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COMPARISON OF NUMERICAL TECHNIQUES FOR THE EVALUATION OF

THE DOPPLER BROADENING FUNCTIONS vjj(x,6) AND xUB)

by R. Bruce Can right, Jr., andThorT. Semler

Lewis Research Center

SUMMARY

The two Doppler broadening functions, i//(x, 6) and \(x> 0)> are necessary for the
computation of accurate temperature dependent resonance neutron cross sections. With
the present use of many resonances and ever increasing resonance energies for reactor
physics calculations in support of fast reactor development, the direct numerical quad-
rature evaluation of these functions has become prohibitively expensive in terms of com-
puter time.

In this report direct numerical quadrature is compared with the techniques of Gaus-
sian quadrature, contour integrations, and cubic spline interpolation in terms of both
accuracy and ease of computation. A form of contour integration due to A. M. Turing
(1943) is found to be much faster than (approximately six times) and as accurate as
direct numerical quadrature.

Execution times for the evaluation of these functions on the IBM 7094-11 computer
and FORTRAN IV listings are included.

INTRODUCTION

It was noted early in the study of neutron physics that the neutron cross section, or
interaction probability, of materials is dependent on the temperature of the material.
Thus, a rapid variation of cross section with respect to neutron energy could be inferred
(refs. 1 and 2). It was then pointed out by Breit and Wigner (ref. 3) that the nuclear
cross sections for the formation of the compound nucleus, or target nucleus plus neu-
tron, should exhibit a resonance structure. For the reaction, neutron in and gamma
out, the cross section a should vary as a function of neutron energy E as shown in
the following equation (ref. 4): .



k2

where k is the wave number of the neutron in the center of the mass system, gj is the
spin factor (2J + 1)/2(2I +1), J is the spin quantum number of the compound system and
I that of the nucleus, Fn is the scattering width, T is the radiative width, EQ is the
energy of resonance, and F is the total width. Equation (1) is correct for stationary
nuclei. However, since the nuclei of all materials are in thermal agitation, equation (1)
must be modified to account for the effect of thermal motion. Briefly, the nuclei are
assumed to have a Maxwellian velocity distribution and the cross section is folded into
this velocity distribution. The resulting cross section is then a function of temperature
as well as neutron energy; this cross section is the Doppler broadened cross section.
Two functions arise from the derivation of the Doppler broadening of the cross section;
they are ij/(x, 0) and \(x.,9). The derivation of the function ^/(x, 0) is shown in detail
in appendix A. The respective definitions are as follows:

exp[- 1 02(x - y)2l
- LA. - - =! dy (2)

(3)

Here x = (2/r)(E - EQ), 9 = r(4mTEo/M)~ V2, m is the neutron mass, M is the nuclear
mass, and T is the effective temperature in eV's.

Plots of V/(x, 9) and x(x, 6) are shown .for selected values of 9 and a range of x
from 0 to 10 in figures 1 arid 2. Detailed plots of the regions of interest are shown in
figures 3 and 4.

In the past various forms of "brute force" direct numerical quadrature have been
used to evaluate i// and x (ref. 5). However, with the present use of many resonances
and ever increasing resonance energies for reactor physics calculations in support of
fast reactor development direct numerical quadrature has become prohibitively expen-
sive in terms of computer time. The following report evaluates various techniques
which might avoid the excessively long computer runs needed to calculate the Doppler

\
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Figure 3. - Portion of (vp, X, 6) surface. Figure 4. - Portion of (x, X,81 surface.

broadened cross sections by direct numerical quadrature. Such an evaluation is valuable
because of present widespread interest in such fast reactors, and because "lengthy and
involved routines giving wrong values for the (Doppler broadening) functions are preva-
lent" (ref. 6).

It should be noted that, although these integrals have been extensively studied (refs.
6 to 12), there is virtually no standard notation for either the Doppler broadening func-
tions or the independent variables. We follow the notation of Dresner (ref. 4). Here 9

-1/2is proportional to T ' and x is proportional to the energy distance from the reso-
nance peak. Typical transformations for comparing our notation to others include

Dresner Bhat and Lee-Whiting Matta and Reichel

jj/(x, 6) =

2 2

(4)

(5)

NUMERICAL TECHNIQUES

In order to evaluate temperature dependent continuous neutron cross sections, one
must evaluate \fs and x many times; therefore, both accuracy and as much speed in
computation as possible are required. Special series methods, numerical quadrature,
contour integration techniques, and interpolation have been considered for their evalua-
tion; these studies indicate that a specialized quadrature and contour integration yield
the accuracy required.



Asymptotic Series and Limiting Cases

Several special forms for fy and x are known which are simple to evaluate, but
taken all together, do not cover much of the physically meaningful range of x and 0.
For most work |x| < 1000, 0. 001 < 0 < 100. For this reason such special forms are
used only as boundary check values for the other more general methods.

