TECHNICAL REPORT TR-179
MARCH 1972
VGL 21-002-008 AND
V00014-67-A-0239-0021
(NR-044-431)

FORTRAN EXTENDED GRAPH ALGORITHMIC LANGUAGE

BY
V. R. BASILI
C. K. MESZTENYI
W. C. RHEINBOLDT

UNIVERSITY OF MARYLAND
COMPUTER SCIENCE CENTER
COLLEGE PARK, MARYLAND
TECHNICAL REPORT TR-179
NGL 21-002-008 AND
N00014-67-A-0239-0021
(NR-044-431)

FORTRAN EXTENDED GRAPH ALGORITHMIC LANGUAGE

BY

V. R. BASILI
C. K. MESZTENYI
W. C. RHEINBOLDT

This report describes the Fortran version FGRAAL of the graph algorithmic language GRAAL (Tech. Report TR-158) as it has been implemented for the Univac 1108. FGRAAL is an extension of FORTRAN V. and is intended for describing and implementing graph algorithms of the type primarily arising in applications. The formal description contained in this report represents a supplement to the FORTRAN V. manual for the Univac 1108 (UP-4060), that is, only the new features of the language are described. Several typical graph algorithms, written in FGRAAL, are included to illustrate various features of the language and to show its applicability.
TABLE OF CONTENTS

1. **INTRODUCTION** 1-1
2. **SET THEORETIC FOUNDATIONS OF GRAAL** 2-1
3. **VARIABLES, DECLARATION STATEMENTS** 3-1
 - 3.1. SETS 3-1
 - 3.2. LISTS 3-2
 - 3.3. PROPERTIES 3-2
 - 3.4. GRAPHS 3-3
 - 3.5. VARIABLES AS FUNCTION OR SUBROUTINE ARGUMENTS 3-3
 - 3.6. EXTERNAL SET FUNCTIONS 3-4
4. **SET EXPRESSION** 4-1
 - 4.1. CREATION AND REMOVAL OF ATOMIC SETS 4-1
 - 4.2. SET OPERATORS 4-2
 - 4.3. SET FUNCTIONS 4-2
 - 4.4. SET-EXPRESSIONS 4-2
5. **SET-RELATIONS, LOGICAL EXPRESSIONS** 5-1
6. **LIST OPERATIONS** 6-1
7. **PROPERTY ASSIGNMENT AND RETRIEVAL** 7-1
8. **BUILT-IN FUNCTIONS** 8-1
 - 8.1. ELT AND INDEX FUNCTIONS 8-1
 - 8.2. SUBSET FUNCTION 8-1
 - 8.3. SIZE, PARITY, COUNT FUNCTIONS 8-1
 - 8.4. DOMAIN FUNCTION 8-2
9. **GRAPH OPERATIONS** 9-1
 - 9.1. GRAPH ASSIGNMENT STATEMENTS 9-1
 - 9.2. REMOVAL OF ARCS AND NODES 9-1
 - 9.3. NODES, AND ARCS OF A GRAPH 9-2
 - 9.4. INCIDENCE OPERATORS 9-2
10. **SET ASSIGNMENT STATEMENT** 10-1
11. **ITERATIVE STATEMENT** 11-1
 - 11.1. WHILE STATEMENT 11-1
 - 11.2. FORALL STATEMENT 11-1
12. **REMOVE STATEMENT** 12-1
13. **SAVE, RESET STATEMENTS** 13-1
14. **SPECIAL LIBRARY SUBROUTINES** 14-1
15. **SUMMARY OF OPERATORS AND STATEMENTS** 15-1
16. **EXAMPLES** 16-1
17. **APPENDIX. EVALUATION OF EXPRESSIONS** 17-1
18. **REFERENCES** 18-1
1. **Introduction**

A graph algorithmic language, FGRAAL, is described as it is implemented for the Univac 1108. The language is an extension of FORTRAN V, and it is intended for implementing graph algorithms of the type primarily arising in applications. This report contains the description of the language extension for a potential user, and it should be used together with the FORTRAN V manual for the Univac 1108 (UP-4060). FGRAAL has been implemented by modifying the RALPH compiler. It can be called by

`FGRAAL <OPTIONS> <SPECIFICATIONS>`

where `<OPTIONS>` and `<SPECIFICATIONS>` are as defined for FORTRAN programs.

Chapter 2 gives a summary of the set theoretic foundation of FGRAAL. Chapters 3-14 contain the description of the special features of the language. Chapter 15 summarizes the special operations and statements in a table. Chapter 16 contains several examples programmed in FGRAAL.
2. SET THEORETIC FOUNDATIONS OF GRAAL

In this chapter, capital letters $X, S, T, \text{ etc.}$ stand for finite sets, and the basic set operations are indicated by the usual symbols: \cup (union), \cap (intersection), \sim (difference), and Δ (symmetric sum). For any set X, the cardinality is denoted by $|X|$. $P(X)$ is the power set, and we define

$$P_k(X) = \{ S \in P(X) \mid |S| = k \}, \quad k = 0, 1, \ldots, |X|$$

In GRAAL, the set operations are denoted by .UN., .IT., .DF. and .SM., respectively. The cardinality of a set X is given by the built-in function SIZE(X).

It is well-known that under union, intersection, and complementation (in X), $P(X)$ is a Boolean algebra with the members of $P_1(X)$ as generators. To obtain another algebraic structure, let $GF(2)$ be the binary Galois field with the integers 0, 1 as elements. Then $P(X)$ becomes a vector space over $GF(2)$ if the symmetric sum is used as addition and the scalar product is defined by

$$\lambda S = \emptyset \text{ for } \lambda = 0 \quad \text{and} \quad \lambda S = S \text{ for } \lambda = 1$$

The elements of $P_1(X)$ now form a basis.

For any sets X, Y we denote by $B(X, Y)$ the class of all morphisms $\psi : P(X) \rightarrow P(Y)$ between the Boolean algebras $P(X), P(Y)$. Any $\psi \in B(X, Y)$ is uniquely characterized by the image sets $\psi\{x\} \in P(Y)$ of the generators $\{x\} \in P_1(X)$ and

$$(2.2) \quad \psi S = \bigcup_{x \in S} \psi\{x\}, \quad \forall S \in P(X)$$

Correspondingly, we define $L(X, Y)$ as the class of all linear mappings $\varphi : P(X) \rightarrow P(Y)$ between the vector spaces $P(X), P(Y)$. Then, instead of (2.2), we have for any $\varphi \in L(X, Y)$ the representation

$$(2.3) \quad \varphi S = \Delta \varphi\{x\}, \quad \forall S \in P(X)$$
LET G BE A GRAPH WITH NODE SET V AND ARC SET A. THE ELEMENTS OF P(V) AND P(A) CONSTITUTE THE BASIC DATA OBJECTS FOR ALL OPERATIONS ON G UNDER GRAAL AND THE STRUCTURE OF THE GRAPH IS DEFINED BY CERTAIN BOOLEAN OR LINEAR MAPPINGS BETWEEN THE TWO POWER SETS. IN THE REMAINDER OF THIS CHAPTER WE DEFINE THE BASIC GRAPH OPERATORS PRESENTLY INCLUDED IN GRAAL.

IN FGRAAL, THE NODE SET V AND THE ARC SET A OF A GRAPH G ARE REFERRED BY THE BUILT-IN FUNCTIONS NODES(G) AND ARCS(G), RESPECTIVELY.

AN UNDIRECTED PSEUDOGRAPH IS A TRIPLE G = (V, A, ϕ) CONSISTING OF A NODE SET V, AN ARC SET A, AND AN INCIDENCE OPERATOR

\[(2.4) \quad \phi \in B(A, V)\]

\[(\xi) \quad \phi(a) \in P_1(V) \cup P_2(V), \quad \forall a \in A\]

THUS FOR ANY ARC a, \(\phi(a)\) IS EITHER THE TWO-ELEMENT SUBSET OF V CONSISTING OF THE TWO DISTINCT ENDPOINTS OF a, OR AN ATOMIC SUBSET OF V, IN WHICH CASE a IS A SELF LOOP. WE SPEAK OF A MULTIGRAPH IF IN (2.4) THE CONDITION (\xi) IS REPLACED BY

\[(\xi^*) \quad \phi(a) \in P_2(V), \quad \forall a \in A\]

THE UNQUALIFIED TERM GRAPH IS USED IF, IN ADDITION TO (\xi), THE RESTRICTED MAPPING \(\phi : P(A) \rightarrow P(V)\) IS ONE-TO-ONE.

IN FGRAAL, THE INCIDENCE OPERATOR IS IMPLEMENTED BY A BUILT-IN FUNCTION, INC(G, S), WITH TWO ARGUMENTS, THE FIRST BEING THE GRAPH IDENTIFIER, AND THE SECOND A SET OF ARCS IN G. THE VALUE OF THE FUNCTION IS A SET (OF NODES OF G) AS DEFINED BY (2.2) AND (2.4).

FOR ANY UNDIRECTED PSEUDOGRAPH G = (V, A, ϕ) THE STAR OPERATOR IS THE BOOLEAN MAPPING

\[(2.5) \quad \delta \in B(V, A)\]

\[\delta \{v\} = \{a \in A \mid \phi(a) \subset v\}, \quad \forall v \in V\]

WHILE THE STANDARD BOUNDARY OPERATOR ∂ AND COBOUNDARY OPERATOR \(\delta\) ARE DEFINED AS THE LINEAR MAPPINGS

\[(2.6) \quad \partial \in L(A, V)\]

\[\partial(a) = (|\phi(a)| - 1) \phi(a), \quad \forall a \in A\]

AND

\[(2.7) \quad \delta \in L(V, A)\]

\[\delta \{v\} = \{a \in \delta(v) \mid |\phi(a)| = 2\}, \quad \forall v \in V\]
Hence, for any node \(\alpha \), \(\sigma(\alpha) \) is the set of all arcs of \(G \) which are incident with \(\alpha \). The boundary operator \(\partial \) maps each arc into the set of its two endpoints, provided they are distinct, and otherwise into the empty set. Finally, \(\delta(\alpha) \) consists of all arcs incident with \(\alpha \) excluding any self loops.

