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I, INTRODUCTION:

This final report on project NAS 2-5643, Study of
Sequential Decoding consists of two main portions: results
of Phase I and II of our research, Covered are results ob-
tained in the period September 1970 through January 1972.
Earlier work concerning September 1969 through August 1970
is contained in the Annual Report of Septembef 1970. |

Phase I deals with problems of reliable transmission
through noisy space channelé and 1s subdivided into nine
areas reported on in Chapter II. (see Table of Contents).

Phase II of the project deals with problems of en-
coding of space sources for the purpose of data compréssion.
It is subdivided into four areas that are reported in
Chapter III.

Chapter IV lists the theses, ﬁublications, and talks
that were based on work supported by this project.

A substantial portion of this report has already been

presented in Quarterly Progress Reports 5 through 8.



II. REPORT ON PHASE I

II-A. Theoretical Performance Curves for Bootstrap

Sequential Decoding

We have evaluated RL (1) and R

BOOT (1) vs. 10 log Eb/No perfor-

8)
BOOT
mance curves of quaternary and octal quantizéd Gaussian channels with binary
antipodal inputs. Eb denotes the energy per information bit. As previously,
the rates given do not include the degradation factor —n:?-l corresponding to the
single parity algebraic code. Each of the curves includes parameter values K
denoting the least number of streams for which the former are valid (for m <K,
better performance is obtainable), The performance curves were obtained for
uniform quantization at the receiver, whose intervals were optimized with the
help of Figures 1 through 7. The latter are parametric curves (with respect to
a fixed SNR) showing the performance as a function of varying quantization size.
It is interesting to note that in each figure, the optimal quantization size (in
fractions of Eb/No) is almost invariant to any changes in the value of Eb/No.
Figures 1 through 5 deal with RII;OOT(I) and correspond to the following
cases: Quaternary channel with a binary state stream (1) and with a full (quat~
ernary) state stream (2), Octal channel with a binary state stream (3), with a
quaternary state stream (4), and with a full (octal) state stream (5). In case

(4) the quaternary state stream was obtained by lumping together the three

neighboring output digits that correspond to the extreme quantization values



on each side of the 0 point (this is the optimal lumping procedure).

Figures 6 and 7 deal with RU

BOOT(1) for the quaternary (6) and octal

(7) channels with a binary state stream.

L
Figures 8 through 12 give then the R

BOOT(1) vs, 10 log Eb/No relation-

ship for optimal uniform quantization at the receiver, All these curves cone
tain parametric indications of Es/No(dB) performance, where Es is the energy
per tra.nsrﬁitted bit. Also shown are the previously mentioned K.limits. Fig-
ure 8 comparés the performance of Bootstrap Hybrid Decoding for binary,
quaternary, and octal quantization with full channel state streams. It can be
seen that in the limit of low rates, quaternary quantization constitutes an ime
provement of about 1. 35 dB over binary, and octal quantization constitutes a
0.35 dB improvement over quaternary. Figure‘ 9 shows the same relationships
for a binary state strearﬁ. There, quaterhary quantization is 1,4 dB better
than binary, and octal is 0,4 dB better than quaternary,

Figure 10 contains R-c0 s L

mp RBOOT(U’ and capacity curves for binary

quantization, In the limit of low rates, bootstrap decoding has a 1.7 dB advant=

age over sequential decoding (the degradation factor m=1 is not included).

L
Figure 1l contains RCo s R (1) and capacity curves for quaternary quanti=

mp BOOT
zation., It is seen that a full state stream enjoys a noticeable advantage over a
binary one only for rates R > 1/4, Furthermore, this advantage is always
small (at most 0,15 dB). Again, in the limit of small rates, bootstrap decoding
is about 1,7 dB bett_er than sequential decoding, Figure 12 concerns octal
quantization. An octal state stream is nowhe‘re nbticeably better than a quate

ernary one, and a binary state stream is worse than the latter only for R > 1/4.

The 1.7 dB advantage over sequential decoding is again evident.



Next, Figure 13 compares RU (1) performances of binary, quaternary,

BOOT

and octal quantization with a binary channel state stream. The curves have a

slight upward slope for low rates, indicating that the upper bound tightens as

the rates decrease, In fact, comparison with Figure 9 shows that the RgOOT(l)
L .. .
and RBOOT(I) limits are the same!

It should be noted that Figures 10 through 12 show a consistent 1.1 dB

capacity over RL (1) advantage. This shows that worthwhile improvement

BOOT
might be obtainable from use of more sophisticated algebraic "outer" codes,

The final six curves (Figures 14 through 19) pertaining to this section
show the Pareto exponent as a function of SNR per transmitted bit (in dB) for
Bootstrap and straight sequential decoding at fixed track rate R = 3 (the
degradation factor is not included). Y, per denotes the exponent obtainable
from the upper bound and Viower that from the lower bound on bootstrap de-
coding. Finally, o(«) denotes the exponent for sequential decoding.

All the curves show that Yup approach each other with

per and Yiower
increasing SNR, and pull away from g(»). It is interesting to note ( compare
Figures 14, 15, and 17 and Figures 16 and 18) that performance is not improved
too much as the output quantization increases, provided the alphabet of the
channel state stream stays constant, However, for a large signal-to=-noise
ratio, the performance of the quaternary bootstrap scheme with a quaternary
state stream is better than that achievable for an octal bootstrap scheme with

a binary state stream! In general, the improvement obtainable from an in-

crease in the state stream alphabet increases with the SNR.,
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II-B. Development of Programs for Simulation of Bootstrap

1. While inspecting some simulation results, we‘noticed
that with the systematic convolutional code being used, the
bootstrap decoder commits a considerable number of decoding
errors. We have therefore adjusted both the rudimentary and
the pull-up decoders so that they insert these errors into
the state stream and continue decoding (instead of stopping
as previously). Selective simulations suggested the

following conclusions:

The errors committed by the rudimentary scheme occur mostly in the
tails (hence longer tail length than 25 seems definitely indicated). When these
are inserted into the state stream, the decoder is able to finish the entire
block at the price of inserting into some decoded stream those errors that
are forced by the parity relationship,

The pull-up scheme works at a lower SNR., When the errors committed
on strcam J are inserted into the state stream, the parity forces them into

. . . th
some strcam K. The decoder is then capable of decoding all but the J = and
th . . . s
K strcams, and is not able to continue the decoding of the latter within a
recasonable number of steps. This suggests that the errors can again be
.. . . . th th .
clirninaled at the end simply by re-decoding the I~ and K streams from their

beginning. The simulation results reported in the next

section are based on programs that incorporate the above

changes.



2. Fortran versions of the rudimentary and pull-up bootstrap
hybrid decoders based on the Fano algorithm were debugged.
Simulation indicates that these decoders examine on the average
four times the number of nodes examined by the corresponding
stack-based algorithm. The results reported in the next sec-
tion are based on Fano sequential decoders.

3. A bootstrap algorithm was constructed that is suitable
for decoding of channels with binary inputs and quaternary

or octal outputs. These channels arise from optimal equal
level quantization of Gaussian additive noise channels. The
program has a preamble that computes the channel transition
probabilities corresponding to that quantization, as a
function of a supplied SNR in dB. The bootstrapping
algorithm utilizes a bilnary channel state stream. The next
section reports simulation results based on this program.

b, A generalization of our original bootstrap algorithm
was constructed that is suitable for decoding of channels
with binary inputs and quarternary or octal outputs. The
algorithm has a full output alphabet state stream. The pro-
gram has a preamble that computes the channel transition
probabilities corresponding to optimal uniform 4 to 8 level
output quahtitization of a Gaussian additive noise channel

as a function of a supplied SNR vaiue in dB. Theoretical
curves of Section II-A indicate that the dB gain arising
from this refinement will be only a moderate one. Neverthe-
less, a strategy employing the refinement in case the binary
state stream algorithm runs into trouble might be well

worth considering.



5. An algorithm was de-bugged which uses a three-group
algebraic outer code with a convolutional inner code. The

operation of the algebraic part of the algorithm is described

in Section II-F.

26
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II-C. Simulated Performance of Bootstrap Sequential Decoding

L. B. Hofman used the various algorithmic techniques developed
under this contract to construct programs simulating the performance of
the Bootstrap Sequential Decoding Algorithm. He summarized his results
in the paper '"Performance Results for a Hybrid Coding Sy.stem” that he
presented at the 1971 International Telemetering Conference. This work

is reproduced below:



~ Summary.— Computer simulation studies of the hybrid pull-up bootstrap decoding algorithm
. have been conducted using a constraint length 24, nonsystematic, rate 1/2 convolutional code
for the symmetric channel with both binary and 8-level quantized outputs. Computational
performance was used to measure the effect of several decoder parameters and determine
practical ‘operating constraints. Results reveal that the track length may be reduced to 500
information bits with small degradation in performance. The optimum number of tracks per
block was found to be in the range of 7 to 11. An effective technique was devised to efficiently
allocate computational effort and identify reliably decoded data sections. Long simulations
indicate that a practical bootstrap decoding configuration has a computational performance
about 1.0 dB better than sequential decoding and an output bit error rate about 2 5X107 near
the Rcomp point.

Introduction.— The basic coding dilemma is one of exponentially increasing decoding
complexity as the theoretical capacity of a communications channel is approached. Hybrid
coding is a cascade or concatenation of block and/or convolutional codes in an attempt to
operate near capacity while maintaining a complexity less than that possible with either code
type alone. This paper presents the results of a study of the hybrid bootstrap coding system of
Jelinek.! This technique is similar to a simple case of the Falconer scheme? in that a parity
relationship between a set of convolutionally encoded data tracks is used to aid in the decoding
of those portions that are difficult. (An even parity is assumed throughout.) It differs from the
Falconer scheme, which uses an algebraic relationship to derive directly the most difficult
portions after a sufficient number of others are decoded, by making use of additional
probabilistic information contained in the parity relationship. In so doing, each bit of data
decoded helps to “bootstrap’ those remaining.

After reviewing briefly the functioning of bootstrap decoding, this paper examines the
computational effect of several decoder parameters and determines a practical range of
operating values. Detailed performance behavior of such an optimized system is presented and
compared to simple sequential decoding and Falconer decoding.

Encoding.— The encoding function is the same for all variations of bootstrap decoding
described in this paper. (The decoders differ only in the manner in which they utilize
information that is always available at the receiver.) Basically, m-1 independent,
convolutionally encoded ““data tracks™ are linked together into one “decoding block™ by the
addition of an m-th “parity track.” That is, each bit of the parity track is the modulo-two sum
of the corresponding bits in the data tracks. Because of the linearity of convolutional codes, this

parity track is also decodable and, as will be shown, may actually be generated by a-

convolutional encoder. The reader will note that this encoding function is identical to that
required by the Falconer system for a simple parity check code.

Actual mechanization of the encoder depends upon several operational considerations. One
method, which requires m—1 convolutional encoders, provides natural interleaving of the tracks.
Data are routed to the encoders for coding and transmission in a “round robin” fashion, with
the parity bit inserted in its turn by a modulo-two adder. Decoder synchronization for such a
scheme will be difficult; synchronization and tail- -forcing bits must be independent of data

28



formating, possibly causing a small data buffering problem at the end of each block. Failure of
the decoder to complete the decoding of a block results in the loss of a large amount of data, if
not the entire block.