For example, for x0 » 1

^(x,0) = —J— [1 + A 3x - 1 + . . .j (ref. 4)
1 + x2 \ 02 (1 + x2)2 /

Also,

1 o-.,
f. 4)

1 + x2 1 + x2

(0, 0) = 9 exp p- erfc X(0, 0) = 0

Direct Numerical Quadrature

For large-scale problems, several hundred .resonances and several thousand energy
points, the standard quadrature techniques in use at Lewis Research Center are too slow
by at least two orders of magnitude. Because of the form of the integrand, programs
using a Gaussian quadrature and also a Simpson's rule quadrature containing step modi-
fication logic were tried. This adaptive Simpson's rule quadrature, called method A,
is coded in FORTRAN in appendix B as function SIMPS1. Both programs produced large
errors for some values of x and 0; the critical parameter is the product x0. Both the
shape of the integrands and the choice of limits of integration depend on this product.
Let us transform the integrands and examine their behavior. Let

t = i ( y - x ) ( 6 )
2

Then



(7)

e-
1 Ui + x dt

(8)

-t2
The damping factor e in these integrands is now independent of x and 9 both

(with a maximum at t = 0) and the remaining terms are

f s (9)

(10)

e

These terms are sketched in figures 5 and 6. Note that both f and g have critical
points which depend on -x0/2.

Figure 6. - Integrand g. Figures. - Integrand f.



The integrals for fy and x are now in convenient form for application of Gauss-
Hermite quadrature (ref. 13). That is,

«X— CO

/

OO

.'

dt = > A.f(t) (11)

(12)

where the t. and A. are tabulated for many N; for example, we chose N = 16 and
N = 32.

However, it can be seen from figures 5 and 6 that, for Gauss-Hermite quadrature,
no matter what t. are picked, there will be both x and d such that much of the area
under f and g is far from any of the t.. For example, for N = 16, the maximum
t. = ±4. 689 - meaning f and g are sampled only in this range; typical values of x =
20, 9-2 place the critical points at t = -20. This inability to sample from significant
values of f(t) and g(t) explains why Gauss-Hermite quadrature fails to give accurate
results.

On examining figure 6 from the point of view of using a Simpson's rule quadrature,
it can be seen that, for some values of x and 9, the x integrand has a positive por-
tion and a negative portion. To achieve and maintain accuracy,. x must be broken into
positive and negative portions and evaluated separately. With these modifications, the
adaptive Simpson's rule was successfully applied to \f/ and x>, this shall be referred to
as method A. One should note that the two parts -°° < t < -x9/2 and -x0/2 < t < +°°
of x sometimes agree in magnitude to 12 significant figures. For comparison, another
quadrature method in use at this center called method D was also studied.

Contour Integration

r t2

f(t) e dt, as we see in equations (7) and (8) can

sometimes be evaluated by contour integration in the complex plane (ref. 14). A. M.
Turing first suggested this method for evaluating \j/ and x in 1943 (ref. 15). The
Turing method is attractive because it should require much less arithmetic than numer-
ical quadrature. This method has been formulated independently by Bhat and Lee-



Whiting, and by Matta and Reichel. We have applied the method of Bhat and Lee-Whiting
(ref. 6), called method B and the similar method of Matta and Reichel (ref. 12), which
we call method C. These methods are very useful for many related integrals as well
(ref. 12). Methods B and C use series with a parameter h (and corresponding error
estimate E(h)) which can be varied to achieve desired accuracy. In addition to the ser-
ies contribution, both methods have a contribution from the poles (places where the de-
nominator of the integrands is zero) which depends on whether 9 is inside, on, or out-
side the contour chosen for integration. The formulas are the following: For method B
let a s x0/2, b = 9/2, and recall transformations (4) and (5). Then

* (a, b) .
n2h2

(a - nh)2 + b2

X(a,b) = 2h

. -00

" 00I (a - nh)

(a - nh) + b
_ _ CO

cos (2ab) - e2?rb/h cos f2™ - 2ab]

- 4P(h)e
2 2(b "a )

(*™ - 2ab)
\ h /

D

+ real part of E(h) (13)

e27rb/hsin(2^-2ab
\ h

D

where

+ imaginary part of E(h) (14)

D = 1 - 2e

and

P = 0 for < 6

P = 1/2 for 27r/h - B

P = 1 for 2/r/h > 0

(ref. 6)

Finally,



(15)

This method is coded in FORTRAN in appendix C, as subroutine PSCH.
Similarly, for method C, let t = 1/0 . Then

e

x2)

rA2

"11 h + x2 + 4tnV) ^ ^ E(h)+ PP. - (16)

X(x,t)=-
2hx + 4hx y e-A2(l + x2 - 4tn2h2)

n=l

x (17)

where

Also,

P = 0 for 2;r/h < 9 or t < h2/4ff2

P = 1/2 for 277/h = 0 or t = h2/4?r2

P = 1 for 2n/h > 0 or t > h2/4?r2

, Q a +

and

a = „ fl e" (x2/4t+77/hVt - l/4t)
t



A = cos —
2t

B = sin —
2t

c = e-«,.i Vi _ cosJ^L

hVt

Finally,

|E(h) | ^ § - (18)

2(l -e-2/'

This method is coded in FORTRAN in appendix C, as subroutine PSIPHI.
Using these estimates for the error, and knowing the accuracy desired, one can

choose the largest possible h which will achieve this accuracy. For method B, h = 1. 0
was used; for method C, h = 0. 75. The series of each method was truncated at nine
terms. The same number of terms is used in order to make comparisons of execution
times.

