
72- 26 5 1 5 f

INSTITUTE
for

FLUID DYNAMICS
and

APPLIED MATHEMATICS

Tech. Note BN-721 January 1972

DETERMINATION OF SOUNDING ROCKET POSITION AND

ATTITUDE FROM RADAR AND MAGNETOMETER DATA

Morris Pongratz
University of Maryland
College Park, Maryland

20742

UNIVERSITY OF MARYLAND

College Park



DETERMINATION OF SOUNDING ROCKET POSITION AND

ATTITUDE FROM RADAR AND MAGNETOMETER DATA*

by

Morris Pongratz
University of Maryland
College Park, Maryland

20742

*This work was supported by the National Aeronautics and Space Administration
under research grant NSR 21r-002-077. Machine computation was performed by
the Computer Science Center of the University of Maryland and was supported
by NASA grant



ABSTRACT

This report describes the techniques used to determine the

trajectories and orientations of three sounding rockets instrumented

to study the aurora. The radar plot board data were fitted to a

near earth expansion of the force of gravity to determine the

trajectory. Only onboard magnetometer data were used to determine

the attitude of the payload with respect to the earth's magnetic

field. Computer programs in the FORTRAN language are available

which generate the trajectory and attitude parameters.
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Chapter I

Introduction

*
We have launched three Nike-Tomahawk sounding rockets from

Fort Churchill, Canada, to study aurorae. In order to determine pitch,

angle information about energetic electrons and for analysis of da,ta

from other experiments on board it is necessary to be able to describe

the position and attitude of the payload. TKe pa.y-loa.da are launched

with a Nike booster which falls away when spent and a Tomanawk. second

stage which burns out before atmospheric exit and remains- atta.ch.ed to

the payload. Flight duration and apogee are typically 500 seconds and

250 km respectively. To achieve stability the vehicles are spun at about

7 rps during burning. After burn-out they are despun to about 1 rps to

facilitate collection of angular information in the data, Radar plots

furnished by the Churchill Research Range were used to determine

position. On board magnetometers which measured the. component of

earth's magnetic field parallel to their orientation were used to determine

payload attitude.

Chapter II

Vehicle Position,

The effects of coriolis and centripetal, accelerations upon sounding

rockets launched from Churchill show up most dramatically in reducing the

eastward distance traveled.by several kilometers (the earth, rotates under

the payload). The North-South location of the impact point is virtually

unaffected. In practice one is most concerned with the effect upon the

*NASA 18.63 UE, 18.64 UE and 18.65 UE.
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altitude where the effect of centripetal acceleration is less than 0,1%.

However, since most vehicles are launched eastward the coriolis accelera-

tion is in the opposite sense to the centripetal acceleration and can be of

nearly the same magnitude so one can safely ignore these effects. Because

the exact impact point is generally not needed and because radar da,ta,

frequently is not good enough to justify further precision we will a,dopt

a coordinate system assuming a flat, nonrotating earth, with: positive z

representing attitude and positive x representing eastward direction.

Normally a flat earth assumption would have g , the acceleration of

gravity, independent of z . However over the range of z for the sound^

ing rocket this represents an appreciable error so we will use a.n expa,nston

of the potential energy, V , for the inverse square gra,vita,tipna,l force,

GM m - GM m

<2-^ v = - - - -

where G is the gravitational constant, M is the mass of the. eartH,

m is the mass of the payload, r ts radial distance from, center of the

earth and R is the radius of the earth at Churchill,e

Expanding (2-1) in z/R gives

- GM m -1
V gS- (l+z/Re)

- GM m
= f- [1-z/R, + (z/V - (z/Re) + ...]

e

- GM m GM m GM m _e e e 2
" Re R2 Z" Z

e e

neglecting the cubic and higher terms.
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The payload kinetic energy can be written,

(2-3) T = 1/2 m (x2 + y2 + z2) .