An alternative way of mechanizing the encoder requires one convolutional encoder and a
storage register having the length of a track. The data are encoded and transmitted, one track at
a time, while the parity track is formed in the storage register. The contents of the storage
register are then encoded, transmitted, and reset following the last data track of each block.
Although this scheme does not provide interleaving and causes an even larger buffering problem
while the parity track is transmitted, it does offer several advantages. It is possible to let data
formating correspond to individual data tracks. Code synchronization can be performed easily
on a track basis, with block synchronization derived from identification bits embedded in the
data tracks. In addition, a decoder failure will not necessarily result in the loss of a full block of
data. Finally, since data formating, synchronization, and tail-forcing can be related, the rate loss
for these functions can be reduced. ' ‘

Rudimentary Bootstrap Decoding.— Bootstrap decoding is applicable to all symmetrical
binary input channels. For the purposes of this paper, a simplified description of the
“rudimentary” algorithm for the binary symmetric channel (BSC) is given following the outline
used by Jelinek.!

After the encoded data have been received and are synchronized, the bits of a block are
grouped into m tracks, and an additional track, the “channel state stream,” is formed by the
decoder. Each channel state stream bit is the modulo-two sum of corresponding bits in the
parity and data tracks. The channel state stream differs from the parity track because it includes
the parity track and is formed after the transmitted sequence is corrupted by noise. Therefore, a
““zero” in this track indicates that an even number of errors was received at a given position, and
a “one” indicates an odd number.

The probabilities that k bits which are independently transmitted through a BSC of
crossover probability p will be received with an even or odd number of errors are given by

a(0) = [1 + (1 - 2p)¥]/2
(1) =[1-(1 -2p)X]/2

The information is used to form an augmented transition probability matrix wp(y,z/x)
where y is the received bit and z is the channel state bit associated with y and formed
over m tracks, given that x was transmitted. Thus:

wm(0,0/0) = wm(1,0/1) = (1 — p)qm-, (0)
wm(0,1/0) = wm(1,1/1) = (1 — p)ay-, (1)
wm(1,0/0) = wm(0,0/1)=  p qm- (1)
wm(1,1/0)=wm(0,1/1)=  p qm-,(0)

It is natural to use these augmented transition probabilities in forming the bit likelihood
function for sequential decoding. The function is

Am £1log, [wm(y,2/x)/wm(y,2)] -R

where
wm(y,z) = [wpn(y,2/0) + wn(y,2/1)1/2 = [qy(2)]1/2

and R is the bias factor.

From this starting point, the development of the rudimentary bootstrap decoding algorithm
follows directly. The first of the m tracks is sequentially decoded using the channel state
stream and likelihood values defined above. If, after a preassigned amount of effort, decoding of
this track is not completed, restart values are saved. This step is repeated on successive tracks,
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looping back to the first track if necessary, until decoding of one is completed. At this time, the
received sequence for the completely decoded track is replaced by the newly estimated
sequence, and the channel state stream is recomputed. If the decoding was error free, then the
new channel state stream values represent an even or odd number of errors in the m—1
remaining tracks, as before. The entire process is repeated, excluding the decoded track, now
using likelihood values for m—1 tracks. When a second track is completed, its received sequence
is replaced, and the channel state stream is again updated.

The pattern is now obvious, and the process is repeated until all tracks have been decoded or
the total work exceeds a maximum amount. It would be possible to derive the last remaining
track, on the basis of the parity relationship, when m—1 tracks have been decoded. Indeed, this
is the principle of Falconer decoding; but it is actually simpler to decode this track, too, since
the decoding requires exactly one computation per bit. This fact, and the general effect of using
the channel state stream, may be seen in the sample likelihood table shown in figure 1. When
many tracks are undecoded, the channel state bit gives little additional information about the
probability of error in a single received bit. Therefore, for large k, the likelihood values for
bootstrap decoding approach the usual values for sequential decoding, depending mainly upon
agreement or disagreement between the received bit and the hypothesis. At the other extreme,
for small k, the channel state bit has a large influence. For example, if two tracks remain
undecoded (k = 2) and the channel state bit is ““one,” neither hypothesis is reliable because the
probability is 0.5 that the received bit is in error. On the other hand, great reliance is placed on
the correctness of the received bit when the channel state bit is ““zero” since the probability of a
double error is small. When k = 1, the knowledge that the received bit is in error for a channel
state bit “one”” and correct for a “zero” is reflected in the table by a -0 likelihood value for the
impossible hypothesis and 1.0 for the correct hypothesis.

Pull-Up Algorithm.— The primary worth of the rudimentary algorithm is the description of
the bootstrapping process and simplification of its analysis. Practical use of the rudimentary
algorithm is probably limited because one rather simple modification substantially increases the
power of the decoder. In the modified algorithm, called the “pulil-up” algorithm, the decoder
does not wait until a track is decoded completely before updating the channel state stream. It
operates instead on a single track until the track is completed or a difficult-to-decode section is
sensed, at which time decoding is stopped. The completed track is handled as in the
rudimentary algorithm. Before proceeding with the next track after a track is terminated,
however, the decoder declares that portion which it deems reliable to be ‘““definitely decoded.”
In doing so, it updates the channel state stream and prepares restart values so that the next
decoding attempt on the track will begin immediately after the definitely decoded section.

Since it is possible to have all tracks in varying stages of completion, to obtain the most
effective use of the channel state stream it is necessary to indicate how many tracks remain
undecoded at a given node. This is done with a vector, KLEFT, the length of a track, which the
decoder references to determine the likelihood values to use at a given node. At the outset, all
KLEFT values are set to m, the number of tracks in a block, and are adjusted accordingly as
individual tracks are ‘‘pulled up.” Note that it is necessary each time to start decoding from the
‘“origin’ because the state stream may change from the time the decoder terminates a track to
the time the decoder restarts it.

Computer Simulations.— Many variables affect the performance and practicality of a system
as complex as bootstrap decoding. Unfortunately, analysis can give only bounds on performance
for simplified and idealized conditions. Therefore, simulations have been performed to
determine the gross effect of a number of parameters for the pull-up version and to obtain
performance figures for a quasi-optimized system that could be considered for possible deep
space application.

The simulation program was written in FORTRAN for a 24-bit, 1.75 us/cycle computer with
in-line assembly language used to optimize the critical loops. The convolutional code was
restricted to the rate 1/2, constraint length 24 complementary code (taps 51202215 and
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66575563) found by Bahl and Jelinek.? This code was selected because it could be simulated
within a single computer word and is sufficiently powerful (free distance 24, minimum distance
10) that decoder errors do not limit the system. The Fano algorithm was used for sequential
decoding with a simulation speed in excess of 3000 computations per second. All simulations
were run with the bias factor R=0.5 and the threshold spacing =3.0. One-dimensional
parameter studies of this system using the BSC concern track length, tracks per block, stopping
rule, and reliability criterion. These tests were run at low signal energy per information bit per
noise power spectral density (Ep/Ng) values so that the effects of the parameters could be
observed near threshold-of-operation conditions.

Track Length.— It is possible (perhaps desirable from a theoretical point of view) that the
track length be very long for the pull-up algorithm. Other practical considerations, such as
synchronization, formating, and buffering, require that the track length be reasonably short.
Figure 2 shows the effect of track length on computation performance, with the number of
tracks fixed at 7. All tracks for all simulations are terminated by a one-constraint-length tail that
is included in the rate loss for the code. The value of Ep/No was fixed at 3.43 dB, and for
direct comparison, the computation distributions per block were normalized per information bit
before being plotted. Average computations are shown in the legend. It can be seen that the
.computation performance is degraded for a track length of 300 information bits, but that little
improvement is actually obtained for a length beyond 500. The track length was fixed at 500
‘information bits for all other simulations. '

. Tracks per Block- The rate loss of bootstrap decoding, determined by the number of tracks
per block, m, is significant for small m but it decreases rapidly and then changes relatively little
as m becomes large. This fact, and the fact that the effect of the channel state stream is
predominant when the number of tracks is small, suggests that an optimum value for m can be
found. In addition, the value of m has a direct influence on formating, encoder complexity,
and decoder buffering. Simulations were conducted to determine the effect of m on the
computation distributions. The track length was fixed at 500 information bits (plus the
one-constraint-length tail), and all simulations were carried out for a value of Ep/Ng held
constant at 3.43 dB. Figure 3 is a summary of the results of these simulations, with distributions
of normalized computations per information bit plotted for selected values of m and a more
complete table of average computations per information bit given in the legend. The irregular
variation in computations between values of m is probably due to small sample size
(3.675X10% bits per value of m), but a broad minimum is indicated between m =7 and 11.
Values of m in this range would be practical for operational use. The number of tracks per
block was fixed at 7 for all other simulations.

Stopping Rule.— An effective stopping rule must be devised in order to obtain the maximum
efficiency of pull-up bootstrap decoding. The sequential decoder should be allowed to operate
as far as it can go easily. Unnecessary time is wasted in restarting when a track is stopped too
soon, or in computing, when it is not stopped soon enough. In addition, the stopping rule
should provide information about the reliability of the path on which the decoder is operating.
Several rules based upon limiting the number of computations per track were devised and
tested, but none proved very useful because of the large variation in the number of
computations for each track. When the computations limit is set low and increased when no
progress has been made on any track, many decoding attempts are required to complete each
block. Setting the initial limit high to reduce the number of attempts caused long unnecessary
searches. In addition, computations alone do not provide reliability information.

The final and most effective rule devised is based solely on observation of the path likelihood
value. Since the likelihood of the correct path tends to increase with depth in the code tree, the
rule allows the decoder to operate as long as a drop in the value of the likelihood does not
exceed a specified value, D. Mechanization of this rule also gives the needed reliability
information. The decoder keeps track of the maximum likelihood value, L%, of any path
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visited. Operation is stopped if the decoder attempts to lower the threshold more
than D below Lmax. At this time, the decoder is pointing to a node before the Lmax node
which has a path likelihood approximately D below it. The probability that this node is on the
correct path increases with increasing values of D. The definitely decoded section is declared to
extend from the starting point up to LBACK nodes from the stopping point, where LBACK is
another variable in the stopping rule.

In order to sense stagnation in the decoding process, it is necessary to count the times the
definitely decoded section is not increased by NPULL nodes for a single decoding attempt. For
all simulations, NPULL was set to 15. The counter, KROUND, is initially set to 0 and reset each
time that decoding results in more than NPULL definitely decoded nodes. If the KROUND
count becomes equal to the number of undecoded tracks, thus indicating that no progress can
be made on any track, the value of D is increased and KROUND reset. At this time, the
channel state stream is recomputed and decoding is begun from the first node of each
uncompleted track. This procedure allows for correction of possible errors included in definitely
decoded sections of the incomplete tracks which may be causing the decoding difficulty. The
value of D is reset to its initial value each time a track is completely decoded.

Figures 4 and 5 show the results of simulations for the above scheme. All simulations are for
500 information bits per track, 7 tracks per block, and Ep/Ng = 3.43 dB. For these simulations,
D is determined by multiplying the indicated stop factor by the ‘disagree, O state bit”
likelihood value for the number of existing uncompleted tracks. Figure 4 shows the effect of
several stop factor sequences with LBACK = 50, and figure 5 shows the effect of LBACK using
only the 4, 5, 6, 7 stop factor sequence. It can be seen that an initial stop factor of 3 or 4
is optimum with an increase of 1 each time stagnation occurs. For these values the stopping
point does not usually contain errors, and LBACK may be small.