Interpolation

Using methods A, B, and C tables were built of \f/ and x f°r various x and 6 in
hopes that interpolation would be possible. These tables were fit with cubic splines
(refs. 16 and 17). Briefly, cubic splines are cubic polynomials passed piecewise through
each pair of adjacent data points. The coefficients of these cubics are chosen so as to
match first and second derivatives at the data points; this is usually called the spline
property. These points were used to generate contour plots as shown in figures 7 and 8.
This method of interpolation has not yet achieved the accuracy of methods A, B, or C.
Interpolation remains attractive and is a subject for future work.

10
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A 0.050
B .100
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Figure 7. - Contour plot of Hi.
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Contour label Contour value

Figure 8. - Contour plot of x.
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RESULTS

Accuracy Comparisons

The Gaussian quadrature techniques as used herein do not give satisfactory relative
accuracy in computing i// and \. This is true whether or not the weighting function
-t^e is removed from the integrand. For most values of x and 9 this method is satis-

factory, but wrong results occur in an unpredictable fashion. Since the error estimate
associated with Gaussian quadrature assumes the use of functionals not readily obtain-
able, it has not been used. The results are in error because this quadrature uses fixed
abscissas, while, as discussed in the section Direct Numerical Quadrature, the peaks of
the integrands for i// and x vary as the product x0.

The adaptive Simpson's rule method (method A), with numerical results given in
table I, yields satisfactory accuracy for our work, four significant figures. This meth-
od was the first one found to be sufficiently accurate; it was used as a check against
published values and against other methods discussed in this report.

The contour integration methods, methods B and C, have accuracies controllable
by choice of a parameter h. See tables n and HI. They both have corresponding error
estimates E(h). For a given fixed h, methods B and C give much the same results,
and speed becomes the deciding factor. However, there is one region where method B

TABLE I. - TYPICAL VALUES OBTAINED BY METHOD A

(a) Values of i//

X

0.001
.1

1

4

e

0.01

0.00881246
. 00881246
.00881224
. 00880896

0.5

0.341353
.341191
.325577
. 164687

1

0.545648
.544852

.472498

.0915975

2

0.757895
.755166
.540149
.0643058

(b) Values of

X

0. 001
.1

1
4

e

0.01

0.991191X10"7

-991191X10"5

. 991175x10" 4

.396371X10"3

0.5

0. 164663X10" 3

.0164612

.159261

. 400753

1

0.454362X10"3

• '. 0453743

.408498

. 504762

2

0.968510X10"3

.0965705

.738117

.481550

13



TABLE II. - TYPICAL VALUES OBTAINED BY METHOD B

(a) Values of ^

X

0.001
.1

1

4

e

0.01

0.00881269
.00881239
.00881233
. 00880900

0.5

0.341350
.341189
.325574
. 164686

1

0.545639
.544844
.472496
.0915985

2

0.757862
.755133
.540137
.0643081

(b) Values of

X

0.001
.1

1
4

e

0.001

0.995718X10"7

.988693X10"5

. 992042x10" 4

.396523X10"3

0.5

0. 164663X10"3

.0164608

. 159267

.400761

1

0.454363X10'3

.0453872

. 408535

.504784

2

0.968537X10"3

.0965732

.738138

.481569

TABLE III. - TYPICAL VALUES OBTAINED BY METHOD C

(a) Values of >f/

X

0.001
.1

1

4

0

0.01

0.00881246
.00881249
.00881225
.00880898

0.5

0.341351
.341189
.325575
. 164687

1

0.545641
. 544846
.472498
.0915994

2

0.757872
.755143
.540145
.0643072

(b) Values of \

X

0.001
.1

1

4

e

0.01

0. 990694X10" 7

. 991765X10" 5

. 990592x10" 4

.396352X10"3

0.5

0. 164662x10" 3

. 0164607

. 159265

. 400756

1

0. 454359X1Q"3

.0453867

.408530

.504770

2

0. 968511X10"3

. 0965709

.738117

.481536

14



TABLE IV. - TYPICAL VALUES OBTAINED BY METHOD D

(a) Values of i//

X

0.001
.1

1

4

e

0.01

0.00881212
.00881228
.00881233
. 00880896

0.5

0.341334
.341179
.325574
. 164684

1

0.545639
.544870
.472496
.0916000

2

0.757872
.755142
.540137
.0643058

(b) Values of

X

0.001
.1

1
4

e

0.01

0. 951862X10"7

. 941018x10" 5

. 994859x10" 4

.395791X10"3

0.5

0. 164369X10"3

.0164325

.159274

. 400745

1

0. 455154X10"3

.0454529

. 408537

.504769

2

0.968535X10"3

.0965704

.738117

.481550

loses all accuracy, while method C remains stable. For 9 ~ 0.001 (high energies
> 1 eV) method B failed, even with h = 0. 5 and 20 terms in the series. In this region
method C, with h = 0. 75 and nine terms as before, gives four significant figures for
i// and one for x- We conclude that, for small 9, method B should be used with caution.