Hence the Lagrangian is,

,? 7 ~ GM m GM m GM m
(2.4) L = T - V = 1/2 m (x + y + z ) + —— f- z -I- —§- z

Re R2 R3e e

Since x and y do not appear in L the corresponding

velocities are constant above the atmosphere. The differential equation

in z is

GM GM

• - - + ' ! • - • . + '•. S

where g is the acceleration of gravity on surface pf earth,

GM

(2-6) . § " '

The general solution to (2-5) is

(2-7) z = B1 e
at +.B2e~

at

where a and B_ are given by,

(2-8) a = (2go/Re)
1/2 B3 = Re/2 .

Using (2-6) and the value of g measured at Churchill of
2

g = 981.761 cm/sec one can solve for the value of R to use. These
e

values are in Table I.
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Table I

RE = 6377.0 km

B = 3188.5 km

a2 = 0.307907 x 10~5 sec'2

a = 0.175473 x 10~2 sec'1

The problem remaining is to use the measured z. and t.

from the radar plot to least squares fit for the initial conditions

BI and B2 . This analysis was quite satisfactory for 18:63 and

18:64, but for 18:65 we obtained a better fit to the points using

slightly different values for Rg and fitting for B- also,

Apogee time, t , and height, z , can be found by
A. A

entiating (2-7)

(2-9) tA = |- £n (B

(2-10) ZA = - 2 (B̂ ) + B3

The values for liftoff time, t. , z and the four coefficients
A A

in (2-7) for t and t measured from liftoff are given, in Table If,

Table II

Vehicle Liftoff t z [km] B.. [km] B9[km] BjkmJ atsec"1]
A A JL *•• j

18:63 21 Mar '68 241.09 -965.129 318805
0601:32.7 241.76 -2249.25 0.17547x10

18:64 14 Jan '70 250.24 -943.961 3188.5
0405:30.0 259.74 -2271.7

18:65 17 Jan '70 248.16 -779.05 2742.7
0303:20.0 252.48 -1989.9 0.18894x10
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One can use (2-7) to determine v by differentiation. Figures
z

1-3 are plots of the altitude and v versus Universal Time in minutes.
Z

The x and y components of velocity are given in Table III.

Table III

Vehicle v (East) [km/sec] v (North) [km/sec] v [km/sec]

18:63 0.051 - 0.101 0.113

18:64 0.203 - 0.005 0.206

18:65 0.276 0.168 0.322

It is interesting to compare the altitude at which the payloads

were inverted by the atmospheric drag on the fins and the altitude, at

which the electronics began experiencing sustained high voltage breakdowns

in Table IV.

Table IV

Vehicle Turnover altitude [km] Breakdown altitude [km,]

18:63 72 83

18:64 65 81

18:65 73 81

Because the radar did not track the payloads throughout the flights

there may be several kilometer uncertainties in z below about 120 km on the

downward leg of the flight. The uncertainty on the upward leg is on the order

of 100 meters. It is possible to obtain an exact analytical solution to this

problem for t as a function of z , but it would be very difficult to use

least squares technique to obtain the initial conditions.
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Chapter III

Payload Attitude

After despin the payload is sufficiently above the atmosphere to

enable one to neglect torques due to atmospheric friction. In the absence

->
of net torques L , the total angular momentum vector, is constant in an

-»•
inertial frame. We will then choose the direction of L to be the + z'

direction of the space axes for our description of payload attitude. This

space set of axes is not the system used to describe position of the payload.

More aspect information than supplied by the magnetometers is necessary to

relate the two systems.

->- ->.
Barring the unfortunate and rare case where t and B would be

parallel or antiparallel we will use the direction of B to provide the

other direction necessary for the space axes. Assuming that over the altitude

->
and temporal range of interest B is nearly constant in direction we define

the x' direction by specifying that B lie in the x' - z' plane and that

B , , the component of B parallel to x' , be negative. In a simplified
x

->•
case where L is in the local vertical direction and the magnetic declination

is zero this coordinate system would have the x' axis pointing south

(equatorward from Churchill) and the y' axis pointing eastward because the

magnetic field is in the northward direction. Figure 4 represents this

simplified case. In this coordinate system we can describe the magnetic field

as

(3-1) B = B (t) b = B ,(t) i' + B ,(t) k1 = B (t) [sin 3 i1 + cos 3 kf]
O X Z O

where the magnitude of B , B (t) , does have the altitude dependence,
s\

through t , and 3 is the angle between B and k' , the unit vector along L .
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" , +
By definition of i' cos 3 < 0 and for a typical L direction sin 3 < 0

so 3 would lie in the third quadrant.