Performance of Optimum System.— Figure 6 shows the performance of a pull-up bootstrap
decoder for the BSC. System parameters, chosen near the optimum values determined in the
previous simulations, were held fixed over the Ep/Ng range. Although no further attempt was
made to optimize the system, these curves provide a good measure for comparison with other
systems. The Pareto slope, «, is plotted as a function of Ep/No in figure 7. The Rcomp point is
interpolated to be 3.1 dB. During these simulations 62 decoder errors were observed for the
3.43 dB case. The resulting output bit error rate was about 5X107.

It is worthwhile to note here that the power of the code and stopping rule worked very
effectively in eliminating decoder errors. Numerous errors were inserted in partially completed
tracks but were removed when the tracks were eventually restarted. The 62 errors occurred in
one block; 31 were decoded into the second track to be completed and the other 31 were
forced by parity into the last track. (Weaker codes have been observed to permit more frequent
errors, which were also duplicated in a second track with no significant effect on the
computation performance.) ' ‘

Figure 8 shows pertinent information about decoder operation for one block of the
Ep/No = 3.43 dB sample. This block was selected because it shows the decoder trying to
commit errors (step 7), a change in stopping rule (step 18), the effect of pull-up, and the general
reduction in computations per track as the quantity of definitely decoded data is increased
(when there are no errors). The step number is KTRY; INOW is the track being operated on;
ITCT is the number of computations for the step; IT is the stopping threshold value; ITMX is
the maximum threshold value; DFAC is the stopping rule likelihood drop factor; NSTART is
the starting node; N is the stopping node; NMAX is the maximum node depth; KLEFT is the
number of uncompleted tracks after the decode step; and KROUND is the number of steps
since pull-up. '

Figure 9 is a plot of the probability that the total number of decoder steps per block will
exceed a given number for the optimum system with Ep/Ng as a parameter. Note that these

curves exhibit a Pareto-type distribution with a sharp change in slope near the Rcomp point of
the system.
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Comparison With Other Systems.— It is interesting to compare bootstrap decoding with two
other decoding techniques because of their similarities. The first is simple sequential decoding.
To provide a means for direct comparison, simulations were performed for the same Ep/No
values as were used for the bootstrap decoder. The same Fano algorithm, track size, and rate 1/2
convolutional code were used. The results are shown in the normalized computations curves of
figure 10 with the Pareto slope values plotted in figure 7. Rcomp is at approximately 4.6 dB.
Bootstrap decoding has a gain of about 1.5 dB over simple sequential decoding.

In order to determine the exact effect of the channel state stream, the pull-up decoder was
modified to use standard likelihood values when k ranges from 2 to 7 so the channel state
stream is useless, except to pull up the track which is farthest behind the others. Consequently,
the algorithm actually behaves like the Falconer algorithm for a 7-bit parity check code, with
the exception that the decoder is restarted from the first' undecoded node at each decoding
. attempt. The computation results of these simulations are shown in figure 11 with the Pareto
slope values plotted in figure 7. This algorithm has an Rcomp of about 4.1 dB which is only
0.5 dB better than simple sequential decoding. The use of the channel state stream therefore
yields a rather inexpensive 1.0 dB gain.

Extension to Quantized Channel.— Bootstrap decoding would be of little use if it were
applicable only to binary output channels since nearly 2 dB can be gained for simple sequential
decoding if the output is quantized to eight levels. Jelinek has provided such an extension for
the bootstrap decoder.! Unfortunately, to make full use of the information provided by the
quantized symbols, a large amount of time is required to compute channel state values, which
are no longer binary. Excessive computing time, coupled with the large likelihood tables
required (15,280 entries for 8-level quantization and 7 tracks), probably makes such a scheme
impractical.

Fortunately, there is a compromise — to use the quantized values of the track symbols and
maintain only a binary channel state stream. If the receiver outputs are broken into sign and
quality bits, u and v, then the channel state values, z, are modulo-two sums of u, as before.
Then,

Am £ log, [wm(u,v,2/x)/ wm(u,v,2)] -
where
wm(u,v,z) = [wm(u,v,z/0) + wm(u,v,z/1)}/2
and

wm(0,v,0/0) = wm(1,v,0,1) = w(0,v/0)qpy-, (0)
wm(0,v,1/0) = wm(1,v,1/1) = w(0,v/0)qp,., (1)
wm(1,v,0/0) = wm(0,v,0/1) = w(1,v/0)qpy-, (1) .
wm(1,v,1/0) = wm(0,v,1/1) = w(1,v/0)q., (0)

aqy(z) is defined as before, and
p=2Z w(l,v/0)

According to theoretical bounds derived by Jelinek,! full use of the 8-level channel gives an
additional gain of about 1.7 dB over the BSC for rate 1/2 bootstrap decoding. Using a binary
state stream for this channel causes a theoretical degradation of only 0.1 dB, which is a small
price to pay since the channel state computation and likelihood look-up are direct and the table
size is only four times larger than for the BSC.

The simulation program was modified for the quantized channel with binary state stream with
no significant change in speed. Simulations were performed for eight levels of output with
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quantization spacing of 0.5 0 for all Ey/N,. Tests were conducted which determined the
optimum values for the stop factor sequence to be 2.0, 2.5, 3.0, 3.5 times the “strongest
disagree, O state bit” likelihood with LBACK = 10, 7 tracks, 500 information bits per track, and
E /No— 1.91 dB. Extensive computer runs were made under these conditions for a range of
Eb/N values. The resulting computation performance curves are shown in figure 12. The
.observed Pareto slopes are plotted in figure 7 for comparison with the other simulations. The
'interpolated Rcomp point is at 1.7 dB, a gain of 1.4 dB over the BSC and 1.0 dB better than
rate 1/2 sequential decoding using the octal channel. Figure 7 also shows an interesting
thresholding effect for the codes plotted — the threshold is approached more sharply as code
power increases. Over 27,000 blocks were run for the 1.91 dB case (near the threshold of
operation) in order to look for any peculiar deviation in computations performance for low
probabilities of C > T. The Pareto slope remained constant over the significant range. For this
case, 190 bit errors were observed in 4 blocks for a probability of bit error less than 2.5X107¢.

Conclusions.— Simulations have provided a great deal of experience with the bootstrap
decoding algorithm. Although a number of questions remain unanswered (e.g., effects of
channel memory and likelihood/channel mismatch), it is clear that this technique offers a gain
of about 1.0 dB over that obtainable from sequential decoding alone. Bootstrap decoding has
been shown to operate under the constraints imposed by digital communication systems, such
as those typical of deep space. A bootstrap decoding system would be relatively complex, but
appears suitable for low-to-moderate data rates where the value of 1.0 dB is worth the cost of
implementation.

Acknowledgement.— The research for this paper was performed in conjunction with a study
contract with Cornell University, Prof. F. Jelinek, principal investigator.

References

1. F. Jelinek, and J. Cocke, “Bootstrap hybrid decoding for symmetrical binary input
channels,” Information and Control, March 1971.

2. D. D. Falconer, “A hybrid coding scheme for discrete memoryless channels,” Bell System
Technical Journal, vol. 48, pp. 691-728, March 1969.

3. L. R. Bahl, and F. Jelinek, “Rate 1/2 convolutional codes with complementary generators,”
to appear in the IEEE Transactions on Information Theory.

34



35

Figure Captions

Fig. 1 — Likelihood values A, for p = 0.09 and R = 0.0.

Fig. 2 — Pull-up decoder computations performance as a function of track length.

Fig. 3 — Pull-up decoder computations performance as a function of tracks per block.

Fig. 4 — Pull-up decoder computations performance as a function of stop factor.

Fig. 5 — Pull-up decoder computations performance as a function of LBACK.

Fig. 6 — Optimized pull-up decoder computations performance for the BSC as a function of
Eb/No.

Fig. 7 — Pareto exponent vs. Eb/N0 for several decoding techniques.

Fig. 8 — Sample program output.

Fig. 9 — Probability that the number of decode steps will exceed K for the optimized |
pull-up decoder as a function of Ey/N,.

Fig. 10 —Simple sequential decoder computations performance for the BSC as a function of
Ep/Ng.



Fig. 11 — Pseudo Falconer decoder computations performance for the BSC as a function of
Ep/No,.

Fig. 12 — Pull-up decoder computations performance for the cctal channel as a function of
Ey/N,.
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KTRY JNOW ITCT IT ITMX DFAC NSTART N NMAX KLEFT KROUND

1 1 49326 15 33 4 1 94 253 7 0

2 2 46987 30 48 4 1 198 395 7 0

3 3 28994 63 81 4 1 310 503 7 0

4 4 16665 18 36 4 1 17 267 7 0

5 5 8011 114 114 4 1 524 524 6 0

6 6 15276 81 99 4 1 275 377 6 0

7 7 23223 141 159 4 o1 353 504 6 0

7 7 ERRORS DECODED IN POSITIONS 328, 329, 330, 332, 333, 336, 339, 340

8 1 1301 147 150 4 85 524 524 5 0

9 2 13710 33 51 4 189 348 465 5 0
10 3 9262 3 21 4. 301 311 423 5 1
11 4 - 2023 174 192 4 108 295 351 5 0
12 6 4717 21 39 4 266 .292 387 5 0
13 7 11577 -3 15 4 344 354 467 5 1
14 2 13562 -6 12 4 339 348 465 5 2
15 3 7828 3 21 4 302 311 423 5 3
16 4 2199 3 21 4 286 295 351 5 4
17 6 7220 3 21 4 283 291 405 5 5
18 7 213150 81 105 5 1 214 502 5 0
19 2 235821 36 60 5 1 195 403 5 0
20 3 15744 120 123 5 1 524 524 4 0
21 4 10008 159 159 4 1 524 524 3 0
22 6 4868 198 219 4 1 222 303 3 0
23 7 4777 78 78 4 205 524 524 2 0
24 2 1104 144 144 4 186 524 524 1 0
25 6 312 312 312 4 213 524 524 0 0

ERROR RATE BY TRACKS 0.0914, 0.1105, 0.0924, 0.1010, 0.0857, 0.0924, 0.0819
TOTAL COMPUTATIONS THIS BLOCK 747655

Fig. 8
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II-D. Effect of Likelihood Bias on Sequential Decoding Parameters

1. Introduction

The performance of sequential decoding has traditionally been
evaluated in terms of thrlee characteristics: the probability of undetectable
error ([1], p. 349), the probability of failure of order t([1], p. 349), and
the Pareto exponent associated with the decoding effort ({13, p. 349). Most
published bounds on these quantities assume that the decoder uses the
likelihood metric

w(y/x)

log w(y)

- R (1)

where R is the rate of the code used, w(y/x) is the channel transmission
probability function; and w(y) is the marginal probability distribution of
received digits based on the optimal code ensemble., 1t is generaliy.known
[1] that the three quantitiés of interest are optimized by the metric form

w(v/x)

wiy) ~ ¢ @)

- log

where the optimal value of G may be different for each of the three cas:s.
For instance, Zigangirov [2] manipulates G to minimize the pfobability
of failure, and Stiglitz and Yudkin explore some effects of G-variation in
an unpublis‘hed memorandum [3]. However, their use of simplifying
inequalities at certain critical points of their development prevents them
from obtaining the strongest achievable results,

The trade-‘off between the three performance parameters is interesting
from the point of view of Bootstrap Hybrid Decoding [4]. In one mode of
the pull-up version of the algorithm, digits of branch depth J-t and less are

definitely decoded if the deepest penetration of the decoder was tobranch level J,
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Making the retreat length t as short as possible will tend to decrease the

decoding effort as long as no error at depth J-t or less was committed;
Otherwise the definite decision will have possibly catastrophic
consequences. Hence all other things being equal, G should be adjusted

so as to minimize the probability of failure. We will see below that
usually such setting will lower somewhat the Pareto exponent of the
sequ‘entia.l decoding component of the scheme, and will increase the
probability of undetectable error. The latter difficulty may be cheaply
remedied by an increase in constraint length, but what the best compromise
is between the failure and Pareto exponent parameters remains an open
question,

A second mode of the pull-up version of Bootstrap Decoding
definitely decodes digits by the following rule: Let the decoder be located
at some node whose likelihood is L and let the path leading to that x'mde
contain somc node n* at depth T whose cumulative likelihood does noi
exceed L-a. Then the decoder will definitely decide to release to the
user all T branches of the path leading to n*, How to set the value of the
likelihood drop a deperllds on Q(a), the probability that with zero likelihood
value assigned to a root node, there exists a node in the incorrect subset
whose cumulative likelihood exceeds a. Qf(a) is thus a fourth perfc;rmancé
parameter of interest.

