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SMALL-ANGLE STABILITY ANALYSIS OF A LINEAR CONTROL SYSTEM

FOR A HIGH-POWER COMMUNICATION SATELLITE

by Thomas A. O'Malley

Lewis Research Center

SUMMARY

This report presents a small-angle stability analysis for one particular configura-
tion of a high-power communication satellite having a linear control system. Both the
central body and the solar array are treated as rigid bodies. The configuration studied
is one for which the solar array has one degree of freedom with respect to the central
body, and the antennas are rigidly attached to the central body. The control system
studied consists of three-axis control of the central body and one-axis control of the
solar-array rotation relative to the central body. The results of the report yield pre-
liminary indications of the relation of stability to satellite inertias and control gains.

Assumptions are made which allow the equations of motion to be linearized and
which make the resulting stability analysis tractable. The eighth-order characteristic
equation is separated into two second-order equations for the roll and yaw axes of the
spacecraft and a fourth-order equation for the pitch axis. For positive control gains,
stability is achieved for the roll and yaw axes. Not all positive values of control gains
will yield stability for the pitch axis. Pitch-axis stability is achieved only when the con-
trol gains are sufficiently large.

When the central body and solar array do not have coincident centers of mass,
steady-state pointing errors result. For reasonable values of inertias and control
gains, the steady-state pointing errors are negligible. The degree of stability is not
significantly changed when the mass centers are not coincident.

INTRODUCTION

The next generation of high-power communication satellites will use large sun-
oriented solar arrays as a primary power source. Typical configurations of such com-
munication satellites have one or more antennas mounted on a relatively dense central



body. The central body must be tightly controlled in order to transmit narrow radio-
frequency beams from synchronous equatorial orbit to high-gain receiver antennas on
the ground. The dual control requirements of earth-pointing the central body and sun-
pointing the solar array require one or perhaps two degrees of freedom between the cen-
tral body and the solar array.

To analyze the attitude control of such communication satellites, the equations of
motion of multibody spacecraft have to be derived. General methods of deriving these
nonlinear equations have appeared in a number of reports (refs. 1 to 3) in recent years.
The process of determining the stability of a control system often involves using stand-
ard techniques, such as root locus, which can be applied only to a system of linear
equations. This report presents the assumptions and analysis required to reduce the
nonlinear dynamic equations to a form in which the standard linear stability techniques
can be easily applied.

The dynamic equations used in this report are for a spacecraft consisting of two
rigid bodies - a central body and a solar array. The configuration studied is one for
which the solar array has one degree of freedom with respect to the central body, and
the spacecraft antennas are rigidly attached to the central body. The control system
studied consists of three-axis control of the central body and one-axis control of the
solar-array rotation relative to the central body.

The method of attack is to derive the generalized equations of motion. The full
derivation is given in appendix A. The generalized equations are then linearized in ap-
pendix B. Symbols are defined in appendix C. The characteristic equation of the sys-
tem is obtained from the linearized equations of motion. Approximations are made to
separate the eighth-order characteristic equation into two second-order equations for
the roll and yaw axes of the spacecraft and a fourth-order equation for the pitch axis.
Stability is analyzed first for the case of the central body and solar array having coin-
cident centers of mass. The analysis is then generalized for distinct centers of mass.

COORDINATE SYSTEMS

Before deriving equations of motion, it is necessary to define coordinate systems
suitable to the satellite configuration. The configuration to be studied in this report,
shown in figure 1, is the one proposed for the Canadian Technology Satellite. The same
Configuration is also being considered for the ATS-H and ATS-I satellites.

These satellites have a dense central body with rigidly attached antennas and a large
solar array. The attitude control system maintains the central body in an earth-oriented
position in order to satisfy antenna-pointing requirements. The large solar array is
sun-oriented. To maintain earth-pointing and sun-pointing requirements, the solar ar-
ray rotates with respect to the central body at a nominal angular velocity of one revolu-



tion per day. Since there is only one degree of rotational freedom of the solar array
with respect to the central body, the nominal sun-pointing error is zero only during the
vernal and autumnal equinoxes, when the sun is in the equatorial plane. The nominal
sun-pointing error is a maximum (23. 5°) during the solstices.

The central-body coordinate system and the orbital reference coordinate system
are shown in figure 2. The orbital reference coordinate system, specified by unit vec-
tors x y , z along the coordinate axes, has its origin at the center of mass of the
central body. The positive z -axis points to the center of the earth, the positive x -
axis lies along the velocity vector of the assumed circular orbit, and the y -axis com-
pletes the right-handed set. The central-body coordinate system, specified by unit vec-
tors x., y1? ~z\ along the coordinate axes, is fixed in the central body and has its origin
at the central-body center of mass. The x.,, y., and z.. axes are oriented such that
they coincide with x , y , and z when the central body is in its nominal orientation.
The x.., "y"i, and "z1 axes will be called the roll, pitch, and yaw axes of the central
body. The central-body coordinate system is obtained from the orbital reference co-
ordinate system by three rotations: (1) rotation about x -axis through an angle 0<;
(2) rotation about the yr-axis through an angle 9%, (3) rotation about the z~r-axis
through an angle 9*. The objective of the central-body control system is to null out
the pointing errors 0j, #2, and 6^.

The solar-array coordinate system, shown in figure 3, is fixed in the solar array
and is specified by unit vectors x«, y^, and z, along the coordinate axes. The origin
of the solar-array coordinate system is at the solar-array center of mass. The posi-
tive y^-axis is along the solar-array shaft and is parallel to the positive y\-axis. The
Zg-axis is perpendicular to the solar-array surface, and the x2-axis completes the
right-handed set. The x2, y2, and z2

 axes wil1 be called the roll, pitch, and yaw axes
of the solar array. Let x'j, y'j, and z'j be unit vectors along the axes of a coordinate
system whose axes are parallel to the central-body axes but whose origin is at the solar-
array center of mass. The angle cp shown in figure 3 is the angle between x'« and x,,,
or equivalently the angle between z\ and z~-

Let 6 be a unit vector originating from the solar-array center of mass and pointing
to the sun, as shown in figure 4. Then the true solar-array pointing error is the angle
between z« and 6. This pointing error, however, may have a nominal value as large
as 23. 5°. For attitude control purposes, we assume that the error sensed by the con-
trol system is the angle CT shown in figure 4. The vector 6 is a unit vector obtained
from the projection of 6 into the x2 - z2 plane. The angle subtended by z2 and 6
is a.

The four rotational degrees of freedom of the system are specified by the angles
01> d2' 03' and *?' The angles 0j, 02, and 9^ will be small angles; whereas, the
angle <p nominally increases at the rate of 2n .radians per day. Since the four angular
coordinates used for the stability analysis must remain small in order to justify linear-



izing the equations of motion, <p cannot be used as one of the coordinates. The fourth
coordinate must be defined as a perturbation from a nominal motion.

The geometry for defining a suitable fourth coordinate is shown in figure 5. The
plane of the figure is the equatorial plane, and the line L is the projection of the earth-
sun line into the equatorial plane. The line L may be considered fixed for the time
span considered. Let xj.(t) and z^,(t) be unit vectors, at time t, along the axes of a
coordinate system whose axes are parallel to the orbital reference axes but whose origin
is at the center of the earth. The angle subtended by the line L and the vector z' (0)
is a. The angle subtended by x' (0) and x' (t) is u> t, where o>o is the angular veloc-
ity of the synchronous orbit.

