" N%2-265158 1

INSTITUTE
- FLUID DYNAMICS

APPLIED MATH EMATICS

T AL ey :;‘
43 Ay X e ,,\ 5553
= Blem .
= s
o i
& 7o)

Tech. Note BN-721 ' January 1972

- -J:.ﬁs@ﬁ

DETERMINATION OF SOUNDING ROCKET POSITION AND
ATTITUDE FROM RADAR AND MAGNETOMETER DATA
Morris Pongratz
University of Maryland

College Park, Maryland
20742 '

UNIVERSITY OF MARYLAND
College Park



DETERMINATION OF SOUNDING ROCKET POSITION AND

ATTITUDE FROM RADAR AND MAGNETOMETER DATA*

by

Morris Pongratz
University of Maryland
College Park, Maryland

20742

*This work was supported by the National Aeronautics and. Space . Administration
under research grant NSR 21-002-077., Machine computation was performed by
‘the Computer Science Center of the University of Maryland and was supported

by NASA grant NS6~398,
‘ Nei-gd - 002~ 008



" 'ABSTRACT

This report describes the techniques used to determine the
trajectories and orientations of three sounding rockets instrumented
to study the aurora. The radar plot board data were fitted to a
near eérth expansion of the force of gravity to determine the
trajectory. Only onboard magnetometer data were used to determine
the attitude of the payload with respect to the earth's magnetic
field, Computer programs in the FORTRAN language are available

which generate the trajectory and attitude parameters.



Chapter 1

Introduction

*
We have launched three Nike-Tomahawk sounding rockets from

Fort Churchill, Canada, to study aurorae. In order to determine pitch
angle information about energetic electrons and for analysis of data.
from other experiments on board it is necessary to be able to describe
the position and attitude of the payload; The payloads are launched
with a Nike booster which falls away when spent and a Tomahawk second
stage which burns out before atmospheric exit and remains- attached to

the payload. Flight duration and apogee are typically 500. seconds and
250 km respectively. To achieve stability the vehicles are spun at about
7 rps during burning. After burn-out they are despun to about 1 rps to
facilitate collection of angular information in the data; Radar plots -
furnished by the Churchill Research Range were used to determine vehicle
position. On board magnetometers which measured the component of the
earth's magnetic field parallel to théir orientation were used to determine

payload attitude.

Chapter I

Vehicle Position

The effects of coriolis and centripetal accelerations upon sounding
rockets launched from Churchill show up most dramatically in reducing the
eastward distance traveled by several kilometers (the earth rotates under.
the payload), The North-South location of the impact point is virtﬁally

unaffected. In practice one is most concerned with the effect upon the

*NASA 18.63 UE, 18.64 UE and 18.65 UE.
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altitude where . .the effect of centripetal acceleration is less than 0.1%.
However, since most vehicles-are launched easfward the coriolis accelera-
tion is in the opposite sense to the centripetal acceleration and can be of
nearly the same magnitude so one can safely ignore theSé‘effects; ‘Because
the exact impact point is generally not needed and because radar data
frequently is not good enough to justify further precisfon we will adopt
a coordinate system assuming a flat; nonrotating earth;Witﬁ;positive.‘z
representing attitude and positive ‘k representing eastward direction;“
Normally a flat earth assumption would have g ; the'acce¥eration of
gravity, independent of =z . However over the range of 2z . for the sound-
ing rocket this represents an appreciable error so we will use an e*pansion
of the potential energy, V ; for the inverse' square gravitatinnal force;'_

GMém %fGMém

(2-1) V-7 7 R +z

where G 1s the gravitational constant, Me is the mass of the earth,
m 1is the mass of the payload, r 1Is radial distance from centexr of the .
earth and R, is the radius of the earth at Churchill.