This paper attempts to determine the effects of G-variations on the
four performance characteristics. In sections 2 through 5 we deal with

random coding upper bounds. In sections 6 and 7 we develop expurgated
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bounds for the probabilities of failure and undetected error. We show

that the former is identical to the one developed by Viterbi and. Odenwalder

[10] for maximum likelihood decoding, and that the latter leads to the

block coding expurgafed exponent. In section 8 we present some curves

that apply our results to quantized Gaussian additive noise channels with

binary inputs.



2. Definitions and Basic Upper Bounds

As is usual, we will work with the random coding ensemble and we
will not bother to argue that the obtained bounds are simultaneously
vé.lid for particular codes as well, To save space, we will use the
notation and some of the intermediate results from Chapter 10 of
Jelinek [1]. However, to si.m.plii"y matters further, we will adopt the
stack sequential decoding algorithm [5] that leads asymptotically to the
same results as the Fano algorithm, The reader will be assumed
familiar with both, Our random codes of rate % will have the trellis
structure of Figure 1 (see also p. 336 of [1]) with Zk branches leéving
each node, each branch associated with a block of n channel input digits
x (in Figure 1, k = 1 and n = 2, and the channel i?lput alphabet is binary).

k(v-1)

Each level of the trellis will contain 2 states, where v is called the

branch constraint length of the code. The information digits that determine

the path thai the encoder takes through the trellis are binary, the state
being determined uniquely by k(u-1) most recent bits (by convention,
the information preceding time t = 0 is assumed to consist of 0's), In
the random ensemble, each digit of each branch of the trellis is

selected independently, at random, with some probability distribution

r(x) over the channel inputs. The coding trellis generates a coding tree *

whose root node corresponds to the initial all-zero trellis state. In
this paper we will consider infinite depth trees and trellises.
An undetectable error is committed at depth i by a sequential decoder

if, after it operated without any restriction on the number and depth of
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returns, the ith branch on the finally decoded trellis path differs from
the one actually taken by the encoder. We will be interested in U(u),
the average .nu.mber of undetectable errors per decoded digits when a
random code ‘of constraint length v waé'us ed,

A failure of order t takes place if the decoder advances by t
branches or more into the incorrect subset of the coding tree. We will
| fbe interested in the probability of failure P(t).

Let Ni be the nﬁrﬁber of times the sequential decoder is located at
éome node of the incorrect subset stemming from a correct node on
. level i, Then ﬁiv,is the _yth moment of the decoding effort at depth 1i.
Let a be thg supremum of the{values Y for Which-ITI;/- is bounded, a
is then called the Pareto exponent of the decoding effort.

- In tllle. preceding section we have defined Q(a), the probability of an
- a-likelihood advance in the incorrect subset.

Let 8 = (s 1’850 - . ) denote some patih in the tree dei;erniined by
information digits Si’ i=1, 2, ..., let i* be the cbrrect path and let
' :Lt (“s;) de;note the code‘ digits corresponding to the initial t branches of 8,
Let Dt‘ cienote the set of nodes at depth t of the incorrect subset stemming
from thg root node, and let Gt+u be the subset of nodes of Dt+u that
corresponds fo trellis paths whose first branch is incorrect and which
rejoin‘fhe correct path for the first time at depth v+t (i.e., these are
paths containing at most t incorrect information digits);

The following upper bounds have been proved in Jelinek (1], pp.
354-359 (we have made some adjustments to assure applicability to the

stack algorithm) where 0 <o, Y :

E



U(U)Si i tz(m-t-u)G .

t=1 m=0 5
g
wiy/£()  wig™ | .
© R Z1;+u m n )
|8e6 w(g /% (s%)  wiy)
oy 8
t, t m
t ) w(y /% (8)) w(y, )
Pit) <) 2 botm-tinG E Zt _ :
m=0 geD wiy /5 (5%)) w(y’)
‘ (4)
and for y <1, : - v
—_— @ ) wi t/xt(§)) W(x,m) °
NYSZ z p Yo(m-t)nG E Z L/& ~ 7
T m Yy
t=0 m=0 D | Wl /= (s*) wiy)
. ' (5)

An upper bound on NY for Y > 1 has also been derived by Jelinek [6].
" However, the purpose of this paper is to investigate the effect of not

taking certain usual bounding shortcuts which alone make the bound on

NY for y > 1 tractable, We will therefore restrict ourselves to thg '
case Y < 1 which is the one for which optimal choice of G is crucial, An
adventurous readef may in any case decide to use our conclusions as a
guide for action in the regiony > 1.

Before bounding Q(a) let us observe that (4) and (5) have the
expectation term in common and that the expectation term in (3) is
similar. In Appendix I we have bounded these as follows.

Define the exponent functions
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‘ , - 1-\ _ 4
g0 = log ) wiy) ) [%%%‘1] x) 3
| | y x ' .
o
Y
o l-oy
R ACA 1°gz w(y) ¢ Z [y'g(/%z] r(x) Z[—Wé%)ﬁ] r(z)
) - y x z v
/ (7)
£ _ W( X 9 Y H
3(ony) = log ). wiy) { ) e I (8)
y x |
\
-then if vel[O0, 1],
(zn[(m-t)fl(o—y)+tf2(c,y)+ 4(g)YR ]
| | y
o
wiy /x5 (s)) wiy™) ) if m>t
E t < :
B ielaz wiyg /e @ wg) | [T
,nl(t-m)i3(o,y ) +mi, (o, Y)+ 4B)VR]

\
ifm<t

(9)

whei'eg is either equal to Dt or toG t and I,(Dt) = t, L(Gt) = t-vu.,
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3. Random Coding Upper Bounds on Performance Parameters

In this section we use (9) to obtain upper bounds on U(v), Pf(t), and

——

N6 and develop an upper bound on Q(a). Substituting (9) into (3) we get

[- - (- -] '
U(v) 52 z t exp, n {ac(m-t-u)G + tER+(t+u) L, (o, §) + (m-t -u)fl(cr&)}
t=1 m=t+v :
® t""'U-l
+Z z t exp, n {60(m-t-u)G+t 5R+mf2(cr, §) + (u+t-n?.)£3(c,.6)}
t=1 m=0 (10)
where §¢[0,1], 0 >0, Using the geometrical sum formula, the first term
un{, (o, 8) s .
in (10) is bounded by KIZ 2 where K1 is finite provided
560G + f1(06) <0
SR+ f2 (o, 6) <0 . - . (11)

It is best to break up the second sum in (10) into two parts, the first for

m ¢[0, v-1] and the second for m elv, v+t-1]. The first part is then equal

to
-1 ' .
exp,nu {f3(o, v) - 6G} . UZ exp, nm {60G+fz(c, 6)—f3(o, 6')}.
m=0
. i t exp, nt {f3(c, §) + 6R - c&G} 2

t=1
The result then depends on whether the exponent in the second summation
is positive or negative. Thus the bound is KZZnU£2(c’ 8) whére KZ is

finite provided

650G + fz(o, §) - f3(cr, 8)>0

f3(0, 6) + 8R - 086G <0 (13)



and it is K32nU[f3(°’ 8) ~08G ] G here K, is finite provided

odG + fzﬂ(q,» 8) - £3(c, §) <0

£3(0', §) + 6R - g6G <0 . (14)

The second part of the second sum in (10) is equal to

- -4
exp, nv if, (o, &) -06G exp,nm 406G + f,(o, 8) -f (0, 8) [ .
2 3 2 2 3

m=y
: @
. Z t exp,nt {f3(c, §) + oR - cac;} (15)
t=m-vutl ' '
nvuf, (o, 8)
which is bounded by K, 2 provided

4

f3(c, 8§) + 6R -06G <0
6R+f2(c, §) <0 . : ' (16)

Now the last two constraints of the set

o8G + fl (c8) <O ‘ (17a)
6R + fz(c, 8) <0 (17b)
A 8) - fz(c, 8) -08G <0 ' (17c)

imply the second constraint in (13), so that (17) is equivalent to (11), (13),

and (16), Similarly, the last two constraints of the set

c6G + f1 (08) <O ' : (18a)
c6G + fZ(O‘, 8) -f3(c,‘ 8) <0 (18b)
f3(o, 8) + 8R -06G <0 (18c)

imply the second constraint of (11), so that (18) is equivalent to (11), (14),

and (16), We thué get the bound
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U(v) <
K6z’“’[f3‘°' 8) -08G] ;¢ (18) holds | (19b)

if 0 >0, 6§ ¢[0,1], where the second exponent was obtained with the help of
the inequality of (18b).
Substituting (9) into (4) we get that if c>0, 5§¢l0,1] then

Pf(t) < exp, nt [f3(cr, ) + 8R -60G].

. 3: exp, nm losG -f3(c, 8) + fz(o, 8)].
m=0
Therefore
K 2"t (0: 8) + 6R] if (21) holds (20a)
Py(t) < ]
Ksznt[f3(°~' §) +6R-5 ‘-’G] if (21) does not hold | (20b)
where | | VI
056G ~£,(0, 8) + £,(c, 8) >0 . N | 21)

Substituting finally (9) into (5) we get for ¢>0, y [0, 1]

—_— -]

N <) ) expyn {ycr(m-t)G+(m-t)f1(06)+tf2(c,y)+yt.R} +
t=0 m=t

+) ) e=pn{yelm-0G+(t-m)t, (0, ) rmL (o VYR ] (@2)
m=0 t=m+l

The first sum in (22) converges provided
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vyoG+ fl(ay) <0

YR+£,(0,v) <0

while the second sun:i conve'rges providéd
f3 (0, Y)+ YR -yoG <0
yR+f2(c, v)<0.

