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PRECEDING

FOREWORD

This is the final report describing the work performed for the Ames

Directorate, U. S. Army Air Mobility Research and Development Laboratory,

under Contract Number NAS 2-4389. The feasibility of using a fluidically

controlled, bidirectional jet flap called the Variable Deflection Thruster

(VDT) to improve helicopter rotor blade performance was studied. The

program was conducted jointly by Honeywell and AAMRDL. The contract

monitor is Mr. Thomas Wynn.

The authors wish to express their gratitude to Mr. H. M. Melrose for

his contribution to the experimental program; to Messrs. N. E. Miller,

S. M. Johnson, and K. C. Van Langen for their assistance in analyzing the

results of the experimental work; and especially to Mr. J. M. Hammer for

his analytical treatment of the lift controller presented in the Appendix.
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ABSTRACT

A bidirectional jet flap device called the Variable Deflection Thruster

(VDT) has been investigated for possible application to helicopter rotors.

This investigation included the development and testing of a fluidic lift con-

trol system for the VDT-blade model making use of the Phase I test result

that VDT-blade lift can be sensed from the differential pressure at midchord.

This study constitutes Phase II of a long-range program to develop blown

control techniques for stabilizing the higher harmonic modes of helicopter

rotors.

Wind tunnel tests were conducted using a three-sectioned, two-

dimensional VDT-blade model having individually controlled VDT jet flaps

in each section. Steady-state tests were conducted without the fluidic lift

controller (open loop) for both full-span blowing and for the model center

section blowing only. Steady-state tests were conducted with the center

section blowing only using the fluidic lift controller (closed-loop) to control

the lift on the model center section. Dynamic tests were conducted using

the complete model with the VDT jet in th6 model center section oscillating

at various frequencies and also using the model center section alone on a

single endplate to obtain finite-aspect-ratio effects. Fair agreement was

obtained between theory and experimental results.

The fluidic lift controller maintained approximately constant lift on the

VDT-blade at zero angle of attack (0. > 0) for a dynamic pressure range
J

from approximately 10 to 90 psf. Since the control system gain was less

than designed for, the ability of the lift controller to maintain constant lift

decreased with increasing angle of attack. However, the test results proved

the concept feasibility of a fluidic lift controller. The dynamic test results

indicate that the ratio of dynamic lift to steady-state lift increased with

increasing VDT jet oscillation frequency more rapidly for finite than for

infinite aspect ratio. These results are consistent with those shown in

reference 1.
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LIST OF SYMBOLS

A Effective area of first preamplifier orifice (control port)

A Effective area of pressure tap orifice for outbleed at model

surface

A Effective area of bias orifice in outbleed supplys

AR Aspect ratio

B, C Coefficients in Spence's equation (ref. 5)

b Nozzle exit width

b™ Airfoil semi-span

CD Drag coefficient

Drag coefficient of hypothetical unblown wing

Lift-produced drag coeffieient

Cn Profile and skin-friction drag coefficient
o

ACn Drag coefficient difference between blown and unblown wing

CL Lift coefficient

|CT I Absolute value of lift coefficient for jet angle oscillationsi_i
(dynamic lift coefficient)

CL, Quarter-chord moment coefficient
Mc/4

C,, Leading edge moment coefficient
MLE

CN Normal force coefficient

Cp Pressure coefficient

Difference in pressure coefficient between top and bottom of

the airfoil

Pressure coefficient differential at midchord
c/2



C Blowing coefficient

C Total VDT blowing coefficient, C = C ^ + C^

c Airfoil chord

D Drag

f Jet angle oscillation frequency

G Gain of fluidic control system

L Lift

£ Lift per unit airfoil surface area

M^ Free-stream Mach number

NF Front component of normal force as measured by the LTV

balance system

Np Rear component of normal force as measured by the LTV

balance system

P1 Pressure in top branch of downstream outbleed network

P2 Pressure in bottom branch of downstream outbleed network

P.. ' Midchord pressure on top surface of model

P2 ' Midchord pressure on bottom surface of model

P Pressure in top VDT tank

^
°2

Pressure in bottom VDT tank

POO Free-stream static pressure

AP Difference in pressure between top and bottom of airfoil

i g Pressure differential at airfoil midchord

Pressure differential in the outbleed network of the fluidic

control system

AP - Set reference pressure differential for the fluidic control system

APT VDT tank pressure differential (P - P )
°1 °2

VI



q, q^ Free-stream dynamic pressure

R Reynolds number

S Airfoil surface area

T Jet thrust

V Free-stream velocity

Vrp Relative velocity

[VDT] Transfer function for VDT jet angle

x/c Ratio of distance from airfoil leading edge to airfoil chord

length

Ratio of distance from airfoil root to airfoil semi-span

Greek Letters

a Angle of attack

y Ratio of specific heats (1.4 for air)

X Percentage of VDT jet blowing that results in drag reduction

6 VDT jet angle downstream of cylinder surface measured from
J

the centerline to the position of maximum jet velocity

6-f VDT jet angle obtained from force measurements under static
-1conditions, 0.f = tan (L/D) (0 - j f w 6J

6. Mean jet angle during jet angle oscillation

A0. Maximum jet angle amplitude for oscillation
J

| Absolute value of maximum jet angle amplitude"

Reduced jet angle oscillation frequency, 2nfc/V
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FEASIBILITY STUDY OF A
BIDIRECTIONAL JET FLAP DEVICE

FOR APPLICATION TO HELICOPTER ROTOR BLADES

Phase II: Lift Controller Development

by

Raymond E. Rose
Tom M. Wynn*
Gary A. Smith

Glen L. Merrill

INTRODUCTION

This is the final report of Phase II work in a program directed toward

the development of a jet-flap device and fluidic lift control system applicable

to helicopter rotor blades.

The first phase of investigation (ref. 2) provided preliminary and basic

information on the steady-state and dynamic characteristics of a helicopter-

blade model incorporating a jet-flap device called the Variable Deflection

Thruster (VDT). The basic VDT configuration is shown in Figure 1. During

Phase I, a two-dimensional helicopter VDT-blade model (NACA 0012) having

a 2-foot chord was designed, fabricated, and wind tunnel tested in AAMRDL's

7 x 10-foot wind tunnel at the Ames Research Center. The model is con-

structed in three equal sections to allow for control of different blowing rates

and jet angles. Complete details of the model are given in reference 2.

Steady-state results showed that the VDT is an effective lift-producing

device which provides simultaneous drag reduction. It was also found that

the VDT-blade lift can be sensed from the differential pressure at the airfoil

midchord. Dynamic results indicated that the ratio of dynamic lift to steady-

state lift increases with increasing VDT jet oscillation frequency for a con-

stant oscillation angle.