The fourth coordinate 0, is defined as

(a + w0t) (1)

If the spacecraft is in its nominal position at time t, the line L is coincident with z«(t),
and z (t) is coincident with ~Zj(t). Thus, <p (t), the angle between "znft) and ^i(*)> w^1

be the angle between L and z' (t), which by figure 5 is the angle a + co t. From equa-
tion (1), we conclude that 9^(t) is zero when the spacecraft is in its nominal position.
Thus, 9 A is a small angle and is a suitable fourth coordinate.

When the sun is in the equatorial plane, the solar-array error a is the sum of #2

and 0^. When the sun is not in the equatorial plane, the central-body roll and yaw
errors 9* and (?„ will also contribute to a. In the general case, a is given by (see
appendix B)

a = (G sin <p)9^ + 9% + (G cos <p)03 + 9^ (2)

where G is defined as

-sin 90 sin i
3 (3)
2 2- sin 9 sin i

The angle i of equation (3) is the inclination of the equatorial plane to the ecliptic plane,
and the angle 0_ is the apparent angular displacement of the sun from the autumnals
equinox measured in the ecliptic plane, as shown in figure 6.

ASSUMPTIONS

It is necessary to make assumptions which will justify linearizing the equations of
motion and which will make the resulting stability analysis tractable. The assumptions



are
(1) The error signals 9i and 9^, i = 1, 2, 3, are available from sensor data and

can be used for controlling the central body. Letting TC^, T g, T 3 be the central-
body control torques about the x«, y^, and z^ axes of the central body, it is assumed
that

Tci = -*l*i - Ci'i * = L 2> 3 (4).

where the 1C and C= are specified gain constants.
(2) For controlling the solar array, it is assumed that a sun sensor is used for

sensing a and that a tachometer or some other rate sensor is used for sensing the
angular velocity (p of the solar array with respect to the central body. A motor torque
is used for rotating the solar array relative to the central body. The motor torque T
is given by

Tm = K4a + C4(? - o)Q) (5)

where K4 and Cx are specified gain constants. It is assumed that Tm is the torque
on the central body.

(3) The satellite remains in a circular synchronous equatorial orbit.
(4) The angles 0*, 0g, 0,, and 9. and angular rates 0^, Q^, 0o, and 0'4 are

small.
(5) The principal axes of inertia of the central body coincide with the central-body

coordinate axes, and the principal axes of inertia of the solar array coincide with the
solar-array coordinate axes. The central-body inertias about the x, y, and z axes of
the central body are denoted by I« , 'I- , and I^z; and the solar-array inertias about
the x, y, and z axes of the solar array are denoted by Igx, Ljv, and Ljg,. These in-
ertias are assumed constant.

(6) The solar-array center of mass lies along the solar-array shaft.
(7) The dominant torques on the spacecraft are the control torques given in equations

(4) and (5) and the constraint torque which constrains the solar array to have only one
rotational degree of freedom relative to the central body. All other torques are ne-
glected.

(8) Nonlinear terms in the equations of motion are neglected.

EQUATIONS OF MOTION

The rotational equations of motion are derived in appendix A. The method of equa-
tion derivation is taken from reference 1. In appendix B, the assumptions of the pre-



vious section are used to derive linearized equations of motion. Let u be the vector
from the central-body center of mass to the solar-array center of mass, and let u^x,
ulv' ulz ^e the components of u in the central-body coordinate system. The linear
ized equations of motion can be written in matrix form as

(6)

where [M], [C], [K], and {f} are given by

2x

(I2z
cos

0 (I2z - I2x)
sin V cos

2z

0

0

0

2 2
uiy + ulz

-ulyulx

-ulzulx

-Ulxuly

»L-2
ly

-ulzuly

-ulxulz

"L-2y

0

0

(7)

Cl + ^o[2(I2z - J2x)sin f cos

o

212x

0

c,

C3 '

. - I2x)sinV] 0

-c.

V cos

'4 J

MT

-2ulyulz

2u iy

0

2ulyulz

0 2ulxuly 0

-2ulxuly 0 0

0 OJ

(8)



- rlx + J2% + (I2z -

-K4G sin tp

sin <p

cos ^

-K4G cos <p

K4G cos (

2

M_

4L-W
4ulxuly

-4ulzulx

0

3ulxuly

'(-L-L)
-3ulzuly

0

-ulxulz

ulyu

»L-
0

Iz

•5,

-K

(9)

4ulyulz

-3ulxulz

ulxuly

0

(10)

If the matrices [M], [C], and [K] have constant elements, the stability characteristics of
the system are found by taking the Laplace transform of matrix equation (6), assuming
zero initial conditions

= {f} (11)

which can be written as

= { f }

where [Z(s)] is given by

s[C] + [K]

We can define a matrix of transfer functions given by

(12)

(13)

[Z(s)]"1 =
det[Z(s)]

(14)



where

[A(s)] = adj[Z(s)] (15)

The transformed solution { 9 } is

{0} = [ Z ( s ) ] - { } = (16)
det[Z(s)]

The solution is obtained by writing the inverse Laplace transformation,

{9} = STl{9} =
det[Z(s)]

The poles are given by those values of s which satisfy

det[Z(s)] = 0 (18)

Equation (18) is called the characteristic equation of the system and the values of s
satisfying the characteristic equation are called the characteristic roots. If the real
parts of all characteristic roots are negative, the system is stable.

If the matrices [M], [C], and [K] are not constant, evaluating the characteristic
roots by equation (18) is not a strictly valid procedure for determining stability. It is
customary, however, to evaluate [M], [C], and [K] at a fixed time and to regard the
characteristic roots of equation (18) as an indication of "local" stability at the fixed
time (ref. 4).

Precise conditions for which the "local" stability procedure is valid are not known.
It is felt, however, that for slowly time-varying matrices an indication of stability is
achieved.

Only those elements of [M], [C], and [K] containing G, sin <p, and cos <p are time
dependent. The parameter G has a frequency of 1 cycle per year. Terms containing
sin <p and cos <p have a frequency of 1 cycle per day because ip is nominally equal
to WQ.

STABILITY FOR u=0

We assume in this section that u = 0, or that the centers of mass of the central body
and solar array coincide. In equations (7), (8), and (9), [M], [C], and [K] are each ex-
pressed as the sum of two matrices, where one matrix is independent of u and the other

8



is dependent on u. For u = 0, the second matrices on the right-hand side of equations
(7), (8), and (9) will be zero.

Letting z.. be the element in the i row and j column of [Z], equations (7),
(8); (9), and (13) imply that z^> Zj4> Z32> an(^ Z34 are a^ zero- The characteristic
equation can be written as

det[Z] = (znz33 -
 Z13Z

31)(
Z

22
Z44 ' Z24Z42) = °

The characteristic polynomial contains the term Znz22z33z44> and each zii> * =

1, 2, 3, and 4, is a second-degree polynomial in s. Thus, the characteristic equation
is an eighth-degree polynomial set equal to zero. The characteristic equation is inde-
pendent of Znj, Zpq, z^j, and z.,. These four terms are the only ones which contain
the parameter G. Thus, the stability of the system is independent of the degree of
coupling of the central-body roll and yaw errors 0j and 9* into the solar-array point-
ing error CT.

The factorization of equation (19) implies the separability of the characteristic
equation into two equations:

Z11Z33 - Z13Z31= °

Z22Z44 - Z24Z42 = °

Equation (20) contains only roll- and yaw-axis parameters and will be referred to as the
roll-yaw characteristic equation. Equation (21) contains only pitch-axis parameters and
will be referred to as the pitch characteristic equation.

