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I. INTRODUCTION

This final report on project NAS 2-5643, Study of

Sequential Decoding consists of two main portions: results

of Phase I and II of our research. Covered are results ob-

tained in the period September 1970 through January 1972.

Earlier work concerning September 1969 through August 1970

is contained in the Annual Report of September 1970.

Phase I deals with problems of reliable transmission

through noisy space channels and is subdivided into nine

areas reported on in Chapter II. (see Table of Contents).

Phase II of the project deals with problems of en-

coding of space sources for the purpose of data compression.

It is subdivided into four areas that are reported in

Chapter III.

Chapter IV lists the theses, publications, and talks

that were based on work supported by this project.

A substantial portion of this report has already been

presented in Quarterly Progress Reports 5 through 8.
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II. REPORT ON PHASE I

II-A. Theoretical Performance Curves for Bootstrap

Sequential Decoding

We have evaluated R BooT(l) and RBOOT(l) vs. 10 log Eb/N perfor-

mance curves of quaternary and octal quantized Gaussian channels with binary

antipodal inputs. E
b

denotes the energy per information bit. As previously,

m-1the rates given do not include the degradation factor - corresponding to the

single parity algebraic code. Each of the curves includes parameter values K

denoting the least number of streams for which the former are valid (for m <K,

better performance is obtainable). The performance curves were obtained for

uniform quantization at the receiver, whose intervals were optimized with the

help of Figures 1 through 7. The latter are parametric curves (with respect to

a fixed SNR) showing the performance as a function of varying quantization size.

It is interesting to note that in each figure, the optimal quantization size (in

fractions of Eb/No) is almost invariant to any changes in the value of Eb/N
o .

LFigures 1 through 5 deal with RBOOT(1 ) and correspond to the following

cases: Quaternary channel with a binary state stream (1) and with a full (quat-

ernary) state stream (2), Octal channel with a binary state stream (3), with a

quaternary state stream (4), and with a full (octal) state stream (5). In case

(4) the quaternary state stream was obtained by lumping together the three

neighboring output digits that correspond to the extreme quantization values

2
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on each side of the 0 point (this is the optimal lumping procedure).

Figures 6 and 7 deal with R UBOoT(l) for the quaternary (6) and octal
BOOT

(7) channels with a binary state stream.

Figures 8 through 12 give then the RL ooT(1) vs. 10 log Eb/N relation-
BOOT b O

ship for optimal uniform quantization at the receiver. All these curves con-

tain parametric indications of EI/N (dB) performance, where E is the energy
0 5

per transmitted bit. Also shown are the previously mentioned K-limits. Fig-

ure 8 compares the performance of Bootstrap Hybrid Decoding for binary,

quaternary, and octal quantization with full channel state streams. It can be

seen that in the limit of low rates, quaternary quantization constitutes an im-

provement of about 1.35 dB over binary, and octal quantization constitutes a

0. 35 dB improvement over quaternary. Figure 9 shows the same relationships

for a binary state stream. There, quaternary quantization is 1.4 dB better

than binary, and octal is 0.4 dB better than quaternary.

L
Figure 10 contains Rcomp' RBOOT(1), and capacity curves for binary

quantization. In the limit of low rates, bootstrap decoding has a 1. 7 dB advant-

age over sequential decoding (the degradation factor -1 is not included).
m

L
Figure 11 contains Rcomp, RBOOT(1) and capacity curves for quaternary quanti-

zation. It is seen that a full state stream enjoys a noticeable advantage over a

binary one only for rates R > 1/4. Furthermore, this advantage is always

small (at most 0.15 dB). Again, in the limit of small rates, bootstrap decoding

is about 1.7 dB better than sequential decoding. Figure 12 concerns octal

quantization. An octal state stream is nowhere noticeably better than a quat-

ernary one, and a binary state stream is worse than the latter only for R > 1/4.

The 1. 7 dB advantage over sequential decoding is again evident.
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Next, Figure 13 compares RUBooT(1) performances of binary, quaternary,RBOOT~l

and octal quantization with a binary channel state stream. The curves have a

slight upward slope for low rates, indicating that the upper bound tightens as

the rates decrease. In fact, comparison with Figure 9 shows that the RBO
U

OT(l)
BOOT(

1

L
and RBOOT(l) limits are the same!

It should be noted that Figures 10 through 12 show a consistent 1.1 dB

capacity over RBLooT(1) advantage. This shows that worthwhile improvement

might be obtainable from use of more sophisticated algebraic "outer" codes.

The final six curves (Figures 14 through 19) pertaining to this section

show the Pareto exponent as a function of SNR per transmitted bit (in dB) for

Bootstrap and straight sequential decoding at fixed track rate R = 2 (the

degradation factor is not included). yupper denotes the exponent obtainable

from the upper bound and y1ower that from the lower bound on bootstrap de-

coding. Finally, o(o) denotes the exponent for sequential decoding.

All the curves show that y and yower approach each other with
uppe r ~lowe r

increasing SNR, and pull away from a(X). It is interesting to note (compare

Figures 14, 15, and 17 and Figures 16 and 18) that performance is not improved

too much as the output quantization increases, provided the alphabet of the

channel state stream stays constant. However, for a large signal-to-noise

ratio, the performance of the quaternary bootstrap scheme with a quaternary

state stream is better than that achievable for an octal bootstrap scheme with

a binary state stream! In general, the improvement obtainable from an in-

crease in the state stream alphabet increases with the SNR.
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II-B. Development of Programs 'for 'Simulat'ion 'o'f Boot'strap

Sequent'i'al Decoding

1. While inspecting some simulation results, we noticed

that with the systematic convolutional code being used, the

bootstrap decoder commits a considerable number of decoding

errors. We have therefore adjusted both the rudimentary and

the pull-up decoders so that they insert these errors into

the state stream and continue decoding (instead of stopping

as previously). Selective simulations suggested the

following conclusions:

The errors committed by the rudimentary scheme occur mostly in the

tails (hence longer tail length than 25 seems definitely indicated). When these

are inserted into the state stream, the decoder is able to finish the entire

block at the price of inserting into some decoded stream those errors that

are forced by the parity relationship.

The pull-up scheme works at a lower SNR. When the errors conmmitted

on streamn J are inserted into the state stream, the parity forces them into

sonme stream K. The decoder is then capable of decoding all but the J and

K
t h

streamns, and is not able to continue the decoding of the latter within a

reasonable number of steps. This suggests that the errors can again be

elirninated at the end simply by re.decoding the J and K t h streams fromn their

beginning. The simulation results reported in the next

section are based on programs that incorporate the above

changes.
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2. Fortran versions of the rudimentary and pull-up bootstrap

hybrid decoders based on the Fano algorithm were debugged.

Simulation indicates that these decoders examine on the average

four times the number of nodes examined by the corresponding

stack-based algorithm. The results reported in the next sec-

tion are based on Fano sequential decoders.

3. A bootstrap algorithm was constructed that is suitable

for decoding of channels with binary inputs and quaternary

or octal outputs. These channels arise from optimal equal

level quantization of Gaussian additive noise channels. The

program has a preamble that computes the channel transition

probabilities corresponding to that quantization, as a

function of a supplied SNR in dB. The bootstrapping

algorithm utilizes a binary channel state stream. The next

section reports simulation results based on this program.

4. A generalization of our original bootstrap algorithm

was constructed that is suitable for decoding of channels

with binary inputs and quarternary or octal outputs. The

algorithm has a full output alphabet state stream. The pro-

gram has a preamble that computes the channel transition

probabilities corresponding to optimal uniform 4 to 8 level

output quantitization of a Gaussian additive noise channel

as a function of a supplied SNR value in dB. Theoretical

curves of Section II-A indicate that the dB gain arising

from this refinement will be only a moderate one. Neverthe-

less, a strategy employing the refinement in case the binary

state stream algorithm runs into trouble might be well

worth considering.
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5. An algorithm was de-bugged which uses a three-group

algebraic outer code with a convolutional inner code. The

operation of the algebraic part of the algorithm is described

in Section II-F.
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II-C. Simulated Performance of Bootstrap Sequential Decoding

L. B. Hofman used the various algorithmic techniques developed

under this contract to construct programs simulating the performance of

the Bootstrap Sequential Decoding Algorithm. He summarized his results

in the paper "Performance Results for a Hybrid Coding System" that he

presented at the 1971 International Telemetering Conference. This work

is reproduced below:
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Summary.- Computer simulation studies of the hybrid pull-up bootstrap decoding algorithm
have been conducted using a constraint length 24, nonsystematic, rate 1/2 convolutional code
for the symmetric channel with both binary and 8-level quantized outputs. Computational
performance was used to measure the effect of several decoder parameters and determine
practical -operating constraints. Results reveal that the track length may be reduced to 500
information bits with small degradation in performance. The optimum number of tracks per
block was found to be in the range of 7 to 11. An effective technique was devised to efficiently
allocate computational effort and identify reliably decoded data sections. Long simulations
indicate that a practical bootstrap decoding configuration has a computational performance
about 1.0 dB better than sequential decoding and an output bit error rate about 2.5X 10-6 near
the Rcomp point.

Introduction.- The basic coding dilemma is one of exponentially increasing decoding
complexity as the theoretical capacity of a communications channel is approached. Hybrid
coding is a cascade or concatenation of block and/or convolutional codes in an attempt to
operate near capacity while maintaining a complexity less than that possible with either code
type alone. This paper presents the results of a study of the hybrid bootstrap coding system of
Jelinek.' This technique is similar to a simple case of the Falconer scheme2 in that a parity
relationship between a set of convolutionally encoded data tracks is used to aid in the decoding
of those portions that are difficult. (An even parity is assumed throughout.) It differs from the
Falconer scheme, which uses an algebraic relationship to derive directly the most difficult
portions after a sufficient number of others are decoded, by making use of additional
probabilistic information contained in the parity relationship. In so doing, each bit of data
decoded helps to "bootstrap" those remaining.

After reviewing briefly the functioning of bootstrap decoding, this paper examines the
computational effect of several decoder parameters and determines a practical range of
operating values. Detailed performance behavior of such an optimized system is presented and
compared to simple sequential decoding and Falconer decoding.

Encoding.- The encoding function is the same for all variations of bootstrap decoding
described in this paper. (The decoders differ only in the manner in which they utilize
information that is always available at the receiver.) Basically, m-1 independent,
convolutionally encoded "data tracks" are linked together into one "decoding block" by the
addition of an m-th "parity track." That is, each bit of the parity track is the modulo-two sum
of the corresponding bits in the data tracks. Because of the linearity of convolutional codes, this
parity track is also decodable and, as will be shown, may actually be generated by a
convolutional encoder. The reader will note that this encoding function is identical to that
required by the Falconer system for a simple parity check code.

Actual mechanization of the encoder depends upon several operational considerations. One
method, which requires m-I convolutional encoders, provides natural interleaving of the tracks.
Data are routated to the encoders for coding and transmission in a "round robin" fashion, with
the parity bit inserted in its turn by a modulo-two adder. Decoder synchronization for such a
scheme will be difficult; synchronization and tail-forcing bits must be independent of data
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formating, possibly causing a small data buffering problem at the end of each block. Failure of
the decoder to complete the decoding of a block results in the loss of a large amount of data, if
not the entire block.

An alternative way of mechanizing the encoder requires one convolutional encoder and a
storage register having the length of a track. The data are encoded and transmitted, one track at
a time, while the parity track is formed in the storage register. The contents of the storage
register are then encoded, transmitted, and reset following the last data track of each block.
Although this scheme does not provide interleaving and causes an even larger buffering problem
while the parity track is transmitted, it does offer several advantages. It is possible to let data
formating correspond to individual data tracks. Code synchronization can be performed easily
on a track basis, with block synchronization derived from identification bits embedded in the
data tracks. In addition, a decoder failure will not necessarily result in the loss of a full block of
data. Finally, since data formating, synchronization, and tail-forcing can be related, the rate loss
for these functions can be reduced.

Rudimentary Bootstrap Decoding.- Bootstrap decoding is applicable to all symmetrical
binary input channels. For the purposes of this paper, a simplified description of the
"rudimentary" algorithm for the binary symmetric channel (BSC) is given following the outline
used by Jelinek.1

After the encoded data have been received and are synchronized, the bits of a block are
grouped into m tracks, and an additional track, the "channel state stream," is formed by the
decoder. Each channel state stream bit is the modulo-two sum of corresponding bits in the
parity and data tracks. The channel state stream differs from the parity track because it includes
the parity track and is formed after the transmitted sequence is corrupted by noise. Therefore, a
"zero" in this track indicates that an even number of errors was received at a given position, and
a "one" indicates an odd number.

The probabilities that k bits which are independently transmitted through a BSC of
crossover probability p will be received with an even or odd number of errors are given by

qk(0) = [I + (1 - 2p)kl/2

qk(l) = 11 -(1- 2 p)k] /2

The information is used to form an augmented transition probability matrix wm(y,z/x)
where y is the received bit and z is the channel state bit associated with y and formed
over m tracks, given that x was transmitted. Thus:

wm(O,O/O) = Wm(,) = w(I) = (1 -P)qm-, (0)
wm(0,1/0) = wm(l,l/l) = (1 -p)qm- (1)
wm(1,0/0) =wm(0,0/I) = p qml (1)
wm(1,1/0) = wm(O,1/1) = P qm-i (0)

It is natural to use these augmented transition probabilities in forming the bit likelihood
function for sequential decoding. The function is

Xm log2 [wm(y,z/x)/wm(y,z)] - R

where

wm(y,z) = [wm(Y,Z/O) + wm(y,z/1)] /2 = [qm(z)] /2

and R is the bias factor.
From this starting point, the development of the rudimentary bootstrap decoding algorithm

follows directly. The first of the m tracks is sequentially decoded using the channel state
stream and likelihood values defined above. If, after a preassigned amount of effort, decoding of
this track is not completed, restart values are saved. This step is repeated on successive tracks,
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looping back to the first track if necessary, until decoding of one is completed. At this time, the
received sequence for the completely decoded track is replaced by the newly estimated
sequence, and the channel state stream is recomputed. If the decoding was error free, then the
new channel state stream values represent an even or odd number of errors in the m-I
remaining tracks, as before. The entire process is repeated, excluding the decoded track, now
using likelihood values for m- 1 tracks. When a second track is completed, its received sequence
is replaced, and the channel state stream is again updated.

The pattern is now obvious, and the process is repeated until all tracks have been decoded or
the total work exceeds a maximum amount. It would be possible to derive the last remaining
track, on the basis of the parity relationship, when m-1 tracks have been decoded. Indeed, this
is the principle of Falconer decoding; but it is actually simpler to decode this track, too, since
the decoding requires exactly one computation per bit. This fact, and the general effect of using
the channel state stream, may be seen in the sample likelihood table shown in figure 1. When
many tracks are undecoded, the channel state bit gives little additional information about the
probability of error in a single received bit. Therefore, for large k, the likelihood values for
bootstrap decoding approach the usual values for sequential decoding, depending mainly upon
agreement or disagreement between the received bit and the hypothesis. At the other extreme,
for small k, the channel state bit has a large influence. For example, if two tracks remain
undecoded (k = 2) and the channel state bit is "one," neither hypothesis is reliable because the
probability is 0.5 that the received bit is in error. On the other hand, great reliance is placed on
the correctness of the received bit when the channel state bit is "zero" since the probability of a
double error is small. When k = 1, the knowledge that the received bit is in error for a channel
state bit "one" and correct for a "zero" is reflected in the table by a - likelihood value for the
impossible hypothesis and 1.0 for the correct hypothesis.

Pull-Up Algorithm.- The primary worth of the rudimentary algorithm is the description of
the bootstrapping process and simplification of its analysis. Practical use of the rudimentary
algorithm is probably limited because one rather simple modification substantially increases the
power of the decoder. In the modified algorithm, called the "pull-up" algorithm, the decoder
does not wait until a track is decoded completely before updating the channel state stream. It
operates instead on a single track until the track is completed or a difficult-to-decode section is
sensed, at which time decoding is stopped. The completed track is handled as in the
rudimentary algorithm. Before proceeding with the next track after a track is terminated,
however, the decoder declares that portion which it deems reliable to be "definitely decoded."
In doing so, it updates the channel state stream and prepares restart values so that the next
decoding attempt on the track will begin immediately after the definitely decoded section.

Since it is possible to have all tracks in varying stages of completion, to obtain the most
effective use of the channel state stream it is necessary to indicate how many tracks remain
undecoded at a given node. This is done with a vector, KLEFT, the length of a track, which the
decoder references to determine the likelihood values to use at a given node. At the outset, all
KLEFT values are set to m, the number of tracks in a block, and are adjusted accordingly as
individual tracks are "pulled up." Note that it is necessary each time to start decoding from the
"origin" because the state stream may change from the time the decoder terminates a track to
the time the decoder restarts it.

Computer Simulations.- Many variables affect the performance and practicality of a system
as complex as bootstrap decoding. Unfortunately, analysis can give only bounds on performance
for simplified and idealized conditions. Therefore, simulations have been performed to
determine the gross effect of a number of parameters for the pull-up version and to obtain
performance figures for a quasi-optimized system that could be considered for possible deep
space application.

The simulation program was written in FORTRAN for a 24-bit, 1.75 /s/cycle computer with
in-line assembly language used to optimize the critical loops. The convolutional code was
restricted to the rate 1/2, constraint length 24 complementary code (taps 51202215 and
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66575563) found by Bahl and Jelinek.3 This code was selected because it could be simulated
within a single computer word and is sufficiently powerful (free distance 24, minimum distance
10) that decoder errors do not limit the system. The Fano algorithm was used for sequential
decoding with a simulation speed in excess of 3000 computations per second. All simulations
were run with the bias factor R = 0.5 and the threshold spacing = 3.0. One-dimensional
parameter studies of this system using the BSC concern track length, tracks per block, stopping
rule, and reliability criterion. These tests were run at low signal energy per information bit per
noise power spectral density (Eb/No) values so that the effects of the parameters could be
observed near threshold-of-operation conditions.

Track Length.- It is possible (perhaps desirable from a theoretical point of view) that the
track length be very long for the pull-up algorithm. Other practical considerations, such as
synchronization, formating, and buffering, require that the track length be reasonably short.
Figure 2 shows the effect of track length on computation performance, with the number of
tracks fixed at 7. All tracks for all simulations are terminated by a one-constraint-length tail that
is included in the rate loss for the code. The value of Eb/No was fixed at 3.43 dB, and for
direct comparison, the computation distributions per block were normalized per information bit
before being plotted. Average computations are shown in the legend. It can be seen that the
computation performance is degraded for a track length of 300 information bits, but that little
improvement is actually obtained for a length beyond 500. The track length was fixed at 500
information bits for all other simulations.

Tracks per Block- The rate loss of bootstrap decoding, determined by the number of tracks
per block, m, is significant for small m but it decreases rapidly and then changes relatively little
as m becomes large. This fact, and the fact that the effect of the channel state stream is
predominant when the number of tracks is small, suggests that an optimum value for m can be
found. In addition, the value of m has a direct influence on formating, encoder complexity,
and decoder buffering. Simulations were conducted to determine the effect of m on the
computation distributions. The track length was fixed at 500 information bits (plus the
one-constraint-length tail), and all simulations were carried out for a value of Eb/No held
constant at 3.43 dB. Figure 3 is a summary of the results of these simulations, with distributions
of normalized computations per information bit plotted for selected values of m and a more
complete table of average computations per information bit given in the legend. The irregular
variation in computations between values of m is probably due to small sample size
(3.675X106 bits per value of m), but a broad minimum is indicated between m = 7 and 11.
Values of min in this range would be practical for operational use. The number of tracks per
block was fixed at 7 for all other simulations.

Stopping Rule.- An effective stopping rule must be devised in order to obtain the maximum
efficiency of pull-up bootstrap decoding. The sequential decoder should be allowed to operate
as far as it can go easily. Unnecessary time is wasted in restarting when a track is stopped too
soon, or in computing, when it is not stopped soon enough. In addition, the stopping rule
should provide information about the reliability of the path on which the decoder is operating.
Several rules based upon limiting the number of computations per track were devised and
tested, but none proved very useful because of the large variation in the number of
computations for each track. When the computations limit is set low and increased when no
progress has been made on any track, many decoding attempts are required to complete each
block. Setting the initial limit high to reduce the number of attempts caused long unnecessary
searches. In addition, computations alone do not provide reliability information.

The final and most effective rule devised is based solely on observation of the path likelihood
value. Since the likelihood of the correct path tends to increase with depth in the code tree, the
rule allows the decoder to operate as long as a drop in the value of the likelihood does not
exceed a specified value, D. Mechanization of this rule also gives the needed reliability
information. The decoder keeps track of the maximum likelihood value, Lmax, of any path
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visited. Operation is stopped if the decoder attempts to lower the threshold more
than D below Lmax. At this time, the decoder is pointing to a node before the Lmax node
which has a path likelihood approximately D below it. The probability that this node is on the
correct path increases with increasing values of D. The definitely decoded section is declared to
extend from the starting point up to LBACK nodes from the stopping point, where LBACK is
another variable in the stopping rule.

In order to sense stagnation in the decoding process, it is necessary to count the times the
definitely decoded section is not increased by NPULL nodes for a single decoding attempt. For
all simulations, NPULL was set to 15. The counter, KROUND, is initially set to 0 and reset each
time that decoding results in more than NPULL definitely decoded nodes. If the KROUND
count becomes equal to the number of undecoded tracks, thus indicating that no progress can
be made on any track, the value of D is increased and KROUND reset. At this time, the
channel state stream is recomputed and decoding is begun from the first node of each
uncompleted track. This procedure allows for correction of possible errors included in definitely
decoded sections of the incomplete tracks which may be causing the decoding difficulty. The
value of D is reset to its initial value each time a track is completely decoded.

Figures 4 and 5 show the results of simulations for the above scheme. All simulations are for
500 information bits per track, 7 tracks per block, and Eb/No = 3.43 dB. For these simulations,
D is determined by multiplying the indicated stop factor by the "disagree, 0 state bit"
likelihood value for the number of existing uncompleted tracks. Figure 4 shows the effect of
several stop factor sequences with LBACK = 50, and figure 5 shows the effect of LBACK using
only the 4, 5, 6, 7 stop factor sequence. It can be seen that an initial stop factor of 3 or 4
is optimum with an increase of 1 each time stagnation occurs. For these values the stopping
point does not usually contain errors, and LBACK may be small.

Performance of Optimum System.- Figure 6 shows the performance of a pull-up bootstrap
decoder for the BSC. System parameters, chosen near the optimum values determined in the
previous simulations, were held fixed over the Eb/No range. Although no further attempt was
made to optimize the system, these curves provide a good measure for comparison with other
systems. The Pareto slope, a, is plotted as a function of Eb/No in figure 7. The Rcomp point is
interpolated to be 3.1 dB. During these simulations 62 decoder errors were observed for the
3.43 dB case. The resulting output bit error rate was about 5X 10-6.

It is worthwhile to note here that the power of the code and stopping rule worked very
effectively in eliminating decoder errors. Numerous errors were inserted in partially completed
tracks but were removed when the tracks were eventually restarted. The 62 errors occurred in
one block; 31 were decoded into the second track to be completed and the other 31 were
forced by parity into the last track. (Weaker codes have been observed to permit more frequent
errors, which were also duplicated in a second track with no significant effect on the
computation performance.)

Figure 8 shows pertinent information about decoder operation for one block of the
Eb/No = 3.43 dB sample. This block was selected because it shows the decoder trying to
commit errors (step 7), a change in stopping rule (step 18), the effect of pull-up, and the general
reduction in computations per track as the quantity of definitely decoded data is increased
(when there are no errors). The step number is KTRY; JNOW is the track being operated on;
ITCT is the number of computations for the step; IT is the stopping threshold value; ITMX is
the maximum threshold value; DFAC is the stopping rule likelihood drop factor; NSTART is
the starting node; N is the stopping node; NMAX is the maximum node depth; KLEFT is the
number of uncompleted tracks after the decode step; and KROUND is the number of steps
since pull-up.

Figure 9 is a plot of the probability that the total number of decoder steps per block will
exceed a given number for the optimum system with Eb/No as a parameter. Note that these
curves exhibit a Pareto-type distribution with a sharp change in slope near the Rcomp point of
the system.
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Comparison With Other Systems.- It is interesting to compare bootstrap decoding with two
other decoding techniques because of their similarities. The first is simple sequential decoding.
To provide a means for direct comparison, simulations were performed for the same Eb/No
values as were used for the bootstrap decoder. The same Fano algorithm, track size, and rate 1/2
convolutional code were used. The results are shown in the normalized computations curves of
figure 10 with the Pareto slope values plotted in figure 7. Rcomp is at approximately 4.6 dB.
Bootstrap decoding has a gain of about 1.5 dB over simple sequential decoding.

In order to determine the exact effect of the channel state stream, the pull-up decoder was
modified to use standard likelihood values when k ranges from 2 to 7 so the channel state
stream is useless, except to pull up the track which is farthest behind the others. Consequently,
the algorithm actually behaves like the Falconer algorithm for a 7-bit parity check code, with
the exception that the decoder is restarted from the first undecoded node at each decoding
attempt. The computation results of these simulations are shown in figure 11 with the Pareto
slope values plotted in figure 7. This algorithm has an Rcomp of about 4.1 dB which is only
0.5 dB better than simple sequential decoding. The use of the channel state stream therefore
yields a rather inexpensive 1.0 dB gain.

Extension to Quantized Channel.- Bootstrap decoding would be of little use if it were
applicable only to binary output channels since nearly 2 dB can be gained for simple sequential
decoding if the output is quantized to eight levels. Jelinek has provided such an extension for
the bootstrap decoder.' Unfortunately, to make full use of the information provided by the
quantized symbols, a large amount of time is required to compute channel state values, which
are no longer binary. Excessive computing time, coupled with the large likelihood tables
required (15,280 entries for 8-level quantization and 7 tracks), probably makes such a scheme
impractical.

Fortunately, there is a compromise - to use the quantized values of the track symbols and
maintain only a binary channel state stream. If the receiver outputs are broken into sign and
quality bits, u and v, then the channel state values, z, are modulo-two sums of u, as before.
Then,

Xm & log 2 [wm(U,V,Z/X)/Wm(U,V,Z)l - R

where

Wm(U,V,Z)= [wm(u,v,z/O) + wm(u,v,z/1)]/2

and

wm(O,v,O/0) = Wm(l ,v,O,1) = w(0,v/O)qm-l (0)

wm(O,v, 1/0) = wm( I ,v, 1 /1 ) = w(0,v/O)qm.
l

(1)

Wm( 1 ,v,O/O) = wm(O,v,O/1 ) = w( 1 ,v/O)qm-
l

(1 )

wm( 1 ,v, 1/0) = wm(O,v, 1/1) = w(1 ,v/O)qm l (0)

qk(z) is defined as before, and

p = Z w(1,v/O)
v

According to theoretical bounds derived by Jelinek,l full use of the 8-level channel gives an
additional gain of about 1.7 dB over the BSC for rate 1/2 bootstrap decoding. Using a binary
state stream for this channel causes a theoretical degradation of only 0.1 dB, which is a small
price to pay since the channel state computation and likelihood look-up are direct and the table
size is only four times larger than for the BSC.

The simulation program was modified for the quantized channel with binary state stream with
no significant change in speed. Simulations were performed for eight levels of output with
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quantization spacing of 0.5 o for all Eb/No. Tests were conducted which determined the
optimum values for the stop factor sequence to be 2.0, 2.5, 3.0, 3.5 times the "strongest
disagree, 0 state bit" likelihood with LBACK = 10, 7 tracks, 500 information bits per track, and
Eb/No= 1.91 dB. Extensive computer runs were made under th se conditions for a range of
Eb/No values. The resulting computation performance curves are shown in figure 12. The
observed Pareto slopes are plotted in figure 7 for comparison with the other simulations. The
interpolated Rcomp point is at 1.7 dB, a gain of 1.4 dB over the BSC and 1.0 dB better than
rate 1/2 sequential decoding using the octal channel. Figure 7 also shows an interesting
thresholding effect for the codes plotted - the threshold is approached more sharply as code
power increases. Over 27,000 blocks were run for the 1.91 dB case (near the threshold of
operation) in order to look for any peculiar deviation in computations performance for low
probabilities of C > T. The Pareto slope remained constant over the significant range. For this
case, 190 bit errors were observed in 4 blocks for a probability of bit error less than 2.5X10- 6 .