We therefbre conclude that

NY < K, | | (23)
where K9 .is finite if
YoG +£,(oy) <0 o (24a)
YR +4£,(0,v) <0 , (24b)
f3(c, Y) + YR ~-yoG <0 . (24c¢)

We conclude this section by upper bbunding Q(a). We- do so usf.ng a
difference equation method pioﬁeered by Zigangirov [7].

'Con‘sider tﬁe partial tree of Figuré 2 all of whose branches aré in the
incorrect subset, with d = Zk branches leaving all but the first node (in
Figure 2, k = 2). Let B be the cumulative likelihood value of the first
node and A the likelihood of the branch emanating from it. Let Fa(ﬁ) be
the probability that at least one of the nodes of the tree of Figure 2 has a
cumulative likelihood that exceeds the value a, given that the initial node
had likelihood B. Fa(ﬁ) then satisfies the difference equation

1-F,(8)=) P) [1-F, (¢ + A)]d | (25)

where P(A) denotes the probability that a branch has likelihood A, and by
definition

Fa(ﬁ) = 1 for B Za. . ‘ , (26)
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Because zP(A) = 1, it follows from (25) that

F_(B) <d z P(A) F_(B + 0) . | @)
. |

Let F* (B) be any function satisfying (27) such that

F* () >1 for g >a ‘ (28)
then it is well known that [see [8], pp. 281-282]

F_(B) < F* (8) .  e9

s[p-a]

We will try F* (B) = 2 with s chosen so that (27) is satisfied with

equality. Thus we desire -

Zs[ﬁ-a] i} dz P(4) as[ﬁ +4-a]

or

1= dz P(a) 258 , o (30)

A
Using the metric formula (2) and the fact that d = an' (30) becomes
e
w(y)
X, y

or

sG - R - £, (I-s)= 0 . - (31)

The relation between Q(a) and Fa(B) is, of course,
d-1 : '
Qa)=1 - [l-Fa(O)] <(d-1) Fa(-O) } (32)

so that

Q) < (d-1) 2752 - (33)

where s is the maximum value satisfying (31).
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4. Optimization of the Random Coding Bounds

In this section we will choose the vérious values of G that optimize
the bounds on U(v), Pf(t_), ?I;, and Q(a). These should be expected to be
diffefent fdr the four cases., In ﬁ1e next section we will choose the best
ﬁlues of cand & fof fixed G.

Our analysis will presuppose a constant value of the source
diétribution r(x). Most channels of interest are symmetrical and for them
the best r(:_c) is uniform. For other channels r(x) should be optimized, but
' wé will ﬁot concern ourselves with this problem (see Chapter 7 of {1]). Im
fact, in generai different distributions r(x) would optimize the bounds on
Pf(tb), Ul), Qa), and NV 1

First, consider the bound (192)., Our approé.ch to its optimization is
to choose for a fixed § values of o and G that will allow sa.tisfactién of
(17) by the maximum value of R. In this way a parametric relation (in §)
between R and the exponent - fz(c(6), 8) will be obtained. If an increase
in R will lead to a decrease in -fz(c(6), §) the bound will be optimized.

- Now R is maximized (see (17b)) by maximizing -fz(c, §) and then choosing
G that _would satisfy (17a) and (17c). Straightforward calculus shows that

the desired value is
_ 1
T 146 (34)

so that the choice of G is

145 1 1 146 5
5 f3(1+5 ’ 5) ’f2<1+5’ 5):] 2G=-—% 1 (1+5) (35)

W.e show in Appendix II that indeed the righthand side of (35) is at

least as large as the lefthand side. It is interesting to note from (7) that
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-fz(ﬁg, 5) = - log ) ) wly/x) 8 ) =E(8)  (36)
y Lx

where EO(G) is the well known exponent function of Gallager {91]. | The
desired maximal value of R is then—;- Eo(é). Since § is restricted to the
range [0, 1], it remains to treat the case of R < Eo(l).

Since the maximum of Eo(a) for 6el0,1] is Eo(l), then the exponent
will be Eo(l) provided G satisfies (35) with 6§ = 1.

We must next check if better results cannot be obtained with bound
(19b), It follows from (18b) and (18c-) that choos:r.ng o to maximize
-fz(c, 6) will allow simultaneous maximization of R and of the exponeht :
o6G -f3(c, 8) provided (18a) can be satisfied. However, (18b) will in any:

case force the exponent of (19b) not to exceed that of (19a)., We stite our

result as a theorem,

Theorem 1
For R e[ Eo (1), C ] and a code of branch constraint length v

the probability of undetectable error is bounded by‘

-non (5)
U(v) < KSZ ' (37)
where § €[0,1] is the solution of
. ‘
R ZEEO (8) : (38)

and KS is finite if

1+6 1 146 6
= (B, 0 + 4 (55, 8) 162 -2 () (39)

For Re [0, Eq(1) ], (37) holds if 6§=1 and (39) is satisfied.

It follows from Appendix II that the two extreme sides of (39) are

equal if and only if
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1
i

z (ww(y) ) r(x) ’= ’const» for all y | C | (40)

" This is actually the case for the BSC when r(x) is uniform, but is not true
in general. If (40) holds, then (39) reduces to the "usual" choice ([1],
p. 360)

E (8) . - (41)

o |1

G =

We show in Appendix II that

l+6[f ( 5)+ E (5)] <-— E_(5) < “5 fl(—i) (42)

1+’ "5 1+6
so that Theorem 1 constitgites a real strengthening of the previous results
that p;pyides»us with a v)elcome lee‘way for choosing G.

We next turn to the optimization of the bound (20); In '(ZOa),> fof a
fixed T and R (for reasons that will become appa.reﬁt :.i.n.tlthe hext‘ section,
we are using the parameter 7 instead of §) one wishes to select g 8o as to.

maximize -fz(c, T) and then choose G sufficiently large to ‘satisfy (21).

- . _1
This implies that o =TT o and

G2 —_T] (£ (1+n’ Tl) (ﬁ'ﬁ ’ ﬂ)_] ’

As a result of this choice,

-nt[Eo(Tl) - TR]

Py(t) <K, 2 B | (43)

As is well known, the exponent of (43) is maximized by the value .of M

satisfying

R = Ec; ('ﬂ) . ' ’ (44)
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It is immediately obvious that (20b) is optimized by the same value .,of c
and by G satisfying (42) with ‘equality. This choice gives the same
exponent, We then get the following

Theorem 2

For R e[E(')(l), C), the probability of failure of branch order t<vis

bounded by
-at[E (1) - 1R]
P()<K, 2  ° (45)
-7
where 7 satisfies (44), K7 is finite provided
147 1 46

For R ¢(0, E(;(l)), we choose 7 = 1 in both (45) and (46).

The above theorem shows that if G satisfies (46) then the so called
random block coding exponent applies to the probability of failure. Again,

if (40) holds, the righthand side of (46) re?uces to the usual choice of

G = _‘lf] Eo('n) (see [1] p. 361). Because of the left inequality in (42),

Theorem 2 strengthens the previously published results.
Our next topic is to maximize the value of R for which NY is finite

where y (0, 1]. It follows from (24c) that G must be made as large as

(24a) allows. Hence R must satisfy

YR <max min {-fz(c, Y), -fl(cy) -f3(o, Y)} . ' (47)
o>0
But, as already pointed out, --f2 (o, Y) is maximized by ¢ = -i-;l_—; and
1 Y 1
‘f2(1+y’ Y>5 'f1(1+y) ~i3 <1+y ’ Y) . (48)

We thus have the following



Theorem 3(*)

For vy ¢(0, 1], NY is finite provided

R <%EO(Y) . | | _ ' (49)
and
VG v) B m]se s %—Yfl (T7)- (50)

We see that Theorem 3 represents the same strengthening of the usual
bound (see [1],l P. 363) as Theorem 1 did. In particular the usual choice
G = :ll- Eo(y) is within the range of the interva.l (59) that has non-zero length
whenever (40) does not hold,

Let us finally consider the bound (33). In Appendix III we have shown

that fl()\) is a convex function with

£,(0) = 0, £,(1) <o.

Thus Figure 3'represents the graphical solution to the problem of
maximizing s* that satisfies (31). As is intuitively obvious, s* is a
monotonically increasing function of G, s* = 1 for G = R, We summarize
our conclusions in
Theorem 4
The probability Q(a) that the likelihood of some path in the incorrect
subset exc;eeds a is bounded by
Q) < @™R-1) 275*2 : (51)
where s* is the maximum of at most two solutions of the equation
=§ [R +£(1-5)] . (52)

* We call the reader's attention to the fact that Theorem 3 does not imply

that if (49) holds then the upper bound on NY is finite only if (50) holds as

well. When G = R, the conditions (24) reduce with the help of (42) to the
usual condition (49).



.66 )
Let

ot = 1um 11 (1-9).
s 1

8
IR > -fl(l) there is a unique value G such that (53) has two positive
solutions for G e(G-, G+) and no solution for G <G . IR < -fl(l) then
exactly one positive solution exists for all G < C-+. s* is a monotonically

increasing function of G e(G, G+).

ﬁe reader should note that Theorems 1, 2, and 3 have a somewhat
different status than Theorem 4. There is definite practical value in
setting G so as to minimize Pf(t) and U(v) for fixed t and v, and to |
maximize the Pareto exponent for a given rate R, On the other hand, it
would be foolish to blindly increase G just to minimize the bound on
Q(a) for fixed a. The latter is an arbitrary parameter which is used to
determine a back-stop before which decoding information can safely be
released to the user. One might therefore wish to answer the following
question,
Given a prescribéd average lag of relea;sed information
behind maximum tree penetration by the decoder (information
is assumed here to be released in accordance with the rule
of the next to last paragraph of Section 1), how shall G and a
be chosen so as to minimize the probability of error Q(a)?
To answer the above question, note that the expected penetration
depth in branches necessary to achieve the likelihood increase a is

given by



a a

nE [log =Y XL _ o] n[I(XY-G]
~ wly)

since the denominator is the expected likelihood increase per
branch. Now from (51),

-logQ(a) > -nR + s*a = -nR +‘rﬁn[s*1(X;Y)-R-f1(1-s*)J

where the value of a was given by (53) and that of G by (52).

It follow therefore, that we wish to choose s* so as to maximize

s*1 (XY) - fl (1-s%)
which is eq‘uivalent to choosing the largest s* such that
HXY) = -£] (1-s%)
But of Theorem III,1, the desired s*=1, so the best choice is G=R,
We then get
Theorem 5
To minimize the random coding B;und on the probability
of released information error, Q% (m),for a prescribed
average lag m of released informatioﬁ behind maximum tree
penetration by the decoder, the bias G should be chosen to
equal R, Then : A
o (@) < (an -1 Z-Bn[l(x;y) -R]
provided the likelihood decision threshold is set to
a=mn(I(;)-R]
It is worth noting that because of (38), (39), (42), (49), and (50),

the choice G =R allows for simultanecus optimization of the bounds on

the Pareto exponent, U(v), and Q* (i),
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5. The Random Coding Bounds for Arbitrary Values of G

In sequential decoding one ordinarily wishes to choose all parameters
so as to maximize the Pareto exponent a which determines the amount of
decoding effort. This is especially trﬁe in the range a ¢(0, 1]. Comparing
Theorems 1 and 3 we see that the bounds on U(y) and F require the same
optimal choice of G, namely in the range (50). From Theorem 5 we see
that to minimize Q%*(m), G ought to be selected equal to R. To
minimize Pf(t), G ought to be selected within the range (46) whose lower

limit is formally identical with that of (39) which minimizes U(v). However,

the values of the parameters 1l and § appropriate for (39) and (46) are

1

different. For (39), 7 satisfies R = E(; (M), while for (46), R = 3 EO(G).
Because of the well-known concave nature of Eo()\),
1
1 —_—
El0N <3 E (V) (55)
since EO(O) = 0. Hence
N<6. : (56)
Thus for some channels at least [certainly for all channels
satisfying (40), such as the BSC]
En )]> -t | &
Ey(M + £ (5. 1 n(ay) (57)

so that there is no value of G that would simultaneously optimize the
bounds on U(y) and Pf(t).