Roll-Yaw Stability

The roll-yaw characteristic equation is dependent on z^, z^t Zjg, Zgj. These
four terms are

+ 2u>o(I2z - I2x)sin <p cos <p s

Kl -



Z33 - (I2z - I2x
)sinV]s2 + [C3 ' 2wo(I2z ' I2x}sin V cos <?] s

K3 -

Z13 = x2z - W8111 * cos * - " o l z - !lx + 2I2x + 2<!2z ' W^ s

(24)

Z31 = ^2z - W8111 ̂  cos ̂ s - " o l y ' !lx ' Jlz ' 2I2x ' 2(I2z '

- w2 [(I2z - I2x)sin <p cos <p] (25)

These four equations can be simplified by using several assumptions. First, assume
that the inertia difference \^ - L>x is much smaller than the inertia sums L + L>x

and L + !„ . This assumption is satisfied for the satellite configuration shown in fig-
ure 1. Second, assume that the gain constants C.,, Co, K.,, and K« satisfy the follow-
ing inequalities:

Ci

Then equations (22) to (25) can be approximated by

Z33 = ̂ lz + T2z)s + C38 + K3 (27)

z13 = 0 (28)

z31 = 0 (29)

The roll-yaw characteristic equation is then approximated by

lx + W82 + Cl8 + Kj^lz + !2z)s2 + C38 + K
3]

10



The first quadratic factor can be thought of as the roll characteristic equation

because only roll-axis parameters appear. Similarly, the second quadratic factor can
be thought of as the yaw characteristic equation

ttlz + Ws2 + C3S + K3 = °

Let s « and s 9 be the roots of the roll characteristic equation (31), and let s , and
s g be the roots of the yaw characteristic equation (32). Assuming that

C3 -

then the roll and yaw roots are complex conjugate pairs.

s s -fav1' Sv9

The stability for the roll and yaw axes is determined by the real parts of the roots.

-Cl
Re(s «) = Re(s ,) = - - - (35)

^Ix-W

-C«
Re(s «) = Re(s „) = - 2 - (36) '

Thus, for positive Cj and Cg, the approximate analysis results in stability for the roll
and yaw axes. If either C-^ or Cg is zero, there will be roots with zero real parts.
Thus, proportional feedback alone is not sufficient to achieve stability.

11



A locus of the roots of equations (33) and (34) is given in figure 7. The locus pa-
rameter is K, /t>o(Iix + Iox)>

 anc* the control gains and inertias are specified by

Ci
-± = 1 sec i = 1, 3 (37)

Kl
-J: = 1 (38)
K3

(39)

The gain ratios and inertia ratios specified by equations (37) to (39) are chosen to repre-
sent a realistic dynamic response of a high-power communication satellite configured as
in figure 1. From equations (37) to (39), the roll roots coincide with the yaw roots in
figure 7. If equation (37) is replaced by

C-
— = 10 sec i = 1, 3
Ki

then the roll-yaw root locus is given by figure 8. With the greater rate feedback, the
roots are further away from the imaginary axis.

Pitch Stability

The pitch characteristic equation is dependent on Zg2> 244, z24> an^ Z42* Tnese

four terms are

Z22 = Xlys2 + C2S + (K2 " K4>

z44 = I2ys
2 + C4s + K4 (41)

Z24 = -C4S ' K4 (42)

z42 = I2ys
2

 + K4 (43)

12



The pitch characteristic equation (21) can be expanded to yield

(IlyI2y)s
4 + (I2yC2 + IlyC4 + I2yC4)s

3
 + (IlyK4 + C2C4 + I2yK2)s

2

+ (C2K4 + C4K2)s + K2K4 = 0 (44)

Unlike the roll-yaw characteristic equation, the pitch characteristic equation cannot be
well approximated by two quadratic factors with K2 and C2 appearing in one quadratic
factor and K4 and C4 appearing in the other.

One particular case worthy of investigation is the case C4 = 0. Physically, C4

being zero means that no tachometer or other rate sensor is used to measure the body 2
rate error B.. When C* is zero, equation (44) can be expressed as the product of two
quadratic factors:

) (V2 + C2s + K2) = 0 (45)liy

The characteristic roots ij yKT/IoT, of the first quadratic factor have zero real parts.
Thus, stability is not achievable for C4 = 0, and a rate sensor is required to sense 0^.

A locus of the roots of the pitch characteristic equation (44) is given in figure 9.
The locus parameter is £4/•> Ig » and the control gains and inertias are specified by

C,
-± = 1 sec i = 2, 4 (46)
Ki

K4 4
(47)

JZ = 1 (48)

The gain ratios and inertia ratios specified by equations (46) to (48) are chosen to repre-
sent a realistic dynamic response of a high-power communication satellite configured as
in figure 1.

/ 2Figure 9 shows that one pair of roots has a positive real part if K4 /u> L> is less
than about 2x10 . Unlike the roll-yaw case, not all positive values of K2, K4, C2, and
C4 yield pitch-axis stability. If equation (46) is replaced by

13



— = 10 sec i = 2, 4

then the locus of the pitch roots is given by figure 10. With the greater rate feedback,
figure 10 shows that stability is achieved for all positive values of K2, K^, C%, and C

The coefficient of s in the pitch characteristic equation (44) is the sum of three
terms. If the third term, ^yC^, is dropped, the pitch characteristic equation can be
expressed as the product of two quadratic factors:

C2C4 <C2K4 + C4K2>S

Kr>K. = C2S (49)

A coarse approximation to the pitch roots is obtained from the roots of the two quadratic
factors of equation (49).

STABILITY ANALYSIS FOR u£0

Assume now that the central-body and solar-array centers of mass do not coincide
(u * 0). If {f} in equation (6) is a nonzero matrix, a steady-state error { d } will re-
sult. The steady-state error is

(50)

The matrix { f}, as given by equation (10), will be nonzero only if the vector u has
more than one nonzero component in the body 1 coordinate system. To evaluate { 0 _}

•4 OQ

from equation (50), we must first find [K]~ . Assuming that

» 4^

the matrix [K] can be approximated as

i = 1, 2, 3, 4

14



K4G sin

0

r sin

0

0

cos

K4G cos

-K,

K

(51)

Inverting the [K] matrix of equation (51) and carrying out the matrix multiplication of
equation (50) yields

ss

M1M2"?

MT

4ulyulz
Kl

-3ulxulz
K2

-ulxuly
K3

~4ulyulzG sin * 3ulxulz uixulyGcos<?
Kl K2 K3

(52)

The steady-state solar-array pointing error a is calculated from equation (2) to bess

(53)

To find the order of magnitude of { 0 }, we assume the following values, which are
SS

representative of a high-power communication satellite configured as in figure 1:

u. = 1 mMj = 450 kg

M2 = 150 kg G = 0

K. = 1 Nm (p = 0

(54)

The values assumed for u- represent a worst-case situation. For these values { 0
1 Do

in degrees is

15



1.4x10-4

-1.0X10-4

-0.3X10 -4
(55)

1.0x10-4

Thus, steady-state pointing errors due to nonzero u are negligible.
To analyze stability for nonzero u, we wish to make assumptions which allow the

characteristic equation to be separated into three equations for the roll, yaw, and pitch
axes. Paralleling the stability analysis for zero u, the first step is to factor the char-
acteristic equation into two quartic factors, where one factor contains roll and yaw pa-
rameters and the other factor contains pitch parameters. For the zero-u analysis,
the two quartic factors are given by equations (20) and (21). In order to obtain this fac-
torization it is necessary for 2^4, 232* z,^ to be zero. For zero u, this is
the case as seen by observing the zero elements of [M], [C], and [K] in equations (7),
(8), and (9). For nonzero u, Zj« and Zog become nonzero. We make the assumption
that the components of u are small enough to justify setting Zjn and Zoo to zero. S
the characteristic equation is still factorable into a roll-yaw characteristic equation,

Z11Z33 " Z13Z31 (56)

and a pitch characteristic equation.