Ames Directorate, AAMRDL



Composite jet

Separation point

Supply
pressure Po2

Cylinder surface

Supply
pressure Pol

Plenum chambers

(a) Cylindrical VDT concept

Plenum chambers

(b) Airfoil section with VDT trailing edge

Figure 1. Basic VDT Configuration



The major objective of the Phase II investigation was to develop a fluidic

system for sensing and controlling the lift on a VDT helicopter rotor blade.

To accomplish this task, a fluidic control system employing the VDT was de-

signed to maintain constant lift on the helicopter rotor blade independent of

changes in angle of attack or free-stream velocity. Fluidic amplifier cas-

cades were developed to meet the design requirements. The fluidic control

system was installed in the center section of the helicopter VDT-blade model

and wind tunnel tested in AAMRDL's 7 x 10-foot wind tunnel at the Ames

Research Center. The results of these tests are presented and discussed in

this report.



FLUIDIC CONTROL SYSTEM DEVELOPMENT
FOR VDT-BLADE LIFT CONTROL

Lift Sensing

The method developed and used in the lift controller design to sense lift

is based on Kuchemann's approach to calculating the pressure distribution
over an airfoil with trailing edge blowing. A detailed discussion of the
method is presented in reference 3. Kuchemann's method has been success-

fully applied to eliptical airfoils both by himself (ref. 3) and by Yuan, et al.
(ref. 4).

Calculations were made to predict the VDT-blade model surface pressure
distribution using the equations developed by Kuchemann (ref. 3). The
results of several pressure calculations are presented in Figure 2 for a num-
ber of combinations of input variables (CT , a and C ) and compared withLI n
experimental data from the Phase I tests (ref. 2). The distributions are
presented in the form of pressure coefficient differences, ACp, between the
top and bottom of the airfoil. Good agreement is obtained between the calcu-

lated and experimental results.

The calculated pressure distributions predict that the pressure difference
between the top and bottom of the airfoil at midchord is directly proportional
to lift. Experimental data from reference 1, shown in Figure 3, tend to
verify the predicted linear relationship. Therefore, the lift control system
was designed to sense the lift on the VDT-blade model simply by measuring
the pressure difference across the midchord of the airfoil.

Control Loop Design

A block diagram of the control system, designed as it would operate on

a helicopter, is shown in Figure 4. The pilot's input command (commanding
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Pilot
command

Pilot
command
to
reference
signal

Figure 4. Helicopter Control System

lift) changes the helicopter rotor blade angle of attack, a, through a linkage.

This same command also sets the reference signal to the fluidic control sys-

tem. The commanded angle of attack, the relative velocity over the blade,

V , and the VDT jet angle, 6.f, combine to produce the lift on the blade.
J

In the fluidic control loop (Figure 5) pressure taps at the midchord of the

VDT-blade surface provide the fluidic signal proportional to lift. This signal

is compared with the reference signal, AP f. If an error exists, the re-

sulting signal is amplified and used to deflect the VDT jet, which acts to com-

pensate for the lift error.

Figure 5 is a revised block diagram for operation of the system in the

i tunnel. The gain constants B and C are the coeff

terms in Spence's coefficient-of-lift equation (ref. 5):

wind tunnel. The gain constants B and C are the coefficients of a and Q..

B = 2n + 1. 152 C + 1. 106 C + 0. 051 C
r* r r1

C = 3 . 5 4 C + 0 . 3 2 5 C + 0. 156 C
H" r"

C = Ba+ C 0.

(1)



ejf=IVDT:(G[APref-APc/2J)
I

'"Pilot commands set these inputs

Figure 5. Fluidic Control Loop

Lift

* AP.ref

The jet blowing coefficient is a function of the plenum chamber pressures.

The relation between APT and 6.~ for the VDT jet was obtained from the fol-

lowing approximation:

1 - = 90°
/P

(2)

To avoid flow separation, the range for 0.f was set at -60° £ 0.f ^ 60°.

From the block diagram (Figure 4) the relationship for lift is

L =
B a + C-G [VDT] AP

ref
qS

1 + C- G (qS) [ VDT] 12
L

(3)

10
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L JAP .

i i r- r1 1 - C'
\ ^

[VDT] qS

where [ VDT] is the function which transfers the tank pressures to a VDT jet

angle according to equation (2).

If the set point is selected so that the VDT angle is zero when the VDT-

blade angle of attack is at some set value, then the percentage variation in

lift with angle of attack is

(4)

Equation (4) can be solved to determine the pressure gain, G, needed to

maintain lift within a specified limit. Figure 6 shows this relationship for

plenum chamber pressures of 50 psig and three air velocities. In this case,

a nominal angle of attack of 5 degrees and a variation of ±10 degrees were

used. This figure indicates that relatively high pressure gains will be needed

to control lift within reasonable limits. Lower air velocities (M^) require

higher gains to maintain the same lift control.

Based on the above analysis, a gain (G) of 2000 was selected. Figure 6

shows that a gain of 2000 will give less than 10% variation in lift for values

of M greater than 0 .2 .

Amplifier Development

Figure 7 is a schematic diagram of the entire fluidic lift control system.

The lift control system consists of a fluidic lift-sensing network, an ampli-

fier system, and a VDT configuration. A lift error based on the pressure

difference measured by the lift-sensing network and an operator adjusted

reference pressure difference, APrgf, is computed by a summing amplifier,

which is the first stage of the amplifier system. The error signal is ampli-

fied by the remainder of the amplifier system and used to deflect the VDT

trailing edge jet to compensate for the lift error.

11
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The two pressure taps used to sense lift on the helicopter VDT-blade

model are located at the midchord position on the top and bottom surface of

the model. To simulate conditions where it would be required to avoid en-

training impurities into the system through the pressure taps, air was

exhausted from the taps. Consequently, an outbleed network was devised

which provided a signal path from the pressure-sensing ports to the pre-

amplifier, as shown in Figure 7. It can be shown that the signal attenuation

in the passive resistance or outbleed network is given by

2 - Pl 1r , -kr- = — 0 0 = 0.95 ( 5 )
2

where

P2, P, = pressures downstream of outbleed network

P' , P/
1 = pressures upstream of outbleed network

A = effective area of bias orifice in outbleed supplys

A = effective area of pressure tap orifice for outbleed

at blade surface

A = effective area of first preamplifier orifice

(control port)

The amplifier system is composed of four sets of amplifiers (Figure 7):

• Preamplifier cascade

• Branching or interface amplifier

• Power cascades

• VDT power amplifiers

14



The preamplifier consists of five center-dump amplifiers. Four non-

summing and one summing amplifier are combined to achieve a gain of

approximately 250. The summing amplifier compares the pressure difference

measured by the lift sensing network with the reference pressure signal,

AP f. The resulting pressure signal is amplified by the remaining non-

summing stages of the preamplifier. Amplifier components and the com-

pleted preamplifier are shown in Figure 8.

