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OPTIMAL SPEED SHARING CHARACTERISTICS

OF A" SERIES-HYBRID BEARING

by Lester J. Nypan,* Herbert W. Scibbe, and Bernard J. Hamrock

Lewis Research Center

ABSTRACT

A series-hybrid bearing assembly consisting of a conical hydrostatic

fluid-film bearing and a ball bearing is described. Computer studies are

used to predict friction torque and life characteristics of a 150-millimeter

ball bearing. A conical hydrostatic fluid-film bearing is designed for

minimum friction and maximum speed reduction of the ball-bearing com-

ponent of the series-hydrid bearing. At a thrust load of 4000 pounds and

speeds corresponding to DN (bearing bore in millimeters times shaft

speed in rpm) values of 3 and 4 million, ball-bearing speed may be re-

duced by 30 percent. This speed reduction corresponds to ball-bearing

fatigue life improvement factors of 3.4 at 3 million DN and 5.9 at 4 mil-

lion DN. An oil flow rate of 18. 2 pounds per minute is required to main-

tain a fluid-.film thickness of 0.001 inch in the hydrostatic bearing.

NOMENCLATURE

Cg dimensionless turbulent friction coefficient,

0. 0261 fr{pR1cofhp/M)°- 75(hL/hp)

D ball-bearing bore diameter, in.

d ball diameter, in.

F thrust load, Ib
—F dimensionless thrust load parameter,

*Professor of Engineering, San Fernando Valley State College,

Northridge, California;; NASA Summer Faculty Fellow in 1971.



f fraction of area between R« and R« occupied by hydrostatic

pocket (usually may be approximated by 1)
2g gravitational constant, 38674 in./sec

h fluid-film thickness, in.

M friction torque, in.-Ib

M dimensionless friction torque

M, ball-bearing torque, in. -Ib

M* fluid-film bearing torque, in. -Ib

Mf dimensionless fluid-film bearing torque, 2M,h-sin 0/7T|Liu>,

m oil mass flow rate, Ib/min

N ball-bearing speed, rpm

Nf fluid-film bearing speed, rpm

N0 shaft speed, rpms
p pressure, Ib/in.

q
Q fluid flow, in. /sec
— o
Q dimensionless fluid-flow parameter, 6/iQ/Trh, p sin 6

q power loss rejected to the oil, hp

R typical radius on fluid-film bearing, in.

R« inner radius of inner land, in.

R« outer radius of inner land, in.

R« inner radius of outer land, in.

R^ outer radius of outer land, in.

Re Reynolds number, pVh/ju

V bearing surface speed, in./sec

X2 R2/
R1

X3 R3/R1



X4 R4/R1

Z number of balls

8 half angle of conical hydrostatic bearing, deg
2JLI fluid dynamic viscosity, Ib-sec/in.

o

p fluid density, Ib/in.

UV rotational speed of ball bearing, rad/sec

coj rotational speed of fluid-film bearing, rad/sec

cos rotational speed of shaft, ov + cof, rad/sec

Subscripts:

L land

p pocket

INTRODUCTION

The use of low mass hollow or drilled balls in high speed bearings,

to reduce contact stress and thereby improve fatigue life, has been demon-

strated with limited success in several experimental programs [1-4]. An-

other method for improving fatigue life of a ball bearing is to reduce its

rotational speed by coupling it in series with a fluid-film bearing. This

arrangement, called the series-hybrid bearing, is shown in figure 1. In

the series-hybrid bearing, each bearing carries the full thrust load at

part speed. The inner fluid-film bearing member rotates with the shaft

at full shaft speed. The intermediate fluid-film bearing member rotates

with the ball bearing inner race at some fraction of the shaft speed. The

outer race of the ball bearing is mounted in a stationary housing. Oil to

pressurize the fluid-film bearing is fed through the hollow shaft. Oil to

lubricate and cool the ball bearing is fed under the scoop attached to the

intermediate member as shown in figure 1.