Z22Z44 " Z42Z24 (57)

Roll-Yaw Stability

Continuing to parallel the zero-u analysis, we wish to express the roll-yaw charac-
teristic equation (56) as the product of two quadratic factors, where one factor contains
roll parameters and the other factor contains yaw parameters. For the zero-u analysis,
the factorization is given by equation (30). The required assumptions for making this
factorization for nonzero u are

- I2x
M

Mn

ulxulz I2x (58)

16



\ l2z ~ I2x\
M1M2

Mn

ulxulz (59)

C, » + 2
M

uly i - 1. 3 (60)

1=1, 3 (61)

These assumptions are equivalent to assuming that z and Z are zero, and that

= 0

Z33 =
M M 2 2

S + CgS + Kg = 0

(62)

(63)

Equations (62) and (63) are the separated roll and yaw characteristic equations, re-
spectively.

Define effective inertias l^ and Iz by the equations

!uly + UD (64)

M M 2 2 (65)

Assuming that

C 2 -Ll

then the roll roots are

C3 - 4K3Jz

17



srl> S r2~
2Ix 2Ix

and the yaw roots are

-C 2

2IZ 2IZ

The real parts of the roll and yaw roots are negative for positive C« and Co. We con-
clude that stability is achieved in the roll and yaw axes for nonzero u. Notice, however,
that the degree of stability is less than for a zero u. By comparing equations (66)
and (67) with equations (35) and (36), it is seen that the real parts of the roll and yaw
roots are smaller in magnitude for a nonzero u than for a zero u. For realistic values
of u, however, the difference in the magnitudes of the roots for the two cases is not
substantial. The locus of the roll-yaw roots for nonzero u is essentially the same as
the locus of roll-yaw roots for zero u given in figures 7 and 8.

Pitch Stability

H we assume that

2
S M M U , x

<68>

istic equation for a zero u in that the term I« is replaced by an effective pitch inertia
then the pitch characteristic equation for a nonzero u differs from the pitch character-
istic equation fi
ll defined by

(69)

From the results of the roll-yaw stability analysis, one might suspect that the ef
fective pitch inertia l\ will decrease the magnitude of the real parts of the pitch
characteristic roots and thus decrease the degree of stability. Defining AI., by
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ly ly " ly

we wish to show that the sum of the real parts of the pitch roots decreases in magnitude
as AL increases. If the pitch characteristic equation is normalized so that the coef-1y 4 Q
ficient of s is 1, the coefficient of s becomes

I2y(C2 + C4) + IlyC4 + AIlyC4

Calling this coefficient a, we obtain

. -'Jy
(C2-C4' (72)

In terms of the pitch characteristic roots s ., i = 1 to 4, the coefficient a is

a = - + Sp2 + S
P3 + Bp4>

Since the imaginary parts of the roots sum to zero,

a = -Re(spl + sp2 + sp3 + sp4) (73)

If it is assumed that C^ + C4 is positive, da/dtAIj ) is negative by equation (72). We
conclude from equations (72) and (73) that the sum of the real parts of the pitch roots
decreases in magnitude as AI. increases. We cannot conclude, however, that pitch
stability decreases as AL increases. It is possible that the dominant root (the root
whose real part has the smallest magnitude) is increasing in magnitude at the same time
that the sum of the real parts of the roots is decreasing in magnitude. Since the degree
of stability is determined by the dominant root, in such a case the degree of stability in-
creases as AI- increases. Such a case is shown in the locus of pitch roots shown in
figure 11. The locus parameter is ^IivAiv and the control gains and inertias are
assumed to be

4I2y = Tly = 40° ^ ffi2

4K4 = K2 = 40 Nm

4C4 = C2 = 40 Nm sec
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It is seen from figure 11 that the real part of the dominant root increases in mag-
nitude as AIjv/I« increases from 0 to 0. 7. For realistic configurations of high-power
communication satellites, AIj /I- is not greater than 0.1. The change in magnitude
of the real part of the dominant root as AI« /I- changes from 0 to 0.1 is not signifi-
cant. Thus, a nonzero u does not significantly change stability characteristics, and
the locus of pitch roots for nonzero u is essentially the same as the locus of pitch roots
for zero u given in figures 9 and 10.

CONCLUDING REMARKS

This report presents a small-angle stability analysis for one particular configura-
tion of a high-power communication satellite having a linear control system. The re-
sults of the report yield preliminary indications of the relation of stability to satellite
inertias and control gains.

Assumptions are made which allow the equations of motion to be linearized and
which make the resulting stability analysis tractable. The eighth-order characteristic
equation is separated into two second-order equations for the roll and yaw axes of the
spacecraft and a fourth-order equation for the pitch axis. For positive control gains,
stability is achieved for the roll and yaw axes. Not all positive values of control gains
will yield stability for the pitch axis. Pitch-axis stability is achieved only when the con-
trol gains are sufficiently large. The degree of stability is not significantly changed
when the central body and solar array have noncoincident centers of mass.

The exact roots of the eighth-order characteristic equation were calculated on a
digital computer by using a subprogram which calculates the roots of a polynomial. The
exact roots were compared to the roll, yaw, and pitch roots obtained from the approxi-
mate analysis. For the range of parameters which represent realistic high-power com-
munication satellites, the approximate roots are within 2 percent of the exact roots.

Lewis Research Center,
National Aeronautics and Space Administration,

Cleveland, Ohio, April 25, 1972,
164-21.
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APPENDIX A

DERIVATION OF GENERALIZED DYNAMIC EQUATIONS

Introduction

The generalized nonlinear equations of motion are derived in this appendix. The
nomenclature and equation derivation is taken from reference 1. The equations as de-
rived in reference 1 apply to a spacecraft configuration consisting of a central rigid body
and as many as five auxiliary rigid bodies. Each auxiliary body is assumed to be con-
nected to the central body at a single point, to have as many as three rotational degrees
of freedom relative to the central body, and to have no interconnection with other auxil-
iary bodies. The equations presented in this appendix are a specialization of the equa-
tions of reference 1 for the case of one auxiliary body (solar array) having one rotational
degree of freedom with respect to the central body and having the attach point between
bodies at the center of mass of the auxiliary body.

Matrix Notation

It will be convenient to derive equations of motion in matrix notation. Brackets de-
note a square matrix and braces denote a column matrix. For example [A] is a square
matrix and {u 1} is a column matrix. The notation [A]T denotes the transpose of [A].
If cr. is a vector associated with body i, then { a^ } denotes the column matrix of com-
ponents of a. expressed in the body j coordinate system. Similarly, {<^ r} denotes
the column matrix of components of cr expressed in the orbital reference coordinate
system. Those vectors, such as u, which are not associated with either body 1 or
body 2 do not have a subscript. For such a vector, {u^} denotes the column matrix of
components of u expressed in the body j coordinate system. The components of a
column matrix are denoted by additional subscripts x, y, and z. Thus, the components
of the column matrix {a-} are a^x, a^ , and a . . .

Consider the vector cross product A x B. We wish to express the cross product in
matrix notation. Let {A.} and {B-} be the components of A and B in the body j co-
ordinate system. Define [JA-] to be

*»

-Aiy
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Then the components of (A x B) in the body j coordinate system are

{ ( A X B ) . } =[JAj]{B j} (A2)

2 2
Inertial derivatives of an arbitrary vector ~a will be denoted by da/dt, d a/dt ; and
derivatives relative to a rotating coordinate system will be denoted by "a, ~a.

