmg of
the rotation of the solar surface would produce instabilities in the solar interior. His
discussion does not explicitly have what is now called the solar wind, nor does it
have the process called “spindown”, but its general outlines are sound, and it
anticipated by many years some of the current discussions of motion in the solar
interior. Here, the chief departure from his point of view will be the manner in
which the deceleration of the solar surface makes itself felt inside the Sun. To see
this in a more homely context, we will consider first the problem of how tea in a
cup slows down after being stirred.

The kinematic viscosity v of tea (i.e., viscosity/density) is approximately 0.01
cm2-s™!. This viscosity prevents the tea in contact with the wall of the cup from

-moving relative to the cup. The tea has a sharp velocity gradient at ‘the cup, and the
action of this gradient would stop the tea in a time approximately equal to d?/v,
where d is the diameter of the cup. For a typical teacup, this time is about 40
minutes. Clearly, the tea stops more quickly than this; hence, another process must
be acting. This process is called spin-down (see Greenspan, 1968); for good physical
discussions, see Einstein’s (1934) paper on the meandering of rivers in Mein Weltbild
and the discussions in the “Miscellaneous Topics” chapter of Prandtl, 1952.
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The spin-down process for the tea is most simply discussed in the case where
the cup is set rotating at an angular velocity £2 and a steady rigid rotation is achieved
in the tea. The rotation rate of the cup is then changed to 2(1+e€), with e € 1, and
we need to know how soon the tea adjusts to the new rotation rate of its container.

When the cup is slowed, the fluid in contact with bottom slows too. This effect
is spread by viscosity over a thin layer at the bottom called the Ekman layer. In this
layer, the centrifugal potential %Q2pII? (where II is distance from the symmetry
axis) is reduced by an amount

A(% szﬂz) ~ Q*TPpe | (16)

The gradient of this change is the residual centrifugal force
a—a—n(ﬂzﬂ2pe) ~ 2Q%1Ipe , a7

which represents a radial force and causes an inward flow ¥ (which carries the tea
leaves with it). The inward motion is opposed by a viscous force

u

Viu~ Pk (18)
where 7 is the viscosity and 4 is the thickness of the Ekman layer. The approximate
balance of the viscous force and the residual centrifugal force leads to the estimate

2142
. 2Q-°I1h“e , : (19)
v
where ¥ = 1n/p. 4
To estimate 4 we note that because of the radial motion the fluid suffers an

azimuthal coriolis force of approximately pu§2. Moreover, the fluid is moving with
an azimuthal speed v = I1e§2 with respect to the cup such that the azimuthal force
balance is

nV2v ~nu/h? =~ pQu , (20)
whence we find

. h = (v/Q)1/? @2n
as the Ekman layer thickness.
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Now, the fluid in the Ekman layer converging toward the center of the cup.has
nowhere to go but up, so it develops an upward velocity w. The mass flux inward in
the Ekman layer is approximately pu(wIl)h, and this balances the flux out of the
Ekman layer, which is approximately pw(nT12). Thus,

W (h/l'l)u =~ (2Q2%h*)e . | (22)

With the value of h given by Equatlon 21, we have

~(v/ﬂ)”29e o 0(23)

3

which is the rate at which fluid is “pumped” into the interior of the cup from the
Ekman layer.

The flow upward into the cup causes a circulation in the tea upward outward-
toward the rim, and down the sides back into the Ekman layer (Figure 3). For a cup
of height of the order of d the horizontal métion in the main body of the_"'teaf'is
comparable to the pumping velocity w of Equation 23. The resulting circulation
alters the angular velocity of the tea. To see how this happens, consnder a nng of :
fluid in the interior of the tea.: e

The outward component of the circulation in the tea will cause the radius R of _
the ring to increase. In such an expansion, the angular momentum  will ‘be
approximately conserved, so the angular velocity of the ring will decrease. The
change in angular velocny 8% for a change in ring radius R is obtamed by settmg

[T I T D

" Figure 3.—Flow of tea in a teacup.
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the»change in angular momentum per unit mass equal to zero since on the large scale
-of ‘the mtenor -viscous forces are neghgrble That is,

6(R29) = o
implies

56 ~ (@RISR (24)

To slow the rmg down to._ the new speed of the container, we need 8 = eQ for
, whichi an expansion 8R =~ €R is required.
- " If R=d, the velocnty of expansion of the ring u is comparable to w as given by
Equatron 23. Hence the time requrred for the tea to spin down to the speed of the
contamems : C S

. r=86Rlu= d/\/yﬂ (25)

whrch lS approxrmately 1 mmute for a teacup This time is called the spin-down time
(Greenspan and Howard, 1963). -

‘ However, . one .may, still ask the questron if the angular momentum is
conserved w1ll the ring of fluid speed up after passing through the Ekman layer and
-recontracting? The answer -of course, -is that as the tea comes down the side of theé
cup.and rubs agamst 1t the angular momentum is destroyed ‘

; The spm-down t1me grven here is based on thie résponse to a slight but sudden
change m the: rotatron of the cup The actual motion is time dependent and various
waves are generated that take longer to die out. In the case where the cup is slowed
down contiriuously but slowly, a quasr-steady crrculatron such as the one discussed
here is set up. The angular velocity in the tea lags that of the cup by the spm-down
time 7. [Thrs was shown by Bondr and Lyttleton (l948) in what is probably the ﬁrst
derivation of Equation 25.] -

Now, in applying these ideas to the Sun, we must take into account three
special difficulties: : (1) there is no teacup, ?2) the mter10r of the Sun is stratlﬁed
and (3) the Sun is sphencal These are not all the drfferences but they are the main
ones, and several comments should be made about them.

~ The slowmg down of the surface of the Sun can be thought of as the result ofa
torque exerted by the corotating solar wind on the Sun through the magnetlc lines
of force These force lines extend into the convectron zone, which then is slowed
- down. The eddymg motlons m thls zone keep the zone nearly ngld and thus the
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convection zone is bodily slowed down. The suggestion has been made that the
near-rigidity of the convection zone causes it to act like a solid wall in setting up an
Ekman layer (Howard, Moore, and Spiegel, 1967). This may indeed be true, but it
appears that a more powerful mechanism may act (Bretherton and Spiegel, 1968).
The mechanism, which we may call convective pumping, is simply that the
convection zone itself acts like an Ekman layer. When the zone is braked by the
solar wind, its loss in centrifugal potential starts a weak circulation, just as occurred
with the tea in the Ekman layer. Thus, if the rotation of the convection zone is
changed from £ to (1 +¢€), the arguments that led to Equation 19 still hold,
except that v is to be replaced by the eddy viscosity in the convection zone, and uis
the north-south velocity component. Now, however, we do not use Equation 21 ‘fo_r,
h, but instead, we use the thickness of the convection zone. Finally, the argument
that gives Equation 22 also holds true with » replaced by v, | dy> and it gives a reason-
able estimate of the speed with which fluid is pumped into the solar interior. The
enhancement over the Ekman pumping is about a factor of 10° for the case of the
Sun. ' v

If the interior of the Sun were not stably stratified, the convective pumping
would result in a spin-down time of about 1 month. Of course, the argument given
here and the mathematical model used are both rather simplified, and there might be
some other way for the fluid to take up partially the spin-down stress. However, as
far as the calculations have gone, they indicate a rather powerful convective
pumping.* What seems the most powerful inhibiting factor the spin-down process
must face is the stable stratification of the interior, which we now discuss.