At low shaft speed the inner and intermediate fluid-film bearing mem-

bers rotate together at the same speed. As shaft speed increases, the

intermediate member separates from the inner member by the generation

of a fluid film, due to the hydrostatic pressure developed by the centrifugal

force of the oil. At separation, there is a differential in speed between the

inner member of the fluid-film bearing and intermediate member attached

to the inner race of the ball bearing. This speed differential results in a

lower speed for the ball bearing and thereby reduces ball centrifugal force

(and thus contact stress) at the outer race. An experimental study [5] was

conducted with a combination self-acting journal and hydrostatic thrust

fluid-film bearing coupled to a 75-millimeter-bore ball bearing. The low-

est speed ratio (ball bearing inner-race speed to shaft speed) obtained in

the study of reference 5 was 0.67, which corresponded to a reduction in

ball-bearing DN (bearing bore in millimeters times shaft speed in rpm)

of one-third.

The objectives of this investigation are (1) to predict the operating

characteristics of an optimally configured series-hybrid bearing at spe-

cific operating conditions, and (2) to determine whether the ball-bearing

life would be sufficiently improved to warrant fabrication and experimental

operation at thrust loads to 4000 pounds and DN values to 4 million. A

more complete analysis of this optimally configured series-hybrid bearing

is reported in reference 6.

The bearing system was optimized by (1) specifying ball diameter and

complement for maximum life and speed reduction of a 150-millimeter

ball bearing, and (2) specifying a conical hydrostatic fluid-film bearing

configuration and dimensions to maximize speed reduction of the ball bear-

ing.



ANALYSIS

A characteristic of the operation of a series-hybrid fluid-film ball

bearing system is that the torque causing rotation of the ball bearing is

the friction torque transmitted through the fluid-film bearing. As each

component rotates under the action of the same torque, the speed of each

bearing depends on the torque-speed relation of that component. Success

of the series-hybrid bearing concept in reducing the speed of the ball-

bearing component depends on the fluid-film bearing operating at an ap-

preciable fraction of shaft speed.

To produce a long life series-hybrid bearing, factors that affect the

life of the ball-bearing component must be considered. Ball-bearing fric-

tion torque is also of importance as the friction torque will determine the

speed reduction that may be obtained from the fluid-film bearing.

Ball-Bearing Characteristics

A computer program [7] was used to study the life and torque charac-

teristics of a 150-millimeter angular contact ball bearing which was the

rolling-element portion of the series-hybrid bearing. Bearing running

conditions investigated were speed parameter values of 3 and 4 million

DN and thrust loads of 1000 pounds, as representative of a cruise condi-

tion of aircraft turbine engine operation, and 4000 pounds, as representa-

tive of a maximum load or takeoff condition of operation.

The rolling-element bearing design was optimized with respect to the

maximum ball complement (Z) and the largest ball diameter (d) that could

be accommodated within a 150-millimeter boreiball bearing envelope.

Restrictions on these two variables were, (1) the largest number of balls

that could be fitted into the bearing and still maintain a minimum cage web



thickness of 0.100 inch between-the ball pockets at the pitch diameter; and,

(2) limit the maximum ball diameter to less than 60 percent of the radial

cross section (o.d.-i.d,,/2) to ensure adequate race stiffness and strength.

The number of balls was varied from 22 to 38, whereas ball diameter

ranged from 0.500 to 0. 875 inch.

Friction torque is not strongly affected by ball diameter, but is influ-

enced by bearing load and speed conditions. Torque decreases slightly

with the number of balls at the 4000 pound load condition, but increases

slightly with the number of balls at the 1000 pound load. In the final anal-

ysis 22-0. 875-inch diameter balls were selected as optimum for the 150-

millimeter ball bearing. The inner and outer raceway curvatures were

both 0. 52. Figure 2 shows bearing torque variations as a function of speed

for thrust loads of 1000 and 4000 pounds.