The body coordinate system, x" y" z" , is used to describe

position and orientation within the payload. We choose the z" axis

to be a principal axis and assume that it coincides with the symmetry axis

whcih describes the axial dimension of the payload parallel to the geometric

center line and in the direction of the nose of the payload. The x" and

y" axes are also principal axes and are assumed along the directions

specified by the magnetometers as in Figure 5. The origins of the two

systems coincide at the center of gravity of the payload.

For time-independent moments of inertia (the slowly despinning

case will be considered in an appendix) and for a rigid body rotating about

its center of gravity with body-fixed axes coinciding with the principal

axes Eulers equations are

1 ii ii W ,, = 0) ,,03 ,, (I ,, ,, - I ,, ,,)xx x y y" y"y" z z"

•

(3-2) I „ „ 0) „ = a) ,,oj „ (I „ „ - I „ „)
y y y z x z z z x

•
1 it M k) „ = (i) ,,OJ ,, (I ,, ,, — I ,, ,,) .
Z "z Z X y XX y"yfl/

Because of the symmetry about the z" axis we can define transverse,

I , and axial, I , moments of inertia

(3-3)
Iz"z" ~ XA
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For our payloads I » I (I 'v 200 I ) . Equations (3-2) now can
L A J. A

be written

IT v = oyv dT -

(3-4) IT d)yl, = - a)zllcox,, (IT

IA <L2ll = 0 .

From the last of equations (3-4) we have

(3-5) to „ = 0 ; to „ = constant .z z

Define fi = oj „ ( — - - ) , then equations (3-4) become
Z -*-m

(3-6)

IA z,, - o .

The first two equations can be combined to give

(3-7)
o „ + a) ,,n = o .

Multiplying the first equation by to ,, and the second by 0) „ andx y

summing them gives

(3-8) a) ..00 „ + 01 ..(jo .. = 0 .x x y y

Equation (3-8) can be integrated to give

2 2 _ 2
(3-9) 0) „ + 0) „ = constant = CUTx y i

therefore from (3-5) and (3-9) we have,
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^ i/9 9 9 // 9 9
(3-10) |w| = I/to „ + to „ + to „ = /to „ + w = constant,

the angular velocity vector has constant magnitude.

Assuming constant fi one can differentiate the first of equations

(3-6) and substitute in the second one to give

(3-11) co „ = to,,fi = - to,,fi .
x y A

Equation (3-11) describes simple harmonic motion for to ,, . For typical
X

initial conditions let co „ = 0 and to „ = to using (3-9) . Then we canx y l

write for to ,, and to ,,
x y

(0 „ = to sin fit
X -L

(3-12)

to „ = to cos fit .

We can also write to and L in the body frame

to = to „ i" + to „ j"+ to „ k"

to (sin fit i" + cos fit j") + to ,,k"
-L Z

(3-13)

L =

= I to (sin fit i"+ cos fit j") + I to „ k" .
JH J. A. Z

From Figure 6 we can obtain the angle 0 between L and the

z" axis, and e , the angle between to and the z" axis.

(3-14) tan 6

"T
(3-15) tan e = —
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Since I > I , u) lies between L and the z" axis. The angles

9 and £ are constant because the quantities on the right hand side of

equations (3-14) and (3-15) are constant.

(3-16) 9 = e = 0 9 = 9
0 » e = e

0 '

We use the Euler angles to refer the body system to the space

fixed system. Note that the angle 9 is also the Euler angle 9 (see

Figure 7) . The transformation between the two sets of axes is given by

U) ,, = <> sin 9 sin ^ + 9 cos
X.