Since the interior is stratified, it tends to reject the fluid that the convection
zone is pumping into it. The fluid is mainly pumped in from the poles and initially
moves toward the center of the Sun. The stratification turns it aside, and it flows in
a layer just under the convection zone to reenter the convection zone in the
equatorial regions. This layer accounts for the greater share of the velocity
difference between the convection zone and the deep interior; it is analogous to a
layer in the ocean called the thermocline, and to emphasize this analogy, 1 shall call
it the tachycline. ,

Perhaps the first person to consider the effect of stratification on spin-down
was Holton (1965). When Howard, Moore, and I discussed spin-down in the Sun, his
results were duplicated by a physical argument and extended to include the effects
of radiative transfer. However, at about the same time, Pedlosky (1967) concluded

*Indeed, there is even the possibility that it is amplified by convective instability.
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that the effect of sidewalls of the container, which had been neglected in the
stratified case, actually completely suppressed the Ekman pumping. Since this went
against the physical arguments, many people did the calculation independently and
the matter has been straightened out. The result is that Holton’s results are
qualitatively correct. [Some of the other papers on this point are by Walin (1968)
and Sakurai (1969); several others have done related calculations, but many of these
have not been published.] Thus, the results seem quite good, so as above, only an
outline of the physics will be attempted. *

C Suppose, for this discussion, we regard the Sun as a cylinder. At the top and
bottom are convective layers (Figure 4), and we suppose that the rotation of the
Cbr_iveétive layers is bodily changed from 2 to §2(1+€). Fluid will then be pumped
into the interior at the rate (see Equation 22)

w= (222 4y e . (26)

The fluid will penetrate a distance ! before being turned aside. The speed # with
which it moves out radially is given by mass conservation as

i = (a/Dw (X))

ff:-;\}t
HEITS

Figure 4.—Fluid flow in a Sun-like cylinder.

*Foliowing an unpublished manuscript by D. W. Moore and me.
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if the penetration layer does not extend over too greata density -range. This radial
outflow generates an- aznnuthal corrolls force. ‘Since ‘'the’ Viscosity inthe solar
interior is negligible and the situation is assumed to be axisymmetric, this force is
unopposed and leads to a burldup of aznnuthal velocrty w1th time:

hmbqe. - @8

;I"he-'azirnuthal velocity produces a. radial cdmpoherit of Coriolis' force which'is”
quickly counteracted by a pressure gradient: ' :

3Qeammpema.,'_ 0,

It is understood that this pressure represents the dev1at10n from the preexrstmg ’
static pressure and that it includes the centnfugal potentlal Since the pressure
contains a centnfugal part and since  varies with I1 drfferently at differént heights,
a vertical pressure gradient must also develop across the: layer.. Since the vertical
velocities in the stable regions are small, the pressure gradlent is opposed chiefly by
buoyancy;i.e., we can suppose a nearly hydrostatlc situation. -

The vertical pressure gradlent is” of the order of p/l ‘and 1f the densrty
fluctuation is 8p,

pll~gbp. (30)
For small fluctuations, we can write ,. - o
bppadT, e @
where 8T is the temperature perturbatlon and a is. the coeffrclent ef thermal
compressibility. (If variations of chemical composition occur, an additional term is

needed in Equation 31.) The combmatlon of Equation 29, which is usually called
the geostrophrc condition, w1th Equatlons 30 and 31 g1ves

: gaar/a~vsz/z R (32)
which is known as the thermal-wmd equatlon It shows how ‘a honzontal
temperature gradlent in a rotatmg, stratified fluid' forces motions; and it: plays -an’
nnportant role in meteorologrcal and stellar c1rcu1at10n problems:.r 5.5 w7l i el
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. As fluid is convected through the vertical gradient, it alters its temperature
both convectively and by radiative diffusion. The rate of change of temperature is

 8T/at~ 8T/t ~u+ VT +xV2GT), 33)

. where T is the uhperturbed temperature and k is the thermometric conductivity.
With 2 = - 1-2, we obtain

(1/t + K/1?)8T ~ wdT/dz , ' (34)

“;he're z is the vertical coordinate. By using Equation 34 to eliminate §7 from
Equation 32, introducing Equation 30, and using Equation 27 to eliminate L/t\, we
are led: to the relation ' '

. T, B o, 2 2 X s .
) . PN U . a Q Kt [ LN RS . .
o — <1+—>~1. (35)
Lo 1 godT/dz 2 _
If. the fluid is compressible, we must replace dT/dz by dT/dz - g/cP to take inté
account adiabatic expansion or contraction. We now introduce the quantity

N2=ga(dT/dz + glc), (36)

* where N is the so-called Brunt frequency. If a parcel of fluid in a stably stratified
medium is displaced vertically and adiabatically, it will oscillate with frequency N.
In a hydrostatic star, N =~ \/Gp, where 7 is the. mean density.

- Now consider the situation for an adiabatic medium with k = 0; we find

[~ (2/N)a - 37

as the thickness of the tachycline. If we take the present surface rotation of the Sun
for §2, we have /N =~ 10”2, Thus, the solar tachycline would occupy 1 percent of
the solar radius and be rather less than a local scale height in thickness. This crudely
justifies treating the density as nearly constant; earlier in the Sun’s history (or even
now if Dicke were right) this would not be the case. The limit £ =~ NV is sometimes
called the breakup velocity. ' :
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The tachycline is set up essentially instantaneously when the pumping begins.
It spins down by the process discussed above since it is the region in which the
stratification does not inhibit pumping. The argument for the adjustment of the
angular velocity of a fluid ring, based now on 2 as given by Equations 26 and 27
leads to

TR R U~ eafu = o4, [292h = (af 1)V oy KN, (38)

where h?2 /ve ddy is the characteristic time scale of the eddies in solar convection.
Hence, on the long time of solar braking, the tachycline can be considered to be
rotating with the convection zone. Of course, the tachycline is not rigid and
represents only an exponential penetration layer, rather like the Hartmann layer of
hydromagnetics; it supports the shear between the convection zone and the deep
interior.

When the motion is not adiabatic, the picture is somewhat altered since
radiative conduction can reduce 6T and 8p. If radiative conduction were very rapid,
the fluid pumped from the convection zone could penetrate into the interior
without much inhibition; but even for modest conduction, the flow can move slowly
into the interior at a rate governed by the conduction. We may refer to Equation 35
and determine that the value of ¢ for whichl=d is

t~ [(NYQY)-11d¥K . . 39)

Thus, for N = §2, the tachycline fills the cylinder in about a rotation period. But-
the present solar conditions imply N2 > Q2 and we have .

t~ (NZ/Q2)1KH = tgg o 40)

as the time required for the tachycline to spread through the Sun. Here, #,
represents the thermal time, which is the same as the Kelvin-Helmholtz time. The
time scale £ ¢ is, in other contexts, known as the Eddington-Sweet time.

Now, for the Sun, gy =~ 107 years, and if we take the surface value for 2,
tgg =~ 10'! years. However, if we take a value 15 times larger for £2, as-suggested
by Dicke’s model, we find tgg = ~ 107 years. Hence, the possibility of a really large
time lag between interior and exterior is not unlimited.

There is one possible way out of these conclusions: The density stratification
may in part be a result of molecular weight gradients. In that case; « is replaced by
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the diffusivity of chemical constituents, which is much smaller than k. Of course,
during the Hayashi phase, gradients of chemical composition would be destroyed.
Once the nuclear reactions in the core start, they would tend to set up a gradient of
helium concentration that would shield the core from incursions of material from
the envelope, as Mestel pointed out some time ago. Even this part of the problem is
not clear. First, Iben (1966) has asserted that the solar core was convective during its
first 30 million years on the main sequence. Second, it is possible that the spin-down
currents may initially keep the Sun mixed and prevent a gradient from forming; this
effect would not go on indefinitely, but the time it lasts may be crucial. These
processes can be studied in reasonable detail, but for the reasons given in the next
section, I believe that the laminar spin-down circulation given here provides only a
lower bound on the mixing processes and that far more remains to be done,

For the early phases when £ is large and the Eddington-Sweet time quite short,
it may be safe to assume that the core and the surface rotated at similar speeds.
Then, we might risk using Equation 13 to infer the angular velocity for the Sun.
From this formula, we can estimate the number of Eddington-Sweet times that have
passed at a given solar age:

t O\ (n=2)/n
[ ERET ] e

Fitting Equation 13 to the sparse data gives 7/t ; =~ 10 and 4 /N =~ 1/3. Hence,
the solar age in units of 7 ¢ is

