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SYMBOLS

a^ coefficients of the transfer-function denominator

b. coefficients of the transfer-function numerator

C. residues

C. pole-dependent part of C.

C. zero effected part of C.

c portions of factorized C. due to the zero z

D(s) transfer-function denominator (with K = l)

F(S) transfer function

F = [f..] system matrix
^-J

G = [g.j] control matrix
-̂j
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I unity matrix

J performance criterion

K steady-state gain

L = [a. .] regulator gain matrix
•*• J

N(S) transfer-function numerator

p. transfer-function poles

q weighting of the state in performance index

r weighting of the controls in performance index

r radius

s Laplace variable

t time variable

u error in forward velocity (= u • Vc)

u change in control variable



V command forward speed (equilibrium speed)

w error in vertical velocity

x state variable

z. transfer-function zeros

3 TTT transfer-function expansion coefficients
_L ^ _L J_ ̂  J..L. J-

e damping angle

6 change in elevator control deflection

6_ change in direct lift control deflection
r

6 change in thrust control deflection

^l,¥>2 angles, defined in figures 2 and h

V phase-angle contribution of the C. denominator
1\ Z 1Z

4>. phase angle of C.
1 1Z

Y error in glide-path angle

6 error in longitudinal attitude (pitch angle)

o. real part of p. (damping)

a real part of poles Pi,2 (damping of eigenmode l)

a real part of pair of zeros

a coordinate of the centers of zero loci circles on the real axiszm

to eigenmode frequency

co y natural frequency of eigenmode I

oj natural frequency of pair of zerosoz

to "eigenfrequency" of conjugate complex pair of zeros
Z

<jj "eigenfrequency" of pair of real zeros
Z
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SIMPLIFIED METHODS FOR INTERPRETING THE EFFECT

OF TRANSFER-FUNCTION ZEROS ON THE

TRANSIENT RESPONSE OF AIRCRAFT

Reiner Onken*

Ames Research Center

SUMMARY

Two simple methods are outlined for evaluating the effect of transfer-
function zeros on the system time response. The pole effects can also be
evaluated. These methods are useful for simplified analysis or creating
design criteria in terms of desirable regions of pole-zero locations.

The type of transfer function studied is limited to those of linear sys-
tems. Corresponding to ordinary longitudinal or lateral aircraft transfer
functions, the denominator polynomial is of fourth order and the numerator of
third order at most.

With the longitudinal motion of the aircraft- as an example, the methods
are used in the evaluation of optimal regulator control with respect to a
particular performance index structure.

INTRODUCTION

The dynamic behavior of a flight vehicle usually can be described by a
system of linearized differential equations with constant coefficients or by
the corresponding set of transfer functions. The use of feedback control in
multivariable systems makes it possible to modify not only the denominator of
the transfer functions, but also the numerator. This property is desirable
for it leads to the additional possibility of improving the vehicle's dynamic
behavior. As an extreme case, nonminimum phase effects (numerator roots with
positive real component), which occur rather often in aircraft transfer func-
tions, could be ruled out or at least be moderated by appropriate feedback
control.

Therefore, some work was directed toward the development of methods for
the investigation of the numerator roots based on illustrative frequency
domain techniques (refs. 1-U). These techniques provide an estimate of
changes in the numerator and denominator roots of the transfer functions as a
consequence of feedback loop gains. To establish design criteria in terms of
appropriate root locations, the effect of the zero locations on the dynamic
behavior, that is, time response, should be known. The time response appears
*National Research Council Associate.



to be most suitable for evaluations of system behavior, since the necessity of
an analytical formulation of the performance index can be avoided. System
time response may be obtained by resolving the transfer functions into partial
fraction series and taking the inverse term by term (residue calculation).
This procedure is well known, but it does not offer a means of showing trans-
parently what changes in the time response can be expected from certain pole-
zero modifications. Especially for multivariable systems, a more effective
procedure is required. Various pole-zero configurations have to be evaluated
to determine the effect of modifications on the corresponding time histories.

This report discusses simple methods that show the effect of zeros and
poles on the transient response so that root locations can be assigned for
certain desirable transient response behavior. Two basic methods will be
described: The first is based on the assignment of phase and magnitude of the
residues to the root locations; the second, which is easily applicable to air-
craft control systems, is based on a specific expansion of the transfer func-
tions, where each expansion term itself has a known transient response.

The application of both methods is restricted to a controlled element
transfer function with a fourth-order denominator and at most third-order-
numerator. This typifies either the longitudinal or lateral directional
equations of motion of an aircraft.

Implementation of the methods is discussed for the evaluation of an air-
craft optimal control system. The optimal longitudinal motion regulator with
respect to a particular quadratic performance index is evaluated for differ-
ent relative weighting between the states and the controls.

RESIDUE INTERPRETATION METHOD

Transfer Function and Transient Response Residues

The transfer functions investigated here are of the fourth-order denom-
inator and at most third-order numerator type. This is the structure of the
main open-loop aircraft longitudinal motion transfer functions as well as the
corresponding closed-loop transfer functions with constant feedback gains. If
uc is generally taken as the input and x as the output, the transfer
function becomes

(1)

Disgarding the case of multiple roots, in the frequency domain the response to
a step input can be written as a partial fraction expansion:

/\ (-pl)(~P2) ("Ps) (-Pit) (s-Zi )(s-Z2) (s-Zs)
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The inverse is
1+

(t) = I C. e"1" (3)X

i=o

The partial fraction expansion coefficients C^, weighting the different modes
involved, are

C± = lim [(s - pi)x(s)] (10

Thus
3

-Q _ £ V5! (C)

i- S c(Pi-Pu)/(-Pu)]
u=l

Normalizing the transient response vith respect to the steady state (K = l)
gives CQ = 1. The remaining residues "become

:i, • ci, (6>
where

The entire residue expression has been separated into two main factors C^p
and Ciz, similar to each other, where one part (Cip) consists only of pole
terms, while the other part (Ciz) contains all zero-affected terms. Thus,
covers the whole effect of the zeros on the residue.

The zero-affected portion C ẑ consists of products of fractions whose
factors are complex numbers in terms of the poles and zeros. They could be
drawn in the root plane as vectors from the different zeros to the pole p^
and the origin. For two zeros, four vectors would have to be investigated for
each residue. This is not convenient, and a different representation of the
zero effect on the residues is desirable. Furthermore, the representation
should illuminate zero regions of similar effect. Such a representation is
developed in the following sections.

The pole-dependent portion C^p has a reciprocal structure to that of
C-[z. Thus, the influence of the poles on the residues can be considered in a
way similar to that of the zeros.



