BIBLIOGRAPHY OF PHOTOABSORPTION CROSS SECTION DATA

by

R. D. Hudson
L. J. Kieffer

JILA Information Center Report No. 11

University of Colorado
Boulder, Colorado
September 30, 1970
The Joint Institute for Laboratory Astrophysics was created in 1962 through the collaboration of the University of Colorado and the National Bureau of Standards, U. S. Dept. of Commerce, for the purpose of furthering research and graduate education in laboratory astrophysics—laboratory and theoretical investigations of physical processes of astrophysical importance. The major fields of activity are low energy atomic physics, theoretical astrophysics, and aerodynamics.

The institute is located on the campus of the University of Colorado. The academic staff are members of the Department of Physics and Astrophysics, of the College of Arts and Sciences, or the Department of Aerospace Engineering Sciences, of the College of Engineering. In addition to certain members of these faculties, the scientific staff of JILA includes Visiting Fellows and Members from other institutes, graduate students and postdoctoral appointees.

The JILA is operated as a partnership between CU and NBS by the Fellows of JILA, responsible through their Chairman to the Director, the NBS, and the President, the University of Colorado. NBS appointed staff members of JILA constitute the NBS Laboratory Astrophysics Division (274.00).
BIBLIOGRAPHY OF PHOTOABSORPTION CROSS SECTION DATA

by

Robert D. Hudson
Space Physics Division
NASA Manned Spacecraft Center
Houston, Texas 77058

and

Lee J. Kieffer†
Joint Institute for Laboratory Astrophysics
University of Colorado
Boulder, Colorado 80302

September 30, 1970

†Staff Member, Laboratory Astrophysics Division, National Bureau of Standards.
CONTENTS

I. INTRODUCTION--- vii

II. BIBLIOGRAPHY

Total Absorption--------------------------experimental 3
Detachment--------------------------experimental 5
--------------------------------------theoretical 5
Ionization--------------------------experimental 5
--------------------------------------theoretical 6
Dissociation--------------------------experimental 8
--------------------------------------theoretical 8
Scattering--------------------------experimental 8
--------------------------------------theoretical 8
Dissociative Ionization--------------------------experimental 9

III. BIBLIOGRAPHIC REFERENCES-------------------------- 11

IV. AUTHOR INDEX--- 39
ABSTRACT

A bibliography of photoabsorption cross section data is presented. Only references which report a measured or calculated photoabsorption cross section (relative or normalized) in regions of continuous absorption are included. The bibliography is current as of January 1, 1970.
I. INTRODUCTION

In the past several years the Joint Institute for Laboratory Astrophysics Information Center, University of Colorado, Boulder, Colorado, has been engaged in a program to collect reports that contain data on low energy atomic collisions, to critically evaluate and produce comprehensive compilations of these data, and to compile up-to-date bibliographies. The first bibliography on photoabsorption cross section data to be produced by the Information Center was published as JILA Information Center Report #5 in April, 1968. This present report, the result of a collaborative effort between the Information Center and NASA-Manned Spacecraft Center, is the first updating of the original report.

Although the title of this report uses the term cross section we have, of course, included all papers that give absorption and ionization coefficients. The criterion that we have attempted to apply in our selection of the papers is that the data in the papers should be for wavelength regions of continuous absorption. For atoms, this clearly means those wavelength regions above the first ionization limit, indeed, until elastic scattering becomes important, the absorption and ionization continuum cross sections are identical. In the case of molecules this clear cut distinction cannot be made since we now have ionization and dissociation continua overlaid in many cases by discrete structure with variable efficiencies for preionization, predissociation and photoexcitation. We have therefore not restricted the wavelength range that was searched for data, but obviously the majority of the data are for the ultraviolet (10 to 3000 Å).

Several (about a dozen) standard works on photoabsorption and photoionization were used as primary sources for references. In addition, Physics Abstracts was searched back to 1940. The more current material was obtained from abstracting journals. The cutoff time for inclusion of references from these abstracting journals in this bibliography was March 1, 1970, but because of the time lag involved in the abstracting journals, some references to publications in the late part of 1969 may not be included. In addition to references from the formal scientific literature we have included theses, reports given at meetings, and company or agency reports which have been printed and circulated. However, reference is not made to material that is unavailable either through library facilities or government document centers. No classified material is included.

There is a tendency for authors to publish material which is identical to that which they have reported on at a meeting (the proceedings of which are printed and circulated) and also issued as a company or agency report. In some cases it is possible to verify that this is so and in those cases only one reference (the formal publication, if there is one) is kept in the bibliography. In most cases it is not possible to make such a precise distinction among such documents, since only some of the material may have been made available before. Because of this, there may be cases of duplication in the sense that there may be more than one
reference to the same original data. We have tried to keep this to a minimum consistent with our aim of collecting references to all published data.

Inclusion of a reference in this bibliography does not imply a value judgment about the accuracy of the information. We only assert that the reference reports a measured or calculated photoabsorption cross-section (or the equivalent). The question of the accuracy of the data is to be covered in separate published critical reviews (the first, on molecular photoabsorption cross section data, will be published soon by one of us, R.D.H.).

Description of the Bibliography Format

The Photoabsorption Cross Section Bibliography is divided into three main sections. The first section describes the data which are in the references included in the bibliography. The data are categorized by a hierarchy of descriptors in the following order:

1. Process (e.g., absorption, ionization, etc.)
2. Experimental or Theoretical
3. Normalized or Relative (The data are considered normalized if given in absolute units.)
4. Atomic or Molecular Species including the degree of ionization of the species. (A negative ion is indicated by a minus sign; neutral unexcited species by a blank; neutral excited species by a star; and a positive ion by a number indicating the degree of positive ionization. All of these symbols follow the atomic species, which are listed in ascending order of nuclear charge, \(Z \). Molecular species are listed in arbitrary order.)
5. The references. These are identified by an arbitrary file number, the first author, and the year of publication (e.g., 63 implies 1963).

The Process categories that we have chosen are based more on experimental techniques than the, perhaps, more logical theoretical categories. Thus, for example, the category "Absorption" has no theoretical subsection, as the theoretical papers will deal specifically with ionization or dissociation. However, in the laboratory, the quantities measured are usually the total absorption cross section and the photoionization or photodissociation yield. In these cases the cross section is listed under "Absorption" while the yields are listed under "Ionization" and "Dissociation." This listing procedure has been followed even for papers which claim to measure "Ionization" cross sections for atoms using absorption techniques. Those papers listed under the category "Ionization, Experimental," have all measured the cross section by detecting the number of positive ions created.

A large amount of data is now becoming available using mass spectrometry and photoelectron techniques. These techniques measure a quantity which should yield the relative partial photoionization cross section...
for the production of ion fragments, or of the parent ion in a particular energy state. We have listed the papers using these techniques under "Ionization, Relative."

The second section lists the title, authors and complete reference for the papers cited. These are ordered by their "file" number. The abbreviations for journal titles are taken from Chemical Abstracts.

The third section consists of an alphabetical author index. After each name is a list of the "file" numbers of articles, authored or co-authored, which can be found in the bibliographic section.

Acknowledgments

We would like to gratefully acknowledge the assistance of the staff of the JILA Information Center in the preparation of this bibliography. The computer programs used were written by Patricia Ruttenberg, while the editorial and associated technical library work were performed by Elizabeth Reynolds and Victoria Tempey.

1 The JILA Information Center is supported in part by the National Bureau of Standards through the National Standard Reference Data Program.