We already remarked in the preceding section that for non-symmetrical
channels a different input distribution r(x) optimizes the different
performance parameters. As a consequence, the algorithms of the present

section will not be optimal for such channels.



A, Bounds on U(v) when (39)not satisfied -

' 1 .. .
3 - . - 1.
Let GR satisfy R _GR Eb(aR) where R > Eo(l), otherwise SRQ

Because of (57), the more interesting case of violation 6f (39) is that

146 5
I(X;Y) >G > - —= ) ( R ). | (58)

6R' 1+ 6R

We will now minimize the bound (19) for this case, (It is shown in
Appendix III, Theorem II-1 that -£'(0) = I(X;Y). Therefore, unless the

lefthand side of (59) holds, neither (17a) nor (18a) can be satisfied.)

Lemma 1
‘The exponent of the upper bound on U(u) is minimized by some

5 (6%, SR) where &% is the unique solution of

&% &%\ _ o
AR (1+5*> =0. (59)
Proof

Because of the convex nature of fl(k) and inequality (58),

)
o* R
p* é 1+ 6% < 1+6R (60)

so that 6% < 6§_ as asserted, Because of (59), inequalities (17a) and (18a)

R
can be satisfied for a fixed 6 only if ¢ ¢(0, ). Since for & (&%, 6R)

) ’ :
* . ——
" <T+s 61)
then because of the concave nature of -fz(c, 8) as a function of ¢, the former

. - ¥ p*
is maximized over ¢ ¢(0,~— ] by the value ¢ = - Therefore, from (17),

(18), and (19) the maximum achievable exponent cannot exceed -fz (9-61, 8).

sle

But for & < &%, -f (&

3
L&, 8) <-f, (2-, &*) [see Appendix III, Theorem III-3],

5 &k ’
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and exponent -f (6* , %) is achievable since the a.ss1gnment O =%
5 = &% satisfies (172) because of (59), (17c) because of (35), and (17b)
because by the concavity of Eo( 5),

L - .-l (&
R<3z E(8%) = - 55 £, (7, §%). (62)

Therefore only & > & need be considered,

Adding (18b) and (18c) results in (17b), and for § e(6R, 1)

1 1 1 1
o0 <-55 (15 6) <-5 ST 6R)' R
R R

so that neither (17) nor (18) can be satisfied. We thus conclude that
6 < 6R. Q.E.D,

Let us now pick § (&%, 6R) and try to find the value of g maximizing

the exponent, If

R<~—-2<ﬁ ) (63)

does not hold then that value of § is inadmissible since neither (17b) nor
(18b) and (18c) can be satisfied for any ¢ in the allowed range (O,E:)

[see the proof of the preceding Lemma ]. Assume therefore that (63) does

hold, and suppose that
-£(p%) > £, (*%—*)-f ( . 8) . (64)

In this case the choice ¢ = —L satisfies (17a) and (17c). Since (17b) is

also satisfied and any smaller value of g decreases -fz(o, 6), the exponent

. . o* )
is equal to f2<5 > 01,

Next, suppose that (64) does not hold and let o) be the largest value

in (0, p/ &%) such that
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0, 6G=1,(0,6) L0, 8). ©(65)

If (17b) holds with g = oy then the largest conceivable exponent
obtainable from bound (19a) is -fz(cl, §) which is at most as large as the
exponent from (19b) obtainable for some o e(o’l, p*/cS).
Thus if (64) does not hold, we need consider only the bound (19b),
Let cG(S) be the uniqué value satisfying
8G = £J (q, 8) | | (66)
that exists provided G < f3' (=, 5.) [see Appendix II7, Theorem III.-4]. If

(66) cannot be satisfied, we set cG(G) = », Suppose

-Q_’i .
5 < oq (5) . (67)
Then with o = Pﬁf , (18a) and (18b) are satisfied and if
R <5 [ G -£,(p%/5, 6)] (68)

then p* G _fB(p*/é’ §) is the best obtainable exponent for that value of &.
If (68) is not satisfied, & is not admissible, If (67) does not hold, and
9y > oG(G), then the best attainable exponent is —fz(cl, 8) provided (18c)
holds, while if cG(S) e(al, p*/&) then the best exponent is cG(G) 8G
-f3(cG(6), ), provided (18c) holds. If (18c) does not hold, & is not
admissible,
We can now state an algofithm that will obtain the best exponent fc;r

the upperbound on U(v) for a fixed R and G satisfying (59).

1. Find the interval (6%, GR) and pg*,

2. Pick & 'e(6’-'<, 6R) and check if (63) holds.

If it does not, 6 is not admissible, Otherwise continue,



3. If (64) holds, let
E _(8) = ~f,(p*/5, 8)
4. If (64) does not hold, check if
§G -£; (p*/86, 8) >0 (69)
If (69) holds and (18c) is not satisfied with ¢ = g*/6 then 6 is not
admissible, Otherwise

E_(6) = o G-£; (p*/8, 6)

5. If (69) does not hold, find the largest oy ¢l(0, p*/8) satisfying
(65) and check whether -

| 8G -1 (0}, 8) <0 | | (70)
If (70) holds and (18¢) is not satisfied with ¢ = oy then § is not
admissible. Otherwise,

E (8) = -, (05 8)

6. If (70) does not hold, find o-G(G) satisfying (66) [necessarily
o (8) elo), p%/8)]. If (18c) does not hold with ¢ = o (6) then & is not
admissible, otherwise |

Eu(ﬁ) = ch(S)GG - f3(cG(6), 8)

7. Repeat from step 2 on, so as to obtain a plot of Eu(6) for all
admissible values § (&%, 6R). The maximum of this plot is the
desired exponent,

We expect that (&%, 6R) will contain only one sub-interval of admissible
values of §, and that over that sub-interval Eu(é) will be unimodal.

Let us next consider the case
1+6.

R 1 1
0<G <= [t ERE: . 5x)]- (71)
by L3 (1+5R R z(1+5R R
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Lemma 2
The exponent of the upper bound on U(v) is minimized by some

6 e(& 6 )where 6, is either the 1argest 6 ¢(0, 6 ) such that

1
6

1 1 1 - '
T+, G=1, (1+zs1 ’ 61) £ <1+51’ 61) (72)

or is 0 if (72) cannot be satisfied.
Proof
Let oy be the "best" value of ¢ for some 6 ¢(0, 1). - If § is admissible,

then -

R <- 1 £,(0), 8) < - 1 (1

52 (T2 - (73)

But the righhand side of (73) is a decreasing function of §, so if 6R <1,
the lefthand inequality in (73) can hold only if § < 85 -

Next, let 61 be as defined in the Lemma. Because (35) holds, then

for 6 = 61 and g = 1+15 , all the conditions (17) are satisfied so that the
1

exponent for this value of R and G is at least -f2 (-ﬁlé— ,
1

--f2 (—1%5 , 6> is an increasing function of §, then for all § < 61 the

61 ) Because

exponent is smaller than -f2 (T%-IT s 61> so only & > 61 need be considered.
1

Q.E.D.
It follows from the definition of 61, and from (71) that for all
5 ¢ (61, 6R),
159 <% (150 8)-5(ns JEES (Tz) | (74)
Let o, be the largest value of ¢ e[O, 1rs such that

086G < f3(c,’6) -1, (o, §) : ‘ (18b)
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holds with equality and let o) be the smallest value of c e[—&g, =) for
which (18b) holds with equality, From (74) it follows that (18b) holds
for all o e(crz, 0‘1) and that T.,l._gﬁ p*/6. Therefore (18a) and (18b) both

hold for o e(az, 03) where
&

o3 = min {g,, p*/5} . (75)
Let o,(8) be as defined in (66). If 05(8) eloy, ;) and

§R < 04(8) G -f3(cG(5). 5) (76)

then the righthand side of (76) is the exponent. If oG(G) < S and

SR < 0, 8G ~£,(c,, 6) | (77)

then the righthand side of (77) is the exponent,

IfoG (8) > and

%
8R < 03 8G ~f,(a,, 6) (77a)
then the righthand side of (77a) is the exponent. If neither of the three
cases holds, & is inadmissible, We therefore get the following
algorithm,
1. Find the interval (51, 62) and pk,
2, Pick § e(61, BR) and compute Oy Ops 3.
3. K 8G -£] (0, 6) >0 (78)
check whether (77a) holds. If it does not, § is inadmissible, if it
does, the exponent is
Eu(G) = oy &6G -f3(c , 8)
4. If (78) does not hold and
P 2 |
8G -1} (0, 6) < 0 (79)
check whether (772) holds. If it does not, § is inadmissible, if it

does, the exponent is
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E (8) = 0,8G. ~f;(o;, 8)
‘5. If neither (78) nor . (79) hold, determine cG(G) satisfying
(66). If (76) does not hold, & is inadmissible, if it does hold then

the exponent is
6. Repeat from step 2 on so as to obtain a plot of Eu(a) for

all admissible values § e(61, 6.). The maximum is the desired

R

exponent.

B, Bound on Pf(t) when (46) not satisfied
We will now see how fo optimize bound (20) for a fixed G less than
the righthand side of (46).
Lemma 3
If when T satisfies (44), the inequality (46) does not hold, then the
value of 6 optimizing the bound (20) on Pf(t) is within the interval
(ém, 6M) where 6m(5M) is the largest 6§ < 7 (smallest § > 1) such
that ‘
or is equal to 0 (equal to 1) whichever is larger (smaller).
Proof

First note that only & ¢[0, 1] are admissible by the bound. If

& elo0, 6m> (6 e( 6M’ 1]) then because of the concave nature of

-£2<—1— 6) - 6R the largest value of the exponent cannot exceed

1+6°

’fz(1+15m ’ iv&m)" o mf <‘f2(T+ITM—’ 5M> ) 6MP‘> (78)




otherwise the optimal exponent for any 'G would not be achieved at 1.
However, because ot (77) the values (78) are achievable with the given
G and so the optimizing & e[am," aM]. | Q.E.D.
Consider now & e[ém,v 8M:l fixed. We will see how to find the value
of g >0 that optimizes thg exponent in (20). We will use the fact that
-fz(c, §) and -f3(c, §) are both concave functions of ¢ that are positive
for some interval (0O, cM) [see Appendix III, Theorems III-2 and -4,

. . s o1 -
and that -fz(cy, §) is maximized at ¢ = 1+5 For ¢ e(ﬁm, 6M), the left-
hand side of (77) is negative. If o-G(G) maximizes ¢ § G -f3(c, §), then
there are two cases. If

0 (8) 8G ~£;(0(8), 8) < -£,(05(5), 8) (79)

then because of the concave nature of -fz and —f3, the best exponent Ef(é)
is given by

Ef(6) = "G“” 5 G -f3(cG(6), 8§ -6R. (80)

On the other hand, if (79) does not hold, and oG(G) <—1~+1-_6 , then there

- . _1
exists a unique oy € (GG(G), T+5 ) such that
o, 8G -f;(0,, 8) = ~£,(q,, 8) (81)

and the best exponent is

Ef(6) = -fz(c ,8) - 6R . (82)

. 1 1 . o .-
Of course, if cG(G) > 15’ then Oy €(1+6 , GG(6)> satisfying (81) is

desired.
In finding the best exponent for the upper bound on Pf(t) when (46) is

not satisfied, one proceeds as follows:



1. Find the interyal (6m, GM) ‘
2. Pick § e(Sm, G_M) and find aG(G) satisfying (66).
3. I (79) is satisfied, Ef(ﬁ) is given by (80). Go to step 5.