To keep the size of the VDT power amplifier within reasonable limits

and to reduce control and airflow problems, seven amplifier units are used

to supply the airflow to the VDT plenum tanks. Each amplifier unit consists

of a VDT power amplifier with a gain of 2 preceded by a power cascade with

a gain of 4. The power cascade is a series combination of two side-vented

amplifiers. A completed power cascade-VDT power amplifier unit is shown

in Figure 8.

Figure 9 shows the seven amplifier units mounted on the VDT plenum

section. Both the power cascades and the VDT power amplifiers are supplied

by a common pressure source, but the power cascades are equipped with ori-

fices which drop their supply pressure. The center amplifier unit also has

the interface amplifier (interfaces between the preamplifier and the seven

power-amplifier cascades) mounted beside the amplifier unit.

Figure 10 shows the outbleed network and amplifier system installed in

the center section of the helicopter VDT-blade model. The gain of the

assembled system is approximately 2000. Since the amplifiers are vented,

holes were drilled in the box beam spar and outside ribs of the center section

to allow vented air to escape from the model.

The supply pressures to the control system amplifiers (Figure 9) were

adjusted to eliminate noise from the circuit. If high-frequency perturbations

are present in the pressure signal during wind tunnel tests, thus introducing

system instability, the control system can be stabilized by adding a tank

(i. e. , capacitive element exhibiting first-order lag) having the appropriate

volume.

15
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Figure 8. Fluidic Control System Amplifier Components and
Assembled Amplifiers
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Preliminary Tests of Fluidic Control System

Outbleed system tests. - The passive resistance network was devised to

ensure that the midchord pressure sensing ports remained clear of impurities.

Some preliminary tests were completed on this system in combination with

the preamplifiers. Tests were conducted in Honeywell's 12 x 17-inch sub-

sonic wind tunnel using the preamplifier and a 6-inch-chord NACA 0012

wooden airfoil model with outbleed orifices at midchord; however, there

were no surface pressure taps. Figure 11 shows the model mounted in the

wind tunnel test section; a schematic of the outbleed system was shown in

Figure 7.

The characteristics of the outbleed system were checked for angles of

attack from -5 to +5 degrees (tests were limited to this range by the model's

structural characteristics). System noise, gain and linearity with lift were

determined. Figure 12 shows the output pressure of the preamplifier as a

function of angle of attack of the airfoil. The output of the preamplifier is

essentially linear with angle of attack. Since lift should be linear with angle

of attack, also, the results indicate that the concept of sensing lift with the

outbleed-sensing ports at midchord is feasible.

Figure 13 shows that the gain attenuation through the outbleed system,

determined prior to the outbleed orifices, is negligible. The curves repre-

sent preamplifier output pressure as a function of pressures upstream and

downstream of the outbleed box. The range of angle of attack and other

parameters were identical in both cases. The gain for both curves is approxi-

mately 300, and the noise amplitude at the output of the preamplifier is

roughly 1/4 psi peak-to-peak.

Open-loop testing for operational limitations. - After the preliminary

tests of the outbleed system were completed, the entire fluidic control system

was installed in the center section of the VDT-blade model and taken to the

University of Minnesota Rosemount Aeronautical Laboratories for further

testing. Since wind tunnel facilities were not of adequate size, complete
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Figure 11. Wing Model in Subsonic Wind Tunnel (NACA
0012)
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Midchord AP on NACA 0012 Airfoil
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closed-loop testing was impossible. These tests provided information about

the operational limitations for the VDT jet angle variation and plenum

pressures.

By varying the supply pressures to the preamplifier section, gains from

2500 to 4000 could be obtained. A typical gain curve is shown in Figure 14.

To effectively change the pressure across the airfoil, air was blown over

the airfoil surfaces. Pressure differences were obtained by varying the

angle of attack of this airstream. The results indicated that high-frequency

pressure pulses did not adversely affect the operation of the system in this

static test situation.

It was determined that maximum and minimum plenum pressures were

about 45 psig and 15 psig, respectively. The operating characteristics of

the proportional amplifier are such that the average of the plenum pressures

remains constant at about 30 psig as the jet is deflected through its range.

The fluidic VDT system, as shown in block diagram form in Figure 5, is

designed to maintain constant lift on the blade section as angle of attack or

airspeed is varied. The open-loop tests of the fluidic system indicated that

the system will operate as designed within certain limitations. Pressure

recovery within the fluidic amplifiers and saturation levels impose limitations

on the maximum jet angle obtainable and on the blowing coefficient (deter-

mined by VDT plenum pressure). The performance of the system is, there-

fore, limited by the maximum obtainable jet angle and the plenum pressures

obtainable in the VDT plenums.
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HELICOPTER VDT-BLADE MODEL MODIFICATION
AND INSTRUMENTATION

The VDT-blade model and model instrumentation used for the Phase I

tests (ref. 2) were used in the current investigations with the exception that

a new model center section was designed and fabricated to accommodate the

fluidic control system. The model is a two-dimensional, modified NACA

0012 airfoil section having a 7-foot span and approximately a 2-foot chord.

The model is made in three equal span sections. Details of the model design

and fabrication are given in reference 2.

A series of pressure taps was used to monitor the performance of the

fluidic control system. Complete information about the instrumentation for

the current model configuration is presented in the operational manual

(ref. 6).

For the Phase II tests the model was modified with an improved com-

pliance joint, as shown in Figure 15, to eliminate extraneous model loads

on the internal balance system due to air-supply-duct pressurization. The

floating cylindrical section extended through the bottom model section

(Figure 10) and rested in a base mount fastened to the model baseplate.