Once the effect of the zeros and poles on the residues is known, the
time vector presentation is a helpful tool for putting together the. various
portions of equation (3) to determine the overall transient response (refs. U
and 5). There are two oscillatory eigenmodes for aircraft longitudinal con-
trol: the low-frequency phugoid mode and the fast short-period mode. Conse-

quently, there are two time vectors
xj and X3 at the time t = 0 (see
fig. l) in phase with Ci and C$ and
with a magnitude of twice Cj and Cs- 1

They rotate with time corresponding to
their eigenmode frequency, while

2 decreasing in magnitude as a result of
their eigenmode damping. The tran-

i g sient response for any time t, due to
—*• the residues C\ through C^ in equa-

PZ x tion (3), can be read from figure 1,
as the sum of the real portions of the

Xp4 time vectors. Thus, the purpose here
t=0 is to determine the change of the

residues (time vectors) in phase and
magnitude introduced by the zero-

Figure 1.- Residues and time vectors dependent numerators of the transfer
for given pole combination. functions.

t=0

-1.0

Phase Loci of the Residues

As already indicated, the residues must be considered in general as con-
jugate complex quantities, and they must be described by their phase and mag-
nitude for later use with the time vector representation. Therefore, the link
between the zero location and the residues is required before the overall cor-
respondence between the zero locations and certain desirable transient
response behavior can be established. Thus, the phase contribution to the
residues due to the zero locations is presented here in terms of phase loci in
the root plane for the following cases:

1. Pair of conjugate complex zeros
2. Pair of real zeros
3. Three zeros

Pair of conjugate complex zeros—The portion of the residue
influenced by the zeros is known from equation (6) as

Ci that is

C. =iz
\~Z2\

(7)

1The residues G£ and C^ are implicitly included in x^ and X3. They do
not appear explicitly, because they are given as the conjugate complex numbers
Ci and Cq.



Figure 2.- Definition of f\ and ^2

tan *. = const

The phase angle <f>i represents
the change in phase due to the zeros.
From the four vectors involved, as
shown in figure 2, the phase angle <f>
becomes

with V- = 0 for pairs of zeros. To

determine the loci of zeros that have
equal phase changes, consider

tan + tan
_ tan

tan (9)

If the definition of #i and Y^ i-s substituted from figure 2 into equation (9),
it can be shown that those loci are circles of the form

where

a - a )2 + u2 = r2z zm z (10)

to.
j = a. - Tzm i tan q

tan

zl,2 =

jo,

p. = a. + jco.•^i i d i

Figure 3.- Phase loci

These loci are illustrated in the
upper half plane in figure 3, where it
becomes evident that all circles
intersect the pole p^ and have their
center on the real axis. They degen-
erate to a vertical straight line
through p^ if <f>̂  is either 0, 27r,

or TT , 3ir, If the por-
tions of the circles on the left side
of pi correspond to the phase angle
<j>i, the right-hand portions corre-
spond to <f»i + IT. For each circle,
the angle ^i can easily be



determined as the angle between the real axis and the line connecting the
center of the circle with p^.

Thus, each pair of conjugate complex zeros lying on one of the circles
causes the same phase shift <^_ on the residue C^ as any other pair "of
zeros on the same circle. The intersection points of the circles with the
real axis correspond to double zeros. This yields the link between the case
of conjugate complex zeros and that one of a pair of real zeros.

Pair of real zeros—The phase angle fa for the case of real zeros is
also given by equation (8) (see fig. U). The loci of pairs of real zeros sat-
isfying the condition of equal phase changes are

(a _ a )2 _ -2 = r2 (11)
. z zm z

where

wia = a. -
zm i tan $.

zl 2 = 0 * £01 **• zZ Z

i = a. + jco.

Drawing it in a oz,toz plane (the
lower half plane in fig. 3), we
obtain a set of rectangular hyperbolas
with their asymptotes inclined by ^5°
to the real axis. For corresponding

—£ values of <j>^, the hyperbolas inter-
sect the real axis at the same points
as the circles for the case of conju-

Figure U.- Definition of "^ and ̂ 2 ga^6 complex pairs of zeros. Thus,
for pair of real zeros. considering both the base of conjugate

complex zeros and that of a pair of
real zeros, a certain range in the

residue phase angle will correspond to an area in the root plane, bounded by
the appropriate loci curves.

Three zeros—If the number of zeros is extended from two to three, the
equation for the residue portion affected by the zeros Ciz is slightly
changed to



C.- = eiz

3

n
V=l

-
(12)

Figure 5-- Phase shift
to third zero 23.

due

Considering the phase loci, there is
the same family of curves in the root
plane as already derived, with an
additional phase shift A<J>^ due to
the third zero; that is,

(two zeros)
(13)

where A^ can be easily derived for
the third zero moving along the real
axis, as shown in figure 5• There is
a discontinuity in A^ of IT, when
Z3 passes the imaginary axis.

Magnitude Loci of the Residues

As outlined previously, a mapping of the magnitude, as well as the phase,
of GI in the root plane by means of locus curves is required.. Following the
same line of reasoning as for the.phase effect of the zeros on C±z> one
obtains locus curves of higher order, which are too complicated for simple
geometrical interpretation (see appendix A). Therefore, the expression for
|Ciz| will be split so that it can be discussed partially by simple geometri-
cal means. Again, the cases of conjugate complex pairs of zeros, two real
zeros, and three zeros are discussed.

Pair of conjugate complex zeros—Following equation (7), the magnitude of
is split into

I j_zl 1 2

where
- zl - Z2

c2 =

Therefore, the two portions c\ and c2 are discussed separately and then their,
|Ciproduct |Ciz. The loci curves in the root plane for both

are circles (fig. 6) given, respectively, by
and again

and

(oz - a

(a - az

)2

)2

\2 =
zmj

)O 9
^ = r^zm2' Z2

(15)

(16)



where

Figure 6.- Magnitude loci of C]..

1 - c
2 '

a.

1 --c.

0).

1 - c2 '
0)

1 - c.

2 = (a2 + u,2). ' W . / •

1 " (1 - c2)2
.2 =
22

= (

(1 - c2)2

Both families of circles are very similar: the circles for 02 represent the
symmetrical image about the real axis of those with the same value for GI-
Thus, only circles for GI are shown in figure 6; the straight line represent-
ing C2 = 1 is added to show the symmetry.

The geometrical structure of the circles becomes obvious by considering
the following properties (stated for the case of GI only):

1. The center points of the circles given by azm and tozm lie on the
straight line passing through p^ and the origin.



2. The radius of the locus circles for c^ = a and GJ = I/a is the
same. The corresponding center points lie symmetrical to the point
midway between p^ and the origin. The midpoint is on the locus
circle for cj =1, which has degenerated to a straight line and
intersects the real axis at

(IT)

The line for GI = 1 is thus the perpendicular bisector of the line
between p^ and the origin.