Some sample results obtained by methods A, B, C, and D are given in tables I to
IV.

Speed Comparisons

Because the numerical quadrature of method A requires far more arithmetic oper-
ations than methods B and C, method"A has been modified to split the argument ranges
into two regions and to use an asymptotic expansion when possible. Values for x were
chosen uniformly in the range 0 < x < 1000. (Note that ?//(-x) = i//(x) and \(-x) = -\(x).)
Two sets of e ranges were used: in the range 0 < 9 < 1, the pole contributions are
always present; while in the range 0 ~ 0 < 100, these contributions are usually zero.
Execution times on an IBM 7094 for 2000 evaluations are given in table V. An example
of a Doppler broadening resonance cross section code which may be used with the sub-
routines herein is shown in appendix D.

15



TABLE V. - COMPARISON OF EXECUTION TIMES

8 range

0 < 9 < 100

0 < 9 < 1

Method

A (integrals only) A (integrals + series) B C D

Time, sec

a5.30 2.17

11.5

0.77

2.05

1.87

2.20

2.16

Run for comparison only--it was known that this method would not be
fast enough to be practicable.

Discussion of Execution Times

Several conclusions can be drawn from table I. First, even the slow numerical
quadrature method is accurate, and as mentioned earlier "lengthy and involved routines
giving wrong values for the i// and x functions are prevalent" (ref. 6). Study of these
integrals began because an existing routine was very slow, about six times slower than
our quadrature. Note that adding a test and an asymptotic expansion to method A in-
creases the speed nearly 2« times. Most important for this study, method B is nearly
2-i times faster than method C for the distribution 0 < 6 < 100. This is because terms
in the series of method B can be written more compactly than those of method C; and
only for small 6 is the pole contribution needed; that is, the series is the only calcu-
lation required. Fourth, for 0 < 9 < 1 most of this speed advantage is gone. Now the
pole calculations are always needed. Method B, coded as subroutine PSCH listed in ap-
pendix C, is still to be preferred, for methods B and C are about equally accurate.

CONCLUDING REMARKS

Direct numerical quadrature using an adaptive Simpson's rule technique yields re-
sults accurate to four significant figures for both i//(x, 0) and \(x, 8). However, this
method is quite slow and expensive in terms of computer time.

The method of Gaussian quadrature used herein was evaluated and found to be er-
ratic in terms of error and somewhat slower than the techniques of contour integration.
Error estimation for the Gaussian quadrature proved to be incapable of rapid calculation.

Both contour integration methods, method B using subroutine PSCH, and method C
using subroutine PS1PHI gave very rapid and accurate results. The accuracy is com-
parable with that of direct numerical quadrature.

16



The method of cubic spline interpolation failed to achieve the accuracy of the other
methods evaluated.

Of the numerical methods considered and evaluated contour integration, subroutines
PSCH and PSIPHI, achieved the greatest speed of computation combined with quite satis-
factory accuracy.

Lewis Research Center,
National Aeronautics and Space Administration,

Cleveland, Ohio, April 10, 1972,
132-80.
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APPENDIX A

DERIVATION OF HKx, 8) - THE DOPPLER BROADENING FUNCTION

If a beam of neutrons with velocity v" impinges upon a group of nuclei at rest, the
reaction rate for process x is proportional to va (v), where a (v) is the nuclear cross

X A

section for process x as a function of velocity. However, the nuclei are not stationary
but are in thermal motion. We may assume the nuclei have a Maxwellian velocity dis-

tribution characterized by a temperature T; then the three-dimensional Maxwell veloc-
ity distribution may be written as

P(V) dV - -^- e'lvl v '^ dVY dVv dV
^27TkT/ x y z

where T is the effective temperature, M is the nuclear mass, and V is the nuclear
velocity.

The value of the velocity of the neutron, of mass m, relative to the nucleus is then

the magnitude of the difference of the velocity vectors. That is,

1 2 — —The corresponding energy is then Er =•«> mv . Since P(v ) dv is the probability of a
nucleus having a velocity within dv" about v", the probable number of reactions to type
x per second is

vrax(Er)P(f) dv

The total probability is then

ax(E) = -

If a coordinate system is chosen such that the z-direction is parallel to the neutron
velocity, then

E = l m ( v - V)2 =Iir 2 2

18



Since the neutron velocity is quite high compared to the thermal motion of the nuclei,
2 2 2the Vz, V , and V* terms may be neglected. Hence,

J

E = l m ( v 2 - 2vV )r z

Thus

m

Integrating out the V and V velocity components from the Maxwellian resultsx y
on the following distribution for the z-component:

/

CO f*>

) «/_ OC

00 - / M \V2 -P(V) dVY dV = [—^- ex y \2ffkT/

The Breit-Wigner expression for a single-level resonance cross section for absorp-
tion is

o
where aQ = 4?r -Jt (r /r ), -ft is neutron wave length over 2yr, g is the statistical
weighting factor, rn is the scattering width, T is the total width, r is the radiative
width, and E is the resonance energy. Substituting into the previous equation gives

^^ry1 ~ e ""
2

E

1" -MV/2kT

If one defines

19



(a very good approximation for large E ) and

then

yx ' o

- x)2jdy

or

where

y r E

(-iexp- 02(y - x)2l dy

The function

[ 1 2 2 1- - 0 (y - x) dy

may be derived in the same manner using the same assumptions.