Conclusions.- Simulations have provided a great deal of experience with the bootstrap
decoding algorithm. Although a number of questions remain unanswered (e.g., effects of
channel memory and likelihood/channel mismatch), it is clear that this technique offers a gain
of about 1.0 dB over that obtainable from sequential decoding alone. Bootstrap decoding has
been shown to operate under the constraints imposed by digital communication systems, such
as those typical of deep space. A bootstrap decoding system would be relatively complex, but
appears suitable for low-to-moderate data rates where the value of 1.0 dB is worth the cost of
implementation.

Acknowledgement.- The research for this paper was performed in conjunction with a study
contract with Cornell University, Prof. F. Jelinek, principal investigator.
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Figure Captions

Fig. I - Likelihood values Xk for p = 0.09 and R = 0.0.

Fig. 2 - Pull-up decoder computations performance as a function of track length.

Fig. 3 - Pull-up decoder computations performance as a function of tracks per block.

Fig. 4 - Pull-up decoder computations performance as a function of stop factor.

Fig. 5 - Pull-up decoder computations performance as a function of LBACK.

Fig. 6 - Optimized pull-up decoder computations performance for the BSC as a function of
Eb/No.

Fig. 7 - Pareto exponent vs. Eb/No for several decoding techniques.

Fig. 8 - Sample program output.

Fig. 9 - Probability that the number of decode steps will exceed K for the optimized
pull-up decoder as a function of Eb/No.

Fig. 10 -Simple sequential decoder computations performance for the BSC as a function of
Eb/N o .



Fig. 11 - Pseudo Falconer decoder computations performance for the BSC as a function of
Eb/No.

Fig. 12 - Pull-up decoder computations performance for the octal channel as a function of
Eb/N o .
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KTRY JNOW ITCT IT ITMX DFAC NSTART N NMAX KLEFT KROUND
I I 49326 15 33 4 I 94 253 7 0
2 2 46987 30 48 4 I 198 395 7 0
3 3 28994 63 81 4 I 310 503 7 0
4 4 16665 18 36 4 I 117 267 7 0
5 5 8011 114 114 4 I 524 524 6 0
6 6 15276 81 99 4 I 275 377 6 0
7 7 23223 141 159 4 I 353 504 6 0
7 7 ERRORS DECODEDIN POSITIONS 328,329,330,332,333,336,339,340
8 I 1301 147 150 4 85 524 524 5 0
9 2 13710 33 51 4 189 348 465 5 0

10 3 9262 3 21 4- 301 311 423 5 1
11 4 2023 174 192 4 108 295 351 5 0
12 6 4717 21 39 4 266 .292 387 5 0
13 7 11577 -3 15 4 344 354 467 5 1
14 2 13562 -6 12 4 339 348 465 5 2
15 3 7828 3 21 4 302 311 423 5 3
16 4 2199 3 21 4 286 295 351 5 4
17 6 7220 3 21 4 283 291 405 5 5
18 7 213150 81 105 5 I 214 502 5 0
19 2 235821 36 60 5 I 195 403 5 0
20 3 15744 120 123 5 I 524 524 4 0
21 4 10008 159 159 4 I 524 524 3 0
22 6 4868 198 219 4 1 222 303 3 0
23 7 4777 78 78 4 205 524 524 2 0
24 2 1104 144 144 4 186 524 524 I 0
25 6 312312 312 4 213 524 524 0 0

ERROR RATE BY TRACKS 0.0914, 0.1105, 0.0924, 0.1010, 0.0857, 0.0924, 0.0819
TOTAL COMPUTATIONS THIS BLOCK 747655

Fig. 8
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II-D. Effect of Likelihood Bias on Sequential Decoding Parameters

1. Introduction

The performance of sequential decoding has traditionally been

evaluated in terms of three characteristics: the probability of undetectable

error ([1], p. 349), the probability of failure of order t([l], p. 349), and

the Pareto exponent associated with the decoding effort ([1], p. 349). Most

published bounds on these quantities assume that the decoder uses the

likelihood metric

log w(y/x) - R (1)
w(y)

where R is the rate of the code used, w(y/x) is the channel transmission

probability function, and w(y) is the marginal probability distribution of

received digits based on the optimal code ensemble. It is generally known

[1 ] that the three quantities of interest are optimized by the metric form

w(v/x)
log wy G (2)W~~~~~~~~~~~~~~~~~~~(Z)

where the optimal value of G may be different for each of the three cass.

For instance, Zigangirov [2 ] manipulates G to minimize the probability

of failure, and Stiglitz and Yudkin explore some effects of G-variation in

an unpublished memorandum [3 ]. However, their use of simplifying

inequalities at certain critical points of their development prevents them

from obtaining the strongest achievable results.

The trade-off between the three performance parameters is interesting

from the point of view of Bootstrap Hybrid Decoding [4]. In one mode of

the pull-up version of the algorithm, digits of branch depth J-t and less are

definitelydecoded if the deepest penetration of the decoder was tobranch level J.
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Making the retreat length t as short as possible will tend to decrease the

decoding effort as long as no error at depth J-t or less was committed.

Otherwise the definite decision will have possibly catastrophic

consequences. Hence all other things being equal, G should be adjusted

so as to minimize the probability of failure. We will see below that

usually such setting will lower somewhat the Pareto exponent of the

sequential decoding component of the scheme, and will increase the

probability of undetectable error. The latter difficulty may be cheaply

remedied by an increase in constraint length, but what the best compromise

is between the failure and Pareto exponent parameters remains an open

question.

A second mode of the pull-up version of Bootstrap Decoding

definitely decodes digits by the following rule: Let the decoder be located

at some node whose likelihood is L and let the path leading to that node

contain some node n* at depth T whose cumulative likelihood does noL

exceed L-a. Then the decoder will definitely decide to release to the

user all T branches of the path leading to n*. How to set the value of the

likelihood drop a depends on Q(a), the probability that with zero likelihood

value assigned to a root node, there exists a node in the incorrect subset

whose cumulative likelihood exceeds a. Q(a) is thus a fourth performance

parameter of interest.

This paper attempts to determine the effects of G-variations on the

four performance characteristics. In sections 2 through 5 we deal with

random coding upper bounds. In sections 6 and 7 we develop expurgated



bounds for the probabilities of failure and undetected error. We show

that the former is identical to the one developed by Viterbi and Odenwalder

[10] for maximum likelihood decoding, and that the latter leads to the

block coding expurgated exponent. In section 8 we present some curves

that apply our results to quantized Gaussian additive noise channels with

binary inputs.
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2. Definitions and Basic Upper Bounds

As is usual, we will work with the random coding ensemble and we

will not bother to argue that the obtained bounds are simultaneously

valid for particular codes as well. To save space, we will use the

notation and some of the intermediate results from Chapter 10 of

Jelinek [ 1]. However, to simplify matters further, we will adopt the

stack sequential decoding algorithm [5 ] that leads asymptotically to the

same results as the Fano algorithm. The reader will be assumed

familiar with both. Our random codes of rate k will have the trellis
n

k
structure of Figure 1 (see also p. 336 of 1 ]) with 2 branches leaving

each node, each branch associated with a block of n channel input digits

x (in Figure 1, k = 1 and n = 2, and the channel input alphabet is binary).

Each level of the trellis will contain 2 k(u 1) states, where u is called the

branch constraint length of the code. The information digits that determine

the path thAi the encoder takes through the trellis are binary, the state

being determined uniquely by k(u-l) most recent bits (by convention,

the information preceding time t = 0 is assumed to consist of 0's). In

the random ensemble, each digit of each branch of the trellis is

selected independently, at random, with some probability distribution

r(x) over the channel inputs. The coding trellis generates a coding tree

whose root node corresponds to the initial all-zero trellis state. In

this paper we will consider infinite depth trees and trellises.

An undetectable error is committed at depth i by a sequential decoder

if, after it operated without any restriction on the number and depth of



returns, the ith branch on the finally decoded trellis path differs from

the one actually taken by the encoder. We will be interested in U(u),

the average number of undetectable errors per decoded digits when a

random code of constraint length u was used.

A failure of order t takes place if the decoder advances by t

branches or more into the incorrect subset of the coding tree. We will

be interested in the probability of failure Pf(t).

Let N. be the number of times the sequential decoder is located at
1

some node of the incorrect subset stemming from a correct node on

di
level i. Then N.- is the y moment of the decoding effort at depth i.

1

Let a be the supremum of the values y for which N.Y is bounded. a
1

is then called the Pareto exponent of the decoding effort.

In the preceding section we have defined Q(a), the probability of an

a-likelihood advance in the incorrect subset.
4

Let s = (s 1' s2, . . . ) denote some path in the tree determined by

information digits si, i = 1, 2, ... , let s* be the correct path and let

t
x (a denote the code digits corresponding to the initial t branches of s.

Let p denote the set of nodes at depth t of the incorrect subset stemming

from the root node, and let Gt+ u be the subset of nodes of pt+U that

corresponds to trellis paths whose first branch is incorrect and which

rejoin the correct path for the first time at depth u+t (i. e., these are

paths containing at most t incorrect information digits).

The following upper bounds have been proved in Jelinek [1 ], pp.

354-359 (we have made some adjustments to assure applicability to the

stack algorithm) where 0 < a, Y :
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co 

U(U).<t Z t2 (m - t
-U ) G

t= 1 m=O 6

E w(y /x ()) w(y ) 1 |

Pf(t) < 2 6a(m-t)nG 4 z Fw(K/x ) w(t)
t+=O ( se D w, /x (s*n w(x,)j (4)

and for y < 1,
seX a, ( m al

X~~~~~~~

2
ya(m-t)nG E w(w ) 

It m t m 

t=O nO V w('m/x (s*)) w(L;) j
(4)

An upper bound on N for y > 1 has also been derived by Jelinek [6].

However, the purpose of this paper is to investigate the effect of not

taking certain usual bounding shortcuts which alone make the bound on

YN for y > 1 tractable. We will therefore restrict ourselves to the

case y < 1 which is the one for which optimal choice of G is crucial. An

adventurous reader may in any case decide to use our conclusions as a

guide for action in the region y > 1.

Before bounding Q(a) let us observe that (4) and (5) have the

expectation term in common and that the expectation term in (3) is

similar. In Appendix I we have bounded these as follows.

Define the exponent functions



f () = log w(y) 

y x

f 2 (a,y) = log Z

y

f3 (a,y) =

W(y) .)
x

r w(y/x)l
L w(y) J

log (Y){ZrW(ZX2
log L w(y) J

y x

o ( )rx l{z I EYZ)6
7L wx:} I

a r Y
r (xW

(7)

(8)

..then if y e [ O, 1],

2n[(m-t)f£oiy)+tf2(ay)+ A(8 )YR]
Y

w(),/xt( ,}) w(y if m > t
LW(y /x (Qi) w (, M) < W( ;(Q) w( ')

2n[(t-m)f3 (a, y ) + mf 2 (a, Y)+ (8 )YR ]

if m <t

(9)

ht o Gt
where 8 is either equal to D or to G and I(D ) = t, Q(G ) = t-u.

1-%

[w(y/x) llw(y) r(x)
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3. Random Coding Upper Bounds on Performance Parameters

In this section we use (9) to obtain upper bounds on U(u), Pf(t), and

N and develop an upper bound on Q(a). Substituting (9) into (3) we get

U(u) < E t exp2 n {6a(m-t-u)G + t6R+(t+u)fz(a, 6)+(m-t -U)f(CY6)}

t=l m=t+u

t+u-l

+I X t exp2 n {6a(m-t-u)G+t SR+mf2 (a, 6)+ (u+t-rm)f3 (a, 6)}

t=l m=O 0
(10)

where 6 eC[O, 1], a > O. Using the geometrical sum formula, the first term

un f (o, 6)
in (10) is bounded by K1 2 O2 where K is finite provided

I ~~~~~~~1

6aG + fl (a6) < 0

6R+ f2 (a, 6) < 0 . (11)

It is best to break up the second sum in (10) into two parts, the first for

m e[O, v- 1 ] and the second for rnm eu, u+t- 1]. The first part is then equal

to
u- 1

exp2 nu{f3 (a,y) - 6G} I exp2 nm {5aG + f2 (a, 6) f3 (a,)}.

CO ~ ~ ~ =Go ~ ~ ~ o

Z t exp2 nt {f 3 (a, 6) + 6R - aG } (12)

t= 1

The result then depends on whether the exponent in the second sumnmation

is positive or negative. Thus the bound is K22nuf2 (a, 6) where K2 isz~~~~.i
finite provided

6 aG + f2 (a, 6) - f3 (a, 6) > 0

f3 (a, 6) + SR - a6G < 0 (13)



and it is K3 2 nurf3 (a, 6) -a6G ] where K3 is finite provided

a6G + fZ(o, 6) - f3 (a, 6) < 0

f3 (a, 6) + 6R - a6G < 0 .

The second part of the second sum in (10) is equal to

exp2 nu {f3 (a, 6) -ac6G}Z exp2 nmn a6G + f2(a, 6) -f 3 (a, 6)}

m=u

(14)

(15)
. x t exp2 nt {f 3 (a, 6) + aR - a6G }

t=m-u+ 1

nu f2 (a, 6)
which is bounded by K4 2 provided

f3(a, 6) + SR -a6G < 0

6R + f2(a, 6) < o .

Now the last two constraints of the set

. a6G .+ fl (a6) < 0

6R + f 2 (a, 6) < 0

(16)

(17a)

(17b)

3(a, 6) - f2 (a, 6) -a6G < 0 (1i

imply the second constraint in (13), so that (17) is equivalent to (11), (13),

and (16). Similarly, the last two constraints of the set

a6G + fl (a6) <0 (1E

7c)

8a)

a6G + f2 (a, 6) -f 3 (a, 6) < 0 (18b)

f3(, 6) + SR -a6G < 0 (18c)

imply the second constraint of (11), so that (18) is equivalent to (11), (14),

and (16). We thus get the bound
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K 2 nu f2(a, 6) if (17) holds (19a)

U(u) <

nu~f(a,6) -a6G)
|K62nurf3(a, 6) -i ] if (18) holds (19b)

if a > 0, 6 eC[0, 1], where the second exponent was obtained with the help of

the inequality of (18b).

Substituting (9) into (4) we get that if a > 0, 6 e[0, 1] then

Pf(t) < exP2 nt [f 3 (a, 6) + 6R -6oaG].

t
.X exp2nm [a6G -f3 (a, 6) + fz2 (a, 6) ] .

m=0

Therefore

K nt[f 2(a, 6) + 6R]

Pf(t) 8 

K82nt[f3 (a. 6) +6R-6 aG

if (2 1) holds

if (21) does not ho1d

where

a6G - 3 (a, 6) + fz(a, 6) >0 .

Substituting finally (9) into (5) we get for oa> 0, y e[0, 1]

Co CO

NY <Z , exp2 n {ya(m-t)G+(m-t)f!(a6)+tf2 (ac'y)+ytR} +

t=0 m=t

co Co

+ IX exp2 n {ya(m-t)G + (t-m)f
3

(a, y)+mf2 (a, y)+ytR }
m=0 t=m+ 1

The first sum in (22) converges provided

(Z0a)

(20b)

(21)

(22)
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yaG + fl(ay) < 0

yR+f2 (a, y) < 0

while the second sum converges provided

f3 ( a, y) + yR -yaG< O

y R + f2 (a, y) <O

We therefore conclude that

NY <K 9 (23)

9~~~
where K9 is finite if

yaG + f1 (ay) < 0 (24a)

yR + f2 (a, y) < 0 (24b)

f3 (a, y) + yR -yaG < 0 . (24c)

We conclude this section by upper bounding Q(a). We do so using a

difference equation method pioneered by Zigangirov [7].

Consider the partial tree of Figure 2 all of whose branches are in the

incorrect subset, with d = 2 branches leaving all but the first node (in

Figure 2, k = 2). Let 3 be the cumulative likelihood value of the first

node and A the likelihood of the branch emanating from it. Let F (P) be
a

the probability that at least one of the nodes of the tree of Figure 2 has a

cumulative likelihood that exceeds the value a, given that the initial node

had likelihood . Fa(P) then satisfies the difference equationa

1 - Fa($) = Z P(A) [l-Fa( $ (25)I - F [1-F + ~~~~~~~~~~~~~(25)

where P(A) denotes the probability that a branch has likelihood A, and by

definition

F (13) = 1 for P >a .
a (26)
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Because Z P(A) = 1, it follows from (25) that

Fa(p) < d I P(A) Fa(P + A) (27)

A

Let F* (P) be any function satisfying (27) such that

F* (p) > 1 for > a (28)

then it is well known that [see [8 ], pp. 281-282]

F (P) < F* (,) . (29)

We will try F* (P) = 2 s [ ' a] with s chosen so that (27) is satisfied with

equality. Thus we desire

2 s[p-a] = d P(A) asp + A - a]

or

A

1 d EP(lA) 2S (30)

n

Using the metric formula (2) and the fact that d = 2 R. (30) becomes

n[sG-R] _____)

2n[G w] ={Zw(y)r(x) [w /j

x, y

or

sG - R - fl (l-s) = 0 (31)

The relation between Q(a) and F (3) is, of course,
a

Q(a) = 1 - [1 -F (0)]
d

< (d-l) F (0) (32)

so that

Q(a) < (d-l) 2 -sa (33)

where s is the maximum value satisfying (31).



61

4. Optimization of the Random Coding Bounds

In this section we will choose the various values of G that optimize

the bounds on U(u), Pf(t), NY, and Q(a). These should be expected to be

different for the four cases. In the next section we will choose the best

values of a and 6 for fixed G.

Our analysis will presuppose a constant value of the source

distribution r(x). Most channels of interest are symmetrical and for them

the best r(x) is uniform. For other channels r(x) should be optimized, but

we will not concern ourselves with this problem (see Chapter 7 of [1]). In

fact, in general different distributions r(x) would optimize the bounds on

Pf(t), U(u), Q(a), and N:

First, consider the bound (19a). Our approach to its optimization is

to choose for a fixed 6 values of a and G that will allow satisfaction of

(17) by the maximum value of R. In this way a parametric relation (in 6)

between R and the exponent - f2 (a(6), 6) will be obtained. If an increase

in R will lead to a decrease in -f2(a(6), 6) the bound will be optimized.

Now R is maximized (see (17b)) by maximizing -f
2

(a, 6) and then choosing

G that would satisfy (17a) and (17c). Straightforward calculus shows that

the desired value is

1
a -1+6 ;(34)

so that the choice of G is

16 ' -23f7(1r,+ 6) f k 631 <G < 1+6 f (35)
6 (T+-6 21+ - ~1 (+61()

We show in Appendix II that indeed the righthand side of (35) is at

least as large as the lefthand side. It is interesting to note from (7) that
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1+6

2 (1+, ) - log [ w(y/x) 1+6 r(x)J = E (6) (36)

where Eo(6) is the well known exponent function of Gallager [9]. The
0

1
desired maximal value of R is then I Eo(6). Since 6 is restricted to the6o0

range [0, 1], it remains to treat the case of R < E (1).

Since the maximum of Eo(6) for 6 e[O, 1] is E (1), then the exponent

will be Eo(1) provided G satisfies (35) with 6 = 1.

We must next check if better results cannot be obtained with bound

(19b). It follows from (18b) and (18c) that choosing a to maximize

-f2 (a, 6) will allow simultaneous maximization of R and of the exponent

a6G -f3 (a, 6) provided (18a) can be satisfied. However, (18b) will in any

case force the exponent of (19b) not to exceed that of (19a). We state our

result as a theorem.

Theorem 1

For R e [ E (1), C ] and a code of branch constraint length u
0

the probability of undetectable error is bounded by

-nuE (6)
U (u) < K5 2 (37)

where 6 e[0, 1] is the solution of

1
R = Eo (6) (38)

and K is finite if
5

1+6 f 1 1 6 6EE (6) + f 6 6 - 1+66 (39)

For R e [0, Eo(l) ], (37) holds if 6 = 1 and (39) is satisfied.

It follows from Appendix II that the two extreme sides of (39) ar e

equal if and only if
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1

r(x) = const, for a lly40

x

This is actually the case for the BSC when r(x) is uniform, but is not true

in general. If (40) holds, then (39) reduces to the "usual" choice ([l],

p. 360)

1
G= E o(6). (41)

We show in Appendix II that

1 1+8 (.&Ef 3 (.+.j±~ 6)+E0 (6)]< E (6)< .. 6 1 (ls ) (42)

so that Theorem 1 constitutes a real strengthening of the previous results

that provides us with a welcome leeway for choosing G.

We next turn to the optimization of the bound (20). In (20a), for a

fixed T and R (for reasons that will become apparent in the next section,

we are using the parameter X instead of 6) one wishes to select a so as to

maximize -f 2 (a, 1) and then choose G sufficiently large to satisfy (21).

1
This implies that a 1+ and

G > l [f3 (l+ -f I

As a result of this choice,

-nt[E (1l) - R]
Pf(t)< K7 2 (43)

As is well known, the exponent of (43) is maximized by the value of 

satisfying

R = E' (T1) .
o (44)
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It is immediately obvious that (O20b) is optimized by the same value of a

and by G satisfying (42) with equality. This choice gives the same

exponent. We then get the following

Theorem 2

For R e[Eo(l), C), the probability of failure of branch order t< u is
0

bounded by

-nt[E (X) - TR]
Pf(t)<K 2 0 (45)

where X satisfies (44). K
7

is finite provided

G > [Eo(1) + f3 (1 i) (46)

0

For R e(O, E '(1)), we choose I = 1 in both (45) and (46).

The above theorem shows that if G satisfies (46) then the so called

random block coding exponent applies to the probability of failure. Again,

if (40) holds, the righthand side of (46) re-'duces to the usual choice of

1G = -E (1o) (see [l] p. 361). Because of the left inequality in (42),

Theorem 2 strengthens the previously published results.

Our next topic is to maximize the value of R for which NY is finite

where y e(0, 1 ]. It follows from (24c) that G must be made as large as

(24a) allows. Hence R must satisfy

y R <max min {-f2 (a, Y), -f l(Y) - 3 (a, Y) (47)
a>0

But, as already pointed out, -f2 (a, y) is maximized by a = 1+ and

f2(l+y' Y) • £(jP)£3(y ' Y) ' (48)

We thus have the following
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Theorem 3(*)

For y e(0, 1], NY is finite provided

R <- E (y) (49)y o

and

l+y[f3(1+y )+ Eo(y)]<G<- l+Y fl(l+ y)(50)

We see that Theorem 3 represents the same strengthening of the usual

bound (see [1], p. 363) as Theorem 1 did. In particular the usual choice

G = -E (y) is within the range of the interval (50) that has non-zero length

whenever (40) does not hold.

Let us finally consider the bound (33). In Appendix III we have shown

that fl (X) is a convex function with

fl(O) = 0, f1(1)< 0.

Thus Figure 3 represents the graphical solution to the problem of

maximizing s* that satisfies (31). As is intuitively obvious, s* is a

monotonically increasing function of G. s* = 1 for G = R. We sunmmnarize

our conclusions in

Theorem 4

The probability Q(a) that the likelihood of some path in the incorrect

subset exceeds a is bounded by

Q(a) < (2n R _ 1) 2 - s * a
(51)

where s* is the maximum of at most two solutions of the equation

G = [R + fl(l-s)] . (52)
s

* We call the reader's attention to the fact that Theorem 3 does not imply

that if (49) holds then the upper bound on NY is finite only if (50) holds as
well. When G = R, the conditions (24) reduce with the help of (42) to the
usual condition (49).
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Let

G+ = lim I f1 (1-s)
S -c

If R > -f 1 (l) there is a unique value G such that (53) has two positive

solutions for G e(G, G ) and no solution for G < G . If R < -f1 (1) then

exactly one positive solution exists for all G < G+. s* is a monotonically

increasing function of G e(G-, G ).

The reader should note that Theorems 1, 2, and 3 have a somewhat

different status than Theorem 4. There is definite practical value in

setting G so as to minimize Pf(t) and U(u) for fixed t and u, and to

maximize the Pareto exponent for a given rate R. On the other hand, it

would be foolish to blindly increase G just to minimize the bound on

Q(a) for fixed a. The latter is an arbitrary parameter which is used to

determine a back-stop before which decoding information can safely be

released to the user. One might therefore wish to answer the following

question.

Given a prescribed average lag of released information

behind maximum tree penetration by the decoder (information

is assumed here to be released in accordance with the rule

of the next to last paragraph of Section 1), how shall G and a

be chosen so as to minimize the probability of error Q(a)?

To answer the above question, note that the expected penetration

depth in branches necessary to achieve the likelihood increase a is

given by
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m

a a
~~m = 'n -~log~~ -- G =~ n ~-G~ -(53)

nE [ log ( /) G 3 n [i(x-Y) - G ]

since the denominator is the expected likelihood increase per

branch. Now from (51),

- log Q (a)> -nR + s*a= -nR + mn [ s*I (Y) - R - fl(1-s*) ]

where the value of a was given by (53) and that of G by (52).

It follow therefore, that we wish to choose s* so as to maximize

s*I (XY) - f (l-s*)

which is equivalent to choosing the largest s* such that

I (XY) = -fl' (ls*)

But of Theorem III. 1, the desired s*=l, so the best choice is G = R.

We then get

Theorem 5

To minimize the random coding bound on the probability

of released information error, Q*(ii),for a prescribed

average lag m of released information behind maximum tree

penetration by the decoder, the bias G should be chosen to

equal R. Then

Q*(m) < (2 R -1) 2 m [ I (x;y) - R]

provided the likelihood decision threshold is set to

a =:n:( ; )-R]

It is worth noting that because of (38), (39), (42), (49), and (50),

the choice G = R allows for simultaneous optimization of the bounds on

the Pareto exponent, U(v), and Q*(')
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5. The Random Coding Bounds for Arbitrary Values of G

In sequential decoding one ordinarily wishes to choose all parameters

so as to maximize the Pareto exponent a which determines the amount of

decoding effort. This is especially true in the range a e(0, 1]. Comparing

Theorems 1 and 3 we see that the bounds on U(u) and NY require the same

optimal choice of G, namely in the range (50). From Theorem 5 we see

that to minimize Q*(m), G ought to be selected equal to R. To

minimize Pf(t), G ought to be selected within the range (46) whose lower

limit is formally identical with that of (39) which minimizes U(u). However,

the values of the parameters l and 6 appropriate for (39) and (46) are

1
different. For (39), T satisfies R = E ' (1), while for (46), R = - E (6).

o 6o

Because of the well-known concave nature of E (X),
·~~~~~~~~~~

E (X) < )0 -Xo (55)

since E (0) = 0. Hence
0

11 < 6. (56)

Thus for some channels at least [certainly for all channels

satisfying (40), such as the BSC]

X+ [Eo(j) + f3(+ I)] > 1 ly 

so that there is no value of G that would simultaneously optimize the

bounds on U(u) and Pf(t).

We already remarked in the preceding section that for non-symmetrical

channels a different input distribution r(x) optimizes the different

performance parameters. As a consequence, the algorithms of the present

section will not be optimal for such channels.
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A. Bounds on U(u) when (39)-not satisfied

Let 6 satisfy R - REo(6R) whereR > E (1), otherwise 6 A 1.R R-0 R=

Because of (57), the more interesting case of violation of (39) is that

1+6
R

5
R

I(X;Y) >G > - 6 f) (58)
R

We will now minimize the bound (19) for this case. (It is shown in

Appendix III, Theorem III-1 that -f'(0) = I(X;Y). Therefore, unless the

lefthand side of (59) holds, neither (17a) nor (18a) can be satisfied.)