At the same load and speed condition, bearing fatigue (Lin) life in-

creases with increasing ball diameter and number. Figure 3 shows the

150-millimeter bearing fatigue life in hours as a function of DN for thrust

loads of 1000 to 4000 pounds.

Ball-bearing friction torque values are of considerable interest as

they will strongly influence the success of the hybrid bearing concept in

reducing ball-bearing speed. To evaluate the accuracy of torque predic-

tions, the computer program [7] was used to calculate torque values for

bearings experimentally evaluated by Harwell and Hughes [8]. These

bearings were 127-millimeter bore, and had 19-0.500-inch diameter balls,

and were oil jet lubricated. The bearings were operated at thrust loads

from 500 to 4000 pounds and a constant radial load of 600 pounds, at shaft

speeds up to 11 000 rpm (DN value of 1.4 million). Comparison of mea-



sured and computed friction torque for these bearings indicated that the

computer program [7] predicts values appreciably higher than measured

values. The largest differences were, however, less than an order of

magnitude. Experimental data of Winn and Badgley [9 ] on the friction

torque of 120-millimeter ball bearings,- when compared to computed

torque values, were lower but within an order of magnitude variation when

differences in oil flow, viscosity, and bearing size are taken into account.

Winn and Badgley [9] presented measured and calculated values of

power loss for a 120-millimeter bore ball bearing. Bearing thrust load

ranged from 250 to 2840 pounds at speeds from 4000 to 10 000 rpm (0.48

to 1.20 million DN). Bearing calculated power loss was based on an

empirical equation developed by Nemeth, Macks, and Anderson [10] which

gives power loss rejected to the oil. Reference 9 gives the effect of a

2-gpm-flow rate on bearing friction torque measured as increasing the

power losses .over a bearing with a 1-gpm flow rate by 30 and 50 percent,

respectively, for the 8000- and 10 000-rpm bearing speeds. Before the

power loss for the 150-millimeter ball bearing in the present study can be

determined by the method presented [10], a viscosity-diameter correction

factor of 1. 61 must be applied to account for differences in oil viscosity

and bearing size. When increases of 30- and 50-percent are also applied,

as noted above, to account for an oil flow rate of 2 gpm, the factor becomes

2.1 and 2.4, respectively, for the 8000- and 10 000-rpm cases reported.

When these factors are applied to the average of the power losses reported

for these speeds, and the result converted to friction torque, the torque

values are 29.6 inch-pounds at 8000 rpm and 57.5 inch-pounds at 10 000

rpm. In view of the difficulty in replicating all of these factors and the
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difficulty in predicting bearing friction torques, these values seem to

adequately check the predicted bearing torques of figure 2.

Fluid-Film Bearing Characteristics

A fluid-film bearing having a low torque-rotational speed character-

istic is required to match the torque of the ball bearing and thereby obtain

an appreciable reduction in ball bearing speed.

While a thrust load is the primary load in this application, the bearing

must also have some radial load capacity. To avoid the complexity and

reduce the friction of separate thrust and journal bearings, a conical hy-

drostatic bearing was selected as the fluid-film bearing component of the

series-hybrid bearing system. A schematic of a conical hydrostatic bear-

ing, indicating the location of the bearing land and pocket radii, is shown

in figure 4. The conical hydrostatic bearing will provide both thrust and

radial load capacity. It can also be a useful component in an experimental

apparatus as the fluid-film thickness can be simply controlled by adjusting

the flow rate to the bearing.

Minimum friction conical hydrostatic bearings have been the subject

of a recent study [!!]„ This has resulted in the following expression for

friction torque within the turbulent regime:

T^"

2h, sine
Li

+ X«-1 + 0.02611 --, * —,A, -^2 \ ,, / r u V 3 2
"P

(1)

Preliminary calculations indicate that a hydrostatic bearing with a speed

of 1700 rpm and using a Type II ester fluid (MIL-L23699) at 200° F will be

operating within the turbulent regime (Re > 1000). The hydrostatic bearing



dimensions selected are compatible with the 150- millimeter ball bearing.