=) =

The limited available understanding of the process involved is not, as we saw,
adequate to fix n, but a value of approximately 3 was plausible. This suggests that at
present A > 1 and hence that the internal £ would not lag the surface value by one
or two orders of magnitude. On the other hand, Dicke’s proposal calls for small #, as
we saw, so that this last result is not really inconsistent with his picture. However, a
small n does not seem likely and is not really called for by the data. If this were all
that was involved, it could be concluded that the model of a rapidly rotating core
seems unlikely, but it is not excluded; but there is much more to be understood, as
we shall see in the next section.
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The third aspect of the elementary solar spin-down process that is not the same
as the teacup process is the spherical geomfetry. Thus, the gravity is radial, so there
is a tendency toward spherical density contours. However, the rotation gives a
cylindrical symmetry to the problem. This mixture of symmetries makes the solar
case messy. Bretherton and I have been looking into this problem and have found
that, physically, it is rather like the cases we have discussed. In the meridional
planes, there is a circulation similar to that in Figure 5, but the azimuthal velocity is
a little curious. If this picture is compared to the cylinder (Figure 4), it can be seen
that, topologically, the equator at the bottom of the convection zone is equivalent
to the sidewalls. It may also be remembered that the angular momentum is
destroyed as the fluid rubs against the wall. Here, in this inviscid model (except for
Veddy "in the convection ione), the angular momentum “accumulates” at the -
equator and produces a jet under the convection zone. We do not know what
happens then but suspect that the fate of the jet is involved with the instabilities
mentioned next. -

tachycline
~&
=N R

Figurg 5.—Solar circulation pattern in the meridional planes.
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V1. EFFECTS OF INSTABILITIES

When Temesvary discussed the internal -motions of the Sun, he pictured that
the effect would produce an instability in the Sun which would eat its way in.
Instabilities are also the basis of the criticisms leveled at Dicke’s models by
Goldreich- and Schubert (1967) and Fricke (1968). In our spin-down discussion,
Howard, Moore, and I suggested that the seat of instability would be in the’
tachycline. The picture there was that on a fairly long time scale, the tachycline
would ‘retain its form, but the amplitude of the velocity difference across it would
grow until an instability would necessarily arise. -

From all these dxscussmns it is not clear what form of instability would
predommate nor is it clear what exactly would happen when the instability started.
Qualitative suggestions can be made, but no model calculations exist, as they do for
what ‘'we have discussed so far. In the previous considerations, essentially all that was
discussed was based on fairly precise solutions for simplified models. One may not
like all the simplifications, but at least such models give confidence that the process
discussed can occur in appropriate circumstances. However, once instability sets in,
we are on no such firm ground. For this reason, I will not give details, and only some
of their more important aspects will be mentioned. '

The question as to which instability strikes first is not closed. Zahn and I
recently made a listing of the ones we think may be relevant (Spiegel and Zahn,
1970). It seems that the most likely candidate is the so-called inflection point
instability discussed by Lord Rayleigh (1955). This instability is.one that occurs
when the velocity field has an inflection point in space. Of course, in the tachycline
we must include the effects of rotation and stratification, but even then an analogy
to the mﬂectwn-pomt instability exists in a form of barochmc instability (Pedlosky,
1964). The discussion of the effect of this instability on a reasonably correct
tachycline model (jet and all) has not been carried out. There is no doubt that the
tachycline becomes unstable; the questions are when and in what way. Crude
estimates seem to indicate that the tachycline is almost always unstable, but this is
not established.

What the instabilities do to the tachycline is not clear. If they are sufficiently
weak, they probably distort it in a nonaxisymmetric way; but as the shear across the
layer builds, a weak turbulence probably develops. The turbulence transports out
the angular momentum carried off by the solar wind; however, a more complicated -
process might occur.
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If the tachycline is weakly turbulent, we can associate with it an eddy viscosity.
This eddy viscosity may then keep the tachycline nearly rigid and cause it to pump
fluid farther int(_i the interior. That is, the turbulent tachyline causes the fluid just
inside it to spin down in a second thin layer. I anticipate that this second layer
becomes unstable too and spins down a third layer. In this way, layer by layer, the
Sun spins down. As one goes farther into the Sun, the local value of N ~\/Gj5
becomes larger since p is the mean density interior to the radius considered. Thus,
the layers become thinner; but, accordingly, they become more and more unstable.
Crude estlmates for how long this process takes to reach the center indicate 10 to
103 years, but at the present state of understanding, we cannot attach much
significance to such estimates. In any case, once the process has reached the center,
it would tend to maintain a weak turbulence in the Sun over much of its
main-sequence lifetime. Once the braking is slow enough, however, the process
should die out. Once it does, a small differential rotation becomes possible, but a
variation in £ from surface to center of an order of magnitude seems unlikely from
this turbulent-onion model of the Sun.

In this inconclusive tone, three aspects of the problem should be raised that are
of interest for solar physics and which provide the basis of a continuing interest in
the solar spin-down problem.

A. The Lithium Problem

There is good observational evidence that the surface lithium abundance of
solar-type stars decreases with time with a half-life of the order of 10° years. Destruc-
tion of lithium by thermonuclear process requires that it be raised to a temperature
of about 2.3 X 106 K. Present estimates of the depth of the convection indicatej that
the temperature at the bottom of the zone is less than this value. On the other hand,
the most promising explanation for lithium depletion is that it is slowly mixed to
depths at which the temperature is large enough to destroy it. Various processes
have been considered (e.g., Spiegel, 1968). Perhaps the most evident is that the
convective motions penetrate slowly into the stable regions and do the mixing. Such
calculations as exist indicate that this is not the case; but the matter is not closed. It
is also possible that the unstable spin-down currents do the job, and this makes it
interesting to understand spin-down. Similar questions exist for beryllium.* '

*For a dhcumon of this aspect, see Chapter 2, “Internal Rotation of the Sun”, by Dicke, and Chapter 11,
“‘Origin of the Solar System”, by Schatzman.
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B. Magnetic Fields

_ If a strong magnetic field exists in the solar interior, the discussion of the
interior motions must be severely modified. The usual argument against a strong
interior field is that the surface field seems to flip every 11 years. If this field were
attached to a strong internal field, such a short time scale would not be possible.
Thus, a strong internal field would have to be detached from the field of the
convection, or at least it would have to be detached and reattached every 11 years.
No definite model of this kind has been introduced, and even if it were, it would
face stability problems (Schubert, 1968; Goldreich and Schubert, 1968). Neverthe-
less, it seems quite likely that there is some kind of nonnegligible magnetic field in
the solar interior.

One reason for believing that fields exist in the solar interior is that the mixirig
of lithium somewhat into the “‘stable’ regions of the Sun implies an interchange of
matter. Material descending from the convection zone should pull magnetic fields
with it. Initially, such a field would be passive, in that it is completely controlled by
the motion; but as the field stretches out, it will strengthen and feed back on the
motion. It is likely that the strong field becomes unstable and buckles into a small
scale and is dissipated. The picture is thus rather like many currént ones of solar
activity, but the difference is that the process takes place under the convection zone
and is driven by spin-down currents. Moore and I tried to make a crude model of
this process; the main difficulty was that the manner in which the field behaved
after it became unstable was unknown. However, the qualitative conclusion was that
the convection zone field and the interior field might couple in a relaxation
oscillation with a period equal to the turbulent spin-down time. One outcome of
these considerations is that the surface angular velocity should reflect these
oscillations, with a very small amplitude. Such a variation, 1f detected would
provide an excellent clue to the spm-down t1me

C. Mixing of Helium

As the reactions in the solar core convert hydrogen into helium, the Sun slowly
evolves, because the hydrogen supply in the core diminishes; but if 'spin-do'wn
currents were powerful enough, they could replenish the hydrogen supply in the
core and thus alter the course of solar evolution. (Howard, Moore, and Spiegel,
1967). Such a modification of the nuclear history of the Sun bears strongly on the
problem of detectability of solar neutrinos (Ezer and Cameron, 1968). It seems
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likely that helium mixing took place when the Sun first reached the main sequence;

but as the Sun slows down, this process will choke off, primarily at the center.