The possibility of structural binding and the consequent adverse effect on

the internal balance system was greatly reduced by the new air-supply-duct

arrangement for the model center section. The flexure members of the

internal balance system were also stiffened to eliminate adverse effects due

to transverse loadings, and additional model internal structural supports

were installed to reduce the effect on the balance system of adverse temper-

ature gradient caused by amplifier venting inside the model.
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Tension adjustment

"0" ring

Cable ->i

Transition section

"0" ring

Amplifier section

"0" ring

Floating plug

Figure 15. Compliance Joint Assembly

Briefly, the model instrumentation was:

• Model center section --

Strain gage balance system for measuring chord

force, normal force and moment

Two Statham pressure transducers (one each, top

and bottom VDT plenum)

Four total pressure taps (two each, top and bottom

VDT plenum)

Forty-two static pressure taps on airfoil surface

(mostly chordwise)
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Eighteen static pressure taps on VDT cylinder surface

Fifteen static pressure taps within fluidic circuitry

Five thermocouples (one each, top and bottom VDT

plenum, two on model surface and one on interior

model skin)

• Model end sections --

Four total pressure taps for each section (two each,

top and bottom VDT plenums)

Two thermocouples for each section (one each, top

and bottom VDT plenums)

Figure 16 shows the helicopter VDT-blade model installed in AAMRDL's

7 x 10-foot subsonic wind tunnel at NASA-Ames. The gaps between the

model sections were covered with Mylar plastic tape to prevent air blowing

through from the high- to low-pressure side of the airfoil during testing.
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WIND TUNNEL TEST PROGRAM

Wind tunnel tests were conducted to determine the basic performance

of the VDT-blade model for both open- and closed-loop operation. Dynamic

tests were also conducted where the VDT jet was oscillated at various fre-

quencies. There are basically three parts to the test data:

• Steady-state tests of the VDT-blade model (open-loop)

• Steady-state tests of the VDT-blade model with lift

controller (closed-loop)

• Dynamic tests of the VDT-blade model

The procedures for these tests are described in this section, and test

results are presented and discussed in the following section.

Steady-State Tests (Open-Loop)

The open-loop steady-state tests of the helicopter VDT-blade model

were made with two different test conditions. The first set of tests was con-

ducted with all three model sections having the same blowing conditions.

A second set of tests was conducted with the center section jet blowing at

various jet angles with the end sections remaining unblown. Since, for

normal helicopter applications, sectional blowing would most likely be used,

the tests with only the center section blowing were intended to provide some

information as to the effect of sectional blowing on VDT performance. The

ranges of parameters for these open-loop steady-state tests were:

• Angle of attack, 0 ^ a ^ 12 degrees

• Blowing coefficient, 0 ^ C £ 1. 60

• VDT jet angle, -30 s 0. £ 30 degrees
J
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• Free-stream dynamic pressure, 10 £q ^100 psf

• Maximum VDT tank pressure, =-45 psig

Steady-State Tests with Lift Controller (Closed-Loop)

The performance of the fluidic VDT lift control system was investigated

with the control circuitry contained in the model center section. The two end

sections remained unblown while the VDT jet angle of the center section was

automatically varied by the fluidic control. The jet thrust was constant

during these wind tunnel tests. The goal of the lift-control system was to

maintain a constant lift value while the airfoil experienced a number of

changes in either angle of attack or wind tunnel velocity. Lift data was taken

with the controller operating throughout the following range of parameters:

• Angle of attack, 0 ^a ^ 12 degrees

• VDT jet angle, -30 =s 0. £ 30 degrees
J

• Blowing coefficient, 0 £ C £ 1. 20

• Free-stream dynamic pressure, 10 ̂ q ^100 psf

• Maximum VDT tank pressure, =~45 psig

Dynamic Tests

Dynamic tests were conducted using the VDT-blade model with the

center-section jet oscillating at various frequencies. The tests were

intended to indicate the dynamic response and dynamic lift characteristics

of the VDT-blade model. Jet thrust was held constant throughout the test

runs. The fluidic circuitry was used to oscillate the jet by inputting a signal

from a fluidic function generator. However, inconsistencies were noted in
the data.
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Additional tests were conducted using the model center section only with

a single endplate to obtain finite-aspect-ratio data. These tests provided

more reliable data than the tests using the complete VDT-blade model. The

dynamic valve used for the Phase I (ref. 2) tests was used to oscillate the

VDT jet angle and the LTV, VSB-8 balance system was used. The ranges of

parameters for these dynamic tests were:

• Angle of attack, a * 0 and 12 degrees

• Blowing coefficient, 0.26 ^C < 0.946

• Average jet angle, 6. =0
J

• Free-stream dynamic pressure, 11 ̂  q £ 40 psf

• Maximum VDT tank pressures, — 35 psig

• VDT jet angle amplitude, A0. = ±85 degrees
J

• Jet oscillation frequency, 5 £ f ^ 45 Hz

Data Reduction Method

The force measurements obtained from the balance systems were com-

puter-reduced to obtain the aerodynamic coefficients. Because of a large

number of malfunctioning pressure taps, very few good pressure distribu-

tions could be obtained, and the pressure data was mainly used as a rough

check on the balance measurements. For the closed-loop and dynamic tests,

the internal balance system was used to measure the normal forces.

Since the amplifiers were vented inside the model, the flow of cold air

produced a temperature gradient that adversely affected the internal balance

system. Therefore, the air was heated, the temperature of the air to the

VDT tanks was modulated during tests runs, and the internal balance system

was calibrated for temperature change. Temperature tare corrections were

negligible for normal force measurements but were significant for chord

force and moment measurements.

31



The VDT jet angle, 9., was determined from the VDT tank pressure
J

differential in accordance with oil-trace calibrations made during Phase I

tests (ref. 2). The calibration curve is presented in Figure 17. The blowing

coefficient, C , was calculated from the VDT tank pressures and corrected

by the discharge coefficient (0. 94) in accordance with reference 2.

Figure 17. VDT Jet Angle as a Function of VDT Tank
Pressure Difference
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VDT-BLADE MODEL TEST RESULTS

Steady-State Tests (Open-Loop)

Nonblowing characteristics. - The results for the nonblowing case of the

helicopter VDT-blade are presented in Figures 18 through 21. The lift co-

efficient data in Figure 1 8 is compared with two-dimensional Joukowski

theory (ref. 7). As formerly noted in reference 2, truncating the NACA 0012

airfoil section at the 80% chord to install the VDT-cylinder appears to slightly

change the lift characteristics. The helicopter VDT-blade model has a thick-

ness ratio (maximum thickness to chord) of approximately 0. 147, and this

can account for the lift-curve slope of the model slightly exceeding that of

the theory. The internal balance system (IBS) consistently gave lift results

slightly higher than the wind tunnel balance as shown in Figure 18. There-

fore, in subsequent tests where it was necessary to rely on the IBS lift mea-

surements, a correction factor was determined based on the difference noted

between IBS and wind tunnel balance measurements for the same test

configurations.