Reference 11 describes methods for the selection of bearing geometry

to minimize friction torque: These methods are applied here to specify a

minimum friction conical hydrostatic bearing to function as the fluid- film

part of the series-hybrid bearing system operating at a shaft speed equiva-

lent to a DN of 3 million (for a ball bearing) while supporting a 4000-pound

thrust load. Operating characteristics of the bearing at a 1000-pound

thrust load and at bearing DN values of 3 and 4 million are also considered.

Oil may be fed to the bearing from the shaft centerline and pressure

developed by centrifugal action „ Centrifugal pressure available is
p o

P=— — (2)
2g

From preliminary layouts, it appears that the innermost fluid-film bear-

ing radius that will.permit the largest shaft possible through the bearing,

and still mate with the 150-millimeter ball bearing will be R^ = 2. 81

inches. If a Type n ester fluid (MIL-L23699) is used, the density p will

be 0. 035 pound/in.3 at 200° F. A centrifugal pressure of 1530 psi will

then be available at a speed of 20 000 rpm (DN =• 3 million). This is suffi-

cient to support loads of 4000 pounds and provide compensation for mis-

alinement and varying loads .

High thrust load condition (4000 Ib). - The dimensionless thrust pa-

rameter to be used in selecting a minimum friction bearing: [11] is

(3)

Preliminary calculations have suggested a value of p = 645 psi be used in

equation (3). This allows a larger fraction of the available pressure for
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compensation than is suggested by Ling [12] for maximum stiffness. Stiff-

ness will increase if load rises above the 4000 pounds considered. This

gives a thrust parameter F of 0.5,, The friction torque M, and bearing

dimensions for a minimum friction conical hydrostatic bearing are deter-

mined from reference 11 as functions of the dimensionless flow parameter

•t
Trph^ sin 6

Table I shows the predicted friction torque M* as a function of flow

parameter Q for combinations of minimum fluid-film thickness hy and

fluid-film bearing speeds 1SL. Minimum fluid-film thicknesses selected

for consideration were hL = 0.002, 0.001, and 0,0005 inch. Fluid-film

bearing speeds N* were calculated from o>f indicated in the hydrostatic

pocket friction parameter

C9= 0.0261 - f _i (5)2

with values of C2 = 0.8, .0.4, and 0.2 for pocket depth, h = 0. 125 inch.

This large pocket depth was selected to reduce pocket friction torque.

Table I gives values of Mf associated with Q values for F = 0.5, C«

values specified previously, and the speed listed. Dimensionless Q is

converted to dimensional flow rate, Q, using equation (4), and using the
3density of p = 0.035 Ib/in0 , for comparison with flow rates commonly

encountered in bearing lubrication and cooling. Dimensionless friction

torque M is converted to dimensional friction torque, M, from

_ 2M,hT sin 9
M= - LJi - (6)

4
77 JU 0) R
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The half cone angle 0 was taken to 'be 45°. The viscosity ju of the

Type H ester at 200° F is 0.8xlO~6 (lb)(sec)/in.2. It may be noted in

table I that changing lu from 0.002 to 0.001 inch reduces the flow Q by

seven-eights and increases the friction torque Mf fivefold. Values tabu-

lated for the Oo002 inch fluid-film thickness indicate that flow requirements

are so large as to make bearing operation at this film thickness imprac-

tical.

Table II gives optimum bearing dimensions for values of flow param-

eter Q. Radii R. and Rg are those of the inner land, while R« and

R^ are those of the outer land (fig. 4), As was noted [11], bearing dimen-

sions are insensitive to changes in the hydrostatic pocket friction param-

eter C« so that only one set of bearing dimensions is obtained. For a

given thrust load then, bearing dimensions depend only on flow parameter

Q and the single table of dimensions is sufficient to specify minimum fric-

tion bearings for the assumed design conditions. Figure 5 shows the rela-

tive proportions of these bearings. These range from the configuration of

Q = 20 where the hydrostatic pocket is shrunk into what is practically a

line fed hydrostatic pad to the configuration of Q = 1000 where the lands

have diminished to less than 0.01 inch.