Expanding (2-1) in z/Re gives

- GMem -1
V = = (l+Z/Re)
e
- GMem 2 3
= R [l-Z/Re + (Z/Re) - (z/Re) +...]
- GM m GM m GM m
_ e + e z - e z2
Re R 2 R 3
e e

neglecting the cubic and higher terms.
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The payload kinetic energy can be>written,

(2-3) T=1/2m (§2 + §2 + ;2) .
Hence the Lagrangian is,
. 2 o GMem GMem GMem
(2.4) L=T-V=1/2m (x" +y + z") + - z +
R 2
e Re Re

Since x and y do not appear in L the corresponding
velocities are constant above the atmosphere. The differential equation

in z is

e GMe GMe 2 z
(2-5) 2=-3 *tITT R TT& Y28 R
R Re e e

where g, is the acceleration of gravity on surface pf earth,

GM
e

(2-6) _ B, T T
e

The general solution to (2-5) is

(2-7) z =B, e + B,e + B

where o and B3 are given by,

(2-8) o = (Zgo/Re)l/z B, = R /2 .

Using (2-6) and the value of g measured at Churchiil of
g = 981,761 cm/sec2 one can solve for the value of Re to use, These

values are in Table I.
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Table I
R, = 6377.0 kn
B3 = 3188.5 km
o2 = 0.307907 x 107> sec 2
o = 0.175473 x 1072 sec”t

The problem remaining is to use the measured 2y and ti
from the radar plot to least squares fit for the initial conditions

B, and B This analysis was quite satisfactory for 18:63 and

1 2 °
18:64, but for 18:65 we obtained a better fit to the points using

slightly different values for RE and fitting for Bé valso;
Apogee time, ty s and height, z, , can be. found by differ=

entiating (2-7)

o e

. 1/2
(2-10) z, = = 2 (Ble)_ + B

A 3°

The values for liftoff time, ty s Zy and the four coefficients

in (2-7) for t and t, measured from liftoff are given in Table II,

A

Table IT
Vehicle Liftoff £, zA[km] Bl[km] Bz[km] : BB[km]
18:63 21 Mar '68 241,09 -965.129 3188.5
0601:32.7 241,76 -2249,25
18:64 14 Jan '70 250.24 - -943,961 3188.5
0405:30.0 259,74 -2271.7
'18:65 17 Jan '70 248,16 -779.05 : 2742,.7

0303:20.0 252,48 -1989.9

4

alsec”

0.17547x10"
0.17547x10"

0.18894x10

2

2

2
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One can use (2-7) to determine v, by differentiation. Figures
1 - 3 are plots of the altitude and v, versus Universal Time in minutes.

The x and y components of velocity are given in Table IIT.

Table III
Vehicle Ve (East) [km/sec] vy (North) [km/sec] iy [km/sec]
18:63 0.051 - 0.101 0.113 =
18:64 0,203 - 0.005 0.206
18:65 0.276 0.168 0.322

It is interesting to compare the altitude at which the payloads
were inverted by the atmospheric drag on the fins and the altitude at
which the electronics began experiencing sustained high voltage breakdowns -

in Table IV.

Table IV
Vehicle Turnover altitude [km] Breakdown altitude [km]
18:63 72 83
18:64 65 81
18:65 73 81

Because the radar did not track the payloads throughout the flights

there may be several kilometer uncertainties in 2z below about 120 km on the

downward leg of the flight. The uncertainty on the upward leg is on the order
of 100 meters., It is possible to obtain an exact analytical solution to this
problem for t as a function of 2z s, but it would be very difficult to use

least squares technique to obtain the initial‘conditions.
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Chapter III

Payload Attitude

After despin the payload is sufficiently above the atmosphere to-
enable one to neglect torques due to atmospheric friction. In the absence
of net torques f , the total angular momentum vector, is constant in an
inertial frame, We will then choose the direction of E to be the + z'
direction of the space axes for our description of bayload attitude; This
space set of axes is not the system used to describe position of the‘payload;
More aspect information than supplied by the magnetometers is necessary to-
relate the two systems.