Bahcall, Bahcall, and Ulrich (1969) suggest that the helium mixing could not last for

"an appreciable time, since a gradient of chemical composition would inhibit the

mixing process. However, they did not consider baroclinic instability, which could

work even in the presence of such gradients when the rotation is strong enough.

Thus, this important question is unsettled and, as with the problem of solar rotation.
hangs on the occurrence and final dévelopment of complicated instabilities.
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CHAPTER 4 |
DYNAMICS OF THE OUTER SOLAR ATMOSPHERE*

A. J. Hundhausen*#*
University of California
Los Alamos Scientific Laboratory
Los Alamos, New Mexico

1. INTRODUCTION.

The study of the outer solar atmosphere has traditionally involved the
chromosphere, the corona, and the transition zone between these two regions.
. Within the past 15 years, it has been recognized that the interplanetary region,
pervaded by solar plasma and magnetic fields, is a direct extension of the solar
atmosphere. The present discussion will concentrate on the dynamical processes
which produce the corona and its expansion into interplanetary space, the resulting
relationship between solar and interplanetary phenomena, and the use of interplane-
tary observations to infer coronal properties.

II..'PHYSICAI,_ _CONDITIONS IN THE OUTER
SOLAR ATMOSPHERE
Solar and interplanetary observations are reviewed elsewhere in this

volume.f Thus, only a brief statement of some pertinent coronal, chromospheric,
and interplanetary properties need be given here.

A. The Corona

The distinguishing characteristic of the corona is its high temperature; several
‘independent techniques give values in the range 1.5 X 106 to 2.0 X 106 XK. Much of
the following discussion will concern the coronal temperature, both as the effect of

*Research performed under the auspices of the United States Atomic Energy Commission.
**Present address: High Altitude Observatory, Bouider, Colorado.
1See Chapter 1, “Introduction to Solar Physics”, by ‘Brandt, and Chapter 5, “The Interplanetary Plasma”, by
Ogilvie.
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basic physical processes and as the cause of the coronal expansion into interplane-

tary space. Observations indicate that 10°-K temperatures are attained within
=~ 5000 km above the photosphere and extend outward to a heliocentric distance of
several solar radii. The electron density at the base of the corona is 108 to 109
cm~ 3, diminishing outward with a scale height of approximately 0.1 solar radius.

B. The Chromosphere and Transition Region

" The increase in temperature from the 4500-K value at the photospheric
boundary (defined as the altitude at which the optical depth in the continuum is 1)
to the 10%-K value characteristic of the corona occurs in a thin layer of
considerable complexity. The lower part of this layer gives rise to the strong line
emission observed as the ‘“‘flash spectrum” just before and after totality of a soIar
eclipse. The traditional term ‘“chromosphere” is now generally applied to this lowest
region, extending ~ 1000 km above- the photosphere. The temperature in the
chromosphere rises slowly with height to &~ 5500 K. The electron density falls off
rapidly (a scale height at such temperatures is =~ 100 km) from =~ 1016 ¢cm™3 at the
photospheric boundary to =~ 1012 cm™3 at the top of the chromosphere. The region
between 1000 and 5000 km above the photosphere, in which the major part of the
rise to coronal temperatures occurs, is generally referred to as the “transition zone’’;

" the electron density must decrease by three to four more orders of magnitude
therein. Both hydrogen and helium become ionized in the transition zone.

The approximate nature of the chromospheric and transition zone properties
cited above stems partly from the inhomogeneous nature of this part of the solar
atmosphere; division into distinct regions where physical parameters vary only with
altitude is a gross idealization. The magnetic field is obsérved'to be high at the
" boundaries of well-defined cells (supergranules) with dimensions near 3 X 104 km.
Spicules, or jets of material moving upward at = 20 km-s~1, extend from these
boundaries along magnetic field lines, from the top of the chromosphere, through
the transition zone, and into the lower corona. The temperature and density within
these transient structures (lasting &~ 15 minutes) are = 5 X 104 K and = 1011 ¢cm~3.

C. The Interplanetary Medium;

The direct accessibility of the interplanetary region to spacecraft-borne
instruments has allowed rather precise determination of the physical properties in
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this region of the solar atmosphere. Table 1 lists a number of these properties under
quiet or undisturbed conditions. The characteristic feature of the ionized plasma
which pervades interplanetary space is its rapid (in fact, supersonic) motion away
from the Sun. This flow of material implies an energy transport away from the Sun;
because this transport will be of interest later in the discussion, some relevant flux
and energy densities are given in Table 2. The electron and proton heat conduction.
fluxes are based on actual computations from observed interplanetary distribution

functions.

Table 1.—Observed properties in the quiet solar wind at 1 AU.*

Property

Observed Value

Flow speed (nearly radial from Sun)
Proton or electron density

Proton temperature

Electron temperature

Magnetic field intensity

320 kms~!

8 cm™3

4X 10* K

1.5 X 10° K

5 X 107° gauss

*Particle properties are based on Hundhausen et al. (1970) and Montgomery et al. (1968).

Table 2.—Flux and energy densities in the quiet solar wind at 1 AU.*

Parameter

Value

Proton flux density

Kinetic energy flux density

Electron heat conduction flux density
Proton heat conduction flux density
Kinetic energy density

Proton thermal energy density
Electron thermal energy density
Magnetic field energy density

2.4 X108 em™ 2571
0.22 erg-cm™~2-g"1
~ 0.01 erg-cm™2-5~
~ 105 erg-cm~2-s71
7 X 1079 erg-cm™3

6 X 101! erg-cm™3
1.5 X 10710 erg-cm-3

10-10 erg-cm—3

1

*The heat conduction fluxes are directly observed; see Montgomery et al. (1968) and Hundhausen et al. (1967). -
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The interplanetary observations summarized in the tables were performed near
1 AU. Very little detailed information has been obtained regarding the variation of
interplanetary plasma properties with heliocentric distance. The flow speed observed
on the Mariner 2 probe to Venus was nearly constant, while the density varied
approximately as r~2 (Neugebauer and Snyder, 1966) between 1 AU and the orbit

of Venus (0.7 AU).

L PHYSICAL PROCESSES IN THE OUTER
SOLAR ATMOSPHERE

The conventional theoretical treatment of solar structure (e.g., in the solar
interior or photosphere) is based on the assumption of hydrostatic equilibrium. Our
treatment of the outer solar atmosphere will also be based on fluid precepts but
must be hydrodynamic in order to account for the flow of material observed in the
interplanetary region. To simplify the discussion, the atmosphere will be assumed to
be spherically symmetric, in steady motion, and composed of completely ionized
hydrogen (relaxation of these assumptions will be considered later). Our results thus
apply to a Sun with no spatial structure or temporal change (i.e., in the absence of
any solar activity). If viscous and magnetic forces are neglected, the hydrodynamic
equations are the equation of mass conservation

rlzg—r(rznmu)=0, §))

the equation of momentum conservation

n ud—u=-£-n Mo (2)
T a2
the equation of energy conservation
Id[ (1 23P)] 1d GM,,
=-— ——+
3 dr renu 2mu +2n r2 — (r*uP) - nmu 2 S, 3)

and the equation of state
P=nk(T;+T,), 4)
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where
r = heliocentric distance, A
n = the number density of the electrons and protons (essentially equal
because the Debye length in the solar atmosphere is very small),
u = the radial flow speed of the electrons and protons (again, essentially
’ equal to avoid building up a net electrical charge on the Sun),
m = the proton mass,
P = the total pressure,
G = the gravitational constant,
M, = the solar mass,
k = the Boltzmann constant,

3
I

= the proton temperature,
and '

T, = the electron temperature.