II. BIBLIOGRAPHY
<table>
<thead>
<tr>
<th>TOTAL ABSORPTION</th>
<th>EXPERIMENTAL</th>
<th>TOTAL ABSORPTION</th>
<th>EXPERIMENTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>H 1732 BEYON,65</td>
<td>2026 BEYON,66</td>
<td>CS 2666 BRADDOCK,35</td>
<td>3067 MARR,68</td>
</tr>
<tr>
<td>NE 0308 KUYATT,64</td>
<td>0599 AKELROD,59</td>
<td>PT 2374 WOLF,33</td>
<td></td>
</tr>
<tr>
<td>0847 BAKER,61</td>
<td>1235 LEE,59</td>
<td>AU 2374 WOLF,33</td>
<td>3016 HENGEL,68</td>
</tr>
<tr>
<td>1398 LOWN,65</td>
<td>1394 MAIDEN,65</td>
<td>3371 JAEGLE,66</td>
<td></td>
</tr>
<tr>
<td>1399 EAINES,69</td>
<td>2361 LUKESVEITI,64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3069 HEKKE,67</td>
<td>2953 HEKKE,67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3685 DERSHEN,31</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LI 1353 HUDSON,65</td>
<td>2619 HUDSON,67</td>
<td>PB 3764 HENKE,68</td>
<td>3028 JAEGLE,67</td>
</tr>
<tr>
<td>2669 YUNKSTEAD,53</td>
<td>2764 BAKER,62</td>
<td>BI 3016 HENGEL,68</td>
<td></td>
</tr>
<tr>
<td>BE 2706 PETERSON,63</td>
<td></td>
<td>TH 3293 BEZDENJEVA,67</td>
<td></td>
</tr>
<tr>
<td>C 3378 FITCHIEV,68</td>
<td></td>
<td>U 3293 BEZDENJEVA,67</td>
<td></td>
</tr>
<tr>
<td>W 1769 EMER,55</td>
<td>2214 MORRIS,66</td>
<td>HZ 0688 COOK,63</td>
<td>1149 COOK,64</td>
</tr>
<tr>
<td>O 1484 CAINES,65</td>
<td></td>
<td>1511 SANSON,65</td>
<td>1276 EMER,57</td>
</tr>
<tr>
<td>NE 0308 KUYATT,64</td>
<td>1226 LEE,59</td>
<td>2379 BUNCH,58</td>
<td>2590 HEMMER,33</td>
</tr>
<tr>
<td>1689 DITCHBURG,60</td>
<td>1795 FORER,64</td>
<td>2772 WATANABE,63</td>
<td>3291チェン,66</td>
</tr>
<tr>
<td>1025 WINTERLINGER,65</td>
<td>2512 LEE,59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2772 WINTERLINGER,63</td>
<td>2688 WORME,68</td>
<td>DZ 0508 WEISSLER,52</td>
<td>0622 WATANABE,58</td>
</tr>
<tr>
<td>3005 HENKE,67</td>
<td>3253 HENKE,67</td>
<td>0641 MATHIGAI,61</td>
<td>0213 HEITZER,64</td>
</tr>
<tr>
<td>3685 DERSHEN,31</td>
<td></td>
<td>0916 COOK,64</td>
<td>1131 HEITZER,64</td>
</tr>
<tr>
<td>NA 1377 BOTT,59</td>
<td>1710 DITCHBURG,56</td>
<td>1187 SANSON,65</td>
<td>1280 MEITZER,64</td>
</tr>
<tr>
<td>1729 DITCHBURG,53</td>
<td>2613 HUDSON,64</td>
<td>1561 SANSON,65</td>
<td></td>
</tr>
<tr>
<td>2613 HUDSON,67</td>
<td>3004 HENKE,68</td>
<td>1641 LARK,52</td>
<td></td>
</tr>
<tr>
<td>1740 DITCHBURG,53</td>
<td></td>
<td>1715 DITCHBURG,53</td>
<td></td>
</tr>
<tr>
<td>AL 2621 KOLOV,66</td>
<td></td>
<td>1749 DITCHBURG,54</td>
<td></td>
</tr>
<tr>
<td>SI 2380 RICH,67</td>
<td></td>
<td>1795 HUDSON,66</td>
<td>1967 RICH,67</td>
</tr>
<tr>
<td>SI 2380 RICH,67</td>
<td></td>
<td>2313 LADENBURG,33</td>
<td>2314 LADENBURG,32</td>
</tr>
<tr>
<td>S 2949 WORME,30</td>
<td></td>
<td>2314 LADENBURG,33</td>
<td></td>
</tr>
<tr>
<td>AR 0575 SANSON,63</td>
<td>0691 HUFFMAN,63</td>
<td>2631 PRESTON,64</td>
<td>2599 HENNER,33</td>
</tr>
<tr>
<td>0875 RUSTI,64</td>
<td>1235 LEE,59</td>
<td>2638 WATANABE,54</td>
<td>3267 WATANABE,35</td>
</tr>
<tr>
<td>1359 MEITZER,65</td>
<td>1394 EAINES,69</td>
<td>2674 WATANABE,64</td>
<td>3268 KOIZUMI,66</td>
</tr>
<tr>
<td>1825 WINTERLINGER,65</td>
<td>2301 LUKESVEITI,64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2905 HUFFMAN,63</td>
<td>2702 LUKESVEITI,64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2772 WINTERLINGER,63</td>
<td>2973 HENKE,68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3005 HENKE,67</td>
<td>2973 HENKE,68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3401 WEATON,64</td>
<td>3402 BLACKWELL,64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3685 DERSHEN,31</td>
<td>3779 MAIDEN,69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K 1280 DITCHBURG,43</td>
<td>1455 HUSON,65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3067 RICH,64</td>
<td>2862 HUDSON,67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CA 1717 DITCHBURG,60</td>
<td>1845 EAINES,69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3210 JUHUS,64</td>
<td>2635 KEM,62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2607 HUDSON,67</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3016 HENNEL,68</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CU 3761 MARK,69</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZN 3761 MARK,69</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GA 2067 STARTSEV,67</td>
<td>3337 KOLOV,68</td>
<td>HZ 0688 COOK,63</td>
<td>1049 ASTOJN,57</td>
</tr>
<tr>
<td>0975 SANSON,63</td>
<td>0691 HUFFMAN,63</td>
<td>1113 ASTOJN,56</td>
<td>1147 WATANABE,64</td>
</tr>
<tr>
<td>1255 RUSTI,64</td>
<td>1355 MEITZER,65</td>
<td>1197 MEITZER,64</td>
<td>1021 ASTOJN,52</td>
</tr>
<tr>
<td>2301 LUKESVEITI,64</td>
<td>2426 PERLMANY,64</td>
<td>1757 WEITZER,50</td>
<td>1212 LUKER,65</td>
</tr>
<tr>
<td>2507 HUFFMAN,63</td>
<td>3005 HENKE,67</td>
<td>2431 PRESTON,64</td>
<td>2597 JONNAN-GILDE,65</td>
</tr>
<tr>
<td>3255 HENKE,67</td>
<td>3402 BLACKWELL,64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3685 DERSHEN,31</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RB 3067 RICH,68</td>
<td></td>
<td>HZ 0685 THOMPSON,66</td>
<td>0617 TANENBAUM,63</td>
</tr>
<tr>
<td>0875 RUSTI,64</td>
<td>1235 LEE,59</td>
<td>1172 MEITZER,64</td>
<td>2209 WATANABE,65</td>
</tr>
<tr>
<td>3067 RICH,68</td>
<td>2377 STARTSEV,67</td>
<td>2504 HUFFMAN,63</td>
<td>2716 WATANABE,55</td>
</tr>
<tr>
<td>2761 RICH,66</td>
<td>3337 KOLOV,68</td>
<td>2707 WATANABE,63</td>
<td>2871 DITCHBURG,54</td>
</tr>
<tr>
<td>0875 RUSTI,64</td>
<td>1235 LEE,59</td>
<td>2782 SROKA,67</td>
<td></td>
</tr>
<tr>
<td>3067 RICH,68</td>
<td>3337 KOLOV,68</td>
<td>2874 SROKA,67</td>
<td></td>
</tr>
<tr>
<td>3067 RICH,68</td>
<td>3337 KOLOV,68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR 3816 HUFFMAN,69</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AG 2874 WOLF,33</td>
<td>3016 HENNEL,68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO 1299 RUSO,65</td>
<td>3765 WATANABE,56</td>
<td>NO 0622 WATANABE,56</td>
<td>1065 ASTOJN,57</td>
</tr>
<tr>
<td>2604 SUN,55</td>
<td>2672 WATANABE,54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2707 WATANABE,53</td>
<td>2716 WATANABE,55</td>
<td>2707 WATANABE,53</td>
<td></td>
</tr>
<tr>
<td>SW 1016 HENNEL,68</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KE 0691 HUFFMAN,63</td>
<td>1295 RUSTI,64</td>
<td>CZH 1172 MEITZER,64</td>
<td>2342 SCHON,62</td>
</tr>
<tr>
<td>1359 MEITZER,65</td>
<td>1360 MAIDEN,65</td>
<td>2375 NOE,52</td>
<td>2482 NAMAYAMA,64</td>
</tr>
<tr>
<td>3777 LUKESVEITI,66</td>
<td>2301 LUKESVEITI,64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2607 HUFFMAN,63</td>
<td>2667 WHITE,54</td>
<td>2599 HENNER,33</td>
<td>2882 WALTER,55</td>
</tr>
<tr>
<td>3709 WATANABE,65</td>
<td>2672 DESLIES,68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4005 HENKE,67</td>
<td>2953 HENKE,67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3346 SHDAMDAM,68</td>
<td>3422 BLACKWELL,64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3657 SHDAMDAM,68</td>
<td>3685 DERSHEN,31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KE 1861 CAINES,62</td>
<td></td>
<td>CLZ 2846 JACOBS,65</td>
<td>2998 WOREN,68</td>
</tr>
<tr>
<td>CS 1241 MOHLER,29</td>
<td>1242 BRADDOCK,34</td>
<td>3645 SCHER,64</td>
<td></td>
</tr>
<tr>
<td>1241 MOHLER,29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL ABSORPTION</td>
<td>EXPERIMENTAL</td>
<td>TOTAL ABSORPTION</td>
<td>EXPERIMENTAL</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------</td>
<td>------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>NCl</td>
<td>100</td>
<td>OCl</td>
<td>100</td>
</tr>
<tr>
<td>CCl</td>
<td>100</td>
<td>CBr</td>
<td>100</td>
</tr>
<tr>
<td>Br</td>
<td>100</td>
<td>ICl</td>
<td>100</td>
</tr>
<tr>
<td>Cl</td>
<td>100</td>
<td>Br</td>
<td>100</td>
</tr>
<tr>
<td>NCl</td>
<td>100</td>
<td>Br</td>
<td>100</td>
</tr>
<tr>
<td>CCl</td>
<td>100</td>
<td>Cl</td>
<td>100</td>
</tr>
<tr>
<td>Br</td>
<td>100</td>
<td>Cl</td>
<td>100</td>
</tr>
<tr>
<td>NCl</td>
<td>100</td>
<td>Br</td>
<td>100</td>
</tr>
<tr>
<td>CCl</td>
<td>100</td>
<td>Cl</td>
<td>100</td>
</tr>
<tr>
<td>Br</td>
<td>100</td>
<td>Cl</td>
<td>100</td>
</tr>
<tr>
<td>NCl</td>
<td>100</td>
<td>Br</td>
<td>100</td>
</tr>
<tr>
<td>CCl</td>
<td>100</td>
<td>Cl</td>
<td>100</td>
</tr>
<tr>
<td>Br</td>
<td>100</td>
<td>Cl</td>
<td>100</td>
</tr>
<tr>
<td>NCl</td>
<td>100</td>
<td>Br</td>
<td>100</td>
</tr>
<tr>
<td>CCl</td>
<td>100</td>
<td>Cl</td>
<td>100</td>
</tr>
<tr>
<td>Br</td>
<td>100</td>
<td>Cl</td>
<td>100</td>
</tr>
<tr>
<td>NCl</td>
<td>100</td>
<td>Br</td>
<td>100</td>
</tr>
<tr>
<td>CCl</td>
<td>100</td>
<td>Cl</td>
<td>100</td>
</tr>
<tr>
<td>Br</td>
<td>100</td>
<td>Cl</td>
<td>100</td>
</tr>
<tr>
<td>NCl</td>
<td>100</td>
<td>Br</td>
<td>100</td>
</tr>
<tr>
<td>CCl</td>
<td>100</td>
<td>Cl</td>
<td>100</td>
</tr>
<tr>
<td>Br</td>
<td>100</td>
<td>Cl</td>
<td>100</td>
</tr>
<tr>
<td>NCl</td>
<td>100</td>
<td>Br</td>
<td>100</td>
</tr>
<tr>
<td>CCl</td>
<td>100</td>
<td>Cl</td>
<td>100</td>
</tr>
<tr>
<td>Br</td>
<td>100</td>
<td>Cl</td>
<td>100</td>
</tr>
<tr>
<td>NCl</td>
<td>100</td>
<td>Br</td>
<td>100</td>
</tr>
<tr>
<td>CCl</td>
<td>100</td>
<td>Cl</td>
<td>100</td>
</tr>
<tr>
<td>Br</td>
<td>100</td>
<td>Cl</td>
<td>100</td>
</tr>
<tr>
<td>NCl</td>
<td>100</td>
<td>Br</td>
<td>100</td>
</tr>
<tr>
<td>CCl</td>
<td>100</td>
<td>Cl</td>
<td>100</td>
</tr>
<tr>
<td>Br</td>
<td>100</td>
<td>Cl</td>
<td>100</td>
</tr>
<tr>
<td>NCl</td>
<td>100</td>
<td>Br</td>
<td>100</td>
</tr>
<tr>
<td>CCl</td>
<td>100</td>
<td>Cl</td>
<td>100</td>
</tr>
<tr>
<td>Br</td>
<td>100</td>
<td>Cl</td>
<td>100</td>
</tr>
<tr>
<td>NCl</td>
<td>100</td>
<td>Br</td>
<td>100</td>
</tr>
<tr>
<td>CCl</td>
<td>100</td>
<td>Cl</td>
<td>100</td>
</tr>
<tr>
<td>Br</td>
<td>100</td>
<td>Cl</td>
<td>100</td>
</tr>
<tr>
<td>NCl</td>
<td>100</td>
<td>Br</td>
<td>100</td>
</tr>
<tr>
<td>CCl</td>
<td>100</td>
<td>Cl</td>
<td>100</td>
</tr>
<tr>
<td>Br</td>
<td>100</td>
<td>Cl</td>
<td>100</td>
</tr>
<tr>
<td>Relative</td>
<td>Experimental</td>
<td>Relative</td>
<td>Experimental</td>
</tr>
<tr>
<td>----------</td>
<td>--------------</td>
<td>----------</td>
<td>--------------</td>
</tr>
<tr>
<td>AR 2622 CARLSON, 67</td>
<td>2636 CONES, 61</td>
<td>CZH6 2396 NICHOLSON, 65</td>
<td>2802 CHUPKA, 67</td>
</tr>
<tr>
<td>2676 WEISSLER, 69</td>
<td>3413 SAMSON, 68</td>
<td>SFE 1857 DIBELER, 66</td>
<td></td>
</tr>
<tr>
<td>K 2315 LAWRENCE, 65</td>
<td>2317 LAWRENCE, 69</td>
<td>H0 1856 FROST, 62</td>
<td>2676 WEISSLER, 69</td>
</tr>
<tr>
<td>2840 WILLIAMS, 67</td>
<td>2349 VILLAREJO, 67</td>
<td>S02 3392 DIBELER, 66</td>
<td>3591 VROOM, 67</td>
</tr>
<tr>
<td>ZN 3180 HARRISON, 66</td>
<td>2624 BERKOWITZ, 67</td>
<td>H02 2364 NICHOLSON, 65</td>
<td>2802 CHUPKA, 67</td>
</tr>
<tr>
<td>KR 1852 VILLAREJO, 67</td>
<td>3418 SAMSON, 68</td>
<td>3591 VROOM, 67</td>
<td></td>
</tr>
<tr>
<td>3833 KRAUSE, 69</td>
<td>3591 VROOM, 67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RB 2316 LAWRENCE, 69</td>
<td>C H3C 2219 DIBELER, 66</td>
<td>3540 KRASS, 68</td>
<td>2396 NICHOLSON, 65</td>
</tr>
<tr>
<td>CO 3256 BERKOWITZ, 68</td>
<td>C H3I 2377 MORRISON, 66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XI 1699 BREHM, 66</td>
<td>1853 VILLAREJO, 67</td>
<td>CZH5 3011 DIBELER, 67</td>
<td></td>
</tr>
<tr>
<td>2386 NICHOLSON, 65</td>
<td>3413 SAMSON, 68</td>
<td>CZH2 3011 DIBELER, 67</td>
<td></td>
</tr>
<tr>
<td>3094 BRUNOLO, 68</td>
<td>3591 VROOM, 67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS 0496 BOECKNER, 68</td>
<td>1238 MOLLER, 66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2222 POPESCU, 66</td>
<td>2316 LAWRENCE, 69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>YB 3510 PARR, 66</td>
<td>C NS 2222 POPESCU, 66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MG 1699 BREHM, 66</td>
<td>2846 FROST, 66</td>
<td>D2O 1699 BREHM, 66</td>
<td>3564 BRUNOLO, 68</td>
</tr>
<tr>
<td>3256 BERKOWITZ, 68</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H2 0206 COMES, 66</td>
<td>1220 DIBELER, 66</td>
<td>C0S 2727 DIBELER, 67</td>
<td>3571 COLLIN, 66</td>
</tr>
<tr>
<td>2465 COMES, 67</td>
<td>2624 BERKOWITZ, 67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2739 SPONH, 67</td>
<td>3251 VILLAREJO, 68</td>
<td>C04 1379 DIBELER, 65</td>
<td>2396 NICHOLSON, 65</td>
</tr>
<tr>
<td>3372 CHUPKA, 68</td>
<td>3102 DIBELER, 67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3672 TURNER, 68</td>
<td>3591 VROOM, 67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3915 BERKOWITZ, 69</td>
<td>TE2 3886 BERKOWITZ, 69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OZ 1177 SCHEN, 66</td>
<td>1699 BREHM, 66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2386 NICHOLSON, 65</td>
<td>2624 BERKOWITZ, 67</td>
<td>CE2 3886 BERKOWITZ, 69</td>
<td></td>
</tr>
<tr>
<td>2676 WEISSLER, 69</td>
<td>2727 DIBELER, 67</td>
<td>S2 3886 BERKOWITZ, 69</td>
<td></td>
</tr>
<tr>
<td>2739 SPONH, 67</td>
<td>3245 VILES, 67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3289 TURNER, 68</td>
<td>3591 VROOM, 67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3829 NATALIS, 65</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N2 0916 COMES, 65</td>
<td>0916 COMES, 66</td>
<td>MG02 1979 BERKOWITZ, 66</td>
<td></td>
</tr>
<tr>
<td>1177 SCHEN, 66</td>
<td>2624 BERKOWITZ, 67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2576 WEISSLER, 99</td>
<td>3591 VROOM, 67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3915 BERKOWITZ, 69</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H20 1699 BREHM, 66</td>
<td>2624 DIBELER, 66</td>
<td>CZD2 1644 BOTTER, 66</td>
<td>2612 DIBELER, 64</td>
</tr>
<tr>
<td>2750 SPONH, 67</td>
<td>3591 VROOM, 67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N3 0237 FROST, 68</td>
<td>2624 DIBELER, 66</td>
<td>H3N02 2396 NICHOLSON, 65</td>
<td></td>
</tr>
<tr>
<td>3591 VROOM, 67</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N0 0237 FROST, 68</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2211 HURZELER, 65</td>
<td>1666 REESE, 66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2386 NICHOLSON, 65</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2676 WEISSLER, 69</td>
<td>C H2Cl 2396 NICHOLSON, 65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3759 SAMSON, 69</td>
<td>C F3 2778 LIFSHITZ, 67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C2H2 1064 BOTTER, 66</td>
<td>1699 BREHM, 66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2396 NICHOLSON, 65</td>
<td>2612 DIBELER, 64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2739 SPONH, 67</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL2 3591 VROOM, 67</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H20 2676 WEISSLER, 69</td>
<td>2739 DIBELER, 67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2739 SPONH, 67</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C02 2676 WEISSLER, 69</td>
<td>2727 DIBELER, 67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2739 SPONH, 67</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3591 VROOM, 67</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C0 1177 SCHEN, 66</td>
<td>2624 BERKOWITZ, 67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2676 WEISSLER, 69</td>
<td>3591 VROOM, 67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BR2 2377 MORRISON, 66</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3591 VROOM, 67</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H CL 2396 NICHOLSON, 65</td>
<td>3591 VROOM, 67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3642 KRAUSE, 68</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C MP 1357 DIBELER, 65</td>
<td>1699 BREHM, 66</td>
<td>H 1277 HEINRICH, 64</td>
<td></td>
</tr>
<tr>
<td>2396 NICHOLSON, 65</td>
<td>3026 CHUPKA, 68</td>
<td>1339 BATES, 45</td>
<td>2218 CHU, 67</td>
</tr>
<tr>
<td>IZ 3277 MORRISON, 60</td>
<td>3591 VROOM, 67</td>
<td>2432 ZERNIK, 65</td>
<td>2849 VOLKOV, 65</td>
</tr>
<tr>
<td>H2S 1392 DIBELER, 66</td>
<td></td>
<td>3015 LIM, 68</td>
<td></td>
</tr>
<tr>
<td>C52 2727 DIBELER, 67</td>
<td>3591 VROOM, 67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3672 CHUPKA, 68</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H 0 1325 DIBELER, 65</td>
<td>3591 VROOM, 67</td>
<td>H* 3745 YAKOVLEV, 67</td>
<td></td>
</tr>
<tr>
<td>3591 VROOM, 67</td>
<td></td>
<td>3815 LIM, 68</td>
<td>2849 VOLKOV, 65</td>
</tr>
<tr>
<td>AQ 3254 VILLAREJO, 68</td>
<td>2739 SPONH, 67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3591 VROOM, 67</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CZH4 1699 BREHM, 66</td>
<td>2055 BOTTER, 66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2396 NICHOLSON, 65</td>
<td>3797 CHUPKA, 68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NF 3591 VROOM, 67</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>H* 2249 HUANG, 48</td>
<td></td>
</tr>
<tr>
<td>Ionization</td>
<td>Theoretical</td>
<td>Ionization</td>
<td>Theoretical</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
<td>------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Li</td>
<td>0447 Tait,66</td>
<td>1288 McGuire,67</td>
<td>Na 1 1236 Bates,46</td>
</tr>
<tr>
<td></td>
<td>2346 Burgess,60</td>
<td>2218 Chi,67</td>
<td>Mg 2 3520 Peach,62</td>
</tr>
<tr>
<td></td>
<td>3746 Muskin,63</td>
<td>2470 Moore,67</td>
<td>Mg 3 3520 McGuire,68</td>
</tr>
<tr>
<td></td>
<td>2660 Stewart,67</td>
<td>2649 Peach,67</td>
<td>Mg 1 2956 Burgess,66</td>
</tr>
<tr>
<td></td>
<td>7757 Shell,67</td>
<td>2746 McKee,67</td>
<td>Al 2 2652 Peach,62</td>
</tr>
<tr>
<td></td>
<td>3940 McGuire,69</td>
<td>3920 McGuire,68</td>
<td>Si 2 2843 Hanson,68</td>
</tr>
<tr>
<td></td>
<td>3900 Gezalov,68</td>
<td>3900 Gezalov,68</td>
<td>Si 1 2956 Burgess,66</td>
</tr>
<tr>
<td>Be</td>
<td>1 2217 Bell,67</td>
<td>2647 Stewart,67</td>
<td>P 1 3520 McGuire,68</td>
</tr>
<tr>
<td></td>
<td>2999 Altick,68</td>
<td>2631 Zhang,62</td>
<td>S 1 3520 McGuire,68</td>
</tr>
<tr>
<td>B</td>
<td>1 1321 Bates,39</td>
<td>2762 Vainshtein,54</td>
<td>Cl 1 3520 HCGUIRE,68</td>
</tr>
<tr>
<td></td>
<td>2029 Vainshtein,53</td>
<td>3520 McGuire,68</td>
<td>Ar 1 3741 Woo,67</td>
</tr>
<tr>
<td></td>
<td>1 1321 Bates,39</td>
<td>1674 Bates,49</td>
<td>Ar 1 3929 Cooper,62</td>
</tr>
<tr>
<td></td>
<td>2399 Praderie,64</td>
<td>2479 Praderie,64</td>
<td>Ar 1 4660 Dalgarno,52</td>
</tr>
<tr>
<td></td>
<td>2742 Vainshtein,54</td>
<td>2029 Vainshtein,53</td>
<td>Ar 1 2956 Altick,64</td>
</tr>
<tr>
<td></td>
<td>3520 McGuire,68</td>
<td>3213 Henry,65</td>
<td>Ar 1 2843 Hanson,68</td>
</tr>
<tr>
<td>C</td>
<td>1 0578 Norman,63</td>
<td>K 1 1219 Seaton,50</td>
<td>Ar 1 2843 Hanson,68</td>
</tr>
<tr>
<td></td>
<td>1 1236 Bates,46</td>
<td>1236 Bates,46</td>
<td>Ar 1 2843 Hanson,68</td>
</tr>
<tr>
<td></td>
<td>1 1236 Bates,46</td>
<td>3879 Henry,68</td>
<td>Ar 1 2843 Hanson,68</td>
</tr>
<tr>
<td></td>
<td>2 3390 Midalgo,68</td>
<td>3390 Midalgo,68</td>
<td>Ar 1 2843 Hanson,68</td>
</tr>
<tr>
<td></td>
<td>3 3390 Midalgo,68</td>
<td>3879 Henry,68</td>
<td>Ar 1 2843 Hanson,68</td>
</tr>
<tr>
<td></td>
<td>4 1627 Ivanova,64</td>
<td>3390 Midalgo,68</td>
<td>Ar 1 2843 Hanson,68</td>
</tr>
<tr>
<td>O</td>
<td>1 0540 Dalgarno,64</td>
<td>0741 Woo,67</td>
<td>Ca 1 1336 Bates,40</td>
</tr>
<tr>
<td></td>
<td>1 1321 Bates,39</td>
<td>1674 Bates,49</td>
<td>Ca 1 2771 MCGUIRE,68</td>
</tr>
<tr>
<td></td>
<td>1661 Dalgarno,60</td>
<td>1661 Dalgarno,60</td>
<td>Ca 1 2378 MCGUIRE,68</td>
</tr>
<tr>
<td></td>
<td>1733 Breese,65</td>
<td>1830 Henry,65</td>
<td>Ca 1 2378 MCGUIRE,68</td>
</tr>
<tr>
<td></td>
<td>2652 Peach,62</td>
<td>2742 Vainshtein,54</td>
<td>Ca 1 2378 MCGUIRE,68</td>
</tr>
<tr>
<td></td>
<td>2029 Vainshtein,53</td>
<td>3213 Henry,65</td>
<td>Ca 1 2378 MCGUIRE,68</td>
</tr>
<tr>
<td></td>
<td>3520 McGuire,68</td>
<td>3520 HCGUIRE,68</td>
<td>Ca 1 2378 MCGUIRE,68</td>
</tr>
<tr>
<td></td>
<td>1 0578 Norman,63</td>
<td>1236 Bates,46</td>
<td>Ca 1 2378 MCGUIRE,68</td>
</tr>
<tr>
<td></td>
<td>1 1211 Johnston,64</td>
<td>3879 Henry,68</td>
<td>Ca 1 2378 MCGUIRE,68</td>
</tr>
<tr>
<td>N</td>
<td>2 3390 Midalgo,68</td>
<td>3390 Midalgo,68</td>
<td>Ca 1 2378 MCGUIRE,68</td>
</tr>
<tr>
<td></td>
<td>3 3390 Midalgo,68</td>
<td>3390 Midalgo,68</td>
<td>Ca 1 2378 MCGUIRE,68</td>
</tr>
<tr>
<td></td>
<td>4 1627 Ivanova,64</td>
<td>3390 Midalgo,68</td>
<td>Ca 1 2378 MCGUIRE,68</td>
</tr>
<tr>
<td>O</td>
<td>1 0540 Dalgarno,64</td>
<td>0741 Woo,67</td>
<td>Ca 1 2378 MCGUIRE,68</td>
</tr>
<tr>
<td></td>
<td>1 1321 Bates,39</td>
<td>1674 Bates,49</td>
<td>Ca 1 2378 MCGUIRE,68</td>
</tr>
<tr>
<td></td>
<td>1661 Dalgarno,60</td>
<td>1661 Dalgarno,60</td>
<td>Ca 1 2378 MCGUIRE,68</td>
</tr>
<tr>
<td></td>
<td>1733 Breese,65</td>
<td>1830 Henry,65</td>
<td>Ca 1 2378 MCGUIRE,68</td>
</tr>
<tr>
<td></td>
<td>2652 Peach,62</td>
<td>2742 Vainshtein,54</td>
<td>Ca 1 2378 MCGUIRE,68</td>
</tr>
<tr>
<td></td>
<td>2029 Vainshtein,53</td>
<td>3213 Henry,65</td>
<td>Ca 1 2378 MCGUIRE,68</td>
</tr>
<tr>
<td></td>
<td>3520 McGuire,68</td>
<td>3520 HCGUIRE,68</td>
<td>Ca 1 2378 MCGUIRE,68</td>
</tr>
<tr>
<td>O</td>
<td>1 1236 Bates,46</td>
<td>1870 Henry,66</td>
<td>Ca 1 2378 MCGUIRE,68</td>
</tr>
<tr>
<td></td>
<td>2029 Yamaguchi,62</td>
<td>3213 Henry,65</td>
<td>Ca 1 2378 MCGUIRE,68</td>
</tr>
<tr>
<td></td>
<td>1870 Henry,66</td>
<td>3213 Henry,65</td>
<td>Ca 1 2378 MCGUIRE,68</td>
</tr>
<tr>
<td></td>
<td>3879 Henry,68</td>
<td>3879 Henry,68</td>
<td>Ca 1 2378 MCGUIRE,68</td>
</tr>
<tr>
<td></td>
<td>3390 Midalgo,68</td>
<td>3390 Midalgo,68</td>
<td>Ca 1 2378 MCGUIRE,68</td>
</tr>
<tr>
<td></td>
<td>3 3390 Midalgo,68</td>
<td>3390 Midalgo,68</td>
<td>Ca 1 2378 MCGUIRE,68</td>
</tr>
<tr>
<td></td>
<td>4 3390 Midalgo,68</td>
<td>3390 Midalgo,68</td>
<td>Ca 1 2378 MCGUIRE,68</td>
</tr>
<tr>
<td></td>
<td>5 1627 Ivanova,64</td>
<td>3390 Midalgo,68</td>
<td>Ca 1 2378 MCGUIRE,68</td>
</tr>
<tr>
<td>F</td>
<td>1 1321 Bates,39</td>
<td>3520 McGuire,68</td>
<td>Ca 1 2378 MCGUIRE,68</td>
</tr>
<tr>
<td></td>
<td>1 1236 Bates,46</td>
<td>3520 McGuire,68</td>
<td>Ca 1 2378 MCGUIRE,68</td>
</tr>
<tr>
<td>N</td>
<td>0741 Woo,67</td>
<td>0925 Cooper,62</td>
<td>Ca 1 2378 MCGUIRE,68</td>
</tr>
<tr>
<td></td>
<td>1 1218 Seaton,51</td>
<td>1321 Bates,39</td>
<td>Ca 1 2378 MCGUIRE,68</td>
</tr>
<tr>
<td></td>
<td>1837 Shell,65</td>
<td>2056 Henry,67</td>
<td>Ca 1 2378 MCGUIRE,68</td>
</tr>
<tr>
<td></td>
<td>2033 Seaton,51</td>
<td>2742 Vainshtein,54</td>
<td>Ca 1 2378 MCGUIRE,68</td>
</tr>
<tr>
<td></td>
<td>3520 McGuire,68</td>
<td>3520 HCGUIRE,68</td>
<td>Ca 1 2378 MCGUIRE,68</td>
</tr>
<tr>
<td>O</td>
<td>1 1236 Bates,46</td>
<td>3390 Midalgo,68</td>
<td>Ca 1 2378 MCGUIRE,68</td>
</tr>
<tr>
<td></td>
<td>3879 Henry,68</td>
<td>3879 Henry,68</td>
<td>Ca 1 2378 MCGUIRE,68</td>
</tr>
<tr>
<td>O</td>
<td>2 3930 Midalgo,68</td>
<td>3879 Henry,68</td>
<td>Ca 1 2378 MCGUIRE,68</td>
</tr>
<tr>
<td></td>
<td>3 3930 Midalgo,68</td>
<td>3879 Henry,68</td>
<td>Ca 1 2378 MCGUIRE,68</td>
</tr>
<tr>
<td></td>
<td>4 3930 Midalgo,68</td>
<td>3879 Henry,68</td>
<td>Ca 1 2378 MCGUIRE,68</td>
</tr>
<tr>
<td>N</td>
<td>0925 Cooper,62</td>
<td>1288 MCGUIRE,67</td>
<td>Ca 1 2378 MCGUIRE,68</td>
</tr>
<tr>
<td></td>
<td>1670 Wurjoeing,60</td>
<td>2056 Burgess,60</td>
<td>Ca 1 2378 MCGUIRE,68</td>
</tr>
<tr>
<td></td>
<td>2216 Chi,67</td>
<td>2379 MCGUIRE,63</td>
<td>Ca 1 2378 MCGUIRE,68</td>
</tr>
<tr>
<td></td>
<td>2660 Seaton,51</td>
<td>2649 Peach,67</td>
<td>Ca 1 2378 MCGUIRE,68</td>
</tr>
<tr>
<td></td>
<td>2660 Tojo,64</td>
<td>2742 Vainshtein,54</td>
<td>Ca 1 2378 MCGUIRE,68</td>
</tr>
<tr>
<td></td>
<td>2859 Vainshtein,63</td>
<td>2843 MCGUIRE,68</td>
<td>Ca 1 2378 MCGUIRE,68</td>
</tr>
<tr>
<td></td>
<td>2868 McGuire,69</td>
<td>3520 MCGUIRE,68</td>
<td>Ca 1 2378 MCGUIRE,68</td>
</tr>
<tr>
<td></td>
<td>28850 Yamanouch,67</td>
<td>3520 MCGUIRE,68</td>
<td>Ca 1 2378 MCGUIRE,68</td>
</tr>
<tr>
<td></td>
<td>28850 Yamanouch,67</td>
<td>3520 MCGUIRE,68</td>
<td>Ca 1 2378 MCGUIRE,68</td>
</tr>
<tr>
<td>NORMALIZED</td>
<td>THEORETICAL</td>
<td>RELATIVE</td>
<td>DISSOCIATION</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
<td>----------</td>
<td>--------------</td>
</tr>
<tr>
<td>AG 2845 HATESE,65</td>
<td>3520 MCGUIRE,65</td>
<td>H2O 0772 BEYER,64</td>
<td></td>
</tr>
<tr>
<td>AG 1 8925 COOPER,62</td>
<td>3520 MCGUIRE,65</td>
<td>N H3 2853 OKABE,67</td>
<td></td>
</tr>
<tr>
<td>AS 3520 MCGUIRE,65</td>
<td>3520 MCGUIRE,65</td>
<td>N D 0772 BEYER,64</td>
<td></td>
</tr>
<tr>
<td>IN 1288 MCGUIRE,67</td>
<td>1893 MCGUIRE,65</td>
<td>C 02 0772 BEYER,64</td>
<td></td>
</tr>
<tr>
<td>IN 1288 MCGUIRE,67</td>
<td>1893 MCGUIRE,65</td>
<td>O2 392 DIBELER,68</td>
<td></td>
</tr>
<tr>
<td>SN 1288 MCGUIRE,67</td>
<td>1893 MCGUIRE,65</td>
<td>C S2 2727 DIBELER,67</td>
<td></td>
</tr>
<tr>
<td>SB 1288 MCGUIRE,67</td>
<td>1893 MCGUIRE,65</td>
<td>CO 2 3392 DIBELER,68</td>
<td></td>
</tr>
<tr>
<td>TE 1288 MCGUIRE,67</td>
<td>1893 MCGUIRE,65</td>
<td>CO 2 3392 DIBELER,68</td>
<td></td>
</tr>
<tr>
<td>I 1288 MCGUIRE,67</td>
<td>3520 MCGUIRE,68</td>
<td>CO 2 3392 DIBELER,68</td>
<td></td>
</tr>
<tr>
<td>XE 0741 WO0,67</td>
<td>1288 MCGUIRE,67</td>
<td>H2 3083 Dalgarno,69</td>
<td></td>
</tr>
<tr>
<td>1893 MCGUIRE,65</td>
<td>2079 COMES,66</td>
<td>H2 1 2086 Oksynuk,67</td>
<td></td>
</tr>
<tr>
<td>2845 COOPER,64</td>
<td>2618 BRANDT,67</td>
<td>2876 Dunn,68</td>
<td></td>
</tr>
<tr>
<td>2845 MANSON,68</td>
<td>2648 MCGUIRE,66</td>
<td>3259 Dunn,68</td>
<td></td>
</tr>
<tr>
<td>2845 COMES,68</td>
<td>3510 MCGUIRE,68</td>
<td>3259 Dunn,68</td>
<td></td>
</tr>
<tr>
<td>CS 1288 MCGUIRE,67</td>
<td>2378 MOSKVIN,63</td>
<td>HE 2689 SHADOWAND,67</td>
<td></td>
</tr>
<tr>
<td>2846 SEATON,51</td>
<td>2846 MCGUIRE,65</td>
<td>2875 Wollan,31</td>
<td></td>
</tr>
<tr>
<td>EU 2843 MANSON,68</td>
<td>3917 FARNoux,69</td>
<td>HE 2689 SHADOWAND,67</td>
<td></td>
</tr>
<tr>
<td>TA 1903 FARNoux,67</td>
<td>3917 FARNoux,69</td>
<td>2875 Wollan,31</td>
<td></td>
</tr>
<tr>
<td>PT 3917 FARNoux,69</td>
<td>2843 MANSON,68</td>
<td>AR 2689 SHADOWAND,67</td>
<td></td>
</tr>
<tr>
<td>AU 2689 FARNoux,67</td>
<td>2843 MANSON,68</td>
<td>2875 Wollan,31</td>
<td></td>
</tr>
<tr>
<td>Hg 2845 HATESE,65</td>
<td>3917 FARNoux,69</td>
<td>KR 2720 HEDDE,62</td>
<td></td>
</tr>
<tr>
<td>PB 2845 MCGUIRE,65</td>
<td>3917 FARNoux,69</td>
<td>2875 Wollan,31</td>
<td></td>
</tr>
<tr>
<td>BI 2686 FARNoux,67</td>
<td>3917 FARNoux,69</td>
<td>O2 2720 HEDDE,62</td>
<td></td>
</tr>
<tr>
<td>U 2845 MCGUIRE,65</td>
<td>3917 FARNoux,69</td>
<td>O2 2720 HEDDE,62</td>
<td></td>
</tr>
<tr>
<td>FM 2843 MANSON,68</td>
<td>3917 FARNoux,69</td>
<td>O2 2720 HEDDE,62</td>
<td></td>
</tr>
<tr>
<td>HZ 1599 FARNoux,65</td>
<td>2057 SHIMizu,67</td>
<td>2875 Wollan,31</td>
<td></td>
</tr>
<tr>
<td>2869 Khare,67</td>
<td>3412 Khare,68</td>
<td>2875 Wollan,31</td>
<td></td>
</tr>
<tr>
<td>3801 KAPLAN,69</td>
<td>3517 BATES,68</td>
<td>2875 Wollan,31</td>
<td></td>
</tr>
<tr>
<td>HZ 1 2264 BATES,63</td>
<td>3517 BATES,68</td>
<td>2875 Wollan,31</td>
<td></td>
</tr>
<tr>
<td>O2 3921 DIXON,69</td>
<td>3517 BATES,68</td>
<td>2875 Wollan,31</td>
<td></td>
</tr>
<tr>
<td>N2 3689 SCHNEIDER,69</td>
<td>3517 BATES,68</td>
<td>2875 Wollan,31</td>
<td></td>
</tr>
<tr>
<td>C2H2 2692 KAPLAN,68</td>
<td>3517 BATES,68</td>
<td>2875 Wollan,31</td>
<td></td>
</tr>
<tr>
<td>C H4 1688 DALGARN0,92</td>
<td>3517 BATES,68</td>
<td>2875 Wollan,31</td>
<td></td>
</tr>
<tr>
<td>RELATIVE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HE 2631 BYRON,67</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KR 2645 KRAUSE,67</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DISSOCIATION</td>
<td>EXPERIMENTAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NORMALIZED</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H2 2477 BEYER,67</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O2 1280 METZGER,64</td>
<td>1797 GOLDSTEIN,66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2364 MatsuNAGA,67</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H2O 2477 BEYER,67</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H 1701 KHAYBURN,65</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C H3 1313 KLEY,65</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RELATIVE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H2 0772 BEYER,64</td>
<td>2866 BERKOMITZ,67</td>
<td>2727 DIBELER,67</td>
<td></td>
</tr>
<tr>
<td>O2 0772 BEYER,64</td>
<td>2727 DIBELER,67</td>
<td>2727 DIBELER,67</td>
<td></td>
</tr>
<tr>
<td>Normalized</td>
<td>Relative</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O₂</td>
<td>2943 COMES, 68</td>
<td>3250 FROST, 68</td>
<td></td>
</tr>
<tr>
<td>N₂</td>
<td>3682 SAMSON, 59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C₂H₂</td>
<td>2342 SCHOEN, 62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C₂H₆</td>
<td>2342 SCHOEN, 62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N₂O</td>
<td>2678 WEISSLER, 59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C₂H₄</td>
<td>2678 WEISSLER, 59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H₂O</td>
<td>2678 WEISSLER, 59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H₂</td>
<td>2678 WEISSLER, 59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C₂H₂O</td>
<td>1604 BOTTER, 66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N₂O₂</td>
<td>2678 WEISSLER, 59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C₂O</td>
<td>2678 WEISSLER, 59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H₂Cl</td>
<td>2337 MORRISON, 60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C₂H₄Cl</td>
<td>3640 KRAUSS, 68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C₂H₄N</td>
<td>1357 DIBELER, 65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I₂</td>
<td>2337 MORRISON, 60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C₂H₄O</td>
<td>1609 BRENH, 66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N₂O₂</td>
<td>2678 WEISSLER, 59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C₂H₄Cl</td>
<td>2219 DIBELER, 65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C₂H₄N₂</td>
<td>3911 DIBELER, 67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C₂H₅</td>
<td>3251 DIBELER, 68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C₂H₅F</td>
<td>3640 KRAUSS, 68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C₂H₅O</td>
<td>1357 DIBELER, 65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C₂H₅Cl</td>
<td>3866 BERKOWITZ, 69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C₂H₅N</td>
<td>1357 DIBELER, 65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C₂H₅Cl₂</td>
<td>3866 BERKOWITZ, 69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C₂H₅F2</td>
<td>1979 BERKOWITZ, 66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C₂H₆</td>
<td>3111 DIBELER, 67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C₂H₆O</td>
<td>3111 DIBELER, 67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C₂H₆N</td>
<td>3111 DIBELER, 67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C₂H₆O₂</td>
<td>3111 DIBELER, 67</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
III. BIBLIOGRAPHIC REFERENCES
Page Intentionally Left Blank
Page Intentionally Left Blank
BIBLIOGRAPHIC REFERENCES