3. The circles degenerate to a point at p^ or at the origin for
values of GI going to either zero or infinity, respectively.

^. The radii of the circles are given by the product between the
distance of the center from the origin and the value of the
corresponding magnitude.

Considering the intersections of the GI and 02 circles, each such
intersection represents a value of \C±Z\ , given by the product of
.GI and 02 at that point. Vice versa, for a given point in the root
plane, cj and 02 can be determined and then \C±Z\ itself.

Although the higher order loci curves of the magnitude of C ẑ are given
by the intersections of two families of circles, it still is rather tedious to
derive those curves for each required case without great computational effort.

A simpler interpretation can be obtained by encircling an area in the
root plane for zeros that correspond to the required ranges of |cn-,|. That
means the exact locus curve for the required value of
approximated by a surrounding region.

I *— . I J_ £j I

Ciz| will be

|ci2'|=i

©

Figure 7.- Examples of approximate
zero locations for certain
values of \C±z\•

Figure 7 shows the upper half of
the root plane (the lower half would
show symmetrically the same), where
for each of the three regions (I, II,
III) separated by the locus curves
for GI = 1 and C2 = 1, an example of
encircling is shown. Those examples
are based on the following statements.
(More details are given in appendix
B.)

Region I: (a) If \C±Z\ is distinc-
tively greater than 1, the circle of
C2 = l^izl surrounds the area within
which all conjugate complex zeros
corresponding to that |Ĉ Z| must
lie (example, |Ciz| > 2.0). (b) If
|Ciz| is distinctively smaller than
1, the circle of cj = |Ciz|



surrounds the area within which all conjugate complex zeros corresponding to
that |Cj.z| must lie (example, |Ciz| < O.U).

Region II: All conjugate complex zeros corresponding to a certain value
of |C-:_| > 1 must lie within the union of the circles for c, = |c,-z| and
Q ' i X «j I i . 1 ' J- ** 'C2 = l^izl ^u* outside the intersection of those circles (example,
|Ciz| * 10).

Region III: All conjugate complex zeros corresponding to a certain value
of \£±z\ where

2 1 t 9 1 1must lie within the union of the circles for c1 = |Ĉ Z| and c2 = l^izl
outside the intersection of those circles (example, |Ciz| • 0.3).

As the straight-line loci for GI = 1 and C2 = 1 separating the different
regions change with pj_, the circles encircling the zero regions are cut dif-
ferently by those lines. However, the radii of the circles are proportional
to |p̂ | and do not change if p^ remains constant in magnitude.

For the locus of |Cj_z| = 1, some other simplifying specifications can be
made. In the relations given in appendix A, it becomes, evident that the locus
for |Cj[z| = 1 intersects the real axis at the same point that the loci for
GI = 1 and C2 = 1 intersect. The locus goes to infinity in its imaginary
coordinate for

a2 - co2

a, = \n X (18)z 2a.i

and at a = a. , u> is defined byz i' z J

2 , 9 -L | I /i /^ \u/ + at = -r p. (19)z i d ' i

Notice that equation (19) can hold only if the locus intersects the real axis
at the left of the pole p^. Otherwise, the relation for (i)z at az = (l/2)â
may be used, where

"z + ¥ ai = \ "i (20)

Real zeTOS—Following the procedure worked out for the case of a pair of
conjugate complex zeros (see fig. 6), it becomes evident that the intersection
points of the circles for c^ = const with the real axis represent locations
for single zeros with |Cj[z| = c^. The same is true for those circles of
C2 = const, which leads to the same zeros and values of |C- |.

10



For a single zero, |Ciz| can be derived from the same set of curves used
for the conjugate complex zeros, and no further set of curves for real zeros
is needed. Real zeros thus are simply treated using a plot like figure 6
separately for each.

jo;

•CO

Figure 8.- Illustration of change
in |Ciz| with variation of
one real zero.

How |Ciz| changes as a conse-
quence of shifting a simple zero
along the real axis is further illus-
trated by figure 8. As in figure 6,
the zero location for |Ĉ Z| = 1 must
lie at the point where the line for
GI = 1 intersects the real axis (eq.
(IT)). From there |Ĉ Z| increases
toward infinity as the zero moves
toward the origin. As the zero moves
beyond the origin, \C^Z\ decreases
monotonically to 1.

As the zero moves in the opposite direction, the magnitude of Ciz
decreases to a minimum value and approaches 1 again beyond the minimum point.
The least achievable value of |Ciz] is dependent only on p • ,

min
= 1 - (21)

and the corresponding zero location is

z =v a.

which is twice the value for the intersection point of the line of c\
(fig. 8).

= 1

Interpretation of Pole Modifications

The preceding discussion is concerned with C^z, the zero-dependent part
of the residues (eq. (6)), and the effect of zero changes on that part. The
same concept can be used for the interpretation of C^p, the other part of the
residues (eq. (6)), which changes only with modifications of the poles. Since
the transfer function denominator is restricted to fourth order, the
expression

C. =
IP

n
u=l

11



can formally be discussed as that which would have been obtained as the recip-
rocal of 0^2 with three zeros, given the values of the poles pu. In the
case of complex p^, the remaining three poles are used, in the same manner as
before. However, since the "third zero" is the pole conjugate to p^, its
phase and magnitude are constant. The direct analog to the case of C ẑ with
a pair of zeros, from which the loci plots are formed, is C£n, the part of
Cip that does not contain the conjugate pole of p^. Thus, 'the loci plots
derived for C ẑ can be used for C*_ as well, by relabeling the loci curves
in a simple manner:

<fr, * -$. M (22)
Neiz] ^Ecjp]

and

|C. | *-±— (23)

APPROXIMATE MODAL EXPANSION METHOD

Modal- Type Transfer Function Expansion (Two Zeros)

The residue interpretation method discussed above is very appropriate for
the interpretation of the effect of zeros on the time response, if the poles
of the system under consideration are conjugate complex. In this case, with a
fourth-order system, there are only two residues or time vectors that must be
considered, each representing one of the eigenmodes . If instead of the conju-
gate complex poles there are real ones , the number of independently moving
time vectors increases (up to at most four). Pursuing the motion of these
time vectors to determine their superposition at any time t is no longer
simple enough. Even in the case of three independent time vectors the method
loses much of its power. Therefore, in cases where some of the poles are
real, a different method is proposed based on a modal-type transfer function
expansion using typical pole locations obtained from longitudinal aircraft
equations of motion. According to the transfer function given in equation (l)
and its later normalization, the expansion is written for the case of a pair
of zeros (b3 = 0) :