Low thrust load condition (1000 Ib). - The relation among flow, thrust

load, and minimum fluid-film thickness may be obtained [11] from

o
* sin 6

(7)
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and

2
or

sin 6
\

Ro Rn

ln_±. In—

\ R -J

(9)

For a given bearing and lubricant Q = kFlu where k is a constant for

the bearing and lubricant,, At the 4000-pound thrust load and design flow

rate, the film thickness and friction torque have been determined. At the

1000-pound thrust load and the same design flow rate, the minimum film

thickness is then 1.59 times the fluid-film thickness for the 4000-pound

thrust load. Friction torque may then be calculated from equation (1).

Predicted Speed Share and Life Improvement Factors

After determining the friction torque-speed characteristics for the

ball bearing and the fluid-film bearing, the speed sharing performance of

the series-hybrid bearing may be predicted. From this speed sharing,

the life improvement of the series-hybrid bearing over the unassisted ball

bearing is determined.

Predicted speed share. - The sum of the speeds of the fluid-film

bearing will be equal to the shaft speed, that is, wg = cof + o>b. The

torque-speed characteristics of the two bearing components of the series-

hybrid bearing may be conveniently compared by plotting fluid-film bearing

torque, M*, as a function of fluid-film bearing speed, co^, and ball-bearing

torque, M,, as a function of ball-bearing speed, co^ = w - co^, on the
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same axes. The operating speed of the fluid-film bearing is then readily

determined as the speed consistent with the common torque Mf = M,,

operating to drive the bearings at the speeds w, and c^, .

Figure 6 shows torque-speed curves for the five fluid-film bearings

designs of figure 5 operating at 4000-pound thrust load with fluid film

thicknesses of 0.001 and 0,0005 inch. Values of friction torque from

table I are plotted as functions of fluid-film bearing speed. Figure 6(a)

shows results for a hydrostatic pocket depth of 0.125 inch, and the 0.001-

inch fluid-film thickness. Figure 6(b) shows results for a hydrostatic

pocket depth of 0.125 inch, and 0.0005-inch fluid-film thickness. Fric-

tion torque curves for the 150-millimeter ball bearing in a series-hybrid

bearing operating at shaft speeds of 20 000 and 26 667 rpm (DN = 3 and

4 million for the 150-mm bearing) and at 4000 pound thrust load are also

plotted on figure 6. Points of intersection indicate operating conditions

of equal torque and compatible bearing speeds for the series-hybrid bear-

ing components.

Figure 6 indicates that substantial speed ratios (speed ratio = ball

bearing speed/shaft speed) may be obtained for this series-hybrid bearing

design. Figure 6(a) for example, shows that at a Q value of 30 and a

shaft speed of 20 000 rpm (3 million DN) the fluid-film bearing operates

at 6400 rpm and the ball bearing at 13 600 rpm. At a Q value of 30 and

26 667 rpm (4 million DN) shaft speed the fluid-film and ball bearings

speeds are 8000 and 18 667 rpm, respectively. At the 3 million DN shaft

speed the speed ratio for the ball bearing is therefore 0. 68, whereas at

4 million DN shaft speed the speed ratio is 0.70. Table in(a) gives the

values of the predicted speed ratios for bearings having Q values of 20,

30, 70, and 100 at the two shaft speeds for a 4000-pound thrust load.
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Figure 7 shows torque-speed curves similar to those of figure 6 for the

1000-pound thrust load condition. Predicted speed ratios for this load

condition are given in table III(b).