The drag coefficient results in Figure 19 are compared to data for a

NACA 0012 wing section taken from references 8 and 9. The drag of the

VDT-blade model is higher than that of the standard smooth NACA 0012 air-

foil. This can be attributed to the truncation of the airfoil trailing edge for

the VDT cylinder.

The leading-edge and quarter-chord moment coefficients for the VDT-

blade model are presented in Figures 20 and 21. The leading-edge moment

coefficient becomes more negative with increase of angle of attack, as

expected. However, the quarter-chord moment coefficient is indicated to

increase with angle of attack when it should remain essentially constant for a

symmetrical airfoil. For the results shown in Figures 20 and 21, the VDT-

blade's aerodynamic center is indicated to be at approximately 0. 17 c. How-

ever, in reference 2 the pressure integration data for the VDT-blade model
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O Wind tunnel balance data

— Joukowski theory
(ref. 7)
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Figure 18. VDT-Blade Lift Coefficient as a Function of
Angle of Attack - Full Span, No Blowing
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Figure 19. VDT-Blade Drag Coefficient as a Function
of Angle of Attack - Full Span, No Blowing
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Figure 20. VDT-Blade Leading-Edge Moment Coefficient as a
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Figure 21. VDT-Blade Quarter-Chord Moment Coefficient as a
Function of Angle of Attack - Full Span, No Blowing
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showed the aerodynamic center to be at approximately 0.25 c, which is the

approximate location for standard airfoils. Therefore, all moment coefficients

in this report will indicate higher positive values than the model actually

encountered.

Full-span blowing. - The data for the VDT-blade model blowing full span

has been plotted for angles of attack of 0, 4, 8, and 12 degrees with jet angles

of 0, 10, 20, 30, and -30 degrees. Since some full-span blowing and a similar

configuration, center-section blowing with endplates, was done previously in

the Phase I wind tunnel tests (ref. 2), many of the results are similar, and a

detailed discussion is not presented in this report.

Lift coefficient results for full-span blowing at all angles of attack are

shown in Figures 22 through 25. The increase of C-, with increasing C for

9. = 0, 10, and 20 degrees compare well with those observed in reference 2
J

and those predicted by Spence's theory (ref. 5). The agreement between

theory and experiment deviates for Q. ̂  30 degrees.
J

The drag characteristics with VDT jet blowing are presented for a = 0 to

12 degrees in Figures 26 through 29. The drag reduction is shown to remain

essentially constant for different jet angles at a ^ 4 degrees. At higher angles

of attack, however, the drag reduction decreases as the jet angle increases.

This characteristic of drag reduction was also found in reference 2 but was

more apparent due to the aspect ratio effects of the endplates.

To more fully evaluate drag reduction, it is necessary to determine the

recovered thrust. The recovered thrust is defined to be the difference between

the measured drag on the blown airfoil and the predicted drag on a similar

unblown airfoil which produces the same circulation lift. A complete discus-

sion on the thrust recovery for the VDT jet-flapped airfoil is presented in

reference 2. The measured drag coefficient is composed of the zero-lift

drag coefficient, Cn , the drag coefficient due to lift, CDL> and the actual

thrust due to blowing. In equation form
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Figure 26. Drag Coefficient as a Function of Blowing Coefficient
Full-Span Blowing, a = 0

42



Figure 27. Drag Coefficient as a Function of Blowing Coefficient
Full-Span Blowing, a = 4 degrees
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Figure 28. Drag Coefficient as a Function of Blowing Coefficient
Full-Span Blowing, a = 8 degrees
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Figure 29. Drag Coefficient as a Function of Blowing Coefficient
Full-Span Blowing, a = 12 degrees
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CD =

where the percentage of the isentropic thrust which is recovered is indicated
2

by X-. A linearized drag polar, CL versus CD, for the unblown wing has

been plotted in Figure 30 to determine CDQ and CDL. The total drag coef-

ficient for the hypothetical wing can be represented by the following equation:

C~. = 0. 02 + 0. 0125C, 2 (7)Dh L

o
The coefficient for C, , 0. 0125, is much smaller than the 0. 07 value

J_i
found in reference 2 for the center-section blowing with endplates. This

result again demonstrates the aspect-ratio effect of the endplates on the pre-

vious results. As the effective aspect ratio approaches infinity, the coef-
2

ficient of the C, term becomes smaller.
L-i

The drag reduction due to blowing can then be represented by

ACD = C D- C Dh = -X(5, (8)

and

ACDX = _ D (9)

Thus, ^ may be determined from plots of ACD versus C . These are

shown in Figures 31 through 34 for all angles of attack. The average slope

of the curves is 0. 74 (X « 0. 74), indicating 74$of the isentropic thrust is

recovered. Since the ratio of actual static thrust to isentropic thrust is

roughly 0. 74 for the VDT-blade (ref. 2), the results indicate that 100$ of the

available thrust is recovered, which is essentially the same result obtained

in reference 2 for tests of the model center section only with endplates.

The quarter-chord moment coefficients for all angles of attack are pre-

sented in Figures 35 through 38 for 9. > 0 degree and in Figure 39 for 0. =
J J

-30 degrees. The trends of the results shown are basically consistent with
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Figure 32. Drag Reduction Due to Blowing - Full-Span
Blowing, a = 4 degrees
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Figure 33. Drag Reduction Due to Blowing - Full-Span
Blowing, a = 8 degrees
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Figure 35. Quarter-Chord Moment Variation with Blowing
Coefficient - Full-Span Blowing, a = 0
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Figure 36. Quarter-Chord Moment Variation with Blowing
Coefficient - Full-Span Blowing, a = 4 degrees
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Figure 37. Quarter-Chord Moment Variation with Blowing
Coefficient - Full-Span Blowing, a = 8 degrees
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Figure 38. Quarter-Chord Moment Variation with Blowing
Coefficient - Full-Span Blowing, a = 12 degrees
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the results of reference 2, except as previously noted the values are higher

in the positive direction than they should be.

Full-span, center-section blowing only. - The helicopter VDT-blade

configuration most likely to be used on an actual helicopter rotor is part-

span or sectional jet-flap blowing. This was best simulated in the wind

tunnel tests by blowing the center section only, with the end sections unblown

but at the same angle of attack.

Test results indicate that center-section blowing only can be used to pro-

duce lift forces nearly as effectively as full-span blowing. The effectiveness

of this blowing condition would equal that of the full-span blowing if about

one-third the lift increase that occurs with full-span blowing is produced with

only the center section blowing. Three-dimensional effects at the ends of

the blown section, however, may reduce the lift produced.