In FGRAAL, the above operators are implemented as built-in functions, \(\text{star}(G,T) \), \(\text{bd}(G,S) \) and \(\text{cob}(G,T) \), each with two arguments. The first is the graph identifier, and the second is a set, \(T \) or \(S \), where \(T \) is a subset of nodes of \(G \), and \(S \) a subset of arcs of \(G \). The values of the functions are sets of nodes or arcs of \(G \) according to the definitions (2.2) and (2.5) for \(\text{star} \), (2.3) and (2.6) for \(\text{bd} \), (2.7) and (2.8) for \(\text{cob} \).

In a graph \(G \) each arc is uniquely determined by the two element set of its endpoints, and hence the arcs are losing some of their own identity. Accordingly, it is often expedient to work exclusively with the nodes. For this we introduce for a graph \(G = (V,A,\phi) \) the adjacency operator

\[
\alpha \in \text{B}(V,V)
\]

\[
\alpha(\nu) = \{ u \in V \mid \exists \alpha \in \sigma(\nu), \phi(\alpha) \in \{u,v\} \}, \forall \nu \in V
\]

Thus, \(\alpha \) produces for each node \(\alpha \) the set of all nodes \(u \) which form with \(\alpha \) the (distinct) endpoints of some arc of \(G \).

In FGRAAL, the adjacency operator is implemented as a built-in function, \(\text{adj}(G,S) \), with the graph identifier \(G \) again as first argument and the set of nodes of \(G \) as the second. The value of the function is a set of nodes as defined by (2.2) and (2.8).

Other operators are possible and may be included later. Each one of these operators can be used in place of \(\phi \) to characterize graphs of specific type. For example, note that \(\alpha \) has the properties

\[
\alpha \in \text{B}(V,V)
\]

\[
\alpha(\nu) \neq \emptyset, \forall \nu \in V
\]

\[
\nu \in \alpha(\nu) \text{ if and only if } \nu \in \alpha(\nu), \forall \nu \in V
\]

If \(V \) is any set and the mapping \(\alpha \) satisfies (2.9) then \(G = (V,A,\phi) \) with

\[
A = \{ (u,v) \in \text{E}(V) \mid u \in \alpha(\nu) \}\n\]

\[
\phi(\alpha) = \{ u,v \} \text{ if } \alpha = \{ u,v \}, \forall \alpha \in A
IS A WELL-DEFINED GRAPH WITH α AS ITS ADJACENCY OPERATOR. WE CALL (V, α) THE NODE FORM REPRESENTATION OF G.

THE DEFINITION OF THE VARIOUS OPERATORS ARE EASILY CARRIED OVER TO DIRECTED GRAPHS. A DIRECTED PSEUDOGRAPH SHALL BE A QUADRUPLE $G = (V, A, \Phi_+, \Phi_-)$ CONSISTING OF A NODE SET V, AN ARC SET A, AS WELL AS A POSITIVE AND A NEGATIVE INCIDENCE OPERATOR

\[(2.10) \quad \phi_+, \phi_- \in B(A, V)\]

\[\phi_+\{a\}, \phi_-\{a\} \in P(V), \quad \forall a \in A\]

IN OTHER WORDS, $\phi_+\{a\}$ AND $\phi_-\{a\}$ ARE ATOMIC SUBSETS OF $P(V)$ CONSISTING OF THE INITIAL AND TERMINAL NODES OF a, RESPECTIVELY. IN MANY CASES, IT IS CONVENIENT TO USE THE COMBINED INCIDENCE OPERATOR

\[(2.11) \quad \phi \in B(A, V)\]

\[\phi\{a\} = \phi_+\{a\} \cup \phi_-\{a\}, \quad \forall a \in A\]

AS IN THE UNDIRECTED CASE WE SPEAK OF A DIRECTED MULTIGRAPH IF $\phi\{a\} \in P(V)$, FOR ALL $a \in A$, AND OF A DIRECTED GRAPH (DIGRAPH) IF, IN ADDITION, $\phi : P(A) \to P(V)$ IS ONE-TO-ONE.

THE POSITIVE AND NEGATIVE STAR OPERATORS OF THE DIRECTED PSEUDOGRAPH G ARE DEFINED BY

\[(2.12) \quad \sigma_+ \in B(V, A)\]

\[\sigma_+\{v\} = \{a \in A \mid v = \phi_+\{a\}\}, \quad \forall v \in V\]

\[\sigma_- \in B(V, A)\]

\[\sigma_-\{v\} = \{a \in A \mid v = \phi_-\{a\}\}, \quad \forall v \in V\]

AND WE INTRODUCE ALSO THE COMBINED STAR OPERATOR

\[(2.13) \quad \sigma \in B(V, A)\]

\[\sigma\{v\} = \sigma_+\{v\} \cup \sigma_-\{v\}, \quad \forall v \in V\]

THUS, $\sigma_+\{v\}$ CONSISTS OF ALL THE ARCS BEGINNING AT v AND $\sigma_-\{v\}$ OF THOSE TERMINATING AT THAT NODE.

THE POSITIVE AND NEGATIVE BOUNDARY AND COBOUNDARY OPERATORS OF A DIRECTED PSEUDOGRAPH ARE NOW THOSE LINEAR MAPPINGS WHICH COINCIDE WITH THE INCIDENCE AND STAR OPERATORS ON THE APPROPRIATE FAMILY OF ATOMIC SETS:

\[(2.14) \quad \partial_+, \partial_- \in L(A, V)\]

\[\partial_+\{a\} = \phi_+\{a\}, \quad \partial_-\{a\} = \phi_-\{a\}, \quad \forall a \in A\]
\(\delta^+, \delta^- \in L(V, A) \)

\[\delta^+(v) = \{e \in A \mid e \text{ incident with } v\}, \quad \forall v \in V \]

It is natural to define also the combined mappings

\[\varepsilon \in L(A, V) \]

\[\{a^\varepsilon = \delta^+(a) \cup \delta^-(a), \quad \forall a \in A \] \[\varepsilon \in L(V, A) \]

\[\{v^\varepsilon = \delta^+(v) \cup \delta^-(v), \quad \forall v \in V \]

Thus \(\varepsilon \) is again the set of the endpoints of \(a \) if these endpoints are distinct, and the empty set, if they are not. Similarly, \(v^\varepsilon \) is once more the set of all arcs incident with \(v \) excluding all self loops.

Finally, we define for a digraph \(G = (V, A, \phi^+, \phi^-) \) the positive and negative adjacency operators by the relations

\[\alpha^+, \alpha^- \in B(V, V) \]

\[\{v^{\alpha^+} = \{u \in V \mid \exists a \in \delta^+(v), \ u = \phi^+(a)\}, \forall v \in V \]

\[\{v^{\alpha^-} = \{u \in V \mid \exists a \in \delta^-(v), \ u = \phi^-(a)\}, \forall v \in V \]

Then the combined adjacency operator

\[\alpha \in B(V, V) \]

\[\{v^\alpha = v^{\alpha^+} \cup v^{\alpha^-}, \quad \forall v \in V \]

has again exactly the same meaning as in the undirected case. Moreover, \(\alpha^+ \) and \(\alpha^- \) may be used to characterize the incidence structure of a digraph. Here conditions (2.9) have to hold for both \(\alpha^+ \) and \(\alpha^- \), and (2.10) is replaced by

\[(\star \star \star) \ u \in \alpha^+\{v\} \text{ if and only if } \exists a \in \alpha^-\{u\}, \forall a, v \in V \]

This defines the node representation \((V, \alpha^+, \alpha^-)\) of a digraph.

In FGRAAL, the positive (negative) operators are implemented by having the letter 'P' ('N') in front of the corresponding built-in function name. For example, the positive incidence operator corresponds to the built-in function \text{PINC}(G, S), the negative incidence operator to \text{NINC}(G, S).
3. VARIABLES, DECLARATION STATEMENTS

There are four new types of variables introduced in FGRAAL; namely set-, list-, property- and graph-variables. All of these variables must appear in the proper declaration statement. Sets constitute a new basic data type. Lists are doubly-open linked list structure which may be used as stacks or queues. Property variables resemble subscripted variables with set variables corresponding to subscripts. Graphs represent specific data structures, all of these variables may appear in the argument list of a subroutine call.

3.1. Sets

In FGRAAL, sets constitute a new basic data type. An atomic set is a set consisting of one item, and any set is either empty or a union of atomic sets. The only constant set is the empty set. An atomic set carries a sequence number which is assigned to it at the time of its creation, and the members of a set are ordered in ascending order of their sequence number. All sequence numbers are retained in an element sequence; it is an ordered internal structure serving the dual purpose of cataloging the atomic sets which have been created so far and of providing the linkage between an atomic set and the properties which are assigned to it.

Set variables are declared by a set declaration, which consists of the word set followed by the list of variables, e.g.

```
SET S, T
```

Sets can also be declared implicitly, as any other variables in FORTRAN. The statement:

```
IMPLICIT SET (S-W)
```

causes all variables whose leading character is in the range from S to W to be considered as set variables.

The creation of atomic sets is accomplished by the create function which is described in the section 4.1.

The empty set is denoted by the character 'A' or by the keyword .EMPTY, enclosed in periods. A declared set can be made empty by the following set assignment statement:

```
S = A OR S = .EMPTY.
```

And can be tested if it is empty or not by the logical expression
SET VARIABLES MAY BE DIMENSIONED AS OTHER TYPE OF VARIABLES (REAL, INTEGER, ETC.), EITHER IN A SEPARATE DIMENSION STATEMENT OR IN THE DECLARATION STATEMENT ITSELF. E.G.

SET R(10)

DEFINES AN ARRAY CONSISTING OF 10 SETS, R(1), ..., R(10).