In the analysis of this series-hybrid bearing, operation of the fluid-

film bearing at a film thickness of 0. 0005 inch may be marginal, since

the effects of thermal growth or axial deflection under applied thrust have

not been taken into account. Also minute debris not filtered out of the oil

lubrication system may not permit bearing operation at this low value of

film thickness. An increase in operating film thickness from 0. 001 to

0.002 inch requires an eight-fold increase in oil flow for the same bearing

load and speed conditions. Because of this increase in oil flow required

through the fluid-film bearing, a 0,002 inch film thickness is therefore

impractical for this application. Best estimate of a film thickness for the

bearing operating conditions considered herein is about 0.001 inch. The

18.2-pound per minute oil flow required for the two shaft speeds at the

4000-pound thrust load condition is comparable to oil flows used to cool

and lubricate bearings in present-day gas-turbine aircraft engines.

Life improvement factors„ - The potential increase in ball bearing

fatigue life due to a reduction in the effective DN value can be seen from

figure 3. With the 150-millimeter-bore ball bearing operating at a DN of

3 million and 4000-pound thrust load, its expected LIQ fatigue life is

520 hours. If the same bearing is operated in a series-hybrid arrange-

ment with a speed ratio of 0. 7, its effective DN is 2.1 million and its LJQ

fatigue life is 1750 hours. The life improvement factor is 1750/520 = 3.4.

With the 4000-pound thrust load, at a DN of 4 million and speed ratio of

0.7, the LHQ life of 120 hours would improve to 710 hours at an effective

DN of 2. 8 million for a life improvement factor of 5.9.
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In the 1000-pound thrust load cases,, the speed ratio of 0,7 again pro-

vides effective DN values of 2.1 and 2.8 million for shaft speeds corre-

sponding to a DN of 3 and 4 million with life improvement ratios of 3.9

and 7.1.

CONCLUSIONS

A series-hybrid fluid-film bearing may be constructed to reduce ball

bearing speed by 30 percent. Relatively moderate flow rates are required

for its operation. At a 4000-pound thrust load and shaft speeds corre-

sponding to speed parameter DN values of 3 and 4 million for a 150-

millimeter ball bearing, a flow of IS.2 pounds per minute is required to

maintain a fluid-film thickness of 0.001 inch for the optimum bearing

dimensions. The resulting .life improvement factors are 3.4 and 5.9 for

DN values of 3 and 4 million, respectively.
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TABLE I. - FLOW AND FRICTION TORQUE FOR THREE

FLUID-FILM THICKNESSES

[Pocket depth h = 0.125 in.]

Dimen-
sionless

flow rate,

Q

20
30
70

100
1000

Fluid flow,

Q
Ib

min

96.2
146.0
340.0
486.0

4863.0

Dimen-
sionless
friction
torque,

M

Fluid-film
bearing
torque,

Mf,
in.-lb

hL = 0.002 in.;
C2 = 0.8;

Nf = 5869 rpm

1.239
.989

. .732
.679
.571

42.2
33.8
25.0
23.2
19.5

Dimen-
sionless
friction
torque,

M

Fluid-film
bearing
torque,

in.-lb

hL = 0. 002 in. ;
C2 = 0.4;

Nf = 2329 rpm

1.235
.879
.520
.445
.296

16.70
11.91
7.05
6.03
4.01

Dimen-
sionless

flow rate,

Q

20
30
70

100
1000

Fluid flow,

Q
Ib

min

12.1
18.2.
42.6
60.8

608.0

Dimen-
sionless
friction
torque,

M

Fluid-film
bearing
torque,

Mf,
in. -Ib

hL = 0.001 in.;
C2 = 0.8;

Nf = 14 789 rpm

1.239
.989
.732
.679
.571

213
170
126
117
98

Dimen-
sionless
friction
torque,

M

Fluid-film
bearing
torque,

Mf,
in. -Ib

hL = 0.001 in.;
C 2 = 0 . 4 ;