Figure 40 shows the lift coefficient as a function of blowing for all jet

angles tested at zero angle of attack. The lift is approximately one-third the

lift of corresponding full-blown data. The curves for 0. = 30 degrees and
J

-30 degrees are again symmetrical about the zero-lift axis as one would
expect. Figure 41 shows that at a specific blowing coefficient, in this case

C = 0.40, the lift for center-section blowing remains approximately one-

third of full-span lift for angles of attack from 0 through 8 degrees.

The lift coefficients for full-span and center-section blowing at Q. =
J

30 degrees and -30 degrees are shown in Figures 42 through 45. In Fig-

ure 42 for zero angle of attack and 30-degree jet angle, the center-section

lift percentage of the full-span lift is shown to be slightly less than 33.

This percentage is approached at low-blowing coefficients but declines as

the blowing coefficient increases. Figure 42 demonstrates the same trend

for the -30-degree jet angle. This trend may be explained by examining the

three-dimensional effects present. When blowing the center section only,

the shed vorticity influences the spanwise lift distribution by introducing a

downwash over the center section and, in general, an upwash on the adjacent
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end sections. As the blowing coefficient is increased, the strength of the

shed vorticity increases, resulting in more three-dimensional effects which

reduce the peak of the lift distribution further from the two-dimensional or

full-span blowing lift value. The net result of the increased blowing is then

a reduction in the ratio of the center-section-blown lift to the full-span-

blown lift as shown in Figure 42. Figures 43 through 45 show the same

curves for angles of attack of 4, 8, and 12 degrees.

The drag coefficient of the VDT-blade model with center-section blowing

only at various jet angles and angles of attack 0 through 12 degrees is shown

in Figures 46 through 49. The spread of the curves for center-section

blowing is more distinct than that observed for full-span blowing (Figures 26

through 29). As discussed previously, the curve spread is a result of a

drag due to lift greater than that encountered in two-dimensional tests. This

can be attributed to the three-dimensional effects induced by blowing the

center section only. The effect is similar to that produced by finite aspect

ratio. A similar curve spread was noted in reference 2 for tests of the

center section with endplates, which had an effective aspect ratio of approxi-

mately 8. 0.

The quarter-chord moment coefficient variation for the complete VDT-

blade with center-section blowing only is presented in Figures 50 through 54.

These plots show little variation of quarter-chord moment with change of

angle of attack. The center-section-blowing-only moment values are approxi-

mately one-third the moments obtained for full-span blowing. The values

increase very slightly as the angle of attack increases.

Steady-State Tests with Lift Controller
(Closed-Loop)

With the VDT-blade model installed in the wind tunnel test section, a

number of tests were conducted for two types of parameter changes:

64



i- - I . . :. ._.

9., degrees rl'

Figure 46. Drag Reduction Due to Center-Section Blowing
Only - a = 0
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Figure 47. Drag Reduction Due to Center-Section Blowing
Only - a = 4 degrees
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Figure 49. Drag Reduction Due to Center-Section Blowing
Only - a = 12 degrees
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Figure 50. Quarter-Chord Moment Due to Center-Section
Blowing Only - a = 0

Srf 9. = 0 I dB^r4

Figure 51. Quarter-Chord Moment Due to Center-Section
Blowing Only - a = 4 degrees
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Figure 52. Quarter-Chord Moment Due to Center-Section
Blowing Only - a = 8 degrees

Figure 53. Quarter-Chord Moment Due to Center-Section
Blowing Only - a * 12 degrees
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• Constant a, q varying from 10 to 100 psf, and

• Constant q, a varying from -4 to 12 degrees.

Most of the test runs were done with varying q. The test results for

varying a were inconsistent, and most of this data has been omitted from

the report.

Fluidic amplifier performance. - The control system was designed to

have a gain of 2000 from the downstream side of the outbleed system to the

VDT plenum chambers. Pressure taps located before the amplifier cascade

(Figure 7) measured AP „ and APOB and taps in the VDT plenums deter-

mined APT. Data from these pressure taps was taken for only a few of the

test runs and examples of the results are shown in Figure 55. A variation

in the amplifier gain from 1400 to 1950 was noted during testing. However,

the fluidic amplifiers generated an average gain of approximately 1700.

Outbleed system and controller gain. - The VDT-blade model surface

pressure taps were used to determine the relationship between the outbleed

system differential pressure (APQ-g) and the midchord surface differential

pressure (AP /2) . Since a number of surface pressure taps were bad,

including those near midchord, pressure-distribution curves were plotted

using the good taps and extended through the midchord position to estimate

APc/2'

A linear relationship between the estimated AP /2 values and AF>oB was

determined as shown in Figure 56. The data scatter shown in Figure 56 is

probably the result of inaccuracies in estimating AP /2 and in determining

AP.~.,-. (which is a small difference of two larger values). However, the

trends shown by the data indicate that there was a gain reduction of 1/6 to

1/9 in the outbleed scheme used to transfer AP /0 to the preamplifiers.c/ &
Thus, although the fluidic amplifiers operated at a gain of 1700, the overall

system gain (defined by the change in VDT tank pressures with changing
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AP •_) is indicated to be in the range from 190 to 280. To more accurately

determine the overall system gain, the AP /9 values were plotted versusc/ ^
the VDT tank pressure difference (APT) in Figure 57. This is a plot of

several test runs with a constant and q varying such that the initial conditions

for AP_, were the same in all cases. A system gain of approximately 225

is indicated from the data in Figure 57.

This reduction in overall system gain was not anticipated prior to the

wind tunnel tests. It apparently resulted from a malfunction in the outbleed

circuitry and can be eliminated by redesigning the outbleed system or in-

creasing the preamplifier gain. The amplifier gain can be increased by

simply adding an additional stage to the amplifier cascade.

The effect of reducing the system gain from the design value of 2000 to

225 was estimated from a math model of the control loop which is derived in

the Appendix. Figure 58 shows the expected theoretical lift output of the

VDT-controlled airfoil at a = 12 degrees. Both curves start with a desired

lift of 268 pounds at q = 14. 3 psf and at q = 100 psf the predicted lift is 285

pounds for the system with gain 2000 and 408 pounds for the control system

with gain 225. For this particular change in q, the gain 2000 maintains the

desired lift within 6. 4$and a gain of 225 allows the lift to climb to a value

48. 6 $ higher than that originally desired.