Barring the unfortunate and rare case where 'f and E -would be.
parallel or antiparallel we will use the direction of g to provide the

other direction necessary for the space axes, Assuming that over the altitude
and temporal range of interest E is.nearly constant in direction we define
the x' direction by specifying that B 1lie in the x' - z' plane and that

' , be negative. In a simplified

Bx' » the component of ﬁ parallel to x
case where I 1is in the local vertical direction and the magnetic declination
is zero this coordinate system would have the x' axis pointing south °
(equatorward from Churchill) and the y' axis pointing eastward because the
magnetic field is in the northward direction. Figure 4 represents this
simplified case. 1In this coordinate system we can describe the magnetic field
as

A A

(3-1) = Bx,(t) i' + Bz,(t) ﬁ' = Bo(t) [sin B ;' + cos B ﬂ']

o=}

i
v~}

o

~
+
~
o

|

-
where the magnitude of B , Bo (t) , does have the altitude dependence,

through t , and B 1is the angle between B and k' , the unit vector along f .
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A

B > '
By definition of i' cos B < 0 and for a typical L direction sin B < 0
so B would lie in the third quadrant.

The body coordinate system, x" y" 2" , is used to describe

position and orientation within the payload. We choose the 3z'" axis
to be a principal axis and assume that it coincides with the symmetry akis
whcilh describes the axial dimension of the payload parallel to the geometric
center line and in the direction of the nose of the payload. The #" and
y" axes are also principal axes and are assumed alohg'the directions
specified by the magnetometers as in Figure 5. The origins of the two
systems coincide at the center of gravity of the payload.

For time-independent momenté of inertia (the slowly despinning
case will be considered in an appendix) and for a rigid body rotating about

its center of gravity with body-fixed axes coinciding with the principal

axes Eulers equations are

Ix"x" wx" = wyn(%, " (Iynyn - Iz"z")
(3-2) Iy"y" wyn = wz"wx" (Iz"z" - Iz"x")
Iznzn wzn = (anwyn (Ixnxn - Iynyn) .

Because of the symmetry about the 2" axis we can define transverse,

IT » and axial, IA , moments of inertia

IX"X" = Iy"y" = IT

(3-3)

Iz"z" = IA .
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For our payloads IT >> IA (IT v~ 200 IA) . Equations (3-2) now can

be written

IT wxn = wynwzn (IT - IA)
(3-4) . IT wyn == wZ"wx" (IT - IA)
IA wz" =0 ,

From the last of equations (3-4) we have

(3-5) Wi = 0 ; W = constant .
Ip = Iy
Define § = W, ( 7 ) , then equations (3-4) become
T
W = wy..Q
(3-6) éy" = wx"Q
IA wZ" =0 .,

The first two equations can be combined to give

W oy = wynQ =

f
o

X
3-7)

wy" + wx"Q =0 .

Multiplying the first equation by W and the second by w and

yll

summing them gives

(3-8) WL 0.0, =0 .
Equation (3-8) can be integrated to give

(3-9) wi" + w;u = constant = w%

therefore from (3-5) and (3-9) we have,
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]
- 2 2 2 2 2
(3-10) lw] = W + W W = Vo2, + w, - = constant,

Z"

the angular velocity vector has constant magnitude.

Assuming constant §! one can differentiate the first of equations

(3-6) and substitute in the second one to give

(3-11) &.)X" = (*)ynQ = = wan .

Equation (3-11) describes simple harmonic motion for Wen For typical

initial conditions let wx" =0 and wy" = wT using (3-9) . Then we can

write for w, and W ,
X y

(S8
Il

_ wT sin Qt
(3-12)

wy" = W; cos Qt .

> >
We can also write ®w and L in the body frame

> A /‘\ A
W= W i+ wy" jv*+ W k"
= W (sin Qt i" + cos Qt ") + wz"k"
(3-13)
> >
L=1TIw

]

A A A
X1} s 1t P
IT Wy, (sin Qt i"+ cos Ot i) + IA W K .

From Figure 6 we can obtain the angle 6 between f and the

+
z" axis, and € , the angle between ww and the z" axis,

I w
(3-14) tan 0 = TT
Isz"
W
-15 t € = — .
(3-15) an oo
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n

>
Since I, > I w lies between f and the =2z" axis. The angles

T A’
8@ and € are constant because the quantities on the right hand side of

equations (3-14) and (3-15) are constant,

(3-16) 8=¢=0 8=0 , e=c¢_ .

We use the Euler angles to refer the body system to the space

fixed system. Note that the angle 6 1is also the Euler angle 6 (see

Figure 7). The transformation between the two sets of axes is given by(l)
Won = 5 sin 6 sin ¢ + 8 cos U

(3-17) wy" = $ sin 6 cos Y - 8 sin ]
wz" = $ cos O + @

Using (3-16) these equations become

€
]

$ gin 6 sin Y

X
(3-18) - W = $ sin 8 cos ¥
Wi = é cos O + @ .