(3-17) to „ = | sin 9 cos ty - 9 sin

• •

U) ,, = ({> cos 9 + ip
Z

Using (3-16) these equations become

X

(3-18) to „ = <J> sin 9 cos ty

u) ,, = <j> cos 9 + iL .z

From (3-9) and (3-18) we have

2 2 2 *2 2
(3-19) w „ + 0) „ = OL, = <|> sin 9 .x y i

Using (3-16) and (3-19) we can define the precession frequency,

(3-20) <j> = constant = o> .

From the last of equations (3-18) and (3-5) and (3-20) we can

define the spin frequency, 0) ,s
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(3-21) ij) = constant = oj .
s

Differentiating (3-18) and substituting them into the first

equation of (3-4) gives

(3-22) I <W> sin 9 cos ty = (<J> sin 0 cos ij>) (<j> cos 6 + ij;) (1 - I )
J- JL A

• •
which can be solved for <J> in terms of 41

(3-23) 0) = <J> =
P T <IT"V

 cos e cos e z]

and we have the ratio of spin frequency to precession frequency

(3-24) cos/o) = (j1 - 1) cos 6 .

Using (3-16) , (3-20) and (3-21) we can write the Euler angles

in terms of their time derivatives

6 = 9
o

(3-25) cj> = 0) t + <j>o

= 0) t + \bs ro

We are now prepared to describe the way the magnetic field, B ,

which is fixed in the space frame will be seen by the magnetometers on

board the payload - the body frame.

The magnetometers measure the component of magnetic field

parallel to their orientation. They output a bias voltage, CB , of about

2.5 V plus a voltage linearly dependent upon the magnitude of the component

-»•
of B parallel to their orientation. The linear coefficient, CA , is
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about 4.0V/Gauss. Let nV be a unit vector in body frame in the direction

measured by the i magnetometer, then the output voltage, V. t has the form

(3-26) V± = CA± B • n^ + CB.ĵ  .

-> ~
Therefore if B is antiparallel to n" the output is less than CB. and

vice-versa. The analysis used here will assume the form of (3-26) for V

and neglect non-linear terms.

->. ~
From (3-26), if B and n1.' were measured in the same frame, the

output voltage would be a constant term modulated by a cosine term, but alas

->•
all is not so simple! We need to know the components of B in the body frame

to be able to compute the dot product required in (3-26). This transformation,

using (3-1), is given by

(3-27)

where A is

B" = A-B B (t) A
o

/sin 3\

( ° I
\cos 3/

(2)

(3-28) A

cos ip cos ()) - cos 9 sin ft sin ty

cos i)j sin 4> + cos 6 cos (j) sin

sin fy sin 9 \

- sin fy cos (j) - cos 9 sin (j) cos ip cos 4) sin 9

- sin T\> sin (j) + cos 9 cos § cos fy

\ sin 9 sin - sin 6 cos 4) cos 9

Equation (3-27) then becomes

(3-29)
-K, •«->• ->
B" = A'B = Byll j" ,, k"
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where

B „ = B (t) [sin 3 (cos \b cos <b - cos 9 sin <f> sin \J») + cos 3x o

sin i|> sin 0]

(3-30) B „ = B (t) [sin 3 ( - sin ijj cos <J> - cos 9 sin $ cos ijj) + cos 3

cos ty sin 9]

B = B (t) ŝ 11 sin s^n + cos cos

z" o

Now one can compute the dot products for the three possible

magnetometers measuring the x" , y" , z" components of the field. For
s\ x\

the x" component, n.,, in (3-26), is i" and

(3-31) B" • n „ = B (t) [sin 3 cos ty cos <|> - sin 3 cos 6 sin <|> sin

+ cos 3 sin ^ sin 9]

For the y" component, n.,, is j" and

-
(3-32) B" • n „ = B (t) [- sin 3 sin ijj cos (j) - sin 3 cos 6 sin cj> cos i|» +

+ cos 3 cos 1JJ sin 0]

For the z" component n.,, is k" and

--
(3-33) B" • n „ = B (t) [sin 3 sin 0 sin <f> + cos 3 cos 6]

Z O

To simplify these equations we define

a = sin 3 sin 9

b - cos 3 cos 6

(3-34) c = sin 3 cos 9

d = cos 3 sin 9

e = d - c sin <f>

f = sin 3 cos (j) .
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We shall restrict ourselves to the case where L is upward rather

than downward over Churchill.This is the condition before despin and it is

improbable that despinning could invert the payload angular momentum vector.