Model spanwise lift characteristics. - The fluidic control system operated

to change the jet angle in the VDT-blade model center section only, which

was the only blown section for closed-loop operation. Hence, three-dimen-

sional effects are present, and the shed vorticity from the blown section

influences the spanwise lift distribution over the complete blade span. This

test configuration is similar to a case tested in reference 10 where a two-

dimensional NACA 0012 jet flap airfoil model was blown over 46$of the full

span. Pressure tap instrumentation along the model span at midchord allowed

some estimates of the spanwise lift distribution to be made. Figure 59 shows

an example of the distribution found for the part-span blowing tests of ref-

erence 10. The present test configuration will result in a similar distribution

of lift.
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Since a lift roll-off occurs spanwise over the VDT-blade model, the

internal balance system (IBS) measures an average lift over the surface.

The average lift will be lower than that sensed at the model mid-span and

can be less than that required to maintain a constant lift on the model section.

To eliminate this difficulty, spanwise pressure-sensing ports at midchord

could be used to sense the average lift.

The center-section lift, as measured by the IBS, deviates slightly from

a linear relationship but is approximately linear with AP / as shown in
C/ 4

Figure 60.

Lift controller results. - Experimental and theoretical curves of lift

versus free-stream dynamic pressure, q, for angles of attack from 0 to 12

degrees are presented in Figure 61. Spence's two-dimensional theory

(ref. 5) was used in generating the curve of the theoretical lift controller

behavior at a gain of 225. For the center-section-blowing-only test configura-

tion, it is seen that the lift measured by the internal balance system is much

lower than that which would have been obtained two-dimensionally at the

same a, C and Q.. conditions. By assuming that the midspan position of the

VDT-blade model sees an essentially two-dimensional flow field, the param-

eters a, C , and 9. define a lift according to Spence's equation. The assump-
™ J

tion used for this transformation should be a fair approximation to the actual

two-dimensional state. The lift data, as corrected to two-dimensional flow,

agrees well with the predicted control system lift at a gain of 225, as shown

in Figures 61 through 64. It is also seen that the experimental data, although

lower than the "2-D corrected lift" data, indicates the same trends as pre-

dicted for the control system operating in a two-dimensional environment.

At a gain of 225, the control system operates with a large offset or lift error,

and a noticeable increase in lift with increasing q results.

The two-dimensional lift which the airfoil would have experienced had

the lift controller not changed the VDT jet angle is also shown in Figures 61

through 64. By comparing these curves to the controller operating data, it
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Figure 63. VDT-Blade Lift Variation with Free-Stream Dynamic
Pressure - a = 8 degrees
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Figure 64. VDT-Blade Lift Variation with Free-Stream Dynamic
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82



can be estimated that the fluidic control system was approximately 82$

effective in maintaining a constant lift.

Dynamic Tests

Initially, tests were conducted using the helicopter VDT-blade model to

determine the aerodynamic response to time-variable jet angles. A fluidic

function generator was connected to the lift controller circuitry in the model

center section and used to sinusoidally vary the jet angle for frequencies up

to 30 Hz. However, waveforms of the test results showed extraneous sig-

nals on the measured normal and chord forces, and the results were incon-

sistent. These extraneous signals were apparently caused by structural

flexibility and mode coupling associated with the internal balance system

and model wind tunnel support structure. This resulted in adverse resonance

phenomena, and the test results were invalid and not used.

In conjunction with the above tests, dynamic tests were conducted using

the center section of the VDT-blade model with one 5 x 8-foot endplate to

determine finite-aspect-ratio effects on dynamic lift. This model configura-

tion had an effective aspect ratio of approximately 2. 1 (ref. 11) and was

attached to the LTV balance system that was used during the Phase I wind

tunnel tests (ref. 2). The dynamic valve used for the Phase I dynamic tests

was used to oscillate the jet angle at frequencies from 5 to 40 Hz.

Two components of lift on the model were measured as a function of

time, as shown in Figure 65. When the resonance effects were subtracted

out, two of which were the model-model support structure torsional and

flapping modes (at 8 Hz and 24 Hz, respectively), the dynamic lift components

were found to be constant up to 20 Hz.

Total lift, as seen in Figure 66, was obtained by taking the difference

between the two lift components, since they were 180 degrees out of phase

up to a frequency of 24 Hz. Above 24 Hz, the waveforms and phase relation-

ships are complicated by cross-coupling between the drag and lift components.
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Therefore, only data at frequencies up to 20 Hz were considered sufficiently

valid for determining the dynamic lift characteristics. The dynamic lift

coefficient, |CT I , as computed from the results of Figure 66, is plotted in
L-i

Figure 67 versus reduced frequency for three values of blowing coefficient.

For the Phase I dynamic tests it was found that the maximum jet angle

decreased as the frequency of oscillation was increased, so the dynamic lift

coefficient was divided by a normalized jet angle correction factor, |A0. |/A0.,
J / J

to eliminate the effect of jet angle roll-off (ref. 2). Oil traces taken at 5,

12 and 20 Hz during these dynamic tests to determine the maximum jet angle

indicate a jet angle roll-off similar to that observed for the Phase I tests.

This is shown in Figure 68 where the maximum dynamic jet angle, |A0. |,
J

has been normalized by the maximum jet angle at 5 Hz. This curve shows

that the maximum jet angle at 20 Hz is approximately 58$ of the maximum

jet angle at 5 Hz or that the initial maximum jet angle of 170 degrees at 5 Hz

falls off to 100 degrees at 20 Hz.

The curves of Figure 67 were divided by the normalized maximum jet

angle, |A0. | /A0. , of Figure 68 and crossplotted in Figure 69 to indicate the
J / J

dynamic lift coefficient with no jet angle roll-off. These curves were extra-

polated back to a reduced frequency of zero to give the steady-state (i. e., jet

angle fixed at maximum amplitude) value of the dynamic lift coefficient.

Figure 70 shows the experimental lift-coefficient/blowing-coefficient rela-

tionship for steady-state testing of the center-section/single-endplate con-

figuration at various jet angles and zero angle of attack. Also plotted in

Figure 70 are the steady-state lift coefficients from Figure 69. Figure 70

indicates that the steady-state jet angle is approximately 90 degrees (included

jet angle of 180 degrees) for all blowing coefficients and compares favorably

with the included jet angle of 170 degrees determined by using oil traces at

a jet oscillation frequency of 5 Hz.

The curves of Figure 69 were normalized by the steady-state lift coef-

ficients and replotted in Figure 71. The curves for angles of attack of 0 and
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12 degrees indicate that the normalized coefficient of lift amplitude decreases

with increasing blowing coefficient and increases with increasing reduced fre-

quency.