Coordinate Systems

Inertially fixed coordinate system. - The inertially fixed coordinate system will be
denoted symbolically by

(A3)

where Xj, y^, and Zj are unit vectors along the coordinate axes. The origin of the
coordinate system is at the center of the earth. The vectors X and z, lie in the,

equatorial plane, and Zj points to the sun at the time of the autumnal equinox. The
axis points northward.

Orbital reference coordinate system. - The orbital reference coordinate system
will be denoted symbolically by

{Qr} = (A4)

where x , y , and
{ Qr} coordinate system is at the center of mass of the central body. The

z are unit vectors along the coordinate axes. The origin of the

directed toward the center of the earth, the x
axis is

axis is directed along the orbit velocity
vector, and the y axis points southward. It is assumed that the satellite orbit is
exactly the circular synchronous equatorial orbit.

Body 1 coordinate system. - The body 1 (central body) coordinate system will be
denoted symbolically by
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-— -\x

(A5)

where Xj, y*, and z* are unit vectors along the coordinate axes. The origin of the
{ Q^} coordinate system is at the center of mass of body 1. The axes of the coordinate
system are oriented such that they coincide with the corresponding axes of { Q } when
body 1 is in its nominal position.

Body 2 coordinate system. - The body 2 (solar array) coordinate system will be de-
noted symbolically by

{Q21 = (A6)

where Xn, y^, and z^ are unit vectors along the coordinate axes. The origin of the
{ Q2} coordinate system is at the attach point connecting body 1 and body 2. The unit
vector ^2 ^s parallel to y^ and in the same direction as y,. Since body 2 has only
one rotational degree of freedom with respect to body 1, rotation can take place only
about the y2-axis. The unit vector z2 is perpendicular to the solar array panels. The
unit vector Xg is in right-handed orientation to y« and z«.

Relative Motion Between Bodies

Rotational positions. - Transformation matrices from one coordinate system to
another are [E], [A], and [D] as defined by the following equations.

{Qr} =

{Qj} =[A]{Q r}

{Q2} =

(A7)

(A8)

(A9)

Rotation velocities. - Rotational velocities of coordinate systems are now defined.
The symbol ~w is used for inertial rotational velocities, and the symbol fi is used for
relative rotational velocities. The following definitions will be used:
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co , fi inertial rotational velocity of orbital reference coordinate system

co\ inertial rotational velocity of body 1 coordinate system

fi- rotational velocity of body 1 coordinate system with respect to orbital reference
coordinate system

co2 inertial rotational velocity of body 2 coordinate system

J22 rotational velocity of body 2 coordinate system with respect to body 1 coordinate
system

The equations of motion will be developed to solve for the time rate of change of the
relative rotational velocities fi^ and fig-

Rotational accelerations. - Rotational accelerations of coordinate systems are now
defined. A dot over a column matrix variable indicates time derivative of the column
matrix components. For example, the three components of { fi_r} are

dnrrx dnrry d

dt dt dt

The equations of motion will contain the following rotational accelerations:

{ ci> }&{ fi_r} inertial angular acceleration components of the orbital reference co-
ordinate system

{ Wii } inertial angular acceleration components of the body 1 coordinate system

{ fill } angular acceleration components of the body 1 coordinate system with
respect to the orbital reference coordinate system

{ obno} inertial angular acceleration components of the body 2 coordinate system

{ n«2 J angular acceleration components of the body 2 coordinate system with
respect to the body 1 coordinate system

We derive { c o } as follows:

= fir + fij (A10)

ll = {nri} + {fin) =[A]{fi r r} + {fin} (All)

{u>n} =[A]{fi r r} +[A]{n r r) + {fin} (A12)

Letting co be the angular velocity of the synchronous orbit, we have
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rtn

o

LoJ

(A13)

Equation (A12) becomes

(A14)

W e derive { w ^ a s

(A15)

(A16)

Using equation (All), we obtain

{«22.> = MA]{nrr}

Differentiating equation (A17), we obtain

(A17)

In developing equations of motion, we wish to isolate terms containing the relative
rotational accelerations {fi^} and {O22}. We let {yWj j} be those terms of {wj j }
which contain { fij^} and { fi22}, and we let {n^n 1 be those terms of {w ^} which do
not contain { fij^} and {J722}. We make similar definitions for {u^22} and {n<l>22 }.
Using equations (A14) and (A18), we have

lu

=[D][A]{firr} +[D][A]{firr} +[D]{On}

(A19).

(A20)

(A21)

(A22)
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Translational accelerations. - We now seek an expression for the translational ac-
celeration of the body 2 center of mass expressed in body 1 coordinates. Let u be the
vector from the body 1 center of mass to the body 2 center of mass. Let Si be the
vector from the center of the earth to the body i center of mass. Let S be the vectorm

from the center of the earth to the total spacecraft center of mass (fig. 12). We have
the relation

M
S = wm

. _
u (A23)

where M..
HU,

and M^ are the masses of body 1 and body 2, respectively. We define G ,
by the equations

dt
2
2

(A24b)

(A25>

where MT is the sum of M., and . Thus, G^ is the translationalacceleration of

the body 2 center of mass. Equation (A25) can be written as

The vector H can be w. 'tten as

HU = u + 2(aJj x u) + (co X u) + coj x (^j x u) (A27)

where the derivatives on the right-hand side of the equation are taken with respect to the
body 1 coordinate system.

In matrix notation, equation (A27) in the body 1 coordinate system becomes

(A28)
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Since the vector u has fixed components in the body 1 coordinate system,

{{4} = {{4} = {0} (A29)

Equation (A28) simplifies to

Separating equation (A31) into two components, inHu l} and {uHu l},

u > <A32>

Forces and Torques

In discussing forces and torques, we will use the term "internal torque" to refer to
reaction torques between the two bodies. All other torques will be termed "external. "
We make the following definitions:

F , gravity force on body i, i = 1, 2
&

F . external forces, excluding gravity force, on body i
SI

F internal reaction force on body 1 due to body 2

T . gravity gradient torque (about body i center of mass) on body i, i = 1, 2
&

T . external torques (about body i center of mass) excluding gravity gradient torque,
on body i, i = 1, 2

T internal reaction torque (about body 2 center of mass) on body 1 due to body 2

The total force on body 1 in vector and matrix notation is

* = ? + f + ? <A34>

The total torque (about the body 1 center of mass) on body 1 in vector and matrix nota-
tion is
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Tel = Tgl + Tsl + (u x Fr) + Tr (A36)

= <TgH} + {Tsll} + [JulttDMFr2> + [D]T{Tr2> <A37>

The total force on body 2 in vector and matrix notation is

Fe2 = Fg2 + Fs2 - Fr

<Fe22} = { F g 2 2 > + { F s 2 2 > ' < Fr2 >

The total torque (about the body 2 center of mass) on body 2 in vector and matrix nota-
tion is

7f = T + T-T (A40)

< Te22 > = ( Tg22 » + t Ts22 > ' * Tr2 »

The total force on body 2 is equal to the product of its mass and the acceleration of its
center of mass

Fe2 = M2G2 (A42)

Using equations (A38) and (A42), we have

Fr = ?g2 + Fs2 - M2^2 (A43>

Body 1 Equation of Motion

The body 1 equation of motion in vector and tensor notation is

Tel = li • oij + wj xTj • oij (A44)

where co< denotes the derivative of o)j with respect to the body 1 coordinate system,
and 1^ is the inertia tensor of body 1.