Lemma 1

The exponent of the upper bound on U(u) is minimized by some

6 e(6*, 6 R) where 6* is the unique solution of

G + f =0. (59)1+ 6* 1 (1+6*

Proof

Because of the convex nature of fl(k) and inequality (58),

6. 6R
P A +6* R< 1+6 (60)

R

so that 6* < 61 as asserted. Because of (59), inequalities (17a) and (18a)

can be satisfied for a fixed 6 only if a e(0, ). Since for 6 e(6*, 6)
6~~~~

P* < 1+6 (61)(6 1)

then because of the concave nature of -f2(a, 6) as a function of a, the former

is maximized over a e(0, P*- by the value a = P- . Therefore, from (17),
6 '

(18), and (19) the maximum achievable exponent cannot exceed -f2( 2 6).B2 6).

But for 6 < 6*, -f (- 6) < -f2 , 6*
:
) [see Appendix III, Theorem III-31,

Z 2 5*~~~~~~~~.~
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and exponent -f2(6*, 6*) is achievable since the assignment a =

6 = 6* satisfies (17a) because of (59), (17c) because of (35), and (iTb)

because by the concavity of EO(6),

R < Eo(6*) = - f (- , 6*). (62)6* o 6* 2 6*'

Therefore only 6 > 6* need be considered.

Adding (18b) and (18c) results in (17b), and for 6 c(6 Rs 1)

1 6 1 ii /
6 2 ~R lf2(c' r)~ , )<-+6 1 ) IR 2(+6R' 1-R

so that neither (17) nor (18) can be satisfied. We thus conclude that

§ < 5i' Q.E.D.

Let us now pick 6 e(6*, 6R) and try to find the value of a maximizing

the exponent. If

R <- 1 ,6) (63)R< 6 f2 (P* 6)(3

does not hold then that value of 6 is inadmissible since neither (17b) nor

(18b) and (18c) can be satisfied for any a in the allowed range (0, )'6

[see the proof of the preceding Lemmna]. Assume therefore that (63) does

hold, and suppose that

.fl(P*) f3 (a f2 (. P 6) * (64)

In this case the choice = -P* satisfies (17a) and (17c). Since (17b) is
6

also satisfied and any smaller value of a decreases -f2 (a, 6), the exponent

is equal to -f 2 ( 6)

Next, suppose that (64) does not hold and let a 1 be the largest value

in (0, p/6*) such that
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a1 6 G = f3 (al, 6) -f 2 (a<, 6) (65)

If (17b) holds with ac = a, then the largest conceivable exponent

obtainable from bound (19a) is -f 2 (al, 6) which is at most as large as the

exponent from (19b) obtainable for some a e(al, p*/6)

Thus if (64) does not hold, we need consider only the bound (19b).

Let aG(6) be the unique value satisfying

6G = f (a, 6) (66)3

that exists provided G < f (a, 6) [see Appendix ILI, Theorem III-4]. If

(66) cannot be satisfied, we set aG(6) = ~. Suppose

p*
6_G(6). a(67)

Then with a P*= , (18a) and (18b) are satisfied and if6

R <- [p* G -f 3 (p*/6, 6)] (68)

then p* G -fl(p*/6, 6) is the best obtainable exponent for that value of 6.

If (68) is not satisfied, 6 is not admissible. If (67) does not hold, and

a1 > 0G(6), then the best attainable exponent is -f 2 (al, 6) provided (18c)

holds, while if aG(6) e(al, p*/6) then the best exponent is aG(M) 5G

-f3(caG(6), 6), provided (18c) holds. If (18c) does not hold, 6 is not

admissible.

We can now state an algorithm that will obtain the best exponent for

the upperbound on U(u) for a fixed R and G satisfying (59).

I. Find the interval (6*, 8R ) and p*.

2. Pick 6 e(6*, 5R) and check if (63) holds.

If it does not, 6 is not admissible. Otherwise continue.
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3. If (64) holds, let

E(6) =-f2 (p*/6, 6)

4. If (64) does not hold, check if

6G -fP (p*/6, 6) > 0(69)

If (69) holds and (18c) is not satisfied with a = p*/6 then 6 is not

admissible. Otherwise

Eu(6)= p* G-f
3

(p*/6 6)

5. If (69) does not hold, find the largest a 1 e(0, p*/6) satisfying

(65) and check whether

SG -f. (a1 , 6) < 0 (70)

If (70) holds and (18c) is not satisfied with a = al then 6 is not

admissible. Otherwise,

E (6) = -f 2 (a,, 6)

6. If (70) does not hold, find aG(6) satisfying (66) [necessarily

aG(6) e(al, p*/6)]. If (18c) does not hold with a = aG(6) then 6 is not

admis sible, otherwise

Eu(6) = aG(6)SG - f3 (aG(6), 6)

7. Repeat from step 2 on, so as to obtain a plot of E (6) for all
U

admissible values 6 e(6*, 6R). The mnaximurm of this plot is the

desired exponent.

We expect that (6*, 6 R) will contain only one sub-interval of admissible

values of 6, and that over that sub-interval E (6) will be unimodal.

Let us next consider the case

o <G 1+< R 0 < G < - [f3 (+R R)2(+R Rj (71)
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Lemma 2

The exponent of the upper bound on U(u) is minimized by some

6 e(61, 6 R) where 61 is either the largest 6 e(O, 6 R) such that

G=f (1 +61 ' ) (1 ·61
)

(72)

or is 0 if (72) cannot be satisfied.

Proof

Let a1 be the "best" value of a for some 6 e(O, 1). If 6 is admissible,

then

1 /R (l 61 < ). (73)- 6 2 ( 1 , 6) < - f2 1+ ' 6)

But the righhand side of (73) is a decreasing function of 6, so if 6R < 1,

the lefthand inequality in (73) can hold only if 6 < 6
K

.

Next, let 61 be as defined in the Lemma. Because (35) holds, then

1
for 6 = 6 and a = 1+ , all the conditions (17) are satisfied so that the

1 1+ 1

exponent for this value of R and G is at least -f2(l+ , 61). Because
1

1+ ' is an increasing function of 6, then for all 6 < 51 the

exponent is smaller than -f2 61) so only 8 > 81 need be considered.

Q. E.D.

It follows from the definition of 61 and from (71) that for all

6 e (1, 6 R),

-G~~~~~IT ff- 6})f j-f (74)
1+6 G f3 1+6 ) < 1

Let a2 be the largest value of a eO0, -1+5 ] such that

o6G < f3 (a,'6) -f2 (o, 6) (18b)



holds with equality and let a1 be the smallest value of a e) for

which (18b) holds with equality. From (74) it follows that (18b) holds

1
for all a e(a2, a 1 ) and that 1I < p*/6. Therefore (18a) and (18b) both

hold for a e(a2 , a3 ) where

a3 = rmin {a,, p*/6 .

Let aG(6) be as defined in (66). If aG(6) e:(a2 , 3) and

6R < aG(6) G -f3(a G(6), 6)

then the righthand side of (76) is the exponent. If aG(6) < a2 and

BR < a. SG -f 3 (aZ' 6)

then the righthand side of (77) is the exponent.

If aG (6) > a3 and

6R < a3 6G -f 3 (a3 , 5)

then the righthand side of (77a) is the exponent. If neither of the three

cases holds, 6 is inadmissible. We therefore get the following

algorithm.

1. Find the interval (51 , 62 ) and p*.

2. Pick 6 e(51, 5
R

) and compute a1, a2, a3 .

3 e If 6 G -f3 (a3' 6) > o

check whether (77a) holds. If it does not, 6 is inadmissible, if it

does, the exponent is

Eu(6) = a3 SG -f3 (a 3 , 6)

4. If (78) does not hold and

5G -f' (a2, 6) < 0

check whether (77a) holds. If it does not, 6 is inadmissible, if it

does, the exponent is

74

(75)

(76)

(77)

(77a)

(78)

(79)
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E(6) = a.-6G. -f 3 ( 3 , 8)u( 2)as _fI (a3' 6)

5. If neither (78) nor (79) hold, determine aG(6) satisfying
G

(66). If (76) does not hold, 6 is inadmissible, if it does hold then

the exponent is

Eu(6) = aG(6) 6G -f3(aG(6), 6)

6. Repeat from step 2 on so as to obtain a plot of E (6) for
U

all admissible values 6 e(61, 6R). The maximum is the desired

exponent.

B. Bound on Pf(t) when (46) not satisfied

We will now see how to optimize bound (20) for a fixed G less than

the righthand side of (46).

Lemma 3

If when m satisfies (44), the inequality (46) does not hold, then the

value of 6 optimizing the bound (20) on P.(t) is within the interval

(6, 'M) where 6m (6 M) is the largest 6 < 1 (smallest 6 > 11) such

that

1+6 G f) (3 ' 6) T=° (77)
~~~~~~1+6' 3 \+8f2 l+5'/

or is equal to 0 (equal to 1) whichever is larger (smaller).

Proof

First note that only 6 e[0, 1 ] are admissible by the bound. If

6 O[0, 5m) (6 e( 6M , 1]) then because of the concave nature of

-f2 (1-j-. &) - SR the largest value of the exponent cannot exceed

f2(+6' m m 21+6M
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otherwise the optimal exponent for any G would not be achieved at i.

However, because ot (77) the values (78) are achievable with the given

G and so the optimizing 6 e 6m , 5M ]. Q.E.D.

Consider now 6 [6 m , e M fixed. We will see how to find the value

of a > 0 that optimizes the exponent in (20). We will use the fact that

-f 2 (cr(a, 6) and -f 3 (a, 6) are both concave functions of a that are positive

for some interval (0, aM) [see Appendix III, Theorems III-2 and III-4],

1
and that -f 2 (a, 6) is maximized at a = 1+I . For U e(6m , 6 M), the left-

hand side of (77) is negative. If aG(6) maximizes a 6 G -f 3 (a, 6), then

there are two cases. If

aG(6) 6G -f3(aG(6), 6)_<-fZ(qG(6), 6) (79)

then because of the concave nature of -f2 and -f3, the best exponent Ef(6)

is given by

Ef(6) = aG(6) 6 G -f3(aG(6), 6) - 6 R. (80)

On the other hand, if (79) does not hold, and aG(6) < 1+6, then there

exists a unique 04 (aG(6), + such that

a4 SG -f 3 (r 4 , 6) = -f2 (a4, 6) (81)

and the best exponent is

Ef(6) = -f 2 (a 4 , 6) - 6R . (82)

Of course, if aG(6) > 17, then G4 e(+, (6) satisfying (81) is
G + 6 a~4 1(+6'

desired.

In finding the best exponent for the upper bound on Pf(t) when (46) is

not satisfied, one proceeds as follows:
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1. Find the interval (6m 6M)
mM

2. Pick 6 e(6m , 6 M ) and find aG(6) satisfying (66).

3. If (79) is satisfied, Ef(6) is given by (80). Go to step 5.

4.~~~~~~~~4. If (79) is not satisfied, find 04. El(6) is given by (82).

5. Repeat from step 2 on so as obtain a plot of Ef(6) vs. 6.

The maximum of this plot is the desired exponent.

C. Pareto Exponent for Arbitrary G

Let R > E (1) and let 6 be as defined previously. Wewill first0~~~~~~~~~~W wilfrs

find the lower bound on the Pareto exponent when
1+ 6 R _ 6R.

I(X;Y)>G > - 6 fl (58)
R

We wish to find the largest possible value of y such that (24) can be

satisfied for some y > 0.

Lemma 4

If (59) is satisfied then the best lower bound on the Pareto exponent

y falls within the interval (6*, 6 R) where 6* satisfies (59).

Proof

Since G is not chosen optimally, 6 < 6R. Since 6* < 6 R (see Lemma

1) we need only to show that y = 6* satisfies (24) for a = p*/6*, where p*

was defined in (60). But that choice satisfies (59) and therefore (24a).

Furthermore, by concavity of E (6),
O

R + I f * 6* = + 
oE(6* ) < R + I E (6 =0sth6*2() 2 saisi* 0 6w R

so that (24b) is satisfied as well. Finally, from (59) and (48),



78

6* R + f3(* P 6*) - p*G = 6*R + ' 3 +6 6* ) + )

< 6* R + f2( +6'6 <

so (24c) is satisfied as well. Q.E.D.

Let y e(6*, 6R) )(24a) can be satisfied only with a < p*/y. Also

since 6* < y, then

P* 1+6* < l+y1+ 6* Tui

so that -f 2 (a, y) is maximized over (0, p*/y] by c= P*. Thus, if

R>- f( Y) (83)

then the Pareto exponent is less than y. If (83) does not hold and

aG(6) > p*/y then the Pareto exponent is less than y if (2 4c) is not satisfied

with a = p*/y, and it exceeds y otherwise. If aG(6) < p*/y, let a5 be the

unique value of a e(aG(6), p*/y) such that

f2 (a5' Y) = f 3 (a 5 , Y) - a5 yG . (84)

The Pareto exponent then exceeds y if (24b) holds with a = a5 , and is less

than y otherwise.

If (59) holds, the best lower bound on the Pareto exponent is found by

the following method:

1. Find (6*, KR) and p*. Let a1 = 6*, a2 = fR'

2. If a 2 - a 1 < e exponent is at least a
1
. Stop. Otherwise pick

y e(a1 , a 2 ).

If R > - f (P*/y, Y), set a2 = y and go to step 2. Otherwise
y2 

continue.
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3. I.f -fI (p*/Y, Y) < o

go to step 4. Otherwise if (24c) is satisfied with a = p*/y set

a1 = y. If (24c) is not satisfied, set a2 = Y. Go to step 2.

4. Find a5 satisfying (84). If (24b) holds with a = a5 , set

a = y. Otherwise set a2 = Y. Go to step 2.

We will conclude this section by treating the case

1+6R
O < G < R [3 (l+1R6 )+EosR)] (71)+6 . f R) + sEo R)

Lemma 5

If (71) is satisfied, then the best lower bound on the Pareto

exponent y falls within the interval (61, 6 R ) where 61 is either the

largest 6 e(0, 6R) for which (72) holds, or is 0 if (72) cannot be

satisfied.

Proof

We omit the proof which is similar to that of Lemma 2. Q. E. D.

Let y e(61, 5R). Then (24a) is satisfied for all a < p*/y. Further-

more, since

l+y 3 (l+y'Y) I(+ \) lI+y)

then

p* 1> . (85)
y l+y

For the sake of brevity, we shall immediately describe the algorithm that

obtains the best lower bound on the Pareto exponent.
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1. Find (1, 1 ) and p*. Let a1 = 61, a
2

= 6R.

2. If a2 - a1 < e, the exponent is at least a1 . Stop. Otherwise,

picky e(a 1 , a 2 ). If

R < I+y G-3 (i+-y' -Y)

set a1 = y and go to step 2. Otherwise, continue.

3. If p* G -f 3 (p*/y, y) <-f2(p*/y, y) (86)

go to step 4. Otherwise there is a unique a6 e(+Y, p*/y)

such that

y a6 G -f 3 (a6 , y) = -f 2 (a6 ' Y) (87)

If (24b) is satisfied with ac = a6 , set a1 = y. If it is not satisfied,

seta2 = y. Go to step 2.

4. If YG -f~ (p*/y, y) < 0

go to step 5. Otherwise, if (2 4c) is satisfied with ca = p*y, set

a, = y. If it is not satisfied, set a2 = y. Go to step 2.

5. Find aG(y) satisfying (66). If

aG(Y)yG -f 3 (aG(Y)' Y) > -fZ(aG(Y)' )

then go to step 6. Otherwise, if (24c) is satisfied with a = aG(y) set

a 1 = y. If it is not satisfied, set a2 = y. Go to step 2.

6. If aG(Y) > 1+ [aG() <ly ] there is a unique

a6 e~ 1 (Y) I% 1+)

for which (87) holds. If (24b) is satisfied with a = a6, set a 1 = y. If

it is not satisfied, set a2 = y. Go to step 2.
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6. Optimal Expurgated Bounds

In this section we will develop expurgated upper bounds to the

probabilities of undetected error and of failure. We will use the notation

of Chapter 10 of Jelinek [1 ]. We will limit our attention to convolutional

codes and channels symmetrical from the input, so that for any given

code the probability that any information sequence be incorrectly decoded

is the same for all sequences. We will therefore always assume that the

all-zero sequence was transmitted.

If Xis received, an undetected error will take place at depth 0 only if

m t+ U
L(s)- L >0 forsomeseG e , t>0, m>0. (88)

Hence if an undetected error takes place, then

co co

2 a[L(s)-Lm] (89)z +
t=O m=0 Go

for all C > 0. Let e(i) be the undetected error indicator faction for a

fixed convolutional code C of constraint length v and a received sequence

Then the probability of undetected error at depth 0 is given by

U
PC (e) = E (X))(90)

and the probability P{ C: P (e) > B3 of selecting a code from the ensemble
C

whose undetected error probability exceeds some number B is bounded by

PC :Pc(e) >B <B /p E CE 0 (X)]P (91)

where E denotes averaging over the ensemble. Thus the probability is

at most 1/2 that a code will be selected whose probability of undetected

error exceeds
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co co l/p P

B=2 {E[Ef ( 2 arL(^)-L
m

])] 1/p pE(92)

t=O m=O seG 
' 0

where we took into account the fact that the lefthand side of (89) exceeds

(X9. Let u stand for the all-zero sequence. Then we can re-write

(92) as (
B a G(m-t-v)

B= 2P< E 2 P 

t m....

2 /p

·~~~~~~~~~~~~~~~~~~~~w V+ /xt (s Dw(,J... 

* w( ) /U W( } ] 

0~~~~~~~~~~ X

If p > 1, then Je sen's inequality yields
-G(m-t- u)

(t m l/p P P
B.--<zP{' [2P w't+ U/xt+ U(s) w) av rW(Xit+9/X'+ U(O?) w(,Y-

Se# E ) | m t+U (93)
R.,e Go y+ X w(X /u ) w( ) 

We now define the exponent functions

g 1 (a) = log w(y/O)l- a w(y)a (94)

yY

17 71/p

1/1

g2 (a, p) = p log- ( w(y/O)" w(y/x)'- ) (95)

L Fw(y/) ag3 (C, p) = p log [ (yix ) (96)

x y

with whose help we can bound the expectation in (93). Denoting the latter

by F(m, t), we get
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p[mg2 (a, p) + (t+u-m) g3 (a, p)] if m <t + u

exP2 p[(t+u)gZ(a, p) + (m-t-u)gl(a)] if m <t + u

After some algebra that is identical to that used to derive (19) we

finally get the bound

K 2g 22 (a, ,) where K is finite if (99) holds

B <w

K 2u[g3 ( a , p) - aG] where K is finite if (100) hole

(98)

oG + gl(a) < 0

S

ds

pR + g2 (a, p) < 0 -(99)

g3 (a, p) - g2 (a, p) - aG < 0

oG + gl(ar) < 0

aG + g2 (a, p) - g3 (a, p) < 0

g3 (a, p) + pR - aG < 0

(100.)

In the bound (98) the restrictions a > 0, p > 1 are assumed. Comparing

(98) through (100) with (17) through (19) we see that both bounds have the

same formal structure. We will take advantage of this when optimizing

the expurgated bound.

We show in Lemma IV-1 of Appendix IV that for channels symmetric

from the input, g2 (a, p) is minimized by the choice a = 1/2. Since at least

half of the codes in the ensemble have a probability of error that does not

exceed B, we may conclude that

F(m, t) (97)
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Theorem 5

For R e[0, -g
2

(1/2, 1) = E (1)]and channels symrnretric from the
0

input there exist convolutional codes whose probability of undetected

error is bounded by

-E[g2'(2' p) ]
P (e) <K2 (101)

U-

where p > 1 satisfies

~~~~~~~~~~~~~~~~~10R = -- g 2 (1/2, p) (102)
P

and K is finite provided G is chosen so that

2[g3 (1/2, p) - g(1/2, p)] < G < -2 g
1
(l/2) (103)

Of course, it is necessary to show that the righthand side of (103)

exceeds the lefthand side, which we do for equidistant channels in Theorem

IV- 1 of Appendix IV. It is interesting to point out that the expurgated

exponent of Theorem 5 is the same as that obtained by Viterbi and

Odenwalder [10] for maximum likelihood decoding of convolutional codes.

We next turn to the probability of failure. If X is received, a failure

of order t will take place at depth 0 only if

L(O - L m > 0 for some s eD t and 0 < m <t.

Hence if a failure takes place then

tn-Z y 2 a[L(^)-~L ]>1 (104)

m=O SC p

for all ca > 0. Letting op(o be the failure indicator function for a fixed

fconvolutional code C , and denoting the failure probability by Pc(e), we

can conclude that (c.f. (91)) over the ensemble,



P{C:~ PC(e) > D} <D /P E[E ]/·~~~~~~~~
Hence the probability is at most 1/2 that a code (of constraint length

u > t) will be selected whose probability of t-order failure exceeds

t 1 /p P
D2P{E [EZ 2aEL()-L m 1/fev~~~~~~~~~

m=O 

The same algebra that led from (92) to (93) leads from (106) to

G t mar G

- mO X .
m=0 _ ,

se ( .L [w / o)£ J

Z~~~~~~~~

IV0

Using the functions gi(a, p), the righthand side of (107) can be

so as to yield the bound

p-t[CG-pR-g3 (a, p)]
D<2

l/p

(105)

(106)

p

(107)

evaluated

P
t mp G + g2 (a, p) - g3 (a, p)]

m=O0

It follows directly that if for a > 0, p > 1

aG + g 2 (a, p) - g 3 (a, p) > 0

(108)

(109)

then
t[ pR + g2 (a, p) ]

D<K2

and otherwise

(llOa)

tEpR - aG + g3 (a, p)]

85

.1.

D <K2 (10Ob)
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Again we see that the obtained bounds (110) have the same formal

structure as the bounds (20) had. Since, as clearly remarked, g2 (ar, p)

is minimized by a = 1/2, and g2 (1/2, p) is convex in p, we can conclude

with [g2 (1/2, p) denotes a g2 (1/2, p)]

Theorem 6

For R e[0, -g2 (1/2, 1)] and channels symmetric from the input there

exist convolutional codes whose probability of failure of order t is

bounded by

t[pR + g2(1/2, Us)]
Pf(e) < K 2 (111)

where p_> 1 is the unique solution of

Ra - g (1/2, i) (112)

and K is finite provided

G > 2 [g3 (1/2, i) -g2 (1/2, kt)] (113)

For R e(-g'(1/2, 1), -g 2 (1/2, 1) Eo (l) ], bound (111) holds with ±=1

provided G satisfies (113) with F = 1.

It should be noted that the exponent of the bound (111) is identical to

the expurgated exponent obtained previously for block codes (see Jelinek

[1], p. 217).

It is further interesting to note that since

g3(1/2, ji) -g2(1/2, [)_< -gl(1/2)

then the choice

G = -2 gl(1/2) = -fl (l/2) = -2 logs ,w(y)w(y/0) (114)

Y
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optimizes simultaneously both the undetected error and failure bounds for

all R EO, -gz(l/2, 1)].
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7. Expurgated Bounds for Arbitrary Values of G

In this section we describe algorithms that optimize the bounds (98)

and (110) for arbitrary values of G. This we do in spite of the last

assertion of the previous section, because in the range of rates of interest

the G-value maximizing the Pareto exponent differs from (114). More-

over, the rate points below which optimal expurgated exponents exceed the

corresponding random coding exponents for probabilities of undetected

error and failure, respectively, are also in general different, so that,

e.g., the random coding failure and the expurgated undetected error

exponents might apply simultaneously for some rate interval [this is

shown in Section 8 ].

Since the bounds (98) and (110) are formally identical to the bounds

(19) and (20), the optimization problem ahead of us is almost identical to

that of Section 5. We will therefore simply state the exponent optimization

algorithms without providing a detailed justification.

Let PR be the solution of

R=1R = - -g 2 (1/2, p) (115)

and let us attempt to optimize the undetected error bound when

I(X;Y) > G > - 2 gl(1/Z) (116)

The upper bound in (116) is due to the fact that -gl(a)'is a concave function

with -gl(0) = 0 and that

-g~ (0) = ,w(y/O) log W(y/O) = I(X;Y) (117)

y

Let aG (< 1/2) be the solution of

1
a gl(a) (118)
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Then clearly both (99) and (100) can only be satisfied by a a[0, aG]. Since

by Lemma IV-3,- P g2 (a, p) is a decreasing function of p, and is a concave

function of a with a maximum at a = 1/2, then in the range a e(0, aG]
G

the inequality

1
R <- pg2 (a, p) (119)

can be satisfied only for some p < Pl In (119) let a = aG, and let PGR be

the value of p that satisfies (119) with equality. If PGR < 1 then for that

R-G combination an expurgated bound cannot be developed. Otherwise, we

know that in any case we must choose p 6(1, PGR ) and a e(0, aG) to satisfy

either (99) or (100). The algorithm to find the best exponent for the case

(116) is as follows:

1. Find aG satisfying (118), and PGR satisfying (119) with a = aG.

If PGR < 1, the exponent Eexp = 0, and stop.

2. If PGR > 1, see whether with p = PGR

-gl aG )- > g3 (aG ' p) -g 2 (aGf p) (120)

If so then (99) are satisfied and the exponent is

Eexp-
EUp = g2(aG' PGR)

Stop.

3. If (120) does not hold, neither (99) nor (110) hold with

a= CG P = PGR' Select p e(0, pGR) and see whether (120) holds.

If so the best exponent for that value of p is

Ee x pu(p) = - g
2
(aG, p)

4. If (120) does not hold for the chosen value of p, check if

G I- g3 (10 P) i >0 (121)
a = aG

If (120) holds and (100c) is not satisfied with a = aO, then p
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is not admissible. Otherwise

u () GG - g3 (aG, p)

5. If (121) does not hold, find the largest a1 e(0, aG) satisfying

al G + g2 (al, p) -g 3 (al' p) = 0

and check whether

G - a g3 (o, p) 01< 0 (122)
=la a

If (122) holds and (100c) is not satisfied with a = al, then p is not

admissible. Otherwise

Eexp (p) = -g
2 (al, p)

u 

6. If (122) does not hold, find a2 satisfying

G =aa g3((a ,p)

If (100c) does not hold with a = a2, then p is not admissible. Other-

wise

Eexp (p) = 2 G -g 3 (2, p)

7. Repeat from step 3 so as to obtain a plot of EexP(p) for all
u

admissible values p e(l, PGR). The maximum of this plot is the

desired exponent Eexp
u

We wish next to find the exponent for undetected error when

1 1
G <2 [g 3 (2, PR) - g2 (2, PR)] (123)

In this case aG > 1/2. Since (119) must be satisfied, p can be admissible

only if p < PR. Let P1 be the largest p e[, PR], if it exists, such that

G = 2[g3 (1/2, p) - g2 (1/2, p)] (124)
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Conditions (99) are satisfied by a = 1/2, p = P1 and so the exponent is at

1
least -g 2 (, p P1). For p < P1, the exponent would have to be smaller, and

so if P1 > 1 exists, we need only consider the interval [P'1, PR ] Our

algorithm for finding the best exponent is as follows:

1. Find P1 if it exists. If P1 [eEl, PR] does not exist for which

(124) holds, let P1 = 1.