For 18:64 and 18:65 the z" axis magnetometers indicate that L remained nearly

vertical. This assumption puts 3 in the third quadrant and makes the first

four quantities defined in (3-34) negative.

The resulting equations are

(3-35) B" • nx,, = BQ(t) [e sin f + f cos T|>]

.> ~
(3-36) B" • n „ = B (t) [e cos \JJ - f sin ijj]

(3-37) B" • nz,, = B (t) [a sin <j> + b] .

We choose t in equation (3-25) to be zero at a time when the

payload (and z" axis) is most antiparallel to B (when z" is nearest -B).

This means that equation (3-37) is at a minimum value indicating (a. < 0) that

sin <J> is unity, hence

c|>(t = 0) E 4>o = Tr/2

(3-38) eQ S e(t = 0) = d - c

f S f(t = 0) = 0 .

Because cf> varies much slower than ^ one can also require that

t = 0 be chosen at a time where V ,, , the voltage from y" - axis magnetometer

( the RAM-) is less than CB „ - the bias value. This means that (3-36) is at a

minimum value at t = 0 . Recalling that f =0 determines ty to be 0 or

TT depending upon the sign of e . Because c and d are typically both

negative we can define a positive quantity, g ,

(3-39) g E c/d = tan 3/tan 9 .
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If g > 1 , then eQ > 0 and ty = l\ and if g < 1 , e < 0

and ty = 0 . Since 6 is in the third quadrant (3-39) implies that if

$ - TT > 6 , ^0
 = 7T whereas if B - TT < 9 , tjj =0. When 6 - IT > 0 the

payload precession cone does not include B and when 3 — TT < 9 the

->
precession cone does include B . Hence, if the payload precesses around

B , ijj =0 and if the payload does not precess around B , ip = TT . Figures

8 and 9 show the two cases.

We will now outline the procedure for determining the two constant

angles 6 and 3 . We have measured the times and voltages at local maxima

and minima on the y" - axis magnetometer and x" - axis magnetometer for

18:64 and 18:65 respectively. 18:63 had only the y" - axis magnetometer.

For 18:64 and 18:65 we made detailed, simultaneous measurements from all three

magnetometers during the several second time interval where the payloads turned

over and all three magnetometers sampled a full range of values. Taking ad-

vantage of the fact that the magnitude of the field was nearly constant over

this short time interval we were able to make self-consistent checks on the

calibrated values of the CA's and CB's .

We also picked several times encompassing the complete altitude

range where we simultaneously measured the voltage output from all three

magnetometers. Using the calibrations we converted these voltages into values

for the magnetic field components parallel to the three axes. We then summed

the components to obtain the field magnitudes.

(3-40) B (t) = [B 2(t) + B 2(t) + B 2(t)]1/2 ,o A y z

over a range of altitudes. We found that we could model the altitude dependence

as

B
(3-41) B(t) = B (z(t)) =

(RE+Z(t))

as would be expected for a dipole field model.



-16-

-»•
The next step is to look at the components of B which are

parallel and perpendicular to the payload spin axis, z" . Let a be

the instantaneous angle between the z" axis and B , then we define

B, E |B | sin a

(3-42) B., = |B| cos a

IB"] = (Bf + B2, )!/2 = Bo(t) .