The term S(r) in the energy equation (Equation 3) represents any source of energy;
S(r) = 0 implies an adiabatic flow.
Equations 1 and 3 have simple first integrals, i.e.,

dnnurt=f- &)
and
5 1 ) 5 GMom r’.2
4n!l nur Emu +-£k(Ti +.Te)— ; - ] S(r)dr} =F, (6)
0 .

where r, is some reference heliocentric distance. The constants f and F are the mass
and energy flux, respectively, through any spherical surface centered at the Sun.

A. Energy Source Terms in the Outer Solar Atmosphere

Solution of the system of equations given above requires specification of the
energy source term S(r). Two contributions to S(r) should obviously be included.

1. Heat Conduction

A hot jonized gas is an extremely efficient heat conductor. We thus expect a
large heat conduction flux away from the hot corona into the neighboring, lower
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temperature, chromospheric and interplanetary regions:

_ dT
Fc—-41rr2fcd

where k is the thermlal conductivity. The source term (for the plasma) in Equation 3
is the negative of the divergence of this flux:

_ld /s dT)
s, err( .

Heat conduction in an ionized hydrogen plasma is dominated by the
fast-moving electrons. If the electrons interact by Coulomb collisions, the electron
conductivity is given by

= 52 argem=le=l =1
Kk, =k )" erg-cm s K™,

where K, =(1.84 X 1073)/In A, In A being the usual “Coulomb logarithm” (see
Spitzer, 1962). Under coronal and interplanetary conditions, In A= 23 and
Kk, ~8X 10°7 erg-em1571-K~7/2. At a given temperature, the proton conductiv--
lty Kp is smaller by the square root of the ratio of electron and ion masses.

The thermal conductivity law given above has been extensively used in models
of the outer solar atmosphere. However, we note the followmg limitations on its
applicability:

' (1) In the presence of a magnetic field, the usual conductivity law applies only
parallel to the field lines. The conductivity transverse to the field lines is diminished
by a factor (w7)?, where w is the gyrofrequency and 7 is the mean collision time of
the particles. For electrons in the corona, wr= 105, and thus the transverse
conductivity k, is only & 10-10 of the parallel conductivity k. A similar situation
is found in the interplanetary region.

" (2) Heat conduction results from the skewing of particle dlstnbutlon functions -
in the presence of a temperature gradient. The usual conductivity law applies only
when Coulomb collisions occur frequently enough to keep the skewness small. This
requirement can be stated in terms of a dimensionless parameter (see Spitzer and
Harm, 1953)

2T, drT

e e

B

T_ﬂnq“ InA dr’
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where q is the electronic charge. By is, in fact, the ratio of the mean free path for
Coulomb collisions to the scale length of the temperature gradient. The law
k=K ,T5/2 applies for | Brl< 1, or when there are many collisions in the distance
over which the temperature changes. An upper limit to the condition flux density
can also be given by the situation in which all electrons move in the direction of the
heat flow at the mean thermal speed v, (Parker, 1964);i.e., ‘

Fc/4-lrr2 <ny —l'mvz ~

3/2
e3 nm(3kT,/m)¥? .

N =

In fact, the IBTI <1 restriction applies long before this limiting conduction flux
density can be attained.

2. Radiation

Evaluation of radiative losses generally requires solution of a transfer
equation.* Fortunately, the corona and interplanetary region are optically thin in
the wavelengths at which most energy is radiated, and a simple radiative loss
function can be given for this part of the solar atmosphere. For temperatures above
a few times 104 K (where hydrogen ceases to be an efficient radiator), the loss rate
is nearly independent of temperature. Then,

S (r)= -2X 10'23n3 erg-cm'3 -1

(see Kuperus, 1969, or Brandt, 1970). The radiative flux at any heliocentric distance
ris ' '

F(n= -41rf'r2s,(r) dr,

where r, denotes the photospheric boundary. Now, F,(ry) can be set to zero
because the optically thin outer atmospheric layers absorb almost none of the
photospheric radiation, which is therefore effectively decoupled from the energy
equation. A ' '
Note that both of the energy source mechanisms given above can transfer
energy only from hot regions to ‘cold regions. Insertion of these sources into
Equation 3 or Equation 6 and integration outward from r cannot produce the
increase in temperature to 106 K known to occur between the photosphere and the

*See Cﬁapter 1, “Introduction to Solar Physics”, by Brandt.
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corona. In order to explain the high coronal temperature, we must make the ad hoc
-assumption that an additional energy source exists in the outer solar atmosphere.
This heating process, to be discussed in Section 1I1.C, is generally thought to involve
the dissipation of mechanical energy transported from underlying layers of the Sun
by some type of waves. The energy source term for this process will be denoted by
Sy (r). The total flux of energy in this mysterious form is '

r
= - 2
F,=F, -4 f’ P28, (rydr

[C]

where Fm is the flux through the photospheric boundary at (A
With- the inclusion of the heat conduction, radlatlon and the ad hoc
mechanical heating term, the energy conservation equation becomes

1 d 1, '5P_GMO'"> _1df, 97,
=% [r nu(zmu‘+2n . Sa\g +SN+S,n. (1

The energy conservation integral becomes (with the reference level now fixed at r5)

€dr

’ FmO i |
- [ rzs,(r)dr+-n— [ r’S, (r)arl . (8)

(V)

GM_m dT,
F=4n nurz[;mu +—k(T +T,)- —r—] -rk —

B. Classification of Atmospheric Regions
by the Influence of Energy Source Terms

The solution of the mass, momentum, and energy conservation equations with
the three energy source terms described in Section IIILA is a formidable task.
Fortunately, not all of the terms in the energy equation are of equal importance in
various regions of the solar atmosphere, and considerable simplification can be
-achieved by proper neglect of some terms. As the foundation for such approxima-

/
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tions and as an aid in understanding the physical nature of various atmospheric

regions, we will now evaluate the significance of the terms in the energy equation

(Equation 7 or Equation 8) throughout the outer solar atmosphere. This evaluation

and the resulting classification scheme will closely follow those given in a recent
- review by Kuperus (1969).

The physical bases for this discussion are (1) the continuous decrease in
electron density n, from =~ 1016 cm™3 at the photospheric boundary to ~ 10 ¢cm™3
at 1 AU, presumably approaching zero as r = oo, (2) the qualitatively established
dependence of electron temperature on heliocentric distance, as shown in Figure 1,
and (3) the small outward velocities (in the range 1 to 20 km-s~!) of material
observed in the chromosphere and low corona. The qualitative variations with
heliocentric distance r of the terms in the energy equation follow directly. Convec-
tive transport of energy (given by the terms in square brackets in Equation 7 or
Equation 8) must be small below the level where the coronal expansion becomes
rapid. Heat conduction will transport energy away from the temperature maximum
in the corona, both downward into the chromosphere and outward into inter-
planetary space. Radiation will be important only in the lower layers, decreasing
rapidly with r because of its proportionality to n,2.

