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An important consideration in the design of spacecraft for inter-

planetary missions is the compatibility of storage materials with the

propellants. Serious problems can arise because many propellants are

either extremely reactive or subject to catalytic decomposition, making

the selection of proper materials of construction for propellant con-

tainment and cont=ol a critical requirement for the long-llfe applications.

To aid in selecting materials and designing and evaluating various

propulsion subsystems, available information on the compatibility of

spacecraft materials with propellants of interest was compiled from

literature searches and personal contacts. The compatibility of both

metals and non-metals with hydrazlne, monomethyl hydrazine, nitrated

hydrazlne, and dlborane fuels and nitrogen tetroxide, fluorine, oxygen

dlfluorlde, and Flox oxidizers was surveyed. These fuels and oxidizers

encompass the wide variety of problems encountered in propellant storage.

As such, they present worst case situations of the propellant affecting

the material and the material affecting the propellant. This includes

material attack, propellant decomposition, and the formation of clogging

materials.
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An important consideration in the design of spacecraft for interplanetary

missions is the compatibility of storage materials with the propellants.

Serious problems can arise because many propellants are either extremely

reactive or subject to catalytic decomposition, making the selection of proper

m_terials of construction for propellant containment a critical requirement.

Under Contract NAS7-754, Investigation of Space Storable Propellant

Acquisition Devices, information on the compatibility of both metals and non-

metals with nitrogen tetroxide_ oxygen dlfluoride, dlborane_ hydrazine, mono-

methyl hydrazlne, and nitrated hydra_ine propellants was compiled to aid in

selecting materials and evaluating the propulsion systems of interest. _is

information was included in two separate Martin Marietta reports:

I) Uney_ P. E.: Compatibility of Storage Materials with Various Rocket

Propellants. SR 1660-69-20_ Martin Marietta Corporation, Denver,

Colorado, November 1969; and

2) Uney, P. E.: Compatibility of Storage Materials with Various Rocket

Propellants. SR 1660-69-20A, Martin Marietta Corporation_ Denver,

Colorado, January 1970.

It was the purpose of this program to revise and update the information con-

tained in these reports and to add information on the compatibility of various

materials with Flox and fluorine. The resulting compilation was to be incorpora-

ted into a material compatibility design guidebook having a co_on format for

each propellant of interest. The results are presented in this document.

A chapter is devoted to the compatibility of materials with each of the

eight propellants. The four fuels are discussed first. Chapter II discusses

hydrazine compatibility, Chapter !l-ldiscusses monomethyl hydrazine compatibility,

nitrated hydrazine fuels are discussed in Chapter IV, an_ diborane information

is presented in Chapter V. The four oxidizers are then discussed in Chapters

Vl through IX, with nitrogen tetroxide in Chapter VI, fluorine in Chapter V_I,

oxygen difluorlde in Chapter VIII, and Flox-in Chapter IX. Finally, the

references for the entire report are listed in Chapter X.
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The information presented in this r_port was gathered through literature

searches and persona] contacts with government agencies, universities, and

industry. No experimental effort was involved in this program; all information

presented is based on a critical review of the compiled data.

Most o_ the material compatibility information was compiled f=om studies

made over a time period of ,nore than a decade. The time span included was

roughly from 1959 through 1971. In reviewing the various studies, it became

apparent that it is difficult to compare results obtained from earlier studies

with more recently acquired data. Up to about the middle of the time span,

long term storage was usually concerned with a matter of weeks or months, while

later studies have focused on storage times of years. Much of the older data

was obtained through short term exposure of the material to the propellant and

the resulting rate was extrapolated to the desired time, usually a year. This

approach generally resulted in material corrosion or propellant decomposition

rates which were too high. Later data has shown that after a short induction

period, the initially high rates decrease to much lower values. Another

problem encountered, is that much of the compatibility information is con-

flicting. The reasons for this are numerous and varied. They include:

I) Different investigators;

2) Differing sample preparation methods;

3) Differing cleaning techniques and fluids;

4) Varied compatibility testing methods and procedures;

5) Propellant purity variations arising from different manufacturers,

changed specifications, and the wide range of contaminants allowed by

a given specification;

6) Varying standards for determining what constitutes compatibility.

Therefore, the material compatibility ratings presented re.fleet our interpreta-

tion of the data. These ratings are summarized in tabular form in-the first

section of _ach chapter. This summary is then followed by a general discussion

of the data on which the ratings are based.

No correlation of the effects of time or temperature on material compati-

bility is available other than the general relationships that the extent of a --

reaction varies directly with time and the reaction rate is a function of

• i '
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temperature. Thus, the effects of any reactiou become more pronounced for

longer periods of time at a given temperature or for shorter times at

elevated temperatures. Extrapolation of the data presented to a lO-year

llfe requirement would be fraught with uneertaintles, llowever, it is felt

that the data are representative of the material compatibility to be

expected for a storage period of one to two years.
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A. COMPATIBILITY SUMMARY

The compatibility of both metals and non-metals with neat N2114 is su_uarized

in Table i, as determined by interpreting available compatibility information,

Specific references used in this determination are listed in the table. Compati-

bility of a material with N21_ was based on the criteria that the material be

essentially unaffected by N2H 4 exposure (negligible corrosion for metals and

negligible loss of physics] properties for non-metals) and that it should not

significantly affect the rate of N2H 4 decomposition° Listing of a material in

the table was based, in genera], on the existence of specific compatibility

data for that material with N2H4; however, certain materials were included

even though no such data were available. A compatibility rating for such a case

was determined by use of either compatibility data with a sister material

(similar alloy) or a sister propellant (MMH or a hydrazine-blend fuel). In

some instances, two compatibility ratings were assigned to the same material

due to conflicting data. Also, where compatibility was determined for a

specific use, this is indicated in the remarks section of the table.

In establishing a compatibility rating for a material with hydrazine,

the primary mechanism on which that rating is based is of interest. The

compatibility rating for metals with N2H4, as shown in Table I, is primarily

an indication of the degree to which the metal affects the propellant,

since non-contaminated N2H 4 has little effect on metals. On the other

hand, the compatibility rating for non-metals with N2H 4 is based on either

the extent that the material affects the propellant or the extent that the

propellant affects the material, or both.
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B. GENERAL DISCUSSION

Hydrazine is a highly reactive and toxic propellant. It is considered

thermodynamically unstable and exists in a state of continuous decomposition.

The decomposition rate is a function of both temperature and the presence of

a catalyst. At ambient temperatures (_70°F) and in the absence of a cars-

lyst, the average decomposition rate of N2H 4 is minimal. The attack of

storage materials is usually considered a problem only for non-metals since

practically all metals show excellent corrosion resistance to neat N2H 4.

However, N2H 4 has become corrosive to metals when certain contaminants, such

as CO 2 and C12 have been added. Therefore, for long term storage of uncon-

taminated N2Hd, the major concern is the degree that the metal being considered

accelerates the N2H 4 decomposition rate. For long term storage with non-metals,

on the other hand, both catalytic and material attack must be considered.

I. qompatibility with Metals

According to Eberstein and Glassman the decomposition rate of N2H 4 tends

to increase when the N2H 4 is in contact with metals having incomplete d-subshells

(Eel 1 ). This is due to the relatively weak nitrogen to nitrogen bond in the

N2H 4 molecule. Eberstein and Glassman state that metals in the atomic nun_er

groups 24 to 29, 42 to 47, and 74 to 79 (transition metals with incomplete

d-subshells) would act as catalysts for hydrazlne decomposition. Some metals

which fall into this category are nickel, chromium, iron_ molybdenum, copper,

gold, platinum, silver and manganese. Aluminum, titanium, magnesium and zinc

fall outside this group. From this, stainless steel would appear unacceptable

for N2H 4 storage, while 6061 aluminum, 2219 aluminum, and 6AI-dV titanium

would seem acceptable.

Tests conducted by Roeketdyne confirm the compatibility of N2H 4 with

high-purity aluminum but also_indlcate that some stainless steels might be

compatible (Ref 2). The testing was conducted at 338°F with llquld propellant-

grade N2H 4 in contact wlth high-purlty iron, nickel, and aluminum,.and 304,

316, 321, and 347 stainless steels. All metal surfaces were cleaned with

concentrated nitric acid prior-to immersion in the Pyrex glass containers.
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Containers with no metal sample served as controls. Decomposition rates

compared to those with glass were greater by about 200 times with nickel,

130 times with 316 stainless steel, I00 times with iron, 40 times with 347

stainless steel, but only I0 times with 304 and 321 stainless steels. The

decomposition rate with the aluminum was the same as the control samples.

Since these tests were conducted at elevated temperature, the decomposition

rates observed are considerably higher than would be expected under normal

storage conditions (_70°F) *. It would seem, therefore, that 304 and 321

stainless steels might he candidates for long term storage of N2H 4.

Based on compatibility tests performed over the past decade at Martin

Marietta, Ca_idill and O'Brien (Ref 3 ) state thal: ._hemlcally clean 304 and

321 stainless steels are compatible with N2H 4 at temperatures below 120OF.

Ho_ever_ both also state that aluminum or titanium alloys are better storage

materials since they exhibited compatibility even at 275°F.

TRW and DMiC surveyed material compatibility data and recommended

materials for N2H 4 use (Ref 4 and 5). For these reports, a metal was

considered applicable for long term service with N2H 4 if it had a

corrosion rate less than one mil/yr_would not promote N2H 4 decomposition,

and was not considered shock sensitive when in contact with N2H 4. Compatibility

recommendations for long term storage with N2H4, at temperatures below 75°F,

are presented in Tables 2 and 3 . As can be seen by the recommendations, a

great number of stainless steels, as well as such metals as gold, platinum,

silver, nickel alloys and chromium, are considered compatible with N2H 4. This

is in direct opposition to the Eberstein and Glassman theory of N2H 4 decomposi-

tion since these metals fall into the atomic number groups considered to be

catalytic.

I

!°

!

i

!,

* Many compatibility evaluations are conducted at elevated temperatures to

accentuate the effects of reactions which may be occurring. This approach

generally increases the reaction rates to provide comparative results in a

shorter time, e.g., the relative degree to which various materials act as

catalysts for the propellant of interest is more readily obtained.
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Table 2 Metals Compatlble with N2H 4 (R6f 4 and 5 )

Aluminum Alloys Stainless Steels

II00 410

2014 416

2017 430

2024 440C

3003 302

4043 304

5052 316

5456 317

6061 321

6066 347

715 17-4 PH

356 17-7 PH

40E AM 350

AM 355

Miscellaneous Metals

Chromel-A

Chromium Plating

Gold

Hastelloy-C

Inconel

Inconel-X

K-Monel

Monel

Nichrome Braze

Platinum

Silver

Silver Solder

Stellite-21

Tantalum

Tin

Titanium, 5AI-2.5Sn

Titanium, 6AI-4V

Zirconium

Table 3 Metals Incompatible with N2H 4 (Ref 4 and 5 )

\"

Cadmium Zinc Iron*

Cobalt Brass* Molybdenum*

Lead Bronze* Mild Steel*

Magnesium Copper* 6AI-4V Ti**

*The authors stated that these metals were considered unacceptable because their

Oxides act as catalysts for decomposition of hydrazine at elevated temperatures.

**Based on one reference showing excessive decomposition at ll0°F with 50/50

N2H4/UDMH"
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Giving further support to the hypothesis that certain stainless steels

are compatible with N2H4, but disagreeing with certain of the recommendations

made by DMIC and TRW, is preliminary data on N2H 4 storage presented by Branigan

of the Air Force Rocket Propulsion Laboratory (Ref 6). Based on a storage

period of 17 months at a temperature of approximately ll0°F, AFRPL found no

pressure rises (indication of N2H 4 decomposition) in storage tanks constructed

of 301 cryoformed and A-286 stainless steels; ]8% nickel-maraging 200 steel;

2014-T62, and 2021-T81 aluminums; and 6AI-4V titanium. Pressure rises were

observed in storage tanks constructed of AM-350 and 17-7PH stainless steels.

In tests run at the Naval Weapons Center, the compatibility of different

tankage meterials with various hydraz!ne fuels, including neat N2H 4, was

investigated (Ref 7). Small 5.3-cu-in. storage containers were fabricated

of 347 stainless steel, 2014-T6 AI, and Ii00-0 AI. After filling approxi-

mately half-full with N2H4, the containers were stored for 4 weeks at 100°F

to screen out problem containers (leaking, high pressure rises, etc.).

This was then followed by storage for 48 weeks at the 165°F test temperature.

The results showed about the same rate of pressure increase for the aluminum

containers, while the pressure rise rates in the 347 stainless steel con-

tainers were from three to four tlmes those with aluminum. These results

indicate that 347 stainless steel is probably not a good material for long

term storage of N2H 4 and that aluminum is a preferable material.

More data, indicating the catalytic nature of stainless steels with N2H4,

is reported by the United Aircraft Research Laboratories, UARL, (Ref 8).

Using a technique which measured gas evolution rates at constant temperature

and pressure, UARL tested various metal samples for compatibility with N2H 4.

The samples consisted of small specimens of AM-355 stainless steel, 304

stainless steel, and 6AI-4V titanium, The tests were_rnn at both 160°F and

120°F, except for the 304 stainless steel which was run at 160°F only. Test

pressure was I atmosphere. Prior to immersion in the N2H4, the samples were

polished, cleaned with trlchloroethylene, detergent, and acetone inmn ultra-

sonic cleaner, and then dried in GN 2. For the 120°F tests, the AM-355 samples

gave a gas evolution rate 5 times that of the N2H 4 contro! sample,.while the
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6AI-4V titanium specimen gave a rate only I_ times that of the control sample.

For the 160°F tests, however, the AM-355 specimen had a gas evolution rate 17

times the control samples rate, the 304 specimen rate was 50 times greater than

the control sample rate, and the 6AI-4V titanium specimen had the same gas

evolution rate as that of the control sample. These data indicate that the

catalytic effect on N2H 4 is far greater with 304 and AM-355 stainless steels

than it is with 6AI-4V titanium. In fact, the titanium material may exert

no catalytic effect.

Gold, nickel, and 82/18 wt _ gold/nlckel brazing alloy were found to be

incompatible with N2H 4 in tests conducted at AFRPL (Ref 9 ). Samples of the

materials were immersed for up to 24 hr in test capsules filled with N2H 4

maintained at 140°F. Decomposition of the N2H 4 was determined by measuring

the number of moles of NH 3 formed. The capsules containing the samples

showed excessive NH 3 production. Thus, these results are also in agreement

with the theory of Eberstein and Glassman.

Results concurring with the theory of Ebersteln and Glassman were

reported by Ng at Picatlnny Arsenal and by NWC (Ref 83 and 84). In tests

run with mixed hydrazlne fuel at 160°F for up to 2 years in duration, Ng

found excessive pressure rise rates for test samples of 18% Ni maraging

steel, AM355 and Inco 718 steels, pure molybdenum, and for chromium, gold,

nickel, and cobalt pla_ed on 18% Ni maraglng steel (Ref 83). However, 301

cryoformed stainless steel and tin and zinc plated 18% Ni maraging steel

produced only moderate pressure rise rates while near zero rates were

reported for samples of pure aluminum, 6AI-4V titanium, and 18% Ni maraging

steel plated with cadmium or silver. The zinc plated maraglng steel corroded

severly. NWC exposed pure aluminum, titanium, iron, nickel, copper, and

chromium to the same mixed hydrazine fuel for up to 94 days at 165°F

(Ref 84). Excessive pressure rise rates occurred with iron, nickel, and

copper, whi_e near zero rates were found with titanium and aluminum.

After an initially high pressure rise rate for-the first 12 days of storage

with chromium, the rise rate dropped to zero for the rest of the storage

period.

:5
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Although corrosion of materials is generally not considered to be a problem

with N2114 storage, it has been found that N2114 contaminated with either CO2 or

CI 2 will corrode certain metals. TRW found that N2114 doped with CO 2 and H20

is corrosive to stainless steels (Ref I0). The tests consisted of using both

artificially conditioned and normal hydrazine in contact with various metal

samples to check compatibility. _.7o specimens of 606]-T6 aluminum, 6AI-4V

titanium, and 347 stainless steel were placed in contact with hydrazine condi-

tioned with approximately ]% _13_ 1% CO 2 and 3% H20. A third specimen of each

material was placed in contact with the reference hydrazine. Half of each

specimen was covered with liquid, and the other half wa_ exposed to the vapor

above the liquid. Glass capsules were employed as test containers. All samples

were thoroughly cleaned but not passivated prior to testing. The 347 stainless

steel samples were also honed with aluminum grit. The tests were conducted at

120°F with temperature and _=essure monitored at regular inter9als. Almost

immediately after test initiation, the two 347 stainless samples showed signs

of reactivity, and venting at regular inte_wals was required to protect the

capsules and pressure gages.

After 166 hr, the conditioned hydrazine in contact with the 347 stainless

samples had turned red in color and a crystalline solid was deposited on both

specimens and in the bottom of the tubes. Due to this build-up of the

crystalline solid, the tests were terminated after 188 hr of testing. The

stainless steel specimens were removed from their test capsules, cleaned,

and examined. Extensive pitting was found over the entire surface of the

samples. Analysis of the hydrazine liquid revealed large amounts of chromium,

nickel and iron in solution. After five months of storage at 120°F and an

additional month at ambient temperature, there were no apparent signs of

specimen corrosion or propellant discoloration with the aluminum and titanium

samples.

The results obtained by TRW can probably be explained by work done at

Rocket Research _1.ere 303 and 304 stainless steel fittings were--exposed to

hydrazine samples under d_fferent atmospheres (Ref ii). Three series of tests

were conducted with duplicate samples of both 303 and 304 fittings used in each

series. In the first test series, the samples were in_ersed in hydrazine using



15

a nitrogen atmosphere. In the second teat series, the samples were inu_ersed

in hydrazine under a nltrogen-carbon dioxide atmosphere (97% N2, 3% C02). In

the third test series, a 97% hydrazine-3% water mixture was used in conjunction

with a 97% N2-3% CO 2 atmosphere. The six 303 and six 304 stainless steel

fittings were cleaned by successive immersions in trichlorethylene, water, and

methanol and water. This was followed by a three minute soak in propellant

grade hydrazine, thorough rinsing with distilled water, and drying at 230°F for

one hour. Glass sample Jars, previously cleaned with detergent, rinsed with

distilled water, and oven dried were used to hold the samples. The fittings

were placed in these Jars and 75 ml of hydrazlne or hydrazine-water mixture

were added (sufficient to cover the fittings) while either a nitrogen or a

nltrogen-carbon dioxide purge was maintained to exclude air. The Jar mouth

was covered with 2-mil polyethylene film before capping and Sealing with vinyl

tape. The sealed bottles were then maintained at 160_5°F for II days. The

significant result from these tests was the deterioration of both the fittings

and the hydrazlne in contact with the nltrogen-carbon dioxide atmosphere.

In addition to the dulling of fittings and discoloration of the hydrazine, the

hydrazine (or hydrazlne-water mix) became filled with gas bubbles which developed

into a frothy scum in some instances. Since the corrosion of the fittings and

the decomposition of the N2H 4 occurred in both the pure N2H 4 and the N2H 4 - Hi0

mix samples, the effect of H20 in the corrosion process appears negligible.

According to Rocket Research, CO 2 reacts rapidly with hydrazlne to form car-

bazic acid (H3N2C02 H) which in turn reacts with excess N2H 4 to form a salt

(H3N2CO2(N2Hb)) which is soluble in hydrazi_e. It apparently is this salt

which is responsible for the stainless steel corrosion. No corrosion was

observed in the samples using the N 2 atmosphere only.