3.2. LISTS

A LIST IS A DOUBLY-OPEN, LINKED LIST STRUCTURE WHICH MAY BE USED AS A STACK OR A QUEUE. IT OFFERS A DYNAMIC ALTERNATIVE TO THE ARRAY FOR THE STORING VALUES OF VARIABLES IN THE ORDER DEFINED BY THE USER. EACH LIST MUST BE DECLARED BY ITS TYPE (INTEGER, REAL, BOOLEAN OR SET) REFERING TO THE TYPE OF VALUES THE LIST MAY CONTAIN. THE LIST DECLARATION STATEMENT CONSISTS OF THE TYPE, FOLLOWED BY THE WORD STAQE, FOLLOWED BY A LIST OF NAMES, E.G.

INTEGER STAQE I,J

OPTIONALLY, THE TYPE MAY BE DELETED, IN WHICH CASE, THE TYPE OF THE LIST IS DEFINED BY THE 'NAME RULE'.

3.3. PROPERTIES

A PROPERTY MAY BE ASSOCIATED WITH ANY ATOMIC SET. THE PROPERTY DECLARATION ESTABLISHES THE TYPE ASSOCIATED WITH EACH PROPERTY NAME. THE DECLARATION CONSISTS OF THE TYPE, FOLLOWED BY THE WORD PROPERTY, FOLLOWED BY THE LIST OF PROPERTY NAMES, E.G.

SET PROPERTY S,TREF
REAL PROPERTY CAP,F1,F2

WHENEVER THE TYPE IS NOT EXPLICITLY GIVEN IN THE DECLARATION, THE TYPES OF THE PROPERTIES IN THE LIST ARE DEFINED BY THE 'NAME RULE'.

ASSIGNING OR REASSIGNING OF A PROPERTY VALUE TO AN ATOMIC SET, AND RETRIEVING IT, IS DESCRIBED IN CHAPTER 7.
3.4. Graphs

Graphs represent specific data structures together with certain operations for manipulating them. The graph declaration identifies the data structures used and the family of operators available with it. The language is modular in the sense that, in general, only some of the possible graph operations are usable with any specific graph. Four modules are presently defined in the language:

0. Directed pseudograph
1. Undirected pseudograph
2. Directed node graph
3. Undirected node graph

The pseudograph is the most general module and allows self-loops (arc with the same node as end-points) and multiple arcs (more than one are connecting two different nodes). The node graph does not allow self-loops or multiple arcs, furthermore arcs do not have an identity.

The identity of a node or arc is established by assigning atomic sets to the graph. These operations are described in Chapter 9.

Graphs with different modules must be declared in separate statements. The graph declaration statement consists of the word graph, followed by the graph module number in parentheses, and by a list of graph variables, e.g.

```
GRAPH(0) G, H
GRAPH(3) T
```

Statements declare G and H as directed pseudographs, T as an undirected node graph.

3.5. Variables as function or subroutine arguments

Any of the above described variables may be submitted to functions or subroutines in the argument list, e.g.

```
SET S, T(10)
GRAPH(1) G
REAL PROPERTY LENGTH

CALL SUB(S, T, G, LENGTH)
```
WHEN A SUBROUTINE OR FUNCTION HAS THE ABOVE VARIABLES IN ITS
ARGUMENT LIST, IT MUST DECLARE THEM, E.G.

SUBROUTINE SUB(S, T, G, LENGTH)
SET S, T(10)
GRAPH G
REAL PROPERTY LENGTH

THE MODULE NUMBER OF THE GRAPH DECLARATION MAY BE OMITTED IN THE
SUBROUTINE.

3.6. EXTERNAL SET FUNCTIONS

EXTERNAL FUNCTION SUBPROGRAMS OF SET TYPE CAN BE USED THE SAME
WAY AS OTHER TYPE OF EXTERNAL FUNCTION SUBPROGRAMS, I.E., THE TYPE
OF THE FUNCTION MUST BE DECLARED UNLESS ITS NAME IN CONTAINED IN
AN IMPLICIT SET DECLARATION, E.G.

C CALLING PROGRAM

SET SFCT

X = ... SFCT(Z, R) ...

END

C FUNCTION PROGRAM
SET FUNCTION SFCT(S, T)

SFCT = ...
RETURN
END
4. SET EXPRESSION

A SET EXPRESSION IS A RULE FOR CREATING, REFERENCING, AND MANIPULATING SETS. EACH ATOMIC SET CARRIES A SEQUENCE NUMBER WHICH IS ASSIGNED TO IT AT THE TIME OF ITS CREATION. A SET IS A UNION OF ATOMIC SETS ORDERED IN ASCENDING ORDER BY THEIR SEQUENCE NUMBER. ALL SEQUENCE NUMBERS ASSIGNED TO ATOMIC SETS ARE RETAINED IN AN ELEMENT SEQUENCE. THIS IS AN ORDERED INTERNAL STRUCTURE SERVING THE DUAL PURPOSE OF CATALOGING THE ATOMIC SETS WHICH HAVE BEEN CREATED THUS FAR AND PROVIDING THE LINKAGE BETWEEN AN ATOMIC SET AND THE PROPERTIES WHICH ARE ASSIGNED TO IT.

4.1. CREATION AND REMOVAL OF ATOMIC SETS

THE SPECIAL FUNCTION:

CREATE (0)

WITH ARGUMENT ZERO CREATES A NEW ELEMENT WITH THE NEXT SEQUENCE NUMBER IN THE ELEMENT SEQUENCE AND RETURNS THE ATOMIC SET CONTAINING THAT ELEMENT. THE SAME FUNCTION MAY BE USED WITH A LIST OF ARGUMENT PAIRS:

CREATE (P1, V1, P2, V2, ..., PN, VN) (N>0)

WHERE THE PI'S ARE DECLARED PROPERTY NAMES, AND THE VI'S ARE VARIABLES OR CONSTANTS OF THE SAME TYPES AS THE CORRESPONDING PROPERTIES. THIS VERSION OF THE FUNCTION CAUSES A SEARCH OF THE ELEMENT SEQUENCE FOR AN ATOMIC SET FOR WHICH ALL THE NAMED PROPERTIES EXIST AND ARE PRESENTLY ASSIGNED THE SPECIFIED VALUES. IF A (COMPLETE) MATCH IS FOUND THE FUNCTION RETURNS THE CORRESPONDING ATOMIC SET. IF NO MATCH (OR ONLY A PARTIAL MATCH) OCCURS, A NEW ELEMENT WITH THE NEXT SEQUENCE NUMBER IS ADDED TO THE ELEMENT SEQUENCE WITH THE GIVEN PROPERTIES AND CORRESPONDING VALUES. THE ATOMIC SET CONTAINING THIS NEW ELEMENT IS RETURNED.

THE REMOVE STATEMENT REMOVES ALL ATOMIC SETS WHICH ARE ELEMENTS OF THE ARGUMENT SET FROM THE ELEMENT SEQUENCE, TOGETHER WITH THEIR ASSOCIATED PROPERTIES, E.G.

REMOVE S

REMOVES THE ATOMIC SETS WHICH ARE ELEMENTS OF THE SET S. IF A REMOVED ATOMIC SET IS REFERENCED AN ERROR CONDITION OCCURS.

THE SPECIAL FUNCTION,
ATOM (1)

WHERE I IS AN INTEGER, CAN BE USED TO OBTAIN THE ATOMIC SET WHOSE ELEMENT HAS THE GIVEN SEQUENCE NUMBER I. IF THERE IS NO SUCH AN ELEMENT, IT RETURNS AN EMPTY SET.

4.2. SET OPERATORS

THE FOLLOWING FOUR SET OPERATORS ARE DEFINED IN FGRAAL:

- \textbf{DF.} DIFFERENCE (~)
- \textbf{UN.} UNION (∪)
- \textbf{IT.} INTERSECTION (∩)
- \textbf{SM.} SYMMETRIC SUM

4.3. SET FUNCTIONS

SET FUNCTIONS ARE BUILT-IN FUNCTIONS WHICH PRODUCE SETS. TWO OF THESE FUNCTIONS ARE THE CREATE AND ATOM FUNCTIONS DESCRIBED IN SECTION 4.1. OTHER SET PRODUCING FUNCTIONS ARE THE FUNCTIONS SUBSET AND LLT (CHAPTER 8), THE GRAPH OPERATORS (CHAPTER 9), THE SET-PROPERTIES (CHAPTER 7) AND THE ELEMENTS OF A LIST OF TYPE SET (CHAPTER 6).

4.4. SET-EXPRESSIONS

SET EXPRESSIONS ARE FORMED BY THE PROPER SEQUENCE OF SETS, SET-OPERATORS, SET-FUNCTIONS AND PARENTHESES. THE PRECEDENCE OF THE SET OPERATORS AND FUNCTIONS ARE AS FOLLOWS (IN INCREASING ORDER):

- \textbf{DF.}
- \textbf{UN.}
- \textbf{IT.}
- \textbf{SM.}
- SET-FUNCTIONS
E.g. the expression

\[\text{CREATE}(0) \cdot \text{UN} \cdot S \cdot \text{SM} \cdot T \cdot \text{DF} \cdot R \]

would be evaluated as though it were parenthesized as follows

\[(\text{CREATE}(0) \cdot \text{UN} \cdot (S \cdot \text{SM} \cdot T)) \cdot \text{DF} \cdot R \]

When two operators are of the same precedence, the one of the left has precedence over the one on the right, e.g.

\[S \cdot \text{DF} \cdot T \cdot \text{DF} \cdot R \]

is evaluated as

\[(S \cdot \text{DF} \cdot T) \cdot \text{DF} \cdot R \]

Parentheses can be used to alter the precedence relation.