Since we measure x" or y" magnetometer voltages only at their

local maxima or minima the corresponding y" or x" magnetometers are

perpendicular to B, and measure no field at these times. Hence, by measur-

ing the voltages at local maxima and minima we know that they correspond to

the instantaneous value of B. . The import of this is that in general the

dot product in (3-26) for the x" magnetometer is

which is only some part of B. , but at the special times we measured V „
— 1_ X

we have B • n „ = B „ = B = B (t) sin a .
X X I O

To generalize let m refer to the indices x" or y" when y"

or x" respectively are perpendicular to the field, then (3-26) becomes

(3-43) V = CA B (t) sin a + CB .
m m o m

Equation (3-43) has only sin a unknown. It can be solved for

sin a and then for cos ,

(3-44) cos a = ± 1 -

2-1/2
(V -CB )m m

<CA B (t#_m o
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We will choose the negative sign in (3-44) when we can tell from

the envelope of the values of V that the z" axis is still above them

magnetic horizon. This will be discussed in further detail later.

Of course, cos a is very easy to compute from the output of the

z" - axis magnetometer,

(3-45) V ,, = CA „ B (t) cos a + CB „

V - CB
2-cos a = - „ t NCAZM BQ(t)

here there is no ambiguity about the sign of cos a .

Comparison of (3-26) , (3-37) and (3-45) shows that

(3_46) cos a = b + a sin $ .

By inspection of the envelope curve for a node or by finding

minima in B, one can determine the Universal Time , t , where the z"

axis is closest to - B and the voltage is a local minimum. The time to

the next similar node gives T , the precession period. One can then

write <j>

(3-47)

where t = t - t and (j> = TT/2 and t is Universal Time.
o o

Armed with an expression for (fc one catl perform a least squares

fit to equation (3-46) to determine the constants a and b . Using the

first two equations of (3-34) we found two pairs of 3 and 0 (a < 0 , b < 0) .

-»•
One pair, 3, and Q , corresponds to a precession cone not including B

and the other pair, 3o and 6,,» does correspond to z" - axis precession

-v
around B .
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Vehicle 18:63 had only a y" - axis magnetometer which was shifted

upwards in CB ,, and consequently for much of the flight local maxima of

V „ were greater than the telemetry voltage limit. We also suffered some

telemetry dropouts which unfortunately coincided in time with the local

maxima and minima of V „ further hampering data reduction. To fill the

gaps where V „ could not be measured at local minima or maxima we

decided to use the values of local maxima or minima of V ,, which were re-

constructed from the slope of V ,, evaluated at CB „ . We had about 90

directly measured values and about 50 indirectly measured values of V ,,

with some overlapping to check the accuracy of the slope reconstruction

method.

Using (3-26) and (3-36) we have

(3-48) V „ = CA „ BQ(t) [e cos if; - f sin i|»] + CB „ .

The expression in brackets can be written

(3-49) [e cos if) - f sin if)] = h sin (if; - if))

2 2 2
where h = e + f and tan if) = e/f . Taking advantage of the fact that

B (t) , e and f are nearly constant over a few spin periods one can compute

the derivati-veof (3-48),

3V ,•

(3-50)

CAyll BQ(t) h cos (i|;o - if)) (-if))

- CA „ BQ(t) h if; cos (if)Q - ip) .

But we measured the slope where V „ = CB „ which meant that ifi - if; = nfT

and consequently cos (if) - if)) = ±1 . This means that we can solve (3-50)
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for h in terms of known quantities (iji is the spin frequency which for

18:63 could be directly measured to a few percent),

/ CA B (t)

V • CB
y»

But at a time ±. T /4 from where V „ = CB „ the angle ty will change to

where sin (ib - ty) = ± 1 and we can substitute the value of h fromo

(3-51) into (3-49) - (3-48) to get

..
(3-52) V „ - + \-g-l I ty + CB ,, .y v dt / v = CB y

Vy" LBy"

Therefore by measuring the slope and spin rate we were able to

reconstruct values to give the correct envelope voltages to use in determin-

ing 6 and 3 • This method was checked in several overlap regions by

measuring both the slope and local maxima and minima and the results agreed

to within 4 %.

Normally the envelope of local maxima-minima voltages will exhibit

nodes with the frequency of the precession of z" about L . These nodes

correspond to times where the z" - axis is nearest to - B . For 18:63

secondary nodes betweeen precession period nodes indicated that the z" - axis

had dropped below the magnetic horizon giving the envelope primary nodes

when <j> = TT/2 + 2n7T and secondary nodes when <}> = 31T/2 + 2niT (see figure 10).