36 BRANScOMB L, BURCH D S, SMITH S J, GELTMAN S
PHOTODETACHMENT CROSS SECTION AND THE ELECTRON AFFINITY OF ATOMIC OXYGEN
PHYS REV, VOL 112, 171, (1958)

237 FROST D G, MCDOWELL C A
THE DETERMINATION OF IONIZATION AND DISSOCIATION POTENTIALS OF MOLECULES BY RADIATION WITH ELECTRONS
FINAL REPORT, UNIVERSITY OF BRITISH COLUMBIA, DEPT. OF CHEMISTRY, AFCRL-TR-60-423, AD-247 419, 1966, 34 PAGES

247 YAMAMOUCHI T
RADIATIVE DETACHMENT AND ATTACHMENT OF NEGATIVE OXYGEN ION
PROC PHYS MATH SOC JAPAN, VOL 22, 569, (1940)

388 KUYATT C E, SIMPSON J A
INELASTIC ELECTRON SCATTERING FROM RARE GASES. DETERMINATION OF OSCILLATOR STRENGTHS IN THE CONTINUUM OF ATOMIC COLLISION PROCESSES, M C MCDOWELL, EDITOR, NORTH-HOLLAND PUBLISHING COMPANY, AMSTERDAM, PAGE 193, (1964), PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON THE PHYSICS OF ELECTRONIC AND ATOMIC COLLISIONS (LONDON, 22-26 JULY 1963)

371 GELTMAN S
THE BOUND-FREE ABSORPTION COEFFICIENT OF THE HYDROGEN NEGATIVE ION
ASTROPHYS J, VOL 159, 925, (1962)

399 KLEIN M M, BRUECKNER K A
INTERACTION OF SLOW ELECTRONS WITH ATOMIC OXYGEN AND ATOMIC NITROGEN
PHYS REV, VOL 111, 1115, (1956)

468 BURCH D S, SMITH S J, BRANScOMB L
PHOTODETACHMENT OF O(2)−
PHYS REV, VOL 112, 171, (1958)

496 BOECKNER C, MOHLER F L
PHOTO-IONIZATION OF CAESIUM VAPOR BY ABSORPTION BETWEEN THE SERIES LINES
J RES NATL BUR STD, VOL 5, 331, (1930)

588 WEISSLER G L, LEE P, MOMB E I
ABSOLUTE ABSORPTION COEFFICIENTS OF NITROGEN IN THE VACUUM ULTRAVIOLET
J OPT SOC AM, VOL 42, 84, (1952)

584 WEISSLER G L, LEE P
ABSORPTION COEFFICIENTS OF OXYGEN IN THE VACUUM ULTRAVIOLET
J OPT SOC AM, VOL 42, 266, (1952)

593 AXELROD N H, GIVENS H P
ABSORPTION BY GASEOUS HELIUM IN THE EXTREME ULTRAVIOLET
PHYS REV, VOL 119, 97, (1959)

528 COMES F J, ELZER A
PHOTOIONIZATION OF ATOMIC NITROGEN
PHYS LETTERS, VOL 25A, 331-335, (1967)

591 OHMURA T, OHMURA H
ELECTRON-HYDROGEN SCATTERING AT LOW ENERGIES
PHYS REV, VOL 118, 154, (1960)

575 SIMPSON J A R
OBSERVED AND PREDICTED NEW AUTOIONIZED ENERGY LEVELS IN KRYPTON, ARSEN, AND KERON
PHYS REV, VOL 132, 2122, (1963)

577 SCHNOPPER H W
MULTIPLE EXCITATION AND IONIZATION OF INNER ATOMIC SHELLS BY X RAYS
PHYS REV, VOL 131, 2558, (1963)

576 NORMAN G E
PHOTOIONIZATION CROSS SECTIONS OF THE LOWER EXCITED STATES AND OSCILLATOR STRENGTHS OF CERTAIN LINES OF CARBON AND NITROGEN ATOMS
OPT SPECRY USSR ENGLISH TRANSL, VOL 14, 315, (1963)

542 BLAKE A J, CARVER J H
DETERMINATION OF PARTIAL PHOTOIONIZATION CROSS SECTIONS BY PHOTOELECTRON SPECTROSCOPY
J CHEM PHYS, VOL 47, 1036-1044, (1967)