If a variable is used more than once in the context of an expression or argument list, and at least one such a use is as an argument of a function or operator which modifies it then certain problems arise. See appendix for more information.
THE FOLLOWING 3 SET-RELATION OPERATORS MAY BE USED TO OBTAIN LOGICAL VALUE TRUE OR FALSE:

- **EQ.**
- **NE.**
- **IN.**

THE LOGICAL EXPRESSION

S.EQ.T

GIVES THE VALUE TRUE WHENEVER THE TWO SETS, S AND T, ARE EQUAL, AND THE VALUE FALSE OTHERWISE. THE LOGICAL EXPRESSION

S.NE.T

GIVES THE VALUE TRUE WHEN THE TWO SETS ARE NOT EQUAL, AND THE VALUE FALSE WHEN THEY ARE EQUAL. THE LOGICAL EXPRESSION

S.IN.T

GIVES THE VALUE TRUE WHEN THE SET S IS CONTAINED IN THE SET T (S \subseteq T), AND THE VALUE FALSE OTHERWISE.

THE ABOVE EXPRESSIONS MAY FORM A SUBEXPRESSION IN ANY FORTRAN TYPE OF LOGICAL EXPRESSION, E.G.

(I.LE.2).AND.(S.IN.T)

IF A VARIABLE IS USED MORE THAN ONCE IN THE CONTEXT OF AN EXPRESSION OR ARGUMENT LIST, AND AT LEAST ONE SUCH USE IS AS AN ARGUMENT OF A FUNCTION OR OPERATOR WHICH MODIFIES IT THEN CERTAIN PROBLEMS ARISE. SEE APPENDIX FOR MORE INFORMATION.
b. LIST OPERATIONS

As stated in Section 3.2, a list is basically a stack or a queue. To build the list, items are concatenated together. A list statement consists of a list identifier, the equal sign and a list of items separated by colons. The items must be constants, variables, lists be used for colon. E.g.

```
REAL STACK Q:R
Q = X :: Q :: R :: 2.5
```

OR

```
Q = X .ET. Q .ET. R .ET. 2.5
```

Lists appearing in the concatenation are copied, E.g.

```
L = 1 : 2
LL = L : 3
```

Is equivalent to

```
LL = 1 : 2 : 3
```

An empty list is referenced by the character 'nil' or by ,NIL. A list can be emptied by the assignment statement

```
L = # OR L = ,NIL.
```

And can be tested by

```
L .EQ. # OR L .EQ. ,NIL.
```

To obtain and possibly remove an item from a list, there are four operators:

```
FIRST (L)
```

returns the first item of the list L.

```
DFIRST (L)
```

returns the first item and deletes it from the list L.

```
LAST (L)
```

returns the last item of the list L, and

```
DLAST (L)
```

returns the last item of the list L.
RETURNS THE LAST ITEM AND DELETES IT FROM THE LIST L.

THE ITEM RETURNED IS OF THE TYPE OF THE DECLARED LIST L, THUS IT MAY BE USED IN ANY PROPER CONTEXT (EXPRESSIONS).

IF A VARIABLE IS USED MORE THAN ONCE IN THE CONTEXT OF AN EXPRESSION OR ARGUMENT LIST, AND AT LEAST ONE SUCH USE IS AS AN ARGUMENT OF A FUNCTION OR OPERATOR WHICH MODIFIES IT THEN CERTAIN PROBLEMS ARISE. SEE APPENDIX FOR MORE INFORMATION.
7. PROPERTY ASSIGNMENT AND RETRIEVAL

As stated in Section 3.3, properties can be associated with atomic sets. In Section 4.1, property assignment by the create function was already described.

A simple property assignment is done for the atomic set \(X \) as

\[
P(X) = E
\]

where \(P \) is a declared property and \(E \) is an expression of the same type as \(P \) (integer, real, double precision, boolean or set). If the atomic set \(X \) has property \(P \) already, then the previous value is reset to the value of \(E \). Otherwise, the property \(P \) is established with the value of \(E \).

When \(P(X) \) is referenced, e.g., as part of an expression, its current value is retrieved. Whenever the argument set \(X \) is not an atomic set, but a set with more than one element, then the operations are performed in respect to the first element of the set.

The special built-in logical function,

\[
\text{CHECK}(P,X)
\]

returns the value true when the property \(P \) has been defined for the atomic set \(X \), and returns the value false otherwise.

The remove statement with argument of a property name,

\[
\text{REMOVE } P
\]

removes the property \(P \) from all atomic sets for which it had been defined, the statement with argument \(P \) followed by a set in parentheses,

\[
\text{REMOVE } P(X)
\]

removes the property \(P \) only from the atomic sets which were elements of the set \(X \).
8. BUILT-IN FUNCTIONS

8.1. ELT AND INDEX FUNCTIONS

THE FUNCTION,

\[\text{ELT}(I,S) \]

WITH INTEGER \(I \) AND SET \(S \), RETURNS THE \(I \)-TH ELEMENT OF \(S \) AS AN ATOMIC SET. IF THERE IS NO \(I \)-TH ELEMENT OF \(S \) THEN IT RETURNS THE EMPTY SET.

THE FUNCTION,

\[\text{INDEX}(X,S) \]

WITH ATOMIC SET \(X \) AND SET \(S \), RETURNS INTEGER \(I \) IF \(X \) IS THE \(I \)-TH ELEMENT OF \(S \), RETURNS ZERO OTHERWISE.

8.2. SUBSET FUNCTION

THE FUNCTION,

\[\text{SUBSET}(X,R) \]

RETURNS A SET OF ELEMENTS WHICH SATISFY THE LOGICAL EXPRESSION \(B \). \(X \) IS A DUMMY VARIABLE WHICH CAN BE USED IN THE LOGICAL EXPRESSION \(B \).

E.G.

\[\text{SUBSET}(X, (X \in S) \text{ AND } (\text{DIST}(X) > 0)) \]

8.3. SIZE, PARITY, COUNT FUNCTIONS

THE FUNCTION,

\[\text{SIZE}(S) \]

RETURNS THE NUMBER OF ELEMENTS IN THE SET \(S \).

THE FUNCTION,
PARITY (S)

RETURNS ZERO IF THE SIZE(S) IS EVEN, RETURNS ONE OTHERWISE.

THE FUNCTION:

```
COUNT (X)
OR COUNT (0)
```

RETURNS THE SEQUENCE NUMBER OF THE GIVEN ATOMIC SET X OR RETURNS THE SEQUENCE NUMBER OF THE LAST ATOMIC SET CREATED WHEN THE ARGUMENT IS ZERO.

6.4. DOMAIN FUNCTION

THE FUNCTION:

```
DOMAIN ( P )
```

WHERE P IS A PROPERTY IDENTIFIER, GENERATES THE SET WHOSE ELEMENTS HAVE PROPERTY P DEFINED. THIS FUNCTION PROVIDES A FASTER OBJECT TIME EXECUTION THAN THE EQUIVALENT FUNCTIONAL EXPRESSION

```
SUBSET ( X, CHECK(P,X) )
```
9. GRAPH OPERATIONS

GRAPH OPERATIONS ALLOW FOR THE ASSIGNMENT OF ATOMIC SETS AS NODES OR ARCS TO A GRAPH, THE REMOVAL OF NODES AND ARCS FROM A GRAPH, AND THE OBTAINING OF SUBSETS OF NODES OR ARCS OF A GRAPH.

9.1. GRAPH ASSIGNMENT STATEMENTS

THE STATEMENT, ASSIGN, IS USED TO ASSIGN ATOMIC SETS AS NODES OR ARCS TO A GRAPH. THREE FORMS OF ASSIGNMENT IS POSSIBLE:

(I) ASSIGNMENT OF AN ISOLATED NODE:

ASSIGN G, X

THE ATOMIC SET X IS ASSIGNED AS A NODE TO THE GRAPH G.

(II) ASSIGNMENT OF AN ARC IN A NODE-GRAPH:

ASSIGN G, X-Y

THE ATOMIC SETS, X AND Y, ARE ASSIGNED AS NODES TO THE GRAPH G, AND THE CONNECTION OF THE TWO NODES IS KEPT INTERNALLY.

(III) ASSIGNMENT OF AN ARC IN A GRAPH:

ASSIGN G, X-Y, Z

THE ATOMIC SETS, X AND Y, ARE ASSIGNED AS NODES TO THE GRAPH G, THE ATOMIC SET, Z, IS ASSIGNED AS AN ARC TO G.

WHEN THE GRAPH HAD BEEN DECLARED AS A DIRECTED GRAPH, THE ARC ASSIGNMENT X-Y IS UNDERSTOOD AS FROM X TO Y.

IF EITHER OR BOTH OF THE NODES HAVE BEEN PREVIOUSLY ASSIGNED TO G, THEN JUST THE UNASSIGNED NODE (IF ANY) AND THE ARC WILL BE ASSIGNED TO G.

9.2. REMOVAL OF ARCS AND NODES

THE DETACH STATEMENT IS USED TO REMOVE ARCS AND NODES FROM A GRAPH. THE DETACH STATEMENT HAS 3 FORMS:

(1) EMPTYING A GRAPH
DETAICH G

REMOVE ALL ELEMENTS, NODES AND ARCS FROM GRAPH G.

(II) REMOVAL OF ELEMENTS OF A GRAPH

DETAICH G, S

REMOVE THE ELEMENT OF SET S FROM THE GRAPH G IF THEY HAD BEEN ASSIGNED AS NODES OR ARCS TO G PREVIOUSLY, WHEN A NODE OF G IS REMOVED THEN ALL THE INCIDENT ARCS OF THE NODE ARE ALSO REMOVED.

(III) REMOVAL OF ARCS

DETAICH G, S-T

REMOVE ALL ARCS FROM G WHICH CONNECT THE TWO SETS OF NODES, S AND T, IN THE GRAPH G. IF THE GRAPH IS DIRECTED, THIS WILL MEAN ARCS FROM NODES IN S TO NODES IN T.

9.3. NODES AND ARCS OF A GRAPH

THE FUNCTIONS:

NODES (G)
ARCS (G)

RETURN SETS CONSISTING THE ELEMENTS WHICH WERE ASSIGNED TO G AS NODES AND ARCS, RESPECTIVELY.

