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VARIANCE REDUCTION IN MONTE CARLO ANALYSIS OF RAREFIED GAS DIFFUSION
by Morris Perlmutter

National Aeronautics and Space Administration
' Lewis Research Center
Cleveland, Ohio

The present analysis uses the Monte Carlo method to solve the
problem of rarefied diffusion between parallel walls. The diffusing -
molecules are evaporated or emitted from one of two parallel walls and
diffuse through another molecular species (see fig. 1). The M.C. anal-
ysis treats the diffusing molecule as undergoing a Markov random walk
and the local macroscopic properties are found as the expected value of
the random variable, the random walk payoff. By biasing the transition
probabilities and changing the collision payoffs we can retain the ex-
pected Markov walk payoff but reduce its variance so that the M.C. re-

sult will have a much smaller error.

~ As shown in figure 1 the Markov random walk of the diffusing

- molecule can be represented by the sequence [XO,Xl,Xg,...). X, refers

to a point in velocity and position space (V,,Z,) taken by the diffusing .
molecule immediately after the n® collision. The probability density
corresponding to this random walk is given by : S

CH(Xg, X, ... )dX dXp. .. = Eg(Xg)K(Xp | X ) K(Xp|Xp)s . .. dX, dXq. .. (1)

The birth distribution E,(X,) refers to the probability of the

“molecule originating at X_,, Assuming the molecules leaving the wall

are in thermal equilibrium the birth distribution for the =z component

~of the dimensionless velocity of the molecules leaving the wall is

given by E (vg,,Z = 0) = 2vy, exp(—v%o). The transition probability
K(Xp1]Xy)dX,,1 can be written as the product of a transport proba-
bility T(2, > Z,,3|v,)dZ,,7 and a collision probability

Clvy, ~ Vil|Zp41) V1.  The transport kernel T gives the probability
of leaving Z, and reaching Z,,7 at the n+1 collision while the

collision kernel C gives the probability of a molecule at velocity
vy reaching a new velocity Vel after the n+1 collision., For the

present model the transport kernel can be written in dimensionless form
as’ T(Z, = Z.,4|v,) =@/ vy |)exp(-|Z, . - Z,|/|vy,|). The collision
kernel, assuming the molecules come out of collision with a Maxwellian
distribution, will then not be a function of the previous velocity or
position and can be written as C(vZn) =(l/4/;)exp(-v%n). We can write
the event payoff after the nth collision.as P(X,). Then the payoff

 for the random walk N, 1is given by
Lor -the ra. L I

Moo= ) B(X).

n=0

The expected value of the random walk payoff is given by



A= (ng) =/- /Z P(X,)| By (X )K(Xy | X)) K(Xp|Xy ). .. aX, aXy... (2)
n=0 _ i : 4

The payoff term after each event can be written as .P(Xn) =
p(vy) (2, = Zg|vy §. The p(v) is some function of velocity of the
molecule after a callision and T(Z - ZSIV) is the scoring probability,

the probability of the sample molecule reaching the scoring position
Zg from the last collision position without having another molecular

collision. We can thus write () = ng(p(v)vy)g/ugy; where ng -is
the local molecular density at the scoring cross section and ., is

the molecular flux leaving the emitting surface. If the macroscopic
quantity desired at the scoring position ZS is the mass flux, Hgo

then p(v) is given by p, = tl for v, 2 0. Similarly, if the local
molecular number density ng is desired at Zg we have p, = % l/vz
for vy 2 0. The scoring probability can be found to be T(Zn - Zg|vgy)
= exp(-|2y - Zg|/|Vgnl)-

The potential payoff of é molecule leaving X5 is given by
g = P(Xg) + P(X5,1) + Averaging this we can write the expected
potentlal payoff conditional to leav1ng Xy as

Wi (X3) = (ng[X3) = u/[’jgz P(X1+&)K£(X1+&|X )dX

P(X5) + fWi+1(Xi+1)K(Xi+1|Xi)dxi+l (3)
where ‘

ky (Xiap [ X1) = /f K(Xgpq %) Ky [Kipg 1) Kpn oo Xyp

We can similarly calculate the expected value of the square of the
potential payoff of a molecule leaving X; as

Qs (X3)= (nf|Xy) = 2B(Xg)W;(X;) - PP(X;) *-fQi+1(Xi+1)K(Xi+1|Xi)dxi+1
= Zfﬁz‘P(Xj;-‘fn)Wi;Fn(Xi+n-) -Pz(xl+n)]Kn(X1+n|Xi)dX1+n | (4)