In addition to N2H 4 contaminated with CO 2 being corrosive to stainless

steels, SRI has found that N2H 4 contaminated with Cl 2 is corrosive to titanium

(Ref 12). Test capsules containing N2H 4 and 6AI-4V titanium test specimens,

thee had been in storage at JPL to determine the compatibility of various

materials with N2H4, were analyzed for both corrosion and propellant decomposi-

tion. The storage temperature was ll0°F. Prior to storage initiation, the test

it

/
,/
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capsules had l_een degreased using l?reon TF f.n accordance with JP[, spectficat'ion

GMZ-50521-GEN-A. Upon analysis of the test capsule conteni:,_, S{_I found hol:h

excessive N2tI 4 decomposition and severe corrosi(m of the, Ti specimens. A

detailed analysis of the N2H 4 revealed large concentraL-fons of Im::h chlor:lde

and carbon impurities. Also, the titanimn specimens had chlortdr, concentra-

tions 200 times greater than that found in v:Irp,:l.n 6A1-4V i:i;:an'|.um. The high

chloride and carbon impurities led SR:[ to Irypothes:l.ze that the deeompos_l:_on

and corrosion was due to the reaci-lon of N2II 4 with Freon T],'. lilt: was felt that

the Freon TF had not been completely removo.d from Phn i:esl: cap;roles before l:hey

were filled with N2I! 4. To verify this hypoi:hns_.s, l:hay mfx_M N2114 ,'tnd I,'reon TI,'

and found that hydrazine monohydrochloride (N2II4IIC'].) was formed. This salt will

make N2H 4 acidic and corrosive to metals. SRI proposed thc_ following reactions

as the means for the creation of the N211411CI salt:

(I) CFCI2CCIF 2 + 2N2H 4 -_ N2H4HCI + CFHCICCIF 2 + N2 + 2NIl3

(2) CFCI2CCIF 2 + 6N2H 4 D 2N2H4HCI + CFH2CCIF 2 +2N 2 + 4NIl3

(3) CFCI2CCIF 2 + 6N2H 4 _ 3N2H4HCI + CFH2CHF 2 + 2N 2 + 2NH 3

As the above reactions show, N2 and _N3 production is a product of the N2H 4 -

Freon TF reaction which explains the observed N2H 4 decomposition. Since SRI

did not detect the products CFHCICCLF2, CFH2CCIF2, and CFH2CHF 2 but did find

chloride and carbon concentrations in the capsules, it was felt that some

further reaction had also occurred.

The results of the SRI analysis indicate that the use of degreasing or

cleaning solvents containing CI 2 should be avoided as a means of cleaning

metals prior to use wi_h N2H 4. Although only titanium specimens were analyzed,

hydrazine containing N2H4HCI would also be corrosive to other storage metals

such as aluminums and stainless steels. Therefore, chlorinated solvents, such

as Freon TF, trlchlorethylene, _thylene chloride, etc., should not be used

with any metal (AI, Ti, stainless steels, etc.) slated for service with N2H 4

unless all traces of these degreasing agents can be removed prior to use.

Although both aluminum and titanium materials seem, from the data presented

so far, to be excellent storage materials for N2H&, come evidence exists showing

certain aluminums and titaniums to be incomp_tii31e with hydrazine fuels. In
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a series of JPL tests analyzed by SRI, various metals were tested for long

term storage with N2H 4 end Aerozlne-50 (Ref 13). The tests were run at a

constant temperature of ll0°F for periods up to 4 years. For this study, a

material was rated compatible if the fuel decomposition rate was no greater

than the decomposition rate of the fuel alone (determined by control sanples)

and the corrosion rate of the metal sample was not greater than 3_in/yr.

Prior to testing, the platlnum, aluminum and titanium samples were subjected

to a cleaning and pickling passivstion process which consisted of a detergent

rinse followed by pickling in an aqueous solution of HF and HNO 3. The samples

were then dried with N 2. The tests were conducted in glas2 test capsules

cleaned in accordance with JPL specification GMZ-50521-GEN-A. Platinum and

aluminum samples were tezted in neat N2H 4 and 6AI-4V titanium was tested in

Aerozine-50, Based _n the compatibility criteria employed, SRI concluded

from the test results that platinum and 6061-T6 aluminum were compatible

with N2H 4 over the entire 4-yr test period while 356-T6 aluminum was rated

compatible after one year but incompatible after two years. Also, 6AI-4V

tltanlum was rated incompatible with Aerozlne-50 after one year. There was

no evidence of corrosive attack on the specimens except for the occurrence

of some s=ainlng.

In evaluating these results, it is apparent that the criteria employed for

assessing compatibility is much more stringent than that employed in other

materlal compatibility studies. It appears that in many cases a material was

rated as incompatible when only one of the samples tested had a higher final

capsule pressure than the control sample. When the average normalized final

storasc pressure at llO°F for the metal-containing samples is compared to the

corresponding pressure for the control samples, ifappears that none of the

above materials should be rated incompatible with the test propellants for the

stated tlme Rerlods.

In tests run at McDonnell, the compatibility of various metal tankage

materials with N2H 4 at spacecraft ste@ilizatlon temperatures (275°F) was

investigated (Ref 14). The 6AI-4V titanlum, 6061-T6 and II00 aluminums, and

321 stairless steel test metals were fabricated into capsules and tensile test

..... i__ . i._ .
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specimens. The capsules were used to hold both the N2ll4 ar_ the test specimens

so that no d_sslmilar materials would be _n contact with the N2114 during testing.

Both capsule temperature and pressure were monitored during Lhe tests. In

addition to the above metals, an A-70 titanium bellows was also tested in a

6AI-4V Ti capsule.

Each test article was suhJected to 6 cycles of exposure at 275°F. This

consisted of 64 hours at 275°F followed by 8 hours for cooldown to ambient

temperature and reheat to 275°F. Prior to testing, all specimens, capsules,

and other h_rdware exposed to hydrazine were passivated for 18 hours at 175°F

in an aqueous hydrazine solution (I part N2H 4 and 3 parts H20 by volume).

The test capsules were then filled with hydrazine. The titanium bellows and

the 6061-T6 aluminum specimens werenot introduced until the second cycle.

The hydrazine decomposition rates were lowest for the titanium specimens.

The decomposition rates with the 321 stainless steel specimens were about

three times g_ea_er than those with titanium, while the aluminum samples

produced decomposition rates about one order of magnitude higher than those

with titanium, while the aluminum samples produced decomposition rate_ about

one order of magnitude higher than those with titanium. In addition, the

aluminum samples showed evidence of corrosion. A white, powdery film was

deposited on both alun.lnum specimens and the 6061-T6 aluminum specimens were

slightly pitted. Hydrazine samples taken from both the aluminum capsules

following the test contained small quantities of a white, gelatinous precipi-

tate. The A-70 titanium bellows sample and the 6AI-4V titanium specimens

were unaffected.

Much of the results reported by both SRI and McDonnell (_ef 13 and 14)

conflicts with the other reported data on the compatibility of titanium and

aluminum alloys with hydrazine. In fact, the two sets of results tend to

conflict with each other. SRI found 6061 aluminum to be compatible but 356

aluminum to be incompatible while 356 aluminum contains less alloying agents

than 6061 aluminum. On the other hand, McDonnell found 6061 aluminum to be

incompatible. McDonnell also found corrosion of the aluminum samples, while

SRI did not. The MeOonnell tests were run at 275°F while the SRI analyzed

tests were run at ll0°F. However, the Rocketdy_e tests (Ref 2) run at

338°F showed no corrosion or excessive decomposition for the aluminum samples.
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In a recently completed program, Battelle evaluated the effects of radia-

tion on the compatibility of storage materials with hydrazine (Ref 15), Various

specimens of II00-0 a_d 6061-T6 aluminum, 347 stainless steel, and 6AI-4V

titanium in contact wlth hydrazlne were exposed to cobalt-60 gamma radiation.

In one series of tests, N2H 4 was stored in capsules made from the four metals

tested. With no irradiation, the average rate of gas buildup over the 980-hr

storage period was 5 x 10 -9 , 6 x 10 -9 , 6 x 10 -9 , and 4 x 10 -9 moles per gram

of liquid per hour for 1100-0 AI, 6061-T6 AI, 347 S.S. and 6AI-4V Ti, respectively,

When exposed to 0.52 megarads/hr over 288 hr, the respective average rates in-

creased to 6.6 x 10 -7, 8.1 x 10 -7 , 6.6 x 10 -7 , and 8.0 x 10 -7 moles per gram of

liquid per hour. These results indicate little difference between alloys but

do show an increase in decomposition rate with irradiation. After completion

of the gas evolution studies, the interior surfaces were examined, 0nly very

thin films were observed by electron diffraction.

The data obtained in the referenced studies indicate that thepreferable

materials for long term storage of hydrazine are 6A1-4V titanium and various

alloys of aluminum. The 300 series stainless steels are considerably less

desirable and iron, nickel, and gold are incompatible. These results are

generally in agreement with the theory of Ebersteln and Glassman on hydrazine

compatibility. Howeveri Vango has proposed another theory on the compatibility

of metals wlth hydrazine (Ref 16). He states that.the decomposition observed

in N2H 4 compatibility tests is due to the presence of metal oxides or metal

ions in solution with the propellant. He has found, for instance, that neither

pure molybdenum nor pure iron in their reduced state promote hydrazine decomposi-

tion. Vango further contends that the observed promotion of N2H 4 decomposition

by stainless steels is probably due to the tenacious protective oxide coating

formed during passivatlon with HNO 3.

It appears that some of-the reported data can be explained by the Vango

theory while some of the data seems in opposition. Since the Rocketdyne

samples were cleaned with HNO3, the oxide layer on the iron,_nlckel and stainless

steels could have caused hydrazlne decomposition. However, aluminum oxide

evidently does not promote decomposition since the aluminum waa found to be

compatible. Also, an oxide decomposition mechanism does not seem to explain

the incompatibility of go_d, observed by AFRPL, since gold oxide is difficult

to form.

!.

i

ii
9

....... _-_Im_F _ _r_lm_r_"_ s'Jf"_ _ "

.......... :-: ._._.;,,_,_



2O

In actuality, both the Vango theory and the Eberstein and Classman theory

seem to apply. Bot11 theories appear to complement each other with the net

result being that titanium and aluminum alloys exert the least, if any, catalytic

effect in decomposing hydrazine. The stainless steels, while being more cata-

lytic in decomposing hydrazine, might find limited application where needed,

however. Finally, metals such as iron, molybdenum, nickel, and gold

are not desirable for long term storage with hydra_ine and must be rated as

incompatible. The results of the previously discussed studies also tend to

support the following conclusions:

I) In preparing systems for long term storage of hydrazine, care must

be taken to provide a truly clean system. In particular, the intro-

duction of contaminants by the cleaning process itself must be pre-

cluded;

2) Because contaminants such as C12, CO2, other compounds, or metal

ions appear to promote hydrazine decomposition, a purified hydrazine

may be necessary for long term storage applications. A wide

variety of contaminants could be present in propellant-grade

hydrazine;

3) Care must be taken to keep all hydrazine systems pressurized with only

an inert 8as blanket to prevent the introduction of contaminants such

as CO2.

2. Compatibility with Non-Metals

According to reports written by DMIC, TRW, and AFRPL (Ref 5, 4 and 17),

only a few _on-_netals are considered suitable for N2H 4 applications. Von Doehren

states that Teflon, KeI-F, and polyethylene are suitable for general use with

N2H 4 (Ref 17 ). DMIC rated Teflon, butyl rubber compound 805-70, Graphitar 2

and 50, and Denlanian as suitable storage materials with N2H 4 below 140°F, while

rating polyethylene, graphite, SBR rubber,_asbestos, and KeI-F suitable below

75°F (Ref 5 ). Non-metals such as nylo_ Saran, Mylar, and natural rubber were
4

rated as unsuitable. DMIC based compatibility on the premise that a material

would have a volume change less than !25%, would not change visually, and would

not decompose the propellant in question. TRW r_:,:ed Teflon, butyl rubber,
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KaI-F and EPR (ethylene propylene rubber) as suitable materials for N2H 4

service below 140°F (Ref 4). Polyethylene was rated suitable only for

service below 80°F. If a non-metal gave satisfactory service for general

use, it was considered compatible. These three reports based their ratings

on available compatibility data, in the period 1964 to 1967.

Although Teflon seems to be one of the better storage materials for

N2H 4, it is very permeable to N2H 4. According to O'Brien and Bolt (Ref 18),

Teflon is generally not used, to a large extent, as a storage material in

propellant management systems due to its high permeability with hydrezine

type fuels. O'Brlen and Bolt both recommended either butyl rubber or EPR

formulations as storage materials for N2H 4 and stated that both of these

materials give good results if properly manufactured. It should be noted

that both NASA and JPL have mainly used either butyl rubber or EPR on their

missions for hydrazlne-type fuel storage to date. Reliance on EPR as a

storage material seems Justified, for N2H 4 storage, by tests conduc=ed at

JPL (Ref 19). JPL ran both N2H 4 permeability rate and N2H 4 decomposition

rate tests on butyl rubber and EPR samples. The tests lasted up to one year

at a test temperature of ll0°F. The butyl rubber showed permeability rates

between 0 and 0.001 mg/in.2/hr and a fuel decomposition rate of 0.1%/day,

while the EPR samples showed permeability rates between 0.001 and 0.4 mg/in.2/hr

and a maximum fuel decomposition rate of O.0038%/day.

Some compatibility test.data on PTFE, which disagrees with the ratings

given by DMIC, TRW, and AFRPL on Teflon in general, have been reported by

fRI (Ref 13). As part of the JPL long term storage tests reported on earlier

under metals compatibility, various metal test bars_coated with different

non-metals were stored in liquid N2H 4 for periods up to 4 years. Test speci-

mens included a polytetrafluoro_thylene (PTFE) resin, Rulon, coated on a 6061-

T6 aluminum test bar and EERbonded on a 6AI-4V titanium test bar. In addition,

a sample of EPR alone was tested. The results were conflicting. Based on

pressure rise data, SRI concluded that the metal-EPR and metal-Rulon samples

were incompatible with N2H 4.
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However, the EPR samples without a metal gave pressure rise rates which SRI

felt made this sample compatible with N2114. SRI also reported that the EPR

had unhonded from the 6AI-4V titanium but that its properties suffered

little from the exposure to N2H 4. Because of these results, SRI felt that

EPR was probably compatible with N2H 4 but 6AI-4V Ti may not be. No good

explanation of why the Rulon coating exhibited incompatibility was given;

SRI postulated that impurities contained in the Rulon may have been responsible.

More data on the compatibility of ethylene-propylene elastomers (EPR

rubbers) with N2H 4 have been reported by both TRW and Aerospace Corporation

(Ref 20 and 21). Howell of TRW states that the compatibility of EPR depends

significantly upon the compounding variations used for each EPR Formulation

(Ref 20). EPR compounds using carbon black as filler have significantly higher

decomposition rates than those using the silicate filler, Silene D. Also,

butyl rubbers may not be as compatible as some of the other EPR formulations.

Howell further states that the P_r_tY and exact quantity of ingredients as

well as curing time and temperatures also significantly affect compatibility.

Therefore, an EPR considered compatible with N2H 4 may be incompatible unless

stringent controls are maintained to see that no variations in purity or

composition or in curing time or temperature occur for the particular

EPR being considered.

EPR/N2H 4 compatibility data presented by Aerospace Corporation seems to

substantiate the data presented by Howell (Ref 21). In a series of tests,

Aerospace measured both gas evaluation rates and property changes of various

EPR formulations while immersed in 97% pure anhydrous N2H 4 at 70°F. Their

results indicate that EPR 132 is compatible with N2H 4 as long as no carbon

black filler is used in its formulation.

Further data on the compatibility of ethylene propylene elastomers with N2H 4

has been reported by SRI, APCO, and Martin Marietta (Ref 22 thru .24). SRI-

analyzed a prototype spacecraft tank which had been subjected to intermittent

testing with N2H 4 and GN 2 at temperatures and pressures up to 150°F and 1500 psi,

respectively (Ref 22 ). A bonded EPR (Stillman Rubber Co., SR722-70) expulsion

diaphragm was contained within the JPL test tank. One side of the diaphragm

had been exposed to GN 2 while the other side had been exposed to N2H 4 during

testing. Upon analysis of the diaphragm, SRI found:

!
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l) Materials had been leached out of the SR722-70 EPR material during

hydrszine exposure. However, on the basi_ of an accelerated 24 hour

decomposition test, the leached out materials seemed to have no effect

on N2H 4 decomposition;

2) Embrittlement of the diaphragm material occurred;

3) No increase in permeability of the diaphragm material, due to N2H 4

exposure, was found.

Accessory Products Company (APCO), conducted a compounding study to improve

both the compatibility and permeability of ethylene propylene copolymers (EPR)

and terpolymers (EPT) with N2H 4 (Ref 23). Ten compounds were formulated for the

study. One was simply EPR 132. Four others contained HAF carbon black as a

filler while the others used either Icecap KE clay, Silene D, or a mixture of

both as fillers. Curing agents for the various formulations included peroxide,

resin, and sulfur. On the basis of mechanical property tests conducted on the

I0 formulations, the non-carbon black fillers gave lower tensile strengths. Also

it was found that the terpolymer formulations gave greater hardness values than

the copolymer formuations.

Hydrazine immersion tests were conducted at JPL. Compatibility was deter-

mined on the basis of pressure rise (low N2H 4 decomposition). Test temperature

was 125°F. In addition to the l0 formulations, two additional commercial

EPR (Parker E515-8 and Stillman SR722-70) and one commercial butyl (Fargo

FR6-60-26) were also tested. After 60 days of testing, only four of the test

polymer containers had pressure increases less than 30 psi. These were

the peroxide cured EPR compounds (_P'_5 psi) and the sulfur cured EPT compounds

(_P_10 psi). These four formulations contained no carbon black. All of the

tests with the other polymers had to be terminated before 60 days due to

excessive pressure build up (_P=50 psi). On the basis of this first series

of tests, the EPT compounds were reiramersed for an additional 328 days with

little additional N2H 4 decomposition. This led APCO to believe that a

passlvation process probably had occurred during the first part of the

testing.

• °
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The I0 formulations were also tested for permeability and weight gain. Low

permeation was associated with high hydrazine adsorption. The hydrated silica

and clay fillers appeared to have a high affinity for hydrazine adsorption while

simultaneously showing excellent compatibility. 1_or example, peroxide-cured EI?T

had a weight gain of 23% after 286 hours and yet had no dete_table permeation

at the end of 760 hours of exposure. Conversely, su]:fur-cured EPT had a weight

increase of only 5% while the permeation test was discontinued at 141 hours when

the rate had already risen to 0.334 mg/in.2/hr.

Martin Marietta has conducted mechanical property and propellant decomposi-

tion tests with the EPT-10 diaphragm material proposed for the Viking lander

propellant tanks (Ref 24 ). The major concern was the effect that sterilization

at 275°F would have on the compatibility of the te:rpolymer with N2H 4. Testing

is still in progress. Preliminary results indicate that sterilization does

not significantly effect the compatibility of EPT-10 with N2H 4. Although dry

heat sterilization considerably altered the mechanical properties of EPT-10,

these properties again returned to the as-cured values after soaking in N2H 4.

A passlvation process seems to occur upon immersion after dry heat sterilization.

High pressure rises have been recorded for the first twenty days of immersion.