9.4. INCIDENCE OPERATORS

THE INCIDENCE OPERATORS ARE BUILT-IN FUNCTIONS WITH ARGUMENTS CONSISTING OF A GRAPH AND A SET WHOSE ELEMENTS WERE ASSIGNED TO THE GRAPH AS NODES OR ARCS. THE VALUE OF THE FUNCTION IS A SET WHICH IS A SUBSET OF THE NODES OR ARCS OF THE GRAPH. THE FORM OF THE FUNCTIONS ARE AS FOLLOWS:

OP (G,S)

WHERE G IS THE GRAPH NAME, S IS A SET OF NODES OR ARCS OF G (S MAY BE A SET EXPRESSION). THE VARIOUS OPERATORS (OP) ARE AS FOLLOWS:

INC (G,A) A MUST BE AN ARC-SET OF G. THE FUNCTION RETURNS A SET WHICH IS THE UNION OF ALL NODES WHICH ARE
BOUNDARY NODES OF THE ARCS IN A.

STAR *(G, V)*
V must be a node-set of G. The function returns a set which is the union of all arcs which are incident to the nodes in V.

BD *(G, A)*
A must be an arc-set of G. The function returns a set which is the symmetric sum of all nodes which are boundary nodes of the arcs in A.

COB *(G, B)*
V must be a node-set of G. The function returns a set which is the symmetric sum of all arcs which are incident to the nodes in V.

ADJ *(G, V)*
V must be a node-set of G. The function returns a set which is the union of all nodes which are adjacent to the nodes in V.

In case of a node graph G, only the **ADJ** operator is defined.

If G is a directed graph, all the above operators have extended operators by placing **P** or **N** in front of their names:

<table>
<thead>
<tr>
<th>INC</th>
<th>PIN</th>
<th>NINC</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAR</td>
<td>PS</td>
<td>NS</td>
</tr>
<tr>
<td>BD</td>
<td>PB</td>
<td>NR</td>
</tr>
<tr>
<td>COB</td>
<td>PC</td>
<td>NC</td>
</tr>
<tr>
<td>ADJ</td>
<td>PA</td>
<td>NA</td>
</tr>
</tbody>
</table>

The **P** (positive) operators are defined such that for arcs they give the starting nodes, for nodes they give the arcs which are directed outward from the nodes.

The **N** (negative) operators are defined such that for arcs they give the ending nodes, for nodes they give the incoming arcs.
10. SET ASSIGNMENT STATEMENT

THE SET ASSIGNMENT STATEMENT IS SIMILAR TO THE FORTRAN ASSIGNMENT STATEMENT:

\[V = E \]

WHERE \(V \) MUST BE A SET VARIABLE, \(E \) MUST BE A SET EXPRESSION. SPECIAL CONVERSION TAKES PLACE IF \(V \) OR \(E \) IS INTEGER TYPE:

\[I = E \]

WHERE \(I \) IS AN INTEGER VARIABLE AND \(E \) IS A SET EXPRESSION, IS EQUIVALENT TO

\[I = \text{INDEX}(1,E) \]

THE ASSIGNMENT,

\[V = I \]

WHERE \(V \) IS A SET VARIABLE, IS EQUIVALENT TO

\[V = \text{ATOM}(I) \]
11. ITERATIVE STATEMENT

THERE ARE TWO NEW ITERATIVE STATEMENTS IN FGRAAL WHICH ARE SIMILAR TO THE DO STATEMENT IN FORTRAN.

11.1. WHILE STATEMENT

THE FORM OF THE WHILE STATEMENT IS AS FOLLOWS:

\[\text{DO ST.NO. WHILE LOG.EXPR.} \]

E.G.

\[\text{DO 10 WHILE S.NE.8} \]

11.2. FORALL STATEMENT

THE FORM OF THE FORALL STATEMENT IS AS FOLLOWS:

\[\text{DO ST.NO. FORALL V.IN.E} \]

WHERE V MUST BE A SET VARIABLE, E IS A SET EXPRESSION. THE SET E SHOULD NOT BE ALTERED IN THE RANGE OF THE DO STATEMENT. THE STATEMENT IS EQUIVALENT TO

\[
\begin{align*}
N &= \text{SIZE} (E) \\
\text{DO} & \text{ST.NO. I} = 1, N \\
V &= \text{ELT} (I, E)
\end{align*}
\]

EXCEPT THAT THE LOOP MAY BE SKIPPED COMPLETELY WHEN THE SET E IS EMPTY.

E.G.

\[\text{DO 15 FORALL X.IN.T} \]
12. REMOVE STATEMENT

The REMOVE statement removes atomic sets from the universal sequence, or removes defined properties of atomic sets. The statement consists of the word 'REMOVE' followed by a list of arguments separated by commas:

\[\text{REMOVE } S, T, \ldots, P, Q, \ldots, PP(X), PQ(Y), \ldots \]

The arguments may be:

(1) Sets - then all atomic sets which are elements of the set are removed from the universal sequence;
(2) Property names - the property is removed from all atomic sets where it had been assigned;
(3) Property names followed by set in parentheses - the property is removed from those atomic sets which are elements of the given set.
13. SAVE, RESET STATEMENTS

THE SAVE STATEMENT IS USED TO TRANSFER INFORMATION FROM CORE TO AN AUXILIARY STORAGE FILE. RESET STATEMENT IS USED TO RETRIEVE INFORMATION FROM THE AUXILIARY STORAGE. THE INFORMATION CAN BE EITHER PROPERTY VALUES, OR A FULL GRAPH.

AT THE PRESENT, THESE STATEMENTS ARE NOT IMPLEMENTED.
SPECIAL LIBRARY SUBROUTINES

THE FOLLOWING THREE CLOSELY RELATED SUBROUTINES ARE AVAILABLE:

CONTRT(G,S,X)
NODSET(G,X,S)
EXPAND(G,X)

WHICH CAN BE CALLED BY STANDARD FORTRAN CALL STATEMENTS.

SUBROUTINE CONTRT CONTRACTS A GIVEN SUBSET S OF NODES OF GRAPH G INTO A NEW NODE WHICH IS RETURNED IN THE ATOMIC SET X. ON SUBSEQUENT USAGE OF THE GRAPH, X IS TO BE CONSIDERED AS A NODE OF G, BUT THE ELEMENTS OF S WILL NOT BE NODES OF G. THE SUBROUTINE MAY BE CALLED SUBSEQUENTLY, I.E. ONE MAY FURTHER CONTRACT AN ALREADY CONTRACTED GRAPH. MODIFICATION OF A CONTRACTED GRAPH BY ASSIGN AND DETACH STATEMENTS SHOULD BE AVOIDED.

SUBROUTINE NODSET RETURNS A SET S CONSISTING OF THE PREVIOUS NODES OF G WHICH WERE CONTACTED TO THE NODE X.

SUBROUTINE EXPAND EXPANDS THE PREVIOUSLY CONTRACTED NODES OF GRAPH G CORRESPONDING TO THE NODE IN ATOMIC SET X. X WILL NOT BE A NODE OF GRAPH G UPON RETURN.

CARE SHOULD BE TAKEN BY THE PROPER USAGE OF THESE SUBROUTINES, I.E. EXPANSIONS OF A GRAPH SHOULD BE IN THE REVERSE ORDER OF ITS CONTRACTIONS.
15. SUMMARY OF OPERATORS AND STATEMENTS

CONSTANTS:
- \(R \) OR \(.\text{EMPTY}. \) = EMPTY SET
- \(R \) OR \(.\text{NIL}. \) = EMPTY LIST

SET OPERATORS:

<table>
<thead>
<tr>
<th>NAME</th>
<th>MEANING</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{DIFFERENCE})</td>
<td>(R) is the set of all elements of the set (S) which are not elements of the set (T).</td>
</tr>
<tr>
<td>(\text{UNION})</td>
<td>(R) is the set of all elements of sets (S) and (T).</td>
</tr>
<tr>
<td>(\text{INTERSECTION})</td>
<td>(R) is the set of all elements which are elements of both sets, (S) and (T).</td>
</tr>
<tr>
<td>(\text{SYMMETRIC SUM})</td>
<td>(R) is the set of all elements which are elements of sets (S) or (T), but not both.</td>
</tr>
<tr>
<td>(\text{EQUAL RELATION})</td>
<td>(R) is true if sets (S) and (T) are equal, false otherwise.</td>
</tr>
<tr>
<td>(\text{NOT-EQUAL RELATION})</td>
<td>(R) is true if sets (S) and (T) are not equal, false otherwise.</td>
</tr>
<tr>
<td>(\text{CONTAINED RELATION})</td>
<td>(R) is true if set (S) is contained in set (T), false otherwise.</td>
</tr>
</tbody>
</table>
FUNCTION TABLE.