4, If (79) is not satisfied, find Ef(ﬁ) is given by (82).

Oye
5. Repeat from step 2 on so as obtain a plot of Ef(5) vs. o.

The maximum of this plot is the desired exponent.

.C. Pareto Exponent for Arbitrary G

Let R > Eo(l) and let &_ be as defined previously. We will first

R

find the lower bound on the Pareto exponent when
146 6

IKY) 2G> - = & (T ) -
R R

We wish to find the la.rgest‘possible value of y such that (24) can be
~satisfied for some y >0,

Lemma 4

If (59) is satisfied then the best lower bound on the Pareto exponent

vy falls within the interval (&%, 6R) where & satisfies (59).
Proof

Since G is not chosen optimally, 6 < § Since 6% < §_, (see Lemma

R’ R
1) we need only to show that y = & satisfies (24) for ¢ = %/ &%, where p¥

was defined in (60). But that choice satisfies (59) and therefore (24a).

Furthermore, by concavity of Eo(ﬁ),

I A S i 3 : 1 -
R+ b (55, 0%) =R+ E (6% <R+ i Bollg) = 0

so that (24b) is satisfied as well. Finally, from (59) and (48),

(58)
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o* *)4.*-* 1 *) (5*>
6*R+f3(6*,6 pG-6R+f3(l+6*,6 + £ (T

1
e
SR+ L (Trm s ) <0

80 (24c) is satisfied as well, Q.E.D,
Let y (&%, BR). (24a) can be satisfied only with o < p*/y. Also

since 6% <y, then

__o* X
= Teex < 1+y

ok
so that —fz(c, Y) is maximized over (0, p*/y] by ¢ = -&Y- . Thus, if
R>—f ( , ) | (83)
ya2\ly” Y
then the Pareto exponent is less than y. If (83) does not hold and
cG(B) > p*/y then the Pareto exponent is less than y if (24c¢) is not satisfied
with ¢ = p*/y, and it exceeds Y otherwise, If cG(G) < p*/vy, let Oy be the

unique value of ¢ e(cG(G), 0*/y) such that

f, (o5 V) = £5(05, ¥) = 0,¥G . (84)

The Pareto exponent then exceeds vy if (24b) holds with g = g , and is less
than y otherwise,
If (59) holds, the best lower bound on the Pareto exponent is found by

the following method:

1. Find (8%, 6;)and g¥. Leta = &, a, =

2. If a, - a, < ¢ exponent is at least a. Stop. Otherwise pick

Y ela;,a,).
IR > - %fz (0*/v, V), set a, =y and go to step 2, Otherwise

continue,



3. EYG -f] (p*/v, V) <0
go to stép 4, Otherwise if (24c) is satisfied with o = p*/y set
a; =v. If (24c) is not satisfied, set a, = y. Go to step 2,

4., Find g_ satisfying (84). If (24b)holds with g = o_, set

5 5

a; =Y. Otherwise set a, =Y. Go to step 2.

We will conclude this section by treating the case

1+6 1

O<G<—6—I:& [f3(ﬁgl-{’6R>+Eo (GR)] . (71)

Lemma 5 B
If (71) is satisfied, then the best lower bound on the Pareto
exponent y falls within the interval (61, SR) where 61 is either the
largest § ¢(0, 6R) for which (72) holds, or is 0 if (72) cannot be
satisfied. | |

Proof
We omit the proof which is similar to .f;hat of Lemma 2, Q.E.D.

Let y 6(61’, 5 Then (24a) is satisfied for all ¢ < p*/y. Further-

»)-

more, since

XY 1 )_ (_1__ ) FEAS
1+vC <% (1+y’ Y) Ly Y < f1<1+y>
then

. 1
% > Ty - (85)

For the sake of brevity, we shall immediately describe the algorithm that

obtains the best lower bound on the Pareto exponent,
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Find (61, 6R) and p*, Leta 5., a, = §

1~ ° %27 °re

If a, -~a; <e the exponent is at least a Stop. Otherwise,

1 1°

pick y e(al, az). If

1 1
R<1y @5 (1+y’ Y)

set a; =y and go to step 2, Otherwise, continue.

If p* G -f5(p*/v, Y) < -£,(p*/Y, Y) (86)

go to step 4. Otherwise there is a unique % (1+Y p*/y)

such that
YO, 6 G -f (06’ Y) = -f (0'6’ Y) ) (87)
I (24b) is satisfied with ¢ = T ? set a;=vy. If it is not satisfied,

set a, =Y. Go to step 2.

I vG -£5 (p*/v, V) <O

go to step 5. Otherwise, if (24c) is satisfied with g = o*/y, set
a; =v. If it is not satisfied, set a, =Y. Go to step 2,
Find oG(y) satisfying (66), If

og{VIVG -£; (o5 (V) ¥) > £, (0. (¥), V)

then go to step 6. Otherwise, if (24c) is satisfied with o = O’G(Y) set

a; =Y. If it is not satisfied, set a, =Y. Go to step 2. .
1 -
¥ oq(v) >77 Tiy [o (y) <—— Try ], there is a unique -
Ty Toy )]
% e:(l-l-y ’ GG(Y)> [06 € (QG(Y)’ 1+y>

for which (87) holds. If (24b) is satisfied with ¢ = Ty » set a; = v If

it is not satisfied, seta, = y. Go to step 2,

2



6. Optimal Expurgated Bounds.

In this section we will develop expurgated upper bounds to the
’probabilities of undetected error and of failure. We will use the notation
of Chapter 10 of Jelinek [1]. We will limit our attention to convolutional

ches and &mels symmetrical from the input, so that for any given
code fhe probability that any information sequence be incorrectly decoded
is the same for all sequences. We will therefore always assume that the
all-zero sequence was transmitted.
If y is received, an undetected error will take place at depth 0 only if
L(g) - L™ >0 for some g cG. ", £>0,m>0. . (88)
Hence if an undetected error takes place, then

YOy oy eelr-rTl, o (89)
ttu ' _

t=0 m=0 sg¢ Go

forall o > 0; Let 9(;{) be the undetected error ihdicator function.for' a
fixed convolutional code C of constraint leﬁgth v and a Irece‘ived sequence
Y, Then the probability of undetected error at depth 0 is given by

P¢ () - B, [0y | | (90)

and the probability P{ C: Pg(e) > B} of selecting a code from the ensemble

whose undetected error probability exceeds some number B is bounded by

U -1/p 1/0 |
P{C .Pc(e)>B}_<_B E C[Ex‘e(x')] 9D
where E c denotes averaging over the ensemble. Thus the probability is
at most 1/2 that a code will be selected whose probability of undetected

error exceeds
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1/p P

A MO D N Jli| I S
=0 m=

t OSth
~ 0o

where we took into account the fact that the lefthand side of (89) exceeds
8(y). Let o stand for the all-zero sequence. Then we can re-write

(92) as (

(7]
T

: w<x‘t+u/xt+v(’s\j wiy) ¢
Z ZW(X/BO) [w t+?) ] )

—G(m t-v)

/py P

(x,/u) )

If p >1, then Jepsen's mequahty' yields

B<2P z }:z—c(m-tw)
(o3

) - rwig /" Vg wig) ] )

/oy P

] (93)
|

g,(0) = log ) wiy/0)' "% wiy)° (94)
y

EC(Z,W(X/EJQ) l_ m t+v
se Got+u L W(xJ /uo) W(}L )

We now define the exponent functions

1/p |
g0 00 = plog y () wiy/0)wiy/)'™0) (95)
x y

1/p
5500, 9) = plog £ Y ( Ywiy/o) [FHLT] 7Y (96)

w(y)
x y

with whose help we can bound the expectation in (93). Denoting the latter

by F(m, t), we get



| exp, —:[mgz(o, p) + (t+u-m) g, (o, p)] if m <t +v
F(m, t) < (97)
1
expzzf(ti-u) gz(a, p) + (m-t-u)gl(cr)] ifm<t+u
After some algebra that is identical to that used to derive (19) we

finally get the bound

A AL where K is finite if (99) holds
B < ' ' _
K 2YL83(0> P) - oG] where K is finite if (100) holds
: (98)
oG + g,(0) <0
PR +g,l0,p) <0 | (99)

83(0: P) - gz(c) P) - GG <0

oG + gl(C) <0
g3(0, p)+ DR - CG<0

Inbthe bound (98) the restrictions ¢ >0, p > 1 are assumed; Comparing
(98) through (100) with (17) through (19) we see tl.lat both bounds ha.w_/;e the
same formal structure. We will take advantage of tﬁis when optimizing‘
the expurgated bound,

We show in Lemma IV-1 of Appendix IV that for channels symmetric
from the input, gz(o-, p.) is minimized by the choice ¢ = 1/2. Since at least
half of the codes in the ensemble have a probability of error that does not

exceed B, we may conclude that
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Theorem 5

For R [0, -gz(l/Z, 1) = Eo(l)]and channels symmetric from the
input there exist convolutional codes whose probability of undetected
error is bounded by

-U[-gz'(il. P)]
Pu(e)SKZ (101)

where p > 1 satisfies

1
R = -~8,(1/2, 0) | (102)
and K is finite provideci G is chosen so that
2[g;(1/2, p) - g,(1/2, p)1 <G < -2 g,(1/2) - (103)

Of course, it is necessary to show that the righthand side of (103)
exceeds the lefthand side, which we do for equidistant channels in Theorem
IV-1 of Appendix IV, It is interesting to point out that the expurgated
exponent of Theorem 5 is the same as that obtained by Viterbi and
Odenwalder [10] for maximum likelihood decoding of convolutional codes,

We next turn to the probability of failure. If Y is received, a failure

of order t will take place at depth 0 only if
m t
L(s) - L >0 for some ’sveDo and 0 <m <t,

Hence if a failure takes place then
t m .
Yoy et -, (104)

(-]

m=0 SED,

for all o > 0. Letting p(y) be the failure indicator function for a fixed
convolutional code C , and denoting the failure probability by PCf(e), we

can conclude that (c.f. (91)) over the ensemble,



-P{C_:_Pé(e)>D}_<_D l/pEc[ (X?:l 1/" ~(105)

Hence the probability is at most 1/2 that a code (of constraint length

v > t) will be selected whose probabilif:y of t-order failure exceeds
1/p P

.D z”{E [E (z Z ol L(g)- - ])] } (-106)

m-O gev

The same algebra that led from (92) to (93) leads from (106) to

t mG
D <2PtoC {z 2 P
m=0 . l/p p
' | wiy'/xte) wigr™] |
. z Ee ZW()L/}LO) m t (107)
cep t - wiy /ag) wily) 1 ,

Using the functions gi(c, p), the righthand side of (107) can be evaluated

so as to yield the bound

p-tloG- pR-g3(0', p)]
D<«2 .