After this time, near-zero pressure rise rates have been observed.

The most recent compatibility information on ethylene-propylene rubbers

with N2H 4 has been reported by TRW (Ref 25 ). T_ conducted a compounding study

for the Air Force to develop a superior rubber for seats in N2H 4 thruster valves.

This study centered around the use of peroxlde-cured ethylene-propylene rubbers

reinforced with TRW polyurethane resin, Hystl. Laboratory tests were used to

screen candidate compounds. Prime candidate compounds were evaluated further

by long-term tests in hydrazlne valves at elevated temperatures. As a result

of this work, three compounds were-developed with mechanical and chemical

properties superior to the Stillman SR724-90 EPR control material. The newly

developed materials were shown to be highly compatible-with hydrazine. Main-

tenance of mechanical properties in elevated temperature hydrazine during rapid

valve cycling short-term tests and during slower valve cycling long-term tests

was considered excellent. The newly developed materials maintained their shape,
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thickness a_d sealing properties after all of the in-valve tests, On the basis

of these tests, Compound 102-1, a peroxide-cured composite of EPT, Hystl, a_d

fumed silica was selected as the prime N2114 valve seat material. The Air Force

designation for this compJund is AF-E-102.

Due to the success in developing AF-E-102, the Air Force further funded

TRW to develop a similar compound (EPT plus Hystl) for use as a polymeric

bladder or diaphragm material (Ref26). This new material was to demonstrate both

lower permeability and N2H 4 decomposition over state-of-the-art expulsion bladder

materials. TRW chose EPT-10 as a reference for comparison. On the basis of

compounding studies, TRW chose an EPT/Hystl covulcanizate, designated AF-E-332,

as their prime candidate. In both static immerslcn tests and permeability

tests, the new compound has showed itself superior to EPT-10.

Just recently, the European Spac_ Resarch Organization (ESRO) has presented

addltionalnon-metal compatibility information with N2H 4 (Ref 27 ). Static

in_nersion tests were run at 40, 60, and 80°C to measure both N2H 4 decomposition

and material attack. From the results, Butyl, EPR, and PTFE were Considered

to have good resistance to N2H 4 attack and not to cause excessive N_H 4 decompo-

sition if carbon black is not employed as a filler material.

I
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A. COMPATIBILITY _UMMARY

_e compatlbillty of both metals and non-metals with MMH is surmmarlzed

in Table 4. Specific references used in this determination are listed in

the table. Compatibility of a material with NMH was based on the same

criteria used for neat N2H4° The ratings for metals are based primarily

on the degree to which the material affects the propellant. For non-metals,

both the extent that the material affects the propellant and the extent

that the propellant affects the material are reflected in tho ratings.
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B. GENERAL DISCUSSION

I,ike its hydrazine sister fu_l, monomethylhydrazine (CH3N2H3 or MMH) is

a highly reactive and toxic propellant. It's molecular structure is the same

as hydrazinets structure except for having a hydrogen atom replaced by a

methyl radial, i.e.,

c% i" H

it /

Therefore, it shares many characteristics with N2H 4. Like hydrazine, MMII is

in a constant state of decomposition; but, at _mbient temperatures and when

not exposed to catalytic materials, the decomposition rate is minimal. Also,

metal corrosion is usually not a problem in MMH storage while catalytic decompo-

sition can be. Further, non-metals can be a eource of catalytic decomposition

as well as being subject to attack.

MMH is generally considered less reactive or more stable than hydrazine;

materials showing compatibility with N2H 4 will be either as compatible or

more compatible with MMH. Conversely, materials causing catalytic decomposi-

tion of MMII would also be catalytic to N2H 4. However, with non-metals, no such

relative ranking of reactivity can be made.

i. Compatibility with Metals

S_nce M_i has the same nitrogen to nitrogen bond as N2H4, it would seem

that the metals considered catalytic to N2H 4 would also promote decomposition

of MMH. Therefore, metals in the atomic number groups 24 to 29, 42 to 47, and

74 to 79 and alloys of these metals, such as stainless steels, would be expected

to be incompatible with MM_I, while metals such as titanium, aluminum, and

their alloys should be compatible. As with N2H4, however, there exists data

showing stainless steels and even some nickel alloys to be compatible with MMH.

At Martin Marietta, the applicability of different-propulsion system

components for use with MF_ at sterilization temperatures (275°F) was investi-

gated (Ref 28). Prescreening, screening, and long term (I year) storage tests

were conducted. Small materiml samples were exposed to MMH at 275°F for periods

I I II I

I
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up to 120 hours in the prescreenlng tests. The metal samples includ, d 6061-T6

and II00-0 aluminum, 321 and 316 stainless steel, 6AI-4V titanium, pure nickel,

and pure lead. Before testing, the samples were cleaned by successive immersions

in HCI and HNO3/HF and then passlvated in a 25/75 mixture of MMH and H20 at 275°_

for a period of 76 hours. The test containers were fabricated of 304 stainless

steel. The results of these tests indicated that all the metals, except 316

stainless steel, were compatible with MMH. No corrosion was observed on any

of the samples. The decomposition with 316 stainless steel was attributed to

the high molybdenum content of this material.

The screening tests consisted of exposing metal strips to 275°F MMH for

periods of 300 and 600 hours in glass containers. All samples were cleaned

and passlvated before testing using the same method employed for the pre-screenlng

tests. The following metals were tested for 300 hours and were found to be

compatible (no corrosion or MMH decomposition observed):

Stainless Steel

!04, 321, 347, 17-4 PH, 17-7 PH, A-286, Carpenter 20 Cb

Aluminum

II00-0, 2014-T6, 2219-T87

Hastelloy C

6 AI-4V Titanium

All of these materials plus pure nickel and 6061-T6 aluminum were included

in the 600-hr tests. Again, no corrosion or MMH decomposition was observed

with any of the metals.

Four 15-in. diameter spherical tanks constructed of 6AI-4V titanium were

used in the long term storage tests. A simulated capillary screen trap device

was installed inside each tank. This device consisted o_ a sample of 165 x 800

mesh, 304L stainless steel screen sandwiched by Monel rivets between 0.5-in. thick

304L stock riveted to a 6AI-4V titanium strip which was welded to the tank

interior wall. The tanks were cleaned and passlvated usingthe previously

described procedure. --After filling with MMH to 5% ullage, the tanks were

subjected to the six 275°F sterilization cycles and then stored at ambient
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temperature for up to one year. Three of the tanks were opened, one every
four months for examination. The fourth tank was held as a control specimen.

During this 12-month storage, no metal corrosion or MMHdecomposition was

observed.

AeroJet-General immersedvarious metal samples in MMI[to determine the

decomposition effects (Ref 29). Sealed glass-manometer and sealed glass-ampule

tests were used. The former method provided continual pressure monitoring,

while the latter was designed to permit periodic analyses of both the liquid

and gas phases by gas chromatography. The metals evaluated were 347 stainless

steel, 2014-T6 and 2024 aluminum, two nickel maraging steels, and 6AI-4V titanium.

One of the maraging steels contained 18% nickel and 4% molybdenum and the other

contained 20% nickel and 1.5% titanium. To eliminate surface impurities, each

metal coupon was sanded with silicon carbide paper (No. 240-A), polished with

crocus cloth_ washed with detergent, rinsed with water_ rinsed with acetone_

and dried under an argon atmosphere at 248°F for 6 hours. After complete

immersion of the samples in MMH_ the glass-manometer tests were run at

77 and 158°F while the glass ampule tests were run at only 158°F.

The 77°F manometer tests lasted approximately 24 weeks. Minor MMH

decomposition may have occurred with the maraging steel san_le containing

molybdenum; however, no reaction was observed with any of the other samples.

The tests conducted at 158°F were terminated after approximately

12 weeks. Both of the maraging steel samples showed significant pressure

increases with time with only small changes noted with the other materials.

The incompatibility of MMH with both of the maraging steel samples was also

evident from the chromatographic results. Also, the sample containing moly-

bdenum showed the greatest reactivity.

As the data presented so_far indicate, most stainless steels seem compatible

with MMH. Adding further support are test results reported by Bell Aerosystems

(Ref 30). Bell evaluated the compatibility of stressed stainless steel test

specimens with MMll. The first test series consisted of exposing various test

bars to liquid MMH while stressed in bending to 25% of yield strength. The

bars consisted of A-286 psrent metal, A-286 welded to A-286 with Hastelloy W,

it
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A-286 welded to 347 stainless with Hastelloy W, and A-286 welded to 347 by

meltdown. To contain the test bars and MMH, 300 series stalnlees steel test

tanks were employed. After stressing the test bars within the storage tanks,

the tanks were leak checked, purged with dry GN2, and then filled with MIL-P-

27404 MMS using a closed system. The tanks were pressurized with nitrogen

to 150 psig and maintained at 150 _5°F. Pressure and temperature were monitored

during testing and the propellant analyzed before _nd after test. All specimens

had been cleaned, passlvated, and macroscoplcally inspected at 60X prior to

testing to assure surface integrity. The cleaning and passivation procedure

consisted of pickling the samples in nltrlc-hydrofloric acid followed by

passivation in nitric-dichromlc acid. Test specimens were also weighed and

dimensionally measured before and after storage. Post storage specimen

evaluation consisted of corrosion rate determlnatlonp macroacoplc evaluation

at 60X magnification, metallographlc examination up to 500X to determine the

extent of any corroslonattack or cracking, plus an evaluation of whether

any of the MMH had severely decomposed. After slxmonths of storage, Bell

stated that no MMH decomposition or metal corrosion was detected.

The second test ser_es was identical to the first except that three

test temperatures (70, 125, and 150°F) and three stress levels (0, 40, and 90%

of yield strength) were used. Again, after six months of testing, no corrosion

or MMH decomposition was reported.

As with hydrazlne, the titanium and aluminum alloys appear to be the

preferable metals for use with MMH. However, the data from the previously

discussed studies also indicate that most stainless steels can be used with

MMH if proper surface preparation is provided prior to use. Molybdenum,

chromium, iron, nickel, and copper should be conslderedas questionable.

2. Compatibility with Non-Metals

Data on the compatibility of MMH wlth non-metals is scarce. Based on

AeroJet tests reported by CPIA (Ref 31), only high density polyethylene

was rated as a good storage materlal (weight change <0.5% and no elasticity

change) for MMH service below 160°F and for exposures less than 4 weeks.
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Teflon, natural rubber, silicone rubber and Neoprenewere rated as only
intermediate storage materials (weight change <2.5% and change of

elasticity of 25 to 40%) for the sameservice. Butyl rubber was consi-
dered usable only below 95°F and KeI-F showedpoor compatibility.

Although CPIA found no _ decomposition with the non-metals they reported

on, there exists evidence which shows that at least one non-metal censidered

by CPIA, may increase MMHdecomposition rates. In a series of tests conducted

by Aerojet (Ref 29), various non-metals were immersedin M_fl_and UDMHto
determine any catalytic effects on fuel decompositioo, rN_etests were run

at both room temperature and 158°F for periods up to 3 months. The non-metals

tested were Teflon, polyethylene and KeI-F. The results showedthat altho,gh

none of the samples showedexcessive fuel decomposition at room temperatures,
KeI-F did show excessive fuel decomposition rates at 158°F.

Further tests on the compatibility of MMHwith non-metals were conducted

at an even higher temperature by Martin Marietta to determine the effects of

a sterilizing process on various non-metals when immersedin MMH(Ref 28).
Teflon (TFE and FEP), B591-8 butyl rubber, and E515-8 EPRwere tested with

275°F MMH for periods up to 88 hours. The Teflon samples gave the best results.

For the first 28 hours, the Teflon samples showed no effect. After 88 hours,

the TFE samples showed an approximate loss in strength of 2.6% with an increase

in elongation of 10%, while the FEP samples had a3% loss in strength with a

10% increase in elongation. No fuel decomposition w_s observed. Considerable

MMH decomposition was apparent with the butyl rubber samples after the first

24 hours. Also, a 20% volume increase plus a hardness loss of 10-12 Shore A

was observed. EPR samples faired better. After the first 24 hours, the MMH

became discolored as if exposed _o air_ indicating decomposition, and lost

5 Shore A in hardness with a 7% volume increase.

From the data presented so far, Teflon seems to be fairly compatible with

MMH. However, problems have been encountered when applying Teflon to systems

employing MMH. JPL found stress cracking in expulsion bladders made out of a

certain type of Teflon laminate (Ref 32). In°a series of tests, JPL stretched

to failure test specimens of the standard Teflon laminate planned as the

bladder material for the Mariner Mars 1971 spacecraft. The specimens were
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tested while immersed in various solvents Including N204 and _. The standard

laminate was composed of an outer "durability" layer of FEP 120 Teflon over an

inner "permeability reducing" layer of TFE 30 Teflon. Failure originated in

solvent stress cracks resulting from exposure of the low molecular weight FEP

120 to the propellants or referee propellants. To solve the solvent stress

cracking problem, FEP 9511 Teflon was substituted for the FEP 120 material.

The FEP 9511 with its higher molecular weight is less sensitive to solvents.

In addition, the 9511 material was sandwiched between inner and outer layers

of a new TFE/FEP codispersion Of 80% TFE 30 and 20% FEP 9511. This material

showed improved properties for bladder application, produced no solvent stress

cracking and was used for the MM '71 flight bladders. More detail concerning

the compatibility of this material is contained in Chapter Vl, The results

obtained with N204 also apply to MMH.
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A. COMPATIBILITY SUMMARY
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Table 5 summarizes the compatibility of both metals and non-metala with

nitrated N2H 4 fuels as determined from available data. The specific references

employed are indicated. As with both N2H 4 and MMH, the compatibility of a

material with N2H 4 N2H5NO 3 mixtures was based on the criteria that the

material be essentially unaffected by propellant exposure and not cause a

significant increase in the rate of provellant decomposition. Inclusion of a

material in the table was determined in the same manner as for N2H 4 and MMH.

Dual ratings have been employed as well as ratings for specific applications.

The compatibility ratings presented in Table 5 for both metals and

non-metals is a relative measure of the extent that the specific material

is affected by the propellant and the extent that the propellant is affected

by the material. Both mechanisms are of concern with materials exposed to

nitrated hydrazine fuels since both material attack and propellant decomposi-

tion can occur.

c
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B. GENERAL DISCUSSION

One method of increasing the reactivity of neat N2114 is hy the addiLion

of hydrazine nitrate (N2H5N03). This higher reactivity, although advantageous

to increased engine performance, creates greater storage problems than those

associated with neat N2H 4 alone. As stated earlier, neat: bydrazine exists in

a continuous state of decomposition, The addition of hydrazine nitrate increases __

this instability or tendency for decomposition. Therefore, materia]s which have

only slight or negligible catalytic effect on the decomposition of neat N21I4

can become active catalysts with nitrated hydrazine. Also, the addition of

the nitrate produces an acidic solution which is corrosive to metals. At

least one report has noted severe corrosion of stainless steels when immersed

in nitrated hydrazine. Therefore, for long term storage of hydrazine-hydrazine

nitrate mixtures with both metals and non-metals, both propellant decomposition

and material corrosion become concerns.

In addition to the above mentioned problems, Garrett AiReseareh reported that

certain nitrated hydrazlne mixtures exhibit shock sensitive characteristics (Ref 33).

Mixtures containing more than 23% N2H5NO 3 are considered shock sensitive. They

further add that even mixtures containing lower than 23% nitrate must be

treated with extreme care since the decomposition of these mixtures is very

energetic, releasing large amounts of heat. However, shock sensitivity tests

conducted by JPL showed that the upper limit of N2H5NO 3 which can be added

to neat N_4 without creating a shock sensitive mixture is 247 (Ref 34).

I. Compatibility with Metals

Most metals considered as catalysts with N2H 4 would probably be unsuitable

for long term service with nitrated hydrazine mixtures due to their increased

reactivity compared to neat N2H 4. Data supporting this contention, has Been

reported by Rocketdyne (Ref 2 ). As part of the N2H 4 tests_previously

discussed in Chapter II, Rocketdyne doped neat N2H 4 with 1% ammonium nitrate

(NH4N03) to determine the effect this would have on the decomposition of hydra-

zine. The addition og-NH4NO 3 was felt-by Rocketdyne to be equivalent, to

adding N2H5NO 3 to the hydrazine since the ammnium nitrate reacts with hydrazine

i

i
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to produce hydrnine nitrate and ammonia. _e decomposition of the re_ulting

solution was compared against that of neat N2H 4 in Pyrex containers at a

temperature of 262°F, Also compared were the decomposition rates of the neat

N2H 4 and the doped N2H 4 when in contact with 321 stainless steel specimens.

It was found that the addition of hydrazine nitrate did not increase decomposi-

tion r_te in the glass containers. However, in the presence of the 321 stain-

less samples, the decomposition rates of hydrazine containing hydrazine nitrate

were approximately 100 times those of the neat hydrazine after six hours.

In addition to the above data showing stainless steels to be very active

decomposition catalysts for mixtures oi N2H 4 and N2H5N03, evidence also shows

that these mixtures are corrosive to stainless steels. JPL has found that

Stainless steels not only cause severe decomposition of N2H4/N2H5NO 3 mixtures

but also are severely corroded by these mixtures (Ref 16). Specifically, Vango

has observed that the N2H4/N2HsNO3__ mixtures almost immedla£ely turn pink when

stainless steel test specimens are introduced (Ref 16). This is indicative of

metal ions being released into solution, i.e., metal corrosion. In clarifying

this corrosion phenomena, Toth stated that the degree of stainless steel

corrosion observed seems to be proportional to the concentration of N2HsNO 3 in

the mixture (Ref 34).

Why hydrazlne containing N2HsNO 3 should become corrosive to metals can be

explained by considering the chemistry involved when this soluble salt is added

to N2H 4. Neat hydrazine by itself is considered a weak base and thus not

corrosive to metals. However, by the addition of soluble salts to neat N2Hd,

the resultant mixture can be either more basic or acidic, depending on the

nature of the salt. In general_ the addition of a salt formed from a strong

base and a week acid results in a basic solution. Conversely, if a salt

formed from a weak base and a strong acid are added to a pure liquid, the

resultant solution will be acidic. Applying this guide to neat N2H4, the

observed corrosion reported with either doped or contaminated N2H 4 can be

explained.

The TRW and Rocket_Research tests showed that when CO 2 reacts with N2H 4

a hydrazine soluble salt [H3N2CO 2 (N2Hs_ is formed (Refl0 and II ), This

i_.. . ii . I llll ......... II I I .... _ _lnillli_
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salt is a product of carbazic acid (II3N2CO2]T) and the weak base, hydrazine.

Therefore, the reslllt:ant solution of this salt a_id N2114 would be slightly

acidic and somewhat corrosive to metals. As the TRW _nd Rocke_ R_reh test

results showed, stainless steels were corroded by this solution. SRI showed

that Cl 2 reacts with N21I4 to form N21I5 CI. This sail: is formed from the strong

acid, [ICI, and the weak base, N2H 4. Thus, the resulting solution is acidic

and corrosive to metals (Ref 12).

Based upon the above considerations, a solution of N2H 4 and N2H5NO 3 should

be acidic and corrosive to most metals, including stainless steels, since

N2H5NO 3 is formed from a strong acid, HNO3, and a weak base, N2H 4.