<table>
<thead>
<tr>
<th>NAME</th>
<th>N0.</th>
<th>ARGs.</th>
<th>MEANING</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIRST</td>
<td>1</td>
<td>LIST</td>
<td>RETURNS THE FIRST OR LAST ELEMENT OF THE LIST, WITH 'D', OF LIST.</td>
</tr>
<tr>
<td>DFIRST</td>
<td></td>
<td></td>
<td>IT ALSO DELETES THE ELEMENT FROM THE LIST.</td>
</tr>
<tr>
<td>LAST</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLAST</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CREATE</td>
<td>1</td>
<td>2N</td>
<td>CREATED ELEMENT AS AT. SET</td>
</tr>
<tr>
<td>CREATE</td>
<td></td>
<td></td>
<td>AT. SET WITH THE GIVEN SEQ. NUMBER</td>
</tr>
<tr>
<td>ATOM</td>
<td>1</td>
<td>INT.</td>
<td>AT. SET WITH THE GIVEN SEQ. NUMBER</td>
</tr>
<tr>
<td>ELT</td>
<td>2</td>
<td>INT. Set</td>
<td>AT. SET IN SPEC. PLACE IN THE SET</td>
</tr>
<tr>
<td>INDEX</td>
<td>2</td>
<td>AT. Set</td>
<td>INDEX NO. OF AT. SET IN THE SET</td>
</tr>
<tr>
<td>SIZE</td>
<td>1</td>
<td>SET</td>
<td>NUMBER OF ELEMENTS IN THE SET</td>
</tr>
<tr>
<td>PARITY</td>
<td>1</td>
<td>SET</td>
<td>TRUE FOR ODD, FALSE FOR EVEN</td>
</tr>
<tr>
<td>COUNT</td>
<td>1</td>
<td>ZERO</td>
<td>MAXIMAL SEQUENCE NUMBER</td>
</tr>
<tr>
<td>COUNT</td>
<td>1</td>
<td>AT. Set</td>
<td>SEQUENCE NUMBER OF THE AT. SET</td>
</tr>
<tr>
<td>SUBSET</td>
<td>2</td>
<td>LOG</td>
<td>ELEMENTS OF FIRST ARGUMENT</td>
</tr>
<tr>
<td>CHECK</td>
<td>2</td>
<td>LOG</td>
<td>AT. SET</td>
</tr>
<tr>
<td>'PROP'</td>
<td>1</td>
<td>AT. Set</td>
<td>RETURNS THE ASSIGNED PROP. VALUE</td>
</tr>
<tr>
<td>NAME'</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

--- GRAPH FUNCTIONS: ---

<table>
<thead>
<tr>
<th>NAME</th>
<th>N0.</th>
<th>ARGs.</th>
<th>MEANING</th>
</tr>
</thead>
<tbody>
<tr>
<td>NODES</td>
<td>1</td>
<td>GRAPH</td>
<td>NODES OF THE GRAPH</td>
</tr>
<tr>
<td>ARCS</td>
<td>1</td>
<td>GRAPH</td>
<td>ARCS OF THE GRAPH</td>
</tr>
<tr>
<td>INC</td>
<td>2</td>
<td>GRAPH</td>
<td>UNION OF ALL BOUNDARY NODES</td>
</tr>
<tr>
<td>STAR</td>
<td>2</td>
<td>GRAPH</td>
<td>UNION OF ALL ARCS INCIDENT TO SET</td>
</tr>
<tr>
<td>BD</td>
<td>2</td>
<td>GRAPH</td>
<td>SYMMETRIC SUM OF ALL BOUNDARY</td>
</tr>
<tr>
<td>COB</td>
<td>2</td>
<td>GRAPH</td>
<td>SYMMETRIC SUM OF ALL ARCS INCIDENT TO SET</td>
</tr>
<tr>
<td>ADJ</td>
<td>2</td>
<td>GRAPH</td>
<td>UNION OF ALL NODES ADJACENT TO SET</td>
</tr>
</tbody>
</table>
Statements

<table>
<thead>
<tr>
<th>Category</th>
<th>Form</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Declaration</td>
<td>Set X, Y, ...</td>
<td>X, Y, ... are set variables.</td>
</tr>
<tr>
<td></td>
<td>'Type' STAQUE L, P, ...</td>
<td>L, P, ... are lists of 'type' real, integer, logical or set.</td>
</tr>
<tr>
<td></td>
<td>'Type' PROPERTY A, B, ...</td>
<td>A, B, ... are properties of 'type' real, integer, logical or set.</td>
</tr>
<tr>
<td></td>
<td>GRAPH G('MOD'), T('MOD'), ...</td>
<td>G, T, ... are graph of 'mod' directed or undirected, and pseudo-, multi- or node-graphs.</td>
</tr>
<tr>
<td>Assignment</td>
<td>S='SET-EXPRESSION'</td>
<td>Set assignment</td>
</tr>
<tr>
<td></td>
<td>L=...:X:L:Y:...</td>
<td>List asg.: X, L, Y, ... are const., vble. or list of same type.</td>
</tr>
<tr>
<td></td>
<td>P(X)='EXPRESSION'</td>
<td>Property 'p' assigned to atomic set X with value 'expression'.</td>
</tr>
<tr>
<td>Graph</td>
<td>ASSIGN G, X</td>
<td>At. set X assigned to G as node.</td>
</tr>
<tr>
<td></td>
<td>ASSIGN G, X-Y</td>
<td>Atomic sets X, Y are assigned as adjacent nodes in graph G.</td>
</tr>
<tr>
<td></td>
<td>ASSIGN G, X-Y, Z</td>
<td>At. sets X, Y, Z assigned to graph G as arc Z with end-nodes X, Y.</td>
</tr>
<tr>
<td></td>
<td>DETACH G</td>
<td>Graph G made empty.</td>
</tr>
<tr>
<td></td>
<td>DETACH G, S</td>
<td>Elements of set S are removed from graph G.</td>
</tr>
<tr>
<td></td>
<td>DETACH G, S-T</td>
<td>Arrows connecting S and T removed.</td>
</tr>
<tr>
<td>Iterative</td>
<td>DO 'ST#' FORALL X, IN, S</td>
<td>Executes statements through one labeled with 'st#' for each element X of set S while log.expression is true.</td>
</tr>
<tr>
<td></td>
<td>DO 'ST#' WHILE LOG.EXPR.</td>
<td></td>
</tr>
<tr>
<td>Remove</td>
<td>REMOVE</td>
<td>Removes sets S, T from universe, properties A, B from at. sets where defined.</td>
</tr>
<tr>
<td></td>
<td>REMOVE S, T, ..., A, B, ...</td>
<td></td>
</tr>
<tr>
<td>Save-Reset</td>
<td>SAVE (I) G, ..., P, ...</td>
<td>Graphs G, ..., properties P, ... saved on auxiliary storage I.</td>
</tr>
<tr>
<td></td>
<td>RESET (I) G, ..., P, ...</td>
<td>Reset from auxiliary storage.</td>
</tr>
</tbody>
</table>
16. EXAMPLES

IN THE FOLLOWING PAGES, SOME EXAMPLES ARE PRESENTED. ALL THE
PROGRAMS ARE WRITTEN AS SUBROUTINES, THUS DECLARATIONS FOR THE
VARIBLLES APPEARING IN THE CALLING SEQUENCES ARE ASSUMED TO BE
DONE IN A CALLING MAIN PROGRAM.
THE EXAMPLES ARE AS FOLLOWS:

1. READ I. READ DATA FOR GRAPH G
2. READ II. READ DATA FOR GRAPH G
4. SUBGRAPH. ESTABLISHING A GRAPH WHICH IS A SUBGRAPH OF G
5. LINE GRAPH. ESTABLISHING THE LINE GRAPH OF G
6. CONDENSE. ESTABLISHING A CONDENSE GRAPH OF G
7. COCYCLES. COCYCLES OF GRAPH G
8. SPANNING TREE. SPANNING TREE OF GRAPH G
9. CYCLES. CYCLES OF GRAPH G
10. CUTS. FUNDAMENTAL CUTS OF GRAPH G
11. SHORTEST PATH. 2-DIRECTIONAL SEARCH FOR SHORTEST PATH
 IN GRAPH G
** SUBROUTINE RDONE(G,IU) **

GRAPH G

SET X

READ (IU) N,M

DO 10 L=1,N+M

10 X=CREATE(0)

DO 20 L=1,M

READ (IU) K,I,J

20 ASSIGN G, ATOM(I)-ATOM(J), ATOM(K+N)

RETURN

END

TITLE

READ I, READ DATA FOR GRAPH G
:

SPECIFICATION

The subroutine assumes that the first record from unit IU contains the sizes, N and M, of the node and arc set, and that then M records are supplied each containing three integers, any such triple (K,I,J) satisfies

1 . LE. K . LE. M

1 . LE. I . LE. N

1 . LE. J . LE. N

and signifies that the Kth arc has the Ith node as initial, and the Jth node as terminal vertex.

SEQUENCE CHART

READ SIZES
:
CREATE AN ELEMENT FOR EACH NODE AND ARC
:
LOOP TO READ TRIPLETS AND
 * 10 ASSIGN THEM TO G
 * :
 * :
END OF LOOP AND PROGRAM
:
THE SUBROUTINE READ(BUFFER) is assumed to be available which allows the input of variable length record of BCD words into the list BUFFER. The undirected graph is represented in node form and is read in in terms of paths, that is, as sequences of nodes forming paths in G. The input is terminated with a record containing the single word 'Last'.

SEQUENCE CHART

READ FIRST RECORD

LOOP TO PROCESS RECORDS
* GET ELEMENT WITH PROPER NAME
* *** ILLEGAL COMMAND ON COL. 2 ***
* * * YES, ASSIGN ISOLATED NODE
* * * NO, PROCESS PATH
* READ NEXT PATH

END OF LOOP AND PROGRAM

SUBROUTINE RDWO(G,NAME)

GRAPH G
REAL PROPERTY NAME

STORAGE BUFFER
SET X,Y

CALL READ(BUFFER)

DO 30 WHILE (FIRST(BUFFER) .NE. 'LAST')

X = CREATE(NAME,DFIRST(BUFFER))

IF (BUFFER .NE. #) GO TO 10

ASSIGN G, X

GO TO 30

10 DO 20 WHILE (BUFFER .NE. #)

Y = CREATE(NAME,DFIRST(BUFFER))

ASSIGN G, X - Y.

20 X = Y

30 CALL READ(BUFFER)

RETURN
END
** SUBROUTINE SBGRPH(G,N,.SUBG) **

GRAPH G, SUBG
SET N

** IMPLICIT SET(A-Z) **

DO 30 WHILE (N .NE. 8)
X = ELT(1,N)

S = SUBSET(A,(A .IN. STAR(G,X)) .AND. (INC(G,A) .IN. N)))
N = N.DF.X

IF (S .NE. 8) GO TO 10
ASSIGN SUBG, X
GO TO 30

10 DO 20 FORALL A,IN.S
Y = INC(G,A).DF.X
IF (Y.EQ.8) Y = X
ASSIGN SUBG, Y = Y, A

30 CONTINUE
RETURN
END
Title

LINE GRAPH.