2. Select p e[pl, PR ] . Let a2 (a1 ) be the largest value of

a e[O, 1/2 ] (smallest value of a e:[ 1/2, A]) for which

aG = g3 (a, p) -g 2 (a, p) (125)

and define

a3 = min (a1, aG)

3. If

G - g
3

(a, p) p) > 0 (126)
la :a 3

check if (127) holds with a = a3

pR < aG -g 3 (a, p) (127)

If (127) does not hold, p is inadmissible. If it does hold, then

EexP (p) = a 3 G-g3 (a 3 , p)

4. If (126) does not hold and

G -a g
3

(a, p) < 0 (128)
la= a 2

check if (127) holds with a = 0a2. If it does not, p is inadmissible. If

it holds, then
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Eexp (p) = 2 G -g 3 (a2 , p)

5. If neither (126) nor (128) hold, let 04 be the unique

value of a satisfying

G -a g3(a, p) = 0

If (127) holds with a = a4 then

exp(P) a4 G -g 3 (a3 , p

otherwise p is inadmissible.

6. Repeat from step 2 on so as to obtain a plot of EexP(p) for
u

all admissible values p e[Pl' PR]. The maximum is the desired

exponent E exp
u

Finally, we wish to find the best expurgated exponent for the

probability of failure when

G < 2[g 3(1/2, piR) -g 2 (1/2, rR) (129)

where P.R satisfies

R = -g3 (1/2, 1±) (130)

Our search algorithm is as follows

1. Find [m(LM) the largest i e[l, jR) (the smallest IL> IR)

such that

G = 2 [g 3 (1/2 2 (/2, ) -g2(1/2, 1)]

If ,m does not exist, set ± = 1.

2. Choose ~t e(jim, pM) and find a1 satisfying

G -a g 3 (a, [ ) = 0



If

a l G + g2 (al, p,) -g 3 ( 1 , pL) <0 (13 1)

then

Ee (i)) = -[~,*-al G + g3 (alp p)]

3. If (131) does not hold, and al <1/2 [a1 > 1/Z] find unique

a. e(al, 1/2) E[a? (1/2, al)] such that

a2 G = g 3 (a 2 , i) -g 2 (a2 , p)

Then

Efx () = - [R + g2 (a2 ', L)]

4. Repeat from step 2 on so as to obtain a plot of EfeX(; ) for

pR ¢(,m' ,M ) . The maximum is the desired exponent Efx .
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8. Performance Curves for Gaussian Channels with Binary Inputs

In this section we first apply our exponent optimization procedures

to quantized Guassian additive noise channels with binary inputs.

Figure 4 concerns binary output quantization applied to a channel whose

SNR is 1.5 dB per transmitted bit (this channel has R = .485).
comp

In Figure 5 the quantization is optimal uniform octal and its SNR is

-. 3 dB per transmitted bit (here Rcom = .51). Finally, in Figure 6

the quantization is again octal, but the SNR = -2. 0 dB (R = .375).
comp

Each of the figures contains curves of the failure and undetected

error exponents as a function of the rate R. There are three curves

of each type: the first curve corresponds to the usual choice G=R.

The second curve corresponds to the choice

G= - +af ( )(132a)
a I +l+aa

for

E (1) < R =E (a) < C (132b)
0 a o

and

G= -Z f1 (1/2) = -Z gl (1/2) - (133a)

for

O < R < E (1), (133b)
0

which is the largest possible G optimizing the undetected error exponent.

The third curve corresponds to the choice

G: o L( )+ f3 (+
(134a)
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for

E (1) < R = E' (1) < C, (134b)
0 -- 0 --

G= 2[E () + f3 (1/2,1)] = 2[g3 (1/2,1)- g2 (1/2,1)] (135a)

for

-g2 (1/2,1) < R < E'(1), (135b)
0

and

G= 2 [g3 (1/2,) - g2 (1/2,d)] (136a)

for
! !

0 < R = -g2 (l/2, L) <-g (1l/2, 1), (136b)

which is the smallest G value possible that optimizes the failure

exponent. The three figures show the performance degradations incurred

incurred by a non-optimal bias assignment. Interesting is especially

the substantial failure exponent degradation that results from the

customary assignment G=R. The corresponding weakening of the

undetected error exponents at low rates should also be noted. It is

hard to say whether this phenomenon is real or simply reflects the

inadequacy of the bounds.

Figure 7, the last presented in this paper, gives the Pareto

exponents for the three kinds of channels (see above) when G is

selected so as to optimize the Pareto or failure exponents, respectively.
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Appendix I

Derivation of the Fundamental Bound

In this appendix we prove the validity of the bound (9). Let the set B

t tdenote either Dt or Gt (see definitions preceding (3) in Section 2) and let

s* be the path taken by the encoder. Then assuming 6 e(O, 1],
~ ~~~~~~~~~~~~5

E J X~~ [W t, (a a~ 
wl x(,. /x ( :-)- ) I(

(in)~~~~(ii

<E m) (I-i)

- mr [ w] , (~ B [wt/] t D]

S CB ~~~~~~~~~~~~~~~~W(X, /x (,s*)) s B (X

a5 t[ t a 6

l[w(XR /X (S* ) ) s e B -W(X )|

where E , Exm/m, E t denote expectations with respect to the random

vectors )~ x given a fixed . . and x (which due to the code ensemble

structure is independent of A). Let |I B I It denote the number of
xt

t6 t a

sequences s of length t in the set . Then if £(Vt) = t and £(G t) = t-u,

J IB I i !<z22(B) n R (I-2)

where R is the rate of the code. We now have two cases.
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Case I: m > t

The righthand side of (I-1) is equal to ( 4 t denotes the sequence

Yt+1' ' ' Ym)

m
Z

-a ·

(Xi ) ( -

m
x

w(4t) (
I

m
xt

6

t t )

m r m/ )

w(z
t

)

w( t) I r(xt)

xt
X

I-aS a 5t t II
w(X /x~ ) t wvt/x)

I t rc(x) t 
W(X,) t W(x, I . )

X
1%'

6nl(B) R + (m-t)fl(aS) + t f2 (a, 6)=2 (1-3)~~~~~~

*(
= 6Snt(B) R

r(xt),
t

x

I x
m

:Xt

1-a6 

m, m mw(X, /* ) r(x~ )

W(y )

(I-3)=2
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Case II: m < t

The righthand side of (I- 1) is equal to

w(t) w( M)
-a6

m
x

m m mw(k, /3x ) r (x )
m mw(X /x )

W(T )

a
6

t~~ x (x ) w(X,/x)

. t
x

= 2 6nA(B) R 

t
Vxm

w(4t1 
~r(,x) (w )t t

X
~rn

6a

I }·
I'~ .r~ ~~1- -a6

*) rmx W(x) \ ,rn_

6n2B) + (tzx 3 (,6 + f(,6 x

R and (B) R + (t-m) f3(a, 6) + m 2(n, )

Relations (I-3) and (I-4) substantiate the top and bottom bounds of (9),

respectively.

tt

-a6 )

Cm a 6

(I)

(I-4)

.(2 nA(B) R
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Appendix II

Relations Between Functions f. (T1-6 - 6 )

Theorem II- 1

l+y
Y

_ wf+y fYI (l+y) (H- 1)

with equality on either side if and only if

1

Z (w(v/x) )+r(x) = const
\ w(¥) /

x

Proof

Using Holder's inequality,

exP2 y 

for all y

1
1+y

w(y) 7 [w(wy)
x

<(Z W(Y){ Ew(y)_<y w() k.y

1
l+Y l+y)

r(x)

1
Y

= exp2 y f2 (1y, Y)

with equality if and only if (II-2) holds. This establishes the righthand

side of (II-1). Similarly,

(II-2)

+y
Y

r(x) )

[f 3 ( l-+-Y ' -Y) +Eo (Y)] E .(Y) <

(itY )_ = 
(l+'--y: J Y



exp 2 f3 (i+' Y) =

w( y/x)1
w(Y) w(Y) Jx 

1
1 +y

=ex I2f Y)=eP2 +Y f2 (\jif+*Y)

with equality if and only if (II-Z) holds. As a consequence

+y [f3 (l+y ''y L k + y y)+ Eo(Y)]; 1+'Y [ --Y Eo(y) + Eo(y)] = 1 E (y)-- -l+y 

so that the lefthand inequality of (II-1) holds as well. Q. E.D.

Since E (Y) = - f y) the relation (UI-1) establishes that for every

6 c(0, 1), G can be chosen so as to satisfy (35).

1

(x w(y) W(YX )](yw,~, [(/x, L ~'* ]

100

r(x) }r (x)

I
1 +y

l+y

)r (x)

(II-3)
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Appendix III

Properties of f. (a, 6) Functions
1

Theorem II- 1

The function fl(X) is convex. fl(O) ! 0, fl(1) < 0 with equality if and

only if w(y/x) > 0 whenever r(x) > 0. Finally, f'(O)= -I(X; Y), the mutual

information between X and Y.

Proof

Let

w(y/x)
yX= w(y)Y = w(y)

Then

fl(1-X) = log Ey [E (X ) ]

If X = Ox1 + (1-0) X
2

with 0 c(O, 1),

ft!-X)= log E E '

-log E [E X 

<log {y[E Xy]}

then

X 
e

l + (1-0)k2]<
Y_

X2 1-0
EX } <y-Y

{EY[E Xy }

= 0 f 1 (1-X1 ) + (1-0) fl(1-kX2 )

(III-3) proves the convexity of fl(k).

(I- 1)

(mT-2)

(TTT-3)
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Since EX = 1 then fl(O) = 0. Next,~-j y I

fl() = limr log , w(y) 7% I f%
A. 4 U

y

(w(y/x) )
kw(y)/

x

with equality if and only if

w(y) = I whenever r(x) > 0

lim f ' (k)
x4 0 

E E[XX log X]
e0ye~ y Y1

E E[X ]""y ~ L y

= - lim
kXtl

f]'(l-X)=-E EX logX =~1 . y Y 

= -X (y) Y r (x) w(y/)
L £ ~~w( y)

y

w(y/x)log w(y)

x

Theorem III-2

f2 (o, 6) is convex in a. f2(0, 6) < 0 with equality if and only if

w(y/x) > 0 whenever r(x) > 0. f2 (1, 6) = fl(6). Thus for 6 < 1, f2(1, 6)< 0.

Proof

Using (II- 1)

f2 (a, 8) = log Ey(E Xa)& (E X '- )
r~j ^0 " Y

r(x) < 0

lirn
X I O

Finally,

f 1 (l-X) =

SO

= -I(X;Y)
Q. E.D.

(III- 4)
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Let 0 ¢(0, 1). Then

f2Y(e a + (l-0) a?, 6) =

e al + (l-0) a 6
= log E (E X eBjy\ y

(1 a2 6))e(i-a16) + (1-0)
(E X

\e Y

a )6
-log E(Ex)

( 1-l160
E X1F

Vy.
X a2 )6 (E Xy

l-a2 6 1-0
2 )]I

< 0 f2 (al, 6) + (1-0) f2 (a 2 , 6) (III- 5)

so that f2 (a, 6) is indeed convex. Since E X = 1,
^~ y

f
2 (O, 6) = limrn

a 0
log E (EXy ) <0

~ - ye y -

with equality if and only if

limr E X = 1 for ally
a} UycrS0

i.e., if and only if w(y/x) > 0 whenever r(x) > 0.

The fact that f2 (1, 6) = fl(6) follows directly from (III-2) and (III-4).

Q.E.D.

Theorem III-3

For p > 0, f2 (p/6, 6) is a convex decreasing function of 6.

Proof

We first prove convexity. Let 6 = 061 + (l-0) 56
2 where 0 C(0, 1).

Also, let



so that

061 (1-e) 62
a= -, I-a =- 6

8 = a - + (l-a) 
p

61
=a.~~~6

Then

f2 (- s) =logz a p/61+ (1-a) p/ 2 ) 6 X -
f2(P , 6) = log E (E 12(EX )c6 r~ e~jy Ye% -

l
a p/61 61 a p/61 (1-0) Z(E X I- <

c--og E y X ) (E -

(III- 8)<0 f2 (P/5 1 , 61) + (1-0) f2 (p/52 , 62)

which proves convexity.

Next, after some algebra,

dS 2( E 6)= [exp -f(p/6, 6)1

EX p/S

| Y I- Y) (E x p/16 ) _0
y

where we made use of the log x < x- 1 inequality. Q. E. D.

Theorem III-4

The function f3(a, 5) is convex in a. f3(1, 6) = 0 and f3(0, 6) < 0 with

equality if and only if w(y/x) > 0 whenever r(x) > 0.

(mI-6)

(III- 7)



Proof

Using (III- 1)

f3 (a, 6) = log E (E X )6

Thus if 0 e(O, 1) then

al 06
f3 (eOl + (1-0) a2 , I) < log E (E X )

-- Y (EX
y

r2)

< 0 f3 (al, 6) + (1-0) f3 (a 2 , 6)

Next, f3 (1, 6) = 0 because E X = 1. Finally,

lirm f3 (a, 6) =lim f2( ) <
a J O a 0 O

with equality if and only if w(y/x) > 0 whenever r(x) > O.

Theorem I1-5

1+6 F6+S L '6 + :3(-, I .] is a =n--negative function of 6 > O.

Proof

Since by Holder' s inequality

1

E X 1+6Ej Y

1

-( ~ x ) 6- / = 1

then
1

= log E X (E _>
"Y yM Yf3 (16' 6)

1

> log E l & + 6) = - Eo(6)

Therefore the function is indeed non-negative for all'6 > O.

(1-0)6

Q.E.D.

= f2 

Q. E. D.
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Properties of gi(a, 6) Functions

Lemma IV-1

For all p > 0, g2 (a, p) is minimized by the choice a = 1/2.

Proof

Consider any input letter x' / 0. By definition of channels symmetrical

from the input [see Jelinek [1], p. 201], there exists a permutation Tr of

outputs y such that

w(y/0) = w(rr(y) Ix') for all y (IV-1)

and a permutation :r* of inputs x such that

w(y x) = w(w'(y)rr*(x)) for allx (IV-2)

Therefore,

1-a I/ a 1-c /p
X( w(y/O)w |(y x)

1
) w( wEr(y)|x w(rr(y)Irr*(x)) )

x y x y

= Z (Z w(ylx)w(yfx)l) (IV-3)

x y

and IV-3 holds for all x'. Thus we can write

g2 (a, p) = plogw(y/x) w(y/x) (IV-4)
a x,x' y

It is well known that the righthand side of (IV-4) is minimized by the

choice a = 1/2 (see Jelinek [1], p. 246, problem 7.28). Q.E.D.

Define an equidistant symmetrical channel (c.f. Jelinek [1], p. 230)

as a channel symmetrical from the input that also satisfies



4 W(y/O) w(y/x) = Q

W(y/O) w(y) Y

for all x / 0

for all x / 0

(IV-5)

Theorem IV- 1

For equidistant symmetrical channels and all p > 1,

g3 (1/2, P) + g 1 (1/2) < g2 (1/2, p)

Proof

Instead of (IV-6) we will prove that

exp[g3 (/, p)+g(l/2)] < exp g2 (/, p]

4 (a ) = a 1/p
x

Then $ is an -ncreasing, concave function fLr p > 1.

(IV-6)

(IV-7)

(IV-8)

If we let

ax= [Z w(y)
y

(w(y/O))
\ w(y) /

w((y/x) 1/2
w(y)(v/ ))

1 /

2 Wy(y) /] [, w(y)
Y

(IV-9)
and

a' =[ w(y)

y

w(v/O) )/
w(y.) w(Y/x )1/2w(y)

then our task is to prove that

x x(ax) < X (ax)
x x-

x
y

Y.
y.
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Let

]

(IV- 10)

(IV- 1 1)
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or, utilizing condition (IV-5), that

*(a ) + (a-l) ~(a1 ) < (ao ) + (a-) (a'l) (IV- 12)

It follows from a trivial modification of Theorem 108 on p. 89 of Hardy,

Littlewood, and Pola [ l1 ]I that (IV- 12) holds if

a >al, a' >a
~~~0 0~~~~~~(IV- 13)(IV- 13)

a >a' I a + (a-l) a <a' + (a-1) a'1

We must therefore prove that (IV-13) is indeed satisfied. Now, by

Holder's inequality,

Y = Zw(y) w(y/O) (w(y/x) )/
yw( ) )y~~~~\wy

2/3

[Ew( w(y) ) I]
y

= Z w(y)
Y

(w(y/x ) )3/w(y) \ w(y) [Z
y

w(y/O))3/
w(y)

1/3

]

(IV- 14)

where the last step is due to the symmetricity conditions (IV-1) and (IV-2).

(IV- 14) proves ao > a
I
. Next,

[Ew(y) w(y/)

y

a = X w(y) (Y/O) )1/2 (w(y/1) 1/21 w~y) w(y)

y

* [\ w(y)W / ) )I
y

= a'
0

1/2

(IV- 15)

and



10 )

(w(y/O ) 1/4
w(y),w(Y). W(y) )/

Y

w(y/) ) ]1/
wV.(y/)I12

y y

However, a
0

2
= 1 so thata = a <a'. Finally,

0 O- 0
we must substantiate the

last inequality in (IV-13). But because of the symmetricity of the channel,

, w(y)
x y

w(yi)/))w(y)
[w(Tr(y)/7r*(x)) ]1/2

L w(Tr(y)) )w(y) )) w(7r(y))
x y

w(Y/x) ]l/2•w(y)= L w(y) w(/x')= K.~ w(x) w(r)X (IV- 16)

xy

where the permutations v and Tr* are those referred to in the proof of

Lemma IV-1. Since (IV-16) holds for all x', we get

a + (a- 1) a =Zax=

X
{ 'a LY ) w(y) ]I 
x' y

wx! yw( 1/2a ~ ~, I ~x w(,) , w,,) }-{ x'E X W~yW(/) (W(Y) ) . =
xI x y.

1/2 w(y)

Y x

1/2

rw ,xw(yx ) ) }
y x,

On the other hand,

(IV- 17)a'E.

<ty I v~ew(Y ) 3/2 w(y)-' .~~ ]( [7I' v 'Y,
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aI + (a- l)a' =Y a ' = jw(y) (w(Y/O) 1/2 1/2
.- - w y) ) (. ) I

0 X \

(W(y/X,) l/2 (w(Y/x) )1/2
w(y) ) \ w(y)= a' 7 X 7 W(y)-; Z X Z '

x' x y

= a w(y) x
Y x

(v/x') )/2 2
w(y) )

Since (IV-17) has the form (E Z) and (IV-18) has the form - E (Z ), the
a ^4 ~~~~~~~a r'd

last relation of (IV- 13) holds, and the theorem is proven.
Q.E.D.

Lemmra IV-2

For any p > 0, the functions gl(a), g2 (a, p), and g3 (a, p) are convex

with a.

Proof

By Holder's inequality,

g 1 (Ool + (l-O)az) = log y w(y/0) [Fw() ]al + (1-O) a2
1 2 X . Lw(y/o)
y.

< log [ w(y/o)

y

a I
0 a2 1-0

w(y)' 1 F~, w(y)1
w (y/)) j [Xw(Y/O) L >W(y )

Y

= e gl(clr) + (1-0) gl(a2 )

so gl(a) is convex. Similarly,

(IV-18)



gz (Ol + (l-O)a2 , p)= p log I

x y
':,:'/r. W,/o),

°

, , - ',9

< P log I . [X.w(y/xf (Y ) .[w(Y/X)

x y

(w(y/O)
6 (y/x) J[Zw(y/x)

1-e
( . a 2

w(Y/oL).' P
\W(y/x) / I

y

e g 2 (al, p) + (1-0) g2 (a2 , p)

so g2 (a, p) is convex as well. The convexity of g3 (a, p) is proven in the

same way.
Q.E.D.

Lemma IV-3

For any fixed a e(O, 1),- g2 (a, p) is an increasing function of p > 0.

Proof

1/p
2pg

2
(a, p)

= Z(EX w(Y/O) w(y/X)-)
xay
x y

1
A h(p)

=p

But

ddh(X) = 1 (w(y/O)w(y/x)'-a)'

x y

log (W(y/O)0w(y/x)- -)

y

and for a e(0, 1)

w (y/O) w(y/x)- _< (:w(y/o))0 (.W(Y/X))-o = 1

y y y

so that h'(X) < O. Therefore

1
d zp g zP = -1 z h, F- >_a-g ) - (!)>0

P

for p > 0.
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e~l + (I-e) a.
z

I/P

· .- ',

X
ON

Q. E. D.
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Lemma IV-4

.- g2 (1/2, p ) h(x)l/P

x E hz)/ 
z

h(X)l/P 

log

where

h(x) = 4iw(y/O)w(y/x)

Proof
Proof

Involves simnple algebra and is omittecd.

+ log a

Q. E. D.
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Figure Captions

Figure 1;

Figure 2:

Figure 3:

Figure 4:

Figure 5:

Figure 6:

Figure 7:

A trellis for a rate R = 1/2 code.

Partial tree of a code of rate R = 2/n .

Graphical maximization of s* leading to an asymptotically
optimal upper bound to Q(a).

Undetected error (top curves) and failure exponents
(bottom curves) for a binary output quantized Gaussian
channel with SNR equal to 1.5 dB per transmitted bit
when different bias values are used.

Undetected error (top curves) and failure exponents
(bottom curves) for an octal output quantized Gaussian
channel with SNR equal to -0. 3 dB per transmitted bit
when different bias values are used.

Undetected error (top curves) and failure exponents
(bottom curves) for an octal output quantized Gaussian
channel with SNR equal to -2.0 dB per transmitted bit
when different bias values are used.

Pareto exponent pairs for the binary and octal quantized
channels of Figures 4, 5, and 6 when the bias G
optimizes the Pareto (better curve) or failure (worse curve)
exponents.



STATE

00

I0

01

II

t=O t - I

FIG. I

C s'

115

t=2 t=3 t=-4

. . .

. . .

. a -

. o 0



116

A

B -R+,

FIG. 2



117

'sG

--- s

/

FIG. 3



I,;
c.to

Ud roc)
0

tC
0

l i

0CO

0

rc
d

cD

t")
0

b_

o it

LL

K)
0

Cuj
0

a

0tO0
0



0 0od d
--. 0
0

o CM0 0

I 19

0CD
0

Ito
ci

0J10 Id)

LL

0

CM

0

0

(5



MINIMIZES UNDETECTED

FIG. 6

1JU

0.4

0.3

0.2

0.1

0
O.I I I I 0 I0. 0.2 0.3 0.4 05 06- R

0.1 0.2 0.3 0.4 0.5 0.6



FIG. 7

1.6

121

0 " 0.3 0.4 0.5 0.6 0.7 0.8
R



122

II-E. Bootstrap Trellis Decoding

1. Description of the Rudimentary Decoder

Bootstrap trellis decoding is based on a convolutional code of

contraint length vb (in branches) and its truncated version that is

obtained by eliminating all but the first Lb < Vb digits of each

generator defining the original code. The truncated code has therefore

l-1
2 trellis states per level. We will assume vb to be so large that

at the SNR used, the probability of error of the corresponding maximum

likelihood (Viterbi) decoding would be negligible compared to the

probability of error resulting from the scheme described below

(see Section 3).

The rudimentary binary bootstrap trellis decoding algorithm

is as follows:

1) m-l streams of binary data of length N are encoded using

the same vb-constraint length code, and an mth stream is created

using mod 2 position by position addition of the m-l streams.

2) The m streams are transmitted through the channel, and

the receiver creates an appropriate state stream as in Bootstrap

Sequential Decoding [3].

3) A ~b-truncated trellis decoder is used to decode the first

stream, its metrics at depth i,

wm(Y
i
, zi/xi )

log -Ri) (1)
wm(Y

i
, z

i
)
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being based on m, the number of streams in a block, on the

transmitted and received digit x. and y.,and on the state stream digits11

z. The bias R corresponds to the convolutional rate. To each depth
1~~~~~~~~~~~~~~~~~~~~~~~~~

i of the N-branches long codeword there correspond 2 likelihoods,

the maximum of these at depth n being denoted by L . Let
n

M
L M = max L.

n in 11_< i--- n
s'that LM

'
ucio f.

so that L is a monotone increasing function of ne 1,...,N (N is the

stream length in branches). Let 0 be some suitably chosen threshold.

M
If L - L < 8 for all n, the decoder accepts the decoded first stream

n n

information sequence, otherwise it rejects it (in fact, it will stop

M
decoding whenever a depth n is reached for which L - L a 0 ).

n n

4) If the 1st stream was accepted, it is replaced by the estimated

transmitted stream, the state stream is accordingly recalculated, and

the decoder proceeds to decode the 2nd stream as in step 3, using a

metric table appropriate to m-l undecoded streams (the subscript m in

(1) is replaced by m-l).

5) If the 1st stream was rejected, 2nd stream decoding proceeds

exactly as in (3) with no change to either metric or state stream.

6) Steps 3 through 5 establish a patte rn that is adhered to in

general: after every acceptance the state stream and metrics are

recalculated, and decoding of the "round robin" next stream begins.

7) Decoding terminates in either of 2 ways:

(a) SUCCESS: all m streams get finally accepted.
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(b) FAILURE: when £ streams ( $ < m ) remain undecoded,

S successive attempts at stream decoding end with

rejection.

2. Bounds on the Probability of Failure

In this section we will obtain upper and lower bounds on the

probability of failure or error. Let Ak(£) and Fk(0) denote the events

that when m-k streams have been correctly decoded, the Lth of k

remaining streams has been decoded in error and has failed the

threshold test, respectively. Let () and Fk(y) denote the

complements of these events when rn-k streams have been correctly

decoded. Then the probability of failure or error is bounded by

P(FUE) < P{A F(i) Um +M _J m(i)

+ P{ U A iFm (i) T 'm.l(J UAm l(J)Fr( )' +
~~~~lm = n

+ P U Am(i)Fm(i)%_l(j)-n(j) - (, m-2 A-j
=1j=l 

jAi Aii

+.. +1P {U A-m(il)Fm(il)....A3 (im_2 )F3 (im~ () Fz(i~)F2(i)1

U A2 (imn 1 )F 2 (im_1 ) U A2 (i )F 2 (i ) 

where the union with the subscript i. is over all permutations of m-lJ )tM-
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digits taken from the set |1, 2,. ., m} . Realizing that every term

in each union is equally probable, we can upper bound P(FU E) further by

m m-1

P(F U E) S { T iT Fl(i) } +
i=l i=l

m-2

+ 2 P{T F m -2 (i)} +.**+ (m 2 )P{F 2 (l)F2 (2)} +
i=1

+ m Pa (1)F (1)} + (m-1) (1n)P{Am (l)Fm(l)} +M m i-i in-1

(m-2)()PnlAm ('1)F() +, .+ 2(m 2 )P{A2 (1)F2 (1) }. ()

Since not using the state information increases the probability of not

being able to decode, then

P{1TT F (j)}j -{]7 F(j)} = P{F (l) (3)

j=l j=l

where F (j) denotes the event of failing the threshold test on the jth

of a block of m = streams (in such a case state information is

worthless). The last equality in (3) follows from the fact that if

state information is not used, decoding of any set of streams is

independent and identically distributed. Another valid upper bound is

j=l (

Collecting the results (2) through (4) we get
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m-2

P(-F UE):5 (rF ntP[F (l)Im-' ,PF ( 4l-j1(m-.0P - 1)Ql

Z=O
(5)

To lower bound P(F), let B be the event that some set of _ < m streams

have been correctly decoded and passed the threshold test, and let

C be the event that after Q streams have been decoded, none of the
m-£Q

remaining m-. streams can be correctly decoded. Then

P(FUE) > B U B P { U T }. (6)

However, since the probability of decoding at least one of remaining

m-£ streams is smaller than or equal to the probability of decoding at

least one of a given set of m-. streams that satisfy the parity constraint

(because the first A streams to be decoded will in general be the least

noisy ones), we have
m-1

P{Cm_} > P{T-f Am g(j)}
jl

Since certainly

P tAk(l),Ak(2), . .. ,Ak(k-l)/Ak(k) t> P Ak(l),Ak(Z),...,Ak(k-l)/ k(k)

then

PC_ J > PlA (1) (7)Ptm-IQ m-A

where P~A (l)T denotes the probability that the first of a given set

of m-£ streams cannot be correctly decoded. Furthermore, because of

the parity constraint, if two streams remain, then either both or neither
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will be correctly decoded. Hence

pc 2 I PA 2 (1) A (2)) = PA 2 (1)} (8)