As part of the long term N2H 4 compatibility tests analyzed by SRI for JPL

(previously discussed in Chapter II), SRI also analyzed JPL tests conducted to

determine the compatibility of different titanium and aluminum alloys with

nitrated hydrazine monopropellant fuel containing 75% N2H4, 24% N2HsNO 3, and 1%

H20 (Ref 13). The test procedures and techniques used were identical to those

described earlier. Test metals were 6061-T6 aluminum and 6AI-4V, 5AI-2o5Sn,

and 6AI-6V-2Sn titanium alloys. The samples were first subjected to a cleaning

and pickling type passivation process consisting of a detergent rinse followed

by a pickling solution of HF, HNO 3 and H20. One 6061-T6 aluminum sample was

passivated with NaOH instead of the acid solution. The samples were dried

with N 2. Testing was conducted in glass capsules cleaned in accordance with

JPL specification GMZ-50521-GEN-A. Some of the glass test capsules contained

specimens of two different metals.

SRI concluded that 6061-T6 aluminum was probably compatible with the

nitrated hydrazine as were the titanium alloys. They found that some corrosion

such as etching and pitting was evident with some of the samples in both alloy

groups; however, these samples were in poor condition (spotted or stained)

before storage. Upon assessment of the results presented by SRI, it is

concluded that all of the materials tested should really be rated as compatible.

In addition to _sing neat N2H 4 in their radiation exposure tests, reported

in Chapter II, Battelle also ran the same tests with the nitrated hydrazine

monopropell_nt (Ref I_. For the tests run in the small storage capsules,

T_*
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Battelle again found that the exposure to radiation greatly increased decomposi-

tion. However, for both the irradiated and non-lrradlated samples, th_ decompo-

sition rates of the nitrated hydrazine were far in excess of those for the

neat N2H 4. Also, the 347 stainless steel capsules had a rate approximately

twice those of the other capsules (II00-0 AI, 6061-T6 AI, and 6AI-4V Ti) for

the irradiated tests and about 6 to 7 times those of the other capsules for

the non-lrradiated tests. Battelle also found, upon opening the test capsules

after storage, that the nitrated N2H 4 had turned a dark red-violet color in

the 347 stainless capsule and that a brownish film had formed on the metal

surface. For the 6AI-4V titanium capsule, no change in either propellant or

capsule surface was observed; for the aluminum capsules, etching by the nitrated

N2H 4 was found.

Based on the available data, the alloys of aluminum and titanium are the

best materials for long term service with nitrated hydrazlne mixtures. However,

in view of corrosion considerations stated earlier, even these metals may not

be applicable for use with nitrated hydrazlne mixtures. It can be concluded,

though, that all ferric metals including stainless steels are totally un-

acceptable with nitrated hydrazlne.

2. Compatlbilit Z with Non-Metals

Data on the compatibility of non-metals with nitrated hydrazlne mixtures

are very limited. A_compiJation and an evaluation of experimental data obtained

from available literature were presented by JPL on the compatibility of

materials with mixtures of hydrazlne, hydrazlne nitrate, and water (Ref 35).

Polyethylene, Teflon, and glass were evaluated as acceptable for general service.

Based on the test results presented, it appears that Buns N rubber would also be

acceptable.

As part of the previousl 9 discussed radiation exposure tests conducted

by Battelle, the functional operation of spacecraft components was conducted

in nitrated hydrazlne monopropellant containing 75% N2H4, 24% N2HbN03, and 1%

H20-(Ref 15). One such component was a 347 stainless filter containing an EPR

0-rlng seal. The nitrated hydrazlne was flowed through the filter which was
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irradiated by C_1,_It 60 gammaradiation. Visual examination after test:[.n_

showegthat tim _,-ring seal was affected by the exposure, l_ec,;useof this

result, BattellL _nducted additiona_.Le_t_.£o--investigate the compat_hility

of both EPRand Butyl 0-rings with the nitrated propellant in and out of the

radiation field. They found that the Butyl 0-rings softened, distorted, and

reacted with the propellant, while the ethylene-propylene 0-ri._ distorted

only in t1_eradiation field to conform to its retaining cavity and did not

return to its original shape, llowever, the EPR0-ring did not appear to soften

or react with the propellant.

As part of these new additional tests, the effects of radiation, propellant,
and stress on EPRflat stock were also evaluated in an effort to differentiate

these factors in the operation of EPR seals or diaphragms. Flat and folded

specimens were exposed to radiation and to room storage in and out of the

propellant. No measurable effects were observed on either the flat or folded

specimens in room 3torage. However, all folded specimens took a permanent

set when exposed to a gamma radiation dose of 33.4 megarads and slight welding

occurred where the folds contacted,

From the limited available information, it would seem that only Teflon,

polyethylene, and EPR and Buna N rubbers are applicable for use with nitrated

hydrazine propellants. In actual practice, however, use of an all metal system

appears advisable with these mixtures.
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A. COMPATIBILITY SUMMARY

The compatibility of both metals and non-metals with B2H 6 is summarized

in Table 6. The ratings are based on the information presented in the speci-

fic references cited. Compatibility of a material with B2H 6 was based on

negligible material change (corrosion for metals, loss of physical properties

for non-metals) and no significant increase in the rate of decomposition of

the B2H 6. When ratings have been determined for specific applications, this

is indicated in the remarks section of the table.

In comparison to other fuels, dlborane appears relatively easy to store

from a materials standpoint. Decomposition is primarily based on thermal

considerations. Therefore, the ratings presented in Table 6 reflect the

degree to which the propellant affects the material.
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Diborane is considered a highly reactive and toxic space storable propel-

lant. Although its heat of formation is positive, it does not exhibit any

decomposition problems when stored at temperatures below -l12°F. As storage

temperatures are increased above -l12°F, however, B2H 6 no longer remains

stable and storage problems arise due to thermal decomposition. According

to Callery Chemical (Ref 36), thermal decomposition of B2H 6 is not in itself

a serious storage problem unless storage temperatures are raised above -20°C

(-4°F). Callery gives decomposition rates of only 0.2% per year for B2H 6 stored

at -4°F_ while for storage temperatures of 77°FI they report decomposition rates

in the order of 10% per month.

In investigating propellant clogging of propulsion systems, TRW investiga-

ted flow blockage problems in B2H 6 systems due to the formation of decomposition

products (Ref I0). According to TRW, B2H 6 decomposes slightly when storage

temperatures are raised above dry ice temperature (-78°C or -l12°F). The products

are higher molecular weight boranes (tetraborane, pentaborane, hexaborane, etc.),

polymeric boron hydrides (BH)x , and hydrogen: B2H6---_B4HI0 + B5H 9 + BIOHI4 +

(BH)x + H 2. Although the H 2 does not present a storage problem, the other

products can. Both the higher weight boranes and the polymeric boron hydrides

will exist to some extent as dissolved impurities which could perturb B2H 6 flow

properties. Because of increased decomposition above -4°F, the possibility of

flow blockage problems would be even further increased.

It seems from the above evidence that storage of liquid B2H 6 above -l12°F

could present problems. For most rocket propellant applications, however, the

storage temperatures of B2H 6 are generally below -160°F. Therefore, for long

term storage of B2H 6 below -160°F, the major problem is not one of thermal

decomposition but one of either material attack or catalytic decomposition.

When considering compatibility problems like material attack(corrosion

of metals or dissolving or physical property changes of non-metals), the

diborane sister fuel, pentaborane (B5Hp) J is of interest. Pentaborane, like

diborsne is also a highly reactive and toxic propellant. According to Callery

Chemical and TRW, B2H 6 and BsH 9 behave almost identically in regard to material
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attack on either meta]s or non-metals (Ref 37and 4 ). In fact:, Callery states

than any material co_r.patib]e with B5119 should be as compatible or even more

cc_mpatible with diborane. However, this genera], guide of using B5H 9 data to

p_.ed:ict B2116 compaI:ibility evideutly does not: apply for non-metals. Rocketdyne

rated many non-metals such as Mylar, Nylon, and Saran as being compatible with

I_2116, buI: they also showed that these same non-metals had been found unsatls-

factory for use with B5H 9 (Ref38).

I. Compatibilit y with Metals

Information on the compatibility of metals with B2}{6 is limited. In

addition, most of this information consists of only material recommendations,

based either on practical handling experiences or on other author's recommenda-

tions. Very few laboratory studies have been performed. The most recent

information available on the compatibility of metals with B2H 6 is presented in

the Rocketdyne "Diborane Handbook" which presents a compilation of the available

compatibility data (through 1969) and recommendations based on this data (Ref 38).

In short term storage tests to determine metal corrosion by B2H 6 or B2H 6

decomposition by metals, TRW (as reported by Rocketdyne) exposed various metal

alloys and stainless steel oxides to both liquid and gaseous B2H 6. For the

metal alloys storage tests, liquid B2H 6 was stored in contact with 6061-T6

aluminum, 347 stainless steel, and 6AI-4V titanium specimens contained in

cylinders fabricated from t.he-respective metals. After 45 days of storage at

-108°F, analysis of the liquid and vapor phases by mass spectroscopy showed

minimal decomposition. Examination of the metal specimens showed minimal (almost

no) cor_'osions with the following order: 347 stainless steel <6AI-4V titanium

< 6061-T6 aluminum.

For the stainless steel oxide storage tests, oxide particles smaller than

325 mesh were prepared by burning 304 SS shim stock in gaseous oxygen. The

oxide was exposed to both gaseous and liquid B2H 6 in 347 stainless steel

containers for a period of 30 days at -108°F and at -4°F. TRW concluded that

very little B2H 6 decomposition took place since no higher boron hydrides were

found after storage. However, examination indicated that some of the metal



oxides had been reduced to pure metal. Rocketdyne felt that this could present

s potential problem (cold-weldlng) with rubbing or sliding sltrfsces exposed to

B2H 6 unless these metal surfaces are deoxidized prior to exposure.

In another series of tests reported by Rocketdyne, 'llliokol-RMD measured

the decomposition of B2ll6 stored in stainless steel cylinders at various

temperatures. In one test, liquid B21{6 was stored in s stainless steel cylinder

at 32°F for e period of ]97 days with no pressure rise obser_red. In another

test, B2H 6 gas was stored for 3 months in a stainless steel cylinder at 32°F.

This time an ll-psl pressure increase (318 to 330 psle) occurred. However, the

validity of these results were questioned because the pressure measurement

system had been exposed to ambient temperatures. In a third test, gaseous

B2H 6 was stored in s stainless steel cylinder at 77°F for 4 months. In this

case, a 480-pal pressure rise occurred. At the end of the test period, chemical

analysis of the cylinder contents showed only 50 to 60% of the original B2H 6

remaining (between 40 and 50% decomposition). Remembering the fact that B2H 6

can decompose as much as 10% per month at 77°F as stated earlier, this

decomposition is probably due to temperature rather than catalytic effects,

On the basis of these results and the other information compiled, Rocketdyne

rated the following m£tqls compatible (no corrosion or catalytic decomposition)

with either liquid or gaseous B2H6:

Aluminum

Low Carbon Steel

Chrome-Moly Steel

18-8 Stainless Steel

300 Series Stainless Steel

6AI-4V Titanium

Brass

Copper

Lead

Monel and KoMonel

Nickel

Soft solder

It was recommended that maraglng steel and magnesium not be used with B2H 6 and

that metal oxides be minimized. As stated earlier, BsH 9 compatibility data is

of value as a general guide to determining which metals might be suitable for

service with B2H 6. However, no mRtal was classified inccmpntible with B5H 9,
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In a report on the treatment of metal surfaces for .se with space slnrah]e

propellants, SKI hypothesized that eml_rItt]emel_t and moisture problems may

exist with B2H6 storage (Ref 39). Since hydrogen maybe liberated hy B21;6

decomposition, titanium embrittlement problems might occur. Since B2116is
easily hydrolyTed by water to form hoth hydrogen and horic acid, moisture should

be precluded from B2116systems. The hydrogen, in tita_ium systems, is J,ot_
wanted hecause of embri!tlement problems, The horic acid, althouF, h nol

considered very reactive, could turn into an acid sludge (according to SRI)

which is a parLicularly effective clogging agent. It should he noted, however,

that no titanium embrittlement prohlems due to B2116 storage have been encountered.

Tin is not recommended for B2H6 systems. Hough of Callery Chemical stated

that tin might react with B2H 6 to form volatile tin hydrides (Ref 37). Although

the possibility of this reaction is better at high temperatures, there is a

rare possibility of this happening in liquid B2H 6. Hough also stated that,

based on his experience at Callery, metals like chromium and platinum are

compatible with B2H 6.

In conclusion, there would seem to be no major problems in storing liquid

B2H 6 with any metal as long as the storage temperatures are below -l12°F and

moisture is precluded. However, the normal approaches employed in the design

of low-temperature systems should be followed.

2. compatibility with Non-Metals

As was the case with metals, very little information is available on the

compatibility of non-metals with B2H 6. The most recent collection of informa-

tion on non-metal compatibility also exists in the Rocketdyne "Diborane Handbook"

which was used as the prime source of information (Ref 38).

In tests reported by Rocketdyne, Thiokol-RMD exposed various plastics and

lubricants to gaseous B2H 6 at 75°F for a period of 24 hours to 96 hours,

depending on the non-metal tested. Glass capsules were used to hold both the

B2H 6 and samples. No effect was observed on Saran, KeI-F, and 50/50 polyethylene/

polyisobutylene and only a slight effect was observed with a Dow-Corning low

temperature silicone grease and with Fluorolube FS. On the basis of these

results, RMD felt that B2H 6 w._%l be compatible with organic substances which

have-no functional groups or are completely saturated.
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Further test data is reported by Rocketdyneo In studies carried out by

AeroJet-General, Nylon and KeI-F seals were irradiated in test fixtures

containing liquid B2H 6 at -108°F (Ref 38). Based on the test results, it

was concluded that both-seals were compatible under the test conditions.

Rocketdyne also summarized tests run by TRW to evaluate elastomers

with bo_h gaseous and liquid B2H 6 (Ref 38). These TRW tests were conducted

for JPL to identify and characterize elastomers suitable for use as B2116

expulsion bladders. In the first test series, three unfilled cured elastomers

were exposed to B2H_o The e%astomers were perloxide-cured Nordel 1145 EPT

(DuPont), zinc oxide and peroxide cured Hycar 1072 Nitrile (Goodrich Chemical

Company), and peroxide cured W-970 Silicon (Union Carbide). Test temperatures

were -109°F (B2H 6 liquid) and 32°F (B2H 6 gas). Based on the results, the

Norael 1145 EPT was eliminated from further testing° In the second test

series, W-970 Silicone and Hycar 1072, filled or reinforced with Silica were

exposed to liquid B2H 6. Also included was CIS-4 1203 polybutadiene filled

with SiO 2. Only the Hycar 1072 appeared compatible. Permeability tests were

then conducted with both filled and unfilled Hycar 1072 Nitrile using either

helium or diborane gas. Both the filled and unfilled Hycar 1072 seemed

acceptable.

On the basis of the above results and other compiled information, Rocketdyne

rated the following non-metals as compatible with either liquid or gaseous

B2H 6 (temperature effects not considered):

General Non-Metals

Saran

Vlton A, Fluorel, or equivalent asbestos graphite (Garlock or

equivalent)

Tetrafluoroethylene (TFE, Halon TFE, Teflon, or equivalent)

Polychlorotrifluoroethylene (KeI-F, Halon CTF, or equivalent)

50/50 polyethylene/polyisobutylene

Polyethylene
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Mylar

Hycar rul_ber

]lycar 1072 butadiene/acrylonitr_.le elastomer, unfilled and Si02-filled

Pure dry asbestos or tetraf!uoroethylene-impregnated asbestos

JM-76

Nylon

Glyptal

Crane lead seal

Shellac-graphite paste

Lubricants

Perfluorocarbon lubricants

Fluorolube FS

Vaseline

Paraffin

Graphite

High vacuum silicone grease ............

DC 33 silicone, grease

"T-film" (Eco Engineering)

The following non-metals were considered incompatible with B2H6:

Natural rubbers

Neoprene

Leak-lock

Permatex

Ordinary oil and grease

Nordel 1145 EPT elastomer, unfilled and Si02-filled

W-970 silicon elastomer, unfilled and Si02-filled

CIS-4 polybutadiene elast0mer, unfilled and Si02-filled

The compatible rating listed for the Hycar 1072 Nitrile elastomer was

based on the previously discussed TRW results. .Since this prior study, TRW

conducted an additional program to develop a polymer for use in a B2H 6

expulsion bladder (Ref40).

I
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The Hycar 1072 had been shown to be compatible with B2H 6 while the CIS-4

polybutad_ene was not. However, the Hycar 1072 became stiff and non-elastomeric

at low temperature while the CIS-4 did not. Since a homopolymer of butadiene

is a_lalogous to a nitrile polymer with 0% acrylonitrile (ACN) and Hycar 1072

contains between 25-30% ACN, 9RW concluded that the ACN stabilized the Hycar

1072 against any attack by B2H 6 but was also the agent responsible for the

low temperature embrlttlement. Therefore, TRW sought to fing a nitrile polymer

with the right percent of ACN so that an elastomeric bladder material with the

proper properties for B2H 6 service could be developed. The result was a silica-

relnforced_ sulfur-cured butadiene copolymer having low acrylonitrile content.

This material was termed compound 215-3,

A series of tests was conducted with the material to determine its

applicability with B2H 6. These included dynamic compatibility, expulsion,

storage, and permeability tests. Specimens stressed to failure while immersed

in 70°F propellant produced no evidence of chemical reaction. In small scale

B2H 6 expulsion tests at approximately -49°F, the Compound 215-3 was not

stiffened and showed no evidence of chemical attack, Specimens stored with

B2H 6 at -4°F for 48 days showed a slow attack of the base polymer, This appeared

to be a surface phenomenon and was attributed to the sulfur curing agent since

a similar compound cured.mith peroxide showedexcellent compatibility. Based

on the degradation data and measuredpermeability, a loss in strength of 23%

per year and a propellant loss of 10.4% per year were calculated for a 10-inch

diameter compound 215-3 bladder containing B2H 6 at -4°F. Based on these

results, it appears that various butadiene copolymers should be compatible with

B2H 6. However, the exact composition for best performance appears highly

dependent on the application and service conditions and exposure duration.

An independent evaluation of silicone rubber with B2H 6 was made at the

University of Utah which agreed with the incompatible rating resulting from

TRW tests. After exposure to B2H 6 at 250°F for 4000 seconds, excessive fuel--

decomposition was shown in comparison to a B2H 6 control sample (Ref 41),

i
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A. COMPATIBILITY SUMMARY

The compatibility of both metals and non-metals with N204 is sun_arized

in Table 7, as determined by interpreting available compatibility information.

Specific references used are iisted in the table. Compatibility of a

material with N204 was based primarily on the criteria that the material be

essentially unaffected by N204 exposure (negligible corrosion for metals and

negligible loss of physical properties for non-metals). However, also taken

into consideration was the potential for formation of clogging agents when

exposed to N204. This was a prime consideration for iron-based metals since

the data indicate serious flow decay problems can occur with N204/ferric metal

systems. As for the other propellants, listing of a ma=erial in the table

was based, in general, on the existence of specific compatibility data for

that material with N204; some materials were included due to their importance

even though no specific data were available. In some instances, two compati-

bility ratings were assigned to the same materlal due to conflicting data.

Also, where compatibility was determined for a specific form of N204 or for

a specific use with N204, this is indicated in the remarks section of the table.