548 HENRY R J W
ELASTIC SCATTERING FROM ATOMIC OXYGEN AND PHOTODETACHMENT FROM O−
PHYS REV, VOL 162, 56-63, (1967)

999 SEMAN M L, BRANScOMB L
STRUCTURE AND PHOTODETACHMENT SPECTRUM OF THE ATOMIC CARBON NEGATIVE ION
PHYS REV, VOL 125, 1602, (1962)

609 THOMPSON R J, DUNCAN A B F
INTENSITIES OF ELECTRONIC TRANSITIONS IN AMMONIA
J CHEM PHYS, VOL 14, 573-577, (1946)

617 TANNENBAUM E, COFFIN E H, HARRISON A J
THE FAR ULTRAVIOLET ABSORPTION SPECTRA OF SIMPLE ALKYL AMINES
J CHEM PHYS, VOL 21, 311-316, (1953)

622 WATANABE K, SAKAI M, MÖLL T R, NAKAYAMA T
ABSORPTION CROSS SECTION OF O2, N2, AND N2 O WITH AN IMPROVED PHOTOELECTRON METHOD
CONTRIBUTION NO. 11, HAWAII INSTITUTE OF GEOPHYSICS, HONOLULU, HAWAII, 1958, 39 PAGES
ABSORPTION COEFFICIENTS OF NITROGEN IN THE REGION 850 TO 1000 Å
CONTRIBUTION NO. 29, HAWAII INSTITUTE OF GEOPHYSICS, HONOLULU, HAWAII, 1961, 65 PAGES

ABSORPTION COEFFICIENTS OF O2 IN THE VACUUM ULTRAVIOLET
CONTRIBUTION NO. 33, HAWAII INSTITUTE OF GEOPHYSICS, HONOLULU, HAWAII, 1961, 20 PAGES

CONTINUOUS PHOTOELECTRIC ABSORPTION CROSS SECTION OF HELIUM
PHYS REV, VOL 124, 1471, (1961)

PHOTODETACHMENT FROM C-
PROCEEDINGS OF THE SIXTH INTERNATIONAL CONFERENCE ON IONIZATION
PHENOMENA IN GASES (PARIS, 8-13 JULY 1963) P HUBERT AND
E CHERIQU-ALCAN, EDITORS, SERMA, PARIS, PARIS, VOL 1, 139, 1963

PHOTODETACHMENT OF LIGHT FROM ATOMIC HYDROGEN
PHYS REV, VOL 162, 29, (1967)

IMPROVED PHOTIONIZATION AND ABSORPTION SPECTRA OF SEVERAL GASES IN
THE 650-1000 ANGSTROM REGION
PROCEEDINGS OF THE SIXTH INTERNATIONAL CONFERENCE ON IONIZATION
PHENOMENA IN GASES (PARIS, 8-13 JULY 1963) P HUBERT AND
E CHERIQU-ALCAN, EDITORS, SERMA, PARIS, PARIS, VOL 1, 149, 1963

THE PHOTODETACHMENT OF ATOMIC OXYGEN
PLANETARY SPACE SCI, VOL 12, 235, (1964)

HELIUM AND ARGON EMISSION CONTINUUM AND THEIR USE IN ABSORPTION
CROSS-SECTION MEASUREMENTS IN THE VACUUM ULTRAVIOLET
PROCEEDINGS OF THE SIXTH INTERNATIONAL CONFERENCE ON IONIZATION
PHENOMENA IN GASES (PARIS, 8-13 JULY 1963) P HUBERT AND
E CHERIQU-ALCAN, EDITORS, SERMA, PARIS, PARIS, VOL 1, 149, 1963

ON THE ABSORPTION OF X-RAYS
SCI REP NATL TSING HUA UNIV SER A, VOL 4, 398-418, (1947)

PHOTODETACHMENTEN VON H2, N2, O2, C0, N0, C02, UND H3
IM EXTREMEN VAKUUM-UV
Z NATURFORSCH, VOL 19A, 19, (1964)

ABSORPTION COEFFICIENTS OF OXYGEN IN THE 1060-580 Å WAVELENGTH
REGION
J CHEM PHYS, VOL 40, 356, (1964)

ELECTRON AFFINITY OF ATOMIC IODINE
J CHEM PHYS, VOL 37, 1200, (1962)

ENERGY DEPENDENCE FOR THE PHOTODETACHMENT OF I- NEAR THRESHOLD
ATOMIC COLLISION PROCESSES, M R C MCDOWELL, EDITOR,
NORTH-HOLLAND PUBLISHING COMPANY, AMSTERDAM, PAGE 537, 1964.
PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON THE PHYSICS OF
ELECTRONIC AND ATOMIC COLLISIONS (LONDON, 22-26 JULY 1963)

THE CALCULATION OF THE PHOTO-IONIZATION CROSS SECTION OF LITHIUM
ATOMIC COLLISION PROCESSES, M R C MCDOWELL, EDITOR,
NORTH-HOLLAND PUBLISHING COMPANY, AMSTERDAM, PAGE 544, 1964.
PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON THE PHYSICS OF
ELECTRONIC AND ATOMIC COLLISIONS (LONDON, 22-26 JULY 1963)

EFFECT OF TEMPERATURE ON THE ABSORPTION SPECTRUM OF OZONE.
CHAPPUSI BANDS
J CHEM PHYS, VOL 16, 1163-1164, (1948)

ABSORPTION CROSS SECTIONS OF ARGON AND METHANE BETWEEN 600 AND 170
ANGSTROM UNITS
J OPT SOC AM, VOL 54, 444, (1964)

FINAL-STATE EFFECTS IN ATOMIC PROCESSES. PHOTODETACHMENT
PHYS REV, VOL 135, A75, (1964)

MESUNG VON ANWEGZUSSTAN ZEN DES STICKSTOFFMOLEKULS MIT HILFE DER
PHOTOIONISATION

ON THE CONTINUOUS ABSORPTION COEFFICIENT OF THE NEGATIVE HYDROGEN
ION. IV.
ASTROPHYS J, VOL 128, 114, (1958)

PHOTIONIZATION AND ABSORPTION CROSS SECTIONS OF O2 AND N2 IN THE
600- TO 1000- ANGSTROM REGION
J CHEM PHYS, VOL 41, 371, (1964)
925 Cooper J W
PHOTOIONIZATION FROM OUTER ATOMIC SUBSHELLS. A MODEL STUDY.
PHYS REV, VOL 126, 681, (1962)

926 CONES F J, ELZER A
PHOTOIONIZATION FROM OUTER ATOMIC SUBSHELLS. A MODEL STUDY.
PHYS REV, VOL 128, 681, (1962)

933 CONES F J, LESSMANN W
DIE PHOTOIONISATION DES WASSERSTOFFMOLEKULS
Z NATURFORSCH, VOL 19a, 594, (1964)

931 CONES F J, LESSMANN W
IONEBILDUNG IM STICKSTOFF
Z NATURFORSCH, VOL 19a, 65, (1964)

949 BERRY R S, REINHARD C W
ABSORPTION SPECTRUM OF GASSENS F- AND ELECTRON AFFINITIES OF THE
HALOGEN ATOMS:
J CHEM PHYS, VOL 30, 1540, (1963)

979 SMITH S J, BRANSCOMB L
ATOMIC NEGATIVE-ION-PHOTODETACHMENT CROSS-SECTION AND AFFINITY
MEASUREMENTS
J RES NATL BUR STD, VOL 59, 165, (1955)

993 SANSON J A R
EXPERIMENTAL PHOTOIONIZATION CROSS SECTIONS IN ARGON FROM THRESHOLD
TO 260 ANGSTROMS
J OPT SOC AM, VOL 94, 420, (1964)

1008 BRANSCOMB L
THE RADIATIVE FORMATION AND DESTRUCTION OF NEGATIVE IONS
PHYS REV, VOL 128, 681, (1962)

1012 NAKATA R S, WATANABE K, MATSUNAGA F M
ABSORPTION AND PHOTOIONIZATION COEFFICIENTS OF CO2 IN
THE REGION 580-1670 ANGSTROMS
SCI LIGHT, VOL 19, 54, (1962)

1057 COOPER J W, MARTIN J B
ELECTRON PHOTODETACHMENT FROM IONS AND ELASTIC COLLISION CROSS
SECTIONS FOR O2, CO, NO, AND F
PHYS REV, VOL 116, 1482, (1962)

1060 ASTOIN N
SPECTROGRAPHIE DANS L'ULTRAVIOLET EXTREME ABSORPTION DE
H2O, N2O, H2O ET O3 (GAZEUX)
J RECH CENTRE NATL RECH SCI, VOL 38, 1-22, (1962)

1101 MOSKVIN Yu V
ANALYTICAL WAVE FUNCTIONS AND PHOTOIONIZATION CROSS SECTIONS OF
NEGATIVE IONS HAVING AN OUTER 2P ELECTRON SHELL
OPT SPECTRUM USSR.ENGLISH TRANSL, VOL 17, 270, (1964)

1131 HEILPERN W
DIE ABSORPTION DES LICHTES DURCH SAUERSTOFF IM
WELLENLÄNGENBEREICH LAMBDA = 2100 BIS LAMBDA = 2400
ANGSTROMS E IN ABHANGIGKEIT VOM DRUCK
HELV PHYS ACTA, VOL 19, 215-265, (1946)

1142 ASTOIN N, GRANIER J
SUR LE SPECTRE D'ABSORPTION DE H2O DANS L'ULTRAVIOLET EXTREME
COMPT REND, VOL 241, 1736, (1955)

1143 ASTOIN N
SUR LE SPECTRE D'ABSORPTION DE LA VAPEUR D'EAU 'ET D'EAU LOURDE DANS
L' ULTRAVIOLET EXTREME
COMPT REND, VOL 242, 2327, (1956)

1147 WATANABE K, JURSA A S
ABSORPTION AND PHOTOIONIZATION CROSS SECTIONS OF H2O AND H2S
J CHEM PHYS, VOL 41, 1958, (1964)

1149 COOK G R, METZGER P H
PHOTOIONIZATION AND ABSORPTION CROSS SECTIONS OF N2 AND O2 IN THE
VACUUM ULTRAVIOLET REGION
J OPT SOC AM, VOL 54, 680, (1964)

1166 JEN C K
THE CONTINUOUS ELECTRON AFFINITY SPECTRUM OF HYDROGEN
PHYS REV, VOL 43, 546, (1933)

1172 METZGER P H, COOK G R
ON THE CONTINUOUS ABSORPTION, PHOTIONIZATION, AND fluorescence OF
H2O, N2, NO, CO, CO2, C2H4, C2H6, AND C2H8 IN THE 600-TO-1000 ANGSTROM
REGION
J CHEM PHYS, VOL 41, 647, (1964)

1177 SCHOEN R I
RETARDING POTENTIAL MEASUREMENTS OF ELECTRONS PHOTOEMITTED BY N2,
CO, AND O2
J CHEM PHYS, VOL 40, 1830, (1964)

1179 EDERER D L
PHOTOIONIZATION OF THE 4D ELECTRONS IN XENON
PHYS REV LETTERS, VOL 13, 756, (1964)

1187 SANSON J A R, CAIRNS R B
ABSORPTION AND PHOTOIONIZATION CROSS SECTIONS OF O2 AND N2 AT
INTENSE SOLAR EMISSION LINES
J GEOPHYS RES, VOL 69, 4583, (1964)
1188 Samson J A R
Photoionization Cross Sections of Helium
J Opt Soc Am, Vol 54, 876, (1964)

1189 Samson J A R
Photoionization Cross Sections of Xenon from the 2p1/2 Edge to 280 Angstroms
J Opt Soc Am, Vol 54, 842, (1964)

1193 Bates D R
The Quantal Calculation of the Photo-ionization Cross-section of Atomic Potassium

1203 Tietz T

1211 Johnston R R
Nonrelativistic High-energy Photoionization Cross Section

1218 Seaton M J
A Comparison of Theory and Experiment for Photo-ionization Cross-sections, I. Neon and the Elements from Boron to Neon

1219 Seaton M J
The Continuous Radiative Absorption Cross-section of Singly Ionized Potassium

1220 Zelikoff M, Watanabe K, Yee C Y
Absorption Coefficients of Gases in the Vacuum Ultraviolet. Part II. Nitrous Oxide

1221 Stewart A L, Wilkinson W J
Photoionization of Helium

1222 Smith S J, Burdich D S
Relative Measurement of Photodetachment Cross Section for H-

1223 Smith S J, Burdich D S
Photodetachment Cross Section of the Negative Hydrogen Ion

1225 Marr G V
A Note on the Absorption of Light by Indium vapour

1226 Lee P, Weissler G L
The Photo-ionization Cross-section of Neon

1227 Heinrich L R
The Continuous Absorption Coefficient of the Negative Hydrogen Ion

1228 Ditchburn R W, Tunstead J, Yates J G
The Continuous Absorption of Light in Potassium Vapour

1229 Zelikoff M, Watanabe K
Absorption Coefficients of Ethylene in the Vacuum Ultraviolet

1232 Curtis J P
Absorption Coefficients of Air and Nitrogen for the Extreme Ultraviolet

1234 Mainman W, Weissler G L, Walker W C
Photoionization Efficiencies and Cross Sections in O2, N2, C O2, Ar, H2O, H2, and C H4

1235 Lee P, Weissler G L
Absorption Cross Section of Helium and Argon in the Extreme Ultraviolet

1236 Bates D R
An Approximate Formula for the Continuous Radiative Absorption Cross-section of the Lighter Neutral Atoms and Positive and Negative Ions

1238 Mohler F L, Fodde P D, Chenaught R L
Photo-ionization and Relative Absorption Probabilities of Caesium Vapor
Phys Rev, Vol 27, 37, (1926)

1241 Mohler F L, Boeckner C, Stair R, Coblenz M W
Photoionization of Caesium Vapor
Science, Vol 69, 479, (1929)

1242 Braddock H J J, Ditchburn R W
Continuous Absorption of Light in Caesium Vapour
<table>
<thead>
<tr>
<th>Page</th>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1243</td>
<td>Chamraserhar S</td>
<td>On the Continuous Absorption Coefficient of the Negative Hydrogen Ion. II.</td>
</tr>
<tr>
<td>1245</td>
<td>Sun H, Weissler G L</td>
<td>Absorption Cross Sections of Carbon Dioxide and Carbon Monoxide in the Vacuum Ultraviolet</td>
</tr>
</tbody>
</table>
1355 Metzger P H, Cook G R
Flux distribution of the Hopfield helium continuum from the photoionization of Ar, Kr, and Xe

1357 Dibelius V H, Krauss M, Reese R M, Harlee F N
Mass-spectrometric study of photoionization. III. Methane and methane-DA

1359 Cairns R B, Samson J A R
Absorption and photoionization cross sections of CO, C O, Ar, and He at intense solar emission lines

1360 Matsunaga F M, Natanabe K, Jackson R S
Photoionization yield and absorption coefficient of xenon in the region of 860-1023 Angstroms

1365 Vigroux E
Absorption de l'ozone dans le spectre visible
Compt Rend, Vol 255, 149-150, (1962)

1369 Ny T, Choong S
L'absorption de la lumière par l'ozone entre 3050 et 2150 Angstroms
Compt Rend, Vol 196, 916-918, (1933)

1370 Vigroux E
Absorption de l'ozone dans le domaine spectral situé au-dessous de 3130 Angstroms
Compt Rend, Vol 254, 2592-2594, (1962)

1371 Romano J, Granier-Mayence J
Effet de température sur le spectre d'absorption de l'oxyde azoteux gazeux entre 2100 et 1000 Angstroms
Compt Rend, Vol 234, 824-825, (1952)

1377 Bött J
Über das Grenzkontinuum der Matrium-Hauptserie
Ann Physik, Vol 35, 314, (1939)

1380 Cooke F W
Ionization of caesium vapor by light
Phys Rev, Vol 36, 1351, (1931)

1384 Chandrasekhar S, Elbept O O
On the continuous absorption coefficient of the negative hydrogen ion. V.

1385 Chandrasekhar S
On the continuous absorption coefficient of the negative hydrogen ion

1386 Branscomb L, Smith S J
Experimental cross section for photodetachment of electrons from H- and O-

1392 John T L
Exchange effects on the photodetachment cross-section of H-

1393 Romano J, Vodar B
Spectre d'absorption de l'acide chlorhydrique gazeux dans la région de Schumann
Compt Rend, Vol 226, 238-240, (1948)

1394 Hudson R D
Measurements of the molecular absorption cross section and the photoionization of sodium vapor between 1690 and 3700 Angstroms