F(s) = N(s)
D(s)

1+0tlIS+a2ls2 1+aiIIS+a2IIs2

BI BU BUI
D-j-fs) + DI;[(S)

 + D(s)

12



The denominator of the third expansion term is that of the original
transfer function, and the denominators of the two other terms are the charac-
teristic polynomials of the eigenmodes of the aircraft called the phugoid (3j)
and the short-period motion (3n). These denominators will not be changed if
one pair of the poles or even all poles become real. The,eigenmodes are con-
sidered to be known in advance as their response characteristics. Thus the
gains 3i and 3n represent a kind of modal expansion, and the 3m term
should be incorporated in that expansion. With regard to the aircraft longi-
tudinal motionj this can be done by an approximation (ref. 5). It will be
assumed that 3m/D can be. expressed using only the phugoid portion of the
denominator. This is the case if (l) the values of 3j and 3jjj are not very
high and (2) the magnitude ratio between the resulting time vector of the sup-
posedly aperiodic phugoid and that of the short period, both at time t = 0,
is greater than about 10. Usually the magnitude ratio |p3~P21/|pi~Pii| is
about 1, so the condition for the time vector ratio is met, if

3/pi ' P2 (25)

Figure 9 gives some evidence of the
degree of coincidence that may be
expected between the first and third
expansion term time histories.

With these assumptions, the
expansion of the transfer function in
equation (2U) can be modified into

F(s) =

Figure 9-- Comparison between actual
F(S) and second-order approximation. 1 + Oll][8

(26)

By this type of modal expansion, the superposition of only two modally charac-
teristic time histories has to be made. The gain (3j + ̂ m^ on ^e one

and 3n on the other hand give the degree of dominance of one of the two
portions.

Zero Loci Due to the 3 Values

To assign zero locations to certain desired types of superposition in
phugoid and short-period response given by 3i, 3n, and 3m, zero loci for
constant 3 values can be plotted in the root plane. Equation (2U) yields

13



H ( s ) = l+b1s+b2s
2 = BT(l+a lTTs+a,TTs2)+BTT(l+a211

2)+B Ill

(27)

so that Bj, BH, and BJU are given as quantities dependent on b^ and b2,
that is, on the zero locations, while the poles are considered as fixed:

with

a - 0T

U \J-r-r v-roz II I

co2,- a - aol z II

- a
(28)

CTz ~ 2b2

2 -1-u = £~oz b2

a = -
a

2a

a

2a

21

ill
211

»ii *zi

"oil a
2II

These equations represent the loci curves. When written in terms of az
and o>z for the case of conjugate complex pairs of zeros, they again are
circles (fig. 10):

and

a -z

a +

TToil
+ co2 =

,2 _

"oil

ol

(29)



Figure 10.- 6T and 3TT loci.

with u)2z = o| + to
2.. In case of pairs of real zeros with root plane axes for

a and oi , andz z'

oz ~ z z

they become rectangular hyperbolas of the same algebraic structure:

12 ,̂2 f— ;.|2

Z

2

- 52 =
Z

(30)

'2ol

(31)

With respect to 3j (or BJJ) all hyperbolas intersect in one point, geomet-
rically given by the intersection of the ^5° line through the origin and the
line az = 01 (or 02). Figure 10 shows a plot of some loci curves for both
conjugate complex (upper) and real (lower) pairs of zeros. The phugoid poles
are fixed at pi = -0.186 (l/sec), p2 = -0.3 (l/sec), and the short-period
poles at P3,i+ = -0.65 * J 0.92 (l/sec). For simplicity, only loci for posi-
tive values of Bj and BJJ are shown. The BUI l°ci are also not plotted,
because the value of BUI can easily be determined from $i and BH (eq.
(28)). If the pair of zeros is located on either the phugoid or the short-
period poles, BIH becomes zero. According to the approximation made in the
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last section, the loci circles of constant BUI are almost coincident with
those of BT, but with different values assigned to them corresponding to
equation (2o). In figure 10, the shading indicates regions of zero locations
for which certain combinations in the signs of Bj and BU are valid. It
appears, for example, that for 0 > az > ajj and BJJ < 0, one of the zeros will
"be in the right half plane - a nonminimum phase effect. As az approaches
°II » t*16 contribution of the phugoid to the adverse motion becomes larger and
the phugoid portion is exclusively responsible for that kind of behavior when
az <

As an additional interesting fact, there is no pair of conjugate complex
zeros for

3T > ̂  / _ g ) = 4 (32)

or

For those values of either BI or BH, the corresponding loci circles degen-
erate into a point on the real axis at double a\ or 02 » respectively. On the
other hand, the ranges in BI combined with certain values of BIJ are also
limited for certain regions of zero locations. For instance , in the example
shown in figure 10, there is no BI > 0 together with BU = 1.0, that will
form a pair of conjugate complex zeros.

For values of BI and BJJ , as indicated in equations (32) and (33), the
corresponding points in the CTZ,U>Z plane, each representing a pair of real
zeros, lie on hyperbolas that do not reach the az axis. As their conjugate
axis is the az axis itself, the point closest to the oz axis is given by
the hyperbola vertex (fig. 10). With growing BI and decreasing fijj, the
vertices of the corresponding hyperbolas are moving from the az axis to a
maximum displacement, where their vertices lie on the intersection with all
other hyperbolas belonging to that loci family. The BI and BU values for
that case are

B* = 2B^ , &*-£ = 2B^ (3U)

It appears from figure 10 that there is only a small region of zero pair loca-
tions in which significant contribution of the short-period modal response
will be expected or equivalently where BU is greater than 1.0. For these
values , conjugate complex zeros must be located within the corresponding
circle shown close to the origin. For pairs of negative real zeros the same
is possible only in the narrow region between the 5̂°-line from the origin and
the hyperbola extending the BU =1.0 circle in the lower half plane.

Considering the case of single zeros in terms of BI and. BU, the defini-
tion of B' and B* is also very useful. A single zero located at points
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where for pairs of zeros, Bj = gj and 3jj = gjj (fig. 10), will have the same
values for BI and 3jj. This becomes evident, if the relations for 3j,
and BUI are developed for the single-zero case from

N(s) =

such that, with a = -
(35)

'II
II II (36)

These relations are very simple and do not require any plotting, as should be
expected for the case of a single zero.