From (3-9) and (3-18) we have

(3-19) wx"2 + wy"2 = W 2 $2 sin2 0 .

Using (3-16) and (3~19) we can define the precession frequency,

3

(3-20) @ = constant = wp .

From the last of equations (3=<18) and (3-5) and (3-20) we can

define the spin frequency, ws s
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(3-21) ¢‘= constant = Wy e

Differentiating (3-18) and substituting them into the first

equation of (3-4) gives

(3-22) ITéi sin O cos P = (& sin 6 cos V) (& cos 6 + &) (IT - IA)

which can be solved for ¢ in terms of &

I, W
(3-23) Wy, =0 =TTy cos @ cos 8 I
T A T
(T - D
A

and we have the ratio of spin frequency to precession frequency
(3-24) w /wp = (= =-1) cos 6 .

Using (3-16), (3~20) and (3-21) we can write the Euler angles
in terms of their time derivatives

0 =26
o

(3-25) ¢ =t + o,

P = w.t + wo .

We are now prepared to describe the way the magnetic field, § s
which is fixed in the space frame will be seen by the magnetometers on
board the payload -~ the body frame,

The magnetometers measure the component of magnetic field
parallel to their orientation. They output a bias voltage, CB , of about
2,5 V plus a voltage linearly dependent‘upon the magnitude of the component

+
of B parallel to their orientation, The linear coefficient, CA , is
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FaS
about 4,0V/Gauss. Let n; be a unit vector in body frame in the direction

measured by the 1 magnetometer, then the output voltage, Vi , has the form

- = +.A"
(3-26) Vi CAi B ng + CBi .

A

Therefore if B 1is antiparallel to n; the output is less than CB, and
vice-versa., The analysis used here will assume the form of (3-26) for. Vi
and neglect non-linear terms.

From (3-26), if B and ;; were measured in the same frame, the
output voltage would be a constant term modulated by a cosine term, but alas
all is not so simple! We need to know the components of ﬁ in the body frame

to be able to compute the dot product required in (3-26). This transformation,

using (3-1), is given by

> > > > sin B
(3-27) B" = AB = B (t) A )
° " \cos B
where Z? is(z)
cos P cos ¢ = cos O sin ¢ sin Y sin ¥ sin Ga\

cos Y sin ¢ + cos O cos ¢ sin Y

(3-28) = - sin Y cos ¢ - cos O sin ¢ cos P cos P sin O
- sin ¢ sin ¢ + cos O cos § cos P
“ s8in O sin ¢ - sin 6 cos ¢ cos O
Equation (3-27) then becomes
(s-29) D S S
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where
Bx" = Bo(t) [sin B (cos Y cos ¢ - cos O sin ¢ sin Y) + cos B
sin ¥ sin 9]
(3-30) B, = Bo(t) [sin B ( - sin Y cos ¢ - cos O sin ¢ cos Y) + cos B
cos J sin 0]
B, =B (t) [sin B sin 6 sin ¢ + cos B cos 8] .
z ) '

Now one can compute the dot products for the three possible

magnetometers measuring the x" , y" , z"
A "~
the x" component, 0 in (3-26), is 1"

components of the field. For

and

A

(3-31) B . nn = Bo(t) [sin B cos Y cos ¢ — sin B cos O sin ¢ sin Y +
+ cos B sin ¥ sin 8] .

A A

"  component, D is j and

For the ¥y

A

(3-32) 'E" . ny" = Bo(t) [~ sin B sin Y cos ¢ - sin B cos 6 sin ¢ cos Y +

+ cos B cos ¥ sin 8] .

A
For the 2z" component ﬁi” is k" and
A

(3-33) B . ny = Bo(t) [sin B sin 6 sin ¢ + cos B cos 6] .