The ratings presented in Table 7 primarily are based on the extent to

which the propellant affects the material. However, consideration is given to

the material affecting the propellant in those cases where the potential for

forming metal adducts, oz clogging agents, exists.
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B, GENERAL DISCUSSION

Nitrogen tetroxide is a highly reactive and toxic oxidizer. It is stable

with respect to decomposition and forms an equilibrium mixture of N204 and NO 2

(N204 .._ 2N02). At ambient_ temperatures, this equilibrium mixture is practically

all N204. As temperature increases, the equilibrium mixture shifts in the

direction of NO 2. The major problem in long term storage of N204 concerns the

relatively high reactivity which manifests itself in corrosion problems for

metals and dissolving or loss of material properties problems for non-metals.

Two propellant specifications have been used to designate propellant

grade nitrogen tetroxide. These specification grades are differentiated

by the amount of nitric oxide (NO) corrosion inhibitor contained in the

N204. If the NO content is less than 0.4%, the N204 is termed "brown" or

Military Specification (MIL-P-26539A or B) N204. If the NO content is

between 0.4 and 0.8%, the N204 is termed "green" or NASA Specification

(MSC-PPD-2A or B) N204. The terms "brown" and "green" arise from the

colors of the liquid. Until the 1966-67 time period the Military

Specification N204 was the primary grade in use. At about this time,

however, problems arose due to the occurrence of stress corrosion of

titanium alloys with brown N204. Most of these stress corrosion problems

were circumvented by the addition of more NO to the propellant. For this

reason, the green NASA Specification N204 has essentially replaced the

brown Military Specification N204 for aerospace applications from about

1967 on.

I. Compatibility with Metals

According to reports written by AFRPL_ AeroJet-General and Bell

Aerosystems (Ref 17, 42 and 43), most metals seem to be compatible with

60 to 120°F N204 if the moisture content is small (<0.1%). Moisture results

in corrosion due to the formation of nitric acid (HN03) when H20 reacts with

N204. According to VonDoehren (Ref 17), carbon steels, aluminum, nickel,

Inconel, and stainless steels are all compatible with dry N204 ......However,

if the N204 is wet, 300 series stainless steels suitable for HNO 3 storage
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should be used. AeroJet states that 300 and 400 series, 17-4 PH, 17-7 PH,

AM350, and AM355 stainless steels and titanium are all good for wet N204

storage, while nickel, mild steel, and aluminum are safe only for storage

of dry nitrogen netroxide (Ref 42).

Bell_ in general[, agrees with the conclusions drawn by RPL and Aerojet

concerning N204 compatible metals (Ref 43). However, Bell does state that the

purer aluminum alloys, i.e., 5052, 3003, etc., nhow better compatibility than

the aluminum alloys containing large preeentag¢_ of other metals such as 2024

and 7075. They also point out that 2024 is more desirable than 7075 since the

zinc-bearing 7075 has shown higher corrosion rates than the copper-bearing]

2024 in wet N204. Thi_ differentiation between the compatibility of the

various aluminum alloys does not become apparent until N204 contains greater

than 0,3% H20. Concerning other metals, Bell states that titanium and Inconei

show excellent corrosion resistance even with very wet N204_ Carbon steels

and nickel alloys (except Ineonel) were considered acceptable for dry N204

service only, while magnesium and copper alloys were considered totally

unacceptable even for very dry N204.

The AFRPL, AeroJet, and Bell reports represent the N204 compatibility

thinking as of 1961. The opinions expressed in the AFRPL and Bell reports

were based on the current available compatibility data existing at the time,

obtained by industry wide surveys. The Aerojet opinions were based on

personal experience with handling N204. However, none of these reports

present any exact N204 compatibility test results.

Further data on compatbility of metals with N204 is =sported by DMIC

(Ref 5 ). In 1965, DMIC rated various metals for service with dry N204

(considered as having a moisture content <0.2%). A metal was considered

compatible if it showed a corrosion rate of < 1 mil per year. All ratings

were temperature dependent. For service at temperatures up to.130°F, 2024,

3003, 5052, 6061, 5086, and 7075 aluminum, 304, 410, and 347 stainless steel,

mild, 1020, and A-286 steel, aud 6Ai-4V and 75A titanium were rated, as

compatible. For service below 100°F, compatible metals included most stainless

steels, 356 aluminum, electroless nickel, and 65A titanium. At temperatures

below 80°F, ll00 and 4043 aluminum, pure and cast iron, and tin were considered
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compatiSle, At temperatures below 60°F, gold, all titanlums, platinum, 2014

and 2219 aluminum, magnesium, nieke_, Inconel, and tantalum were considered

compatible. Metals considered totally unacceptable for N204 storage at any

temperature were copper, brass, bronze, silver, zirconium, and zinc. DMIC

used both the AeroJet and Bell reports discussed earlier as references.

The results reported by RPL, Aerojet-General, Bell, and DMIC are

supported by tests conducted by Martin Marietta and JPL. Martin Marietta

tested different metals with N204 having varying H20 content for periods up

to one year at a constant temperature of 60°F (Ref 44). Aluminum alloys

(356-T6, II00, 2014-T6, 6061-T6, 2219_T81, 5456-H321, and 7075-T6) were tested

in dry N204 (H20 <0.1%) and no corrosion was observed. Titanium alloys

6AI-4V and BI20VCA were tested in very wet N204 (2 to 20% H20) and no serious

corrosion occurred. Also, wet N204 (H20 >0.1%) was tested with 304, 321,

1020, and A-286 stainless steels and no corrosion was observed,

The JPL tests consisted of using 2014.-T6 aluminum canisters filled with

N204, containing from 0.I to 0.2_ H20 , co determine storage compatibility

(Ref 45). The tests lasted approximately 2 months at temperatures ranging

from 40 to ll0°F. Some of the canisters were passlvated with N204 prior to

the tests; all were chemically cleaned. Upon inspection after the tests, pits

approximately 0.0002-in. deep were observed.

From the test results and recommendations presented above, it would seem

that_stainless steels are one of the better storage materials for N204. More

recent data, however, indicate stainless steels may be incompatible with

N204, at least under certain conditions. Accozding to Caudill, stainless

steels have a tendency to form a sludge like corrosion product (adduct) when

in contact with N204 (dry or wet), even at ambient temperatures (Ref 46).

Further clarification of this phenomena can be found in reports published by

Rocketdyne, TRW, Aerospace Corporation, and Martin Marietta. In a series of

tests,.Rocketdyne analyzed the formation, make up, and hazards of N204/stalnless

steel adducts (Ref 47). According to Rocketdyne, N204 will react with iron

based alloys to form either a solid precipitate adduct, NOFe(N03)4, or a

viscous gel type adduct in N204, The adduct form (gel or solid) is dependent

on the H20 content of the N204, If the H20 content is low, the solid pre-

cipitate is formed; conversely, the gel adduct is formed in wet N204. The

\,
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amount of adduct formed, or the amount of metal corroded, is based on the

solubility of the sdduct in N204 which is s function of temperature. At

ambient temperatures, the amount of adduct is on the order of ppm. It was

reported that a N204 stainless steel storage vessel would become saturated

with either of the adducts within 3 weeks at ambient temperatures. From these

data, there would seem to be no serious corrosion problem at ambient

temperatures with storage vessels manufactured from stainless steels. However,

when considering the total propu]slon system, a drop in temperature during

flow operations could cause adduct precipitation and flow blockage in the feed

system. Although ]_cketdyne states that only flow diameters of approximately

0.001 in. would be affected, serious valve actuation and filter problems

could occur. Also, at elevated temperatures, s corrosion problem with the

storage tanks themselves would exist since the solubility of the adducts in

N204 would be increased.

Part of the Rocketdyne conclusions were based on earlier work of TRW

and Aerospace Corporation. The objective of the TRW work (Ref 48) was to

determine the influence of minor N204 impurities on metal corrosion and to

try to relate these corrosive impurities to the build up of potential

gelants whic_ cause N204 flow blockage problems. Corrosion tests were run

to accomplish this objective. Three metal alloys, 6061-T6 aluminum, 347

stainless steel, and 6AI-4V titanium were stored in both neat and doped

N204 at 165°F for up to 4 months. The impurities consisted of H20 , chloride

(as NOCI), 02, chloride plus 02, and chlorine. These impurities are either

known to exist in propellant grade N204 or can be inadvertently introduced

into the oxidizer fairly easily. The metal specimens were _leaned prior to

immersion in the test oxidizers. After storage, both the metal specimens

and test fluids were analyzed.

From a corrosion standpoint, the aluminum samples were affected the most.

Especially severe were the H20 contaminated samples. The C12 and NOCI doping

did not seem to effect the corrosion of the aluminum samples significantly.

The 347 stainless steel fared slightly better than the 6061 aluminum. _le most

severe attack occurred with the 02, H2% and 02/NOCI doped N204 test fluids.

The 6AI-4V titanium was-least affected. No_pitting or general corrosion

occurred even with the doped N204 fluids.
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On the basis of the posttest fluid analysis, TRW concluded that the

clogging in N204 flow systems probably occurs with "as-recelved" N204 and is

not enhanced by the addition of the teat contaminants 81nce the amount of

metals dissolved in the N204 did not change algnlflcantly during the testa.

However, the formation of gelatinous material occurred more often with the 347

samples even thou_J_the aluminum specimens corroded more. In fact, the gclatlnous

material was formed with the 347 samples stored in neat N204.

In addition to the corrosion testa, TRW also conducted flow tests with neat

and @oped N204 to try to characterize the observed clogging behavior of N204

through capillary passages and filters. The doping consisted of adding iron

and zinc to NASA Specification Grade (_$C-PPD-2A) N204. A 316 stainless steel

flow apparatus was employed for the tests. Both 0.010-in._ and 0.005-In.

diameter capillaries were used with neat N204, and flow blockage by a gelatinous

matenial was observed. However, reproducible clogging behavior and flow blockage

was observed only in the lower pressure regimes with the 0.005-in. capillary.

Partial blockage and build-up of material, which subsequently was blown past

the capillary section, was noted in the 0.O10-in. capillary, and at higher

pressures in the 0.005-in. capillary. TRW states that a gel material will

ultimately block the flow if the pressure differential is not too excessive.

The pressure differentials given were 50 psia for the 0.005-in. capillary

and 10 to 25 psia for the 0.010-in. capillary. Blockage was also observed to

occur between 50 and 90 seconds after the start of the runs.

For the filter tests, both neat and doped N204 were employed as test fluids

with 2 micron nominal (10 micron absolute) catridge fi)ters. Again flow blockage

occurred. Analysis of the residue removed from the neat N204 filter revealed

that the material was inorganic and identical to a hydrated metal nitrate such

as Fe(N03) 3 • 9}{20. This hydrated metal nitrate was subsequently analyzed

by x-ray emission to determine relative concentrations of metals; iron was

the only metallic component detected in the residue. Analysis of the clogging

residue for the doped N204 filter tests revealed that th_ materials were gel-llke

solvated complex nitrates of both zinc and iron. TRW further stated that this

analysis also implied that zinc will form gel-like nitrates more readily than

iron. Therefore, dissolved zinc in N204 should be minimized.

The purpose of the work conducted by Aerospace Corporation (Ref 49) was

to isolate and analyze materials which might cause N204 flow blockage.

Obtaining a stainless steel filter from SLC-IV W_st_ut__V_andenherd_ AFB, AeroSpace

-'-t:,'.... JU _ _ _ _,IL- L_ ,7 - _



It
i

68

identified nitrosyl tetranitratoferrate (NTNF or NOFe(N03)I 4) as the agent

causing N204 flow blockage. In addition to isolating NTNF as the clogging

agent, Aerospace al;_o formed NTNF by reacting N204 with iron powder in the

laboratory using ferric chloride as a cstalyst. On the basis of these results,

Aerospace states that the reaction between steels and N204 to form NTNF is

limited by the solubility of NTNF in N204 (same conclusion Rocketdyne came to,

as reported earlier). The reaction between N204 and iron stops when the

concentration of NTNF reaches I to 2 ppm. However, flow restriction can occur

even at these low concentrations. Upon contact with moisture, Aerospace states

that NTNF is readily converted to hydrated ferric nitrate, and nitric and

nitrous acids.

Martin Marietta has also investigated flow blockage of N204 systems

(Ref 50). The clogging problem was first noted during the loading of a

Titan IIIB when severe pressure drop was recorded across a 40 to 60 micron

filter. Upon examination, a brownish viscous oil was found trapped in the

filter. Exposure of this oily residue to ambient air resulted in a rapid

transformation into a reddish brown crystalline hydrate. Chemical analysis

of the crystalline residue indicated the primary constituents to be metals

in the approximate proportions: 79% iron; 12% chromium; 7% nickel; 1% manganese.

Flight data on the Titan III Transtage led to the postulation of a shift

in engine mixture ratio during flight. The possibility of a flow decay with

N204 was investigated, and a series of tests was_+run to determine if accumulation

of ferric nitrate adduct on the filter in the Transtage N204 tank outlet line

could account for the apparent mixture ratio shift. N204 was flowed through

a 2-in. diameter section of 60 mesh stainless steel screen at a flowrate of

18 gpm for approximately 400 seconds. The results indicated that although it

was possible to collect _om_ viscous precipitste on the Transtage N204 tank

outlet screen, the effect on pressure drop _ind flowrate was not large enough to

be a likely cause of the apparent inflight flow reduction. As a result of a

marked increase in gel formation due to N204 cooling, however, Transtage

loading procedures were modified to preclude cooling of the N204 after loading

in the vehicle.

From the above discussion on N204 flow decay, it would seem that ferric

metals are undesirable as storage materials for N204 due to the formation of

NTNF. However, a similar flow decay problem also exists with N204/aluminum

systems. In addition, to investigating N204 flow decay associated with ferric

i
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nitrate gels, Martin Marietta also investigated flow decay problems reported

with al_Iminum systems (Ref 50). During gas desorptlon tests conducted as

part of the mixture ratio shift investigation, a reduction in N204 flowrate

through the aluminum Transtage injector was observed. Upon e_:amination of the

injector, large quantities of a white crystalline material were found. This

material was an aluminum nitrate salt which was sf_luble in water but

relatively insoluble in N204° It formed when the injector was exposed for

varying periods of time to unlimited quantities of NO 2 vapor plus humid air.

Analysis showed that the salt was a hydrated aluminum nitrate: AI(NO3) 3.

_H20)9 (Ref 51). This salt will be formed when aluminum is exposed to N204

containing some H20 (NO 2 + moist air not needed). Therefore, an analogous

situation probsbly exists between the formation of the hydrated ferric nitrate

in N204/ferrlc metal systems and the formation of the hydrated aluminum nitrate

in N204/aluminum systems. The amount of hydrated aluminum nitrate formed is

based on the solubility of this salt in N204, which is very low a__ambient

conditions. However, as temperature increases, more salt will be formed

(aluminum corroded) to keep the N204 saturated. Therefore, in addition to

clogging problems, a serious corrosion problem could @iso occur in N204/aluminum

systems at higher temperatures.

From the data presented so far, titanium appears to be the only metal which

exhibits long term compatibility with N204, dry or wet. Both supporting but

also opposing this contention are the results of compatibility tests conducted

fairly recently (1967-1969) by JPL, Bell Aerosystems, and Rocketdyne. To

determine the long term compatibility of various metal alloys with N204, JPL

immersed small cylindrical specimens of approximately 18 different metal alloys

in dry N204 (H20<0.1%) at ll0°F for periods up to 4years (Ref 52). Glass

test capsules were employed as containers. Prior to immersion, all specimens

were cleaned and passivated in accordance with JPL specifications. Upon

completion of the immersion testa, SRI analyzed the results. The only incompatible

alloys were A-231C magnesium, pure molybdenum, Hastelloy B and 356-T6 aluminum.

Type 347, 19-9 DL, 410, 416, 430 and 440C stainless steels-and most of all of

the cobalt and nickel based alloys (except Hastelloy B) were found compatible

with the dry N204. The 6AI-4V titanium specimens fared almost as well as the

4
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stainless steel samples and were also considered compatible. Tba titanium

corrosion rates were<3_lln/yr; the attack was limited to staining or thin

coating with no etching or pitting. However, it should be _loted that any

difference occurring between titanium and the other materials could have

resulted from the test apparatus. Kovar metal (54% Fe, 29% Ni, and 17% Co)

tubing was used to connect Bourdon tube pressure gages to the glass test

capsules. SRI found severe corrosion of this tubing after testing. Therefore,

the recorded corrosion of many of the metal alloys may not have been due to the

incompatibility of the alloys but due to contaminants introduced by the

corrosion of the Kovar tubing. Specifically, SRI states that the severe

corrosion of the 356-T6 samples was probably due to Kovar corrosion contaminants

since large quantities of iron, nickel and cobalt salts were detected in the

356-T6 test capsules. However, the corrosion of the Hastelloy B, A-231C

magnesium, and molybdenum specimens was not felt by SRI to have been caused

by the corrosion of the Kovar tubing.

The Bell Aerosystems N204 compatibility tests were part of the same test

series conducted with MMH, reported on earlier under MMH compatibility (Ref 30).

These tests were run to determine the reliability of rocket propulsion materials

used to store N204 and MMH under the influence of both high temperature and

applied stress. Two test phases were conducted; the first phase used Military

Specification Grade or "brown" N204 while the second phase used NO inhibited

N204 similar to NASA Specification Grade or "green" N204. In each case,

the N204 was dry (H20<0.1%).

Only stainless steels ware tested in the initial phase. The test

specimens consisted of bars constructed of various stainless steels: ......

A286/A286 Welded with Hastelloy W

A-286 Parent Metal

A-286/347 Welded with Hastelloy W

304L/304L Meltdown Weld

347/304L Meltdown Weld _

Cryoformed 301 Stainless Steel

A286/347 Meltdown Weld

__.__. _T .... _|_ ........ <J"'- " ' " ...... r'FT'"_"_"'_'_
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Testing was accomplished by immersion in 150°F liquid N204 while stressed in

bending to 25% of yield strength. The containers were constructed of 300-series

stainless steel, After two months of testing, discoloration and intergranular

corrosion occurred with all of the test bars. In particular, the welded A286

specimens cracked in the weld heat affected zones and the Hastelloy W weldments

suffered from severe intergranular corrosion. After four months of testing,

severe blackening and sludging (build up of sludge like material) of the

specimens occurred. Although the intergranular attack did not deepen, pene-

trations became more numerous. Also, the cryoformed 301 samples developed

cracks on the tension side, Propellant analysis showed that the dissolved

02 content had decreased during testing, On the basis of this fact and the

other r_sults obtained, Bell came to the following conclusions concerning

storage of Military Specification Grade N204 with stainless steels:

I) MIL-P-26539B (oxygenated) nitrogen tetroxide is not suitable for

long term (greater than four months) storage in types 347 and A286

stainless steel thin walled containers (0.030-in° or less);

2) Type A286 stainless stzel with a nitric-hydrofloric pickled surface

is more susceptible to intergranular corrosive attack by oxygenated

nitrogen tetroxide than a nitric acid passivated surface. This

attack is accelerated by applied stress and can cause a fracture;

3) The-cryoformed 301 stainless steel is susceptible to surface cracking

in oxygenated N204, when stressed;

4) Hastelloy W weldments are more susceptible to corrosion in oxygenated

nitrogen tetroxide than meltdown welds,

For the second phase, approximately 0.2 to 0.4% NO inhibitor was

added to MII-P-26539B Specification N204 to form a green N204. The test

techniques and procedures were identical to those of the earlier phase

except that three test temperatures (70°F, 125°F, and 150°F) and three

stress levels (0R, 40%, and 90% of-yield strength) were used. Also,

only A286/A286 (Hastelloy W weld), A286/347 (meltdown weld), and 347/347

(meltdown weld) specimens were used._ After six months of testing, the

specimens appeared unaffected.
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For the Rocketdyne compatibility tests, both stress corrosion and long

term saorage were assessed (Ref 53). For the stress corrosion tests, tensile

specimens of three metal alloys stressed to 2/3 of ultimate strength were

stored in both brown and inh%bited (or green) N204 at ambient temperatures for

up to 45 days. The specimens were notched cylindrical tensi]_ bars of 2219-T6

aluminum, 347 stainless steel and 250 msraging steel. Both the containers

used to hold the specimens and N204 and the frames used to stress the specimens

were constructed of the same materials as the specimens. Prior to testing,

all the specimens were consecutively cleaned by degreasing in acetone, vacuum

annealed at 1400°F for 4 hours, solution treated in air at 1743°F for one hour,

and aged in air at 1000°F for 8 hours. None of the samples failed during

testing. The ultimate strength of the 2219-T6 aluminum alloy and the 250

maraging steel decreased as a result of exposure to specification grade

MIL-P-26539B N204. There was no change _n the 347 stainless steel ultimate

strength with either the Military Specification or NASA Specification N204.