Three Zeros

The extension to the case of three zeros requires a slight augmentation
of the transfer function expansion used in the last sections. An additional
3 coefficient must be generated to keep the main structure of the expansion
and ensure the validity of the approximation that was made. The augmented
expansion becomes

F(s) =
1 + bjs + b2s

1 + ajs +

D(s (37)

Following the approximation made earlier,

F(s) ' TJUT
S6II (38)

This essentially means that, in contrast to the case of two zeros, only the
short-period portion of the response will be modified by its derivative due to
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the gain 6jj. Neglecting the contribution of the gjj expansion term itself
in the first place, 3i, &u» and BJJJ are all implicit functions of the third
zero, and can be treated the same vay in the case of a pair of zeros. The (3
plots developed for the case of a pair of zeros (fig. 10) can be used for the
interpretation of transfer functions with three zeros. In fact, 3j through
3jjj can be described by the relations of equation (28) by replacing
and az by cooz and az, as follows:

oz

U)oil

"oz

'II
il
o'2oz

a' - an

- a

a' - aII
(39)

with the interrelations between u)oz, az, and ojoz, az, and z3, the real third
zero,1 given by:

2o'

0)'

= (2z3o + to2 - to2 )« ^ rr r\rr r\\
0)' ZaO)2
OZ 3 OZ

oz oz

I — \JJ —oz ol

(UO)

which leads to the equation for the equivalent pair of zeros zj „:

where
z' „ = -A1 »^

A =
3 + (JJToz ol

B2 =

2(-z3 - 2oz + 2CTl)

2
OZ

z3 + 2a - 2oT

(Ul)

A root locus plot for z'is2 as function of the parameter Q = Z3(az-Oj)/2 can
be derived (fig. 11). The root locus equation becomes:

1The third zero z3 is chosen as either the single real zero or arbitrar-
ily from the three real zeros.
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-Q<0

= f(z3)>0-

= f(z3)<0'

P2P,

* KX

1+Q
z'2-2a z'+co2_ z oz

n 0)2-0)2 .! ol oz'
OT-OI z

= 0

z'-

ẑ (Q = 0)

Thus, with increasing given mag
nitude of the third zero, the equiva
lent pair of zeros develops from a
real pair (one at the origin) into
the actual pair of zeros z{ 2-

Figure 11.- Equivalent pairs of zeros
for use of BI and gjj plot in
the case of three zeros.

EVALUATION OF OPTIMAL LONGITUDINAL CONTROL TIME RESPONSE
WITH USE OF POLE-ZERO INTERPRETATION METHODS

Although the methods described in the previous sections can "be useful for
analysis purposes in the frequency domain, they are used in this section for
the evaluation of an optimal design.

Linear optimal control theory optimizes the time response of a given sys-
tem with respect to a quadratic performance criterion, weighting the states as
well as the controls. In the case of the longitudinal motion of aircraft, the
relation between the requirements on the time response and the weighting coef-
ficients of the performance index is not strictly clear. Thus, only a hypo-
thetical guess of the weighting coefficients can be made that has to be proved
satisfactory by examining the actual performance of the corresponding time
response and control laws. The dependence of the time response on the per-
formance index may be studied effectively by the procedure outlined above.

Here we study this dependence for the aircraft longitudinal control
system.

Problem Formulation

The system investigated as an example is the regulator-controlled longi-
tudinal motion of a conventional subsonic-type transport aircraft during land-
ing approach (fig. 12). It can be described by the state equations:

x = Fx + Gu = (F + GL)x
c

(US')

where x is the state error vector
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Figure 12.- System "block diagram.

x =

"6'
6
Y
/\

Uu J

u is the control vector

u =c

and F, G, and L are matrices with constant elements. The F and G matrices
are given as aircraft parameters, while the elements of L have to be deter-
mined as the regulator feedback gains. This type of aircraft control is ade-
quate when the flight path is prescribed by air-traffic control as a straight
line, such that an equilibrium state can be assigned to it. Thus the task of
the controller is to drive the errors of the states, caused by initial dis-
placements x(0), to zero. Performing this task in the described setup, the
regulator could consist of an automatic controller, or both automatic and
manual in parallel. The total gains would be equal to L. If the gain por-
tion due to manual control is kept inside the allowable range for pilot gains,
there might be no further dynamical equalization required from the pilot to
minimize the performance criterion chosen for the system.

Performance Criterion

To follow a given straight flight path corresponding to a certain equi-
librium state, the task of the controller can be reduced to that of a regula-
tor, mainly driving the magnitude of the error in the speed vector to zero.

The reduction of the magnitude of the
speed error vector AV (fig. 13) is
of primary interest with respect to
the overall behavior, irrespective of
its direction. Thus, there is only
one independent quantity describing
the performance of the system output
instead of the original four given by
the components of the error state
vector. This single error has to be
weighted against the allowable effort
in the controls with all controls
having the same weighting. The mag-
nitude of the error in the speed
vector VQ can be expressed in terms
of error state components, as shown
in figure 13:

Vc = commanded V due to
desired path

Va = actual V

Aircraft e.g.

Desired path

Figure 13.- Definition of the
speed notations.

1For simplicity, the penalty of the error in height is ignored. Computa-
tions have shown that this does not result in a big difference in the result-
ing optimal control law.
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|AV|2 = u2 + w2 (UU)

With w = (u + fvc|) • tan y

and assuming small y as well as small u compared to |v_,| , equation
becomes

|AV|2 = u2 + (|VC| • Y)
2

Thus , the minimum of the quadratic performance index

T = | f MU* + |VC|
2Y2) + r(62 + 62 + 62)]dt (1*7)

defines an optimal regulator control law

UQ = Lx (U8)

with respect to the value chosen for the weighting ratio q/r, where q > 0
and r > 0 (refs. 6, 7).

Discussion of Resulting Optimal Transfer Functions

Now, suppose that L has "been computed in the standard way. Taking the
Laplace transform of equation (1*3) with initial condition x(0), the response
is given by a l*xl* matrix H,

x(s) = [Is - (F + GL)]~1x(0) = H • x(0) (1*9)

whose elements can be considered as transfer functions with the error state
components as outputs and the initial conditions as 6-function inputs. The
elements of H are easily derived from equation (1*9):

x.(s) det[ls - (F + GL)].,. _ . _ _ _

ij ~ x"ToT ~ det[ls - (F + GL)]
J

where [•]-;< is equal to [.] in all elements except the ith column, which is
replaced by the jth column of the Uxl; unity matrix.