To simplify these equations we define

a = sin B sin 8
b = cos B cos B
(3-34) ¢ = sin B cos 6
d = cos B sin 6
e=4d - c sin ¢

f = sin B cos ¢ .
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We shall restrict ourselves to the case where E‘ is upward rather
than downward over Churchill,This is the condition before despin and it is
improbable that despinning could invert the payload angular momentum vector.
For 18:64 and 18:65 the z" axis magnetometers indicate that I remained nearly
vertical. This assumption puts B in the third quadrant and makes the first
four quantities defined in (3-34) negative,

The resulting equations are

A

(3-35) B . ny = Bo(t) [e sin Y-+ £ cos Y]
(3-36) I ;y" = B (t) [e cos § - £ sin y]
(3-37) B . ;z" = Bo(t) [a sin ¢ + b] .

We choose t in equation (3-25) to be zero at a time when the
> . . >
payload (and 2" axis) is most antiparallel to B (when z" is nearest =-B).
This means that equation (3-37) is at a minimum value indicating (a < 0).that .

sin ¢ 1is unity, hence

¢(t =0) = ¢, =m/2
(3-38) e, Ze(t=0)=d-c
£F £(t = 0) =0 .

Because ¢ varies much slower than Y one can also require that .
t = 0 be chosen at a time where Vy" , the voltage from y'" — axis magnetometer
( the RAM-) 1is less than CBy" -~ éhe bias value. This means that (3-36) is at a
minimum value at t = 0 . Recalling that fo = 0 determines wo to be 0 or
T depending upon the sign of e - Because ¢ and d are typically both

negative we can define a positive quantity, g ,

c¢/d = tan B/tan 6 .,

m

(3-39) 8
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If g>1, then e >0 and wo = T and if g <1, e, <0

and wo =0, Since B8 1is in the third quadrant (3-39) implies ;hat if
B~-m>8, wo =T %hereas if B~-m<90, wo =0 . When B - m>6 the
payload precession coﬁe does not include B and when B = m < 6 tPe
precession cone does include B . Hence, if the payload precesses around

B , wo = 0 and if the payload does not precess around B s wo =T . Figures
8 and 9 show the two cases.

We will now outline the proﬁedure for determining the two constant
angles 6 and B . We have measured the times and voltages at local maxima
and minima on the y" - axis magnetometer and x" - axis magnetometer for
.18:64 and 18:65 respectively, 18:63 had only the y" - axis magnetometer.
For 18:64 and 18:65 we made detailed, simultaneous measurements from all three
magnetometers during the several second time interval where the payloads turned
over and all Ehree magnetometers sampled a full range of values, Taking ad-
vantage of the fact that the magnitude of the field was nearly constant over
this short time interval we were able to make self-consistent checks on the
calibrated values of the CA's and CB's .

We also picked several times encompassing the complete altitude
range where we simultaneously measured the voltage output from all three
magnetometers. Using the calibrations we converted these voltages into values

for the magnetic field components parallel to the three axes., We then summed

the components to obtain the field magnitudes,
2 2 2 1/2
(3-40) Bo(6) = [B (e) + B () + B @12

over a range of altitudes. We found that we could model the altitude dependence

as
(3-41) B (t) = B (z(t)) = -——-1-3-29———-
° ° (RE+z(t))3.

as would- be expectedlfor a dipole field model.
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->
The next step is to look at the components of B which are

parallel and perpendicular to the payload spin axis, z" . Let o be

>
the instantaneous angle between the z" axis and B , then we define

%L = |§| sin o
(3-42) B“ = |§| cos o
> - 2 2 .1/2 _
|B| = (B + B), ) = B_(t) .

Since we measure x" or y" magnetometer voltages only at their

local maxima or minima the corresponding y" or x" magnetometers are

perpendicular to %l. and measure no field at these times, Hence, by measur-
ing the voltages at local maxima and minima we know that they correspond to
the instantaneous value of QL . The import of this is that in general the

dot product in (3-26) for the x" magnetometer is

A

B B
nxn = %"

which is only some part of B, , but at the specilal times we measured Vx"

we have B - ny = Bx" = B = Bo(t) sin o .

L

To generalize let m refer to the indices x" or y" when y"

or x" respectively are perpendicular to the field, then (3-26) becomes

(3-43) Vm = CAm Bo(t) sin o + CBm .