Specification

This procedure sets up the line graph of G, that is, the graph which has the arcs of G as nodes and in which two nodes are adjacent whenever the corresponding arcs are.

Sequence Chart

LOOP FOR NODES OF G

* GET INCIDENT ARCS OF NODE X
* ...
* LOOP TO PROCESS THE ARCS
* ...
* ASSIGN SELF-LOOP FOR SELF-LOOP
 * ...
* ASSIGN REST OF THE ARCS
* ...

END OF LOOPS

SUBROUTINE LINEGR(G,LINEG)

GRAPH G, LINEG

IMPLICIT SET(A-Z)

DO 10 FORALL X,IN, NODES(G)

$S = \text{STAR}(G,X)$
$R = S$

DO 10 FORALL A, IN, S

IF (X, IN, INC(G,A)) ASSIGN LINEG, A-A
$R = R \cup \text{DF}, A$

DO 10 FORALL B, IN, R

IN ASSIGN LINEG, A-B

RETURN

END
Title

Condense Graph

Specification

The list L is assumed to contain a family of sets representing a partition of the node set of G. The procedure sets up a condensed graph which has the members of L as nodes and in which two nodes are adjacent if there is at least one arc between the corresponding sets of nodes in G. The property REF of the nodes of CONG remembers the sets of L.

Sequence Chart

Loop to process the sets in the list

Do 10 while (L .NE. #)

X = CREATE(0)

ASSIGN CONG, X

10 REF(X) = DFIRST(L)

R = &

Do 30 forall X .IN. NODES(CONG)

T = ADJG(REF(X))

30 R = R .UN. X

Do 20 forall Z .IN. R

If (T .EQ. REF(Z) .AND. &) ASSIGN CONG, X = Z

20 CONTINUE

RETURN

END

SUBROUTINE CONDS(G, L, CONG, REF)

GRAPH G, CONG
SET STAQUE L
SET PROPERTY REF

IMPLICIT SET(A-Z)
COCYCLE

SPECIFICATION

THIS SUBROUTINE DETERMINES A BASIS FOR THE COCYCLE SPACE BY FINDING THE NODE SETS OF ALL CONNECTED COMPONENTS OF G.

SEQUENCE CHART

LOOP TO PROCESS COMPONENTS

* INITIALIZE SETS FOR ARCS AND NODES GET FIRST NODE FROM THE LEFT-OVER.

* LOOP TO GET ADJACENT NODES IN T

* END OF LOOP, NODES OF ONE COMPONENT ARE IN T, TAKE THEM OUT FROM N.

END OF LOOP

SUBROUTINE COCYCL(G,C)

GRAPH G

SET STaque C

IMPLICIT SET(A-Z)

N = NODES(G) DO 20 WHILE (N.NE.8)

A = & T = & S = ELT(1,N) DO 10 WHILE (S.NE.8) T = T.UN.S A = STAR(G,S).DF.A 10 S = INC(G,A),DF,T

C = C : T 20 N = N,.DF,T

RETURN END
** SUBROUTINE SPTREE(G, UiTREE)

TITLE

SPANNING TREE

SPECIFICATION

THIS SUBROUTINE GENERATES A DIRECTED SPANNING TREE (GRAPH) WITH ROOT U FOR THE CONNECTED COMPONENT OF G CONTAINING THE NODE U.

SEQUENCE CHART

INITIALIZE TREE AND NODE SET S WITH U, ARC SET T WITH COBOUNDARY OF U.
LOOP TO PROCESS OUTGOING ARCS FROM NODE SET S
* LOOP TO PROCESS ARCS
* GET END NODE WHICH IS NOT IN S
* AND ADD IT TO S AND ASSIGN IT TO T
* END OF LOOP GET NEW SET OF OUTGOING ARCS
END OF LOOP

SUBROUTINE SPTREE(G, U, TREE)

GRAPH G, TREE
SET U

IMPLICIT SET(A-Z)

ASSIGN TREE, U
S = U
T = COB(G, U)
DO 20 WHILE (T.NE.8)
 DO 10 FORALL A, IN, T
 W = BD(G, A)
 Y = W.DF, S
 IF (Y.EQ.A) GO TO 10
 S = S.UN, Y
 X = W.DF, Y
 ASSIGN TREE, X - Y, A
 IN CONTINUE
20 T = COB(G, S)
RETURN.
END
FUNDAMENTAL CYCLES

TITLE

FUNDAMENTAL CYCLES

SPECIFICATION

TREE IS ASSUMED TO BE A DIRECTED SPANNING TREE OF
ONE OF THE COMPONENTS OF G. FROM THIS SPANNING TREE
THIS SUBROUTINE GENERATES, IN A STANDARD MANNER, A
BASIS FOR THE CYCLE SPACE OF THE PARTICULAR COMPONENT.

SEQUENCE CHART

GET ARCS OF G WHICH ARE NOT IN TREE
LOOP TO GET THE CORRESPONDING CYCLE OF THESE ARCS

IF THIS IS A SELF-LOOP, THEN THIS IS A CYCLE

... NOT A SELF-LOOP

... GO BACK TO THE ROOT OF THE TREE FROM BOTH END
NODES OF THE ARC IN A LOOP

QUIT LOOP IF THE PARALLEL PROCESS OF THE
TWO PATHS MET AT THE BRANCH-ROOT

COLLECT THE ARCS IN S

END OF LOOP

COLLECT CYCLE

END OF LOOP

SUBROUTINE FNDCYC(G, TREE, CYCLES)

GRAPH G, TREE
SET STAGUE CYCLES

IMPLICIT SET(A-Z)

X = STAR(G, NODES(TREE)), DF, ARCS(TREE)

DO 20 FOR ALL A, IN, X
S = A
T = INC(G, A)

IF (SIZE(T), EQ, 1) GO TO 20

DO 10 WHILE (T.NE., A)
T = NCOB(TREE, T)

IF (T, EQ, A) GO TO 20

S = S, SM, T
10 T = PBD(TREE, T)

20 CYCLES = CYCLES : S

RETURN
END
Title

FUNDAMENTAL CUTS

SPECIFICATION

Tree is assumed to be a directed spanning tree of a component of G, and from tree this subroutine generates in the standard manner a basis of the coboundary space of the component.

SEQUENCE CHART

LOOP FOR ALL ARCS IN THE TREE

* *

* LOOP TO GET ALL NODES OF THE SUBTREE INTO S

* *

* *

* *

* *

* END OF LOOP GET FUNDAMENTAL CUT FROM THE NODES IN S

* END OF LOOP

SUBROUTINE FNDCUT(G,TREE,CUTS)

GRAPH G, TREE
SET STAGUE CUTS

IMPLICIT SET(A-Z)

DO 20 FORALL A,IN,ARCS(TREE)
 S = &
 T = A

DO 10 WHILE (T.NE.&)
 R = NSD(TREE,T)
 S = S,UN,R

10 T = PCOB(TREE,R)

20 CUTS = CUTS : COB(G,S)

RETURN
END
SPECFICATION

G is a directed graph in which each arc has a given nonnegative length. The subroutine finds a shortest path from node Start to node Term, and returns it in the list Path. If no such path exists, the list will be empty. The real number Inf represents infinity, it is assumed to be larger than the sum of the length of all arcs of G. The length of the final path will be in M, and this number will be equal to Inf, if no path exists.

METHOD

DATA-STRUCTURE

NODES REACHED FROM START AND TERM, RESPECTIVELY:

NODES NOT REACHED BUT REACHABLE ALONG ONE ARC FROM THE NODES REACHED FROM START AND TERM, RESPECTIVELY:

CURRENT DISTANCE OF A REACHED NODE FROM START OR TERM, RESPECTIVELY:

CURRENT ARC LEADING FROM A NODE OR TO A NODE WHICH WAS REACHED:

MINIMAL DISTANCE TO THE NODES REACHABLE ALONG ONE ARC FROM START AND TERM, RESPECTIVELY:

FLAG TO SET WHEN THE TWO DIRECTIONAL SEARCH MEET:

TEMPORARY VARIABLES

SUBROUTINE SPATH(G, START, TERM, LENGTH, INF, M, Path)

GRAPH G
SET START, TERM
REAL PROPERTY LENGTH
REAL INF, M
SET STACK PATH

SET S, T
SET SR, TR
REAL PROPERTY SDIST, TDIST
SET PROPERTY IN, OUT
REAL SMIN, TMIN
LOGICAL FLAG
SET W,X,Y,Z,U
REAL A,B

SDIST(START) = 0,
TDIST(TERM) = 0.
S = START
SR = S
T = TERM
TR = T
SMIN = 0.
TMIN = 0.
FLAG = .FALSE.
M = 0.

W = CREATE(0)
LENGTH(W) = INF
ASSIGN G, START – TERM, W

DO 130 WHILE (.NOT. FLAG)
 CHECK WHETHER PATH CAN BE FOUND
 NO, CLEAR PATH AND GO TO EXIT
 YES, TAKE NEXT STEP
 STEP FROM START
 COLLECT NODES WITH MINIMAL DISTANCE FROM
 THE NODES REACHABLE ALONG ONE ARC
 ADD COLLECTED NODES TO THE SET OF REACHED
 NODES, SUBTRACT THEM FROM THE REACHABLE
 NODES, AND FIND NODES WHICH ARE REACHABLE
 FROM THEM ALONG ONE ARC.