It will be shown that the main changes in the character of the time
response take place in the range of q/r between 0 and 2.0. Beyond that, the
control effort becomes higher and higher, with no comparable significant
changes in the time responses of the error states. For q/r =2.0, the
phugoid poles are still conjugate complex, so that only the first described
method is used.
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The aircraft system has three controls and three states of particular
interest, resulting in nine separate responses or transfer functions to be
considered. Time histories of these states and controls for q/r values of 0
and 2.0 are shown in figures 1^ through 17- The quantity y is also plotted
to show the load factor. There are considerable changes in the time histories
with increasing q/r. Figures 18 through 20 show the loci required for the
application of this method. Figure 18 shows the poles and zeros for all the
various transfer functions for q/r = 0 and 2.0. In addition, the phase loci
are drawn for q/r = 2.0 for both Pj_ = Pi and p^ = pa- Figure 19 shows the
poles and zeros, but also includes the magnitude loci associated with the

Se, rod

100 BT, % thrust

8F, rod

I
10

I
20

t, sec

I
30

I
40

Figure lU.- Transient responses due to
initial conditions of original sys-
tem (q/r = 0); (a) in 9, (b) in y:
(c) in u.

Figure 15-- Transient responses of
the state and control variables of
the regulated system (q/r = 2.0)
due to initial condition in 9.
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Figure l6.- Transient responses of the state and control variables
of the regulated system (q/r = 2.0) due to initial condition in y-

i.Op

-.5

SF, rod

Figure 17-- Transient responses of the state and control variables
of the regulated system (q/r = 2.0) due to initial condition in u.
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1.0-

.75-

.50-

.25-

-.25-

5,I/sec

-.50-

-.75 L
-1.5

Figure 18.- Phase loci for longitudinal response residues.

phugoid residues again for q/r =2.0. Figure 20 is similar to 19, with the
magnitude loci drawn for the short-period residues . A number of the roots
change only slightly with q/r, and some change very similarly for several
transfer functions.

In deriving the time vectors (or residues) by means of figures 18 through
20, we use as an example the transfer function y/u(0) for q/r = 0, which has
a second-order numerator and a fourth-order denominator.. As shown earlier,
the time vector of the short-period mode Y3» for instance, will be determined

3zfrom the residue 03 (at ps), which in turn consists of the product of C
and C3p (eq. (6)). The phase of C3z,<£3z is determined from p3 and z\ as
indicated in figure 2l(a), which shows the appropriate poles and zeros
extracted from figure 18. The conjugate zero Z2 does not need to be included
for this plot. The quantity C3Z = c\ •
which is abstracted from figure 20, using
r Q ™ and

process,

is obtained from figure 2l(b),
p3 and z1}z2. These quantities,

|C3Z|, are then combined and plotted in figure 22 as C,
shown in figure 2l(c) and (d), is used to derive jJ3^3z-

6-function input•"•Note that PsC3p or psC3 is used due to the
instead of a step input .

A similar
The phase

u(0)



1.0-

.75-

-.25-

-.50-

-.75-
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a-, I/sec

Figure 19.- Magnitude loci for longitudinal response phugoid residues.



1.0-

.75-

-.25-

-.50-

-.75-

-1.5
a, I/sec

Figure 20.- Magnitude loci for longitudinal response short-period residues,
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(a

Figure 21.- (a) Phase locus and (b)
magnitude loci for C3Z of the

transfer function y/u(0); q/r = 0.

Figure 21.- (c) Phase locus and (d)
magnitude loci -for P3C3p of the

transfer function y/u(0); q/r = 0.

of PsCgp, denoted as <P3p in figure 22, is obtained by using pj instead of

zj (fig. 2l(c)). The angle of ir/2 must be added due to the contribution of
pit, the conjugate pole of ps, and the sign has to be changed (eq. (22)). The
magnitude of P3C3p is given by the product of jpsl and |C3p| = I/(GI '02*03)

which in turn is obtained from figure 2l(d), using all poles pi through pi+.
Again, phase and magnitude are combined to plot psCs in figure 22.

for the time vector yi are obtainedThe quantities Clz and
similarly using pi instead of
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Pl-Cip

Figure 22.- The time vector construe
tion from the residue quantities.

im With PiCi (paCa) determined,
the actual time vectors yi
t = 0 (fig. 22) are two times
(psCs). This same process is used tc
determine all the time vectors shown
in the subsequent figures.

In the following, the time
responses of the state components 6,
Y, and u due to initial conditions
in the same states are discussed
separately, referring to figures 18
through 20. The time histories of
the controls could be discussed in
the same way.

6/e(0)—The attitude is the main
control variable in the longitudinal
motion of aircraft. The requirement
is to reduce the initial attitude
error in a rapid, well-damped manner
to zero. Without any control
(q/r = 0), the time response behavior
of the attitude due to initial dis-
placement shows large overshoot and
very little damping of the low-
frequency mode, the phugoid (see

fig. lU), whereas for optimal control with respect to the chosen performance
index and increasing q/r the desired behavior can be achieved, as shown in
figure 15.

There are three real zeros but the overall tendencies in the change of
the time response due to increasing q/r are caused mainly by the shift of
the phugoid poles to higher damping and lower frequency. This shift will
affect all time responses, because the poles are the same for all transfer
functions for a given q/r. Therefore, for all transfer functions, there will
be the tendency for Cj, the phugoid mode residue or half of the time vector
9j at t = 0, to shift its phase into the imaginary axis (fig. 23), as the
phugoid poles approach the real axis of the root plane. (A similar effect
will occur for other transfer functions.) Because there is almost no change
in the short-period poles with increasing q/r (also common for all transfer
functions), the location of the zeros with respect to the phugoid poles deter-
mines how far the phase shift in 6j will go and what change in magnitude of
that residue will occur.

As can be seen from figures 18 and 19, 1/Cp increases mainly in magni-
tude and GIZ in phase with higher values of q/r. The phase shift is
chiefly due to the shift of the phugoid poles in relation to the zero that is
'closest to the origin. The change in the phase contribution of that zero
amounts to almost Tr/2 in the range of q/r from 0 through 2.0. Although
there are also changes taking place due to the zero farthest from the origin,
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Figure 23.- Time vectors for the
transient response of 6/9(0) with
q/r = 0 and 2.0.

that zero has little effect on either
the phase or magnitude of C1Z. Thus,
the tendency in C1Z is simply.

q/r=o obtained by watching only the rela-
q/r = 2.o tive location of the phugoid poles

and the zero close to the origin.
With respect to 83 or C3 (the resi-
due of the short-period mode), the
change in C3p is due to the phugoid
shift and the change in C3Z is due
to the shift of the zero far from the •
origin. These are opposing changes,
such that the total change in 03 is
rather small.

The conclusion is that the
effect of the phugoid mode is con-
siderably reduced by the large phase
shift in 9i toward the imaginary

axis and the high phugoid damping. On the other hand, choosing a well-damped
location for the phugoid and fixing one of the zeros, a given range of the
Clz-phase loci can be assigned to the location of the remaining zeros to
achieve the desired behavior.