Equation (3-43) has only sin o unknown. It can be solved for

sin o and then for cos g5 ,

2 1/2
(Vm-CBm)

(ca B_(o)f.

I+

(3-44) cos O = 1
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We will choose the negative sign in (3-44) when we can tell from
the envelope of the values of Vm that the 2" axis is still above the
magnetic horizon. This will be discussed in further detail later.

Of course, cos O 1s very easy to compute from the output of the

z" - axis magnetometer,

(3-45) Vz.,= CAz., Bo(t) cos o + CBz"
cos O = —-————Vz" _ CBz"
CAzn Bo(t)

here there is no ambiguity about the sign of cos a .

Comparison of (3-26) , (3-37) and (3-45) shows that
(3-46) cos & =b + a sin ¢ .

By inspection of the envelope curve for a node or by finding
minima in B, one can determine the Universal Time , t, » Where the z"
-
axis is closest to - B and the voltage is a local minimum. The time to

the next similar node gives Tp , the precession period. One can then

write ¢
_[ 27
(3-47) ¢ ={T—) t+9,
p
* *
where t =t - t_ and ¢o =m/2 and t is Universal Time.

Armed with an expression for ¢ one can perform a least squares
fit to equatioﬁ (3-46) to determine the constants a and b ., Using the
first two equations of (3-34) we found two pairs of B and 6 (a<0, b <0).

>
One pair, B. and Gl , corresponds to-a precession cone not including B

1

and' the other pair, 82 and 92, does correspond to z"

- axis precession

>
around B .
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Vehicle 18:63 had only a y" - axis magnetometer which was shifted
upwards in CBy" and consequently for much of the flight local maxima of
Vy" were greater than the telemetry voltage limit., We also suffered some
telemetry dropouts which unfortunately coincided in time with theilocal
maxima and minima of Vy" further hampering data reduction. To fill the
gaps where Vy" could not»be measured at local minima or maxima we
decided to use the values of local maxima or minima of Vy" which were re-
constructed from-the slope of Vy" evaluated at CBy" . We had about 90 .
directly measured values and about 50 indirectly measured values of Vy"
with some overlapping to check the accuracy of the slope reconstruction
method.

Using (3-26) and (3-36) we have

(3-48) Vyn = CAyn Bo(t) [e vcos Y - f sin ‘P] + CBy" .

The expression in brackets can be written
(3-49) [e cos Y - f sin Y] = h sin (wo - )

2
where h 2 - e + f2 and tan wo = e/f . Taking advantage of the fact that
Bo(t) , € and f are nearly constant over a few spin periods one can compute

the derivatiweof (3-48),

av " .
—5 = CAw B(6) h cos (Y, - ¥) (D)
(3-50) .
= - A B(£) h ) cos (¥, - V) .
But we measured the slope where Vy" = CBy" which meant that wo -y =7

and consequently cos (wo - ¢¥) = 21 , This means that we can solve (3-50)



-19-

for h in terms of known quantities (@ is the spin frequency which for

18:63 could be directly measured to a few percent),

v,
(3-51) h=3|\—5=— / CA, B (£) ¥ .
t _ y o
’ \Y n - CB " .
y y
But at a time inTs/4 from where Vy" = CBy" the angle Y will change to

where sin (wo - YP) = * 1 and we can substitute the value of h from

(3-51) into (3-49) - (3-48) to get

- =13 | =L U
(3-52) Vy" + Tt /Y + CBy" .
Vyn = CByn

Therefore by measuring the slope and spin rate we were able to
reconstruct values to give the correct envelope voltages to use in determin-
ing 6 and B . This method was checked in several overlap regions by.
measuring both the slope and local maxima and minima and the results agreed
to within 4 %,

Normally the envelope of local maxima-minima voltages will exhibit

>
nodes with the frequency of the precession of z" about L . These nodes

> .
correspond to times where the z" - axis is nearest to -~ B . For 18:63

secondary nodes betweeen precession period nodes indicated that the 2z" - axis
had dropped below the magnetic horizon giving the envelope primary nodes

when ¢ = m/2 + 2nm and secondary nodes when ¢ = 37/2 + 2nm (see figure 10).
This was very fortunate giving a built-in calibration of the product

CAm Bo(t) in equation (3-44) at the times when the payload was perpendicular
to B . Equation (3-46) had /a/>/b/ and we varied the amount of time spent
below the magnetic horizon to give the best fit to the measured envelope.