Expand Tgj using equations (A36) and (A43):

*el = Tgl + Tsl + « X (fg2 + Fs2 - M2^2)
 + T

r (A45)
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Tel = Tgl + Tsl + u X <Fg2 - M2G2> + u X Fs2 + Tr (A46)

The term F ~ - M2G2 is the su^raction nearly equal terms. We wish to express
this term in a more desirable form. Using equation (A23), F « can be written as

M,
yM2j S + —

yM9S9 \ MT
r g 2 " - ~

~S2 3 _ + M l _

m MT

3
(A47)

Since Sm is much larger than (M,/MT)u, we can use a perturbation technique to ex-

press F 2 as

= -yMo -S -

/-
o 1 ra
Sm \

m

M, _>
• — -u

1 MT )

4

)-Sm M,u

MTSm

(A48)

We calculate Gm from

,m
m

Equation (A49) reduces to

(A49)

Gm = - i\/rMT i=
(A50)

Then is obtained by using equation (A26)

M9G9 = M9Gm + A " H^ ^ ^ m •.<• u (A51)
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Now using equation (A50),

Mo
9 ™2 m ,

,; +
TT
H,.

m
M

T i=

(A52)

Subtracting equation (A52) from equation (A48), we obtain the term (F
more desirable form.

2 in a

Fg2 - M2G2 = -
MTSm

MjU

MTSm

Mo

M,

ML _

T i= MT (A53)

Combining equations (A46) and (A53) yields

Tel = Tgl + Tsl + u X
3yM1M2(Sm

MTSm

r; MlM2Hu u x r

(A54)

Using the vector identity

(u • Sm)(u x Sm) = u x [sm x (Sm x u)] (A55)

equation (A54) becomes

M 2 V F '
L Fsi,

MTi=

3yM1M2(u X [sm X (Sm X 5)]} X
(A56)

We now wish to write the vector equation (A56) in matrix notation. The components of
the vector Sm in the orbital reference coordinate system are given by
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mr

0

0 (A57)

where Sm is the magnitude of Sm. Then

(A58)

where { Ag} denotes the third column of the matrix [A]. We can write equation (A56) in
the body 1 coordinate system as

M

i VI r

SmMT

Rewriting equation (A44) in matrix notation,

(A60)

where [Ij] is the inertia matrix of body 1 with respect to the body 1 coordinate system.
Combining equations (A59) and (AGO)

MtM2

Mm

(A61)

where { qi i } is defined to be
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M, \ 3yM,M

MT 1V1T / SmMT

Body 2 Equation of Motion

The body 2 equation of motion in vector notation is

By using equations (A19) and (A32), equation (A61) becomes

M.M
{ T } (A63)

In the analysis to follow, it will be convenient to express equation (A63) as

[Ln]{nu} +[L12]{fi22} = {qn} + {Trl} (A64)

where [Lj^] and [Ljg] are given by

M.M

[L12] = [0] (A66)

where OJQ denotes the derivative of w^ with respect to the body 2 coordinate system
and To is the inertia tensor of body 2. From equation (A40), T 9 is given by

f e2 - Tg2 + Ts2 - Tr (A68)

Combining equations (A67) and (A68) in a matrix equation in the body 2 coordinate system,
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(< 11*22 * + t u"22 0 + I Jcu22]ftJ < W22 > = < Tg22 » + < Ts22 > ' < Tr2 > <A69>

where [L,] is the inertia matrix of body 2 with respect to the body 2 coordinate system.
By using equation (A21), equation (A69) becomes

= {q22} - {Tr2} (A70)

where { q22 } is given by

t «22 > ' -W t n^22 > - [Ja>22W ̂ 22 > + < Tg22 } + * Ts22 > ^A7 «

Equation (A70) is rewritten as

[L213{fin} +[L22]{fi22} = {q22} - {Tr2} (A72)

where [L/2 ̂ ] and [Lg2] are given by

[L21] = [I2][D] (A73)

(A74)

Elimination of Locked-Gimbal Reaction Torques from Equations of Motion

We repeat the body 1 and body 2 equations of motion

= {qu} +[D]T{Tr2} (A75)

- { T } (A76)

Body 2 has rotational freedom only about its y-axis. The x-axis and z-axis of body 2
are locked gimbals. Then { T o } is composed of two parts

where { TpG2} is the reaction torque about the "free-gimbal" y-axis, and { TL Q2 } is
the reaction torque about the "locked-gimbal" x-axis and z-axis. lTpQ2} has only a
y component, and {TLG2} has only x and z components.
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0 n

FG2y

0

(A78)

0

LG2z

Substituting equation (A77) into equations (A75) and (A76),

(A79)

[Ln]{fin} = {qn} +[D]T{TFG2} +[D]T{TLG2} (A80)

[L21]{6U} +[L22]{622} = {q22} - (A81)

We now manipulate the body 1 and body 2 equations (A80) and (A81) in order to
eliminate { T,G2 } . It will be convenient to introduce three new matrices, [U], [P],

and [U - P], defined by

1 0 0

0 1 0

0 0 1

0 0 0"

0 1 0

0 0 0.

"l 0 0"

0 0 0

.0 0 1.

We have the following relation:

(A82)

(A83)

[U - P] = (A84)
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= { 0 } (A85)

TLG2 } = < ° ) fu - p] { TLG2 > = I TLG2 > <A86>

To eliminate { TLG2 1 *rom tne body 2 equation of motion, we premultiply equation (A81)

by [P].

[P][L21]{On} + [P][L22]{n22} =[P]{q22} - {TFG2} (A87)

To eliminate { TLG2 } from the body 1 equation of motion, we must first premultiply the

body 2 equation (A81) by [D]T[U - P].

[D]T[U - P][L21]{nn} + [D]T[U - P][L22]{fi22} = [D]T[U - P]{q22} -

(A88)

By adding equation (A88) to the body 1 equation (A80), we obtain the new body 1 equation
with { TLG2 } eliminated.

([LH] + [D]T[U - P][L21]){«n} + ([L12] + [D]T[U - P][L22]){f222} = {qn}

+ [D]T { TFQ2 } + [DT][U - P] { q22 } (A89)

Rewriting the new body 1 and body 2 equations (A89) and (A87),

[Mn]{nu} +[M12]{n22j = {bu} (A90)

[M21]{nn} +[M22]{n22} = {b22} (A91)

where [Mu], [M12], [M21], [M22], {b^} , and{b2 2} are given by

[Mn] = [Ln] + [D]T[U - P][L21] (A92)

[M12] = [L12] + [D]T[U - P][L22] (A93)

[M21] = [P][L21] (A94)

[M22] = [P][L22] (A95)
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{bu} = [D]T{TFG2} + [D]T[U-P]{q22} (A96a)

(A96b)

Since [M2«], [Mgo]* {bo2^ al* involve a premultiplication by [P], the first and third
rows of these three matrices are zeros. Also, the first and third components of { fi«>2}
are zero because body 2 has rotation only about its y-axis. Combining equations (A90)
and (A91) into a single matrix equation, we have

"Mllxx Mllxy Mllxz M12xx M12xy M12xz

Mllyx Mllyy Mllyz M12yx M12yy M12yz

Mllzx Mllzy Mllzz M12zx M12zy M12zz

0 0 0 0 0 0

M21yx M21yy M21yz M22yx M22yy M22yz

0 0 0 0 0 0 .