Y/Q(0) and u/Q(0)—Although suppression (decoupling) of the responses in
the flight-path angle y and the speed u due to initial displacement in the
attitude might be desired, a certain amount of temporary displacement in both
y and u is required to avoid excessive costs in the controls. That is, a
very effective lift control would be needed, with simultaneous speed control,
to compensate for the initial lift change due to 9(0).

As can be seen from figures lU and 15, at least some improvement is made,
particularly in the speed response, by minimizing the previously described
performance index. Again, the main reason is the shift of the phugoid poles
toward the real axis of the root plane, which leads to high damping and fixes
the phase of yj and UJ close to the imaginary axis for both the y and u
response (fig. 2k).

To determine the actual phase of y^ and Y3> one can make use of the
results obtained by examining the zeros for 9/9(0) that are located in close
vicinity to both existing zeros of y/9(0). Therefore, the phase difference
between the residues of the responses in attitude and flight-path angle is
caused by the phase effect of the medium zero of 9/9(0). Because this zero
does not change with q/r, the phase difference between the residues of
9/9(0) and y/6(0) is also independent of q/r.

Response due to y(0) ̂  0—As shown in figure 17 9 the response to an ini-
tial displacement in the flight-path angle is good for the case of q/r =2.0.
The flight-path angle itself settles down to small values very soon without
evident oscillations, and the coupled motion in pitch and speed is almost neg-
ligible. Also, the load factor due to the rate of change of the flight-path
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X, <t=0)

fl,(t=0)
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•q/r = 0

•q/r =2.0

u,(t = 0)

fl|(t=0)

Im

••Re ••Re

32(t=0).
-••Re

Figure 2k. - Time vectors for transient Figure 25.- Time vectors for trans-
responses of Y/9(0) ancl u/6(o) ient responses of e/yCo), Y/Y(O)>
with q/r = 0 and 2.0. and u/y(0) with q/r = 0 and 2.0.

angle does not appear to yield too high values . The plot of the time vectors
of the response in 9 is shown as part of figure 25. The short-period vector
is phased with respect to the phugoid vector such that. while rotating and
before decaying, their real parts almost cancel, resulting in low coupling
"between 9 and y(0) • This configuration of the vectors thus shows a highly
decoupled transfer function, and a similar configuration would be desirable
for other transfer functions. Comparing this configuration with that of
y/9(0) (fig. 2U), for instance, a smaller phase shift for Y3 vould produce
less coupling. This could be obtained by locating the zeros on the corre-
sponding phase locus curve. These phase values are easily obtained from fig-
ure 25 since only one zero is involved in the 9/Y(0) response.

The pair of conjugate complex zeros of Y/Y(O) is almost coincident with
the zeros of U/Y(O) and Y/U (0). Thus, the difference in the behavior of
these later two in comparison to Y/Y(O) is given by the real zero of Y/Y(^)>
which again is almost independent of q/r. Observing the magnitude ratio

• between the residues Yi an<i YS in figure 25, one can see that increasing q/r
results in a high gain for YI relative to Y3» which gives a very slow long-
term dynamic behavior.

Response due to u(0) ^ 0 — According to figure IT, the direct response in
the speed again appears satisfactory for moderate values of q/r. There is no
fast response required for the speed so long as the initial error returns to
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q/r=0

q/r= 2.0

u,(t=0)

zero in a monotonic but not too slug-
gish manner. This is achieved by the
high damped, practically pure phugoid
motion (fig. 26) due to the pair of
conjugate complex zeros very close to
the short-period poles (figs. 18-20).
On the other hand, the coupling of
the velocity to flight-path angle and
the pitch angle is fairly large, giv-
ing somewhat unsatisfactory responses.
Although there is a considerable
improvement in the overall dynamic
behavior for q/r =2.0, compared to
the case without regulator control
(q/r =0), the gains K of the
transfer functions, especially of
Y/u(0), are still high.

u,(t=0)

Figure 26.- Time vectors for transient
responses of 9/u(0), y/u(0)»
u/u(0) with q/r = 0 and 2.0.

The effect of the zero of
6/u(0), which has a large decrease in
value as q/r varies from 0 to 2.0
(figs. 18-20), is to cause a large
phase shift of the short-period time
vector (residue) (fig. 26). Also,
the phugoid vector moves across the
imaginary axis before merging with it
for q/r > 2. Considering that both
the phase shift of the residues and
the high damping of the phugoid are
responsible for the improvement in

the 6 response, a q/r less than 2.0 might do more to minimize the peak in
the 6-time history. It can be deduced from figure 26, by considering the
motion of the time vector 61 for values of t greater than 0, that a smaller
q/r will reduce slightly the peak in 6, but increase the long-period
response. This result is shown on figure IT- Note that the other responses
will also change, which must be considered.

Abstract of the results—The simple performance index, weighting only the
error state in the flight-path angle and the airspeed against the controls,
using one parameter for each, provides in the main satisfactory results. For
q/r * 2 most of the transient responses are satisfactory, but two of them are
only marginally acceptable.

As shown in figure 17, improvement in those time responses would require
a different performance index. Since the error in y is relatively more
annoying than that in u, a lower weighting of u compared to y would be
desirable. Although this improvement is not carried out in this study, it
would require at least one additional weighting parameter, and two parameter
patterns of root loci drawn coincident with the optimal results for different
levels of weighting in both parameters. The methods presented here could
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still be used to aid in the determination of the elements of q. and r that
would give the desired time responses.

CONCLUDING REMARKS

Two methods are described that provide geometrical insight into the
effect of the zeros of transfer functions as well as poles, on the correspond-
ing time histories. The main advantage of these methods lies in their simplic-
ity compared to other available procedures. They differ in their limitations,
which are essentially those on the possible regions of the system pole
locations.

The first method, which uses the geometrical interpretation of the resi-
dues, loses much of its power if the poles become real, while the other
method is restricted to certain separations of the poles, regardless of
whether they are real or conjugate complex. In almost all cases, at least one
of the methods can be used effectively. This is especially true when applied
to aircraft transfer functions, as shown in the discussion of optimal regula-
tor control for the longitudinal motion.

Both methods are developed for the type of transfer function with four
poles and two zeros along with an extension to three zeros. Further extension
to allow for additional poles and zeros is possible, but will be very
complicated.

The main use of the methods should be for analysis purposes. To inter-
pret the effect of zero changes, the poles are assumed fixed, and changes in
the poles are discussed with the zeros unchanged. Thus, only if something is
known about the sensitivities of the pole locations due to zero changes and
vice versa (ref. 8) can the methods be helpful in the synthesis process.