We therefore get from (6), (7), and (8) that

k~
P(FUE) a max PfA2 (1)1, max PIAk(l) }

m >k z 3~~~~~~~~~~~~~~~~~~~~~. (9)

3. Estimates on Exponents

In this section we use the bounds (5) and (9) to estimate the

limiting behavior of(1,4)log P(FU E). We get

PIF ()f S PA(l) + F)A (10)
k k') fk k)

Now

l-KEk(R)
P Ak(1)l -N Lk(N,L) 2Z (11)

where.> = pbX is the truncated constraint length in bits (X is the

number of transmitted digits per branch) Lk(n,IL) is a slowly varing

function of its parameters whose value does not exceed l,and Ek(R) is

the undetected error exponent that corresponds to maximum likelihood

decoding of the first of k parity constrained streams (see step (1) of

Section 1) that utilizes the received as well as state stream digits

when the convolutional transmission rate is R (the net rate that takes

into account parity as well as stream tail degradations is

m-l N R
m N+vb
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The probability PtFk(l)Ak(l)}I is upper bounded by the probability

that the likelihood on the correct path ever drops by e . It has been

shown in [1] that the bound

J _ T ~~~~~-hk E
P{Fk(l)A(l) < K1 N Z (12)

holds where Ki e (0,1] . For channels symmetric from the input

1~1hk is the solution of

F 1 i1k (.hk) (13)

where

1-C

f 1 (I )
=

log E k(Y' Z) [ (a Z) (14)~~~~wk(,) [ wk(y'z/0) ] .(4

~ =log w~(y~z) wk (y, z)'

Y, z

Finally, P{Ak(l)Fk(l)} is the probability that some incorrect path passes

the threshold test at all depths. It is upper bounded by the probability

that the likelihoods of all initially incorrect paths exceed - e at the

earliest point at which they rejoin the correct path (all paths are

joined with correct path at depth N + v). It is then easy to show that

P{l)} K N Ek- V [Otk- fl (1 - Ock)]
PAk(1)Fkk(1).r < K N 2 (15)

where v = VbX is the constraint length in transmitted digits, and

K2 is a finite constant provided

R < ukR- f(1 k -k a 0 . (16)

Sck5iacnxutoo5 n
Since f k (C) is a convex function of C , and
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lirm f (C) = d fk () 

C* 0 C I I d5 =C=0

then relations (13) and (16) can be satisfied simultaneously provided

IwY (v. /n

R < Ik(X; Y) = Wk(Y, z/O) log k '"- " "
YX;wk~y, z,) wk(yz:
Y, z

Plugging (10), (11), (12), and (15) into (5) we get

m-2 -i]EJR) -h=
P(FUE)• _P(F U E ) < ri { (N[K 2 - R )

Q 0 3 1A= 0

J )

(17)

NrK 2 -,uE _(R)
3

m
m

+ ) (m-k) k Kz

k=2

+ K2 m-h }
+ K 1 Z A" m 1J+

k
k- - (1-f)]NZ k ck I( k 

Let

E = LY

where

and note that

respectively.

ake - V [akR

y = max - Ek(R)
2< k<m hk

(m-) E (R) and E m(R) decrease and increase with 2,

Also, let 2e(2,m) be the index maximizing

k"- f (1 - Ok)l let a= a, and define

k
a1=(R - fl ( 1-a

Then

(18)

19)

20)

= Ik(X;Y),

mG )n-.e



-OuP(R)
P(F UE) < K 4 N k 2

Lacry - \a 
+ K 2 (21)5

u(R) =min { k E (R), Ek.*_P (R) = min 1 k E(R), E*. ).l

k = mintk: k E (R) > Ek(R)}

We see from (21) that

1
lim -- log P(F U E) > PU(R)

provided

V 2 IL[Pu(R) + aY]

Finally, using (9) and (11) we get that

((FUE)~m~jNK -. L E 2 (R)

P(F UE) > max N K
4

-4 , max
m .k 2 3

k -tkEk(R)
(NK4) 2

Let k be the integer minimizing k Ek(R) over k =

}-.
3,4,..., mand

define

PL(R) = min {.E 2 (R), k
+

k(R)~
k+

-PL3 (R)
P(FUE) > K6 N L

1lir --- log P(FUE) _< P(R)
-+c . L

We will summarize our results in the following theorem.

where

130

and

(22)

(23)

(24)

(25)

(26)

.Then

and

(27)

(28)

(29)
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Theorem 1

Let Ek(R) be the exponent of the probability of undetected error

corresponding to Viterbi decoding of the first of a block of k received

streams when the transmitted codewords satisfy the parity constraint.

Let hk, k = 1,..., m be the solutions of (13), let ak maximize the

righthand sides of (16), and let y and a and a be as defined in (19) and

(20). Let the bootstrap trellis decoder be based on the '-truncated

prefix of a convolutional code of constraint length v. If the stopping

threshold has value G = tiy then there are codes whose probability

of failure or error satisfies

Pu(R) < - lim 1 log P(FUE) < pL(R) (30)
Flex~~~~~~~~~~~~(0

provided v > t [ (R) + ay] . The bounds Pu(R) and 3L(R) are given
U L

by (22) and (27), respectively.

4. Exponent Evaluation

The preceding theorem gives bounds on the error exponent for

Bootstrap Trellis Decoding in terms of the undetected error exponent

Ek(R). In this section we show how the bounds can be evaluated.

First note that the exponent Ek(R) is known only for R,(R Comp, C),

but that upper and lower bounds to it exist for R (O,R ). Since what
comp

is wanted in practice is an estimate of the behavior of P(FUE), we will

take the point of view that for R6(0, Rc mp) Ek(R) is given by its

compexpurgated lower bound k
expurgated lower bound [2J.
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Let wk(y, z/x) be the probability that when x is transmitted y

is received and z is the state digit, when the block of k transmitted

streams satisfies the parity constraint (see Jelinek and Cocke [3]).

Assuming a symmetric binary input channel,define the exponent functions
1 1

* = (l+a) - log 1 w(YyZ/O) + w(yz/l) +6 (31)

y, z

x L
Ek (a) = a -log L + Wk (yz/O)w~yz/l))] (32)

y, z

It can be shown that E k (1) = E k (1) . Define further

k
E k (a) ae(0,1)

Ek (a) = (33)

Ek(a) a> 1

Then having assumed the expurgated exponent as the true one, we

get for 0 < R < Ck [Ck is the capacity of the channel wk(y, z/x)]

Ek(R) = R

where a is the solution of

1= 1
R =E - (a). (34)

ak

(34) thus allows us to evaluate both Pu(R) and PL(R) provided we

solve the equations R = E 1 (a)/a . This is impractical if the

- exponents are wanted for all R. In that case it is best to proceed

parametrically with the help of the following theorem.
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Theorem 2

Let y 2 0 be arbitrary.

I. The ratio Pu(R)/R attains the value y at the rate

R = max{ I E(y), min E (y), -E
¥ m Lk-i k

where

k =min :k t 2, X (y) -X E )

II. The ratio PL(R)/R attains the value y at the rate

E 1

R = min { E2(y), l E+ ( )}

where

l nnmin { e:£min e E 13 +11 _ :

The proof is similar to that of Theorems 3 and 4 of [3] and is

omitted. Figures 1 through 4 evaluate Pu(R) and PL(R) vs R for

m = X and compare these to the exponent E (R) appropriate to
0o

straight Wterbi decoding. The four figures apply to the BSC with

crossover probabilities p = 0.045, 0.056, 0.07, and 0.09,

respectively. It should again be stressed that R is the convolutional

rate and not the net rate. For every combination of m, N, and vb

the latter curves can be obtained by replotting the present ones,

taking into account the relationship

m-i N
-- ~R o

RNET m N+v
b
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5. Simulation

The simulated bootstrap decoding algorithm(BTDA) operates as

follows. First, the truncated trellis algorithm is employed to decode

each of the streams. While decoding a stream, if L does not exceed
n

its previous maximum within some number of time intervals THRSH,

the decoded path will be computed by tracing back fromthe position

of the maximum. The digits on the decoded path will be declared

reliable up to the position which is located KBACK intervals earlier

than the position of the previous maximum.

Once a portion in a stream is declared reliable, the channel

state modifications will be made over that portion, and the algorithm

will go on to decode the next stream. When the m-th stream is

encountered, first the parity relationship will be used to decode

digits above which all the (m-l) streams are declared reliable, and

then the truncated Viterbi decoder will be operated over the undecoded

digits of the m-th stream.

After decoding the m-th stream, the parity relationship will be

used again to decode the portions where (m-l) streams are decoded

and declared reliable. These procedures constitute the first pass

of the algorithm. For the second pass, the last stream decoded in

the first pass will be the first stream to be tried, and, in addition,

the decoder will operate backwards starting from the opposite end of

the stream.
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After decoding of a stream stops, the channel state symbols are

modified over the reliable portion according to the definitely decoded

digits in that stream. The encoder will go on to decode the'next to"

last stream of the previous pass, and so on. Passes will continue

until no further improvement in the length of the reliable stream

portion can be achieved.

Using optimization methods described in his Ph.D. thesis [4],

H. S. Park selected THRSH=40 and KBACK=50 for m = 10. He

simulated the algorithm on a BSC with crossover p = 0.056 whose

R = 0. 45, which is the net value of the transmission.rate
comp

(RNET = 9/10 R) of the convolutional code of rate 1/2. This allows

comparison with the straight maximum likelihood decoding (MLDA)

performance of R 1/2 codes over a BSC with p = 0. 045. The

following results are obtained:

. Hybrid Straight MLDA
B'TDA MLDA Fquivalent

Pc THRSH KBACK . p e. .c 4e 0 11

. 056 40 50 .00018 .0034 v ~ 11. 5

I __...

Table 1.

The above table lists the constraint length v necessary for the MLDA

algorithm to achieve the error performance p. = . 00018.

For meaningful statistical data on pe for the BTDA, the running

time of the simulation program should be large so that the simulated

value of Pe be reliable. Due to limited computer time, only 1200
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blocks of 10 streams were run to count decoding errors. The BTDA has

achieved the error probability 0.00018 for those 1200 blocks. In all,

240 bit errors were responsible for this figure, and these were

spread over 40 of the 1200 blocks. As many as 45 of the 240 bit errors

occurred in a single block, To achieve more firm support for the

value of Pc, additional computer time is needed to view more of

these occasional "large error" blocks.

6. Computational Comrilexity of the BTDA

We shall assume that the computational complexity of the MLDA

is determined by

E = (N + - 1)? (35)

where N is the length of the information sequence and (. - 1) is the number

of digits defining the binary trellis states in the trellis diagram

In the BTDA, if we let T denote the average number of trials

to decode m streams of the hybrid scheme, then the average number

of trials M per decoded information stream is given by

TM= -l1 (36)

where (m-l) takes account of the rate reduction due to the extra

parity stream of the hybrid scheme.

If we assume that whenever the BTDA returns to decode a stream

that has already been tried, decoding starts at the beginning of that

stream, then the average number of computations Eh per decoded
ch
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information stream of the hybrid scheme is upper-bounded by

E h< M(N + - 1) 2 . (37)
ch

From the simulation program of the BTDA (v = 10, p = 5),

the number M is shown in Table 2 below. Thus

E h < M *(N+ -. 1) * 2 = 1.5. (104) 2 <104 2
EchM'(+B-)'Z 

~~p.~~~~= 5 - (38)

However, as shown in the previous section, the performance

achieved by the BTDA (v = 10, p = 5) is almost equivalent to the

performance for the straight MLDA with v 11, whose Eh is given by
ch

Eh = (N + p -1)* 2· = 104 2 . (39)
chI

N=100
~=1'1 '

From Eqs. (38) and (39), the computational complexity of the BTDA

compared to the straight MLDA is smaller by almost a factor of

5
2= 32.

V p

10 5

THRSH

40

KBACK

50

M

1.5

Pe

.00018

MLDA
Equivalent

V > 11.5

Table 2.

Pc

.056
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Figure Captions

re 1: Comparison of PL(R), 3 (R), and E (R) exponents
L 'U'c

for the BSC with crossover probability p = 0. 045.

re 2: Comparison of pL(R), pU(R), and E (R) exponents

Lfor the BSC with crossover probability P = 0. 056.
for the BSC with crossover probability p = 0. 056.

Comparison of PL(R), P (R) and E (R) exponents
L 'U ' 

for the BSC with crossover probability p = 0.07.

Comparison of L(R), Pu(R), and E (R) exponents

for the BSC with crossover probability p = 0.09.

Figul

Figui

Figure 3:

Figure 4:
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II-F. Three Group Bootstrap Decoding

1. Description of Code and Its Use in Bootstrapping

It is desirable to generalize bootstrap decoding to encode

transmitted streams by use of an algebraic code that has more than

one parity check. The three-goup code has two parity check digits

vl, v2 and k information digits m 1, ... , rnk. Every information

digit is checked by at least one parity check digit. Without loss of

generality let

1 - I

vI = 'm. 1
iI

1< - 1 <k

(1)
.k

V
2

=)m. 1<h<k

i=h

For the code to be non-trivial, 1 <h < - 1 <k and at least one of the

outside inequalities is strict. It is convenient to define the codeword

digits, xl, ... xk+2 as follows:

X = v

x i = 2,...,k+l (2)

xi= 

k+ 2 2

The codeword digits may then be divided into three groups

1 ' h 2 xh+1' 3 = 1x,'" +1 ".,Xn 

where n=k+2. Let y = y1, ... , y be the received digits, and define

(3)
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U = x.X.L1 . L.: 1
i=l

. z

t2-a Yi

i=h+l1

n

t3 = / Yi

Then the syndrome digits of y are
Then the syndrome digits of y are

s
i

= tl + t2

u2 = x/ i

i=h+l
n

U
3

- / X.

i3+l

and s2 = t2 G t
3

Let u = ( UU2,u3 ), t = (tlt2 , t3 ), n1 = h, 2 = -h, n3 = n-t-. Assuming

that the information digits ml,...,mk are i.i.d. with P(mi = O) = Pfmi =11 =

1/2, then

Pu = 0o0,01,} = Pu = 1, 1,11 = 1/2 (6)

Now for ni > 1,

an even number of n
A digits were received

qn ( 0 ) = Piti = ui ui = P = incorrectly through
1i Ithe channel

where p is the channel crossover probability.

U. I
1

n.

1 - (1-2p)

2

A

n.
1+(1-2p )

2

As a consequence,

(7b)

It will prove convenient to also define

' 'qo(i) A1 , q (1) 0 
0

(8)

From the above. we get the relation

qn
2

(t
2

)n22 qn3(t3

+ q (t
t

® 1)
n1 

3) +

q I(-t2 ® 1) q (t 0 1)] (9)
n2 2 33

h

tt= 1

i=l
Yi

145

(4)

(5)

(7a)

qA(O) qo (O) =

P~tj't2'tI = I 'Lqni(tl)

qni() Pti ui I
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where ) denotes mod 2 summation, and n. > 1.
j -

We will be able to show below that for the three group code,

P( Z/xI if n > 1. (10)

{i 1t23

Since the left-hand ratio is the one that enters into the likelihood

calculation for bootstrap decoding, the receiver will be interested in

probabilities P{Yi,tl,t2,t3 /
xi . Suppose ie[1,. .,nl . Then

kyi X t / i} - yPitU/fy LP ,ixi = t Xi P{fU/ xi
U

UN

j, /Yi, t! / iul Pt 2 /u 2 Pt 3 / Pu / xi (11)

U

But

P{u / xi = p{u / xi p{u2 ,u 3 / u1 I = P{u1 .xiO 6(u2,ul) 6(u3 ,ul) (12)

where 6( , ) is the Kronecker delta function], and

1

Pfu. / xil = 

6 (U1 ,Xi)

nl> !

(13)

n1 = 1

Furthermore, for nl > l (t and u1 are the
th1arth

the it h variable),

P{Yi,tl / xi,u1. = w(yi / X i) P{t' t

= w(Yi /Xi) qn -1 (tl u 13 Yi

Thus it follows from (11) through (14) that

5 > 1, then

sums over the first group excluding

) Yi / ul 
=

ui I xiI =

ex 
i
) (14)

alngasi n >1 n2 ,

aa long as nl > 1; n2>1

P[ Yi'tlt2' t
3

/Xi)



Pyi, t / Xi = Y[ 1 qnl-1 (tl xU1 0 Yi ( xi) qn2 (t2 0 u2) qn3(t3 63 u3)
u 2 2 3U

0 Yi( Xi) qn2(t2 ) qn3(t3 ) += 2 w(Yi/Xi ) qnl_ 1(t

+ qnl-1 (tl Yi @ xi 1)
n11 qn2(t2 1) qn3(t3 Ol) ]

As a consequence, .

p{Yi't = 2 [P{Yi,J°O + P[yiJi

I ( [ w(Yi/O) qnl 1 (t 1 +Yi) + w(yi/1) q -1+ -

qn2(t2)

(tlY i G) 1)]'

+

+ [W(Yi/°) qn -1 (tl Yi) ] qn2(t29 1)2

qn3(t3 L))
n3 3 ) 

= [qnl(t
1

)

so that for

P[yixi =
P{Yi' tI

qnl-l(tl 1Yi.X i ) qn2(t2 ) qn3(t3 ) + qnl-l(tl2Yi~)i$1 ) qn2(t21)

2 w(Yi/X i )
qn3 ( tI )

3

(17)
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(15)

w(yi/xi ) 6(u2,ul ) 8(u3'ul) ]

qn3(t 3 )

(tl 3 Yi 
~

1) + w(Yi/1) qn -1

+ qnl(tl 1) qn2(t2(~l) qn3(t3 1)] (16)qn2(t2) qn3(t3 )

n
1

> 1, n
2

> 1, n3 > 1,

qn (tl ) qn,(t2) qn (t3) + qn (t1l) qn,(t2(a) qn( P
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Since for nI = 1,
w (Yi/xi) if Yi = tl

P[Yi,tl/ xiu11 =

0 if Yi + '

then

w(Yi/Xi) qn2(t xi) qn3(t
3

xi) if yi tl

-P[Yi' twxi _ (18)

0 if yi + tl

Assuming the ci§e t yi = 0, then

ql(tl q) x i ) = w(yi/xi )

and t y) Yi xi = xi. Thus (17) is valid if ni > 1, provided definition

(8) is used.

Relation (15) was obtained under the assumption that iE[l,..., nl].

If ni+ 1 < i < n]+n2, we need only interchange n
I
and t

I
with n2 and t2 in

(15). The interchange of n I and tI with n3 and t3 preserves the validity

of (15) fo nl+n2 + 1 < i < n.

It follows from (9), (10), and (15) that if n
i
> 1. the likelihood

used in bootstrap decoding with a three group algebraic code is a function

of Yi,xi, and the state variables (tlt2,t3n,nl,n ). We will see that

these variables will also be sufficient if all the digits of one or two

of the three groups have been decoded. The needed adjustment of the

state variable values as the decoding proceeds is as follows:

At the beginning, when no digit in a column has yet been decoded,

(15) and (16) are used directly. Suppose, w.l.o.g., that Yl is decoded
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I

as x
1

Then a new tI= tl@ xl Yl is obtained and used in (15) and

(16) with n
I
replaced by n-l. This process continues until all digits

of some set Hi have been decoded.. W.l.o.g. assume that such a set is

A 2' that the new t-values are tl,t2 lt3 and that n1 and n3 digits remain

undecoded in and j Assuming that no error was committed, t2 = 2

and when decoding yi for 1 < i < n
I

the value of t becomes irrelevant

and only those of t and t
2

count. Thus the numerator in (10) is replaced by

P[yi,t / xi,u2 = P[Yi.tl / xiu2 t2 ] (18a)

P[yitl / xiuI t 2 = w(Yi / x i) ql (tct16+i(Yi)

for nI > 1. Similarly, the denominator of (10) is replaced by

Pt. Yi / u2 = t2 = PtlYi / u1 = t
2

2 qn (t2 t 1) (18b)

When nI = 1, the remaining yi can be decoded algebraically from the relation

xi = t 1 Gt 2 y~ =t 2 (19)xi = tl ()t2 ~Y i = t2'(19

We now observe from formulas (15) and (18a)that if in the former

we set n2 = 0 and use definition (8), we get the relation

1 3P[Yiat~/xi ] = 2 w(Yi/Xi) qnl_l(tlit2 +~zxi) qn3(t3 @t 2 )

1 ~~~~~~~~~~~~~~~(20)
= qn (t3 t2 ) P(yi, xiu (20)

3

Similarly, setting n2 = 0 in formula (16), we obtain

1 ( tlt2 nt2)
P[Yi'!t = q qn2

2 qn3(t3 33
i ~ q~(t

3
~t

2
) P~y~,~/ U

2
= t

2
) (21)

= qn
3

( t
3 t2 P[Yi't/ u2 = t2

}
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The ratio of probabilities (20) to (21) is thus equal to the ratio (17) and

the latter formula thus remains valid even if one of the groups is completely

decoded. In fact, if n = 1 and n2 = 0, (17) becomes [note that t1 = Yi if

n
I

= 1]

n1

P (yi, VX ~~~qo(tl~t2~CAYi1Ci)P[ui' /i =J 2w(yi/xi) = i (22)

P[Yitl ql(tl +(2) 0 if xi. t2
______2__ 2 ifxi ft 2

so that straight-forward sequential decoding using the likelihood function

based on (17) will force the decoder to select the path on which (19) is

satisfied at each depth.

As seen from above, the value of t
3

is irrelevant once all digits of

2 were decoded and those of J 1 are being decoded. Of course when the

latter task is complete, decoding of 23 starts that will depend on t

and t2 [note that since ul1 u2 = 0 then t1 = t2 when 1 and j 2 have been

decoded] in the same way that the just described decoding was dependenrit on

t and t
2
.

2. Proof of Formula (10)

Because of the symmetry of the situation, it is obviously sufficient

to prove formula (10) for i = n. Let us define the set

n1 n2 n-i]

'V(U 1 u2 ,U3 ) = {Xl-.,Xn 1 : V x.iu1 X u2 X = Ul3xi= (23)

i=l i=nl+l i=nl+n2+1

Then
n-1

P{/ Xn = w(yn/xn) 2 -(n-) [ w(yJ/xj) +

xECV(O, O, Xn) j=l



+XE q(, 1, x. )~¥q(l-, ~,Xn~ )

n-1-1 ,w(y/x )]

j=l

Using formula (9) of Jelinek and Cocke [1] and defining

f+ (y) = w(y/O) + w(y/l) = 1

if y = O1 - 2p
f- (y) = w(y/O) -w(y/1) =

2p - 1

we get that

. 8Xn-1
8L X
x~.\( o. o.X n) j--1

w(yj/xj ) =

ni+n2

. 7f f+(Yj) +
j =nl+l

nl+n
2

j=nl+l

n1

T f+(yj) +
,1=1j

n-~i 1 n|f'(yj) ..
j=l

if y =1

ni

71
j=l

f-(yj)}

-1

T f+(y ) +
nl+n2+ I 

n-l

_+ T-)n
7 f-(y)i =

j =n1+n2+1

t= {1+(-1)n (1-2p)}{l+(-)
t2 +y+x n2 -

(1-2p)H}1, +(-1) 3 n+ n (1-2p) 3 -
-J~~~~~~~~~~~~~~~

= 8 qn (t 1 )
1

(26)qn2 (t2) qn ( t
:3 n. Kn

)

23_ 

where tlt2 ,t3 are given by (4).

n-l

x IT w(Yj/xj)
XE1/( 1, 1,Xn1) j=l

Similarly,

(27)
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(24)

(25)

*'1

) = qn (tlbl) qn2 (tl) qn (t~3Yn0XnPl)
1 2 ~~~3_1~
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It follews therefore from (24) , (26), (27), and (15) that

P[L / xn = W(Yn / Xn) 2 -qn l(tl) qn2( t2 qn_1

3

+ qn t-(l) qn2t3 qn 3 n) 1n

= 2-(n2) P[ynt / xn] (28)

Averaging (28) over x
n
results in

P[Z] = 2- (n-2) Pyn,t (29)

Formula (10) then follows from (28) and (29).
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3. Description of Likelihood Table

Obviously, the likelihood

log P / xi, R (30)

P['Z/ x

(where x' is the vector of digits already decoded) would not actually be

computed from scratch during the process of bootstrap decoding based on the

three group code. Rather, the values of (30) would be stored in a table

whose arguments would be the parameters

x n~~~~~n n h ~~~~~~(31)xi( yi' tlt2 ,t3 nln2 n 3 h (31)

wher~ h denotes the group membership of xi(i.e., x
i

e ,h), nj denotes the
th

number of digits in the j group still left to be decoded, and tj denotes

the adjusted mod 2 sum of the jth received group (i.e., if the digits

xil ,...,x. of 'Si have been decoded and Ym, ...,ym are yet to be decoded

1 Z r 1 r

then tj = Ym )
j~~~ s

s=l s=l

The table would be computed with the help of formula (17). Obviously, it

would contain a lot of symmetries which could be eliminated if storage was

a factor. For instance, the parameter h of (31) is not needed if by con-

vention yi and xi are always members of the first group. The likelihood

would then be of the form

%(xi Yi,tlt2 ,t3 nl,n2,n 3 ) (32)

with the first four parameters binary. A further reduction in storage

size is attainable by noting that (32) is invariant to an interchange of

(t2 ,n2) with (t3,n3).
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4. Decoding Strategy of the Bootstrap Algorithm

The convolutionally encoded streams belong to three groups. By

convention n I < n2 < n
3 .

There is a parameter KRANK (J) which ranks the

groups in "desirability".of decoding. At the start KRANKC(J) = J. The

general idea is to work on all streams of KRANK(l) until they have either been

all successfully decoded or until everyone of thcse streams of KRANK(1) that

have not been decoded has been attempted (in sequence) without success.

In the latter case streams of KRANK(2) are tried, and if this fails then

streams of KRANK(3). In case of such a "complete" failure, another decoding

attempt i: made with increased values of the ISTOP and KSTACK parameters.

As soon as any stream of some group LNOW is decoded, KRANK(l) is set

equal to LNOW, and KRANK(2) is set equal to that remaining group that has

the smallest number of undecoded streams. The last group is then labeled

KRANK(3).

Originally, the parameter KPHASE is set equal to 1. When a group has

been completely decoded, KPHASE is set equal to 2, KRANK(3) = LNOW, and

KRANK(l) is sett;equal to that remaining group that has the smallest number

of undecoded streams. When two groups have been completely decoded, KPHASE

is set equal to 3, KRANK(l) = KRANK(2), KRANK(2) = KRANK(3), KRANK(3) = LNOW.

A decoding attempt on a~stream is "successful" if depth LTRACK was

reached by the decoder. In this case all digits of that stream are considered

definitely decoded. Otherwise the attempt is "unsuccessful" and digits up

to depth IMAX - LBACK are considered definitely decoded. If a decoding error

takes place the algorithm halts and an UNSUCCESSFUL CONCLUSION is declared.

To aid in the understanding of the Fortran listing of the algorithm

we give a glossary of some key parameters that are peeuliar to the three-group

bootstrap scheme.
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LNOW - current group being decoded.

LNOW 2, LNOW 3 - the other two groups

KPHASE = 1 + number of completely decoded groups

KRANK(J) - The Jth most "desirable" group. Originally LNOW =

KRANK(1). Also if a stream is completely decoded, the

group to which it belongs, LNOW, becomes the most

desirable one, i.e., KRANK(1) = JNOW. The remaining

order is that of group size if KPHASE = 1. If KPHASE = 2,

then KRANK(2) is equal to the other undecoded group.

KLEFT(I) - number of undecoded streams within the I-
t h

group.

KNEXT - the order of the stream within the group LNOW which is to be

decoded next.