The expected varlance can now be written as
() = f CBIF oK)y = (1007 = f olKo)Eo (%), -<no>2

"In the M.C. process we pick a birth velocity randomly fram Eo(vo),
then score P(X,). We then randomly choose the position of first colli-

sion from K X1|X We then score P(Xl). The particle history is ‘
continued until it is incident on one of the walls. The payoff for the
random walk is then given by Mo This process is repeated for N sam-

ples. -The expected payoff is then given by



N

~—4_'l ¢
(ngd = ng =% Z Noi |
1=

whose value is the desired macroscopic result appropriately representing
the molecular flow rate or molecular density. The 95 percent confidence
interval of 7, 1is given by
a(n,)
|[{ng) - no| <e=1.96 A/ﬁ

where o(n,) is the standard deviation of 1n, and can be obtained from
the M.C, Calculatlon by ’

g (ﬂo) ~ (——__—7 j{: T101 (ﬂo)

The analog M.C. calculation is the case in which the sample payoff's
are given as p(v) and are scored only when passing the scoring position.
In table I the molecular density of the diffusing molecules at the scoring
position Z, = 4 normalized by the density of the molecular flux emitted
at Z =0 Ys given under the heading "Analog." Also given are the re-
sults where the payoff is p(v,)T(Z, » Zg|vy) = P(v,,Z,). This is scored
after each collision. These results are given under the heading "next
event."

We w13h to reduce the variance c(n ). so:that the error in.the M.C,
sampling will be smaller.” "To do. thls we blas the probabilities as follows.

The' probabilityof the: blased walk is now given by H* (XO,Xl, ) <
’Eg(xo)K%(xl]x )K*(X2|Xl .W - If-we then. dlstort the payoff to be
X,) E (X)) K(X; |X
n = P(Xg) ———(-0— + P(Xp) = 1%
EX(X,) EX (X >K*<xl|x

We can see that the expected value of the random walk payoff is given by
A¥* =_/ﬁ- ngH* aX, dX;... = A and is unchanged by the biasing process.

A useful”simplification is to write K*(Xy;|Xy) = K(Xpe1 | ¥0) [Te1 (Xpen)/
In(Xn)]- The biasing function must satisfy the usual probability normal-
ization requirements. ‘The probability density corresponding. to the biased
random walk is given by :

( ) I-(X
B = [Bo(Xo) T (Xo) ] [%‘Xl'x : Il<xl] [%(XZIXI) Iiixii]"'

while the payoff for the random walk becomes
o = P(X,) . P(X1) . P(X2) .
o T T (X)) "I (%) " I(X)

For the biased case, the expected potential payoff for the random walk
is given by .W¥(X; ) (X)/15:(%5) 1.

Similarly, we can find the expected value of the potential square
payoff for the biased random walk as



(X 1Xs)
Qf (x4 ) = __(—y Z f [2P(X14n) 1+n(X1+n P2(X:L+n I%I_H_'?;—L;_) X;.4n

Since (ngz)'= jfES(XO)QS(XO)dX we can write the biased expected

payoff as ,
E
(n22) / ﬁ(-ﬁ—"% [2P(X )W (X,) - B2 (X,) Jax, + f Ilfxl-;- 22y )y ()
- P2(xp)]axy +/?§7(% [2P(Xp)Wp(Xp) - PE(Xp) X, + ... o (s)

We wish to minimize (n*’a‘) with respect to I (X ) subject to the condi-
tion that

f f[E (x )I,(X )][E{(xﬂxl) il(xl)] [K(x2|xl) ii_&%’] PNCH G D P
= fEn(Xn)In(Xn)an =1 (6)
Using the calculus of variations we find
| | [2P(X W, (X,) - 132(xn)]1/2

'I‘“( ) = — (7)
atn fE (x,) [2B(X W, (X,) - PB(x)) 1Y/ ax,

Since 2P(X )W, (X,) - Pz(x ) = Qu(Xy) an+l(Xn+l)K(Xn+l|X )dX,,, this
result implies that the unportance functlon for the kernel biasing is
proportional on the contribution to the variance of the molecules coming
out of collision at X but not the future contribution to the variance
from the later collisions. If we neglect higher order collision terms
we can approximate the bias function by

P(X
n) ~(8)
/E (X,)P(X,) -

Now the transition kernels are biased so that more samples are taken
with values that give larger contributions to the payoff. The biased
payoff is now given by

P(X,)

POG) = Ty - [Eaxrtr)ax, = A, (9) -

The payoffs are constant values for each.event. This will reduce the
variance of the random walk payoff.