<
•

0
^

bny
bllz

0

b22y

(A97)

The third and fifth rows and columns of the 6x6 coefficient matrix can be deleted to form
a 4X4 system

Mllxx

Mllyx

Mllzx

.M21yx

M

M

M

M

llxy

iiyy

llzy

21yy

Mllxz M

Mllyz

Mllzz

M21yz

M

M

M

12xy

I2yy

12zy

22yy.

n lly

"
llz

>= <
lly

llz
(A98)

For shorthand notation, equation (A98) will be written as

[M]{f2} = {b} (A99)
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APPENDIX B

LINEARIZATION OF DYNAMIC EQUATIONS

Assumptions

The dynamic equations derived in appendix A will now be linearized by assuming
that the angular coordinates 9- are small. Thus, sin 0- is approximated by 0,, and
cos 0. is approximated by 1. We make the following assumptions:

(1) The body 1 coordinate axes are nearly the same as the orbital reference coor-
dinate axes. Thus, we can specify the orientation of the body 1 coordinate system with
respect to the orbital reference coordinate system by three small angles 0.., Q^
and 0g. The orbital reference coordinate axes, if rotated through an angle 0* about
the x-axis, through an angle 0« about the y -axis, and through an angle 9n about
the z^axis, will coincide with the body 1 coordinate axes. The transformation ma-
trix [A] becomes

(Bl)

(2) The body 1 and body 2 inertia matrices are diagonal matrices. Equivalently, the
geometric axes coincide with the principal axes of bodies 1 and 2. The inertia matrices
I and L become

[111-
0

0

J2x

0

0

0

0

'l*
0

0

(B2)

(B3)

(3) The body 1 and body 2 inertia matrices have constant elements, and the body 1
and body 2 masses are constant.
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(4) The dominant torques on the spacecraft are the control torques. Environmental
torques such as the gravity gradient, solar pressure, and magnetic torques are negli-
gible. Any friction torque between the two bodies is negligible. It is assumed that 9^
and 8^, i = 1, 2, 3 are known from sensor data and that the components of the body 1
control torque vector T consist of proportional and derivative feedback. The vector
,^_ \s

T is given in the body 1 coordinate system by

(B4)

(5) A motor torque is used for rotating body 2 with respect to body 1. See figure 3
for the definition of the angle <p. The angular velocity of the body 2 coordinate system
with respect to the body 1 coordinate system is (p. The nominal value of <p is one
earth rate COQ. So the rate error is given by <p - u)Q. It is assumed that the motor
torque responds to the position error a, as defined in figure 4, and the rate error
(f> - u>Q. The motor torque vector T is given in the body 2 coordinate system by

K c r (B5)

where it is assumed T acts on body 1.
(6) Nonlinear terms in the equations of motion are negligible. Thus, terms such as
9^9., and 9-9. are removed from the equations of motion.

Calculation of o

The fourth angular coordinate 9. is defined as

£4 = <p - (a + oJQt) (B6)

where the angles a and co t are shown in figure 5.
The body 2 pointing error a is equal to 9, when 0. = 9^ = 9« = 0. When body 1

pointing errors are nonzero, they contribute to a. Let ~5 be a unit vector directed from
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the center of the earth to the sun. Let 6 be a vector formed from the projection of 6
into the "ZT-XT plane. Let 0 be the angle between ZT and 5, and let 9 be the anglei i s i p
between z, and 6 . The geometry is shown in figure 13.

The angles 00 and 9 are related byfa p

tan d_ cos i = tan 9s p (B7a)

where i is the inclination of the ecliptic plane to the equatorial plane (i = 23. 449 ). In
the inertial coordinate system, 6 is given by

fsin 00 cos i"
S

= -sin 0e sin i

cos

(B7b)

A series of transformation matrices is required to express 6 in the body 2 coordinate
system.

{62} =[D][A][E]{6j}

The [A] matrix is given by equation (Bl), and [D] and [E] are given by

(B8)

[D] =

"cos (p 0 -sin (p

0 1 0

sin (p 0 cos q>_

-cos($ + oti + w t) 0 sin($ + o^ + u> t)p 1 o p 1 o

0 - 1 0

sin(0 + a-, + co t) 0 cos(0 + a-, + co t)

(B9)

(BIO)

The angle a is assumed small, and the sign convention for a is that it is negative if
the projection of 6 into the Zg-x2 plane lies between the z2-axis and x2-axis. Thus,

-6
a = sin a = 2x

(BH)

'2x + °2z
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Using equations (B6) to (Bll), a is calculated to be

a = JG sin((p - d^ld^ + 9^ + G[COS(<P -

where G is given by

(B12)

-sin 9 sin i
S

V 2 21 - sin 00 sin i
S

(B13)

Since 8 . is a small angle and cp in general is not small, we can approximate equa-
tion (B12) by

cosa = (G sin cp)0* + #„

The motor torque of equation (B5) can now be written as

= (K4G sin cos

(B14a)

(B14b)

Calculation of [M]

The matrix [M] of equation (A99) consists of elements of the matrices [M.^], [
[M21], and [M^o]} which in turn consist of elements of the matrices [Lijlj [Lio]' [
and[L22]. Evaluating [L1J], [L12], [L21], and [L22] from equations (A6 5), (A66),

and (A74),

(A73),

-
Xlx ° °

0 hy °

_° ° Tlz

|
 M1M2

T

[Li2] =

" 2 2
uly + ulz -ulxuly

-ulyulx ulz + uly

, -ulzulx -ulzuly

"0 0 0"

0 0 0

J3 0 0.

*

-ulxulz

-ulyulz
2 2

ulx + uly

(B15)

(B16)
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IP cos <p 0 -Ip sin (p

0

I2z sin

2y 0

0 I0 coszz

0 h, °

0 0 Io.

Evaluating [M^], [M12], [M21], and [M22] from equations (A92) to (A95),

T / T T \ —' & f\

[Mn] =

2x

0

(I2z

(I2z cos

0

0 T lz

(B17)

(B18)

XT

»!y-L

-ulyulx

,u lx

sin

-ulxuly

ulz + uiy

'ulzuly

I2x cos ^ 0 I2z sin <p

0 0 0

I2z cos

0 0 0

0 T2y °

.0 0 OJ

-ulxulz

-ulyulz

ulx + uly

(B19)

(B20)

(B21)

0 0'

0 J2y °

Lo o a
(B22)
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When [Mjj], [M12], [M21], and [M22] are combined into a 6x6 matrix (see eq. (A97))
and the third and fifth rows and columns are deleted, the matrix [M] is obtained

(I2z

(I2z

cos

Ulx + uly

-ulyulx

-ulzulx

(I2z

-ulxuly

lz + ulx

-ulzuly

cos

.- 2

-ulxulz

-uiyulz

0

0

0

T2y.

(B23)

Calculation of

The first three components of the column vector { fi } of equation (A99) are the com-
ponents of the vector fi.. in the body 1 coordinate system. Because of our linearity
assumptions, these components are simply &., 02, and 0«. The fourth component of
{ $7} is the angular acceleration <p of body 2 with respect to body 1. From equa-
tion (B6), we can solve for ,<p in terms of 9 *.

<p = (B24)

Thus, {f i} reduces to

(B25)
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Calculation of {b}

In calculating the {b} matrix, we neglect all nonlinear terms. The {b} matrix of
equation (A99) consists of components of the matrices {b...,} and {bgo} • As a first
step to calculating {b*jj and {b22l from equations (A96) and (A97), we calculate
and { q^g} from equations (A62) and (A71). Our assumption that forces and torques
other than control forces and torques are negligible implies that

So { q^ } and { q22 } reduce to

M,Mr

SyM.M,,
V

SmMT

(B26)

(B27)

We now proceed to evaluate each of the five terms on the right-hand side of equa-
tion (B26).