20



APPENDIX B

FORTRAN IV LISTING OF SIMPS1

This function SIMPS1 is a Simpson's rule integrating routine, which integrates the
external function FUNC1 from XMIN to XMAX. When sufficient accuracy is not attained,
the flag KER is incremented by 1.

13

FUNCTION SI^PSl(Xf»IN,XMAX,FUNCl,KER )
01 KENS I C* VI20U) ,H(2CO) , A ( 20C ), B ( 2CO ) , C ( 200 ) , P ( 2CC ) , E ( 2CO
DATA T/3.CE-4/
IF(XHN.EC.XPAX) GO TO IS

B ( 1 ) = F U N C 1 ( X M I N + H < 1 )
C ( l ) = F U N C l ( X | x > A X )
P(1)=H( D*
E(1)=F(1 )
ANS=P(1 )
N=l
FR£C=2.0*T

1 FRAC=C,5*FRAC
2 T E S T = A R S ( F P A C * A N S >

2 DC 7 1=1 ,K
4 I F ( A E S ( E ( I ) ) . L E . T E S T )
5 N = N+l

V(N =V( I )+K I )
H(N = C . 5 * H ( I )
A ( N = E ( I )
B(N =FUNC1 ( V ( N ) +KN) )

1 ) + 4 . C * P ( 1 ) + C ( 1 ) )

GO TO 7

C
P
Q:

H
e
c
P

N
N

•f
I
I

= C( I )
= H ( N )
I )
= H ( M
= F U N C

I ) = A ( N )
I ) = H ( I )

G = P < I ) + P (

* ( f l ( N ) + 4 . G * P ( M ) + C ( N ) )

1 ( V ( n+H I ) )

*( A{ I ) + A . C * B ( I ) + C ( I ) )
N ) - C

E ( M = C
6 I F C N - 2 0 0 ) 7,13,13
7 CCMINUE
£ I F ( N - K ) 9 , 5 , 2
c G = C.O

1C DC 11 1 = 1, N
11 G = G + £(I )
12 IF ( « G S ( C ) - T * A B S ( A N S )

K E R = K E R + 1
1A A N S = C . O
15 DC 16 1 = 1, N
U A N S = A N S + F ( I )
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APPENDIX C

FORTRAN IV LISTINGS OF METHODS B AND C

Subroutine PSCH uses the technique of Bhat and Lee-Whiting (ref. 6). The argu-
ments are XX and TT where

XX natural distance X

TT temperature parameter

The values U and V are returned where

U first Doppler broadening integral

V second Doppler broadening integral

JIBF1C PSCHBL

C FPCM EHAT AND LEE-WHITING, P.278
C H=l.

SUERCLTINE PSCH(XX,TT,U,V)
DIMENSION EI*N(5),EN2<10)
DATA FI22/12.566371/
DATA RTPI/1.77245397 , PIH/1.5707963/
DATA PI,FI2,N /3 . 1415927,6.2831854,5/
DATA (EKM I ), 1 = 2,5) /.11709966EO,.583C04fi9E-2,.39282561E-4,
1 .35821C59E-7 /
DATA (EN2(I), 1=2,10) /.24789<99,.11709966,.33549615E-l,.583004B9E-
*2,.61448264E-3,.39282561E-4,.15231502E-5,.3582105<;E-7,.51095996E-9
*/

C
XC=AES(XX)
THETA=AES(TT)
Y=THETA/2.
X=XC*Y

C ARE KE IN DANGER
XTEST=X-«IKT(X)
IF((XTEST.LT..01 .OR. XTEST.GT. .<59 ) .AND. ABS ( Y ) .LT .,01) GO TO 40
IF(XC.GT.75.*SQRT(1.-H./(Y*Y))) GO TO 30
IF(Y.LT..C01) GO TO 40

C - EEGIN SERIES SUMATION- . -.. - - -
Y2=Y*Y

C SET N=0 TERM — NOTE PI IS IN THIS ONE
D=PI*(X«X+Y2)
SU=Y/C
SV=X/C
DC 1C I=2,K
AK=I-1
XNF=X-AM
XNfsx+AK
DP=XNP*XNP+Y2
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SU = SU 4 EKNU )*Y*( l./OP+l./DM)
SV = SV 4 EHN(I)*<XNP/DP4-XNM/DM)

1C CONTINUE
IF(Y.GT.FI ) GO TC 20
P=2.
IF(Y.EQ.FI) P=l.