1 1 1 1 g’
-3 -2 -1 o 1 2 1
r

lo_g(,-@-')

wh

Figure 1.—Qualitative variation of temperature with position in the outer solar
atmosphere (Kuperus, 1969). Regions I to VII are defined in text.
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On the basis of these qualitative properties of the energy terms, the outer solar
atmosphere has been divided by Kopp (1968) and Kuperus (1969) into the seven
regions shown in Figure 1. Region I is the chromosphere, from which the radiation
loss is large (see Section III.C). Heat conduction into the region is probably
negligible because both the temperature and the temperature gradient are small, We
are thus forced to postulate that the mechanical dissipation term S,, () maintains
the chromosphere by balancing the radiation loss. Region II is the lowest part of the
transition zone, in which the temperature begins to rise rapidly with r toward the
coronal value. The radiation loss is still appreciable. Heat conduction becomes
important in this region because of the large temperature gradient. The relative
importance of heat conduction and mechanical dissipation in balancing radiation is
not clear. Region III is that part of the transition region in which the heat
conduction flux has become so large as to dominate both radiation and mechanical
heating. The heat conduction flux is nearly constant and the structure of the region
is thereby determined (see Section IV),

Region IV marks the beginning of the corona, with the temperature reaching
106 K. The dissipation of mechanical energy must maintain the high temperature
against a diminishing radiation loss and heat conduction down into the transition
zone and chromosphere. The maximum temperature is attained at the boundary
between Regions IV and V. In Region V, mechanical dissipation must maintain the
high temperature against a still smaller radiation loss, heat conduction outward into
interplanetary space, and the convection of energy into the latter region. Whereas
Regions I to IV could be treated as in approximate hydrostatic equilibrium, the
growing importance of the convection term indicates that a hydrodynamic
treatment must be applied in and beyond Region V. Region VI is taken to begin
where mechanical dissipation becomes negligible. Heat conduction from the lower,
high-temperature regions continues to provide energy for an ‘increasing outward
convection. One might divide this region into two parts, coronal and interplanetary,
at the heliocentric distance where the hydrodynamic expansion becomes supersonic
(see Section V.A). Finally, the arguments of Section IIL.A indicate that as the
electron density approaches zero, so must the heat conduction. Thus, a distant
interplanetary zone, Region VII, should ultimately be reached in which the energy
flux is entirely due to convection. The reasonable condition that T — 0 as » = oo thus
results in an energy equation

2
mu-
F - 4nnur? - -
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The flow becomes adiabatic in this region, so that the temperature should be
proportional to r~4/3 (see Section V.C).

This classification scheme is summarized in Table 3. The mechanical heating
term S, (r) is seen to be a dominant or significant energy source in all parts of the
outer solar atmosphere except for Region III, the transition zone, and Regions VI
and VII, the expanding corona and interplanetary medium. In all of the regions
where S,, (r) is important, the theoretical determination of atmospheric structure
_depends directly upon detailed knowledge of the form of this term.

Table 3.—Energy source terms in the outer solar atmpsphefe.

Region m:_3) J{) Convection* Conduction* Radiation* Heating*
I-Chromosphete 1013 s x 103 N N D D
11— Lower transition zone 1012 104 N D D D (7
HE-Transition zone N ] M SN

IV~ Inner corona 108 106 N D $ )
V-Corona S D SN D
V1-Corona and interplanetary medium 10 (at } AU) 105 at 1 AUY D DtoN N N
Vi -Distant interphnetary medium (~ l/rz) {~ l/r4/3) D N N N

*D,’'S, and N signify dominant, significant, and negligible processes, respectively.

C. Observational Information Regarding

the Mechanical Dissipation Term

The mechanical heating term S, (r) was postulated in Section II.A to explain
the existence of a high coronal temperature. We have found in Section II.B that this
term may play a significant role in determining the structure of the chromosphere,
lower transition zone, and much of the corona. Observations of the structure of
these regions could be used to derive the source function S, (). Unfortunately,
sufficiently detailed observations are not available to permit such an empirical
determination. One can, in fact, only roughly determine the total rate of mechanical
energy dissipation in the outer solar atmosphere. This required energy input can
then serve as a constraint upon theoretical models of the energy source, transport,
and dissipation processes.
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The energy flux equation (Equation 8) at the photospheric boundary is
dominated by the gravitational and mechanical terms:

,GMom

+F .. )

F = -4nnur .

At the heliocentric distance r, of the Earth’s orbit,

GM,m dT,
nur? | Smul+> k(T +T)- -rPr,~—
r dr r=r,

Te Te
- 41r[ S () dr+ F o~ 41r[ rsz(r) dr.
r ’0

[c]

F=4r¢g

The convection and heat conduction fluxes can be evaluated using Tables 1 and 2.
Actually, the flux of kinetic energy is found to dominate completely these terms
(note in particular that the heat conduction flux is only = § percent of the total) so
that to a good approximation the total flux at r, is -

7, 7,

1 e e
F~ 41r(5)mneu3r§ - 4n [ Spaa()dr +F,, - 4m [ r*S @)dr.  (10)
r ro ’

o]

Combining Equations 9 and 10 gives the total dissipatidn of mechanical energy
between 7 and 7, in terms of observable or calculable quantities (recalling that nur?
is constant):

1 GM m
f S (r)dr = 4nnur’ (Emu + -4n f ﬂsmd(r)dr, (1n

i.e., the mechanical dissipation ultimately balances the energy loss in the coronal
expansion (including the correction for work done against solar gravity and radiation
to interplanetary space).

o e
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The terms on the right-hand side of Equation 9 can be evaluated with little
difficulty using Table 2:

41mur2(% muz) =6.2 X 1026 erg-s~1
and
GM_m

2 o]

4nnur =21.7 X 10% ergs71.

o

The total rate of energy loss in the coronal expansion is then 2.8 X 1027 ergs~1;
about 75 percent of this energy is consumed in lifting the expanding material out of
the solar gravitational field. The radiation loss from the corona can be estimated
using the approximate S,(r) given in Section II.A and the electron density

derived by assuming hydrostatic equilibrium at constant temperature T.* Then
(Kuperus, 1969),

2
kTOro
GM oM

'e
2 o~y 2
4 j r Sr(r) dr = 41rroS’(ro)
r

o]

(i.e., most of the radiation loss occurs within the first scale height of r,). At
T,=15 X 106 K,

Te
4 [ r2S,(r)dr ~ 3.3 X 10?7 ergs"! .
To

The corona is thus seen to lose energy to the interplanetary region by radiation and
by expansion (including outward heat conduction) at nearly equal rates.

The radiation loss from the chromosphere and transition zone cannot be
obtained from the simple form of S,(r) used above. Athay (1966) has estimated this
loss to be 3.4 X 1029 erg-s™! (mostly as H™ continuum radiation from the lowest

*See Chapter 1, “Introduction to Solar Physics”, by Brandt.
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500 km of the chromosphere). This loss is balanced both by local mechanical
dissipation and by heat conduction from the overlying coronal layers. The heat
conduction flux downward from the corona is approximately 2 X 1028 erg-s~!
(Kuperus, 1969).

' The resulting energy balance of the outer solar atmosphere is shown in Figure
2. The total energy loss from the entire region is about 3.5 X 1027 erg-s~1. This loss

{a) OUTER SOLAR ATMOSPHERE
RADIATION FROM CORONA

F3x1027ERG-S™'

EXPANSION OF CORONA
(CONVECTION
8 CONDUCTION)

Fu3xI10°ERG-S™

MECHANICAL ENERGY (WAVES) §
FROM PHOTOSPHERE :
Fr3.5%10°%ERG-S™

DIATION FROM CHROMOSPHERE
AND/TRANSITION ZONE

F~3.4x|0”£36-s"

(b} CORONA ONLY
' RADIATION FROM CORONA

Fr3xI0”ERG-S™

EXPANSION OF CORONA
(CONVECTION
& CONDUCTION)

Fr3xi0°’ERG-S™'

MECHANICAL ENERGY (WAVES)
INTO CORONA

F~3x 10°°ERG-S™

HEAT CONDUCTION FROM
CORONA TO LOWER LAYERS

Fn2 xI02°ERG-S™
e

Figure 2.—Estimated energy balance for (a) the entire outer solar atmosphere, and (b)
' the corona only.
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must be balanced by the total mechanical dissipation between the photospheric
boundary and 1 AU;

’e
47 f r2s, (r)dr~ 3.5 X 10% ergs!.
r

o]

A corresponding flux of mechanical energy (presumably in waves) must pass through
the photospheric boundary (the flux density is F/4nry2 = 5.7 X 106erg-cm™2-s71),
This is a minute fraction of the 4 X 1033 erg-s™! radiated from the photosphere; it
is of significance in the outer atmosphere because the latter is so effectively de-
coupled from the photospheric radiation. The corona loses about 6 X 1027 erg-s~1
directly to interplanetary space and about 2 X 1028 erg-s™! by heat conduction to
lower layers. The corona must then gain energy by local mechanical dissipation at
the rate of &~ 3 X 1028 erg-s~! (Figure 2). The chromosphere and transition zone
lose 3.4 X 1029 erg-s~! by radiation and gain 2 X 1028 erg-s~1 by heat conduction
from the corona. The difference, 3.2 X 1029 erg-s~!, must be gained by local
" mechanical dissipation.