The matrix {1, from equations (A20), (Bl), and (A13), is

X1 -̂ .

0

r°
1 0
^ ^/

-O) 0,,

>= < 0

,wo^

The first term of equation (B26) is then

(B28)

(B29)
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The matrix { w } , from equation (All), is

rr (B30)

(B31)

The second term of equation (B26) is then

(B32)

The matrix (nHul}, from equation (A32), (B28), and (B29), is

(B33)

=

- ulwo
2^

2co u^ o

(B34)

The third term of equation (B26) is then
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M1M2

2 2
KUQ0 A

2 2^u^oO l o

(B35)

The fourth term of equation (B26) consists of the control torque of equation (B4).

v"K

(B36)

The matrix {A3) is the third column of [A],

{A,} = (B37)

The fifth term of equation (B26) is then

3yMnM9
1

m

U291 -U3

-U1U3 (B38)

The matrix {q.^} is then given by the sum of equations (B29), (B32), (B35), (E36),
and (B38).

To evaluate {qoo} we evaluate each of the three terms on the right-hand side of
equation (B27). The matrix { n w 2 2 }> from equations (A22), (B9), (Bl), and (A13), is
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= < ko cos <p\ 0j

sin

cos

sin

g - (u> si

o - (co cos

sin

cos
(B39)

The first term of equation (B27) is then

I2y[- (WQ cos

I2z w sin

(2o>0 cos

sin 3 + To

sin

cos

- (2coQ sin

cos

(B40)

Using equations (A16), (B31), (B9), and (B3), the second term of equation (B27) is found
to consist entirely of nonlinear terms.

(B41)

The third term of equation (B27) is also {0}.

(B42)

The matrix {^22^ is then given bY tne sum °f equations (B40), (B41), and (B42).
Knowing {^11} and {qoo) we can now calculate {t»..,} and {bgo} from equations

(A96a) and (A96b). Recalling that { TFG2} is the motor torque of equation (B14b),

=<j (K4G sin cos

0

we can calculate {b} in the matrix form

{ b } = -

where [C], [K], and {f} are given by

{ f } (B43)
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o c2

wo [Jlx - Tly + hz + 2I2x + 2(X2z ' W008^] ° C3

0 0

MT

o -c4

- ^O2(l9z ~ I^x)8*11 f cos f "

0 0

0 2ulyulz -2U
2

y 0

-2ulyulz 0 2ulxuly 0

2uly -2ulxuly ° °

0 0 0 0

2 r o T 2 T ' 1
K^ - ^O|li7 " I-IY + Ipx + ^27 ~ ^o-v)®^ ^1 ^ ~^oK^2y ~ ̂ 2x^^ ^ ^^^ Wl ^

-K..G sin <p Ko - K.. -K..G cos w -K-
ri A ^t rt *i

2p "1 2f / 2"!
~^n l (-fpi7 ~ Ip-v)®^ tf COS <f>\ 0 Ko ~ Wn l^lv ~ ^lv ^" ̂ 2x "*" ^9 7 ~ ^PY/^^® ^1 ^

K.*G sin c? Kyi K..G cos G? K-
rt TI rt ~t

2

MT

4(u lz-u ly) 3ulxuly -ulxulz °

lxuly \ulz " ulx/ ulyulz

-4ulzulx -3ulzuly u l x - u l y °

0 0 0 0

MT

-3ulxulz

ulxuly

0

By using equation (B43) for {b} , the final linearized equations of motion can now be
written from equation (A99).

= {t}
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APPENDIX C

SYMBOLS

o
a coefficient of s in pitch characteristic equation

[C] coefficient matrix of { 9}

C- i control gain for rate feedback, i = 1, 2, 3, 4

{ f} torque matrix

G parameter determining degree of participation of 0j and 9^ in ex-
pression for a

l effective satellite roll inertia

I effective satellite yaw inertiaz
I- I.. , I- mass moments of inertia of central body about x, y, z axes of

central-body coordinate system

*2x> *2v> *2z mass moments of inertia of solar array about x, y, z axes of solar-
array coordinate system

II effective central-body pitch inertia

AL variation of II from I.

i inclination of equatorial plane to ecliptic plane

[K] coefficient matrix of { 9 }

K- i control gain for position feedback, i = 1, 2, 3, 4

L line formed by projecting earth-sun line into equatorial plane

[M] coefficient matrix of { 9 }

M™ sum of masses of central body and solar array

M-. mass of central body

MO mass of solar array

Re real part of

s Laplace operator

s • i root of pitch characteristic equation, i = 1, 2, 3, 4

sri i root of roll characteristic equation, i = 1, 2

s • i root of yaw characteristic equation, i = 1, 2
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^cl' ^c2' ^c3 central-body control torques about x, y, z axes of central-body co-
ordinate system

Tm motor torque on central body

u vector from central-body center of mass to solar-array center of
mass

ulx' ulv' ulz X) v' z components of vector u in central-body coordinate system
XP VF ZI un^ vectors along axes of inertially fixed coordinate system
xr' ^r> zr umt vectors along axes of orbital reference coordinate system
xr> y^.' zr un^ vectors along axes of orbital reference coordinate system with

origin translated to center of earth
xl' vl> zl un^ vectors along axes of central-body coordinate system
xl' ^1' ^1 un^ vectors along axes of central-body coordinate system with origin

translated to solar-array center of mass
X2' V2' Z2 unit vectors along axes of solar-array coordinate system

[Z] impedance matrix

z.. element in i row, j column of [Z]

a angle subtended by line L and vector z' evaluated at time equal to
zero

•y earth gravitational constant

6 unit vector directed from solar-array center of mass to sun

6 unit vector formed by projecting 6 into equatorial plane

0^ i angular coordinate, i = 1, 2, 3, 4

9S apparent angular displacement of sun from autumnal equinox measured
in ecliptic plane

{ 9} column matrix of angular coordinates

{•9} column matrix of angular rates

{ 9} column matrix of angular accelerations

{ #ss} column matrix of steady-state displacements

CT solar-array error

<p angular rotation of solar-array coordinate system with respect to
central-body coordinate system

too angular velocity of circular synchronous orbit
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Projection of earth-sun line
into equatorial plane

Figures. - Geometry for defining 64.

Earth
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plane

Apparent path
of sun

Sun

Autumnal
equinox

Figure 6. - Sun angle 8S measured in ecliptic plane.
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lOxlO6

-.3-1-

Figure 7. - Locus of roll-yaw roots for coincident
centers of mass. Small rate feedback; locus
parameter, Kj/wj; dlx + ^l.

•2Tlm(s)

-.2-1-

Figure 8. - Locus of roll-yaw roots for coincident centers of mass. Large rate feedback; locus
parameter, Kj/wjj dlx + I2X>.
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.3-rInHs)

Figure 9. - Locus of pitch roots for coincident centers of mass. Small
rate feedback; locus parameter, K^/Wgl^.

.2-r Imfel

Re(s)

-.2-*-

Figure 10. - Locuspf pitch roots for coincident centers of mass. Large rate feedback; locus
parameter, lO/wHo...
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Figure 11. - Locus of pitch roots for distinct centers of mass. Locue parameter,

A - Body 1 center of mass
B -Body 2 center of mass
C - Total spacecraft center of mass

Body 1

Body 2

'Center
of earth

Figure 12. - Illustration of vectors u, Sj, S2, Sm.
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To sun

Figure 13. - Illustration of angles 9p and 9S and vectors 6 and 6p.
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