EEGIN POLE CONTRIBUTION
XP2=X*PI2
EYF2=EXP(Y*PI2)

15 CONTINUE
XY2=X*Y*2.
SXY2=SIN(XY2)
CXY2=COS(XY2)
SXP2=SIN<XP2)
CXP2=COS<XP2)
EYX=EXP(*2-X*X)
0 = 1 . - EYP2*(2.*CXP2-EYP2)
SI! = SU 4 P*EYX*(CXY2-EYP2*(CXP2*CXY24-SXP2*SXY2) )/C
SV = SV - P*EYX*(SXY2+EYP2*(SXP2*CXY2-CXP2*SXY2) )/C

2C U=SU*Y*RTPI
V=SV*THETA*RTPI
IF(XX.LT.O.) V=-V
GO TC 5C

3C F=PTPI*Y
SL=l./( (1.4XC*XC)*F)
SV=SL*XC
GO TO 2C

AC CONTINUE
IF IXC.LT.A. .AND. THETA.LE. .C09 ) W R I T E < 6 , 1 G 1 ) X D . T F E T A

1C1 FCPMTUh BAD,2G14.6)
THIS IS EXPANSION WITH H=C.5

Y2=Y*Y
D=PI*(X*X*Y2)
SL=Y/C
SV=X/C
DC A5 1=2,10
AH=0.5*FIC*T( 1-1)
XNP=X-AV

SU = SU 4 EN2(I)*Y*(1./DP4-1./OM)
SV = SV 4 EN2(I)*(XNP/OP+XNM/DM)

A 5 CONTINUE

SV=SV*0.5
IF(Y.GT.FIH) GO TO 2C
P = 2.
IF(Y.EQ.FIH) P=l.
XP2=X*PI22
EYP2=EXP(Y*PI22)
GO TC 15

5C RETLPN
ENC
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Subroutine PSIPffl uses the technique of Matta and Reichel (ref. 12). The arguments
and values are the same as for routine PSCH.

SIBFTC KATTA

C
C FRCM MTTA+REICHEL MATH. COMP. P. 340 APRIL 1571
C H=l. , 11 TERPS (FOR COMPARISON)
C

SUBROUTINE PS IPH I (XX ,TT ,U , V)
D A T A H/C.75/
DATA PI/2.14159265/ , RTPI /I .77245397
DIMENSION ENH(9),FNH(9)
DATA FNH/ 2. 25, 9., 20. 2 5, 36., 5 6. 2 5, 81., 110. 2 5, 144. ,162.257
DATA ENH I .56978283, .10539922, .63297154E-2, . 1234CS81E-3 ,
* .78H48<;4E-6,.16052281E-8,.107C9232E-11,.23195228E-15,
* .16310129E-19 I
DATA BOUND/. 14248292E-1/
X=APS(XX)
TH=AES(TT)
T=1.C/TH<*2
X2=X*X

C
C START SERIES -- SET N=0 TERM
C

XN'=1.C-X2
SU=C.5 /XF
SV=SU
X 2 4 = 4 , 0 * > 2

C
DC 1C N = l , 9
FNHT=FNH(N)*T
DENCf*X24-M XN+FNHT ) **2
TERf=ENH(N) /DENOM
SU = SU •> T E R M * ( X P + FNHT)
SV = SV * TERM*(XP-FNHT)

1C CCNTINUE
C

St'=SL!*2.C*H/RTPI
SV=SV*2.C*H/RTPI*X

C
C START PCLE TESTS
C

-IF(T.LT.ECUN'D) GOTO 30 -
RTT=SCRT(T)
EXPON! = XN*0.25/T - PI/H/RTT
IFCEXPQN.LT. (-34.)) GO TO 3C
ARC-1 = X*0.5/T
ARG2=PI*X/(H*RTT)
A=CCS(ARC1)
8=SIN{ARC1)
C=EXP(-PI/(H*RTT) ) - COS(ARG2)
D=SIN(ARG2)
TERK=RTPI/RTT*EXP(EXPON)/(C*C+D*D)
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APPENDIX D

A SAMPLE DOPPLER BROADENING CROSS SECTION CODE

WHICH REQUIRES VALUES OF \Ji AND x

$IBF7C RP3TAP

C
LCGICAL START
DIMENSION CATUM( 12003)
DIMENSION CATUMS(4001,3)
EQUIVALENCE (DATUN(1),OATUMS(1,1))
DIPEKSIOH TITLEJ24), UG(150), DU(15C)
D I K E I V S I C N G G ( 2 0 )
DIMENSION E C ( 3 0 Q ) , G A P N ( 3 C O ) , G A M G ( 3 C Q ) , G A f ' ( 3 0 0 ) , G A P E < 3 0 0 )
DIKENSICN SIGCO(3CO),SIGFO(3CO),SIGSO(30C),SIGTO(3CO),CON3(3001
DIfENSICK A(300),SIG1(300),SIG2(3CO),SIG3(300)
ClfENSICN X (300) , T H E T A ( 3 0 0 ) , P S K 3 C O ) , PHIOCO)

C
C

CCKI-CN N F E S , X , T H E T A , P S I , P H I
C
C
C
C

S T A R T = . T F U E .