1395 Cooke G R, Ching B K
Photionization and absorption cross sections and fluorescence of CO-

1404 Cairns R B, Samson J A R
Total absorption cross section of atomic oxygen below 910 Angstroms

1405 Hudson R O, Carter V L
Absorption of light by potassium vapor between 2856 and 1150 Angstroms

1408 Vigroux E
Absorption de l'ozone dans le spectre visible
Compt Rend, Vol 227, 277-278, (1948)

1545 Burke P G, Movician D D
Resonances in E- /He+ scattering and the photoionization of He

1561 Samson J A R, Cairns R B
Total absorption cross sections of H2, N2, and O2 in the region 950-200 Angstroms
<table>
<thead>
<tr>
<th>Reference</th>
<th>Authors</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1701</td>
<td>Ditchburn R W</td>
<td>Absorption cross-sections in the vacuum ultra-violet. III. Methane</td>
</tr>
<tr>
<td>1702</td>
<td>Cairns R B, Samson J A R</td>
<td>Total absorption cross sections of C O and C O 2 in the region 550-720 Angstroms</td>
</tr>
<tr>
<td>1707</td>
<td>Lapp M, Harris L P</td>
<td>Absorption cross sections of alkali-vapor molecules - I. Cs 2 in the visible. II. K 2 in the red</td>
</tr>
<tr>
<td>1711</td>
<td>Cook G R, Metzger P H, Ogawa M</td>
<td>Absorption, photoionization and fluorescence of C O 2</td>
</tr>
<tr>
<td>1715</td>
<td>Ditchburn R W, Meddle D W O</td>
<td>Continuous absorption of oxygen (1800 - 1300 Angstroms)</td>
</tr>
<tr>
<td>1717</td>
<td>Ditchburn R W, Hudson R D</td>
<td>The absorption of light by calcium vapor (2100 to 1080 Angstroms)</td>
</tr>
<tr>
<td>1719</td>
<td>Ditchburn R W, Jutsum P J</td>
<td>Continuous absorption of light in sodium vapor</td>
</tr>
<tr>
<td>1731</td>
<td>Blake A J, Carver J H</td>
<td>Partial photoionization cross sections for molecular oxygen</td>
</tr>
<tr>
<td>1732</td>
<td>Beynon J D E, Cairns R B</td>
<td>An experimental determination of the photoabsorption cross section of atomic hydrogen</td>
</tr>
<tr>
<td>1733</td>
<td>Breene R G</td>
<td>Photoionization calculations for atoms and ions with 1s, 2s and 2p electrons</td>
</tr>
<tr>
<td>1739</td>
<td>Ditchburn R W, Jutsum P J, Harr G V</td>
<td>The continuous absorption of light in alkali-metal vapours</td>
</tr>
<tr>
<td>1740</td>
<td>Ditchburn R W, Harr G V</td>
<td>The continuous absorption of light in magnesium vapour</td>
</tr>
<tr>
<td>1749</td>
<td>Ditchburn R W, Young P A</td>
<td>The absorption of molecular oxygen between 1850 and 2500 Angstroms</td>
</tr>
<tr>
<td>1754</td>
<td>Patch R W</td>
<td>Absolute intensity measurements for the 2.7 mu band of water vapor in a shock tube</td>
</tr>
<tr>
<td>1755</td>
<td>Ederer D L, Tomboulian D H</td>
<td>Photoionization cross section of neon in the 80 to 600 Angstrom region</td>
</tr>
<tr>
<td>1756</td>
<td>Ehler A W, Weissler G L</td>
<td>Absorption cross sections of H 2 between 550 and 833 Angstroms</td>
</tr>
<tr>
<td>1759</td>
<td>Wilkinson P G, Johnston H L</td>
<td>The absorption spectra of methane, carbon dioxide, water vapor, and ethylene in the vacuum ultraviolet</td>
</tr>
<tr>
<td>1769</td>
<td>Ederer D L, Tomboulian D H</td>
<td>Photoionization cross section of neon in the 80 to 600 Angstrom region</td>
</tr>
<tr>
<td>1774</td>
<td>Oughtt R A, Fraser P A, Nechainaran R P</td>
<td>The bound-free absorption coefficient of the negative hydrogen 20m</td>
</tr>
<tr>
<td>1797</td>
<td>Goldstein R, Mastrup F N</td>
<td>Absorption coefficients of the O 2 schumann-runge continuum from 1270 to 1745 Angstroms using a new continuum source</td>
</tr>
<tr>
<td>1798</td>
<td>Samson J A R, Cairns R B</td>
<td>Ionization potential of O 2</td>
</tr>
</tbody>
</table>

20
2309 John T L
The photo-detachment of H-

2309 Jutsun P J
The continuous absorption of light in calcium vapour

2309 Kunz J
The ionization of caesium vapour by ultra-violet light
Phil Mag, Vol 17, 483, (1934)

2309 Ladenburg R, van Voorhis C C
Continuous absorption of oxygen between 1750 and 1380A and its bearing upon the dispersion

2309 Ladenburg R, van Voorhis C C, Boyce J C
Absorption of oxygen in the region of short wave-lengths

2309 Lawrence E O
The photoelectric effect in potassium vapour as a function of the frequency of the light
Phil Mag, Vol 50, 345, (1929)

2309 Lawrence E O, Edlefsen N E
The photo-ionization of the vapors of caesium and rubidium

2309 Lee P
Photodissociation and photoionization of oxygen (O2) as inferred from measured absorption coefficients

2309 Lee P, Neissler G L
Absolute absorption of the H2 continuum
Astrophys J, Vol 115, 570, (1952)

2309 Little E H
Ionization efficiency of ultraviolet light in caesium vapor

2309 Schoen R I
Absorption, ionization, and ion-fragmentation cross sections of hydrocarbon vapors under vacuum-ultraviolet radiation

2309 Praderie F
Calcul de quelques sections de photoionisation du carbone neutre

2309 Massey H S W, Bates D R
The continuous absorption of light by negative hydrogen ions
Astrophys J, Vol 95, 202, (1942)

2309 Mitchell H E
The absorption coefficient of the negative hydrogen ion

2309 Moé G, Duncan A B F
Intensities of electronic transitions of acetylene in the vacuum ultraviolet

2309 Moé G, Duncan A B F
Intensity of electronic transitions of methane and carbon tetrafluoride in the vacuum ultraviolet

2309 Morrison J D, Huzieler H, Ingram M G, Stanton H E
Threshold law for the probability of excitation of molecules by photon impact. A study of the photoionization efficiencies of Br2, I2, H I, and C III

2309 Moskvin Yu V
Photoionization of atoms and recombination of ions in the vapors of alkali metals
Opt Spectr USSR English Transl, Vol 15, 316, (1963)

2309 Bunch S H, Cook G R, Ogawa M, Ehler A W
Absorption coefficients of CaMg and Hz in the vacuum ultraviolet

2309 Rich J C
Continuous ultraviolet absorption by neutral silicon

2309 Cooling K, Madden R P, Ederer D L
Resonances in the photo-ionization continuum of Ne I (20-150 ev)

2309 Bell K L, Kingston A E
The bound-free absorption coefficient of the negative hydrogen ion
TOTAL AND PHOTOIONIZATION COEFFICIENTS AND DISSOCIATION CONTINUA OF O2 IN THE 740-1870 ANGSTROM REGION
SCI. LIGHT, VOL 16, 31-42, (1967)

PHOTO-IONIZATION EFFICIENCY CURVES. MEASUREMENT OF IONIZATION POTENTIALS AND INTERPRETATION OF FINE STRUCTURE
J. CHEM. PHYS., VOL 39, 954, (1963)

PHOTOIONIZATION-EFFICIENCY CURVES. II. FALSE AND GENUINE STRUCTURE
J. CHEM. PHYS., VOL 43, 1171, (1965)

ABSORPTION COEFFICIENTS OF O3 IN THE VACUUM ULTRAVIOLET REGION
J. CHEM. PHYS., VOL 28, 173, (1958)

PHOTOIONIZATION PROBABILITIES OF ATOMIC POTASSIUM
PHYS. REV., VOL 39, 985, (1932)

CALCUL DE QUELQUES SECTIONS DE PHOTOIONISATION DU CARBONE NEUTRE
COMPT. REND., VOL 258, 2753, (1964)

ABSORPTION AND PHOTOIONIZATION COEFFICIENTS OF ACETYLENE, PROPYNE, AND 1-BUTYNE
J. CHEM. PHYS., VOL 40, 558, (1964)

SPECTROSCOPIC STUDY OF MOLECULAR HYDROGEN ABOVE ITS FIRST IONIZATION POTENTIAL
PHYS. REV. LETTERS, VOL 13, 762, (1964)

INTERACTION OF MAXIMA IN THE ABSORPTION OF SOFT X RAYS
PHYS. REV. LETTERS, VOL 2, 947, (1963)

ABSORPTION COEFFICIENTS OF KRYPTON IN THE 680 TO 886 ANGSTROM WAVELENGTH REGION
APPL. OPT., VOL 2, 947, (1963)

ABSORPTION COEFFICIENTS OF KRYPTON AND ARGON IN THE 680-1025 ANGSTROM WAVELENGTH REGIONS
J. CHEM. PHYS., VOL 39, 982, (1963)

ABSORPTION CROSS SECTION OF THE NEON ABSORPTION CONTINUUM
J. OPT. SOC. AM., VOL 42, 214, (1952)

PHOTOIONIZATION CROSS SECTION MEASUREMENTS ON LITHIUM
PROC. PHYS. SOC. LONDON, VOL 81, 9, (1963)

SUR LE SPECTRE D'ABSORPTION DE L'OXYDE AZOTIQUE DANS L'ULTRAVIOLET EXTREME
COMPT. REND., VOL 242, 1431, (1956)
2625 Davydovits P, Brodhead D C
ULTRAVIOLET ABSORPTION CROSS SECTIONS FOR THE ALKALI HALIDE VAPORS
J CHEM PHYS, VOL 46, 2968, (1967)

2631 Byron F W, Joachain C J
MULTIPLE IONIZATION PROCESSES IN HELIUM
PHYS LETTERS, VOL 26A, 616, (1967)

2633 Inn E C Y, Tanaka Y
ABSORPTION COEFFICIENT OF OZONE IN THE ULTRAVIOLET AND VISIBLE REGIONS
J OPT SOC AM, VOL 43, 870, (1953)

2635 Kelm S, Schulter D
MESSUNG ZWEIER SERIENGRENZKONTINUA DES CALCIUMS
Z ASTROPHYS, VOL 90, 76, (1962)

2636 Golomb O, Watanabe K, Manco F F
ABSORPTION COEFFICIENTS OF SULFUR DIOXIDE IN THE VACUUM ULTRAVIOLET
J CHEM PHYS, VOL 36, 958, (1962)

2637 Wannack P, Manco F F, Sullivan J O
ULTRAVIOLET ABSORPTION OF S O2. DISSOCIATION ENERGIES OF S O 2 AND S O
J CHEM PHYS, VOL 44, 1132, (1964)

2638 Watanabe K, Inn E C Y, Zelikoff M
ABSORPTION COEFFICIENTS OF GASES IN THE VACUUM ULTRAVIOLET
J CHEM PHYS, VOL 29, 1964, (1952)

2639 Comes F J, Lessmann W
NEUE ANREGENGÜNSTANDE DES ARGONS OBERHALB DER IONIZATIONSGRENZE DUBLET P 3/2
Z NATURFORSCH, VOL 16A, 196, (1961)

2641 Watanabe K, Matsunaga F M, Sakai H
ABSORPTION COEFFICIENT AND PHOTOIONIZATION YIELD OF N O IN THE REGION 540-1350 ANGSTROMS
APPL OPT, VOL 6, 391, (1967)

2644 Popp H P
QUANTITATIVE AUSMESSUNG DES FLUOR-AFFINITATSKONTINUUMS Z NATURFORSCH, VOL 22A, 254, (1967)

2645 Krause H D, Carlson T A
VACANCY CASCADE IN THE REORGANIZATION OF KRYPTON IONIZED IN AN INNER SHELL
PHYS REV, VOL 158, 18, (1967)

2649 Peach G
A REVISED GENERAL FORMULA FOR THE CALCULATION OF ATOMIC PHOTOIONIZATION CROSS SECTIONS
MEN ROY ASTRON SOC, VOL 71, 13, (1967)

2652 Peach G
CONTINUOUS ABSORPTION COEFFICIENTS FOR NON-HYDROGENIC ATOMS
MONTHLY Notices ROY ASTRON SOC, VOL 124, 371, (1962)

2654 Matsunaga F M, Watanabe K
IONIZATION POTENTIAL AND ABSORPTION COEFFICIENT OF C O S
J CHEM PHYS, VOL 46, 4457, (1967)

2663 Zimkina T M, Fomichev V A
THE ABSORPTION SPECTRUM OF SULFUR HEXAFLUORIDE IN THE VERY SOFT X-RAY REGION
SOVIET PHYS DOKLADY ENGLISH TRANSL, VOL 11, 726, (1967)

2669 Boyd A H
THE PHOTOIONIZATION OF SODIUM
PLANETARY SPACE SCI, VOL 13, 729, (1964)

2666 Bradlick H J, Ritchburn R W
THE ABSORPTION OF LIGHT IN CAESIUM VAPOUR IN THE PRESENCE OF HELIUM
PROC ROY SOC LONDON SER A, VOL 150, 478, (1935)

2667 Smith S J
PHOTODETACHMENT CROSS SECTION FOR THE NEGATIVE ION OF ATOMIC OXYGEN
(IN) PROCEEDINGS OF THE FOURTH INTERNATIONAL CONFERENCE ON IONIZATION PHENOMENA IN GASES (UPPSALA, SWEDEN, 17-21 AUG 1959)
H ROBERT NILSSON, EDITOR, NORTH-HOLLAND PUBLISHING COMPANY, AMSTERDAM, VOL 1, 219, 1960

2668 Tanaka Y, Inn E C Y, Watanabe K
ABSORPTION COEFFICIENTS OF GASES IN THE VACUUM ULTRAVIOLET. PART IV. OZONE
J CHEM PHYS, VOL 21, 1651, (1953)

2669 Tunstead J
PHOTOLECTRIC ABSORPTION IN LITHIUM VAPOUR
PROC PHYS SOC LONDON A, VOL 66, 364, (1953)

2670 Vainshtein L A, Norman G E
CALCULATION OF PHOTOIONIZATION CROSS SECTIONS OF ALUMINUM AND GALLIUM ATOMS
OPT SPECTRY USSR ENGLISH TRANSL, VOL 8, 79, (1962)

2671 Walker W C, Weissler G L
PHOTOIONIZATION EFFICIENCIES AND CROSS SECTIONS IN H H3
J CHEM PHYS, VOL 23, 1940, (1955)

26

2702 VIGROUX E
ABSORPTION DE L'OZONE A 18 DEGREES AU-DESSOUS DE 3130 ANGSTROMS
COMPT REND, VOL 234, 2529, (1952)

2703 LUKIRSKII A P, ZIMKINA T M
MASS ABSORPTION COEFFICIENTS OF ARGON AND ETHYL ALCOHOL
in the ultraviolet x-ray region
Bull Acad Sci USSR Phys Ser Engl Transl, Vol 27, 808, (1963)

2704 BAKER J D, TOMBOULIAN D H
PHOTOELECTRIC K-ABSORPTION CROSS SECTION OF LITHIUM
PHYS REV, VOL 128, 677, (1962)

2705 PETERSON T J, MCGUIRE E J,
TOMBOULIAN D H
PHOTOELECTRIC K-ABSORPTION CROSS SECTION OF BERYLLIUM
PHYS REV, VOL 129, 674, (1963)

2707 MOLT R B, MCLANE C K,
OLDENBERG O
ULTRAVIOLET ABSORPTION SPECTRUM OF HYDROGEN PEROXIDE
J CHEM PHYS, VOL 46, 6431-6436, (1967)

2717 NATANABE T
MEASUREMENT OF THE L ABSORPTION SPECTRA OF XENON
PHYS REV, VOL 137, 1380-1392, (1965)

2718 THOMPSON B A, HARTECK P,
REEVES R R
ULTRAVIOLET ABSORPTION COEFFICIENTS OF C O2, CO, O2, H2O,
H2O, N H3, N O, S O2, AND C H4 BETWEEN 1850 AND 4000 A
J GEOPHYS RES, Vol 66, 6431-6436, (1963)

2720 HOOOLE D H
PHOTON-SCATTERING PROCESSES
J QUANT SPECTRY RADIATIVE TRANSFER, VOL 2, 349-357, (1964)

2722 WUILLEUMIER F
MESURE DES COEFFICIENTS D'ABSORPTION DE L'ARGON ET DU NEON
POUR DES RAisons X MOUS
COMPT REND, VOL 257, 855-858, (1963)

2724 JEN C K
THE ABSORPTION COEFFICIENT OF H-
CHINESE J PHYS, VOL 2, 38-42, (1936)

2727 DIMELER V H, WALKER J A
MASS-SPECTROMETRIC STUDY OF PHOTOIONIZATION. VI. O2, C O2,
C O S, AND C S2
J OPT SOC AM, VOL 57, 1007-1012, (1967)

2728 SIEWELL K G
PHOTOIONIZATION OF THE L SHELL OF LITHIUM

2735 ROMANO J
ABSORPTION ULTRAVIOLETTE DANS LA REGION DE SCHUMANN ETUDE
DE LA VAPEUR D'EAU LOURDE
J RECH CENTRE NATL RECH SCI, VOL 6, 205-206, (1956)

2739 SPOHR R, VON PUTTKAMER E
ENERGIEMESSUNG VON PHOTOELEKTRONEN UMD FRANCK-CONDON
FAKTOREN DER SCHWINGUNGSUBERGANGE EINIGER MOLEKULIONEN
Z NATURFORSCH, VOL 22A, 705-710, (1967)

2740 JOHANNIN-GILLES A, ASTOIN N,
VODAR B
DISCUSSION DES SPECTRES D'ABSORPTION DE H2O ET O2O DANS
L'ULTRAVIOLET LOINTAIN
CAHIERS PHYS, VOL 71-72, 49-53, (1956)

2741 ASTOIN N, GRANIER J
SUR LE SPECTRE D'ABSORPTION DE L'AZOTE DANS L'ULTRAVIOLET
EXTEME
COMPT REND, VOL 244, 1350-1353, (1957)

2742 VAINISHEIN L A, YAVORSKY B
ON THE APPROXIMATE CALCULATION OF OSCILLATOR STRENGTHS AND
THE EFFECTIVE CROSS-SECTION FOR PHOTO-IONIZATION
HUFFMAN R E, TANAKA Y, LARRABEE J C
NITROGEN AND OXYGEN ABSORPTION CROSS-SECTIONS IN THE VACUUM ULTRA-VIOLET DISCUSSIONS FARADAY SOC, VOL 37, 159-166, (1964)

KROGDAL M A, MILLER J E

YAKOWITZ B
ABSORPTION AND EMISSION OF CONTINUOUS RADIATION BY LITHIUM IONIZED GAS PROG PHYS SOC LONDON, VOL 92, 100-106, (1967)

WATANABE K, ZELIKOFF M, INN E C Y
ABSORPTION COEFFICIENTS OF SEVERAL ATMOSPHERIC GASES AEROC TECHNICAL REPORT 93-23, AIR FORCE CAMBRIDGE RESEARCH CENTER, 1953, 79 PAGES, AD 19700

HENRY R J W
PHOTOIONIZATION CROSS SECTIONS FOR ATOMIC OXYGEN PLANETARY SPACE SCI, VOL 15, 1747-1759, (1967)

GAIVILA M
ELASTIC SCATTERING OF PHOTONS BY A HYDROGEN ATOM PHYS REV, VOL 163, 147-155, (1967)

LIFSHITZ C, CHUPKA W A
PHOTOIONIZATION OF THE C F3 FREE RADICAL J CHEM PHYS, VOL 47, 3439-3444, (1967)

DE REILMAC L, DANYAS-ASTOIN N
SUR LE SPECTRE D'ABSORPTION DE L'OXYGENE DANS L'ULTRA-VIOLET EXTREME COMPT REND, VOL 258, 519-522, (1964)

HEDDE D W O
SCATTERING OF LIGHT NEAR AN ABSORPTION LINE J OPT SOC AM, VOL 54, 264-269, (1964)