This was very fortunate giving a built-in calibration of the product

CA B (t) in equation (3-44) at the times when the payload was perpendicular

to B . Equation (3-46) had /a/>/b/ and we varied the amount of time spent

below the magnetic horizon to give the best fit to the measured envelope.

Figure 11 indicates that the fit was very good except when a was near 90°

when the telemetry problem was most severe.
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By measuring times of adjacent magnetometer maxima and minima

one can determine the spin frequency, u to only about ± 4% because (3-48)
s

for example is not a pure sine wave and the time between adjacent maxima

reflects variations in parameters other than i|) alone. To improve this

measurement we counted the number of oscillations, n , in an approximate

precession period (to the nearest complete cycle). We then accurately

(± 5 ms) measured the time elapse, At , during the n oscillations. The

hypothesis was then made that 0) had one of the three values given by
S

2ir(n -1)
0) -s At

2irn
(3-53) to

s At
o

2TT(n +1)
03
s+ At

A computer program was written to make the final determination of

the correct set of 9,3 and oo . The procedure involved a double loop
S

which tested the six possible combinations of the 0) 's and (3 , 6)'s in
S

equation (3-35) or (3-36) to predict the times and voltages of the maxima

and minima. For each of the three possible 03 's both (61 , 3-,) and
S _L -L

@2 » &p were tested. The procedure was very sensitive in that the five

incorrect possibilities had obvious phase shifts from the observed maxima-

minima during precession whereas the one correct combination predicted the

maxima-minima times to within the measurement error. The results had the

pair (3-, , 9..) with OJ = 0) and the pair (39 , 69) had 03 = 0)
-L .L. S S . £* £ So

+ o

In order to specify the attitude of the payload with respect to B

one needs to determine 9 , the coning half-angle, 3 , the angle between

->• ->
L and B , <j> , the Euler precession angle and i|> , the Euler spin angle.
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$ is found from the primary nodes in the envelope curves. The time between

them gives T , the precession period. <j> is found using (3-47). 0 and 3

are found by fitting equations (3-46) for a and b and then simultaneously

solving the first two equations of (3-34) for pairs of (9 , (3). The choice

of which pair of. (9 , 3) and which u) to use is then determined by testings

the possible cases to minimize the phase and amplitude errors between results

from equations (3-35) or (3-36) and the measured values.

Tables V and VI give the frequency-period results and the angular

results respectively.

Vehicle

18:63

18:64

18:65

T<J> (first node)

0604:34.38

0409:38.516

0306:26.245

Table V

TP (Precession period)

131.5 sec

185.751

199.104

TS (spin period)

1.93976sec

1.05540

1.06209

Vehicle

18:63

18:64

18:65

^0

TT/2

TT/2

TT/2

1

0

TT

TT

9

Table VI

average angle

3 between z" and -B

70.2° 205.6°

20.50 203.4

9%023°193,6°

72°

31°

16°

e , 3
uncertainty

± 6°

± 1°

± 2°
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APPENDIX I

Evaluation .of Euler Angles for Despinning Symmetric Payload

Vehicles 18:64 UE and 18:65 UE carried experiments which required

the deployment of long booms. After the yo-yo despin the motors which

deployed these booms were switched on. Deployment time was about 100 sec.

The booms extended radially, in opposite directions, from the spin axis.

Their contribution to the transverse moment of inertia, I , was negligible,

and the vehicle was assumed to remain axially symmetric. The effect

upon the axial moment of inertia, I , was significant and resulted

in further decreasing the vehicle-spin rate. To make complete use of

data from the boom experiments and other experiments during the deploy-

ment it was necessary to determine the Euler angles for this time period.