REKINC NLNIT
CALL SKFILE(NUNIT)
B A C K S P A C E NUNIT

1 CCMINUE
I F ( S T A R T ) GC TO 111

C FIND ENC OF THIS T A P E
C PUT CN 1C RECORD

WPITE(NUMT) ID
C KRITE GCCD STUFF

JV«CPCS=3*NVCROS
W R I T E ( N U M T ) D A T U ^

75 FCRI"AT( A£,4X, 110)
76 FCRfAT( 1H,A6)
77 FOR*ATUCX,3F13.4)

111 CCNTINUE
START=.F«LSE. - - - - - - - . - - - - .
READ (5,!0) (TITLE(M),M=1,24)
REAC(5,75) IDfNWCRCS
READ (5,51) T,ANU,UKT,SIGCT,SIGFT,USTART,NRES,NOL
READ (5,53) S IGMAT,SIGPOT,G
READ (5,52) (UG(K),DU(K),K=1,NDU)
REAC (5,67) (A(I),EO(I),GAMN(I),GAMG(I),GAHE(I),I=1,NRES)
REAC (5,71) NUM8G
REAC (5,53) (GGlI),I=1,NUMBG)
REAC(5,7Z) 12,14,16,18
WRITE (6,54)
WRITE (6,5C) (TITLE(N),M=1,24)
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W R I T E (6 ,55 )
W R I T E ( 6 , 5 6 ) T , A M i , U K T , S I G C T , S I G F T , S I G M A T t S I G P O T
DC 2 K = 1 , N C U , 5 2

NEW P*GE
WRITE (6,54)
WRITE (6,57)
WR'ITE (6,58) (J,l!G( J),DU(J), J=K,IHI)
CCNTIKUE
DC 2 I=1,NRES
GAKI) = G*PNU) + GAMG( I)+GAME( I)
CCM=(2.£07E06/(GAMU>**2) )*G*GAMN( I)
CCN2 = <A(I)-H.e)/A( I)
CCN3(I)=1.C/CON2
AEC =AES(EO(I))
SIGCCd )=(CCN1*GAMG( I )*CQN2 **1.5 ) /SQRT ( AEO I
SIGFC(I)=(GAME(I)*SIGCO(I) )/GAMG(I)
SIGSCd ) = (CCN1*GAC,N( I )*CON2 **2)/AEO
SIC-TCd )*2.607E06*G*GAMN(I)/(AEQ *GAM(I»
CCNTINUE
DC A I=1,NRES,52
IHI = MNO(NPES,I+51)

NEW P#GE
WRITE (6,54)
WRITE (6,59)
WRITE (6,60) (J, A(J) ,EO( J),GAMN(J),GAWG(J) ,GAME( J),J=I,IHI)
CCNTINUE
CC 5 I=1,NRES,52
IHI = MNC(NRES,I+51)

N E W P * G E
W R I T E ( 6 , 5 4 )
W R I T E ( 6 , 6 1 )
W R I T E ( 6 , 6 2 ) ( J , E O ( J ) , S I G C O ( J ) , S I G F Q ( J ) , S I G S O ( J ) ,S!GTO( J ) , J = I , I H I )
C C N T I N U E
W R I T E ( 6 , 5 5 )

N C C U N T = C

KKK = C
JJJ = C

C
ET=EXP(-LKT)*1.0E07

6 CC 13 I=1,NRES
IF (KKK) 7,7,10

7 X(I) = (2.C*(ET-EO(I) )*CON3( I) )/GAM( I )
IF (T) 8,8,<5

8 TCCF=C.O
GC TC 11

9 TCCF=293.0
GC TC 11

10 TCCF=T
11 THETA(I) = GAM( I )/CON3( I )*SQRT( A( I ) / < TDOP*ABS ( EO ( I ) )*3. 446E-04) )

13 CCNTINUE
14 CALL PSIFHI

IF (KKK) 25,15,25
15 SIGCTP=C.O

SIGFTP=0.0
ZEC1=SQRT(ET)
DC 16 I=1,NRES
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SIC-CTP=SIGCTP+SIGCO(I)*PSI(I )
SIGFTP=SIGFTP+SIC-FO( I)*PSI( I )

16 CONTINUE
SCV=SIGCT-SIGCTP/ZE01
SFV=SIGFT-SIGFTP/ZED1
AKC=SCV*ZEC1
AKF=SFV*ZEC1
WRITE (6,64) SCV,SFV
AEN=C.O
DC 17 I=1,NRES
AEN=/>EN + MI )

17 CONTINUE
SIGP=.27154671*(ABN/FLOAT(NRES) )**.66666667
IF (SCV.LT.Q.O.ANC.SFV.LT.O.C) GO TO 1
IF(I2) 19,19,18

18 SIGP=SIGFCT
GC TC 20

19 CONTINUE
WRITE (6,65) SIGP
IF (SIGP) 1,20,20

2C WRITE( 6,54)
WRITE( 6,66)
LA=1
IF(I6) 22,22,21

21 E=USTART
U=16.118C96-ALOG(E)
GC TC 23

22 U=USTART
E=1.CE07<EXP(-U)

23 DC 24 I=1,NRES
24 X(I) = (2.0*CON3(I)/GAM( I))*(E-EO(I)>

KKK=KKK-H
GO TC 6

C
25 SIGCN=O.C

SIGFN=O.C
SIGSN=O.C
ZEC1=SQRT(E)
DC 26 I=1,NRES
ZILCH1=SCRT(SIGSC( I ) )
ZILCH2=PHU)*SCRT(G*SIGP*SIGSO( I) )
ZILCH3=PSI(I)
SIG1(I)=FHI(I)*ZILCH1
SIG2(I)=2ILCH2
SIG2(I)=ZILCH3*ZILCH1
WCRK = ZILCH2/CON3(I)
TEKP=SIGSC(I)*PSI(I)
SIGCN=SIGCN+SIGCC(I)*ZILCH3
SIGFN=SIGFN+SIGFC(I)*ZILCH3
SIGSK=SICSK+TEMP+WORK