LGRP - is the order of the group currently decoded, i.e., LNOW =

KRANK(LGRP) (1 < LGRP < 4-KPHASE)

KROUND - number of streams within the group that the decoder attempted

to decode without success since the last change of LGRP.

LROUND - number of times LGRP attained its maximal value without the

decoding of any of the attempted streams advancing by more

than LBACK + 40 branches.
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5. An Upper Bound on the Moments of the Decoding

Effort for Three Group Bootstrap Decoding

The analysis of this section was developed by D. Costello

while he was a research associate employed by the contract.

Jelinek and Cocke1 have developed an upper bound on the

moments of the decoding effort for bootstrap decoding using a

single parity stream. We will extend that analysis to the case

of three group bootstrap decoding. Emphasis will be placed on

those portions of the argument which differ from the original

argument. In addition, for simplicity's sake we will restrict

attention to the BSC.

First of all, assume there are ni streams left to be de-

coded in group i, i = 1, 2, 3. Then let Ni(n) be the number of

steps necessary to decode any given stream in group i when the step

allocation is M = 1 and n = (nl, n2, n3 ). Applying well known

results about ordinary sequential decoding, we can conclude that

PNi(n) > • - K(R,v)(r + t) i (1)

where Fr + t is the length of the information sequence and K(R,v)

is a function of rate R and constraint length v which is finite

if v is finite and ai satisfies

E n (ai) En (2)
R < a for R > 2

~i
or (2)

En(2) En (2)
R < -- for R 2 --

In (2), En(a3 ) is the concave, positive, increasing function of

a3 defined as follows:
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Let k = n1 + n2 + n3 and label the k received digits left to be

decdeda8Yl Y2 **· Yn I' Yn ' '" Ynl+n2 Ynl+n2+l "decoded as y2 , Y' ''+n Ynl+n
yn+ +~~~~~n1 tY 11120 21

Ynl+n +n Yk Define y = (Y * Yk) and - = (Y1l *'' Yk-1 )
and assume that the kth stream is in group 3 to be decoded. Then

- ~1 l/l+a l+a
En(ao3) = 1 + a - log [ xo P(xk ] +

= l+a-log 2 k-3 xP(Yk, s_l k)P(Y _xkYk,s) sYk, s_ --
(3) 

since P(YIxk) depends only on Yk and the pair of syndrome (state)

digits s - (sl, s2 ) Noting that P(Zxk, yk) P(Iyk',) 
2 -(k3) and substituting for P(yk' -SIxk). from the analysis of

the three group code, we obtain the rather long but straight-

forward expression

En(a 3) = alo ((1OP) qn1(O)qn2(O)qn3-1(0)+qn (l)q n2(l)q n3-(1)

+ Pqn (O)q (O)q n -1(1)+qn Mlqn l In-(Og ll 3 1 a3

+ (1~-.P) Iq ni ()qn 2 ()qn3 -1(1)+qn 1(1)q n2 (1)qn3_1(0) 3

+ (ON (qn)n2 (°)q n 1(0)+q n (1)q n (1)q0n)(l)q } )(l 1

+| {(1-p) qn1()qn 2(l)qn3+ 1(0)+qn 2(l)q n2 (1)q n3-11+)

+P fqnl (1) qrX (°)qn3;- 1(1)+qn 1(°)q n2 (1)cn 3-1(°.1) )/+" +a
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where p is the channel crossover probability and
n n i

q (0) = 1+(1-2p) qn (1) = 1(12)
ni 2 n1(1) = 2 (5)

Clearly, En(al) and En(a2) are defined in a similar way.

Next let ai(n) be the least upper bound on the numbers ai

satisfying (2), i.e., ai(n) is the solution of

En (a i (n)) En(2)
En _ (2

R = i(n) for 2 R < C

E(2) En (2) (6)~~~~~~~~~ n n2
_i( n ) = R for 0 R< R < 2

Now choose k(R) to be the largest positive integer such that

k(R) a(X3) < min max fal(n), a2 (n), a 3 (n) (7)

where = n = (nl,n2 ,n3 ) nl+n2+n3 = k(R)} and a (X) is the

Pareto exp ent which would be obtained with ordinary sequential

decoding, i.e., a(o) is the solution of

-E(J()) forE (2) 
R am)-for 2- < R <C

E (2) (8)
C( E) = R for 0 < R < E- 2

where

E(a) = a - log [(1-p)l/l+ + pl/l+a] +(9)

If there are originally m streams of digits to decode, we

wish to modify the three group bootstrap decoding algorithm as

follows:
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(1) Decode m-k(R) streams by ordinary sequential decoding

without the help of the two parity streams and with the

step allocation M = 1.

(2) Decode the remaining k(R) streams with the help of

the parity streams using the three group bootstrap

decoding algorithm.

We now briefly highlight the arguments leading to the

desired bound. The details will not be pursued since they

closely follow the development in Jelinek and Cocke. In part
, . ,A

(1) of the modified algorithm, the easiest m-k(R) streams are

decoded by ordinary sequential decoding. If L* is the number

of steps needed to decode the hardest of the decoded streams,

then P(L* > 2) is upper bounded by the probability that there

is a set of k(R) + 1 streams that need more than I steps each

to decode by ordinary sequential decoding. Since the decoding

of the first m-k(R) streams is independent, the -yth computational

moment of the decoding effort in part (1) is bounded if (k(R)+l)

ao) > y.

In part (2) of the modified algorithm, we compute the three

Pareto exponents al(n), 2 (n),. and a3 (n) given that decoding

starts in group 1, group 2, or group 3. We then begin decoding

in the group- with the largest exponent. After decoding each

stream,% this proced:re is repeated, thereby assuring that each

successive stream is easier to decode than the previous one. If

L(k(R)) is the numberi.of_.steps needed to decode at least one of

the k(R) remaining strems,ithen PtL(k(R)) > Y is upper bounded

by the probability that there is a set of k(R) streams that need

more than £ steps each to decode by the three group bootstrap
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decoding algorithm. Since the decoding of the last k(R) streams

is not independent, the yth computational moment of the decoding

effort in part (2) is bounded if max al(n),a2 (n),a3 (n)1 > a.

In bounding the decoding effort for the complete modified

algorithm, we must consider the fact that after the first m-k(R)

streams have been decoded any of the situations in the set ' may

describe the distribution of the remaining k(R) streams. Since

in part (1), we decode the m-k(R) easiest streams, we are not

free to choose the situation which would give us the best Pareto

exponent for part (2). Hence the worst case must be assumed,

and the bounding condition in part (2) minimized over all

situations inj.

Finally, since the decoding effort must be bounded for both

part (1) and part (2), the yth computational moment of the

decoding effort is bounded if min (k(R)+l)a(c), mnImax(cl(n),

a2 (n), a (n))j} > y. We can now summarize as follows:

Theorem: The modified three group bootstrap decoding algorithm

leads to a firite yth moment of computation per decoded digit

if

min k(R)+l)a(o), mn[max(al(n), a2 (n), a3(n))Jj > y (10)

where k(R) is the unique integer satisfying (7), a(o) is the

unique solution of (8), and ai(n) is the unique solution of

(6), i = 1, 2, 3.

It is necessary to derive the above bound in terms of a

modified decoding algorithm due to the difficulties involved in

taking the dependencies of the bootstrap algorithm into account.

It should also be noted that this is the essential difference

between the bounding technique in part (2) of the modified
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algorithm and that used in part (1). In the latter case the

decoding is independent and we were able to obtain a tight bound

on the decoding effort. However in part (2), the decoding is

dependent, and we were forced to upper bound the probability that

there is a set of k(R) streams that need more than l steps to

decode.

Now define Rboot(y) as the supremem of rates for which (lO)

is satisfied. Since the average computation will be bounded for

Lthe three group bootstrap decoding algorithm if R < Rboot (1),

Rboot(l) is a lower bound on the Rcomp of this decoding scheme.

We can evaluate oot(y) by computing the differences

,,mi [ nmax(En( al) E n(2 ) ,En((a3)I )] - kEw () (11)
'Y "2my (7~~~~~~~3=

~ '
Y

for k = 3,4, .. until their value becomes negative, where

= fn = (nl, n2 , n3 )i ni + n2 + n3 = k} . If this takes place

for k = k+, then

L ay)=in[2min max(E ojE (a2 )1 a2,sE(0) 3 y}
Root (SY ) lyni} mjC ( n (al1) la=^' En n( 2)la2=yn31 !3=, 1

k+
-EO ( + i (12)

where t =n = (nl, n2 , n3) nl + n2 3 +
It remains to specify the elements of the et /. Assume

that m is a multiple of 3 and that the original distribution of

the streams is n1 = n2 = n3 = m/3. The problem is to specify

the number of ways of arranging k(R) streams into 3 groups of

size nl, n2 , and n respectively such that n1 + + n+ n3 = k(R)

and n1, n2 , and n3 are always less than or equal to m/3. We
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will not consider a relabeling of the groups to constitute an

additional member of J, since the labeling of the groups in

the bootstrap decoding algorithm is immaterial

First consider the number of waysS of arranging , n1, n2,

and n3 such that n1 + n2 + n3 = k(R) without any restrictions

on the size of the groups. We can easily deduce that

k(R)+l

* = jl i- 
3 1k(R) + Ak(R1

k(R)+ 2 
L IJ -I--'

kR )+l _ i k(R) + 2 I
(13)

*jl; J 3 1 I ( 
= * -= j L k(R + 2]if 31k(R

6

where 31 k(R) means "3 divides k(R)", 3 |'k(R) means "3 does not

divided k(R)", and [I] is the largest integer less than or equal

to I.

Now consider the limits placed on nl, n2 , and n3, viz.,

that they cannot exceed m/3. Letting,- be the size of the set

, we arrive at the following formulas:

Case 1. For 1 < k(R) - m/3,

jr = J *JL
Case 2. For m/3 < k(R) - Im/21,

e = -2(1+2 +...+ m ) if k(R)-m/3 is even
2 I~~ ,D -\

#,~ i/-I -2(1+2 +...+ k(R)m/31 ) k(R)2-m/3+l if k(R)-m/3 is odd

where I Iis the least integer greater than or equal to I.

Case 3. For [m/2i < k(R) < m, we can use the fact that)* is

symmetric about m/2 since specifying the distribution of the

)O



streams left to be decoded is equivalent to specifying the distribution

of the streams already decoded.

We will now illustrate the use of these formulas by con-

sidering an example with m = 21 and n = (7,7,7) as the original

distribution of groups.

k(R)

1

1

1

1

1

1

2
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OI
1 1 f(oO, 1)}

2 2 o (0,0,2); (0,1,1) 

3 3 {(0,0,3);(0,l,2); (1,1,1)f

4 4 {(0,0,4);(0,1,3);(0,2,2);(1,1,2)}

5 5 {(0,0,5);(0,1,4);(0,2,3);(1,1,3);(1,2,2)}

6 7 {(0,0,6);(0,1,5);(0,2,4);(0,3,3);(1,1,4);(1,2,3);(2,2, Z)

7 8 40o,O,7);(0,1,6);(0,2,5);(0,3,4);(l 1,5); (,2,412
(1,313) (2,2,3)

8 9 {(0,1,7);(0,2,6);(0,3,5);(0,4,4);(1,1,6); (1,2,5)-
(1,3,4 ; (2,2,4 (2,3,

9 10 {(0,2,7);(0,3,6);(0,4,5 ; (11,71;7 1,2,6); 1,3,5 ;
(1,4, ;(2,2,5 ; (2 ,3 , 4 .(3,3

o0,3,7);(o,4,6);(o,5, ;_I,2,? (1,3,6/;1,4,5);
(2,2,6);(2,3,5);(2,4,4);(3,3, )}

L1 10 {(0,4,7);(0,5,6);(1,3,7);(1,4,6) ;(1,5,5);(2,2,7) 
(2,3,6 ;(2,4,5) ;(3,3,5);(3,4,)

2 10 {(0,5,7);(0,6,6);(1,4.,7);(1,5,6); (2,3,7) ;(2,4,6)'
(25,5);(3,3,6);(3,4,5) ;4,4,4

3 9 {(O,6,7);(1,5',7);(ls6,'6);23 ,4.,7);2,5,65 (3,3,7 ;3
~34.1 155 ; ;j4,

4 8 {(0,7,7);(1,6,7);(2,5,7);(2,6,6); 3,4,7 ;(3,5,6 ;
(53,4,, ; 7 (4,5,5 

L5 7 {(1,7,,7); (2,6,7); (3s5,7); (3,6,6); Q4,4) 41,s5,6~;
.~ ~ ~ ~ ~ ~ ~~~~~,, J-

5 {(2,7,7);(3,6,7),(4,5,7);(4,6,6);(5,5,6) }
4 '-,(3,7,7); (4,6,7);(5,5,7);(5,6,6) }
3 {(4,7,7);(5,6,7);(6,6,6)

2 {(5,7,7);(6,6,7) 

1 {(6,7,7) }

16

17

18

19

20
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Clearly, if m is not a multiple of 3 or if the original group

distribution is not symmetric, these formulas get more

complicated.

It is also helpful to have an algorithm for generating

the members of the set for a given k(R). Such an algorithm

follows:

(1) n1 = max 1O, k(R) - 2m/3}

(2) n2 = max [nl, k(R) - m/3 -nl

(3) n3 = k(R)n -n -

(4) WRITE (nl, n2, n3)

(5) IF n3 n2 + 1, GO TO (9)

(6) n2 = n2 + 1

(7) n3 n3 - 1

(8) GO TO (4)

(9) nI = n + 1

(10) IF n1 5 k(R)/3, GO TO (2)

(11) STOP

As an aside to the above discussion, let us consider an

alternate way of deriving a lower bound on Rboot(y) for three

group bootstrap decoding. We will proceed as follows:

(1) Compute the best Pareto exponent max(al(n), a2 (n), a3 (n))

that can be obtained using the three group bootstrap decoding
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algorithm starting from all possible situations n, i.e.,

all n E=tn = (nl, n2 , n3):nl + n+ n3 k(R), 1 - k(R) - m}

(Note that is the set of all n with a fixed k(R) whereas 

is the set of all n with any k(R).)

(2) Let t*= n E': max(al(n), a2 (n), a3(n)) >

(Note that if n' = (nl, n~, n3) e Z, then any n" = (nil, n', ni)

which can be obtained from n', i.e., n i
" <n, ' q n, and_~~ , n., n1 - n2-,

n- n also belongs to This saves us the task of computing

max (al (n ), a2 (n), a3 (n)) for all n E'l. Also note that an n'

with a large k(R) will in general have a smaller Pareto exponent

than an n" with a smaller k(R) which cannot be obtained from n'

since we would expect the parity information to speed up decoding

more in the latter case.)

(3) Compute the exponent k(R)a(w) for ordinary sequential

decoding which leaves the decoder in a situation n c: . (Note

that k(R) need not be an integer.)

(4) Rboot(y) is then defined as the supremum of rates for

which

min{k(R) a(oo), min [max(al(n), ca2 (n), o3 (n))]}> Y (16)

is satisfied.

The main difficulty in computing this bound is in finding

the exponent for the ordinary sequential decoding portion of the

algorithm. Let kmax(R) be the largest value of k(R) for any

n ¢ and let kmin(R) be the smallest value of k(R) for any

n c * which cannot be obtained from another member of* with

a larger value of k(R). Then it may appear that by suitable

combinatorial arguments, Z(R) could be shown to be in the range
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kmin(R) < (R) < kmax(R). However in the limit of large 1, terms

with smaller values of k(R) dominate terms with larger values of

k(R), and hence k(R) = kmin(R). Therefore the bound obtained

using this method is the same as the original bound.

Finally, we will say a few words about extending the results

of this bound to other parity-check schemes. In particular,

consider the following (n-l) x n array (n 2 3):

1 1 0 0 . . .0 0 0

0 1 1 0 . . . 0 0 0

0 0 0 0 . . . 0 1 1

We can then form a parity-check matrix H for an n-group code

by repeating each column of the above array m/n times, resulting

in an R = m-n+l/m block code. For example, the H matrix for the

R = 25/28 4-group code is

1 1 1 1 1 1 1 1 1 1 1 0 0 0 0000 000 0 00 00

H = 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

(17)

Columns 1-7 constitute group 1, columns 8-14 constitute group 2,

etc. Note that for any given codeword, the parity of each group

must be the same. Hence once one group is decoded correctly the

parity of each of the other groups is known, which is a signifi-

cant aid to finishing the decoding of the other groups. Also

note that the row space of H(the set of all parity checks) is
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completely symmetric with respect to the labeling of the groups.

Therefore the labeling of the groups is immaterial, as was

mentioned before in specifying the members of the set .

It should be evident that the arguments used in finding an

upper bound on the moments of decoding effort for the 3-group

code can be extended directly to group codes of higher order.

The formulas for specifying the size of the set ' and the
algorithm for generating the members ofA, however, must be

restated for each particular case. This will be carried out upon

successful completion of the computer calculations necessary to

plot the bounds for the 3-group code.

Reference

1. F. Jelinek and J. Cocke, "Bootstrap Hybrid Decoding for

Symmetrical Binary Input Channels," Information and Control,

April 1971.



168

II-G. Group Code Results.'Applicable to Boots'trap Decoding

The results of this section were obtained by D. Costello

while he was a research associate of the project.

1. Extending 'the Upper'Bound on the Momernts

of the'Decoding Effort 't'o''n-Gr'o'up Codes

The characteristic feature of all n-group codes is that

once the parity of any one group is decoded, the parity of

all the other groups is immediately known to be the same.

An n-group code contains n-l parity checks, i.e., the H

matrix has n-l rows. The columns of H consist of the

following set of n vectors of length n-l, each of which may

appear more than once:

1 1 0 0 0 0

0 1 1 0 0 0

0 0 1 0 0 0

000 0 0 0

0 0 0 0 0 0

0 00 1 0 0

0 0 0 1 1 0

000 0 1 1

The number of columns in which each of these vectors appears

determines the size of each of the n groups. For convenience

we will assume that all groups are of the same size.
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Example

1 1 1 1 1 1 O a 0 0 0 0

0 0 0 1 1 1 1 1 1 0 0 0H=

0 0 0 0 0 0 1 1 1 1 1 1

is the parity check matrix for an R = 9/12 4-group code.

Note that the first row of the H matrix forces the parity

of the first group to be the same as the parity of the second

group, the second row of H forces the parity of the second

group to be the same as the parity of the third group, and

so on. Thus we get the property of group codes mentioned

previously. Also note that all n-group codes are very high

rate codes with minimum distance 2, i.e., they only detect

single errors in an algebraic sense. However, this does not

militate against their use as algebraic codes in the bootstrap

hybrid decoding scheme. In fact, their simple structure

makes them especially attractive for calculating the error

exponent function. (NOTE: The word "group" here should not

be confused with the usual notion of a group (linear) code.)

When using group codes, once we have decoded a single

group, the parity of the other groups is known and they can

be decoded independently as in the single parity check case.

Hence if we desire high rates, it is also advantagneous to

keep the group sizes as small as possible.

EXAMPLE

Assume that we wish to use an algebraic code of rate

about 9/10. With a single parity check the group size is 10.
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With two parity checks, a three group code with R = 19/21

has group size 7. However, we cannot continue to decrease

the group size by increasing the number of groups. With three

parity checks, a four group code with R = 29/32 has group

size 8. In general, we require that R = gn-(n-l)/gn = 9/10,

where g is the group size and n is the number of groups. This

imples that gn = (n-l)10 or lim g = 10, the same group size
n+w

required by a single parity check. Clearly, for a given

rate R, there is an optimum group number n which yields the

smallest possible group size g.

The derivation of the upper bound on the moments of the

decoding effort given for the three group code can be

extended to higher order group codes. The only difference

is that a new algorithm is needed to generate the set S of

possible situations in each case and the formula for the

error exponent function Ek(a) must be generalized.

2. A Lower Bound on the Moments of the Decoding

Effort for Group Codes

Proceeding analogously to the derivation of the lower

bound on the moments of the decoding effort for the single

parity check case, we can derive a similar lower bound for

all group codes. In particular, for the three group code,

RURboot(y) is the infimum (greatest lower bound) of rates

for which min {min Lmax (a1 (n), 2(n), 3(.n))]

k min [max (a1 (n), (2jf), a3 (n))]} ¥ , where

Sk
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Sk {_n:nl + n 2 +n 3 k} , S3 = {n:nl+n2 +n = 3}

ai(n) is the solution of R = Ek(a)/a , and Ek (a) is the

error exponent function for a given situation when decoding

RUbegins in group i. In order to compute boot () we must
boot (Y)wems

compute the differences

min Imax (El(k), Ek(k), E3(k))
] -

Sk

k+l minm max (E l) 2 E 
k~y m k+l k+l 'k+l k+l k+l k+l

k+l

for k = 4,5,..., until their value becomes negative. If

this takes place at k = k , then

UR U() = min [E3() ]boot m' 3 Y k+ k+.

where E (Y/ k ) is
k

min [max (E +( +), E +(X.), E+(-+))d
Sk k k k k k k

And E3 (y) is

min [max (E3(y), E3 (y) E3(y)).
S3

Again the extension of the lower bound to all group codes

depends only on the generalization of the function Ek( )(
kand on a new algorithm to generate the set S. 

and on a new algorithm to generate the set S.
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3. Proof That Knowledge of the Syndrome is Equivalent

to Knowledge of the Group Parity

We wish to show that the ratio that enters into the

calculation of the likelihood function, viz.P(y,xi)/P(y),

is equivalent to the ratio P(s,yi/xi)/P(s,yi), where s is

the syndrome sequence and the ith digit is being decoded.

First we compute

P(y) = P(y,x) = ZP(y/x) P(x)= 2
-
k TTP(yj/xj)

C C C j-=l

where the rate of the algebraic code being used is k/n

and C is the set of all codewords. Similarly,

P(Y/xi)=P(Yi/xi)P(Yl,.... Yi+l,-.. Yn/Xi )

n

=P(yj/xj) E2- (k-1) 1|P(Yjlx;)

C i j=l
Ji

where C. is the set of all codewords whose ith component
1

is x. (half of the codewords in C for a linear code).1

Hence we obtain the ratio

tyx P(yj/xj)
- 1~~~~~=
I= 2P(y./x) j ~Jd1

P (Z/ ) i P(y./x.)

C j=l

Now the ratio P(s,yi/xi)/P(s,yi) must be determined.

Beginning with the denominator, we find that P(sqyi) -

/ P(y) where Y.(s) is the set of all possible received
Y7(,s) - 1

s~quences y which have syndome s and whose ith component is

i. Since there are 2k equally likely received sequences

corresponding to each syndrome and half of these have



173

an ith component equal to Yi,

P(s,yi) = 2(k-l) P(y: y H = s)

where H is the parity check matrix. (Note that in general

P(y) depends upon y, but that those particular received

sequences which result in a given syndrome are all equally

likely. For example, the set of all codewords result in the

syndrome s = 0, and they are clearly equally likely.) But
n

P(y: y H =s) = 2 -k Z X /

C j=l
where the evaluation is the same for all y that result in

a given syndrome. Hence,
n

P(Sy1) = P(y /xj)~~~~~~ ),
C j=l

where the products are taken for any y such that yH = s.

Since

P(sy.) n
P(s/Yi) = IP(y/) x p,

* 1 C j=l

P(sY/X i) = P(Yi/Xi) P(s/YiXi )

-n

= P(yi/Xi) P(yj/xj),
C. j=l

jfi1 j~i

where the products are taken for any y such that yH = s.

Hence we obtain the ratio



n

_j=L P(yj/xj)

p(s,Yi) -= 2P(yi/x.) 1 j/1
P(s'y 1) 1 t -f

i' I P(y./x )
C j=l 

P(y/x. )
P(y 1

P(y)

In the case of three group bootstrap decoding, this

result states that knowledge of the two syndrome digits

is equivalent to knowledge of the three group parity

digits. However,the simplest way to calculate

P(y,xi)/P(y) is to use the formulas based on the three

group parity digits, since these formulas take advantage

of the independence among the three groups.

174
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II-H. Optimal Decoding of Convolutional Codes for Finite

State Channels and its Application to' Bootstrap Decoding

1. Introduction

In this section we describe a method of decoding of

convolutional codes which minimizes the per bit probability

of error (Viterbi decoding minimizes the probability of

erroneous codeword decoding). This method applies to all

linear codes (see Sections 5 and 6) and can be used in

conjunction with arbitrary discrete finite state channels.

The complexity of the method grows as K2 where U is either

the constraint length of the convolutional code or the

syndrome size of the linear code. This work was done

jointly with L. Bahl, J. Cocke, and J. Raviv of IBM.

While it is doubtful that one would actually wish to

build decoders operating according to these methods, they

can be effectively used to allow computation of optimal

likelihood functions for the sequential decoding phase of a

bootstrap scheme whose algebraic component is based on an

arbitrary convolutional or linear code (see Section 7).

Moreover, we believe that our method will make possible the

application of bootstrapping methods to finite state channels

such as the Gilbert burst noise channel.



176

The per-bit probability of error will be minimized by

finding the probabilities that the encoder was in a particular state at

any time i. As a consequence, a posteriori probabilities that a

particular digit was sent through the channel at some given time i will

also be obtainable.

Our method will apply to finite state channels whose transmission

probabilities are

Q*(YiVi I Vi-l, x.) (1)

.th
where yi e xie are the i received and transmitted digits

(1/and 4 ~~~~~~~~~~~~~~~~th
Rand '- are finite alphabets), and vi, vile are the i- and

th~ ~ ~ ~~~~~_eIar h n

(i - 1)-th channel states and is a finite state alphabet). The channel

operates by the rule:

n

{ 1' ''''Yn'Vl' vXIv n X. . .. ,X = Q*(Yisvlv X' 'Xn

i=l

(2)

Obviously, discrete memoryless channels are special cases of finite

state channels, as is, for instance, the well-known Gilbert Channel which

has a "good" and a "bad" state with transitions that are independent of

channel inputs.

Since the natural transmission units of convolutional codes
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are branches (i.e. blocks of n digits), it will be convenient to define

special notation for these. We will let capitals refer to branches, i.e.,

x 
X t Xtn+l' Xtn+2 · .x(t+l)n

(3)
Yt Ytn+l' Ytn+2''"-Y(t+l)n

Also, we will define a new branch transmission probability

Q (Ytvt l Vt-1 Xt) =

7 Q*{(Y(t+])n'Vtl Vn-l' X(t+l)n ) Q*(Ytn+ Vl Vt ,x)

n-i1

* I1 Q* (Ytn+i' Vi vi-lxtn+i) (
i =2

where is the set of all vectors (Vl, V2, ..,Vnl) As a result,

p{yl-Yk.V1 vlk I vO,Xl,... Xk) Q(Yivi i-lvXi) (5)
i=l

2. Optimal Determination of Message Digits.

Let the information blocks determining the coder output branches

be Il, I2,... (e.g. for a binary convolutional code of rate R = k/n,

th
I. corresponds to a block of k bits), and let the it- state of the
1

encoder, Si, be given by the vector

Si = (Ii ,Ii_ .. , Ii-u- 2 ) (6)
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where u is the constraint length of the code. Suppose a codeword is

determined by T true information digits, and thus consists of T+u-1

branches (the usual termination by u-l dummy information O-blocks is

assumed). The encoder state sequence of interest the is

s
o
= O, S1 ,..., S T,-"' ST+u-l = (7)

If f is the code output function, then

X =f(ItSt l ) (8)

Let

if the decoder determines the i- message

bit incorrectly

0 otherwise

Then the per-input block probability of error is
Tn Tn

P T E [ LP i] = E io)
i =1 i=l

and so we wish to minimize E pi for all i. But for 1 < j < t,

Etn+j] = , P{st+l |i Y'"'YT+U-1} (11)

where tj denotes the set of states St+l with first block It+l (see

(6)) whose jth digit agrees with the one actually sent. It follows

that to minimize P we ought to minimize the sums Qn the righthand side
e

of (11) over all the possible sets d4 . To be able to do so, we will

find the probability terms of the sum of () 
find the probability terms of the sum of (ii)..