"~ The energy balance given above illustrates the key role played by radiation in
. determining the gross structure of the outer solar atmosphere. Although approxi-
mately 90 percent of the total dissipation of mechanical energy takes place in the
chromosphere and transition zone, the temperature of these layers remains low
because the density is high enough to permit efficient removal of energy by
radiation. The 10 percent of energy dissipation that occurs in the corona cannot be a
balanced by radiation loss because of the low coronal density. The corona must then
attain a high temperature in order for the other available energy loss mechanisms
(heat conduction and convection) to remove energy at the rate required to maintain
a steady state. In fact, about 70 percent of the energy loss from the corona is by
heat conduction to the cooler, lower layers, which in turn radiate this energy into
interplanetary space.

D. Heating of the Outer Solar
Atmosphere by Acoustic Waves

The basic nature of the mechanism which heats the outer solar atmosphere—thé
dissipation of mechanical energy transported from lower solar layers by waves—is
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almost universally accepted. The specific nature of the mechanism—the wave mode
involved and the actual physical dissipation process—are, however, still poorly
understood. For a review of the various possibilities and the arguments for and
against each, see Kuperus (1969). Our discussion will be confined to one possible
mechanism based on ordinary sound waves. This mechanism has received much
attention and has been chosen for presentation both because of strong plausibility
~ arguments for its applicability to the outer solar atmosphere and because of the

general familiarity of most readers with sound waves. The discussion will, in any
case, illustrate the features of (and difficulties encountered in) any such theory of
mechanical energy transport and dissipation.

1. Generation of Acoustic Noise in the Solar Convection Zone

It is generally accepted that a zone of convective energy transport develops in
the outer reaches of the solar interior ( = 0.85r) and extends essentially into the
photosphere.* The flow in the upper part of this convection zone is expected to
become turbulent, and some energy will be converted into random fluctuations (i.e.,
noise). The convection zone is then a possible source of a mechanical energy flux
which can hopefully be transmitted to and dissipated in the outer atmospheric
layers. Figure 3 shows the acoustic power which would be generated by isotropic
turbulence in the model convection zone of Vitense (1953). Most of the acoustic
noise is produced in a thin layer (= 60 km thick) near the top of the photosphere.
The flux density of acoustic energy from the entire layer is predicted to be
F,|4mry? =~ 3 X 107 ergem™2-s"! (Kuperus, 1969); this flux is clearly sufficient to
maintain the losses from the outer solar layers (F,, /4nr 2 ~ 6 X 106 erg-cm™2-s1
from Section III.C). Although this is only an order of magnitude estimate, sound
waves generated in the convection zone must be considered as a plausible source of
mechanical energy.

2. Propagation of Sound Waves in the Outer Solar Atmosphere

Sound waves are generally treated as small linear perturbations of existing fluid
parameters, and as such propagate with very little dissipation. It is clear, however,
that sound waves propagating outward through the outer solar atmosphere cannot
retain small amplitudes. If there were no dissipation, the flux of acoustic energy F,
would remain constant. The flux density is given by

-‘See Chapter 1, “Introduction to Solar Physics”, by Brandt. .
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Figure 3.—Rate of generation of acoustical noise by isotropic turbulence in the
hydrogen convection zone (Kuperus, 1969). Zero altitude is defined at the level

where the optical depth in the continuum is 1.
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where p is the mass density, u the amplitude of the velocity perturbation in the
wave, and u; the sound speed. In the chromosphere and lower transition zone, the
density scale height is & 100 km; thus, in propagating through this region, p will
decrease by a factor of =~ 105. A constant flux can be maintained only if Su
increases rapidly (u, also increases, but only by an order of magnitude between the
chromosphere and corona). The waves must grow in amplitude and will ultimately
become nonlinear. The nonlinear evolution of the waves should lead to the
well-known steepening of the wave fronts into shocks.

This growth of wave amplitudes and development of shock waves is
quantitatively illustrated in Figure 4, based on a nonlinear computatioh by Kuperus
(1969). A low-amplitude sinusoidal sound wave is introduced into an isothermal
atmosphere with 7 = 5000 K (4, = 8 km-s~1 for ionized hydrogen). The wave form
is shown at the initial altitude and at two higher altitudes. The growth of the wave
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amplitude and the steepening of the wave fronts is clearly demonstrated. After
propagation through about 5 scale heights, the wave has a sawtooth shape with a
series of shock fronts separated by linear relaxations.

Other changes in sound waves will occur in propagation upward from the
photosphere. When the rising temperature gradient of the transition zone is
e_pcpuntered; some of the energy in the waves will be refracted or reflected
downward. The fraction transmitted is small for ordinary linear sound waves.
However, for the steepened, nonlinear wave forms shown to evolve in the
chromosphere, the transmission is much larger. A series of shock waves, carrying a
sizable flux of acoustic energy, would be expected to reach the transition zone and

corona.

u (krmys)
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Figure 4.—Development of an- ordinary sound wave propagating through an

isothermal atmosphere. The wave form is shown at its assumed origin, x =0
and at two higher altitudes, ¥ = 3.35H and x =4.7H, where H is the density -

b

scale height. The wave amplitude increases and the wave fronts steepen as the
disturbance propagates into lower density material (Kuperus, 1969).
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3. Dissipation of Shock Waves in the Outer Solar Atmosphere

Some of the kinetic energy of material flowing into a shock front is con-
tinuously and irreversibly converted into internal energy of the ‘‘shocked” gas.
For a series of shocks propagating through an atmosphere, this results in conversion
of wave energy into internal energy [i.e., a dissipation of energy as réquired by the
term S, (r) discussed in Section II.C}. If the arguments given above for the existence
of a sizable flux of energy in sound waves and the evolution of these waves into a
series of shocks are accepted, a plausible mechanism for energy dissipation results.
For a series of weak shock waves, the Rankine-Hugoniot relations for the changes in
physical parameters at the shock give an average dissipation rate of

2
pu;

B L

M, ~1), (12)

where I1 is the period of the shocks, 7 is the ratio of specific heats, and M, is the
Mach number of the material flowing into each shock (viewed in the shock frame of
reference). For stronger shocks the dissipation rate is higher.

4. Model Atmospheres Based on Shock Wave Dissipation

The introduction of an energy source function, even of such seeming simplicity
as Equation 12, into the energy Equation 7 or 8 defines a problem of considerable
computational difficulty. To illustrate this difficulty, Figure 5 shows the tempera-
ture as a function of heliocentric distance predicted by several models, all of which
assume heating by shock waves, but each of which makes different simplifying
assumptions to facilitate solution of the coupled system of mass, momentum, and
energy conservation equations. The models of Bird (1965), which neglect both heat
conduction and radiation, predict a maximum coronal temperature at r = 2r, too
far away from the Sun to agree with observations. None of the remaining models
(see Kuperus, 1969, for references) can be said to be in significantly better or worse
agreement with observations than any other. This illustrates the limitations of
present coronal observations and our consequent inability to compare the validity of
different atmospheric models. Similar difficulties could arise if models based on
entirely different theories of energy dissipation were constructed and compared. It
should be clear that firm conclusions regarding the nature of the all-important
dissipation process cannot be drawn and that the structure of any region of the
outer solar atmosphere where this dissipation is significant must remain uncertain.
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Figure 5.—Model solar atmospheres derived by various authors, using the energy
source term due to weak shock waves (Equation 12) but with different
treatment of the radiation, conduction, and convection loss terms (Kuperus,
1 1969). '