ZERNIK W
INTERACTION OF OPTICAL AND INFRARED RADIATION WITH METASTABLE HYDROGEN ATOMS PHYS REV, VOL 133, A117-120, (1964)

SRÖKA W
EXCITATION OF EXTREME ULTRA-VIOLET RADIATION (GAS-IONIZING RADIATIONS IN OXYGEN BY ELECTRON COLLISIONS PHYS LETTERS, VOL 25A, 770-771, (1967)

BRECKE R G
THE BOUND FREE CONTINUUM FOR C- PLANETARY SPACE SCI, VOL 2, 10-16, (1959)

MACEK J
LOW-ENERGY ELECTRON SCATTERING BY ATOMIC HYDROGEN - V. PHOTODISOCIATION OF H- IN THE VACUUM ULTRA-VIOLET PROC PHYS SOC LONDON, VOL 92, 365-369, (1967)

OKSYUK YU O

LA PAGLIA S R, DUNCAN A B F
VACUUM UV ABSORPTION SPECTRUM AND DIPOLE MOMENT OF HYDROGEN TRIFLUORIDE J CHEM PHYS, VOL 34, 1003-1007, (1961)

CHUPKA W A, BERKONITZ J
PHOTOIONIZATION OF ETHANE, PROPAINE, AND N-BUTANE WITH MASS ANALYSIS J CHEM PHYS, VOL 47, 2921-2933, (1967)

TIETZ T
A CONTINUOUS ABSORPTION COEFFICIENT OF NEGATIVE HYDROGEN AND LITHIUM IONS ACTA PHYS ACAD SCI HUNG, VOL 14, 1-9, (1962)

SRÖKA W
VACUUM UV EMISSION OF OXYGEN (GAS-IONIZING RADIATION OF A CORONA DISCHARGE) PHYS LETTERS, VOL 14, 381-382, (1965)

WAHSMTSEIN L A, YAVORSKY B
PHOTO-IONIZATION OF COMPLEX ATOMS DOKL AKAAD NAUK USSR, VOL 89, 815-816, (1953)

BYRON F W, JOACHAIN C J
MULTIPLE IONIZATION PROCESSES IN HELIUM PHYS REV, VOL 164, 1-9, (1967)

WILLIAMS R A
PHOTOIONIZATION OF POTASSIUM VAPOR J CHEM PHYS, VOL 47, 4281-4281, (1967)

KIM Y K, INOKUTI M
ATOMIC FORM FACTOR AND INCOHERENT-SCATTERING FUNCTION OF THE HELIUM ATOM PHYS REV, VOL 165, 39-43, (1964)

MASON S T, COOPER J W
PHOTOIONIZATION IN THE SOFT X-RAY RANGE - Z DEPENDENCE IN A CENTRAL-POTENTIAL MODEL PHYS REV, VOL 165, 126-138, (1964)
2844 JACOB T A, GIREDT R R
ABSORPTION COEFFICIENTS OF CL₂ AT HIGH TEMPERATURES

2845 MATHESE J J, JOHNSON M R
INFLUENCE OF SCREENING ON THE ATOMIC PHOTOEFFECT
PHYS REV, VOL 140, 1-7, (1965).

2846 FROST D G, MCDOWELL C A, VROOM D A
IONIZATION POTENTIALS OF MERCURY BY PHOTOELECTRON SPECTROMETRY
CHEM PHYS LETTERS, VOL 1, 93-96, (1967).

2847 MCGUIRE E J
THE PHOTOIONIZATION CROSS SECTION OF SOME ATOMIC SYSTEMS
TR-12, LAB OF ATOMIC AND SOLID STATE PHYSICS, CORNELL
UNIVERSITY, ITHACA, N.Y. 1965, AD 623 909, 47 PAGES

2848 VOLKOV B I, GRECHUKHIN D P, KARPUSHKINA E I
TABLES OF PHOTOIONIZATION CROSS SECTIONS OF HYDROGEN ATOM
IAE-873, I V KURCHATOV INSTITUTE OF ATOMIC ENERGY, MOSCOW
USSR, 1965, 252 PAGES

2849 HATONE J, JOHNSON H R
INFLUENCE OF SCREENING ON THE ATOMIC PHOTOEFFECT
PHYS REV, VOL 140, 1-7, (1965).

2850 METZGER P H, COOK G R
PHOTOIONIZATION AND ABSORPTION CROSS SECTIONS AND FLUORESCENCE
OF N₂₀, NO, O₂, AND C₂ IN THE 13 TO 21 EV REGION
AEROSPACE CORPORATION, EL SEGUNDO, CALIFORNIA, 1963, 31 PAGES

2851 HATTABE K, MARMOF F F, INN E C Y
FORMATION OF THE D LAYER
PHYS REV, VOL 90, 159-156, (1953)

2852 DALGARNO A, LYNN N
PROPERTIES OF THE HELIUM ATOM
PROC PHYS SOC LONDON A, VOL 70, 802-806, (1957)

2853 OKABE H, LENZI H
PHOTODISSOCIATION OF N H₃ IN THE VACUUM ULTRAVIOLET
J CHEM PHYS, VOL 47, 5241-5246, (1967)

2854 BEYNON J D E
AN EXPERIMENTAL DETERMINATION OF THE PHOTOIONIZATION
CROSS-SECTION OF ATOMIC HYDROGEN
NATURE, VOL 287, 465, (1965)

2855 ALBION P B, GLASSGOLD S E
CORRELATION EFFECTS IN ATOMIC STRUCTURE USING THE
RANOM-PHASE APPROXIMATION
PHYS REV, VOL 133, 632-646, (1964)

2856 PARRATT L G
X-RAY RESONANCE ABSORPTION LINES IN THE ARGON X SPECTRUM
PHYS REV, VOL 58, 249-254, (1939)

2857 KORIEN H
DIE DISPERSION DES HELIUMS IM GRUNDZUSTAND NACH DER
WELLEMECHANIK
Z PHYSIK, VOL 91, 1-16, (1934)

2858 VINTI J P
THE DISPERSION AND ABSORPTION OF HELIUM
PHYS REV, VOL 42, 852-860, (1932)

2859 CAIRNS R B, WEISLLER S L
PRELIMINARY MEASUREMENTS OF THE PHOTOIONIZATION CROSS
SECTION OF SINGLY IONIZED XENON
BULL AM PHYS SOC, VOL 7, 128, (1962)

2860 HUDSON R D, CARTER V L
EXPERIMENTAL VALUES OF THE ATOMIC ABSORPTION CROSS SECTION
OF POTASSIUM BETWEEN 580 ANGSTROMS AND 1000 ANGSTROMS
J OPT SOC AM, VOL 57, 1371-1374, (1967)

2861 SALPECER E E, ZAIODI M H
LAMO SHIFT EXCITATION ENERGY IN THE GROUND STATE OF THE
HELIEUM ATOM
PHYS REV, VOL 125, 258-259, (1962)

2862 COOK G R, METZGER P H, OGANO M
PHOTOIONIZATION AND ABSORPTION COEFFICIENTS OF NO₂
J OPT SOC AM, VOL 58, 120-136, (1968)

2863 VILDSOV F I, AKOPAH M E, LOPATIN S N, KLYSMENOV V I
PHOTOIONIZATION OF ATOMS AND SIMPLE MOLECULES, PHOTOIONIZATION
CROSS SECTIONS, ANGULAR AND ENERGY DISTRIBUTION OF
PHOTOELECTRONS
IN ABSTRACTS OF THE FIFTH INTERNATIONAL CONFERENCE ON THE
PHYSICS OF ELECTRONIC AND ATOMIC COLLISIONS (LENGRAD,
USSR, 17-23 JULY 1967) PUBLISHING HOUSE NAUKA, LENINGRAD,
PAGE 626, 1967

2864 BERKOMITI J, CHUPKA M A
HIGH-RESOLUTION PHOTOIONIZATION AND MASS ANALYSIS OF SMALL
MOLECULES
IN ABSTRACTS OF THE FIFTH INTERNATIONAL CONFERENCE ON THE
PHYSICS OF ELECTRONIC AND ATOMIC COLLISIONS (LENGRAD,
USSR, 17-23 JULY 1967) PUBLISHING HOUSE NAUKA, LENINGRAD,
PAGE 626, 1967

30
2867 STARTSEV G P, KOZLOV M G

THE ABSORPTION CROSS SECTION ABOVE THE IONIZATION LIMIT
AND THE OSCILLATOR STRENGTHS FOR Ga AND IN BETWEEN 220 AND
150 M MU
(IN ABSTRACTS OF) THE FIFTH INTERNATIONAL CONFERENCE ON THE
PHYSICS OF ELECTRONIC AND ATOMIC COLLISIONS (LENGRAD,
USSR, 17-23 JULY 1967) PUBLISHING HOUSE NAUKA, LENINGRAD,
PAGE 616, 1967

2868 CONNeELY M, LIPSKY L, SMITH K

PHOTOIONIZATION OF ATOMS WITH CONFIGURATIONS 1s22p63s23p6
(IN ABSTRACTS OF) THE FIFTH INTERNATIONAL CONFERENCE ON THE
PHYSICS OF ELECTRONIC AND ATOMIC COLLISIONS (LENGRAD,
USSR, 17-23 JULY 1967) PUBLISHING HOUSE NAUKA, LENINGRAD,
PAGE 619, 1967

2869 KHARE S P

PHOTOIONIZATION OF HYDROGEN MOLECULE
(IN ABSTRACTS OF) THE FIFTH INTERNATIONAL CONFERENCE ON THE
PHYSICS OF ELECTRONIC AND ATOMIC COLLISIONS (LENGRAD,
USSR, 17-23 JULY 1967) PUBLISHING HOUSE NAUKA, LENINGRAD,
PAGE 626, 1967

2871 DITCHBURN R W, BRADLEY J E S, CANNON C G, HUNDAY G

ABSORPTION CROSS-SECTIONS FOR LYMAN ALPHA AND NEIGHBOURING
LINES
(IN ROCKET EXPLORATION OF UPPER ATMOSPHERE, R L S BOYD,
EDITOR, INTERSCIENCE PUBL, NEW YORK, PAGES 327-334, 1954

2872 DESLATTES R D

PHOTOIONIZATION OF THE M SHELL OF XENON
PHYS REV LETTERS, VOL 25, 463-465, (1965)

2873 DIBELER V H, WALKER J A, LISTON S K

NASS SPECTROSCOPIC STUDY OF PHOTOIONIZATION. VII. NITROGEN
DIoxide AND NITROUS OXIDE

2874 WOLF H

DIE ABSORPTIONSKOEFFIZIENTEN FUR RONTGENSTRAHLEN IN DER
UMGEBUNG DER L-KANTEN BEI DEN ELEMENTEN AU, PT UND AG
ANN PHYSIK, VOL 16, 973-984, (1933)

2875 WOLLAN E D

SCATTERING OF X-RAYS FROM GASES
PHYS REV, VOL 37, 862-872, (1931)

2876 DUNN G H

PHOTOIONIZATION OF (H2)+ AND (O2)+. THEORY AND TABLES
JILA REPORT NO. 92, UNIVERSITY OF COLORADO, 1968, 95 PAGES

2877 VIGROUX E

ABSORPTION DE L'OZONE DANS L'ULTRAVIOLET
COMPT REND, VOL 236, 2277-2278, (1953)

2878 NY T, CHOONG S

L'ABSORPTION DE LA LUMIERE PAR L'OZONE ENTRE 3550 ET 3400
ANGSTROMS (REGION DES BANDES DE HUGGINS)
COMPT REND, VOL 195, 309-311, (1932)

2879 YAMANOUCHI T

PHOTO-IONIZATION AND RECOMBINATION OF O++ ION
PROC PHYS MATH SOC JAPAN, VOL 23, 757-763, (1943)

2880 BATES D R

THE CONTINUOUS RADIATIVE ABSORPTION CROSS-SECTION OF O-
MONTHLY NOTICES ROY ASTRON SOC, VOL 186, 122-129, (1946)

2881 STEWART J G, RUTENBERG M

WAVE FUNCTIONS AND TRANSITION PROBABILITIES IN SCALED
THOMAS-FERMI ION POTENTIALS
PHYS REV, VOL 140, A1508-A1519, (1965)

2882 YAMANOUCHI T

PHOTO-IONIZATION AND RECOMBINATION OF O+ ION
PROC PHYS MATH SOC JAPAN, VOL 24, 331-335, (1942)

2883 YAMANOUCHI T, KOTANI M

PHOTO-IONIZATION AND RECOMBINATION OF OXYGEN ATOM
PROC PHYS MATH SOC JAPAN, VOL 22, 63-76, (1943)

2884 WOERNLE B

DIE ABSORPTION LANGWELLIGER RONTGENSTRAHLEN VON 2-10
ANGSTROM ELECTRON IN LEICHTEN ELEMENTEN
ANN PHYSIK, VOL 5, 475-506, (1930)

2885 COMES F J, RUTZER H G, SCHUMPE G

AUTOIONISATION IN ATOMSPECTRUM
Z NATUREFORSCH, VOL 23A, 137-151, (1968)

2886 COMES F J, ELZER A

PHOTOIONISATIONSCHEKTUNGEN AN ATOMSTRAHLEN. III. DER
IONISIERUNGQUERSCHNITT DES OXYGENIEN STICKSTOFFS
Z NATUREFORSCH, VOL 23A, 137-138, (1968)

2887 COMES F J, SPEIER F, ELZER A

PHOTOIONISATIONSCHEKTUNGEN AN ATOMSTRAHLEN. II. DER
IONISIERUNGQUERSCHNITT DES OXYGENIEN SAUERSTOFFS
Z NATUREFORSCH, VOL 23A, 125-133, (1968)

2888 DALCROZ A, DEGGE S, WILLIAMS D A

DIPOLE PROPERTIES OF MOLECULAR NITROGEN
PROC PHYS SOC LONDON, VOL 92, 291-295, (1967)
2961 HARR G V, HEPPINSTALL R
SOME AUTOIONIZATION MEASUREMENTS ON INDIUM VAPOUR
PROC PHYS SOC LONDON, VOL 87, 547-549, (1966)

2963 KONINGSTEIN J A, MORTENSEN O S
ELECTRONIC RAMAN SPECTRA. III. ABSOLUTE CROSS SECTIONS FOR
ELECTRONIC RAMAN AND RAYLEIGH SCATTERING
PHYS REV, VOL 166, 79-79, (1966)

2970 WILKINSON P G
ABSORPTION SPECTRUM OF ARGON IN THE 1070-1135 ANGSTROM REGION
CAN J PHYS, VOL 46, 315-319, (1968)

2973 HUDSON R D, CARTER V L
BANDWIDTH DEPENDENCE OF MEASURED UV ABSORPTION CROSS
SECTIONS OF ARGON
J OPT SOC AM, VOL 56, 227-232, (1968)

2979 ALTICK P L
PHOTO-IONIZATION CROSS SECTION OF BERYLLIUM NEAR THRESHOLD
PHYS REV, VOL 169, 31-36, (1968)

3004 HUDSON R D, CARTER V L
ATOMIC-ABSORPTION CROSS SECTIONS OF NA, 500 TO 600 ANGSTROMS
J OPT SOC AM, VOL 56, 430-431, (1968)

3015 HENKE B L, ELGIN R L,
LENT R E, LEOINGHAM R B
X-RAY ABSORPTION IN THE 2-TO-260 ANGSTROM REGION
NORELCO REPTR, VOL 14, 112-117, (1967)

3011 DIBELER V H, LISTON S K
MASS-SPECTROMETRIC STUDY OF PHOTONIOIZATION. VIII. DICYANOGEN
AND THE CYANOGEN HALIDES
J CHEM PHYS, VOL 47, 4546-4555, (1967)

3012 SULZMANN K G P, BIEN F,
PENNER S S
INTENSITY AND COLLISION HALF-WIDTH MEASUREMENTS USING A
LASER SOURCE. II. CONTINUUM AND LINE ABSORPTION OF Air AT
6328 ANGSTROMS
J QUANT SPECTRY RADITIVE TRANSFER, VOL 7, 969-977, (1967)

3016 HAENSEL R, KUNZ C,
SASAKI T, SONNTAG B
ABSORPTION MEASUREMENTS OF COPPER, SILVER, TIN, GOLD, AND
BISMUTH IN THE FAR ULTRAVIOLET
APPL OPT, VOL 7, 301-326, (1968)

3020 JAEGLE P, MISSONI G,
DHEZ P
STUDY OF THE ABSORPTION OF ULTRASOFT X RAYS BY BISMUTH AND LEAD USING THE ORBIT RADIATION OF THE FRASCATI SYNCHROTRON
PHYS REV LETTERS, VOL 16, 887-888, (1967)

3026 CHUPKA W A
MASS-SPECTROMETRIC STUDY OF THE PHOTONIONIZATION OF METHANE
J CHEM PHYS, VOL 48, 2337-2341, (1968)

3067 HARR G V, CREEK G O M
THE PHOTOIONIZATION ABSORPTION CONTINUUM FOR ALKALI METAL
VAPOURS
PROC ROY SOC LONDON SER A, VOL 304, 233-244, (1968)

3162 GAUVRILA M
ANALYTIC EVALUATION OF THE KRAMERS-HEISENBERG MATRIX
ELEMENT FOR COHERENT SCATTERING OF PHOTONS BY ATOMIC
HYDROGEN
REV ROUM PHYS, VOL 12, 745-759, (1967)

3213 HENRY R J W
PHOTOIONIZATION CROSS SECTIONS FOR N AND O
J CHEM PHYS, VOL 48, 5635-5638, (1968)

3267 HAENSEL R, KUNZ C,
SASAKI T, SONNTAG B
MEASUREMENT OF PHOTOBSSORPTION OF THE SODIUM HALIDES NEAR
THE SODIUM L2,3 EDGE
PHYS REV LETTERS, VOL 20, 1436-1438, (1968)

3280 FROST D C, MCDOWELL C A,
VROOM D A
PHOTO-ION KINETIC ENERGY ANALYSIS WITH A PHOTOELECTRON
SPECTROMETER
NATURE, VOL 218, 943-944, (1968)

3281 DIBELER V H, LISTON S K
MASS-SPECTROMETRIC STUDY OF PHOTONIONIZATION. IX. HYDROGEN CYANIDE AND ACETONITRILE
J CHEM PHYS, VOL 48, 4765-4768, (1968)

3293 HENKE B L, ELGIN R L,
LENT R E, LEOINGHAM R B
X-RAY ABSORPTION IN THE 2-TO-200 A REGION
REPORT AFOSR 67-1251, POMONA COLLEGE, CLAREMONT, CALIFORNIA,
AD 654315, 1967, 39 PAGES