For the long term storage, small discs of ferric and aluminum alloys

were immersed in both dry (H20<0.1%) and wet (H20_0.33%) MIL-P-26539A (brown)

N204. The stainless steel alloys used consisted of 304L, 316, 321, AM 350

and 440C. The aluminum alloys were 6061-T6, 7075-T73, TENS-50, 2014-T6, ang

2024. 1018 carbon steel was also tested. Two test temperatures were employed.

For tests run at ambient temperature, test duration was 21 months, while for

tests run at 158°F, test duration was only one month. Prior to testing,

all test samples were cleaned with a soap solution, rinsed with water and

acetone, and weighed. Test containers used in the tests were made out of

stainless steel for the ferric samples and aluminum for the aluminum alloy

samples. From the results, Rccketdyne stated that 304, 316, 321, and AM350

stainless steels and 2014, 2024, and 7075 aluminum seem to be compatible

with either dry or wet Military Specification N204 at ambient temperature,
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while 440C and 1018 steel and Tens-50 and 6061 aluminum seem incompe, tlble.

Of the materlala teated, only 7075 aluminum appeared compatible with dry or

wet N204 at 158°F since all of the other metal specimens showed significant

weight losses.

Further stress corrosion testing was conducted by Boeing to determ{ne the

fracture toughness and flaw growth characteristics of various metal alloys _n

N204 (Ref 54). As-welded specimens of 2219-T851 aluminum, base metal and weldment

specimens of 2021-I781 aluminum, and base metal specimens of 410 stalL, less

steel were tested. Only the 2021-T81 samples showed very low threshold

stress intensity values. For the base metal samples, a threshold stress

intensity of I0 ksl _.n was found; the corresponding value for the weldments

was 9 ksi _n. These low values indicated to Boeing that 2021 aluminum

might cause functional problems if used as a N204 storage pressure vessel

material.

As shown by the stress corroslom tests conducted by Bell, stainless steels

are subject to stress corrosion in l_llltary Specification N204 (Ref 30). In the

same report, Bell also stated that titanium was subject to stress corrosion. In

fact, Bell used 6AI-4V titanium sample bars to check out their test apparatus.

Three specimens were stressed to 90 ksi (bending stress) while immersed in

"brown" N204 at 150°F. After 135 hours, all three specimens failed, thus

verifying to Bell the @uality of their test apparatus for the stainless steel

testing. TRW, in a report rating materials for use with N204, also states

that titanium is incompatible wlth Military Specification or "brown" N204 due

to stress corrosion, while NASA specification or "green" N204 is perfectly

compatible with titanium (Ref 4). The conclusions were based on N204 handling

experience as of 1967.

DMIC has reported on the shock impact sensitivity of titanium a_loys with

various oxidizers (Re£ 55 and 56). Co_nercially pure titanlum, exposed to 32°F

N204 for 24 h=, ignited 50% of the time when impacted at 60 to 70 ft-lb by a

flat striker pin. The energy level dropped to-40 to 50 ft.lb after 384-hour

e_posure. Without prior exposure, the level was 201 ft-lb for 50% ignition.
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These data suggest an increase in sensitivity with contact time. Galling or

machining either pure or 6AI-4V titanium in contact with N204 produced no

reaction. Shearing 75A and 6AI-4V titanium in liquid N204 resulted in evidence

of ignition on the freshly exposed surfaces, Titanium tubes filled with N204

showed evidence of reaction when impacted with a .30-06 slug but no signs

of reaction when impacted with a .22 slug. In all reaction cases, only small

fused areas on the surface were noted. In no instance did the reaction

propagate, even though there was sufficient N204 to consume most or all of the

specimen. No reac_ ons were observed when commercially pure or 6A1-4V titanium

were ruptured under tension in gaseous N204 at pressures up to 535 psia with

a temperature of 257°F.

Further impact testing of titanium alloys in N204 has been reported by

McDonnell Dougl_s (Ref 57). They conducted ABMA open cup impact tests with

6AI-4V titanium (EL1) and 2014-T6 aluminum in Military Speclfication N204.

The results showed that neither of the alloys were impact sensitive in N204.

For the 6AI-4V tests, 0.025-in. thick Ti discs were impacted at 69 ft-lbs at

68°F using both 6AI-4V titanium cups and striker pins; no reactions occurred

in 20 tests. For the aluminum alloy tests, 40-mil 2014-T6 discs were impacted

at 70 ft-lbs at 82°F using 17-4 PH stainless steel striker pins and 1100-0 cups;

no reactions occurred in 20 tests.

In a program to evaluate the effects of sterilization on the materials and

components of a propulsion subsystem, Martin Marietta found titanium to be

the only material compatible with N204 a_ elevated temperatures (Ref 28).

Prescreening, screening, and long term storage tests were conducted with dry

(.03% H20) NASA Specification N204 at ste=ilization temperatures (275°F). In

the presereening tests, samples of 6061-T6 and II00-0 aluminum, 321 and 316

stainless steel, 6AI-4V titanium, pure nickel, and pure lead Were exposed to

N204 at 275°F for periods up to 120 hours. Before testing, the samples were

cleaned and passivated by immersion in HCf followed by immersion in HNO3/HF.

The test containers used to hold the samples and N204 were fabricated of 304

stainless steel. These tests indicated that the ferric based alloys were

incompatible with N204 at 275°F. Iron based adducts were formed on all of the

J
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ferric based metal samples as well as on the test containers. The rate of

formation of this adduet appeared to be approximately linear-wlth time and

seemed to increase as the amount of alloying agents increased. Nickel and

molybdenum appeared to contribute to adduct formation. No residual contamina-

tion (adduct) formed on the aluminum and titanium samples.

_1_e screening tests exposed metal strips to 275°F NASA Specification N204

for periods of 300 and 600 hours in glass containers. All samples were cleaned

and passivated before testing using the same procedure employed for the pre-

screening tests. The metals tested were:

Stainless Steel

304,321,347

17-4 PH, 17-7 PH-

Carpenter 20 Cb

A-286

Maraging Steel

Pure Nickel

Titanium

Pure, 6AI-4V

Aluminum

II00-0, 2014-T6

2219-T8, 6061-T6

Hastelloy C

Pure Lr._d

The results of the 300-hr tests verified those of the prescreening tests. Only

the aluminum alloys, Hastelloy C, and the titanium didn't corrode. All the

ferric alloys were attacked irmmediately and formed the tar-l_ke adduct. In

the 600-hr tests, only the 6AI-4V and pure titanium didn't corrode. The

aluminum alloys showed severe pitting and intergranular corrosion an4 the

tar-llke adduct was formed with the stainless steels. The nickel specimen was

severely attacked and formed a heavy deposit of nickel nitrate. The maraging

steel sample was the only specimen to fracture as well as corrode which

indicated the occurrence of stress corrosion. The Carpenter 20 Cb and

Hastelloy C specimens exhibited only minor corrosion.

Four 15-in. diameter spherical tank8 constructed of 6AI-4V titanium were

used in the long term storage tests.• A sample of Teflon laminate and a welded

titanium specimen were installed in each tank. Prior to filling with N204,

the tanks were cleaned and psssivated using the procedure outlined earlier.
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After fJ.l!ing to 5%ullage, the tanks were subjected to the 275°F sterilization

temperature and then _tored at ambient temperature for up to one year. Three

of che tanks were opened for examination, one every four months. The fourth

tank was held as a control specimen. During this 12-month storage, no metal

corrosion was observed.

Additional 600 hour, 275°F compatibility tests were conducted by Martin

Marietta using metal alloys not considered previously (Ref 58). Some of the

metal alloys tested earlier were also included with protective coatings to

evaluate protection potential, Test procedures were the same as those

described previously.

The test results are summarized in Table 8 , Bare 2024-T3 aluminum was

Incompatlble_ formation of corrosion prnducts plus integranular attack occurred

with this alloy, The alloys considered as only marginally compatible were the

chrome plated 321, the precipitation hardened AMS 5538, _nd the auatenitlc

2J-6-9 stainless steels; the TZM high temperature alloy; and the L-605 cobalt

alloy. The stainless steels suffered from only light attack but formed the

gelatinous iron adduct, The TZM alloy suffered from both light surface attack

and formation of a smut-like material while the cobalt alloy only corroded

slightly forming a white, loosely adherent product. No adduct was formed with

either the 430 stainless steel or the HY-140 steel specimens. Since these

alloys do not contain large amounts of nickel, this led to the feeling that

nickel may be a major contributor in the formation of the adduct. Primary

conclusions were:

I) Anodie coating of aluminum alloys can ensure almost 100% protection

against N204;

2) Commercially pure aluminum cladding of structu=al aluminum alloys

provides excellent protection with only a slight amount of corrosion

products being formed.. The formation-of corrosion products was so

small the material may be classified as-compatible;

3) Tantallum and columbium were unaffected by the propellant;

4) Chromium plating affords excellent protection to stainless steels (only

321 stainless steel was tested). This protection could be afforded to

any metallic material.
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Table 8 Materials Compatibility (Exposed to N204 at 275°F for 600 Hour_)

(Ref 58)

Material Re.sul ta,_

I. 2014-T6 Aluminum, Chromic Acid Anodized

2. 2014-T6 Aluminum, Sulfuric Acid Anodized

3. 6061-T6 Aluminum, Chromic Acid Anodized

4. 6061-T6 Aluminum, SulfuDic Acid Anodlzed

5. 2021-T6 Aluminum, Sulfuric Acid Anodized

6. 6061 Aluminum Screen, Chromic A_id Anodized

7. 2024-T3 Aluminum, Pure Aluminum Clad

8. 2024-T3 Aluminum, Clad Stripped

9. 430 Stainless Steel

lO, 321 Stainless Steel, Chrome Plated

II. AMS 5538 Stainless Steel

12. 21-6-9 St_inlees Steel

13. HY-140 St,_el

14. Titanium 5AI-2.5 Sn

15. Titanium 8AI-I Mo

16. Beryllium

17. Columb ium DPI4

18. Columb ium CB752

19. Tantalum, Pure

20. Tungsten, Pure

21. TZM Titanium-Zirconlum-Molybdenum

22. L-605 Cobalt

C

C

C

C

C

C

C

NC

C

MC

MC

MC

C

C

C

C

C

C

C

C

MC

MC

*C - compatible; MC - marginally compatible; NC - not compatible.
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2. rCompatlb£1ity with Non-Metals

DMIC, Bell Aerosystems, and TRW rated various non-metals for service with

N204 (H20<0.2%) based on available compatibility data for the 1961-1967 time

period (Ref 5,43,and4). These reports are not independent of one another

since DMIC referenced the Bell report and TRW referenced both the DMIC and

Bell reports. In each case, a non-metal was considered compatible if it

had a volume change of less than 25%, a durometer reading change of less than

!3, showed _lo visual change, and did not affect the N204. The ratings are

presented in Table 9 . As can be seen, only FEP Teflon was rated compatible

at 160°F. All elastomers were considered incompatible as well as most ceramic,_.

The compatibility ratings made by Bell, DMIC, and TRW (presented in Table 9 )

were determined, in part, from compatibility tests conducted by both Martin

Marietta and AeroJet-General as part of the Titan II program. For the Martin

Marietta tests, non-metals were tested with 60°F N204 having various H20 con£ents

for periods up to one year (Kef 44). Teflon TFE samples, tested in dry N204,

showed no visible changes; close inspection revealed up to a 0.73% increase in

elongation, a 2.4% increase in volume, and a 3% increase in weight. The addition

of up to 1% H20 to the N204 showed no effect on the TFE samples. Teflon FEP

samples, after immersion in dry N204, showed a 2.6% increase in elongation, a

4% increase in volume, and a 5% increase in weight. The addition of water to

the N204 resulted in a 4.8% volume increase of the FEP compared to the 4%

increase with dry N204. Kynar samples were only tested in dry N204. They

showed a definite loss in hardness plus a 0.24% increase in elongation. All

other common non-metals tested were totally incompatible. KeI-F samples were

attacked immediately and began cracking. All rubbers (natural, butyl, silicone,

and EPR) were severely attacked and-polyethylene samples oxidized immediately

and turned brittla.

For the Aerojet tests, the non-metals were immersed in dry N204 at test

temperatures of approximately 75°F (Ref 42). After-70 days of immersion, a

2 to 3% volume increase, a weight gain of 0.5%, a hardness loss of 20%, an

11% increase in elongation, and a loss in strongth of 11.5% occurred with TFE

I
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Table 9

Non-Metal

Compatibility Rating Summary for Selected Non-Metals with

N204 (from Ref 4 5, and 43)

Compatible for Service Below

160°F 85°F 60°F

X

X

X

X

X

X

i) Plastics

TFE Teflon

FEP Teflon

Teflon-Glass

Teflon-Graphlte

Teflon-Asbestos

Armalon 7700

Fluorobestos

Fluorogreen
KeI-F

KeI-F 300

Genetron GCX-38

Genetron XE-2B

Altar 191

Polyethylene

Polypropylene

Irradiated Raythenen

Nylon.

Mylar

Saran

Kynar
Lexan

Tedlar

Plexiglas

Teslar 30

Isobutylene-Copolymers

Polyethylene+Isobutylene

Polymer (Formula 53)

2) Elastomers

EPR Rubbers

Butyl Rubbers
Fluoro Rubbers

Fluoro-Sillcone Rubbers

Buna N

Neoprene
NAtural Rubber

Polyurethane

3) Lubricants

XC 150

Mo!ykote Z

Microseal I00-I

LOX Safe

Graphite

Graphitar
CCP-72

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

79

Incompatible

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

_ " " _ _ -........ -_-- ....."I__-_ ....
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Non-Matal

3)

Table 9 (Concluded)

Lubricants (Continued)

Fluorolube MG6DO

Fluoroethane G

Krytox 240
Drilube 703

Electrofilm 66-C

Halocarbon Grease

4) _Sealants and Potting

5)

Compounds

Reddy Lube I00

Reddy Lube 200

Waterglass-Graphite

Oxylube Sealant

Teflon Tape

Crystal M&CF

4-3

Proseal 333

Epon Resins

RTV Silicones

Polyesters

Ceramics

-Rock Flux

Sauereisen P-I

Temporell 1500
Sauereisen 47

Compatible for Service Below

160°F 85°F 60°F

X

X

X

X

X

X

X

X

X

X

X

X

X

X

Incompatible

X

X

X

X

X

X

X

I
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Teflon, After 20 days, the FEP Teflon showed a volume increase of 1.6%, a

weight gain of 0.4%, a 38% loss in hardness, an increase in elongation of 2.9_,

and a loss in strength of 20.5%. For both Teflons, the changes in physical

properties took place within the first 2 days of immersion; after that time

all other changes were nearly zero (the hardness loss of the 7EP Teflon was an

exception which was linear with time). Other non-metals tested were completely

incompatible. KeI-F 300 absorbed the N204 and became plastic; after 70 days

of immersion_ it showed a 6% volume increase, a 72% loss in strength, and a

hardness loss of 76%. Polyethylene was tested only for short times (hours),

since it oxidized immediately and became brittle.

As part of the long term compatibility testing conducted by JPL (reported

earlier), various ceramics, lubricants, and plastics were i_mnersed in N204

at ll0°F (Ref 52). The test techniques and procedures for these non-metal

tests were the same as those for the JPL testing of metals in N204. Specific

non-metals tested were a sapphire ball (A1203) ; KeI-F grease coated on 6061-T6

aluminum, on 6AI-4V titanium, and on a sapphire ball; and a polytetrafluoro-

ethylene (PTFE) named Rulon coated on the 6061-T6, 6AI-4V, and AI203 materials.

After approximately four years of immersion, SRI analyzed the results. The

only non-metal analyzed for.compatibility "irON204 was the AI203 ball; the

Rulon and KeI-F grease were only e_aluated as protective coatings. AI203 was

completely compatible with N204, while the Rulon and KeI-F grease were

ineffective as protective coatings. The KeI-F grease was loosened and was

found as heavy, flocculent particles in the N204. The Rulon coating was

removed from the 6AI-4V titanium and AI203 specimens. It remained intact on

the 6061-T6 aluminum, but no benefit was obtained from the coating since

corrosion of the specimens occurzed.

Further data on the compatibility of fluorinated-hydrocarbons with N204has

recently been reported by SRI (Ref 59). Samples of Fluon GP-I and Teflon TFE-30

films were creased and folded to failure in air and after 20 hours of soaking

in N204. Fo= the Fluon GP-I, an increase in the cycles to failure of 3.3% was

found, while for the Teflon TFE-30, a decrease in the cycles to failure of 16%

was reported. From these results, SRI concluded that the flex resistance of

the Fluon and Teflon films are not affected substantially _y__exposure to N204.

i
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From the data presented so far, Teflon seems to be about the best non-metal

one can use with N204, However, problems can exist depending on the application.

TRW states that if Teflon is used for bladder service with N204, the FEP Teflon

is probably preferable since TFE has N204 permeability rates 3 times those of

FEP (Ref 4 ). This conclusion seems supported by tests run at JPL (Ref 19).

In 24-hr tests run st 70°F, TFE had a N204 permeability rate of 2.4 mg/in2/hr

compared to the FEP rate of 0.66 mg/in2hr.

Bes&des permeability problems, JPL has recently found stress-cracking

problems with bladders made of a Teflon laminate (Ref 32). As discussed in

Chapter III, specimens of the standard Teflon laminate bladder material planned

for the Mariner Mars 1971 spacecraft were stretched to failure while immersed

in various solvents including N204. Both biaxial and uniaxial tests were

performed. It was found that the standard laminate was highly sensitive to

N204 stress cracking. Because of this, JPL also tested a codispersion laminate

to determine sensitivity to N204, The standard laminate consisted of a layer

of TFE 30 Teflon covered with a layer of FEP 120 Teflon. The codispersion

laminate consisted of a layer of FEP 9511 Teflon sandwiched between layers of

a Teflon codispersion of 80% TFE 30 and 20% FEP 9511.

JPL deduced the following results from their _ests:

"(I) All solvents including N204 significantly reduced the ultimate

properties of the standard laminate, which indicates that this

material is highly sensitive to solvent-stress-cracking.

(2) Codispersion laminate resists solvent-stress-cracking.