IV. STRUCTURE OF THE TRANSITION ZONE

In Section IIL.B it was suggested that the downward heat conduction flux in
the transition zone (Region III of the classification scheme) is nearly constant.
Kuperus (1969) has estimated this flux to be

dTe
Fc = -4nr’k ?’-

- 41rré(2 X 10° erg-cm™2s71) . (13)
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This is comparable to loss of energy by radiation and presumably to the gain of
energy from mechanical dissipation (the integrals of S, and §,, in Equation 8) in the
entire region between the top of the chromosphere and the corona. As the change
from chromospheric to coronal temperatures is believed to occur in a small altitude
range within this region, Equation 8 implies near constancy of F,. The structure of
the transition zone is then determined by Equation 13. The variation of r? can be
neglected in a thin layer, and use of the thermal conductivity from Section ITI.A
gives

dT,
TR — ~2.5 X 101 K" 2em™! . (14)

The near constancy of T3/2dT/dr is confirmed by the observed intensities of UV
line emission from the transition zone (Athay, 1966).
Equation 14 is easily integrated to give

2=
T2 =72+ 8.7 X 101¢ -1y,

where the zero subscript denotes parameters at some reference level. The implied
temperature gradients are extremely large, especially at the lower temperatures
where the conductivity is low. For example, at the altitude where T=105 K
(sometimes taken to be the “top of the chromosphere’), Equation 14 gives

ar, .

—~ 10*K-km™!.

dr
Thus, the lower boundary of the transition from the chromosphere to the corona
must be very sharp. '

If the structure of the transition zone is determined by heat conduction from
the corona, that structure will be strongly influenced by the magnetic field
configuration, as the conductivity across field lines is small (Section III.A). The
chromospheric magnetic field is observed to be high at the supergranule boundaries.
The concentration of heat conduction flux at these boundaries results in a strongly
inhomogeneous transition zone, as shown in Figure 6 (Kuperus, 1969). The high
coronal temperature penetrates to lower altitudes over the supergranule boundaries
giving steeper temperature gradients at the level where the change to chromospheric
temperatures occurs. The development of spicules at the boundaries has been
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attributed (Kuperué and Athay, 1967) to the concentrated energy flux from the
corona. '

Spicules Interspicule Region . Spicules

Supergranulation

Figure 6.—A model of the transition zone, assuming that heat conduction downward
from the corona dominates the energy equation. The concentration of the
chromospheric magnetic field at supergranule boundaries leads to a larger
conductive flux into the regions above these boundaries and, thus, to a deeper
penetration of the high coronal temperature and a steeper temperature gradient

- (Kuperus, 1969). '

V. THE EXPANSION OF THE OUTER
SOLAR ATMOSPHERE

The outward flow of material becomes important in the corona and in
interplanetary space, i.e., in Regions V, VI, and VII of the classification scheme given
in Section III.B. By definition, the dissipation of mechanical energy becomes
unimportant in Regions VI and VII. We will concentrate here on quantitative models
of the expansion in these two regions; any attempt to treat Region V would involve
the dissipation term S,,(r) and encounter uncertainties similar to those already
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encountered in Section IIL.D. The lower boundary of Region VI will be taken as
r =rg, which is equivalent to assuming that all mechanical dissipation occurs in a
thin shell at the base of the corona. The validity of this assumption will be assessed
when the resulting models are compared with observations. The loss of energy by
radiation can be neglected. Under the assumptions of spherical symmetry, steady
flow, and neglect of all magnetic and viscous effects, the fluid equations applicable
to Regions VI and VII follow directly from Equations 1 or 5,2, and 7 or 8.

A. Formal Nature of the Solutions

The fluid equations describing the solar corona have been discussed by Parker
(1960, 1963a, 1963b, and 1964), who first demonstrated the existence and
relevance of solutions that involve a continuous outward flow of material. Because
the basic features of these solutions can be illustrated by the simple situation in -
which the proton and electron temperatures are taken to be equal and constant, our
attention will initially be confined to this case.

If the mass conservation equation (Equation 5) is used to eliminate the density
from the momentum equation (Equation 2), the latter can be written in the form

1d GM
__g<u2__2kT)=4kT_ o (15)

udr m mr . g2

For any temperature T < GMg/mkr,, the right-hand side of Equation 15 is negative
for small r, zero for

r, = GM m|rkT ,

and positive for larger r. At r=r,, the left-hand side of the equation can be zero
either because

u?=2kTIm ,

where the subscript ¢ denotes the value of a parameter at r,, or because

-l..d_u =0
udr|,=,
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If attention is limited to continuous solutions with continuous derivatives, the first
of these possibilities implies that du/dr has the same sign for all r, so that u(r) is
monotonically increasing or decreasing. The second possibility implies that
u? - 2kT/m has the same sign at all r, so that #(r) has a maximum at r, if
u? < 2kT/m or a minimum at r, if u2 > 2kT/m.

The observation of small material velocities in the low corona eliminates the
monotonically decreasing solution and those solutions with a minimum at r, from
applicability to the corona (all such solutions have u2 > 2kT/m =~ 100 km-s~1 for
r <r.). The remaining solutions are of two types:

(1) A unique solution for which the monotonically increasing u(r) has the
value u, = (2kT/m)1/2 at r = r, (i.e., passes through the so-called “critical point”).
Since u, is the characteristic thermal speed in the fluid, this leads to a supersonic
expansion at large heliocentric distances; such an expansion is now generally referred
to as the “solar wind”. Actual solutions, obtained by numerical integration, are
shown in Figure 7 for several coronal temperatures (Parker, 1963a). Flow speeds of
several hundred kilometers per second are predicted in interplanetary space.
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?.'.‘|h
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Figure 7.—Coronal expansion speed as a function of heliocentric distance, given by
the solar wind model of Parker (1963a) for an isothermal corona.
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(2) A family of solutions for which u(r) increases with r until a maximum
value smaller than u, is attained at r = T, and then decreases, approaching zero asr
" approaches infinity. The expansion is subsonic at all r. These solutions are similar to
the “solar breeze” solutions obtained by Chamberlain (1960) from a more realistic
treatment of the energy equation. Flow speeds of tens of kilometers per second are
predicted near 1 AU for reasonable coronal temperatures.

Either the solar wind or the solar breeze solutions can exist for a given coronal
temperature, but at different coronal densities. The criterion that determines the
nature of the expansion for specific coronal conditions can be derived only when the
energy equation is actually integrated (see Section V.B). It is clear, however, that the
flow speeds observed in interplanetary space (Section II.C) are close to those
predicted by the solar wind solutions and much higher than those predicted by the
solar breeze solutions. This gives a sound empirical justification for concentrating on
the former class in the remainder of this discussion. Parker (1964)
has shown that solar wind solutions exist' whenever T(r) declines less rapidly than 1/r
for r <r,. At large heliocentric distances, u(r) is nearly constant, and n(r) must then
decline as 1/r? to conserve mass.

B. Analytic Integrations of the Energy Equation

A self-consistent treatment of coronal structure requires simultaneous integra-
tion of the mass, momentum, and energy equations. Assuming equal electron and
proton temperatures, the pertinent equations become

f = 4nnur?, (16)

GM

du 1 d o
Lhv__ e - 17
udr " dr(2nkT) 2 a7)

and

GM_m
F=41mur2(%mu2+ 5kT - ro )-4«#«5‘% . 18)
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Analytic integrations can be performed only if further (and rather extreme)
simplifications are made. Two such approximations, which will help to clarify
properties of the numerical solutions to be described later and which illustrate the
criterion for solar wind or solar breeze expansions, will be presented here.

1. Energy Transport Determined by Heat Conduction

If the particle flux f from the expanding corona is small enough, the energy
flux equation (Equation 18) is dominated by the heat conduction term:

dT

~_ ar _ _, 2 =52
F 4nrlk ar 4zr xsT ar

(19)

This differs from the situation in the transition zone (Section IV) only in that the
energy flux is outward (or positive). In Equation 19, assuming that 7 - 0 asr - o
gives '

= 2/7
T =Ty (ro/IN"".
This is the