26 CCNTINUE
SIGCN=(SIGCN+AKC)/ZEC1
SIGFN=(SIGFN+AKF)/ZED1
SIGSN-SICSN+SIGP
IF(I8) 20,30,27

27 SIC-SN = SIGP
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DC 29 I=1,NUMBG
SIGY1=0.
SIGY2=0.
S1GY3=0.
CC 28 J=1,NRES
IF (A6S(G-GG( I) ) .GT.C.OOC01) GO TO 28
SIGY1=SICY1+SIG1(J)
SIGY2=SICY2+SIG2(J)
SIGY3=SICY3+SIG3(J)

28 CCNTIN'UE
SIGSN=SIGSN+0.25*SIGY1**2+SIGY2+SIGY3**2

29 CCNTINUE
30 IF (SIGSN) 31,32,32
31 JJJ=1
32 SIG«=SIGCK+SIGFN

ANUSIG=ANU*SIGFN
C

IF (NCOUM-5A) 34,34,33
33 WRITE( 6,54)

WRITEC 6,66)
K'CCLM=C

34 WRITEC 6,68) NTALLY,U , E , S IGA , S IGSN , ANUSIG
IWCRC = NKCRCS-NT/iLLY + 1

D/1TIJ*S( LliGRCf 1) = E
OATUfSC IKCRC,2) = SIGA
DATLKSC Ik.CRC,3) = SIGS?g

C
IF(I6) 44,44,37

37 IF ( <DG(LA)-E)+Q.CCOC1) 38,4C,40
38 E = E-Ct'(L*)

U=16.118C96-ALOG(E)
GC TC 43

40 E=UG(LA)
LA=LA+1
IF ( (UG(NCU)-E)+.OOOC01) 38,41,41

41 CCNTINUE
IF(J*J) 1,1,42

42 WRITE (6,54)
WRITE (6,70)
WRITE(18,7C)
GC TC 1

C
44 IF ( (LG(LA)-U)-O.COOCl) 47,47,45
45 U=L + CU(LM

E=1.CE07*EXP(-U)
43 CCKTINUE

CC 4t I=1,NRES
46 X(I) = <2.C*CON3( I)/C-AM( I) )*(E-EO( I ))

GC TC 14
47 U=IG(LA)

IF ( (UG(NCU)-U)-. COCCI) 48,48,45
46 CCNTINUE

IF (JJJ) 1,1,49
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49 WRITE (6,54)
WRITE (6,7C)
GC TC 1

C
50
51
52
53
54
55
56

FORK AT
FCRCAT
FORMAT
FCRMT
FCPKAT
FCRMT
FCRNAT

57
58
59

60
61

62
64
65
66

67
68
70
71

(12*6)
(6F1C.5,2I5)
(JF10.6)
(1F1G.7)
(1H1)
(1HK)
(2X,6HTEMP =F1 2. 2, 3X, 4HNU =F6.3,3X,6HU KT =F 8 .4,3X , 12HSTG C

1AP KT =F10.4t3X, 10HSIG
2T =F9.3)

FORMT (10X,2H K , 7 X , 3 H
FCRMT (I12,2F13.5)
F C R K A T (1HJ/3X,1HI,15H

F KT =F10.4 , 3X , 9HS IG TOT =F 1C.4/3X, 9HSIR PO

UG,11X,3H HU )

FCPKAT

ATOMIC WEIGHT., 3X , 1CHRES ENERGY, 6X .7HGAMMA
G,7X,7FGAMMA F)

(I4tF14.3,F18.4, 3F14.E)
<^X,1HI,3X,10HRES ENERGY, 5X , 5HS IGCO ,9X, 5HSIGFO,9X , 5HS 10550,9

1X.5HSIGTC )
FCPCAT ( I5,F13.4,4F14.4)

(10X,10HSIG C /V =,F12.4,5X,10HSIG F /V =,F12.4)
(1H /10X,10HSIG POT =F12.4)
(6X,1HK,6X,1HU,11X, 1HE , 1 IX , 5HS I G A , 8X, 6HS IG .ES, 7X , 8HNU SIG

FCRfAT
FCRMT
FCPCAT
IF)
FCRKAT (10X,F10.7,10X,4F10.7)

(I7,2X,F8.5,F13.5,6F13.4)
(10X.22HSIG S IS NEC AT SOME
(15)

FCPMT( IX, II, IX, II, IX, II, IX, ID
ENC

FCPMT
FORMAT

E)
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