3294 VILLAREJO D
MEASUREMENT OF THRESHOLD ELECTRONS IN THE PHOTOIONIZATION OF M2 AND D2
J CHEM PHYS, VOL 48, 4014-4025, (1968)

3296 BERKOMITZ J, LIFSHITZ C
THE PHOTOIONIZATION OF CADMIUM AND MERCURY VAPOURS
J PHYS B PROCP PHYS SOC 2, VOL 1, 443-448, (1968)
3257 COHES F J, WELLMAN H O
3259 DUNN G M
3260 HENRY R J W
3293 BEIGEMEINHED Y, ZAPYSOV A L, ISRAILEV I M, SAPRKEN V N
3295 LENZI M, OKABE H
3301 CHUPKA H A, BEKOWITZ J
3307 GREINER H
331.6 SHARDANO
3327 GOLDRANO A, PARKINSON E M
3337 KOZLOV M G, STARTSEV G P
3346 SMARDANOMO
3347 DALGARNO A, PARKINSON E M
3350 CHUPKA W A, BERKOWITZ J
3356 MAIN R P, MORSELL A L, HOOKER W J
3360 BIRERER V H, LISTON S K
3364 CHUPKA W A, BERKOWITZ J
3368 Hidalgo H B
3376 DIBELER V H, LISTON S K
3386 CREEK J H, MARR G V
3390 NHEATON J E G
3392 BLACKNELL H E, BAJNA G S, SHIPP G S, WEISSLER G L
3396 KHARE S P
3400 SAMSON J A R, CAIRNS R B
3404 WHEATON J E G
3408 BLACKWELL H E, BAJNA G S, SHIPP G S, WEISSLER G L
3412 KHARE S P
3413 SANSON J A R, CAIRNS R B
3417 Kozlov M G, Startsev G P
3419 Vacuul-Ultraviolet Absorption Spectra of the Vapors of Metals of the Aluminum Group. II. Gallium and Indium

OPT SPECTRY USSR ENGLISH TRANSL, VOL 23, 3-13, (1968)

3420 COHEN F J, WELLER M O
3422 PHOTOIONIZATION OF (H2)+ AND (O2)+ -- THEORY
PHYS REV, VOL 172, 1-7, (1968)

3425 POLARIZATION IN LOW-ENERGY ELECTRON SCATTERING - CARBON AND NITROGEN
PHYS REV, VOL 172, 99-103, (1968)

3426 CROSS SECTIONS FOR THE ABSORPTION OF X RAYS BY URANIUM AND THORIUM
OPT SPECTRY USSR ENGLISH TRANSL, VOL 23, 533, (1967)

3428 PHOTODISSOCIATION OF (H2)+ AND (O2)+ -- THEORY
PHYS REV, VOL 172, 1-7, (1968)

3430 LENZI M, OKABE H
PHOTODISSOCIATION OF (H2)+ AND (O2)+ IN THE VACUUM UTLSRAVIOLET BER BUNSENGES, VOL 72, 164-173, (1968)

3435 Attenuation Cross Sections of Xe and Xe2 Near Resonance Line 1469.6 Angstroms
J QUANT SPECTRY RADIATIVE TRANSFER, VOL 8, 1532-1538, (1966)

3437 An Expansion Method for Calculating Atomic Properties. X. 1S Doublet (Singlet S) - 1Snp (Singlet P) Transitions of the Helium Sequence
PROC ROY SOC LONDON SER A, VOL 301, 293-298, (1967)

3440 MEASUREMENT OF THE OSCILLATOR STRENGTH OF THE SI 0 (A SINGLET SIGMA - X SINGLET SIGMA*) BAND SYSTEM
J QUANT SPECTRY RADIATIVE TRANSFER, VOL 8, 1527-1532, (1968)

3441 EXCITATION OF K-SHELL ELECTRONS IN BE BY SOFT X RAYS AND 20-KEV ELECTRONS
J OPT SOC AM, VOL 58, 1192-1194, (1965)

3446 IMPROVEMENTS IN DESIGN AND PERFORMANCE OF THE LARGE APERTURE LYMAN FLASHLIGHT
APPL OPT, VOL 3, 1247-1249, (1964)

3450 VACUUM ULTRAVIOLET RADIATION AS A PROBE OF RARE GAS PLASMAS
J QUANT SPECTRY RADIATIVE TRANSFER, VOL 4, 249-266, (1964)

3454 PHOTOIONIZATION OF THE HYDROGEN MOLECULE
J CHEM PHYS, VOL 46, 5726-5728, (1968)

3456 PHOTODISSOCIATION OF (H2)+ AND (O2)+ -- THEORY
PHYS REV, VOL 172, 1-7, (1968)

3458 EXCITATION OF K-SHELL ELECTRONS IN BE BY SOFT X RAYS AND 20-KEV ELECTRONS
J OPT SOC AM, VOL 58, 1192-1194, (1968)

3460 PHOTOIONIZATION CROSS-SECTIONS FOR IONS OF CARBON, NITROGEN, OXYGEN, AND NEON
ASTROPHYS J, VOL 153, 981-985, (1968)

3462 MASS-SPECTROMETRIC STUDY OF PHOTOIONIZATION. XI. HYDROGEN SULFIDE AND SULFUR DIOXIDE
J CHEM PHYS, VOL 49, 482-485, (1968)

3466 MEASUREMENT OF THE OSCILLATOR STRENGTH OF THE SI 0 (A SINGLET SIGMA - X SINGLET SIGMA*) BAND SYSTEM
J QUANT SPECTRY RADIATIVE TRANSFER, VOL 8, 1527-1532, (1968)

3468 PHOTODISSOCIATION OF (H2)+ AND (O2)+ -- THEORY
PHYS REV, VOL 172, 1-7, (1968)

3470 EXCITATION OF K-SHELL ELECTRONS IN BE BY SOFT X RAYS AND 20-KEV ELECTRONS
J OPT SOC AM, VOL 58, 1192-1194, (1968)

3474 PHOTOIONIZATION CROSS-SECTIONS FOR IONS OF CARBON, NITROGEN, OXYGEN, AND NEON
ASTROPHYS J, VOL 153, 981-985, (1968)

3476 PHOTODISSOCIATION OF (H2)+ AND (O2)+ -- THEORY
PHYS REV, VOL 172, 1-7, (1968)

3478 CROSS SECTIONS FOR THE ABSORPTION OF X RAYS BY URANIUM AND THORIUM
OPT SPECTRY USSR ENGLISH TRANSL, VOL 23, 533, (1967)

3480 MEASUREMENT OF THE OSCILLATOR STRENGTH OF THE SI 0 (A SINGLET SIGMA - X SINGLET SIGMA*) BAND SYSTEM
J QUANT SPECTRY RADIATIVE TRANSFER, VOL 8, 1527-1532, (1968)

3482 MASS-SPECTROMETRIC STUDY OF PHOTOIONIZATION. XI. HYDROGEN SULFIDE AND SULFUR DIOXIDE
J CHEM PHYS, VOL 49, 482-485, (1968)

3486 MEASUREMENT OF THE OSCILLATOR STRENGTH OF THE SI 0 (A SINGLET SIGMA - X SINGLET SIGMA*) BAND SYSTEM
J QUANT SPECTRY RADIATIVE TRANSFER, VOL 8, 1527-1532, (1968)

3488 MEASUREMENT OF THE OSCILLATOR STRENGTH OF THE SI 0 (A SINGLET SIGMA - X SINGLET SIGMA*) BAND SYSTEM
J QUANT SPECTRY RADIATIVE TRANSFER, VOL 8, 1527-1532, (1968)

3492 MASS-SPECTROMETRIC STUDY OF PHOTOIONIZATION. XI. HYDROGEN SULFIDE AND SULFUR DIOXIDE
J CHEM PHYS, VOL 49, 482-485, (1968)

3496 PHOTOIONIZATION CROSS-SECTIONS FOR IONS OF CARBON, NITROGEN, OXYGEN, AND NEON
ASTROPHYS J, VOL 153, 981-985, (1968)
3414 STEINER B

THE CROSS SECTION FOR THE PHOTODETACHMENT OF ELECTRONS FROM I-
PHYS REV, VOL 173, 136-147, (1968)

3453 TURNER D W

HIGH RESOLUTION MOLECULAR PHOTOELECTRON SPECTROSCOPY. I. FINE
STRUCTURE IN THE SPECTRA OF HYDROGEN AND OXYGEN
PROC ROY SOC LONDON SER A, VOL 307, 19-28, (1968)

3454 BRUNDLE C R, TURNER D W

HIGH RESOLUTION MOLECULAR PHOTOELECTRON SPECTROSCOPY. II. WATER
AND DEUTERIUM OXIDE
PROC ROY SOC LONDON SER A, VOL 307, 27-36, (1968)

3506 GRIGGS M

ABSORPTION COEFFICIENTS OF OZONE IN THE ULTRAVIOLET AND
VISIBLE REGIONS
J CHEM PHYS, VOL 49, 857-859, (1968)

3509 OKABE H

PHOTO-DISSOCIATION OF H N3 IN THE VACUUM-ULTRAVIOLET
PRODUCTION AND REACTIVITY OF ELECTRONICALLY EXCITED N H
J CHEM PHYS, VOL 49, 2726-2733, (1968)

3510 PARR A C, ELDER F A

PHOTOIONIZATION OF YTTERBIUM - 1950-2000 A
J CHEM PHYS, VOL 49, 2665-2667, (1968)

3517 BATES D R, OPIK U

UNDULATIONS IN THE PHOTOIONIZATION CROSS SECTION CURVES OF
MOLECULES
J PHYS B, PROC PHYS SOC 2, VOL 1, 543-547, (1968)

3520 MCGUIRE E J

PHOTOIONIZATION CROSS SECTIONS OF THE ELEMENTS HELIUM TO
XENON
PHYS REV, VOL 175, 20-30, (1968)

3523 CHANG E S, MCDOWELL M R C

PHOTOIONIZATION OF LITHIUM - A MANY-BODY CALCULATION
PHYS REV, VOL 176, 126-135, (1968)

3532 CHUN H U

IONISIERUNGSPOTENTIAL UND AUTOKIONIZATIONSZUSTANDE VOM C H4 IM
ULTRANICHTEN RONTGEN-GEBIE
Z NATURFORSCH, VOL 23A, 1455-1456, (1968)

3533 HARBARD C N, PATTY R R

LOW-RESOLUTION DETERMINATION OF THE STRENGTH OF THE 6671(0M-1)
C O2 BAND
J OPT SOC AM, VOL 58, 198-202, (1968)

3542 HUDSON R D, CARTER V L

ABSORPTION OF OXYGEN AT ELEVATED TEMPERATURES (300 TO 900 K)
IN THE SCHUMANN-RUNGE SYSTEM
J OPT SOC AM, VOL 58, 1621-1626, (1968)

3544 PERSON J C, NICOLE P P

ISOTOPE EFFECTS IN THE PHOTOIONIZATION YIELDS AND THE
ABSORPTION CROSS SECTIONS FOR ETHYLENE AND N-BUTANE
J CHEM PHYS, VOL 49, 9421-9426, (1968)

3548 STEINER B

PHOTODETACHMENT OF ELECTRONS FROM S H-
J CHEM PHYS, VOL 49, 5097-5104, (1968)

3549 DODDLITTLE P M, SCHWEN R I, SCHUBERT K E

DISSOCIATIVE PHOTOIONIZATION OF O2
J CHEM PHYS, VOL 49, 5108-5115, (1968)

3554 GOLUB S, STEINER B

PHOTODETACHMENT OF (O H(H2O))-
J CHEM PHYS, VOL 49, 5191-5192, (1968)

3556 NAKAMURA ET AL.

ABSORPTION STRUCTURE NEAR THE L 11, 111 EDGE OF ARGON GAS
PHYS REV LETTERS, VOL 21, 1303-1305, (1968)

3571 COLLIN J E, NATALIS P

IONIZATION, PREIONIZATION AND INTERNAL ENERGY CONVERSION IN
C O2, C O S AND C 2 BY PHOTOELECTRON SPECTROSCOPY
J MASS SPECTRY ION PHYS, VOL 1, 121-132, (1968)

3573 OSAGA M

ABSORPTION COEFFICIENTS OF O2 AT THE LYMAN-ALPHA LINE AND ITS
VICINITY
J GEOPHYS RES, VOL 73, 6759-6763, (1968)

3575 SAMSON J A R

HIGH ENER IonIZATION POTENTIALS OF NITRIC OXIDE
PHYS LETT, VOL 29A, 391-392, (1968)

3577 SHARADANAND

PHOTO-ATTENUATION CROSS SECTIONS OF XE AND KE2 BETWEEN 1850
AND 1950 A
J QUANT SPECTRY RADIATIVE TRANSFER, VOL A, 1373-1378, (1968)

3591 VROOM D A

PHOTO-ELECTRON SPECTROSCOPY OF GASES
THESIS, UNIVERSITY OF BRITISH COLUMBIA, 1967, 202 PAGES,
NATIONAL LIBRARY OF CANADA, OTTAWA, NO. 1165

3638 NATHANABE K

ULTRAVIOLET ABSORPTION PROCESSES IN THE UPPER ATMOSPHERE
ADVAN GEOPHYS, VOL 5, 153-221, (1958)
3643 Krauss H, Walker J A, Bibler V H

Mass Spectrometric Study of Photoionization. X, Hydrogen Chloride and Methyl Halides

3646 Seery D J, Britton D

The Continuous Absorption Spectra of Chlorine, Bromine, Bromine Chloride, Iodine Chloride, and Iodine Bromide
J Phys Chem, Vol 64, 2263-2266, (1964)

3647 Samson J A R

Mass Spectroscopic Determination of Different Ions Produced by the Process of Photoionization
Thesis, University of Southern California, Los Angeles, 1969, 84 PAGES, University Microfilms Inc, Ann Arbor, Michigan, No. 69-1862

3648 Dershem E, Schein M

The Absorption of the K-Alpha Line of Carbon in Various Gases and Its Dependence Upon Atomic Number
Phys Rev, Vol 37, 1238-1240, (1931)

3649 Berkowitz J, Chupka W A, Walter T A

Photoionization of HCN - The Electron Affinity and Heat of Formation of CN

3650 Kaplan I G, Marken A P

Calculation of the Photoionization Cross Sections of Molecular Systems. II. Ethylene, Butadiene, and Benzene

3651 Samson J A R

Simultaneous Photoexcitation and Photoionization of Helium

3652 Henry R J W

The Influence of Autoionizing States on Absorption Cross Sections for Atomic Oxygen

3653 Cooper J M, Hansson S T

Photo-Ionization in the Soft X-Ray Range - Angular Distributions of Photoelectrons and Interpretation in Terms of Subshell Structure

3654 MARR G V, AUSTIN J M

Absorption Cross-Section Measurements on the Vacuum Ultraviolet Spectrum of Zinc Vapour

3655 MARR G V, AUSTIN J M

Absorption Cross-Section Measurements on the Vacuum Ultraviolet Spectrum of Cadmium Vapour

3656 Anusia M Ya, Cherepkov N A, Chernysheva L V, Sheftel S I

On Atomic Photoionization Cross Section Calculation

3657 MADDEN R P, EDERER D L, COOLING K

Resonances in the Photo-Ionization Continuum of Ar I(20-150 eV)

3658 RITHE O E

Radiative Capture of Electrons by Chlorine, Bromine, and Iodine Atoms

3659 BAKER C, TURNER D W

High Resolution Molecular Photoelectron Spectroscopy. III. Acetylenes and AzA-Acetylenes

3660 Hudson R D, Carter V L

Predissociation in N2 and O2
3815 LIN S H
CALCULATION OF ANISOTROPIC PHOTOIONIZATION CROSS SECTIONS: I. HYDROGEN ATOM
CAN J PHYS, VOL 46, 2715-2731, (1968)

3816 HUDSON R G, CARTER V L, YOUNG P A
ABSORPTION SPECTRUM OF SR I IN THE REGION OF AUTOIONIZATION FROM 1640 TO 2020 ANGSTROMS
PHYS REV, VOL 180, 77-82, (1969)

3818 HARRISON M, SCHWEN R I, CAIRNS R B, SCHUBERT K E
PHOTOIONIZATION WITH ATOMIC BEAMS: I. ZINC ATOMS BETWEEN 267 AND 1242 ANGSTROMS
J CHEM PHYS, VOL 50, 3920-3936, (1969)

3820 NATALIS P, COLLIN J E
EXPERIMENTAL EVIDENCE FOR HIGH VIBRATIONAL EXCITATION IN HO2+ GROUND STATE BY PHOTOELECTRON SPECTROSCOPY
CHEM PHYS LETTERS, VOL 2, 414-416, (1969)

3821 DIXON R M, HULL S E
THE PHOTO-IONIZATION OF PI-ELECTRONS FROM 02

3833 SROKA M
LICHTEMISSION IM VAKUUMULTRAVIOLET DURCH ELEKTRONENSTOSSANREGUNG IN GASEN. TEIL B - UNTERSUCHUNGEN IN STICKSTOFF
Z NATURFORSCH, VOL 24a, 398-403, (1969)

3879 HENRY R J M, HILLIAMS R E
COLLISION STRENGTHS AND PHOTOIONIZATION CROSS SECTIONS FOR NITROGEN, OXYGEN, AND NEON
PUBL ASTRON SOC PACIFIC, VOL 80, 669-679, (1968)

3883 KRAUSE M O
PHOTO-IONIZATION OF KRYPTON BETWEEN 300 AND 1500 EV. RELATIVE SUBSHELL CROSS SECTIONS AND ANGULAR DISTRIBUTIONS OF PHOTOELECTRONS
PHYS REV, VOL 177, 151-157, (1969)

3884 MENDEZ A J

3886 BERKOMITZ J, CHUPKA W A
PHOTOIONIZATION OF HIGH-TEMPERATURE VAPORS. VI. 52, SE2, AND TE2

3887 WARNECK P
PHOTODETACHMENT OF N (02) -
CHEM PHYS LETTERS, VOL 3, 532-534, (1969)

3889 SCHNEIDER B, BERRY R S
PSEUDOPOTENTIAL METHOD FOR INELASTIC PROCESSES IN ATOMS AND MOLECULES. I. GENERAL METHOD AND PHOTODETACHMENT OF O2-
PHYS REV, VOL 182, 133-141, (1969)

3890 GEZALOV KH B, IVANOVA A V
PHOTOIONIZATION CROSS SECTION OF LITHIUM HIGH TEMP USSR ENGLISH TRANSL, VOL 6, 409-404, (1968)