Figure 11 indicates that the fit was very good except when o was near 90°

when the telemetry problem was most severe.
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By measuring times of adjacent magnetometer maxima and minima
one can determine the spin frequency, wg to only about * 47 because (3-48)
for example is not a pure sine wave and the time between adjacent maxima
reflects variations in parameters other than ¢ alone. To improve this
measurement we counted the number of oscillations, o, o in an approximate
precession period (to the nearest complete cycle). We then accurately
(£ 5 ms) measured the time elapse, At , during the o oscillations. The

hypothesis was then made that W had one of the three values given by

2ﬂ(no—l)
Wy T TR
ZTTno
(3-53) wso = i
o ) 2ﬂ(zz+l)
+

A computer program was written to make the final determination of
the correct set of 6 , B and we The procedure involved a double loop
which tested the six possible combinations of the ws's and (B , 6)'s in
equation (3-35) or (3-36) to predict the times and voltages of the maximé
and minima. For each of the three possible ws's both (61 s Bl) and

&

5 s Bz) were tested. The procedure was very sensitive in that the five
incorrect possibilities had obvious phase shifts from the observed maxima-
minima during precession whereas the one correct combination predicted the

maxima-minima times to within the measurement error. The results had the

pair (Bl R 61) with w_ = ms+ and the pair (62 R 62) had wy = wso .

->
In order to specify the attitude of the payload with respect to B
one needs to determine © , the coning half-angle, B , the angle between

>
L and B » ¢ , the Euler precession angle and ¢ , the Euler spin angle,.
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¢ 1is found from the primary nodes in the envelope curves. The time between
them gives Tp , the precession period. ¢ is found using (3-47). ©6 and B
are found by fitting equations (3-46) for a and b and then simultaneously
solving the first two equations of (3-34) for pairs of (6 , B). The choice
of which pair of (6 , B) and which wy to use is then determined by testing
the possible cases to minimize the phase and amplitude errors between.results
from equations (3-35) or (3-36) and the measured values,

Tables V and VI give the frequency-period results and the angular

results respectively.

Table V
Vehicle T¢ (first node) TP (Precession period) TS (spin period)
18:63 0604:34,38 131.5 sec 1.93976sec
18:64 0409:38.516 : . 185;751 1.05540
18:65 0306:26,245 199,104 1.06209

Table VI

average angle 6,8

Vehicle ¢, Yy 0 B between z” and -B uncertainty
18:63 m/2 0 70.2° 205.6° 72° t 6°
18:64 m/2 e 20.50 203.4 31° *1°

18:65 m/2 9.023°193.6° 16° t 9°
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APPENDIX I

Evaluation of Euler Angles for Despinning Symmetric Payload
Vehicles 18:64 UE and 18:65 UE carried ekperiments which required
the deployment of long booms. After the yo-yo despin the motors which
deployed these booms were switched on. Deployment time was about 100 sec.
The booms extended radially, in opposite directions, from the spin axis.
Their contribution to the transverse moment of inertia, IT’ was negligible,
and the vehicle was assumed to remain axially symmetric. The effect

upon the axial moment of inertia, I was significant and resulted

A’
in further decreasing the vehicle-spin rate. To make complete use of
data from the boom experiments and other experiments during the deploy-
ment it was necessary to determine the Euler angles for this time period.
>
The total time derivative of angular momentum, L , with respect
3 ] . I . I3 H
to inertial coordinates for a varying moment of inertia, I, and a
;’l' . . = . 3

torque, N , is given by

> <> >
w+ [T]-0+oxt

(22

=-d—=>‘(I_*

dt

2y

(A-1)

where for a symmetrical payload changing only the axial moment of inertia,
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0 0 0
[I'] = 0 0 0
T
'
0 0 k_k,IA

N :
We assume the external torque, N = 0 . The component equations

analogous to (3-4) are

Iwan + wanszn - wz"ITwy" =0

(A-2) IT(I)y,, F 0L = Wy, = 0

IA&z" + isz" + wx"ITwy" - wy"Iwa" =0
From the lasg of (A-2) we have
(A-3) IA&Z" + isz" =0 ; Isz" = constant = a .