(3) A study of the solvent sensitivity of construction materials, FEP

120, FEP 9511, and TFE 30, revealed that only FEP 120 is significantly

solvent-sensitlve. This material, not used in codispersion

laminate, is a major component of standard laminate and must

therefore be labeled as the dominant contributor to the solvent

sensitivity of standard laminate. This is further substantiated

by the experimental observation that surface crazing, which precedes

the failure of the standard laminate in solvent, o_=ur_ in FEP 120.
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(4) The solvent sensitivity of standard laminate is revealed only

during immersion testing. Removing the specimens from the test

solvent and air-drying them results in a recovery of their

initial proFerties.

(5) Both codispersion and standard laminates experience an immediate

reduction in ultimate properties upon exposure to solvents,

a_though the effect is more critical with the standard laminate.

With further exposure, both codispersion and standard laminates

undergo a recovery in ultimate properties. The codispersion

laminate achieves or surpasses its initial properties, while

the standard laminate, even with some recovery, displays

significantly lowered properties as compared to its initial

properties.

(6) Codispersion laminate has superior flex fatigue properties as

compared to standard laminate.

(7) Crystallinity variation in the Teflon material did not affect

the mechanical performance of either standard or codispersion

laminate. It was believed that large increases in crystallinity

could lead to brittle failure."

Thiokol-RMD attempted to develop a positive expulsion bladder material

resistant to N204 (Ref 60). This material-consisted of a lamination of

electroformed gold and carboxy nitroso rubber (_NR). The gold was added

to make the laminate as impermeable as possible. In a series of compatibility

tests, Thiokol found the gQId/CNR laminate to be fairly resistent to N204.

Further data on CNR with-N204 was obtained by TRW in compounding studies

to develop polymeric bladder materials (Ref 26). As a result of these studies,

TRW chose a HYSTL resin cured TFE Teflon reinforced CNR compound, designated

Compound 288-3, as their prime candidate. This new compound exhibited

resistance to N204 attack comparable to similar CNR formulations but had

superior permeability characteristics.
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At high temperatures, all non-metals are apparently incompatible with

N204, In pre-_ereening tests to select a bladder material for a steri]i:_al)le

propulsion system, Martin Marietta immersed different non-metals in dry N204

(H20 _ .03%) at temperatures of 275°F for periods up to 88 hours (Ref 28).

All rubbers (butyl, EPR, and nitroso rubber) either blistered, ignited or

completely dissolved. Both TFE and FEP Teflon showed losses in strength of

about 7% and changes in elongation up to 50%. It was also noted that the N204

washed out particles of Teflon which caused the N204 to turn milky. Kynar

was severely attacked. Although Teflon did fare better than the other non-metals

tested, no non-metal was considered compatible with N204 at the high temperature.

Conversely, aluminum oxide and beryllium oxide ceramics were immersed in dry

N204 at 275°F for 600 hours with no sign of chemical attack and no increase

in weight (Ref 58).
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A. COMPATIBILITY SUMMARY

The compatibility of both metals and non-metals with F2 is summarized in

Table I0, as determined by interpreting available compatibility information.

Specific references used in this determination are listed in the table. Compati-

bility of a material with F2 was based on the criteria that the material be

essentially unaffected by static and dynamic (impact:, flow, etc.) ]/2 exposure

(negligible corrosion for metals and negligible reaction and loss of physical

properties for non-metals): listing of a material was based on the same

criteria used for the other propellants. The compatibility ratings presented

in Table i0 are based on the uxtent to which the propellant affects the

material.

!
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B. GENERAL DISCUSSION

Fluorine_i_ one of the most powerful oxidizing agents known and will react

with practically all organic and inorganic substances. The activation energy

to initiate combustion of materials is much lower with fluorine than with any

other nonfluorine-containlng oxidizer, and many materials will react spon-

taneously on exposure to fluorine. Whether a substance will burn spontaneously

on exposure depends on the conditions of the exposure. If the exposure

conditions are such that the required activation energy is available and not

dissipated quickly, ignition will occur. Activation energy can be supplied

by chemical, thermodynamic or mechanical means, singly or in combination.

Energy supplied by pressure, temperature, impact, fzictlon, or a high flow

velocity may cause the spontaneous combustion of materials when exposed to

fluorine. The dissipation of activation energy is dependent upon a material's

properties and/or shape. Materials with high thermal conductivity have a

tendency to resist ignition with fluorine because the heat of reaction can be

easily dissipated. The ratio of surface area to mass will also influence

whether a material will ignite and be consumed when exposed to fluorine. If

this ratio i_ very large, such as for powdered metal, the heat of the surface

reaction may initiate combustion and the entire material may be consumed because

of the reduced heat dissipation capability. Therefore, the compatibility of

a material with fluorine depends to a large degree upon the application and

operating conditions.

Irrespective of the application considerations discussed above, certain

materials do show more compatibility with F 2 than others. For instance, most

metals show a high degree of compatibility with F 2 while practically all non-

metals are totally incompatible with F 2. This differentiation can-be attributed

to the type of surface re,ation which occurs. For most metals, reaction with

fluorine produces a tenaciously attached fluoride film on the surface which

forms a protective barrier against further reaction. No such pnotective £ilm

is formed with non-metals, however, so that the non-metal is eventually reacted

away. The higher thermal conductivity of metals compared to non-metals also

contributes to the lower re,activity exhibited by metals. The energy created

when the fluoride film is initially formed on the Tr_etal surface is easily dis-

sipated; no such dissipation is available when the surface of the non-metal reacts.



9O

Even though fluorine presents one of the worst materlals/propellant

reactivity problems, other compatibility problems do not exist, e.g.,

fluorine exhibits excellent thermal stability and resistance to catalytic

breakdown. Therefore, when considering materials for use with F2, the

prime concern is reactivity.

i. Compatibility with Metals

According to TRW (Ref 4), practically all metals show a high degree

of corrosion resistance to F 2. TRW states that this corrosion resistance

is due to the formation of a protective fluoride film which is initially

formed on the metal surface. The effectiveness of the protective film

is based, to an extent, on the solubility in fluorine of the various metal

fluorides forming the film. TRW believes that an equilibrium between the

reactive rate, forming the films, and the solubility rate, dissolving the

films, is reached after a time, thereby creating a steady but minimal

corrosion rate. TRW rated II00, 7079 and 6061 aluminum, 304, 316, 347,

AM 350, 410, 420, PH 15-7 Mo, and Carpenter 20 stainless steel, A-nickel,

brass, copper, magnesium alloys HK-31, AZ-31, and HM-31, and Monel as

acceptable for service with liquid fluorine. TRW considered a metal

compatible if it had a corrosion rate <I mil per year and didn't cause

decomposition. The TRW ratings were based on literature surveys conducted

as of 1967.

Further data on the protective nature of fluoride films is presented

by Fink and White (Ref 85). According to Fink, a fluoride film will offer

protection to the parent metal as long as the film is not volatile at the

temperature under consideration. Therefore, metal fluorides which are

vol:_tile at low temperatures probably do not give protection against liquid

fluorine (LF2) and definitely do not give protection against higher

temperature gaseous fluorine (GF2). The melting or sublimation points of

selected fluorides are listed in Table II. 'this information provides an

indication of the compatibility of the parent materials.

°
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Table II Melting or Sublimation Regions of Selected

Fluorine Compounds (Ref 85 and 86)

PROBABLY INCOMPATIBLE

Below

-70°F

CF4

BF 3

SiF 4

FF3

PF5

SF6

AsF 5

-70°F to

70°F

70°F to

250°F

250°F to

_50°F

AsF 3

WF 6

GeF 4

TeF 6

SeF 6

MoF 6

SbF 5

UF 6

NbF 5

TaF 5

VF 5

PtF 6

SbF 3

TiF 4

AgF

PROBABLY COMPATIBLE

850°F to

1700°F

SnF 4

BeF 2

BIF 3

BIF 5

CrF 4

CuF

PbF 2

PbF 4

LiF

MnF 2

HgF 2

KF

AgF 2

ThF 4

ZnF 2

ZrF 4

Over

1700°F

TIF 3

AIF 3

CoF 2

CrF 2

CrF 3

CaF 2

CdF 2

CuF 2

Fe_'2

MgF 2

NiF 2

NaF

J

it
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Additional information on metal fluoride films has been reported by

Fester (Ref 62). According to Fester, film formation or corrosion can be

expected to occur when clean metals are exposed to fluorine. With pure fluorine,

a fluoride film is formed on the metal surface (about 75% of the limiting film

thickness is formed after 15 minutes exposure at one atmosphere). This fluoride

film essentially becomes a part of the metal surface rather than being attached,

and very little additional reaction occurs with pure fluorine. However, if

moisture is present, corrosion occurs. The moisture reacts with fluorine to

form hydrogen fluoride, which attacks the metal film and the metal itself.

Because the film immediately reforms, a cycle is set up in which the base

metal is succes_fully attacked or reacted awa_y. This process continue_ until

either the hydrogen fluoride or the metal is exhausted; thus, the provision

of a cle_n, dry system is stressed. It should be noted, however, that hydrogen

fluoride is a solid (FP= - l17°F) existing as frozen particles in liquid fluorine.

Because of this, no HF attack will occur until the temperature is sufficient to

liquify the HF. Fester further states that nickel and monel have demonstrated

the best performance over the widest ranges of temperature and pressure (-320

to 1200°F and 0 to 1200 psig); but, for many operating conditions, other metals

are quite suitable. (Monel is generally used in systems employing hydrogen

fluoride.)

Most of the reports published up through about 1967 present essentially

the same material compatibility information. This includes the reports by

TRW, DMIC, Douglas, and Schmldt (Ref 4,5,61 and 63). The co,_on data referred

to in these reports were obtained primarily by NASA-Lewis_ Air Products, and

Allied Chemical (Ref 63 thru 66).

The fluorine compatibility testing conducted by NASA-Lewis (Ref 63 )

consisted of static exposure tests conducted in 1954, metal ignition temperature

tests conducted in 1958, and dynamic compatibility tests conducted .in 1962.

For the s_atic tests, various metal test specimens were exposed alternately

to LF 2 and GF 2 for periods up to 3½ mo_ths. The test specimens consisted of

35-0 and 525-0 aluminum, 321 and 347 stainless steel, A-nickel, and low-leaded

brass tubes. Upon completion of exposure, only a small weight gain for each

zi

!
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apeclmen was reported. This was attributed to the formation of the fluoride

films. Metallurgical examination showed no signs of intergranular corrosion

except in the case of the nickel specimen. However, this corrosion was

considered negligible for the time period involved. The physical appearances

of the test specimens were reported by the researchers as follows:

"(I) Both exposed ,nd unexposed surfaces of nickel appeared identical.

(2) Both aluminum samples appeared considerably lighter in color but

appeared unchanged otherwise.

(3) Iridescence that occurred in some areas of the stainless steels

indicated the presence of fluoride films. This was most prevalent

in 347-series steels; however, occurrence was not general in test

specimens.

(4) The low-leaded brass was lightly covered with a reddish film that

was not continuous, but generally covered the entire surface."

There was no visual difference reported between those portions of the test

specimens exposed only to the gaseous phase and those exposed to both liquid

and gas, nor was the gas-liquid demarcation line detectable on the specimens.

The NASA-Lewls metal ignition tests were performed to determine the

ignition temperatures of metals in F 2 atmospheres (Ref 6_. For these tests,

wires of various metals were heated electrically while exposed to F 2.

The approximate ignition temperatures found for the metals tested are presented

in Table 12 . Use of these metals should, therefore, be limited to temperatures

considerably below those indicated.

For their dynamic compatibility tests, NASA Lewis ran flow tests with

various metals to see if F 2 flow greatly affected fluoride film formation

and corrosion resistance (Ref 63). Specimens of several metals.(nickel,

stainless steel, aluminum, and brass) in various configurations were

exposed to LF 2 under controlled conditions of flow and pressure. Rigid

control was maintained to ensure cleanliness of both the test system and

the specimens. The test specimens were fabricated in three basic configura-

tions_ orifices for producing high velocities; flat-faced plugs for flow impact

tests; and triangular wedges for turbulence effects and exposure of sharp edges
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Table 12 Approximate Ignition Temperature of Various Metals in GF2(Ref 64)

Metal Ignition Temperature, °F

Aluminum _ove Melting Point

Copper 1275

Molybdenum 400

Monel 740

Nickel 2120

302 Stainless 1255

Tungsten 540

and corners. No measurable physical erosion or chemical attack occurred with

any of the test specimens even at flow velocities up to 400 feet per second

at a temperature of -320°F and pressures up to 1500 psig,

In both 1960 and 1962, Air Products reported results of F2 compatibility

tests conducted for the Air Force (Ref 65). The tests reported in 1960

consisted of static immersion tests, stress corrosion tests, tensile rupture

tests, flexure tests, and impact sensitivity tests. For the immersion tests,

specimens of various metals were statically exposed to LF 2 at one arm for

periods of time ranging from a few hours to two weeks. No H20 (i.e., HF)

content was reported for the test fluorine. The metals tested were 1100,

2017, 5052, 6061 and 7079 aluminum; 304, 316, 347, and 420 stainless steel;

PH 15-7 and AM-350 hlgh-strength steel; nickel, Monel, 30% and 10% Ni

cupro-nickel, 6AI-4V and 5AI-2.SSn titanium, HK-31 and AZ-31 magnesium,

copper, and various brasses. Average corrosion rates less than one mil/yr

were measured for the 2017 AI, 5052 AI, both titaniums and casted brass.

Those metals with corrosion rates between 0.5 and 1 mil/yr were II00 AI, 6061

AI, 7079 AI, AM-350 steel, Monel, 30% Ni cupro-nickel, both magnesiums and

yellow brass with the rest of the specimens having rates less than 0.5

mils/yr but not under 0.I mil/yr.

For the stress corrosion tests, curved bars of the metals used in the

immersion tests were stressed to various levels up to their yield strength and

then submerged in LF 2 for up to 15 days. Dye-penetrant and power-optical

inspection revealed no sign of either corrosion or stress cracking.

i
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For the tensile rupture testsj titaniumt brass, copperj Monel_ and

aluminum test specimens were ruptured while immersed in LF 2. No apparent

reaction was reported except in the case of the titanium specimens. Of six

tests performed with titanium, one specimen was observed to have ignited.

The flexure tests consisted of flexing thin metal strips.in LF 2 once

per second for up to 6 hours; the test metals used were copper, brass,

aluminum and blonel. No increase in corrosion resulted, indicating the

flexibility and resistance of the fluoride film.

The 1950 impact testa conducted by Air Products consisted of impacting

both aluminum and titanium samples with various striker geometries (flat,

pointed, hollow, etc). Stainless steel and aluminum strlker_ were used for

the aluminum tests while the tiCanlum samples were impacted with Monel or

titanium strikers. Impact levels ranging from 2.6 to 61 ft-lbs were employed.

Out of 12 specimens, only one aluminum sample ignited, With titanium, however,

reaction occurred with 31 of the 51 specimens tested, thus indicating that

titanium might be shock sensitive in LF 2.

The F2 compatibility data presented by Air _Products in 1962 (Ref 65)

conslsted of long term static immersion test results. For the evaluation,

4.2 square-inch test specimens of various metal alloys were immersed in LF 2

for one year. Five specimens of each alloy were used. The alloys tested were

304 and 410 stainless steel, PH 15-7 steel, Monel, pure copper and nickel,

Ii00 and-6061 aluminum, 6AI-4V and 5AI-2.5Sn titanium, and AZ-31 and HM-31

magnesium. Upon test completlon, average corrosion rates (based on weight

change) of less than 0.0035 mils/yr were reported for the 304 stainless,

PH 15-7 (recorded rate of .001), copper, nickel, and Monel specimens. The

410 stainless, II00 and 6061 aluminum, both titaniums, AZ-3_ magnesium, and

HM-31 magnesium specimens had average corrosion rates just under 0.063, 0.21,

0.28, 0.35, and 0.68 mils/yr, respectively. From these data, it would seem that

the earlier (1960) Air Products static immersion test data were not truly

representative of actual corrosion rates of metals e_posed to F 2. The higher
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corrosion rates reported for the earlier tests were probably due to either

having contaminants such as HF present in the fluorine, or more likely, the

short test times employed. _e weight changes measured in the earlier tests were

due to fluoride film formation and were, therefore, not reprQs_ntative of steady

state fluorine corrosion.

Allied Chemical reported results of exposing various metal alloys to high

temperature fluorine gas (Ref 66). For t'ese tests, ll00, 2024, and 51_4

aluminum, MIA, AZ81A, and AZ91C magnesium, Monel, A-nickel, and 304L stainless

steel specimens were exposed for 5 days to fluorine gas, ranging in temperature

from 80 to 1000°F. At 80°F, corrosion rates ranging from zero to 0.3 mils/yr

were measured for all of the alloys. However, at 1000°F all specimens gave

rates greater than 1 mil/yr. The approximate temperature range at which a

corrosion rate greater than 1 mil/yr first became evident was between 400 and

670°F for II00 aluminum, 2024 aluminum, and Monel; between 65_and 1000°F for

MIA, AZ81A, and AZ91C magnesium, 5154 aluminum, and A-nickel; and between 80

and 400°F for 304L stainless steel.

Martin Marietta conducted both torsion and tensile fracture tests on

6AI-4V and 8AI-IM_I_ titanium specimens in 1966 (Ref 67). For the torsion

tests, four tensile specimens of 6AI_4V titanium were twisted to fracture

while immersed in LF 2. No detectable reactlon-occurred. For the tensile

tests two 6AI-4V specimens and four 8AI-IMo-IV specimens were pulled to

fracture while immersed in LF 2 pressurized with helium. For the 8AI-IMo-lV

specimens, pressures ranging from zero to I00 psig were employed. Again,

no reaction was observed.

Since 1967, additional F 2 compatibility data has been reported. During

the first phase of a study for the Air Force, McDonnell Douglas conducted

ABMA open cup impact tests on various alloy-oxldizer combinations (Ref 57--).

These tests were described previously in Chapter VI. Only 2014-T6 aluminum

was tested with LF 2. Discs, 40 mils thick, were impacted at 70 ft-lb. Out

of twenty tests conducted at -320°F, there were zero reactions.

!

J
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McDonnell Douglas also reported the resul_a of galvanic corrosion atudlaa

with LF 2 (Raf 68 ). Varloue m_t_l couples were exposed to LF 2 h_vlng low

eoneentratlons of HF to see if galvanic corrosion could be detected. The metal

couples tested were Ni-200 with 2014-T6 AI, 2014-T6 with 316 SS, Ni-200 with

316 SS, Ag with Invsr 36 (nickel alloy), 304L with !aver 36, Ag with 304L SS,

and II00 AI with• Cu. The containers for both specimen couples and F2 were made

of 316 stainless steel. Test time and temperature were 21 days st -320°F. All.

of the metal couples had corrosion r_tes gre_ter than usually reported for these

alloys when tested alone. For instance, the highest corrosion rate of 0.25

mils/yr was found for the ll00 AI specimen coupled with Cu. The lowest rate

was 0.01 mils/y= for the 304L SS specimen coupled _ith Ag. Besides ordinary

corrosion, fairly severe pitting occurred with both the 2014-T6 AI coupled with

316 SS and the Ag coupled with Invar 36 specimens. Also, the 2014-T6 showed

migns of intergranular corrosion. Both the Invar 36 and 316 SS showed none of

these effects. From these results, the authors felt that galvanic corrosion

effects will definitely be present for metal couples exposed to LF 2 if these

couples are composed of metals differing in electrode potentlal-by a fairly

large amount. The following relative-galvanic corrosion series was presented

by the authors for the metals tested:

304L stainless steel

Copper

316 stainless steel Increasing

Invar 36 Anodic

Nickel-200 Behavior

Silver

2014-T6 aluminum

II00 aluminum

Therefore_ use of either 304L or Cu with either 2014 or II00 AI-should probably

be avoided to minimize _alvanic corrosion effects.