The total time derivative of angular momentum, L , with respect

•<->
to inertial coordinates for a varying moment of inertia, I , and a

-*• <- 3torque, N , is given by

(A-l) ~

where for a symmetrical payload changing only the axial moment of inertia,

A A

i" i" In

L 0

A /\
4<i -s

0

0
A A

k" k" I,
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r o o

0 0 k"k"IA_

We assume the external torque, N = 0 . The component equations

analogous to (3-4) are

ITWx"

(A-2) ITWy" + Wx" " Wz"

I.CO ,, + 1.00 ,, + OJ ,,I~CO „
A z A z ' x" T y"

From the last of (A-2) we have

(A-3) I.oo „ + 1 to „ = 0 ; l.co „ = constant = a .
A Z A Z A Z

I"*" IThe magnitude of the total angular momentum, |L| , is a constant.

Because the component of L along z" is constant the Euler angle 6

is defined by

(A-4)
l.co „

• Q A z ». *.sine = = constant

Hence, for our case, 0 , the coning angle is constant during the

long boom deploy despin.
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The first two equations of (A-2) can be manipulated as in (3-7) to

(3-9) to give.

2 2 2
(A-5) 0) „ + w „ = constant = wx y i

However because 0) ,, changes the angular velocity vector doesn'tz

have constant magnitude and the angle e increases as w ,, decreases.

(A-6) tan 6 =
A IIA z"

"Ttan e = —

Using equations (3-17), (3-19) and (A-5) we have <f> = constant = 0) ,

and

(A-7) w ,,(t) = 4)(t)+4icose
Z

We define

(A-8) w = 4> cosO = constant

then using (A-7). (A-8) and (A-3)

(A-9)

4> , $ and 8 can be determined from the rigid body portion of the

flight.
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By choosing an appropriate model for I (t) we can integrate (A-9),
A

and compute the remaining Euler angle ip .

The axial moment of inertia can be made from a constant component,

A , plus a contribution due to the deploying booms, IR(t) • If the booms

deploy at a constant speed Ifi (t) will have quadratic time dependence.

IB(t) = B(t-tD)
2

IA(t) = A+B(t-tD)
2

where t is the time the booms begin deploying. We know that the value

2
of A is 2.196 kg-m . Using (A-10) we can integrate (A-9) from t1 to

V

2 dt
tr] ~ cVt2""tr(A-ll)

a r -1 (VV -1
*(t2)-*(tl) - -^ [tan 2/ - tan

We drop the suffix on t^ and let t_ = tf , the time the long booms

complete deployment.

-1 I (^V1^x - J - -
L A J

a -ijj(t) = -2- tan - - - w t +

(A-12)

where ip = ^(t,.) - \\>. + w t,.
o t t o r

and i(>r = tan
f /AB

-l-Rytp
L A
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Actually the argument of the inverse tangent is related to the boom

moment of inertia

(A-13) ARC

We can determine (̂tf) by using (3-25) which is appropriate for

the part of the flight where I is constant.

(A-14) <Ktf) = wg(tf-to) + TT

Two more constants, a and B , remain to be evaluated to determine

(A-12). From magnetometer data we can measure the observed spin period,

T (t) . It depends upon (f> and 6 as well as ip because during most of
O

•

the flight ^ is constant whereas T deviates as the vehicle approaches
o

its nearest position to the magnetic field. However for times > 0.05T
P

from one of these magnetometer envelope nodes we can write

(A-15)

then using (A-9) we have

T0(t) a-co I.(t)o A

Using (A-10) and making an expansion for a»u) A , one obtains
o

T.(t) =' a-U) Ao

27rB(t-t̂ ) r u) A ~\D I , 6 1
(a-U) A) (a-w A) I

O U. o J
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Equation (A-17) is now in a form which can be least squares fitted

by

Tg(t)

Using the values of C and C determined by the fitting

we have

(A-19) a = —^ + u A
Cl °

.C?(a-u) A)
(A-20) B = °

2llr <4
L(a-coCO A)

o

The constant B is proportional to the rate at which the booms

deploy. We found that the spin rate indicated that they deployed at

two rates, a slow initial rate and then at a higher rate until they were

completely deployed. Consequently equation (A-12) had to be used twice

with separate values of a and B .
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