>
The magnitude of the total angular momentum, ILI , 1s a constant.

>
Because the component of L along z'" is constant the Euler angle ©

is defined by

Isz"

(A-4) ' sinb = —
1

= constant

Hence, for our case, 6 , the coning angle is constant during the

long boom deploy despin.
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The first two equations of (A-2) can be manipulated as in (3-7) to

(3-9) to give..
(A-5) w 2 + w 2 const t =W
- " o constant = Wp
However because wz" changes the angular velocity vector doesn't

have constant magnitude and the angle € increases as W decreases,

R Y LW
(A=6) tan 6 = ———t = LT
: Isz" a
w
tan € = —
wzn

Using equations (3-17), (3-19) and(A-5) we have é = constant = wp

and

(A-7) wz"(t) &(t)+$cose .

We define

n
-

(A-8) w cosf = constant .

then using (A-7), (A-8) and (A-3)
o 0

. ~ ;.v?g )
(A-9) V() = wn(t) ~w, = ———IA(t) W .

$ , ¢ and.e can be determined from the rigid body portion of the

flight.
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By choosing an apprqpriatg'qugl,fqr IA(t) we can in;ggrate'(A—9),
and compute the remaining Euler angle ¥ ;

The axial moment of inertia can be made from a constant component;
A , plus a contribution due to the deploying booms; IB(t) ; If Fhe booms

deploy at a constant speed IBoom(t) will have quadratic time dependence.

2
(4-10) I (t) = B(t-tp)

2
IA(t) A+B(t—tD)

where t, is the time the booms begin deploying. We know that the value

of A is 2.196_kg-m2 . Using (A-10) we can integrate (A-9) from t, to

1
t2.
[ dt
(A—ll) W(tz)-ll)(tl) = a [A_’_B(t_tD)&] - wo(tz-tl)
t1
a -1 (tz-tD)/Ki ' -1 (tl-tD)/Kf
Y(t,)-y(t.) = —— ltan = ————— -~ tan = ——— | - @ (t,~t,)
We drop the suffix on t1 and let -t2 = tf , the time the long booms
complete deployment.
1 [ (=t )VAB]
P(t) = == tan 1 [ D J -wt+yY
‘/A?B' A (o] (o]
(A~12).
where ¢ = w(tf) - wf + motf
and lpf = — tan ——r—-—
vAB
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Actually the argument of the inverse tangent is related to the boom

moment of inertia
’1/}t;tD)ZBj 1/iB(t)
(A-13) ARG 5 y = =

We can determine w(tf) by using (3-25) which is appropriate for

the part of the flight where IA is constant,

(A-14) w(tf) ms(tf—to) + 7

Two more constants, a and B , remain to be evaluated to determine
(A-12). From magnetometer data we can measure the observed spin period,
Ts(t) . It depends upon ¢ and 6 as well as | because during most of

the flight Y is constant whereas T, deviates as the vehicle approaches

S
its nearest position to the magnetic field. However for times > 0.057T

from one of these magnetometer envelope nodes we can write

(A-15) Ts(t)/Zn :

€ |

then using (A-9) we have

2%

(A-16) T (t) = —20
S a—wOIA(t)

Using (A-10) and making an expansion for a>>woA , one obtains
2B (t=t_ )2 '

Coma PTBUE, &_4;"woA ]

'a-wOA (a—moA) (a—woA)

a1 ot () =
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Equation (A-l7)-is:now in a form which can be least squares fitted

by
2
(A-18) Ts(t) - Cl+C2(t-tD) .
Using the values of Cl and C2 determined by the fitting
we have
(A-19) a=2 444
1 o
(A—20) B = . Cz(aewoA)
. 2m Woh _ + 1
(a—woA)

The constant B dis proportional to the rate at which the booms
deploy. We found that the spin rate indicated that they deployed at
two rates, a slow initial rate and then at a higher rate until they were
coﬁpletely deployed. Consequently.equation (A-12) had to be used twice

with separate values of a and B .,
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