DO 130 WHILE (.NOT. FLAG)
 IF (M.LT.INF) GO TO 130
 PATH = X
 GO TO 170
 M = INF
 PATH = #
 IF (SMIN, GT, TMIN) GO TO 70

DO 60 WHILE (PATH, NE, #)
 A = INF
 IF (CHECK(SDIST(X))) A = SDIST(X)
 IF (A-M) 20, 30, 40
 M = A
 PATH = X
 GO TO 30
 CONTINUE
 SMIN = M

DO 60 WHILE (PATH, NE, #)
MEANWHILE CHECK IF OTHER SIDE WAS
REACHED

YES, SET FLAG, SAVE NODE

TRANSFER NODE TO THE REACHED SET

LOOP TO GET REACHABLE NODES FROM
THIS NODE

END OF LOOP

STEP FINISHED, GO FOR NEXT STEP

STEP FROM TERM

COLLECT NODES WITH MINIMAL DISTANCE FROM
THE NODES REACHABLE ALONG ONE ARC

ADD COLLECTED NODES TO THE SET OF REACHED
NODES, SUBTRACT THEM FROM THE REACHABLE
NODES, AND FIND NODES WHICH ARE REACHABLE
FROM THEM ALONG ONE ARC

MEANWHILE CHECK IF OTHER SIDE WAS
REACHED

YES, SET FLAG, SAVE NODE

X = DFIRST(PATH)

IF (.NOT.(X.IN.T)) GO TO 50

FLAG = .TRUE.

U = X

SR = SR.DF.X

S = S.UN.X

DO 60 FOR ALL Z.IN.PC0B(G,X)

Y = NBD(G,Z)

B = M+LENGTH(Z)

A = INF

IF (CHECK(SDIST(Y))) A = SDIST(Y)

IF (A.LE.B) GO TO 60

SDIST(Y) = B

IN(Y) = Z

SR = SR.UN.Y

CONTINUE

GO TO 130

DO 120 WHILE (PATH.NE.B)

X = OFIRST(PATH)

IF (.NOT.(X.IN.T)) GO TO 110

FLAG = .TRUE.

U = X

M = A

PATH = X

GO TO 100

PATH = X : PATH

CONTINUE

TMIN = M

DO 120 WHILE (PATH.NE.#)

X = DFIRST(PATH)

IF (.NOT.(X.IN.S)) GO TO 110

FLAG = .TRUE.

U = X
MEANWHILE CHECK IF OTHER SIDE WAS
REACHED
*** YES, SET FLAG, SAVE NODE
*** TRANSFER NODE TO THE REACHED SET
: LOOP TO GET REACHABLE NODES FROM
THIS NODE
: 50
:
END OF LOOP
:
: STEP FINISHED, GO FOR NEXT STEP
** FROM TERM
: COLLECT NODES WITH MINIMAL DISTANCE FROM
THE NODES REACHABLE ALONG ONE ARC
: 60
:
ADD COLLECTED NODES TO THE SET OF REACHED
NODES, SUBTRACT THEM FROM THE REACHABLE
NODES, AND FIND NODES WHICH ARE REACHABLE
FROM THEM ALONG ONE ARC
:
: MEANWHILE CHECK IF OTHER SIDE WAS
REACHED
** YES, SET FLAG, SAVE NODE
:**
:
X = DFIRST(PATH)
IF (.NOT.(X.IN.T)) Go TO 50
FLAG = .TRUE.
U = X
SR = SR.DF.X
S = S.UN.X
DO 60 FORALL Z.IN.PCOB(G,X)
Y = NBD(G,Z)
B = M*LENGTH(Z)
A = INF
IF (CHECK(SDIST,Y)) A = SDIST(Y)
IF (A.LE.B) Go TO 60
SDIST(Y) = B
IN(Y) = Z
SR = SR.UN.Y
CONTINUE
Go TO 130
DO 100 FORALL X.IN.TR
A = INF
IF (CHECK(TDIST,X)) A = TDIST(X)
IF (A-M) 80,90,100
M = A
PATH = X
Go TO 100
90 PATH = X : PATH
CONTINUE
TMIN = M
DO 120 WHILE (PATH.NE.H)
X = DFIRST(PATH)
IF (.NOT.(X.IN.S)) Go TO 110
FLAG = .TRUE.
U = X
17. APPENDIX. EVALUATION OF EXPRESSIONS

THE FGRAAL COMPILER WAS CONSTRUCTED BY AUGMENTING THE EXISTING RALPH COMPILER FOR THE UNIVAC 1108.

THE RALPH COMPILER ASSUMES THAT NO FUNCTION CAN MODIFY ITSELF AND THUS TAKES CERTAIN LIBERTIES WITH THE EVALUATION OF EXPRESSIONS AND ELEMENTS IN AN ARGUMENT LIST. AN EXPRESSION OR ARGUMENT LIST IS SCANNED RIGHT TO LEFT AND EACH TIME A FUNCTION IS ENCOUNTERED, IT IS EVALUATED, EACH TIME AN OPERATOR IS ENCOUNTERED WHICH HAS STRICTLY GREATER PRECEDENCE THAN THE OPERATOR TO ITS LEFT, IT IS EVALUATED, AND PROCESSING CONTINUES BY EXAMINING THE PRECEDENCE RELATION BETWEEN THE OPERATOR TO THE RIGHT OF THE NEWLY EVALUATED RESULT AND LOOKING FOR A STRICTLY GREATER PRECEDENCE THAN THE OPERATOR TO ITS LEFT. THUS THE EXPRESSION

\[
F(A) + B * C * D + F(E)
\]

WILL BE EVALUATED AS THOUGH IT WERE PARENTHESIZED AS FOLLOWS

\[
((F(A))_4 + ((B * C)_2 * D)_3)_5 + (F(E))_6
\]

WHERE THE NUMBER AT THE BASE OF THE RIGHT PARENTHESES GIVES THE ORDER IN WHICH THE EVALUATIONS ARE MADE. THIS PARSING ALGORITHM YIELDS PERFECTLY VALID RESULTS AS LONG AS FUNCTIONS ARE NOT PERMITTED TO MODIFY THEIR ARGUMENTS OR SOME GLOBAL VARIABLES, I.E. SO LONG THERE ARE NO SIDE EFFECTS.

HOWEVER SIDE EFFECTS DO EXIST IN GRAAL. FOR EXAMPLE, THERE ARE OPERATORS (FUNCTIONS) THAT ARE ALLOWED TO MODIFY THEIR ARGUMENTS, E.G. DFIRST(L). BECAUSE OF THIS, IF A VARIABLE IS USED MORE THAN ONCE IN THE CONTEXT OF AN EXPRESSION OR ARGUMENT LIST, AND AT LEAST ONE SUCH USE IS AS AN ARGUMENT OF A FUNCTION OR OPERATOR WHICH MODIFIES IT, THE UNUSUAL ORDER OF EVALUATION USED BY THE RALPH COMPILER MUST TAKE INTO CONSIDERATION IN ORDER TO SIMULATE THE ACTUAL RESULTS.

EXAMPLE 1. LET

\[
L = 1 : 2 : 3 : 4 : 5
\]

THEN THE STATEMENT

\[
X = DFIRST(L) - DFIRST(L)
\]

IS EQUIVALENT TO

\[
X = 2 - 1
\]

AND NOT \(X = 1 - 2 \), SINCE THE RIGHTMOST DFIRST OPERATOR IS EVALUATED FIRST.

EXAMPLE 2. THE FUNCTION CALL

\[
FUNC(DFIRST(L), L, DFIRST(L))
\]

WITH THE PREVIOUSLY DEFINED L, IS EQUIVALENT TO

\[
FUNC(2, 3, 4, 5, 1)
\]
SINCE THE RIGHTMOST DFIRST IS EVALUATED FIRST, THE SECOND ARGUMENT IS NOT EVALUATED SINCE THERE IS NO OPERATOR OR FUNCTION IN IT, AND THE LEFTMOST DFIRST IS EVALUATED SECOND, WHICH LEAVES LEAVES L WITHOUT ITS ORIGINAL FIRST TWO ELEMENTS.

EXAMPLE 3. EVEN PARENTHESES DO NOT HELP

\[
X = (DFIRST(L) - DFIRST(L)) * DFIRST(L)
\]

IS EQUIVALENT TO

\[
X = (3 - 2) * 1
\]

ONE WAY TO AVOID THIS PROBLEM WOULD BE TO BREAK THE EXPRESSION DOWN INTO SEPARATE STATEMENTS. THUS WE CAN REWRITE EXAMPLE 1. AS

\[
X_1 = DFIRST(L) \\
X = X_1 - DFIRST(L) \quad (1-2) \\
\text{OR} \quad X = DFIRST(L) - X_1 \quad (2-1)
\]

DEPENDING UPON WHICH EXPRESSION WE ACTUALLY WANT. WE CAN REWRITE EXAMPLE 2 AS

\[
M = L \\
X = DFIRST(L) \\
\ldots \text{FUNC}(X, M, DFIRST(L))
\]

TO YIELD

\[
\ldots \text{FUNC}(1, 1:2:3:4:5:2)
\]
REFERENCES

ON A PROGRAMMING LANGUAGE FOR GRAPH ALGORITHMS,
UNIVERSITY OF MARYLAND, COMPUTER SCIENCE CENTER,
TECHNICAL REPORT TR - 158, SUBMITTED FOR PUBL. IN BIT.

---, [1972].
GRAAL - A GRAPH ALGORITHMIC LANGUAGE,
PROCEEDINGS OF THE SECOND IBM RESEARCH SYMPOSIUM
ON SPARSE MATRICES AND THEIR APPLICATIONS,
SEP. 9-10, 1971, PLENUM PRESS, N.Y.
FGRAAL, Fortran-extended Graph Algorithmic Language

This report describes the Fortran version FGRAAL of the graph algorithmic language GRAAL (Technical Report TR-158) as it has been implemented for the Univac 1108. FGRAAL is an extension of FORTRAN V and is intended for describing and implementing graph algorithms of the type primarily arising in applications. The formal description contained in this report represents a supplement to the FORTRAN V manual for the Univac 1108 (UP-4060), that is, only the new features of the language are described. Several typical graph algorithms, written in FGRAAL, are included to illustrate various features of the language and to show its applicability.
<table>
<thead>
<tr>
<th>KEY WORDS</th>
<th>LINK A</th>
<th>LINK B</th>
<th>LINK C</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRAPH LANGUAGE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FORTRAN V EXTENSION</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRAPH ALGORITHMS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>