3891 KAPLAN I G, MARKIN A P
INTERFERENCE PHENOMENA IN PHOTOIONIZATION OF MOLECULES SOVIET PHYS DOKLADY ENGLISH TRANSL, VOL 14, 36-39, (1969)

3892 HUEBERT B J, MARTIN R H
GAS-PHASE FAR-ULTRAVIOLET ABSORPTION SPECTRUM OF HYDROGEN BROMIDE AND HYDROGEN IODIDE
J PHYS CHEM, VOL 72, 3046-3049, (1968)

3893 COOK G R, OGAMA M
PHOTOIONIZATION AND ABSORPTION COEFFICIENTS OF OCS
J CHEM PHYS, VOL 51, 647-652, (1969)

3894 LUTZ B L
PRESSURE-INDUCED A DOUBLE PRIME SINGLET SIGMA GERADE + FROM A SINGLET SIGMA GERADE + ABSORPTION IN THE VACUUM ULTRAVIOLET SPECTRUM OF MOLECULAR NITROGEN
J CHEM PHYS, VOL 51, 700-716, (1969)

3895 BERKOMITZ J, CHUPKA W A
PHOTODETACHMENT SPECTROSCOPY OF AUTOIONIZATION PEAKS
J CHEM PHYS, VOL 51, 2341-2354, (1969)

3896 COOK G R, OGAMA M
PHOTOIONIZATION, ABSORPTION, AND FLUORESCENCE OF C52
J CHEM PHYS, VOL 51, 2419-2425, (1969)

3897 FARNOUX F C
PHOTOIONISATION DES ATOMES LOURDS - ETUDE THEORIQUE DANS UN MODELE NON RELATIVISTE A POTENTIEL CENTRAL
J PHYS, VOL 30, 521-536, (1969)
3918 Haugen R, Khan V M, Margrave J L
Ultraviolet absorption spectrum of CE F2
J Mol Spectrosc, Vol 27, 143-147, (1968)

3919 Okabe H, Mele A
Photodissociation of N C N3 in the vacuum-ultraviolet
Production of C H (b doublet sigma) and N C N (a triplet pi)

3988 Dalgarno A, Allison A C
Photodisociation of molecular hydrogen on Venus
Page Intentionally Left Blank
IV. AUTHOR INDEX
<table>
<thead>
<tr>
<th>Author Index</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABOUD A A</td>
<td>1612</td>
</tr>
<tr>
<td>AKOPYAN M E</td>
<td>2865</td>
</tr>
<tr>
<td>ALLISON A C</td>
<td>3988</td>
</tr>
<tr>
<td>ALTICK P L</td>
<td>2856 2999</td>
</tr>
<tr>
<td>AMUSIA M YA</td>
<td>3766</td>
</tr>
<tr>
<td>APPLETON J P</td>
<td>2216</td>
</tr>
<tr>
<td>ASINOVSKII E I</td>
<td>1895</td>
</tr>
<tr>
<td>ASTOIN N</td>
<td>1666 1142 1143 1169 2596 2740 2741</td>
</tr>
<tr>
<td>AUSTIN J M</td>
<td>3761 3765</td>
</tr>
<tr>
<td>AKELROD M N</td>
<td>309</td>
</tr>
<tr>
<td>BAJWA G S</td>
<td>3402</td>
</tr>
<tr>
<td>BAKER C</td>
<td>3781</td>
</tr>
<tr>
<td>BAKER D J</td>
<td>647 2704</td>
</tr>
<tr>
<td>BAKERIER D</td>
<td>2511</td>
</tr>
<tr>
<td>BATEMEN V M</td>
<td>1835</td>
</tr>
<tr>
<td>BATES D R</td>
<td>1193 1236 1321 1330 1624 2284 2373 2492 3517</td>
</tr>
<tr>
<td>BECKER R A</td>
<td>1252</td>
</tr>
<tr>
<td>BEDO D E</td>
<td>647</td>
</tr>
<tr>
<td>BELL K L</td>
<td>2213 2217 2382</td>
</tr>
<tr>
<td>BERKOWITZ J</td>
<td>1979 2624 2392 2856 3256 3272 3396 3691 3757 3886 3915</td>
</tr>
<tr>
<td>BERRY R S</td>
<td>949 1629 3888 3889</td>
</tr>
<tr>
<td>BEYER K D</td>
<td>772 2477</td>
</tr>
<tr>
<td>BEYKON J D E</td>
<td>1732 2026 2855</td>
</tr>
<tr>
<td>BEZEZNEZNYKH G V</td>
<td>3293</td>
</tr>
<tr>
<td>BIEF F</td>
<td>3012</td>
</tr>
<tr>
<td>BLACET F E</td>
<td>2244</td>
</tr>
<tr>
<td>BLACKWELL H E</td>
<td>3402</td>
</tr>
<tr>
<td>BLAKE A J</td>
<td>582 1731 1967</td>
</tr>
<tr>
<td>BOECKER C</td>
<td>496 1241</td>
</tr>
<tr>
<td>BOHR A</td>
<td>1291</td>
</tr>
<tr>
<td>BOTTR R</td>
<td>1684 2025</td>
</tr>
<tr>
<td>BOTT J</td>
<td>1377</td>
</tr>
<tr>
<td>BOYCE J C</td>
<td>2314</td>
</tr>
<tr>
<td>BOYD A H</td>
<td>2665</td>
</tr>
<tr>
<td>BRADDOCK H J J</td>
<td>1742 2666</td>
</tr>
<tr>
<td>BRADLEY J E S</td>
<td>2671</td>
</tr>
<tr>
<td>BRANDT M</td>
<td>2618</td>
</tr>
<tr>
<td>BRANSCOMB L</td>
<td>38 468 599 817 839 979 1008 1386 1628 1632 1669</td>
</tr>
<tr>
<td>BRENNER R G</td>
<td>1635 1733 2787</td>
</tr>
<tr>
<td>BRENN B</td>
<td>1699</td>
</tr>
<tr>
<td>BRITTON A</td>
<td>3645</td>
</tr>
<tr>
<td>BROUGHTON D C</td>
<td>2625</td>
</tr>
<tr>
<td>BRUECKNER K A</td>
<td>399</td>
</tr>
<tr>
<td>BRUNOLO C R</td>
<td>3454</td>
</tr>
<tr>
<td>BRYTOV V I</td>
<td>1777 2201</td>
</tr>
<tr>
<td>BUNCH S M</td>
<td>2379</td>
</tr>
<tr>
<td>BURCH D S</td>
<td>38 468 1222 1223 1258 2056</td>
</tr>
<tr>
<td>BURKE P G</td>
<td>1545</td>
</tr>
<tr>
<td>BYRON F W</td>
<td>2631 2835</td>
</tr>
<tr>
<td>CAIRNS R B</td>
<td>1147 1359 1404 1561 1702</td>
</tr>
<tr>
<td>CANNON C G</td>
<td>2871</td>
</tr>
<tr>
<td>CARLSON T A</td>
<td>2622 2645</td>
</tr>
<tr>
<td>CARTER V L</td>
<td>1351 1405 1799 2639 2697 2862 2873 3004 3542 3784 3816</td>
</tr>
<tr>
<td>CARVER J H</td>
<td>982 1731 1967</td>
</tr>
<tr>
<td>CHALONGE D</td>
<td>2511</td>
</tr>
<tr>
<td>CHANDRASEKHAR S</td>
<td>8 84 1243 1384 1385</td>
</tr>
<tr>
<td>CHANG E S</td>
<td>3523</td>
</tr>
<tr>
<td>CHAN Y M</td>
<td>2719</td>
</tr>
<tr>
<td>CHENAUT R L</td>
<td>1238</td>
</tr>
<tr>
<td>CHEREPOV N A</td>
<td>3766</td>
</tr>
<tr>
<td>CHERMYTSEVA L V</td>
<td>3765</td>
</tr>
<tr>
<td>CHING B K</td>
<td>1292 1395</td>
</tr>
<tr>
<td>CHIU L Y C</td>
<td>2218</td>
</tr>
<tr>
<td>CHOONG S</td>
<td>1369 2890</td>
</tr>
<tr>
<td>CHUN H U</td>
<td>3932</td>
</tr>
<tr>
<td>CHUPKA W A</td>
<td>1979 2776 2802 2666 3026 3777 3390 3691 3797 3886 3915</td>
</tr>
<tr>
<td>CLARK K C</td>
<td>1641</td>
</tr>
<tr>
<td>COBLENTZ W W</td>
<td>1241</td>
</tr>
<tr>
<td>COOLING K</td>
<td>1351 1654 2381 3398 3779</td>
</tr>
<tr>
<td>COFFIN E M</td>
<td>617</td>
</tr>
<tr>
<td>COLLIN J E</td>
<td>3571 3820</td>
</tr>
<tr>
<td>COMES F J</td>
<td>928 891 926 930 931 2079 2485 2639 2941 2942 2943 3257</td>
</tr>
<tr>
<td>CONNEELT M</td>
<td>2868</td>
</tr>
<tr>
<td>COOKE F W</td>
<td>1382</td>
</tr>
<tr>
<td>COOK G R</td>
<td>688 915 1149 1172 1252</td>
</tr>
<tr>
<td>COOPER J W</td>
<td>925 1057 2506 2843 3768</td>
</tr>
<tr>
<td>CREEK D M</td>
<td>3067 3399</td>
</tr>
<tr>
<td>CURTIS J P</td>
<td>1232 1612</td>
</tr>
<tr>
<td>DALGARNO A</td>
<td>693 1668 1661 1667 2719 2852 2856 3347 3988</td>
</tr>
<tr>
<td>DAMANY-ASTOIN N</td>
<td>2778</td>
</tr>
<tr>
<td>DAVIDOVITS P</td>
<td>2629</td>
</tr>
<tr>
<td>DEEGES I</td>
<td>2958</td>
</tr>
<tr>
<td>DERSHEM E</td>
<td>3645</td>
</tr>
<tr>
<td>DE REILHAC L</td>
<td>2778</td>
</tr>
<tr>
<td>DESLATTES R D</td>
<td>1855 2872</td>
</tr>
<tr>
<td>DMEZ P</td>
<td>3020</td>
</tr>
<tr>
<td>DIBELER Y H</td>
<td>1320 1357 1604 1870 2025 2029 2412 2623 2757 2873</td>
</tr>
<tr>
<td>DITCHEWOM R W</td>
<td>1226 1242 1678 1689 1761 1766 1772 1774 1776 1799 1840 1879 2666 2871</td>
</tr>
<tr>
<td>DIXON R N</td>
<td>3821</td>
</tr>
<tr>
<td>DOOLITTLE P H</td>
<td>3949</td>
</tr>
<tr>
<td>Name</td>
<td>Page No.</td>
</tr>
<tr>
<td>-----------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Kitamura H V</td>
<td>1328</td>
</tr>
<tr>
<td>Klein H M</td>
<td>399</td>
</tr>
<tr>
<td>Kley Hendv I V</td>
<td>2855</td>
</tr>
<tr>
<td>Kley D</td>
<td>1311</td>
</tr>
<tr>
<td>Kloppenstein R W</td>
<td>2632</td>
</tr>
<tr>
<td>Konigstein J A</td>
<td>2963</td>
</tr>
<tr>
<td>Korwin H</td>
<td>2859</td>
</tr>
<tr>
<td>Kosinskaya E V</td>
<td>2686</td>
</tr>
<tr>
<td>Kotani M</td>
<td>2896</td>
</tr>
<tr>
<td>Kozlov M G</td>
<td>2621</td>
</tr>
<tr>
<td>Krause M V</td>
<td>2645</td>
</tr>
<tr>
<td>Krauss M</td>
<td>1320</td>
</tr>
<tr>
<td>Kroghahl M A</td>
<td>2747</td>
</tr>
<tr>
<td>Kunz G</td>
<td>3816</td>
</tr>
<tr>
<td>Kunz J</td>
<td>2312</td>
</tr>
<tr>
<td>Kuvayt C E</td>
<td>388</td>
</tr>
<tr>
<td>Ladenburg R</td>
<td>2313</td>
</tr>
<tr>
<td>Lapp M</td>
<td>1707</td>
</tr>
<tr>
<td>Larrabee J C</td>
<td>691</td>
</tr>
<tr>
<td>La Paglia R S</td>
<td>2601</td>
</tr>
<tr>
<td>Laufer A H</td>
<td>1821</td>
</tr>
<tr>
<td>LcVilla R E</td>
<td>1395</td>
</tr>
<tr>
<td>Lawrence E O</td>
<td>2315</td>
</tr>
<tr>
<td>Ledingham R B</td>
<td>3049</td>
</tr>
<tr>
<td>Lee P</td>
<td>508</td>
</tr>
<tr>
<td>Lent R E</td>
<td>3805</td>
</tr>
<tr>
<td>Lenz Z</td>
<td>2953</td>
</tr>
<tr>
<td>Lessmann W</td>
<td>491</td>
</tr>
<tr>
<td>Lifshitz C</td>
<td>2776</td>
</tr>
<tr>
<td>Lin S H</td>
<td>3815</td>
</tr>
<tr>
<td>Lifsky L</td>
<td>2596</td>
</tr>
<tr>
<td>Liston S K</td>
<td>2973</td>
</tr>
<tr>
<td>Littly E M</td>
<td>2320</td>
</tr>
<tr>
<td>Lopatin S H</td>
<td>2865</td>
</tr>
<tr>
<td>Lowry J F</td>
<td>1390</td>
</tr>
<tr>
<td>Lukirskis A P</td>
<td>1777</td>
</tr>
<tr>
<td>Lundqvist S</td>
<td>2618</td>
</tr>
<tr>
<td>Luz B L</td>
<td>3914</td>
</tr>
<tr>
<td>Lynn N</td>
<td>2852</td>
</tr>
<tr>
<td>Mazek J</td>
<td>2794</td>
</tr>
<tr>
<td>Madden R P</td>
<td>1391</td>
</tr>
<tr>
<td>Main R P</td>
<td>3386</td>
</tr>
<tr>
<td>Mak D</td>
<td>1840</td>
</tr>
<tr>
<td>Manson S T</td>
<td>2843</td>
</tr>
<tr>
<td>Margrafe J L</td>
<td>3918</td>
</tr>
<tr>
<td>Markin A P</td>
<td>3592</td>
</tr>
<tr>
<td>Marno F F</td>
<td>2679</td>
</tr>
<tr>
<td>Marr G V</td>
<td>1225</td>
</tr>
<tr>
<td>Martin J D</td>
<td>1957</td>
</tr>
<tr>
<td>Martin R H</td>
<td>3912</td>
</tr>
<tr>
<td>Name</td>
<td>Numbers</td>
</tr>
<tr>
<td>---------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Vilensov F I</td>
<td>2865</td>
</tr>
<tr>
<td>Villarreal D</td>
<td>1863 3254</td>
</tr>
<tr>
<td>Vinti J P</td>
<td>2960</td>
</tr>
<tr>
<td>Vodar B</td>
<td>1293 1619 2740</td>
</tr>
<tr>
<td>Volkov B I</td>
<td>2849</td>
</tr>
<tr>
<td>Von Puttkamer E</td>
<td>2739</td>
</tr>
<tr>
<td>Vroom D A</td>
<td>2846 3250 3591</td>
</tr>
<tr>
<td>Wainfan M</td>
<td>1234</td>
</tr>
<tr>
<td>Walker J A</td>
<td>1684 1857 2225 2219 2623</td>
</tr>
<tr>
<td>Walker M C</td>
<td>1234 2671 2682 2683</td>
</tr>
<tr>
<td>Walter T A</td>
<td>3891</td>
</tr>
<tr>
<td>Warrneck P</td>
<td>2637 3887</td>
</tr>
<tr>
<td>Watanabe K</td>
<td>262 64 1842 1147 1220</td>
</tr>
<tr>
<td>Watanabe T</td>
<td>2717</td>
</tr>
<tr>
<td>Webb T G</td>
<td>2607</td>
</tr>
<tr>
<td>Weber H E</td>
<td>2243</td>
</tr>
<tr>
<td>Weimberg M</td>
<td>1629 3848</td>
</tr>
<tr>
<td>Weisssler G L</td>
<td>390 698 1276 1524 2236</td>
</tr>
<tr>
<td>Weller M O</td>
<td>3257</td>
</tr>
<tr>
<td>Wheaton J E G</td>
<td>3401</td>
</tr>
<tr>
<td>Wheeler J A</td>
<td>2679</td>
</tr>
<tr>
<td>White T H</td>
<td>2687</td>
</tr>
<tr>
<td>Wilkinson P G</td>
<td>1799 2121 2470</td>
</tr>
<tr>
<td>Wilkinson W J</td>
<td>1221</td>
</tr>
<tr>
<td>Williamson R E</td>
<td>2680</td>
</tr>
<tr>
<td>Williams D A</td>
<td>2998</td>
</tr>
<tr>
<td>Williams R A</td>
<td>2840</td>
</tr>
<tr>
<td>Williams R E</td>
<td>3509</td>
</tr>
<tr>
<td>Woermle B</td>
<td>2808</td>
</tr>
<tr>
<td>Wolf M</td>
<td>2874</td>
</tr>
<tr>
<td>Wollan E O</td>
<td>2875</td>
</tr>
<tr>
<td>Wod Y H</td>
<td>741</td>
</tr>
<tr>
<td>Willeumier F</td>
<td>1826 2722</td>
</tr>
<tr>
<td>Yaakobi B</td>
<td>2748</td>
</tr>
<tr>
<td>Yamanouchi T</td>
<td>247 2891 2695 2896</td>
</tr>
<tr>
<td>Yates J G</td>
<td>1228</td>
</tr>
<tr>
<td>Yavorsky B</td>
<td>2742 2829</td>
</tr>
<tr>
<td>Young P A</td>
<td>1749 3816</td>
</tr>
<tr>
<td>Zaidi M H</td>
<td>2863</td>
</tr>
<tr>
<td>Zapysov A L</td>
<td>3293</td>
</tr>
<tr>
<td>Zelikoff M</td>
<td>1220 1229 2292 2638 2673</td>
</tr>
<tr>
<td>Zernik W</td>
<td>2432 2701</td>
</tr>
<tr>
<td>Zhirnov V A</td>
<td>2691</td>
</tr>
<tr>
<td>Zukova I I</td>
<td>3378</td>
</tr>
<tr>
<td>Zimkina T M</td>
<td>2301 2663 2703</td>
</tr>
</tbody>
</table>