The methods are applied to a study of the longitudinal motion regulator
of an aircraft. The performance of this regulator system is studied using a
particular performance criterion with minor variations. This criterion mini-
mizes the state errors effectively using only reasonable control effort.

Ames Research Center
National Aeronautics and Space Administration

Moffett Field, Calif. 9^035, Feb. 3, 1972

32



APPENDIX A

EQUATION FOR THE MAGNITUDE LOCI OF C±z (TWO ZEROS)

The exact equation for the magnitude loci of C±z is simply derived from
equation (lU) "by substituting in the expressions for GI and c2 the values of
the conjugate complex zeros, 21,2 = °z * <5uz:

c2

The coordinates of the pair of conjugate zeros generate fourth-order terms,
such that the loci of ]C-;Z| in the root plane become higher order curves.
For the special case of \C±z \ = 1» which might be of particular practical
interest, equation (Al) reduces to

Ua3a. - 2a2(u>2 + 3a?) + Ua a. |p. |2 + Ua co2a. - 2(x)2(a? - to?) - |p. | k = 0
Zl Zl 1 Z l ' ^ l 1 ZZ1 Z 1 1 'l 1

(A2)

From this equation, the simple formulas (l?) through (20) are derived for
specific points on that curve by substituting the specific values for az or
0) .z

For a pair of real zeros, equation (A2) changes to

. - 2o2(u>2 + 3a?) + **a a. |p. |2 - Ua w2a. + 2^2(a2 - a)2) -z i z i i z i ' - ^ i 1 z z i z i i

(A3)
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APPENDIX B

ENCIRCLING OF ZERO REGIONS FOR GIVEN VALUES OF |C.iz'

Practicable approximations can be made to encircle zero regions for given
values of \V±z\ rather than to define the exact loci curves. This appendix
gives some further details on those approximations.

According to equations (15) and (l6) for the loci circles of c^ and 02,
figure 27 illustrates the relation betveen the location of the center points
of those circles and the corresponding values of GI and C2- It shows that on
the string of center points of the c^ circles, the corresponding value of GI
is

= 1 + - >
n

(Bl)

if the center point lies at a distance n|p.| downward from the origin and

c = 1 - < 11 n
(B2)

if the center point lies n|pi| upward from the origin. The centers of the
C2 circles are symmetrical about the real axis with the corresponding c^
centers.

Figure 27.- Relation between values of
ci,C2 and the location of the loci
center points.

In looking for the intersections
between cj and C2 circles, it is
evident that not all GI circles
intersect a particular C2 circle and
vice versa. Therefore, considering
only the upper half of the root plane
for symmetry reasons, there are three
regions divided by the straight-line
loci of G! = 1 and C2 = 1 (fig. 7),
such that (l) region I includes the
intersections possible between the
circles of c^ < 1 and c2 > 1, (2)
region II includes the intersections
possible between the circles of
G! > 1 and c2 > 1, and (3) region III
includes the intersections possible
between the circles of c^ < 1 and
c2 < 1. Encirclement of zero loca-
tion areas due to certain values of
\C±Z\ is given below for each
region.



Region I

If one considers a possible intersection between circles of c^ < 1. and
C2 > 1 (n > 1, m > 0), the corresponding magnitude of C can be written
with use of equation

|Ciz |2. 1-1 1+11 I nM m (B3)

or as an explicit relation for m as a function of n with the parameter
|c. | , as illustrated in figure 28,
1Z

m = n - 1

(|Ciz|
2 -1) n + 1

Figure 28.- |Cj_z| as function of
m and n (region I).

plane. The upper limit for m and n

The figure shows that for values of
|Ĉ Z| distinctly smaller (larger)
than 1, n (m) does not go over a cer-
tain small value. Therefore, the:
range of circles in GI (02) corre-
sponding to those |Ciz| values is
also very limited. Thus, for a cer-
tain value of |Cj_z|, the correspond-
ing zeros and all those for'smaller
(greater) values of |Ciz| must lie
within the largest possible circle
for GI (co), which is that for
cl = |Ciz|(c2 = |ciz|) (see fig. 7).
The range of possible combinations of
m and. n is not only limited as shown
in figure 28; for higher values of n
and m, the circles might not inter-
sect such that no locus point for
|C'iz! can be defined in the root

can be easily described by the following
condition, which depends on the location of the pole

= 2
0).

I Pi
(B5)

Figure 28 itself is valid for all locations of

Region II

Within this region the relation between the location of the circles for
> 1 and c 2 > l ( n > 0 , m > 0 ) and \C±Z\ itself is
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or

= 1 + - 1 + - > 1

m = n + 1

( I c . z l 2 - l ) n -

(B6)

(BT)

Figure 29.- |Cj.2 | as a function
of m and n (region II)..

|C iz|=const

Figure 30.- Approximate region for
(C^zl locus (region II).

as illustrated in figure 29, which
again is independent of the location
of the pole p^. The curves are sym-
metrical with respect to the straight
line m = n. Calling n = n* and
m = m* for the point m = n , for each
curve it can be stated that for all
n > n* (lower half of the curve)
m < m* , and also for all m > m*
(upper half of the curve) n < n*.
Therefore , each point on the lower
half of the curve represents a zero
location that must "be inside the G£
circle given by m = n* and outside
the GI circle given by n = n*. A
corresponding remark can be given for
the upper part of the curve . Thus ,
the loci for |Ĉ Z| can be located
in the root plane as: .(l) being
within the union but outside the
intersection of the circles for GI
and C2 corresponding to n =
m = m*, respectively, where

= * and

= c2 = |Clz
1/2

and (2) intersecting the real axis at
the same points, where the circles of
(l) are intersecting (fig. 30).

From equation (B6), it follows
that

n* = m* = (B8)
- 1

As in region I, there is an upper
limit for m and n, dependent on
which is defined as follows:
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= 2
0).
1

Ipil (B9)

This condition can be used, of course, for further encircling.

Region III

Analogous to the approximation applied to region II, for region III, with
< 1 and c2 < 1 (n > 1, m > l),

or

.iz

m =

n

1 - n

( |C. I2 - l)n + 11 iz '

(BIO)

(Bll)

= 0.64

Figure 31.- |Ciz| as a function of
m and n (region III).

which is illustrated in figure 31.
Again, the loci for |Cj_z| in the
root plane can be located as within
the union but outside the intersec-
tion of the circles of cj and c2
corresponding to n = n* and m = m*,
respectively, with

= c2 = 'IZ

and

n* = m* =

(B12)

(B13)
1 - Ciz i

The upper limits on n and m in figure 31, dependent on the location of p^
are given by

c2| = 2 (BlU)

I Pi
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