3. Determination of A PosterioriEncoder State Probabilities

Let us define super-states

Ui = (Si,vi)

and the probability functions

%t(it) = p{ut = (i,), Yl,', Yt}
3tfi, = P tyt+l -* * lYT+U' I Ut = ( Z)}

xt(ipz) = PlUt =(iwt) ... -- YT+U-ll

(12)

(13)

(14)

(15)

(15)

Now for te[l,T+u-2]

xt(iz) = P{Ut =(i,t), Yl...It } ·

(16)

and

xT+u-l (it) = YT+u-1 (i,t) (17)

(If U
t is known, events after time t do not depend on Yl,...,yt).

We will show below that it is easy to compute t and t recursively.

In any case, it follows from (15) and (17) that

(18)
P{St =i I Yl,- '"YT+u-1} =

179

{ P~t+l ' - ,T+u-l | Ut = (i,), Yl ,...,yJ =

= Ct (it) Pt(it)

),~ T+ul(i,t )

it
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and so our task is to find Xt(i,).

Let the initial distribution of the channel state v be given by

P{vo q}= w(q)

al(i,-) = j P{U1 =(i,), Y1 I U. = (0, q)}w(q)

q

(19)

(20)

and for t = 2, 3,..., T + u-l,

at(itq) = / P{Ut_ 
1

j,m,q

, P{ut =( i,?), Yt

j,m, 

= ? P{Ut =(i.t)' Yt I

j,m

=( ;m), Ut = (i,), Y1 , , Yt}

U t-l = (jm)l +{t-1 = (j,m), Y]3,--...,Yt 11

(21)

where the middle equality follows from the fact that all events after time

t-l are independent of Yi'...'Yt-1 once the superstate Ut_1 is known. Similarly,

BT+u _2(i,) = , T+P-l =(O,m) YT+u-2 UT+u-2(i,)

(22)

and for t = 1, 2,..., T + u -3,

t(i" ) = {. P t+l =(J,m), Yt+l ''" YT+-1 jUt = (i,-) =
jm

- PSy Y U~ P U 1 ( ) '+ t - i tL t+21 T+u-l Ut+l (jm) PUt+l =(jm), Yt+li U t (i)}
j,m

t (j,m) Ut+l= (jm), Yt+l I Ut (i }
j,m'

t~~l ~ ~ Ut~~i t = (i't~~~~l (23)

Then

Ut_
1
= (j'm)} at-] (jm)
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Relations (21) and (22) bear out our earlier contention that

at and Pt are recursively obtainable. It remains to specify the pro-

babilities P{Ut+l =(Jim), Yt+l1 Ut -(i,)} that appear on the righthand

sides of (20) through (23).

Let

.~~~ : 1 -if a one step transition
from state i to state j is possible

Aij):= 
(24)

)0 otherwiise

and let g(j) be the initial information block of the state J. Then

P{Ut t+1=(,m) Yt+l Ut =(i,)} =

-= (ij) Q(Yt+l ml , f(g(j), i) P{It+l g(J)} (25)

In the usual situation in which all sequences are equally likely,

P{It+l g(j)} = 2
-

k. It will, however, be useful later on to have the

general expression (25).

We conclude this section by outlining the algorithm that will

minimize the probability of bit error:

1) While the sequence Yl'..JYT+u 1 is being received, the

decoder computes recursively the probabilities at(i,Z) [see (13)], using

the relations (21) and (25). The obtained values are stored for all t = ,

..., T+u-l and i, t. The amount of work involved is roughly that for

forward Viterbi decoding.

2) The decoder then starts computing recursively the probabilities

PT+u-2(i') ' T+u-3(i,),...,' B1 (i,-), using relations (23) and (25).

When T+u_ 2 (i,Z) are.-computed, they and the stored aT+u_2(i,) are used
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to obtain x T+u2(i,t) [see (16)]. The latter then replace OT+u-2(i,)

in storage. This is done in general, xt(i,L) replacing at(i,t) for t =

T + u-3, T + u -4,..., 1. The work involved in this stage of the algorithm

is roughly equivalent to that of backward Viterbi decoding.

3) Finally, the stored Xt(i,t) are used to calculate P{St = i /

Yl .. YT+u-1} [see (18)] and the quantities

t i( z ) = f Pt St =

'

/ Y'l''YT+u-l1 (26)

where Zi(z) is the set of states whose initial block I has its i
t
- digit

2. ~~~~~~~~~~~~~t

(i = l,...,k) equal to z. If

max

t i(Zz*) = Z t i(z) (27)(27)

th
the decoder decides that the [(t-l) n + i} infcrmation digit was z*.

Unfortunately, this algorithm requires quite a large storage.

Its size grows linearly with block length T. It is not clear with what

accuracy it is necessary to store the values at(i,Z) and Xt(i,Z).

In conclusion, let us observe that the computation of the

probabi.iti.: (t(,) [see (20) and (21)] was based on the initial channel

Ftate distribution w(q). At the beginning of the communication process, w( )

would normally be the stationary distribution of the states. However, it

follows from (13) that

T+u- 

P{vT+U-l | '*'YT+V- T+u(1(ot) (28)



183

and thus the w-function for the decoding of the second block would

naturally be given by the relation

w(q) = PfTu_1 =- Y1 .---., YT+U- (29)

where the conditioning random variables are those received in the first

block. The definition of the w( ) -function for the third and following

blocks is similar. The important point is that no information about the

starting state of any block gained through the decoding of previous blocks

is ever lost.
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4. Probabilities of Transmitted Digits.

Sometimes it is of interest to determine the probabilities

p~x *'~T~u-l} theth
PeXt [ Y1 ,..,YT+u l that the t- transmitted branch was Xt, given that

the branches Yl' .."YT+u-l were received (an application is given in the

next section). We now proceed to do so.

Xt is fully determined by St_1 and S
t

(see (81)), so that

Xt = F(St-1, St ) (30)

Let T(Xt) be the set of all pairs St 1, St for which (30) holds. Then

P{Xt I Yi ,'"YT+u-l} = P{St-l = i, St =I .|l'"'YT+u-l}

(i,j) C (Xt )

= II Zf P{Ut 1 = (i,-), Ut = (Jm) Yl .. YT+Ull

(ij)&E(xt) ,m (31)
(31)

Therefore, it is desirable to determine the probability terms

on the righthand side of (31). But

P{Ut 1 =(i,), Ut = (J.m), Yl.. YT+u-l} 

P{Y t+l'-.'YT. 1 -l| Ut = (im)} P{U+t =(im),ytl tU-l (i, )}.

P{Ut-l = (i), Y1 , .* yt-, =

= Rt (Jim) P{ut = (JIm), Y|U = (i-?,)}e t- (i, ) (32)

and from (15) and (17),

T+-l , LI T+U- (i,) (33)
inZ
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Combining (31) through (33) we thus get the formula

{xt~ I .. YT+u-l} = A Tiu-l (i, J -l
L'

(i,j)E'$(x t ) (z,m)
%t(J,m) P{Ut =(J,m), Yt[

(34)

Ut_ ! = (4i)}) t-l (id)
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5. Generalization to All Linear Codes

The preceding results depend on the existence of the super-

states U
t whose knowledge allows the separation of past (events before

time t) from the future (events after t). As seen from (12), Ut pre-

supposes the existence of St, the encoder state. Our results would thus

be generalizeable to all codes for which a state could be defined, and

therefore a coding trellis drawn.

Let H be the parity check matrix of a given linear (n,n-r)

code, and let hi, i = l,...,n be the column vectors of H. Letc be

a codeword. We will then define the states St, t = O,l,...,n pertaining

to c as follows:

S =0-o - t

tS =5 +c h h.t = 1ch t=,...,n (35)
=t 

=
St-1 +ct ht = 1 c

Obviously, S = 0 and the current state S is a function of the preceding
-n -t

state Stl and the current input digit ct(the relationship is tboe varying').

Relation (35) can thus be used to draw a trellis with at most 2 states

St per level. The appearance of the trellis will be similar to that for

convolutional codes provided the vector set jhnhn-l,...,hn-r+
1

has

rank r (which can always be arranged). For binary codes, there will exist

two transitions out of every state St, t= O,l,...,k-l, and one transition

out of every state St, t = k, k+l,...,n-l. If it turns out that {hl,...,h~!

are linearly independent, then there will be one transition leading into

every state St, t = 1, 2,...,Z. An example of the trellis for the Hamming

code
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01011100.H = 1 0 1 1 1 0

0 0 1 0 1 1 1

is given in Figure 1. Unfortunately, the irregularity of the trellis is

typical for the general case of block codes. Obviously, every transition

corresponds to a single channel input digit only. Horizontal transitions

(those to an identically indexed state) correspond to O's, the remaining

transitions to l's.

Viterbi decoding, as well as the methods of the preceding

sections are clearly applicable to the trellises of linear block codes

(it is even conceivable that sequential decoding can also be used). Since

high-rate codes have relatively fewer states, the methods might even

prove attractive in practice.
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6. A "Time-Invariant" Trellis Diagram for Cyclic Codes

The trellis diagram of Figure 1 is time dependent.

This unfortunate feature can be eliminated when the code is

cyclic by defining the state in terms of the shift register

realization of the encoder rather than in terms of the

parity check matrix. This leads to a piecewise time-

invariant trellis diagram, as illustrated by the following

example.

EXAMPLE

Consider the 3-stage shift register encoder shown in

Figure 2 for the (7,4) Hamming code. The switches are in

positions A for four time units and then switch to positions

B for three time units. Taking the state to be the outputs

of the three register stages, we can draw the trellis diagrams

as in Figure 3.

In part A of the diagram, for the states (000,110,010,

100) up branches correspond to input O's and down branches

to input l's, whereas for the states (011,101,001,111) up

branches correspond to input l's and down branches to input

O's. In part B all branches correspond to input O's.

Note that part A and part B of the diagram, when considered

separately, are both time-invariant, i.e., each state has

exactly the same successors independent of time. This

trellis diagram can be reduced to a state diagram whose

transitions are labeled either A/B (where A is the input

when the transition occurs in part B) or just A (where A is

the input when the transition occurs in part A and the



189

transition does not occur in part B). For the (7 ,4) Hamming

code under consideration, the state diagram is in Figure 4.

When all the information digits have been read into the encoder

(at the end of part A), the path back to the all-zero state

can be determined directly from the state diagram for part A

by merely following the path indicated by the digits of the

present state read in reverse order. For example, if we are

in state 100 at the end of part A, then following the path

indicated by the digits 001 returns us to the state 000.

This form of the encoder results in relatively simple

state diagrams for high rate codes and relatively complex

state diagrams for low rate codes (since the number of

states is 2r where r is the number of redundant digits

in the code).
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7. Application to Bootstrap Decoding

In this section we will state a particular application of the

decoding methods of this paper to bootstrap decoding, but others are

equally possible. Our example will be restricted to symmetrical, binary

input channels. Consider two convolutional codes 1 and C2. Use C1

to encode T2 blocks of K1 = Tlk I information digits into T2 blocks of

N
1
= (T1 + U1 -1) n1 channel digits (the rate of C

i
is Ri = ki/n

i
and

its constraint length is ui, i = 1,2), and lay the resulting code words

next to each other (as indicated in Figure 5), obtaining a binary array

of N1 rows and T2 columns. Next, take each row in the array of Figure 5

and use C2 to encode it into a codeword of N2 = (T2 + u2-1) n2 channel

digits, and lay the resulting codewords below each other, as indicated

in Figure 6. The obtained binary array has N rows and N columns.1 N2

Because of linearity, every column in this array is a codeword of the

code C1 .

If the digits of Figure 6 are transmitted, the received digits

can be used to form another N1 X N2 array whose appearance is that of

Figure 3. It is then possible to decode the array either row-wise

(using code C2 ) or column-wise (using code C1) on both, and to do so, any

convenient decoder may be used. If both constraint lengths u1 and u2

are relatively short, the methods of this paper may be used in both

directions (see below), if u1 is short and u2 long, horizontal decoding

may be carried out with the help of a sequential decoder.

In either ca:es, thihe rolicing interactive approach is suggested.

The array of Figalre 6 is transmitted by columns, i.e., first the digits

of the first column in sequence, then those of the second collm, etc.
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We will assume that the state process is irreducible, and that N1 is

large enough relative to the memory of the state process so that the

channel is virtually memoryless along the horizontal direction of the

array of Figure 6 (in case this assumption is not satisfied, it is in

principle easy to modify the following approach appropriately).

The receiver works on the column first, using the relations (29) to

determine initial state distributions. The aim is to obtain the

distributions (see Section 4)

P{Xtl Yi'''YT+U -} t = 1,2, ..., T+u-l .(36)

and

P{VT++ul- I 1 T'+ul"T ,,7

the latter in order to decode the next column. The probabilities (36)

may be used to find the probabilities of transmission of individual digits

in the various rows of the columns,

x (t-l)n+j Yi' 'YTl+u1 -l} = P{Xtt Y1. 'YTi+u-l} (38)

where the sum is over all Xt whose j th digit is x(tl)n+.

When the work on the columns is completed, row decoding starts.

The decoding of the rth row will utilize the probabilities P{Xrl Y'l'...'

YTl+u 1-} obtained for each of the N2 columns. First, consider the case

where row decoding utilizes the methods of this paper. Let ql( ),...,

( ) be the distributions (38) applicable to the n2 digits on the

branch at depth (t+l) of the rth iow. Because of our virtual independence

assumptions, superstates Ut can be replaced by encoder states St, so that

the probabilities xt(i) [the second variable is eliminated] will be based
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on the transition probabilities (compare with (25))

Pistel=i, .Yt+ISt = i

~(i 'Iw (Yt+l If (g(J), i)) PlI.~. = g(j)/ Sr = i} (39)

where w ( / ) is the transmission probability of the virtually memory-

less row channel. The probability P{It+= g(j) / St = i} is obtained

with the help of the probabilities ql( ),...,qn2( ) determined by coluImn

decoding. In fact, let the branch digits corresponding to the transition

g(j) out of state j be x*,...,x*. Then

n2

T qt (xt) PI t+l g(j) / S i} = 1 (40q (x))

vn2

__ _ __ _ __ _ (4o).

where the sum in the denominator is over the sequences xl,..,xn

associated with the 2k branches leaving state i.

The aim of row decoding is to obtain probabilities P{r Yl..'

YT2+u2, r = 1,...,N2 to be used next in column decoding based again
T2 +U2 -l1J

on the transition probabilities P{Utl = (iJm), Yt+l t ( seep 1Ut~l = Oym), Yt+l 

(25)] where formula (40) enables utilization of information gained in row

decoding. The process may be iterated any number of times. The last

iteration performs the final decoding according to the three-step algorithm

described in Section 3.

Let us next consider the case where the row constraint lengh

u2 is large so that sequential decoding must be used. When the first

column decoding cycle is completed, the row decoder is in possession
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of probabilities P{xr | Y1,...,YT + 1 obtained by formula (38).

Since row-memory is assumed to be practically non-existent, the usual

sequential algorithm is carried out. The difference is that the likelihood

functions used on the it h branch digit are given by the formula
'. ,

log w(yi xi) - R (41)

wi(Y i
)

where

wi(yi ) = w(Yil x) qi(x) (42)

x

It is, of course, through formula (42) that the sequential decoder

utilizes information gained in column decoding. Sequential decoding

on a given row continues until that row is decoded, or until the likelihood

drops by so much that further advance is "hopeless" (this is similar to

the original Bootstrap Decoding Algorithm). If the decoder advanced to

depth J, it is assumed that all digits from depth 1 through J-t [for

some judiciously chosen t] have been definitely decoded. This means

that for the purpose of future column: decoding, the probabilities

{It+l = g(J) St = i}are changed, some becoming zero [we assume that

the sequential decoding involved row tk1 + r, reol,2,...,kl}]. After

row decoding has been completed, column decoding whose aim is to obtain

new probabilities (38) is performed on those columns where change in some

probabilities P{It+l = g(j) St = i} took place. This process is iterated

until all rows have been completely sequentially decoded.

Obviously, the above two applications to bobtstrapping are

very tentative. The precise algorithms must be determined by experimentation.
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In conclusion we wish to point out, that the column code

need not be a convolutional one. As shown in Section 5, any linear

code is amenable to the methods of Sections 3 and 4, provided its rate

is high enough so that the number of trellis states is not excessive.

Figure Captions:

Fig. 1: Trellis diagram for the (7, 4) Hamming code.

Fig. 2: Shift register encoder for the (7, 4) Hamming code.

Fig. 3: Time-invariant trellis diagram for the (7, 4) Hamming code.

Fig. 4: State diagram for the (7, 4) Hamming code.

Fig. 5: Initial convolutional encoding of T2 information digit sequences.

Fig. 6: The final code block resulting from convolutional encoding

of N sequences of binary code digits.
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II-I An Algorithm Determining Free Distance of Convolutional Codes

The algorithm to be described here works for convolutional codes

kof all rates R = k . However, for simplicity of exposition we willn

confine ourselves to rate 1/n binary codes.

It will be useful to take the old-fashioned point of view that the

state S(t) of a convolutional encoder at time t is defined by u

immediately preceeding information digits

S(t) = Lit' it'l,'' it-U+l (

and that the encoder output block x = Xl,...x
n at time t is aln

function of S(t) only.

If the code is non-catastrophic then the free distance df is equal

to the minimal weight of a codeword that corresponds to some information

sequence of the form

(1,i2 ,i3,., i m l lO O , . . ).(2)

where m = 1, 2, 3,.... We will, of course, restrict our attention

to non-catastrophic codes only (tests for possible catastrophic character

of codes are simple).

It follows for (2) that free distance will be achieved on a path

defined by a state succession S(1), S(2),..., S(m+u-1), S(m+u),... where

s(1) = (1,0,. ..,0)

S(m+u-l) = (0,...,0,1) (3)

S(m+u) = S(m+u+l) = ... = (0,0,...,0)
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FurthermoreS(t+l) is obtainable from S(t) by a right-shift followed

by insertion of it+l into the leftmost state position (t=l,2,...,m+u-2)

and S(k-l) is obtainable from S(k) by a left-shift followed by insertion

of ik u+l into the rightmost state position (k=m+u-l,m+u-2,...,2).

Assume for the time being that we have the following two machines:

a) A right-shifting machine whose starting state is (1,0,...,0) which

searches the trellis in the forward direction: computing outputs,

recording their weight, adding the latter to the cumulative weight

that corresponds to the path from the root code (1,0,...,0) to the

state in question, and keeping track of the states (regardless of depth)

already visited.

b) A left-shifting machine whose starting state is (0,...,0,l)

which searches the trellis in the backward direction (again recording

the states visited).

If one of the machines ever reaches a state already reached by the

other machine, then a path connection is established whose information

digit form is that of (2) and which therefore possibly achieves free

distance. This is the main idea of the bi-directional search for df

being proposed here.

For obvious reasons of economy, both machines should extend low

weight paths first. As a consequence, for a rate R = 1/n code, the

memory of each machine will contain at any given time only extendible

paths whose weights are w, w+l,..., w+n.

01
Both 0 and 1 extensions, TT and r ,of a path T ending in state

S(t) =(it,itl,. ..,it u+l) will be generated simultaneously. Let

S (t+l) = (Oit,. .,itu+2 ) and S (t+l) = (l,it,...,it-u+2) be the
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0 1
last states of 0 and i respectively, and suppose (w.l.o.g.) that the

right-shifting machine already generated some other path r whose end

state was S (t+l). If that path was previously extended, then its

cumulative weight at that time could not have exceeded the weight of

0
path T. Hence the path r can be eliminated from consideration. If,

* . 0.
on the other handyr was not extended by the time T is generated, then

0 *
either T or T can be eliminated depending on which has the larger

cumulative weight. In fact, suppose wH(~
©
) < wH(r ), and the left

+ 0
shifting machine generates a path T+ whose last state is S (t+l). Then,

0 +
obviously, the concatenation T ,T may correspond to a sequence (2)

* +
of least weight, but i ,r cannot. We therefore conclude that at any

given time the memory of the right-shifting machine need contain only

paths ending in (live paths) or leading through (dead paths) distinct

states.. Same remarks, of course, apply to the left-shifting machine.

As a matter of fact, when the search for d is carried out by af

digital computer, no left or right-shifting machines need be simulated.

All that is necessary is to attach a three-valued flag to each state ever

reached from left or right. The flag's value is 'D' if the state was

already extended, and it is 'R' if the state is to be extended by a

right-shift and it is 'L' otherwise (e.g., the flag value of S(t) when

it was generated was 'R'. When the extensions S (t+l) and S (t+l)were

generated, their flag values became 'R', and the flag value of S(t)

changed from 'Rt to 'D').

We are now ready to describe the algorithm. The storage consists

of three arrays: The first, S, gives the state, the second, F, the

flag value, and the third W, gives the cumulative weight of the path

leading to the state S: W will denote the current upper bound on df .
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It will originally be set equal to no. If T is a state, ATW will denote

the weight of the output branch corresponding to T.

1. Place (1,O,....,O) into the first S-location, 'R' into the first

F-location, and the weight of the output of (1,O,...,O) into the

first W-location.

2. Place (O,...,O,1) into the second S-location, 'L' into the

second F-location, and the weight of the output of (O,...,O,1) into the

second W-location.

3. Search through memory for a non-'D' location whose W-value is

*
least. Let it be found at location J. If 2W(J) > W , go to 19.

4. Set T = S(J) and K = O (K is an indication whose values are 0

and 1). If F(J) = 'L', go to 6.

5. Shift T right and place a 0 into the leftmost position of T.

Go to 7.

6. Shift T left and place a 0 into the rightmost position of T.

7. Search through memory for some location I such that S(I) = T.

If such I exists, go to 13.

8. Find M, the first non-occupied location. Then set S(M) = T

w(M) = w(J) + Aw, F(M) = F(J)

9. If K = 1, set F(J) = 'D' and go to 3.

10. If F(J) = 'L', go to 12.

11. Place a l1 into the leftmost position of T. Let K = 1. Go to 7

12. Place a 1 into rightmost position of T. Let K = 1. Go to 7.

13. If F(I) i 'D' go to 15.

14. Go to 9.

15. If F(I) I F(J) go to 18.

16. If W(J) + ATW > W(I), go to 9.

17. Purge location I, and make it available. Go to 8.

e
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* *

18. If w > w(J) + ATW + W(I), set w =w(j) + .TW + w(i). Go to 9.

19. The free distance is W . Stop. Figure

1 shows the number of search steps as a function of constraint length

U, and compares them with the number of steps involved in the conventional

stack-type search. It is seen that on a semi-log plot, the slope

of the latter is approximately twice that of the former.

This is just as one would expect: each direction of search

need now be carried out only to about half of the depth as formerly,

and an exponentially growing tree arrangement exists in both directions.

There is, of course, one obvious difficulty connected with this

algorithm: the size of the storage and the search through it. To

reduce the former would mean to change the algorithm, but an efficient

storage organization to minimize the search is essential. If there are

2 storage locations available, then there is no problem: each possible

state is assigned a definite address, and the algorithm simply checks

at the appropriate address if the state in question has already been
.~~~ ~ ~ ~ ~~ .. . ... 

generated, etc. If the available storage is smaller (its minimal order

of magnitude is a direct function of the number of search steps) a

more efficient organization is necessary. We have tried some simple

hashing schemes which seem to work excellently as long as the occupancy

stays below 60%, and we will experiment with tree arrangements involving

pointers.

The algorithm applies to rate R = k codes as well. There are
n

k
now 2(2 -1) initial states, (10...00...0) through (11...10...0) and

(0...00...01) through (0....01...11), and every path is extended into

2k paths, one for each possible outgoing branch. Otherwise the algorithm

stays the same.
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III. REPORT ON PHASE 2

III-A. The Two-Cycle Algorithm

1. Introduction

In this section we will describe the two-cycle algorithm

and summarize our analytical results for it. A long paper by

J.B. Anderson and F. Jelinek entitled "A Two Cycle Algorithm

for Source Coding with a Fidelity Criterion" going into the

details was presented at the 1972 International Symposium on

Information Theory and will be published in the IEEE

Transactions on Information Theory.

In the 2-cycle algorithm, the encoder will work in two

fundamental modes, called cycles, one embedded within the

other. In the first mode a search is made among tree paths

to find feasible candidates for encoding of the generated

information. In the second mode, the candidates are

concatenated with the help of a push-down stack.

The operation is, in a way, not too different from that suggested

in Jelinek's original proof of the three coding theorem. What

makes analytical evaluation possible and the algorithm de-

sirable (from an encoding effort standpoint) are the

kinds of stopping rules introduced to limit the amount of

work in each mode.

Assume that code words for encoding of a binary digit

IID source

205
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have been arranged in a tree structure. The tree has rate R = log2d/n,

with d branches stemming from each node and n source approximating

binary digits on each branch. The object of an encoder is to find a

path of branches through the tree, the digits of which approximate the

source sufficiently closely. To measure distance between the source

output and various paths. we use the Hamming measure

£

d(z' , z ) = X [1 8 (zi i)] (1)

i = 1

where z is a source sequence, z is an hypothesized path, (both of length

i) and 8 is the Kronecker delta function. It should be stressed that

our encoder works for other measures and sources as well.

Goodness of individual paths depends on path length as well as

distortion and is compared by the algorithm with the help of a path

metric,

= * - d(z , (2)

Since a path involves an integral multiple of branches to be of interest,

I is assumed to be a multiple of n. D* is the target distortion per

encoded source digit desired at the end of encoding, and D* > A(R),

the inverse rate distortion function relative to (1) and the source.

With this path metric in mind, we define two freezing barriers

(in the terminology of Gallager), one at metric a > 0, the other at

b < 0. Further extension of paths whose metrics rise above a will be

frozen temporarily and the paths removed to the push-down stack, (these

are the live links) while paths falling below b will be dropped entirely.

A precise description of the algorithm follows:
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Step (1) Starting at the code tree root node (which is

assigned the metric zero), a freezing cycle is

performed: Paths are extended in an exhaustive search

until all root node descendants crash a freezing barrier

and are frozen. Those paths that rise above the a barrier

are placed at the top of a push-dowr stack.

Step (2). When a freezing cycle terminates, attention turns to

the push-down stack. The final node of the path at the

top of the stack now becomes a root node (metric value 0

assigned) for a new freezing cycle, and the encoder exe-

cutes again Step (1). As described in Step (3), the top

stack path may occasionally be saved. If the stack is

either empty, or its top contains a path made up of a con-

catenation of L links from Step (1), the encoder passes

to Step (3).*

* The push-down stack requires no sorting effort, since paths are

inserted as they come and are removed at the top. The resulting

stack of paths is thus naturally ordered by the number of live

links each path consists of, the longest (in terms of links, but

not necessarily branches) being on top. To order paths according

to branch lengths is another possibility that may involve extra sorting

work. We do not know how to take proper analytical advantage of such

an improvement. The fastest way to carry out the freezing cycle would

seem to be a Fano-type search that would take the 0-branch extension

first until freezing is achieved, and then backstack. In this way

the ordering of live links within each freezing cycle would be lexical.

If, on the other hand, all extensions were to be carried out by depth,

then the links would be inserted into the stack in the desirable

branch-length order.
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Step (3) When the push-down cycle defined by Steps (1) and (2)

terminates, the encoder releases the output to the user.

If an L-concatenation has appeared, it is released directly,

and an L-termination is said to have occurred. In the

event of an empty stack, the push-down cycle has terminated

by extinction. To defend against this, the encoder keeps

track of the longest concatenation found by the push-down

cycle and returns to it if extinction occurs. Step (1)

is performed for the second time beginning on the last node

of this path. The first frozen path encountered (it must

be at barrier b!!') is then concatenated with the saved

path and released as the codeword to the user.