The experimental results plotted in Figure 71 may be compared with the

experimental results of Takeuchi (ref. 1). Takeuchi's results for AR = 2. 13

and AR = » are plotted in Figure 71 along with Spence's theory for AR = °°

(ref. 13). Takeuchi's results show close agreement with Spence's theory

and indicate that the effect of finite aspect ratio is to increase the dynamic

lift coefficient. The experimental results for the VDT-blade center section

configuration exhibit higher dynamic lift coefficients for AR = 2. 10 than

Takeuchi's results for AR = 2. 13, but this difference should result from the

differences in maximum jet angles, A0. = ±10 degrees in Takeuchi's tests

and A0. = ±85 degrees in the VDT-blade tests.
J
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CONCLUSIONS

In general, the conclusions drawn from these investigations are the same

as those found for the Phase I tests of reference 2 and will not be repeated.

However, in addition to conclusions previously drawn, it can be seen

from the experimental and theoretical results presented in this report that

the idea of sensing and controlling lift with a fluidic control system is

feasible. Problems encountered with the outbleed system were unexpected

and resulted in a system gain lower than originally intended; but the results

have demonstrated that the fluidic amplifier circuit is capable of handling

the pressure gains required to provide adequate lift control. More work is

needed to develop accurate lift-sensing techniques under three-dimensional

conditions.
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APPENDIX

LIFT CONTROLLER MATH MODEL

This analysis concerns the method for determining the effect of the gain

of the fluidic control system on the left error of the system for various

states. The effect of the nonlinearities of the aerodynamics such as indicated

by equation (A-3) will be included. The state of the system is defined by the

value of four pressure differences specified at various points in the control

system (see Figure A-l). The four pressure differences are: AP /„ (the

pressure difference across the midchord), AP ,. (the controlling reference

pressure), AP, E (APL „ = lift error = AP - - AP !„), and APT (pressure

difference between the VDT supply tanks). The underlying principle of the

control system is that the lift per unit span is proportional to the pressure

difference at the midchord. The controller design is intended to drive the

jet angle to keep this wing pressure difference (AP /0) as close as possible
C/ 6

to the reference pressure difference (AP -).

a- aerodynamic angle of attack

q = free-stream dynamic pressure

Wing
surface

Figure A-l. Fluidic Control System

A-l



The system parameters varied during the wind tunnel tests were angle

of attack (a), jet angle (0.), and test section Mach number (Mj. The equa-
J

tions which represent the various components of the system shown in Fig-

ure A-l are written for an initial and final set of system parameters (a, Q.,
J

M^). It will be shown that compatibility between initial and final states leads

to a nonlinear equation in the unknown jet angle in the final state. When this

equation is solved, the final state variables can be determined, and the lift

error in the final state can be found

For the initial parameters

a = orj

e. = el (A-i)

M=o = MI

All the control system state variables can be determined

«r 0r C^ ] (A-2)

The formula for C, was obtained from a curve fit of previously mea-

sured wind tunnel data (see reference 14 for the details of the curve fit

formula). This data was taken at essentially infinite aspect ratio so that the

results of this analysis will only approximate the actual test conditions, which

were conducted for center-section blowing only. The curve fit formula used

was

CL (a, 6, Cy) = f (C^) ^ + 6 + 0. l l a + 0. 75C^ sin (a + 6.)

f (C ) = 3.03 C(JL1 /2 + 0.40 C^ - 0.21 C 3/2

The blowing coefficient C is defined as

S = ir

(A-3)

A-2



where T is the jet thrust. Inherent in proportional fluidic control is the fact

that the jet thrust is constant for all jet angles. Thus, for this analysis the

blowing coefficient will vary only with q:

qz = -J- P^Mj2 (A-5)

and the lift per unit area is

-tj = CL qj (A-6)

As was mentioned earlier, the fundamental principle of the control sys-

tem is that the lift is proportional to the midchord pressure difference. The

proportionality constant was determined experimentally (ref. 2) to be

AP /0 = 0.656 £T (A-7)
c'

To determine AP™ from 0T, the available formulas which relate
Ito 9. must be inverted. This inversion cannot be performed algebraically,

J

so a Newton's method iteration subroutine was written. This iterative func-

tion will be denoted by the following expression:

fej (A-8)

and from Figure A-l we have

AP = AP /G (A-9)

AP . = AP /0 + APTT-, (A-10)ref c /2j LE,

Thus, we have expressed all four state variables in terms of or,, 6 , and

Mj. Now, if the system is taken to a new state with reference pressure held

constant and parameters a-^, 0-p, and Mp, the three remaining variables can

be calculated in the new state:
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= C^ (Mj/MF)2 (A-ll)

P. M/ (A- 13)

LF = CLp
qF

(A-14)

AP ,o = 0.656 L^ (A-15)

(8p)

APT P , = APT /G (A-18)LEF Tp

Notice that we have two expressions for APLE • These two expressions

can be combined to eliminate APT ,-, and the resulting compatibility equation
L/JiiF

can be solved for the unknown jet angle 0^,.

Thus:

F - A Pref-A Pc/2F

or using equations (A-10) through (A-18), (A-19) becomes

(0F)/G = AP - 0. 656 C a . e . C ooM (A-20)

As discussed before, APrr,(0T-,) is an iterative function itself, so that
1 X1

direct determination of a solution to (A-20) by numerical methods is imprac-

tical. The solution technique used to find QF will be based on physical in-

sight into the system.
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If the system is taken from initial to final state with no change in jet

angle, the change in lift will be

LI - LF = CLT «I - CL (aF> °I> Cu1 ' r

or

A<V = CLT <W - CL(aF' 6l>I •

where

AC ' - Z

and therefore,

from (A-7)

APT ^ - APT r,

0.656 ~ "I

and from (A-6)

APLET

L

From Figure A-l we have

APref = A Pc/2 + AP (A'23)

or

+
ref cl L r

(A-24)

ref

,-,
F = LT - L^ (A-26)

n * n — = CT - CT = ACT (A-27)
U. bob q_-, L/j L/p i-i
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Thus, ACT is the actual change in lift coefficient which will occur.
J-J

The error in the lift coefficient (ACL") in the final state is

(A-28)

but also

(A-29)

Equations (A-28) and (A-29) form the basis of the calculation. The

iterative calculation proceeds from an initial guess for 0^, (usually 0-). Equa-

tions (A-28) and (A-29) are evaluated using the OF calculated from the pre-

vious iteration. Then 0F is adjusted to make (A-29) agree exactly with

(A-28), and then (A-28) and (A-29) are again evaluated with the improved

value of 0p. The iteration proceeds until Equation (A-20) is satisfied to

within a predetermined accuracy limit. The method used to modify d~ to

make (A-29) and (A-28) agree was taken from Appendix F of reference 14.

This method was written to deal with lift changes in coefficient form, so

that (A-28) and (A-29) were written in coefficient form also.
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