As part of Boeing's fracture toughness and flaw growth tests, discussed

earlier in Chapter VI_ 2219-T851 AI and6AI-4V Ti as-welded weldment specimens

....i,_r__ - _ ,i

t
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were tested with LF 2 at -320°F and 450 psig (Ref 54). of the two alloys

tested_ the 2219 weldments showed the lowest threshold stress intensity

values. For this alloy, a threshold stress intensity of 15.5 Ksi_n.

was obtained while for the 6AI-4V Ti weldments, an intensity of 28 KsiV_.

was reported. Both of these values are high enough go conclude that no

functional problems should exist for pressurized LF 2 tanks manufactured from

either alloy.

Some of the most recent information on F2 compatibility has been reported

by Martin Marietta (Ref 69). Twelve screen specimen assemblies, representing

caodldate materials and fabrication techniques used for capillary screen

devices, were manufactured for test with LF 2. The specimen assemblies con-

sisted of a cylindrical, 325 x 2300 mesh, Dutch twill type stainless steel

wire cloth supported by a coarse 80 mesh stainless steel inner screen.

Both resistance and fusion welds were employed in the fabrication. The two

layers of screen were fusion welded to a metal cap plate at one end and a

metal washer plate at the other end. No weld rod was employed. Cleaning

techniques for fine mesh screen systems to be used with fluorine were

evaluated by exposing the cleaned screen specimens to GF 2 passivation and

then immersing the assemblies in LF 2. Normal chemical cleaning for fluorine

systems, high-temperature vacuum annealing, and chemical cleaning followed--

by annealing were evaluated. All three cleaning procedures were successful

since the test assemblies were successfully passivated and stored in LF 2

for up to 35 days. Based on the results obtained, a fluoride film buildup

or corrosion rate between 3.5 x 10-6 and 6.35 x 10 -6 in/year was calculated

based on the assumption of a logrithmic rate mechanism. Using microscopic

examination, no surface film was observed on a cross-section of the 325 x 2300

screen after test, nor was any evidence of attack or screen deterioration

apparent. Based on these limited data, it appears that high surface area, low

thermal capacity systems, such as capillary screen systems, can be successfully

used with F 2 if properly cleaned and passivated.

2. Compatibility with Non-Metal_

According to TRW (Ref 4), non-metals are totally unacceptable for F2

service since al_ _on-metals are severely attacked when exposed to F 2. Only



qg

Teflon under static conditions has shownsomecompatibility. According to TRW,

Teflon apparently reacts with F 2 to break down its polymers and form unsaturated,

low molecular weight fluorocarbons which do not adhere to the surface. Any

flow of the propellant or movement of material over the Teflon surface will

remove these fluorocarbons which are thus valueless as a protective film.

Therefore, for any dynamic applications, Teflon would be unsuited.

Air Products, in summerizing test results prior to 1963, classified

various non-metals for static use with both GF 2 and LF 2 (Ref 65 ). The Air

Products listing for some of the more common non-metals i_ shown in Table 13.

Teflon would seem to be compatible. Also, fluorinated hydrnearhon= such as

KeI-F may be usable but at low pressures. Rubbers would seem to be unusable.

In a series of tests conducted by NASA-Lewls (Ref 170 ), the compatibility

of various non-metal materials with F2 and 02 mixtures (FIOX) were investigated.

Both dynamic and static tests were run utilizing both gaseous and liquid FLOX.

The concentration of the F2 in the FLOX propellant was varied up to 100,% F2.

A summary of the type of reactions observed between the non-metals and fluorine

is presented in Table 14. Basically, the dynamic tests consisted of flow

tests at high pressure. _ren the highly fluorinated and chlorinated hydrocarbons

such as Teflon, KeI-F, and CPE, were incompatiblp with F 2 under dynamic conditions.

However, it took a flow velocity of 230 to 280 feet per second for both the

Halon TFE and Teflon TFE samples to react.

Further dynamic tests with non-metals have been reported by McDonnell

Doublas (Ref 71). Type 316 stainless steel discs, coated on one side with

KeI-F 90, petroleum Jelly, polyurethane, and acrylic lacquer, were impact

tested in LF 2. After applying the organic coatings, the specimens were exposed

to gaseous fluorine for one hour at one atmosphere at 77°F. Following passiva-

tlon, specimens were impact tested in a modified ABMA tester in liquid fluorine

at -320°F at 72 ft-lb energy lovel. All impacts yielded reactions ranging from

moderate to extreme, indicating that all organic residues were impact sensitive.

One of the petroleum jelly coated specimens and one of the acrylic lacquer

coated specimens reacted violently in the liquid fluorine before actual impact.

Reactions occurred spontaneously after about five seconds contact with liquid

fluorine. Neither the KeI-F 90 nor the polyurethane foam specimens reacted

prior to impact. Under another program, McDonnell Douglas found that Viton
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Tabh. _13 Compatibility of Various Non-Metals for Static Fluorine Servlce(Ref 65)

Non-Metal

Ruby (AI203)

Alumina

Asbestos

Graphite

Charcoal

Teflon

KeI-F

Neoprene

Rubber

Polyvinyl Chloride

Plexiglass

Tygon

Polystyrene

Polyethylene

Polyester Plastics

•(-320°F)LF 2

1 Arm 1500 psia

A A

N,D. N.D.

N.D. N.D.

N.D. N.D.

N. Do N.D.

A A

A B

D N.D.

N.D. N.D.

N.D. N.D.

A B

A B

N.D. N.D.

N.D. N.D.

N.D. N.D.

1 Atm

A

A

A

A

C

A

A

A

C

A

A

A

B

B

C

(Rm Temp)GF 2

1500 psia

A

N.D.

N.D.

B

N.D.

A

B

B

N.D.

B

B

B

N.D.

N.D.

I N.D.

NOTE:

A = No reaction

B = Reaction but no burning

C = Burning

D = Explosion

i N.D. = No Data

i
I
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Table 14 Reaction8 of Non-Metals with Fluorine (Ref 70)

,, ,i

Type of Reaction

'SmOoth Burnin8 Explosive Burning

Material Gas Liquid Gas Liquid

(a) Static Tests

Vlton A X

Trifluoropropyl Rubbers

LS-53 X X

LS-63 X

Tygon X

Neoprene X ,,

Polyurethane Foam X

Graphite X

Nylon X

Po lyet hyl erie X _-

Buna N X

Bakel ite X

(b) Dynamic Tests

Teflon TFE X

Halon TFE X

'_ KeI-F 81 X "

Plaskon 2400 (CTFE) X .

Halon TVS (CTFE) X

--_,._ Nickel-filled Teflon X

Teflon FEP X

KeI-F 81 amorphous X X

KeI-F 82 X X
/

Lucite X

Rulon A(MoS 2 filled TFE) X

Kynar X

Vltol-_ A X X

Chlorinated Polyethylene

I:!E_ CPE 401 X

CPE 402 X

CPE 403- XCL X
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reacted violently upon exposure to GF 2 at 500 psi and -240°F (Ref 57 ),

From the data presented so far, it would seem that Teflon is probably

compatible with fluorine under static conditions. However, if Teflon contains

organic solvents such as trlchloroethylene or Freon 113 used in cleaning operations, .

it may then be totally incompatible with F2. On the basis of tests performed on

Teflon gaskets soaked in either trichloroethylene or Freon 113 and then exposed

statically to LF2, Boeing found that the Teflon became incompatible (burned)

if it absorbed (or contained) more than 0.35% trichloroethylene (Ref 72).

However, after absorbing as much as 0.85% Freon 113, no reaction was observed

between Teflon gaskets and LF2, indicating that this solvent is more compatible

with LF 2 than trichloroethylene. Tests were also conducted to see if solvent

concentrations could be reduced. Teflon gaskets containing as much as 0.43%

trichloroethylene were vacuum-oven dried for up to four hours. After this period

of drying, the trLchloroethylene concentration was reduced to only 0.06%.

Therefore, this technique seems applicable for removing certain types eL trace

impurities from Teflon prior tc fluorine exposure.

i
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A. COMPATIBILITY SUMMARY

The compatibility of non-metals with OF 2 is summarized in Table 15. Metals

were not included since there is little difference between the compatibility

of metals with OF 2 and their compatibility with F2. Therefore, the compatibility

of metals with F2, presented in Table I0 of Chapter VII, applies equally to the

compatibility of metals with OF 2. This approach was not applicable to non-metals

since differences existed in the compatibility of non-metals with OF 2 and F2,

discussed in Section B of this chapter. A non-metal was included in Table 15

on the basis of direct data, data on a similar material, or data on the material

with a similar propellant. The ratings reflect the extent to which the

propellant affects the non-n_tal.
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B. GENERAL DISCUSSION

Oxygen dlfluorlde is a powerful oxidizing agent very similar to F 2 and the

halogen fluorides. It is generally a stable compound in that it neither detonates

by sparking, nor thermally decomposes at ordinary storage temperatures (OF 2 will

begin to decompose thermally at approximately 470°F (Ref 4 ). Therefore, the

only problems connected with its storage are ones caused by its high reactivity

(corrosion, etc.) and not its decomposition.

When considering the high reactivity of OF 2 and its effects on storage

materials, information on F 2 is of importance. Both OF 2 and F 2 behave almost

identically in regard to their capability for reacting with practically any

inorganic or organic compound. Although OF 2 is generally considered less

reactive than F 2 (Ref 4 ), most authors (Ref 62 and 73) usually recommend

that the same storage materials and techniques used for F 2 should also be used

for OF 2 since-dlfferentlation between the reactivity of the two oxidizers is

difficult. In general, it can at least be said that materials considered

compatibile with F 2 will be as compatible or more compatible with OF 2 (Ref 5 ).

Therefore, the materials compatible with fluorine, as presented in Chapter VII,

would be considered suitable for use with OF 2. These data are not reiterated

here; instead, only data showing differences in compatibility between OF 2 and

F 2 are presented.

I. Compatibility with Metals

The information presented in Reference 39 and References 73 through 80

was reviewed in evaluating the compatibility of metals with OF 2. These

references summarize static immersion, dynamic flow, tensile, and impact

testing of metals with OF 2. Only References 76 and 77 contain data differing

from those found with F 2. Unexpectedly, the differences tend to show better

compatibility with F 2 than with OF 2.

Douglas conducted impact sensitivity and corrosion tests in investigating

the compatibility of varlous storage metals with OF 2 (Ref 76). The results

of the impact tests do not disagree with similar results obtained with F 2.

However, some of the corrosion results do disagree with results reported for

F 2. Lox-clean metal discs were _ested in an open cup ABMA type impact tester
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at -320°F. Up to 20 tests per metal type were conducted to determine if any of

the test metals would ignite and burn upon impact when in contact with OF 2.

The corrosion tests consisted of two types. In the first case, Lox-clean metal

specimens were placed in 316 stainless steel containers filled with liquid OF 2
O

at -II0 F. The tests lasted one year; corrosion rates were determined by change

in weight. The second test series was similar to the first, except that teat

duration was only one day and the OF 2 used was doped with 1% H20 to determine

the effect moisture would have on OF 2 corrosion. In both corrosion tests, none

of the samples were first pasaivated with OF 2 or F 2.

Aluminum alloys (II00, 2014, 2024, 2219, 7075, etc), stainless steels

(301, 316, 347, AM350, AM355 and PH 15-7), nickel and copper alloys, and

different miscellaneous metals (SAI-2.SSn Ti, Mg, Ta, and columbium-A) were

selected for the impact tests. All the aluminums, stainless steels and nickel

and copper alloys showed no signs of ignition when impacted at 72 ft-lbs.

However, both the Ti and Mg alloys flashed upon impact and appeared melted.

The Tn and _ samples showed no impact sensitivity.

These metals were also teated for corrosion. All materials appeared

compatible except for 5AI-2.5Sn titanium. Based on testing, titanium alloys

seem to have excellent corrosion resistance to F 2. Why this particular

alloy exhibited incompatibility with OF 2 cannot be readily explained unless

contamination was present.

TRW presents the results of tests conducted at Douglas which investigated

corrosion of metal orifices when subjected to liquid OF 2 flow (Ref 77 ). The

results showed that II00 alumiaum is not very resistant to this condition, but

Monel 400A, 316 and 347 stainless steel, nickel-200, 2014 and 6061 aluminum,

columbium, and Cufenloy-40 show good to fair reslatance. TRW further states

that aluminum alloys 2014, 2219, and 6061 are subject to intergrannular corrosion

adjacent to welds, but that none of the metals are prone to stresa-corroslon

zracking in OF 2. It would appear that some aluminum and copper allo,s are

unsuitable for dynamic OF 2 _ rvice. This is in direct opposition to the

dynamic flow tests conducted at NASA-Lewls, as discussed previously in Chapter

VII. In the NASA-Lewis tests, both aluminum and copper orifices were essentially
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unaffected by LF 2 flow (Ref 63). Therefore, either aluminum or copper alloys do

react differently with OF 2 than with F 2 or some other factor, such as conta,_na-

tlon, may have been present in the Douglas tests.

2. Compatibility with Non-Metals

The information in Ref 73 through 81 plus Ref 40 was used in evaluating

compatibility of non-metals with OF 2. As with the metal data, any compatibility

information which differs from that for F 2 is presented. In general, the

non-metals are more compatible with OF 2 than wltb F2.

In flow tests run at -320°F and 7 psia for up to 5 hours in duration,

Allied Chemical exposed small orifices (exposure area approximately 3 to 2 in 2)

of Teflon, Mylar, and Genetron VK and HL polymers to liquid OF 2 flowing at

0.85 ft/sec (Ref 74). No reaction was observed. The only effects noted were

minor weight gains of less than 0.9 mg in the Teflon and Mylar samples and

weight losses of approximately 3 mg in the Genetron samples.

In more recent dynamic flow tests, Allied Chemical exposed orifices made

out of various fluorinated plastics to liquid OF 2 flow at much higher pressures

and flow velocities than in the earlier tests (Ref 79). FEP and TFE Teflon,

TFE Halon, and Almac and Plaskon 2200 chlorotrlfluoroethylene orifices, 0.0135-in.

diameter, were tested at flow velocities up to 300 ft/sec and pressures as high

as 500 pslg. Upon test completion, none of the orifices showed any sign of

reaction or erosion and weight changes were minimal. On the basis of these

tests, Allied considered the test materials to be chemically compatible wlth

liquid OF2, even under the high pressure and flow velocity conditions.

TRW conducted compounding studies to develop and characterize elastomerlc

materials suitable for use as positive expulsion bladders with OF 2 (Ref 40).

As a result, TRW developed an alumina reinforced, peroxide cured CIS-4 poly-

butadlene as their optimum compound. This formulation was designated compound

202-1.

To verify applicability of the material for use as an expulsion bladder

for OF2, TRW conducted tensile rupture, expulsion, long-term static immersion

and permeability tests on compound 202-1. Specimens strained to breaking

while immersed in OF 2 at -109°F ignited. However, only 13% by weight was

consummed and the remaining m_terlal still retained its mechanical properties.
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In small scale expulsion tests conducted at -109°F, a 202-1 diaphragm went

through 40 expulsions without any apparent degradation. Specimens of 202-1

stored in both relaxed and bent conditions for 42 days at -109°F showed only

mino= mechanical property changes. Based on the test data, TRW calculated

a loss in strength of only 0.3% per year and a propellant loss rate due to

permeability of less than 0.1% per year for a 10-in. diameter bladder containing

OF 2 at -139°F. _is would seem to indicate that compound 202-1 could be used as

a bladder material for OF 2 service. However, any rupture or tearing of such a

bladder would have to be avoided to prevent triggering ignition of the compound

with OF 2.

em_
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A. COMPATIBILITY SUMMARY

According to the information available to date, no differences exist

between the compatibility of materials with fluorine and Flox mixtures containing

70%, or more, fluorine. Therefore, the compatibility summary for metals and

non-metals with fluorine, presented in Table 10 of Chapter VII, is also

applicable for Flox mixtures (>70% F2). One possible difference may exist

with titanium. Titanium alloys have shown a tendency toward shock sensitivity

with F2 and were rated as having doubtful compatibility. The same rating is

also applicable with Flox; however, compatibility with Flox is probably more

doubtZul since titanium alloys are definitely shock sensitive with oxygen.

l%la is especially true for Flox as the concentration of oxygen is increased.

As with fluorine and oxygen difluorlde, the primary concern with Flox is the

extent that the-propellant affects the material.

............... ,._....................... :.............. _...:__u ............ ., .____:_.._[.__. _ .___._-:,,,_

..... _
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B. GENERAL DISCUSSION

J_

Flax is almlxture of liquid fluorine and liquid oxygen. Typical mixtures

are 80% F2/20% 02 and 70% F2/30% 02 , although JPL has recently become interested

in a Flax mixture of 88% F2/12% 02 . Flax, like F2,1s capable of reacting with

practically any inorganic or organic compound. Therefore, most authors usually

recommend only those materials which have shown compatibility with LF 2 for

service with Flax. TRW, for instance, specifically states that any material

which performs well in LF 2 will also work in Flax (Ref 4 ).

i. Compatibilit_ wlth Metals

Essentially no information is available on the compatibility of metals with

Flax mixtures. As stated above, most authors Just recommend metals which are

compatible with F2, e.g., Schmldt presents only compatibility data on F 2 but

applies the reeults to Flax mixtures (Ref 63). Therefore, those metals recommended

as heing compatlble for F 2 service (Chapter VII) would also be compatible with

Flax mixtures. Since titanihm has exhibited a _endency toward shock sensitivity

with fluorine (Chapter VII) and is definitely shock sensitive with oxygen (Ref 5

and 82) titanium and its alloys are probably shock sensitive in Flax

(especially those mixtures having fairly high oxygen concentrations). Until

further information becomes available, the use of titanium in Flax systems

should probably be avoided.

2. Compatibility with Non-Metals

As with metals, very little specific information exists on the compatibility

of Flax mixtures with non-nmtals. About the only information available is

contained in a NASA-Lewis report describing compatibility tests performed on a

number of polymeric materials using various mixtures of fluorine and oxygen

in hath the gaseous and liquid states (Ref 70 ). Both dynamic flow and static

immersion tests were conducted. F 2 concentration varied up to 100%. All test

samples were first washed with soap and water, rewashed wlth an appropriate

cleaning solvent, and finally dzied with He. The results showed:

I) Reactions between Flax and polymeric materials under static conditions

are a function of the concentration of fluorine in the mixture.

........ _ " .............. . .... _"/./Jill ......... ,,.= ...............................................................................................................................
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Several materials which did not react with Flox under static conditions

were reactive under dynamic coJ_dltlons. In general, the higher the

flow velocity, the lower the fluorine concentration each material

withstood;

2) Generally, the unlmpregnated, highly fluorinated and highly chlorinated

materials were more compatible tha_materials containing atoms such as

hydrogen in their molecular st_sctu_e or materials impregnated with

some noncompatible additive. The fully fluorinated straight-chain

polymers, such as Halon TFE and Teflon TFE, were the most compatible

with Flox;

3) Materials with higher crystalllnity (orderly molecular alignment) were

more resistant to attack by Flox than the more amorphous materials;

4) A comparison between liquid (-320°F) and gaseous (30 ° to 70°F) test

results indicated that the liquid was more reactive at pressures Up

to 400 psig.
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