Step (4) When an encoding takes place, the push-down stack is

purged and the last node of the obtained codeword is

inserted into the stack. The latter then constitutes

a new root node for further operation of the encoding

algorithm.

Step (1) constitutes the freezing cycle, and Steps (1) and (2)

together are the push-down cycle. Step (3) implies release of accumulated

output, and the time between successive executions of this step is the

delay in encoding. The analysis of our algorithm is an interesting one

in itself, but the scheme has several practical advantages. The freezing

cycle need not be extensive, and far less time is spent scrutinizing

codewords than with the Jelinek stack algorithm. In general, efficiency

and simplicity are well combined.

Before proceeding with an analysis, we pause to develop further

terminology and identify quantities of interest. The language of tree
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structures is well suited to our discussion, except that the two-cycle

algorithm contains two tree structures, one "within" the other, which

are easily confused. Accordingly, let the code tree paths bemade up

of branches, of which d stem from each node, but let the tree structure

diagramming the push-down stack development consist of links. In this

tree, sons of a node are formed by a freezing cycle, their number being

a random variable, and paths of links represent concatenations of the

"good paths" alluded to above. Corresponding to each link is a link

length in branches of the code tree, and a stack tree node has sons

equal in number to the code tree paths frozen at a during some freezing

cycle. The subject of code trees is well known, and the growth of the stack

tree, a process we call a push-down stack searched branching process,

will be estimated in Sections 3. The process terminates either by

extinction, or by e-termination.

2. Quantities of Interest in the Two-Cycle Algorithm

We now discuss quantities of interest in the operation of the

two-cycle algorithm: Computation per source digit encoded, computation

per freezing cycle, freezing cycles per push-down cycle, probability

of termination by extinction, concentration of work in one or the other

cycles, and of course, the distortion attained. All of these eventually

must depend on the three parameters of the algorithm, a,b, and L.

Let the term live link refer to an a-frozen link, and dead link

to the occasional b-frozen link (recall the push-down process involves

a-frozen links only). Let the path that constitutes the codeword

released to the user be referred to as the chosen link path. Let the

th*
latter be of length Q, and let Xi be the branch length of the i link.

Let Y be the branch length of the last (and only!) dead link, if any,
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of the chosen path. Then the chosen path branch length M is given by

(I is a random variable not exceeding L)

I

M = X
i

+ Y [1-(,L)] (3)

i=l

and the total distortion incurred in encoding is

Do t = DM -la [1-8(1,L)]b , b < 0 (4)
Tot

Let W. be the computation performed in the code tree during the ith

freezing cycle, and let V be the number of freezing cycles necessary

to complete a push-down cycle. Then U, the total computation expended

in a push-down cycle, is

V
. W

U = W wi (5)
i= 1

Among our interests is the relation between the average distortion

per encoded source digit E L DTot ] , and the average work per
M

U uencoded source digit E L--- j . Under suitable conditions, satisfied

in this case,

E Tot = E Tot (6)
EEMI

EL__ U EEUI (7)E _j = E[U

Let qi be the probability that the push-down cycle terminates by

extinction before any link on tree level i has been generated. Clearly

qi < qi+l Let

q = lim qi.
i -tO
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It can be shown that a proper choice of a > o and b < 0 results in

q < 1. Assuming that to be the case, let us choose L to satisfy

(8)L = - l Ib1-q a

Then from (4) and (6)

E LTot I =D* -
M

aE_. + bE [l-8(,)]

E[M]

E [1-6(Q,L)] = L

and

L-1

E[D] : E (q+1 - q) £ + (1-qL)L > (1-qL)L

Q=1

Hence, using (8), (10), and (11)

-aE[£] - bE[l-6(£,L)] <

< -a (1-qL)L + aL (1-2L qL
q

-- aL ( q~ q < 0
Cl

It follows that L chosen as in (8) causes

E DTot < D*
Loti

Next, the computation in successive freezing cycles is independent

Btt

(9)

(10)

(11)

(12)

(13)
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under our assumptions, so by Wald's Lemma,

EU] =E[V] EE[W] (14)

and

E[M] = E[£] E[X] + qL EEY]

(15)
>(1 -q) L E[X]

where we have made use of (11).

Hence

E U ' < E[V] E[W]I

E - - (l-q) E[X]

A characteristic of push-down stack searched branching processes

is that the underbound of (11) is quite tight, so that the bounds

(13) and (16) are also tight. Thus, (16) gives the computation

required to produce distortion D*.

Since q is a function of a and b only, then a, b, and L are all

implicitly present in (16). It turns out that certain choices of

a, b, and L decrease the computation in one cycle at the expense of

the other (e.g., smaller freezing cycles, but more of them, or vice

versa). ObviouSly, some combination minimizes the bound (16) while

preserving the validity of (13). To complete our analysis, we must

study

i) E[W], the expected number of computations in a freezing cycle



ii)

iii)

iv)

v)

E[V], the expected number of freezing cycles in a push-down cycle

q, the probability of extinction in a push-down cycle that

has L = -

E[X], the expected branch length of a live link

Choices of a, b, and L

3. Summary of Analytical Results for the Two-Cycle Algorithm

For this progress report, we summarize briefly the analytical

results that have been obtained to this date. Only the simplest equations

and no proofs will be given. A full length report on the two-cycle

algorithm will be forthcoming.

i) Expected freezing cycle computations

In the code tree,

N = Number
a

N = Numberb

N,= Number

Then the following theo

Theorem 1 For a

IID sources with

-a
EN r

a - sinwa

let

of paths frozen at a-barrier (i.e., live links)

of paths frozen at b-barrier (i.e., dead links)

of paths remaining forever uifrozen

rem is true:

tree with rate R = log2 d/n used to encode binary

respect to the Hamming distortion measure,

I,~~~~~~~~~~~~~~~~~~~~~~~~~

/ coswa coswb ('
' sinwa sinwb / 7a)

/coswa - coswb '
snwa sinwb )sinwa sinwb i

-inwb ENb - r
D- -sinwb /

213

(17b)
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whenever b - a < r/w. s = r e is the possibly complex

solution to

1-R = D*- l + SD*2 = + S (18)

w and r are functions of D* and R only.

w\iO as D*%4 A(R) and r is typically near (1-D*)/D*. A careful

look at (17) reveals that as [ b-a I tends to r/w, both ENa and ENb

tend to infinity. In fact, given an a one may choose b to make the

right hand side of (17a) precisely unity. In this way, R, D*, and a

specify a minimal b necessary to achieve EN
a
> 1. We can state this_~~~~~~~

as a

Corollary 1 For any given a < r/w, there exists b* such that if ! b-af
< /w and b < b*, then ENa > 1

As a rule, b* is very near r/w. A second corollary will give us

the desired result for E[W]. As is customary, let one computation

include the generation and scrutiny of d branches stemming from their

common parent node. Then an exercise in tree branch topology yields

Corollary 2 EW] = a +ENb - (18)

d-1

The significance o-f E a> 1 is given by Theorem 2, which amounts

to a coding theorem proved by the device of a two-cycle algorithm:

Theorem 2 Under the hypotheses of Theorem 1, whenever EN > 1 and
a

D* > A(R), the two-cycle algorithm along with some source code

will perform arbitrarily close to D* for some L.

ii) Exoected freezing cycles per push-down cycle

An effective means of analysis has been found for the push-down

214
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stack, that shows, among other things, the surpa'ising theorem to follow.

Let the distributiol f Pk / be defined by

Pk = r {Na = k] = probability of k sons of a stack
tree node

Theorem 3 For any distribution Pk such that Ek > 1 (i.e.,

ENa > 1), the expected number of son formations, E[V], necessary

to terminate a push-down cycle is overbounded by

E[V] L (19)

(Recall that L is the termination depth of the cycle when extinction does

not occur, but the expectation is over either termination).

We conjecture that (19) is a tight overbound.

iii) PTobability of push-down cycle extinction

In thc event of extinction, the push-down cycle behaves identically

to an ordinary branching process. Exploiting this relationship gives q.

In particular, whenever Ea < 1, the monotone increasing sequence [qi

has limit 1, so that for large L, extinction occurs with probability

1. When EN
a
> I, q is the solution of the polynomial equation

q Pk q (20)

k= 0

It remains only to find the distribution [pk] , and it turns out that

each pk(ab) is the solution of a linear difference equation with non-

constant coefficients. These equations are easy to solve numerically,

although much more complicated analytical methods are available also.
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i) Expected length of live links

Recursions are now available to find the exq)ected length of a live

path searched out by the freezing cycle. These recursions allow also

the study of freezing cycles with a length restriction on searching

in the code tree. Such a feature is important as a practical matter

to insure the steady operation of the encoder. For lack of time,

munerical analysis of these recursions has not as yet been undertaken.

v) Choices of a, b, L

Intensive work on this problem is awaiting further numerical

analysis. Increasing a will increase q and increasing lb I will hare

the opposite effect. Simlultaneous increase in a and Ib I will increase

E[W] but might conceivably decrease L (see (8)). The pcint is that the

amount of work in the push-domwn cycle might be traded for work in the

freezing cycle, and there will exist some optimal balance that we shall

seek to discover.
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III-B. The Stack Algorithm for Source Coding

The stack algorithm is a scheme that uses tree codes to

encode source data with respect to a fidelity criterion. It

stems directly from the Jelinek stack algorithm [1] for sequen-

tial channel decoding, but differs radically in its analysis.

In terms of code tree branches searched per digit output, it is

the most efficient algorithm known to the authors (see [2]4,[3],

[4]) . The algorithm suffers, however, from clumsy data handling

and large storage.

The stack algorithm is simple to describe and consists of

one repeated basic operation, the stack augmentation. Hypothet-

ical code tree paths zk of varying lengths k, ordered by the

usual metric

(~k) - kD* - d(zkzk) (1)

reside in a stack. From the top path in the stack, the d bran-

ches stemming from its final node are extended to form d new

paths. Stacking these in order of metric, the algorithm com-

pletes an augmentation. Repetition continues until a stopping

rule intervenes.

Supoose the algorithm stops and releases output when a
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path exceeds metric A>O for the first time, that is, when

the"top" of the ordered stack exceeds A. We can imagine a

bottom limit BOc below which all paths are dropped from the

stack, and a limit t on the length of tree paths stored in the

stack. Our analysis is sufficient for this generality, but for

simplicity consider a stack of infinite capacity to store nodes,

with B = -- and t = - . With these assumptions, the average

stack storage in branches is identical to the expected number of

nodes scrutinized by the algorithm, since no paths are ever

dropped. Furthermore, if this expectation is EN(A,B) -- with B

= - -- then the number of nodes searched per branch released

as output, over many stack searches, is

E [Nodes per branch] = EN(A9--)/EL (2)

where EL is the expected length of a released path. The expected

distortion of this path will depend on A as well as D*, and is

E[Dist. Der branchj = nD* A (3)

Similar, but more complicated, equations hold if B and t are

not indefinitely large.

Our analytical method is to identify the tree search with

linear and non-linear difference equations, and then approximate

these. The non-linear equations predominate, unfortunately, and

the stack sorting will require a careful mathematical model.

Quantities needed will be the average nodes searched EN(A,B),

the average length releases EL, and the probability distribution

of the top-of-stack minimum (TSM). The latter describes how low
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the metric of the best stack path drops before some path is

finally released.

Define the function G(y) by means of its dth power to be

Gd(y) = PForward of some node no |Z(no) = y } (4)
[TSM 4 B

Bc y< A

no can be any node encountered during the stack search, and

4(no ) represents the value of (1) at that node. Then one can

show that G( ) satisfies the non-linear difference equation with

constant coefficients,

G(y) = p(m) Gd(Y+m) B<y< A (5)
m 

{fml is the set of (IID) metric increments that can appear in

the tree code, and p( ) is their distribution. G( ).gives the

distribution of the stack top, but turns out to be far more

important than that. As we shall now see, every stack quantity

is directly related to G( ), and the study of the algorithm con-

sists almost entirely of manipulating this function.

After a careful derivation, taking into account the stack

sorting, one gets that

EN(A,B) = Z M(J/A+J) (6)
J=l

where the family of functions fM('/i)l are solutions of linear

difference equations with non-constant coefficients of the form

M(y/i) = d Gd-l(y/A)pP(Pm) M(y+ u/1) + C(y/I)
~m~~(

(7)

An equation (7) exists for each i, I=i,...,I(A,B). I(A,B) is a
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finite integer function of A and B. All I(A,B) solutions are

needed to compute (6). C('/i) is calculated from G( ) functions ;

G(°/i) is the solution of (5) for certain boundaries specified

by i.

A final derivation yields that
co

EL = T Gd(o) (8)
=0

assuming the stack search begins at a root node with metric 0.

The [G( )} are obtained from iterations of the recursion

d
GI(y)-E P( m) ,_1(y+ m) B < <A (9)

m

Go = 1 (Boundaries as in (5))

which provides incidentally a numerical means to solve (5),

since it can be shown G£(y) + G(y) .

Using these equations (4)-(9), extensive numerical studies

have been conducted for a stack algorithm using a randomly

chosen tree code to encode the binary IID source with Hamming

fidelity criterion d(z,z) = 1 - 6(z,z) . In addition, a FORTRAN

stack encoder has simulated the same situation. To summarize

these results, observe that distortion is a function of both D*

and A. If one optimizes A and D* for smallest storage, A will

be as small as possible, with D* as a consequence very near the

distortion desired from the algorithm. On the other hand, opti-

mizing with respect to branch computation requires a larger A

and a D* somewhat above the final distortion.

It turns out that the stack search involves by far fewer
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tree branches per digit released as output than any other scheme

studied by the authors [21, [3]1. But this strong advantage is

balanced by several disadvantages. Both computation and length

released vary widely from search to search, and storage is large.

A difficulty of another sort, encountered during simulation, is

sorting effort. After each augmentation, d new paths must be

sorted into the stack in order of metric, and among paths of the

same metric, in order of length. In general, this is not easily

done. New paths typically are inserted far down into the stack,

particularly If some of the branch increments are reasonably

negative, since many other paths usually have metrics nearer the

best.

Overall, it appears that the efficiency in branches

studied is overbalanced by this clumsy sorting. Algorithms such

as the M-algorithm [2] and the 2-cycle algorithm [3] have proved

faster in simulation thus far, and simpler to implement. But

improvements in all the algorithms are always a possibility,

and the subject is not closed.
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III-C. Development of a Stack Algorithm for Tree Encoding of a

Gaussian Source with a Mean Square Fidelity Criterion

1. Introduction

The most general theoretical formulation of the data compression

problem was provided by Shannon in 1959 in his paper "Coding Theorems

for a Discrete Source with a Fidelity Criterion" [1]. He enlarged there

on his 1949 source coding ideas [2] referred to in the literature as

variable length source coding and block source coding. Concisely

stated, Shannon's results are as follows: let a memoryless source

of alphabet A = (0, 1, . . ., a-l) governed by the probability distribution

Q(z), zeA be given. Let an approximation of the source outputs in the

reproducer alphabet B = (0,1, . . . ,b-l) be desired ( in practice b < a )

with an attached additive per letter distortion criterion d(z, z) defined for

all pairs zeA, ZAB. (i.e., the distortion between sequences
n

An n n n
z = Z 1 , .. , zand z = z is defined to be d(z ;z )= d(zi, z.)).

i=l1
Let 'y (z ) be an encoding function that assigns some reproducer

n n

^n nsequence z to each possible source sequence z . The rate of the

resultant code is defined to be R = log y /n where 'y denotes the
n n

number of sequences in the range of Y n( ). Shannon shows the

existence of a rate distortion function R(D) Fwhose shape depends on

Q( ) and d( , ) only] that has the following properties:

a) for all n and all codes yn, if R<R(D) then the expected

distortion E[- d(z ; aY (z ))] > D.
n n-
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b) for R > R(D) there exists a sequence of codes

'y* of rate log Y* / n < R(D) such that
n n

E[ d (zn; Y* (zn)) ] D.1n n

In recent years much work has been done generalizing the above

results to a broader class of sources, evaluating the performance of existing

systems relative to the achievable optimum, and developing methods

for evaluation of the R(D) function. The first consideration of the

actual coding problem was undertaken by Jelinek [3] who showed that

the sequence of coding functions y* can possess the above desirable
n

properties even if it is restricted to generate tree codes (instead of

block codes to which Shannon's theorem applies). It was hoped that a

tree code structure would facilitate the development of computationally

feasible encoding algorithms.

The present report concerns the performance of two such algorithms

as applied to the restricted case of the time discrete Gaussian memoryless

source [with probability density Z
-x

1 Z
Q(x) = - e , x real ]

and the squared error criterion [d(z, ) = (z - )2] .

1For this case the R(D) function is R = - -log D. Furthermore,2

for this case it can be shown that any sequence of codes X;c with rates
n

log * /n 4 R(D) and distortions E[d(zn, a* (zn))/n] 4 D must have the
n cn 

average conditional distortions
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n
E EEd(Zk ( (zn)) Izkx D(l - D) + D x

k=l

almost everywhere in x where Zk is the kth element of z and

Y* (Zn) is the kth element of (z )
n, k - n^

An example of a tree code with 4 branches per node and two initial

states is given in Figure 1 . The various codewords are the sequences

associated with the 2 x 4 32 different paths of the tree. For a tree

with b initial states and b branches per node a path of length A is

specified by a map sequence s = (so sl .... s) where the s.'s are

non-negative integers, s < b - 1, si< b - 1 for i = 1, 2, ... ,..

n~~~~ 1

This map sequence determines which initial state was taken and at each

node level determines if the first (0), second (1), . .. , or b (b-)

branch was taken. Thus for the tree of Figure 1 the map sequence

2 2
s = 112 corresponds to the codeword z = (-0.87, 0.60). The rate

of the code of Figure 1 is R = log 32 = 2.5 bits.

A convenient method of filling the tree is by means of a finite

state tree encoder . In this method each branch in the tree is

associated with a state as follows: branch s. of path re. .., te
O

is assigned state ( s(j), t(sl)), where time state (j) = j (modulo r)

and branch state

t(sj) = (S bi + E s b3 )(modulo m)

i= 1

and the period r and number of branch states m are positive integers.
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Then each state is given an element of the reproducer alphabet and

each branch is given the element assigned to its state. An example of

a finite state tree encoder with r = 2 and m = 8 is shown in Table 1. This

code gives the tree of Figure 1 when used to fill a tree with b = Z
0

and b = 4. For example, path 1 12 has states

(1 (modulo 2), ( lx 4 + 1) (modulo 8)) = (1,5) and

(2 (modulo 2), ( lx 4 + 1 x 4 + 2) (modulo 8)) = (0,6)

and therefore has the codeword (-0. 87, 0. 60).

It is notknown how to find the best code given R, D, r, m. However,

it can be shown that for a tree with b = R(D) branches per node, if the

states are assigned real numbers independently at random with

1 
z
2

probability density P(z) - f2w(1-D) exp[- J, ]then with

probability one in the limit of large r, m and large tree depth the

resulting code is optimal in the following sense: the expectation over

all source output sequences of the average distortion along the best

path for each source sequence is arbitrarily close to D.

A question still remaining is how to search the tree efficiently to

find good paths. Two algorithms for doing this will now be described.

Since t(s j ) = (t(s j
- l

) x b + s.) (modulo m), the state of a branch
3

determines the states of all branches deriving from it. Consequently,

branches at the same level with the same state are identical for

coding purposes. Thus for example in the tree code of Figure 1,
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State Representation State Representation

(0, 0) -0.72 (1,0) 0.38

(0, 1) 0.30 (1, 1) -0.69

(0,2) 1.38 (1,2) -0.97

(0,3) -0.32 (1,3) 0.76

(0, 4) 1.32 (1, 4) 1.32

(0,5) -0.92 (1,5) -0.87

(0,6) 0.60 (1,6) 0.37

(0, 7) -1.28 (1.7) 0. 10

Table 1.

An example of a finite state tree code

with period r = 2 and number of

branch states m = 8.
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paths 012, 032, 112, and 132 all have state (0,6) at level 2 and are

therefore equivalent there. Thus for a memoryless source a choice

from any set of paths in encoding a given source output should depend

only on their distortions up until the time they reach the same state.

This property is used by an exhaustive search algorithm

known as the Viterbi algorithm: encoder states are grouped into

equivalence classes T defined by Ti= t:bt = i (modulo m)}, i = 0,1,..., m-l.

The algorithm proceeds by successive elimination and operates with all

paths of the same length.

All one branch extensions of a 11 paths still being considered are

found and their distortions are computed. For each i, all paths

ending in states in class T. are compared and all but the one with the
1

smallest total distortion are eliminated fr om further consideration.

This process is repeated for each level until a given stopping level is

reached. Then all remaining paths are compared and the one with the

smallest total distortion is chosen to be the encoder output.

Another search algorithm, known as the stack encoding algorithm [4],

operates as follows:

Let D* be the per letter distortion desired by the user. To be

realistic (see the previously quoted results) we must have R > R(D*).

2
Define a metric distortion function d*(z, z) = d(z, z) - (A + Bz ) wh ere

A + B = D* are parameters to be adjusted. For example, a choice

of metric matched to the limit of the performance of the best possible
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2 i
codes would be R = R(D*), A = D*(1 - D*), B = (D*) Then z

will be an acceptable approximation of a source sequence z if and

only if
i Z~~~~E d*(z., z.) < 0

j=l

(we assume that the code is indefinitely extensible, i. e., that the

number of levels in the tree is practically infinite). Suppose the

n j
sequence z (n large) was generated by the source, let d*(s ) denote the

metric relative to z corresponding to the last branch of the path
i~~~~s~~~~

s [e.g., d*(112) = d*(z2 , 0.60) and d*(113) = d*(z2 , - 1.28) for the code

of Figure 1 ], and let D(s j ) be the cumulative metric along the path s j .

J i
D(s

3
) = d*(s ) where s are the initial subsequences of length i of

i=l
s (i < j). The stack will contain different paths si and their cumulative

metrics D(sJ), and will be arranged in ascending order of the latter

(i. e., at the top of the stack there will be that path s j whose D(s j ) is least).

1. At the beginning of the encoding process, the paths 0,1, . . . ,b - 1
o

are assigned zero cumulative distortion and arranged in the stack in any

order (e.g., numerical order).

2. The encoder checks whether the path si on top of the stack is

such that j is greater than some stopping value. If so, go to step 4, if

not, go to step 3.

3. The top entry i, D(s J)] is eliminated fr om the stack, the

branch metrics d*(s O), d*(s 1), . . . ,d*(s (b - 1)) are computed, and b
I, a'1
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new entries [sJk, D(sJk) = D(s j) + d*(sJk)1 k = 0,1,..., b - 1 are

inserted in the proper locations in the stack. Go to 2.

4. The sequence z j is encoded into the codeword zj that corresponds
i~~

to the path s j . Stop.

2. Results

The basic algorithms were modified in several ways in the

computer programs to simulate the encoding. A modification applying

to both the Viterbi and stack algorithms was that data (source outputs) of

magnitude greater than a certain cutoff c were encoded separately, using

one quantization region for each tail of the Gaussian distribution.

The additional coding needed to code extreme data separately

requires on the average rate R = H{ (c) - (-c), 1 - (c), 1 - (c)
C~~~~~~~~~~~~~~~~~~~~~~~

where H is the entropy function defined by

H{tpi} = (-Pi log p.).
i

Overall rate R is then

R = R + [(C) - (-c)]R
c t

where R
t

is the tree coding rate.

For D the expected distortion of the extreme source values and D thec t

average distortion of tree coded source values, overall distortion D is

given by

D = 2[1 - (c)] D + [ (c) - (-c)]D
t

.
C~~~~~~~~
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It was determined experimentally that for both Viterbi and stack algorithms

the cutoff c should be in the region of 3 .5 to 4 source standard deviations.

The Viterbi algorithm with data cutoff 3.5 was simulated in IBM

System 360 assembler language. It was run on 60 blocks of length 250

source outputs each, with period r a 250, that is, with branches of the

code tree at different depths being assigned numbers independently. m

was 16, 384, b and b were 32. Overall rate R was thus about 5 bits per
0

source output.

As given above, the lower limit of possible rate R versus distortion

D performance is given by

1 -ZR
R = -2 log D orD = Z ·

The Viterbi algorithm simulation just described was found to operate

at an overall distortion D = 1.31 (2 R). Because doing this required a

search of about 16 thousand branches per datum encoded, the simulation

could process only about 2 data per second.

Stack algorithm modifications were as follows:

(a) The branches coming out of a node were grouped together and

put as a group into the stack according to the best cumulative

distortion metric of the group. When the group arrives at the top

of the stack its best branch is removed and extended and the group

is re-entered in the stack according to the best cumulative distortion

metric of the paths remaining in it.
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(b) Whenever the stack contained more than 3,000 path groups,

the group at the bottom of the stack (i. e., the group with the largest

distortion metric) was eliminated from further consideration. This

modification was required by the finiteness of the memory of the

computer.

(c) Whenever step 3 of the stack algorithm was executed any

multiple of 100, 000 times, all path groups except the 32 deepest

into the tree were eliminated from further consideration. This

modification speeds search through the tree in the event that the

encoding is taking too long.

The stack algorithm simulation was found to give performance of

the same order of magnitude as did the Viterbi algorithm simulation.

It was run on the same 60 blocks of data of length 250 each which the

Viterbi algorithm used. Parameters were b = 32 branches per node,

29
period r = 1, m = 2 branch states, and b = 32 initial states. Thus

0

overall rate was again about 5 bits per source output. Distortion metric

parameters A, B given by the limit of performance of the best possible

coding were found to give the most efficient results. That is, a DJ' is

·~~~~~~~~~~~~~~~
chosen and A, B are set at A = D*(l1-D*), B =(D*) . Varying D*

varies the distortion obtained and also the amount of search performed.

The stack algorithm simulation just described was found to give

overall distortions of D = 1.28 (2 ) and D = 1.25 (2 ) with searches
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of about 14 thousand and 23 thousand branches per datum respectively. It

required about 7% longer to search each branch than required in the

Viterbi algorithm.
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Figure Caption

Fig. 1: Example of a partial coding tree of rate R = 2 for a

Gaussian source with a square error fidelity criterion.
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III-D Variable Length-to-Block Coding of

Fixed Rate Sources

There are two practical problems associated with noise-

less source coding: (a) optimal codes require a codebook

table look-up, (b) real-time variable length coding and real-

time decoding data retrieval are both subject to buffer over-

flow. A partial answer to problem (a) is Elias source coding

as described in Appendix A of Jelinek: Probabilistic

Information Theory. Problem (b) for block-to-variable

length coding has also been analyzed there. It is, however,

of interest to analyze the buffer over-flow problem of

variable length-to-block coding that assigns constant length

codewords to variable length source output sequences. (It

is thus a generalization of run length coding.) The reason

is the word-like character of computer storage that makes

retrieval of constant length codewords much easier. In a

paper to be published in IEEE Transactions on Information

Theory (the abstract can be found below) Schneider and Jelinek

derive tight bounds on buffer overflow probabilities. For binary

sources that are more skew than (0.8, 0.2), variable length-to-

block coding leads to lower probabilities of buffer overflow than

does the usual block-to-variable length coding.
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ON VARIABLE LENGTH-TO-BLOCK CODING*

by

1
K. Schneider, Member IEEE

2
F. Jelinek, Senior Member IEEE

ABSTRACT

Variable length-to-block codes are a generalization of run

length codes. A coding theorem is first proven. When the codes

are used to transmit information from fixed rate sources through

fixed rate noiseless channels, buffer overflow results. The

latter phenomenon is an important consideration in the retrieval

of compressed data from storage. The probability of buffer

overflow decreases exponentially with buffer length and we

determine the relation between rate and exponent size for memoryless

sources. We obtain codes that maximize the overflow exponent

for any given transmission rate exceeding entropy, and present

asymptotically optimal coding algorithms whose complexity

grows linearly with codeword length. We compare error exponents

corresponding to variable length-to-block, block-to-variable

length, and block coding.
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