Nf = 5869 rpm

1.235
.879
.520
.445
.296

84.4
60.0
35.5
30.4
20.2

Dimen-
sionless

flow rate,

Q

20
30
70

100
1000

Fluid flow,

Q
Ib

min

1.52
2.28
5.32
7.60

75.99

Dimen-
sionless
friction
torque,

M

Fluid-film
bearing
torque ,

Mf,
in.-lb

hL = 0.0005 in.;
C2 = 0.4;

Nf = 14 789 rpm

1.235
.879
.520
.445
.296

426
303
179
153
102

Dimen-
sionless
friction
torque,

M

Fluid-film
bearing
torque,

Mf,
in. -Ib

hL = 0.0005 in.;
C2 = 0 . 2 ;

Nf = 5869 rpm

1.232
.824
.413
.328
.158

167.0
112.6

56.4
44.8
21.6
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TABLE II. - OPTIMUM BEARING DIMENSIONS FOR MINIMUM FRICTION

TORQUE (FOR ALL VALUES OF C2 AND F = 0.5)

Dimensionless
flow rate,

Q

20

30

70
100

1000

Inner radius of
inner land,

R l>
in.

2.812

i

Outer radius of
inner land,

R 2 >

in.

3.105

3.012

2.899
2.874
2.818

Inner radius of
outer land,

R3,
in.

3.110
3.127

3. 138

3.141

3. 144

Outer radius of
outer land,

R4'
in.

3.440
3.338
3.225
3.200
3. 149

TABLE III. - PREDICTED SPEED RATIOS (BALL BEARING SPEED/SHAFT SPEED)

[Pocket depth h = 0. 125 in]

(a) 4000-Ib thrust load

Dimen-

sionless
flow rate,

Q

20
30

70

100

Fluid flow,

Q,
Ib

min

Shaft speed, Ng) rpm

20 000 26 667

Speed ratio

hL = 0.001 in.

12.1

18.2

42.6
60.8

0.75
.68

.59

.57

0.78

.70

.62

.60

Fluid flow,

Q,
Ib

min

Shaft speed, N0, rpm
O

20 000 26 667

Speed ratio

hT = 0.0005 in.LJ

1.52

2.28

5.32

7.60

0.86

.80

.67

.63

0.87

.81

.70

.66

(b) 1000-Ib thrust load

Dimen-
sionless

flow rate,

Q

20

30
70

100

Fluid flow,.

Q,
Ib

min

Shaft speed, N , rpms

20 000 26 667

Speed ratio

hL = 0.00159 in.

12. 1

18.2

42.6
60.8

0.72

.61

.60

.57

0.71

.67

.60

.60

Fluid flow,

Q,
Ib

min

Shaft speed, N, rpm
S

20 000 26 667

Speed ratio

hL = 0.00079 in. '

1.52
2.28

5.32

7.60

0.83

.78

.67

.64

0.83
.78
.67

.64
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Figure 1. - Schematic diagram of a typical series-hybrid
fluid-film, rolling element bearing.
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Figure 2. - Computed torque-speed relation for a 150-
millimeter-bore bearing based on analysis of refer-
ence 7. Ball diameter, 0.875 inch, pitch diameter,
7.358 inches.
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Figure 3. - Theoretical fatigue life of thrust-loaded 150-
millimeter-bore ball bearing, based on analysis of ref-
erence 7. (Data from ref. 5.)
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Figure 4. - Schematic diagrams of conical hydrostatic bearing design.
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Figure 5. - Bearing proportions for values of dimensionless flow rate Q.
Inner radius of inner land R1 • 2.812 inches.
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Figure 6. - Torque as a function of speed for a series-
hybrid bearing. Thrust level, F - 4000 pounds, pocket
depth hp • 0.125 inch.
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Figure 7. -Torque as a function of speed fora series-
hybrid bearing. Thrustload F- 1000pounds, pocket
depth hp • tt 125 inch.
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