 The birth payoff is given by P¥(X ) = Aj /E (X5) P(X,) dX,. This
integral can be evaluated by numerical ;ntegratlon Then a blrth velocity
can be randomly picked as usual and the unbiased procedure continued as

before to find the next payoff P(Xl). The result for this procedure is
“shown in table I labeled birth bias for the same cases as before.



We can continue the biasing to the first collision, P¥(X1) = N\ =
J(éo(XO)K(Xl|XO)P(Xl)dXO dX;. However, it is difficult to evaluate 7y
by numerical integration. Instead we can approximate the importance
function by

P(Xq)
To(Zg5Vy) CP(Zl)
_ o L | —
where T (X ) is given by_/o~ T(Zy > Z7|Vy)dZ; and CP(Zy)
o] . .
aé? C(vl)P(vl,Zl)dvl. The payoff is then given by P¥(X;)

Il(xl) =

Ts(v Z )CP(Zl) To evaluate this we randomly choose v, from E (v,)

and Z; from T(Z = Zq|v, /T (X With values for v, and Z; we
can then evaluate the first colllslon payoff P*(Xl) We can then con-
tinue the unbiased procedure retaining the Vs and Zl However since
the 2Z; was found from the biased distribution the future payoffs must

be weighted by P*(Xn) P(X,) O(X ). These results are shown in
table I under +1 term bias. | |

This process can be continued to the second collision using
I (%) = P(X,) [T (X, )Ty (% )CP(25)]7h - (1)
- : Z
The T,(Xy) is given by dé? L (Zl - Zz|vl)dZ2 where Z; is L or O
1 .

depending on vy S o. The payoff is then given by P*(Xz) =

E(XO)T(Xl)EEKzz). To evaluate P¥(X,) we already have v, and Zj, we
evaluate v, from C(vz) and Z, from T(zl - zzjvl)/Tl(xl). We can
then evaluate the P*(X,) payoff and we can continue either in the
biased or unbiased fashion in this manner. The results for the biasing
for three terms is shown in table I under +3 term bias.

Finally we can bias continuously, however in this case the sample
history will not end because of the transport kernel biasing. The
sample histories were then ended using Russian Roulette, samplés were
followed until the weighting T(X )T(Xl) . was less than 0.001, then
if a randomly picked number,uniform between O and 1l,was greater than 0.1
the history was ended, if less the sample weight was multiplied by a
factor of 10 and the process continued. These results are in table I
under Russian Roulette. The results indicate significant reductions
in variance can be obtained using biased sampling techniques.
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TAELE I. - NUMERICAL  RESULTS

fe—————GAP SIZE, 1s LIN——

Figure 1. - Analytical model.

Sampling Density Mean Time, Sampling Density Mean | Time.|
ratio, |deviation, | min : ‘ratio, |deviation,| min
n/ng, o a/ag, o
10,000 Samples 10,000 Samples
L/A = 0.1 L/ =10
| Analog 0.848 0.923 0.13 Ana,log 0.1202 0.578 2.14
Next event .844 .867 .15 [|Next event .11965 .527 2,32
Birth bias .845 .741 .12 ||Birth bias .11965 .27 2.31
+1 Term bias .850 .1568 .42 }1+1 Term bias 1171 .463 2.48
+3 Term bias .855 . .116 .64 [|+3 Term bias L1195 .402 3,22
Russian Roulette .854 . 115 .61 Russian Roulette L1172 .244 13,97
LA =1 L/A = 50 -
Analog 0.4914 0.7494 0.31 |lAnalog 0.0261 0.224 10.78
Next event . 4881 .7188 .35 ||Next event .0283 ©.238 11.61
Birth bias .4881 .7185 .32 {|Birth bias .0263 .238 11.60
+1 Term bias . 4958 .5728 .59 ||+1 Term bias .03 1,.2759 11.34
+3 Term bias .487 . 336 .95 ||[+3 Term bias 0246 .183 14,17
Russian Roulette |- .491 .259 2.33 J|Russian Roulette .0245 .168 39.50
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