P
t [cG + gz(cs p) - g3(°’ p)]

(z 2° % ) | © (108)

It follows directly that if for 0 >0, p > 1
oG + g, (o, p) - g5(0, p) >0 A | o (109)

then

D<K?2 (110a)

and otherwise

t[ﬁR’- oG‘+g3(cr, )] ' )
D<K2 | (110b)
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Again we see that the obtained bounds (110) have the same formal
structure as the bounds (20) had. Since, as clearly remarked, gz(g, p)
is minimized by ¢ = 1/2, and g2(1/2, p) is convex in p, we can conclude
with [gz (1/2, p) denotes 2 g2(1/2 0]

Theorem 6

For R e[O -gz (1/2, 1)] and channels symmetric from the 1nput there

exist convolutional codes Whose probablhty of failure of order t is

bounded by
t[hR + g,(1/2, b)) -
Pf(e)5K2 (111)
where p > 1 is the unique solution of

R=-g (1/2,p) (112)

and K is finite provided
G>2 [83(1/2, ) -gz(l/Z, )] (113)

For R e(-g)(1/2, 1), -8,(1/2,1)= Eo (1) ], bound (111) holds with p=1

provided G satisfies (113) with p = 1.

It should be noted that the exponent of the bound (111) is identical to

the expurgated exponent obtained previously for block codes (see Jelinek

(17, p. 217).
It is further interesting to note that since
85(1/2, 1) -g,(1/2, u) < -g,(1/2)

then the choice

G = -2g(1/2) = -£,0/2) = -2 1ogy [w(y)wiy/0) (114)
y



optimizes simultaneously both the undetected error and failure bounds for

all R €[o, 'gz(l/zn 1)]0

g7~



7. Expurgated Bounds for Arbitrary Values of G

In this section we describe algorithms that optimize the bounds (98)
and (110) for arbitrary values of G. This we do in spite of the last
assertion of the previous section, because in the range of rates of interest
the G-value maximizing the Pareto exponent differs from (114), More-
over, the rate points below which optimal expurgated exponents exceed the
corresponding random coding exponents for probabilities of undetected
error and failure, respectively, are also in general different, so that,
e.g., the random coding failure and the expurgated undetected error
exponents might apply simultaneously for some rate interval [this is
shown in Section 8 ].
Since the bounds (98) and (110) are formally identical to the bounds
(19) and (20), the optimization problem ahead of us is almost identical to
that of Section 5. We will therefore simply state the exponent.optimization
algorithms without providing a detaiied justification,
Let Pr be the solution of
R = - —l-gZ(I/Z, o) O (115)
P
and let us attempt to optimize the undetected error bound when
I(X;Y)>G >-2 gl(l/Z) | (116)

The upper bound in (116) is due to the fact that —gl(c) 'is a concave function

with -gl(O) = 0 and that

g} (0) = ) wi(y/0) 1og ¥ - ;) (117)
y

Let oG (< 1/2) be the solution of

G-= - -(1; g,(0) (118)
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Then clearly both (99) and (100) can only be satisfied by o e[O, oG]. Since
by Lemma IV-3,- -1’; gz(o'. p) is a decreasing function of p, and is a concave
function of ¢ with 2 maximum at ¢ = 1/2, then in the range o ¢(0, cG],

. the inequality

1 - ’

can be satisfied only for some p < p,. In (119) let o = o,., and let PR Pe
the value of p that satisfies (119) with equality. If PGR < 1 then for that

R-G combination an expurgated bound. cannot be developed. Otherwise, we
k.n9w that in any case we must choose p e(l, pGR) and o ¢(0, O'G) to satisfy
either (99) or (100). The algorithm to find the best exponent for the case

(116) is as follows:

1. Find %G satisfying (118), and PGR satisfying (119) with ; = 0g-

exp _ :
If PGR < 1, the exponent Eu = 0, and stop.
2, ¥ PGr > 1, see whether with p = PGR

If so then (99) are satisfied and the exponent is

exp _
E, = - &(og pgR)

Stop.
3. If (120) does not hold, neither (99) nor (110) hold with

0=0q p= Pgre Select p e(0, p__) and see whether (120) holds.
If so the best exponent for that value of p is
exp o |
Eu (p) = gz(o ’ p)
4, If (120) does not hold for the chosen value of p, check if

3
G- 3-8 (0 0) 20 (121)
O'=O'G

If (120) holds and (100c) is not satisfied with o =0, then p

89



90

is not admissible. Otherwise
E. T (p) = 605G - g3(0 0)
5. If (121) does ﬁot hold, find the largest o1 e(O0, cG) satisfying
0, G+gylop, p) ~gz(0y, p) =0
and check whether

0
o= 0'1

If (122) holds and (100c) is not satisfied with ¢ = o,, then p is not

1,

admissible, Otherwise _
exp -
E, (_p) = -g,(0p,0)

6. If (122) does not hold, find c, satisfying

)
G =55 gslo )

If (100c) does not hold with o = o

2 then p is not admissible, Other-

wise
exp _ .
Eu (p) - 02 G g3(02: P)
. . exp
7. Repeat from step 3 so as to obtain a plot of Eu (p) for all

admissible values p e(1 ). The maximum of this plot is the

» PGR

desired exponent EEXP.

We wish next to find the exponent for undetected error when
G<2 g, pg) - gy Gr pg)] (123)
32 PRT 782120 PR
In this case ¢

G > 1/2, Since (119) must be satisfied, p can be admissible

only if p < pp. Let p, be the largest p e[, pR], if it exists, such that

G =2[g;(1/2, p) - g,(1/2, )] (124)



Conditions (99) are sé.tisﬁed byo=1/2, p= p, and so the exponent is at
least -gé(%, pl). For p < pys the exponent would have to be smailer, and |
so if Py 2 1 exists, we need only consider the interval [pl, pR]. Our
algorithm for finding the best exponent is as follows:

1. Find Py if it exists. If Py el1 ] does not exist for which

’ pR
(124) holds, let Py = 1,

2. Select p elp,, py ). Let o, (o )be‘ the largest value of
1 2'71

’r
o [0, 1/2] (smallest value of o e¢[1/2, =]) for which

0 G = g4(o, p) -g, (0, p) - (125)

and define ‘

3. If
.
G-35 g3(c, p)l ) >0 (126)
o =0,
check if (127) holds with ¢ = o3
PR <o G -g5(a, o) ’ (127)

If (127) does not hold, p is inadmissible. If it does hold, then
exp _ -
E 7 (p) = 0;G -g5(o;, p)

4, If (126) does not hold and

d
G -35 835(0 p) <0 : (128)
o= Q’Z

If it does not, p is inadmissible. If

check if (127) holds with ¢ = o, -

it holds, then
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exp, . _ _
Eu (p) = o, G g3(§ » p)

5. I neither (126) nor (128) hold, let A be the unique
value of o satisfying

I5)
- — =0
G 3o g3(cr, p)

If (127) holds with ¢ = Oy then

exp, | _ _
E, (o= o, G g3(cr » p)

otherwise pis inadmissible,
. exp
6. Repeat from step 2 on so as to obtain a plot of Eu (p) for
all admissible values p e[pl, pR]. The maximum is the desired

exponent Efo .

Finally, we wish to find the best expurgated exponent for the

probability of failure when
G <2lgy(1/2, pp) -g,(1/2, pp)] (129)
where e satisfies

R = -g} (1/2, ) (130)

Our search algorithm is as follows
1. Find p.m(p.M) the largest p e[, pR) (the smallest p > p.R)
such that
G =2[gy(1/2, p) -g,(1/2, )]
I M does not exist, set LR 1,

2. Choose p e(p

- p.M) and find oy satisfying

3
G- — =0
do g3(0"“')
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0, G + g,(0y, K) -g3(ay, p) <0 (131)

.then

Eg (W)= - [BR-0, G +g; (o), 1]

1
3. If (131) does not hold, and o, < 1/2 [01 > 1/27 find unique
o, ela}, 1/2) [0, e(1/2, 0,)] such that
0, G = g;(0,, 1) -8,(0,, 1)
Then _
ex, .\ ._ _
4. Repeat from step 2 on so as to obtain a plot of E:x(p.) for

. . . ex
m e(p.m, |J.M). The maximum is the desired exponent Ef .



91

8. Performance Curves for Gaussian Channels with Binary Inputs

In this section we first apply our exponent optimization procedures
to quantized Guassian additive noise channels with binary inputs.
Figure 4 concerns binary output quantization applied to a channel whose
SNR is 1.5 dB per transmitted bit {this channel has Rcomp= .485),

In Figure 5 the quantization is optimal uniform bctal and its SNR is
-.3 dB per transmitted bit (here Rcomp: .51). Finally, in Figure 6
the quantization is again octal, but the SNR = -2.>0 dB (Rcomp= .375).

Each of the figures contains curves of the failure and undetected
error exponents as a function of the rate R, There are thfee curves
of each type: the first curve corresponds to the usual choice G=R,

The second curve corresponds to the choice

G= - 2% () | (132a)
for
Eo(l) <R-= %Eo(c) < C | (132b)
and
=-2f (1/2) = -2 g, (1/2) - (133a)
for ‘ o
0O<R=E (1), - _ (133b)

which is the largest possible G optimizing the undetected error exponent,
The third curve corresponds to the choice

J U 1
(134a)
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for

E:) (I)<R= Eo('ﬂ) < C, (134b)

G; 2 [Ejo(l)+f3 (1/2, 1)] = 2[g3 (1/2,1) - g, (1/2, 1)] (135a)
for

-g (1/2,1) < R < E (1), - (135b)
and -

G= 2[g3 (1/2,p) - g, (1/2,u)] , - (136a)
for

0<R=-g, (1/2, u) <-g) (1/2,1), | (136b)

which is the smallest G value possible that optimizes the failure
exponent. The three figures show the performancé degradations incurred
incurred by a non-optimal bias assignment, Interesting is especially
the substantial failure exponent degradation that results from the
customary assignment G=R. The corresponding weakening of the
undetected error exponents at low rates should also be noted. It is
hard to say whether this phenomenon is real or simply reflects the
inadequacy of the bounds.

Figure 7, the last presented in this paper, gives the Pareto
exponents for the three kinds of channels (see above) when G is

selected so as to optimize the Pareto or failure exponents, respectively,
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Appendix I

Derivation of the Fundamental Bound

In this appendix we prove the validity of the bound (9). Let the set B

denote either Dt or Gt (see definitions preceding (3) in Section 2) and let

’sv* be the path taken by the encoder. - The% assuming § ¢(0, 1],

t, t m o
w(y, /% (3)) w(y™)
E =
~ m . t
s o5 LVE /<9 wly, )
m b - £t o 6
C o owl(y ) w(y /x (5)) )
= E ( Z -~
L w(y /5 (59)) segl  wiy)
' 5
: g
<E Em, m W(X'm) z E t W(X./x (S))
“”X,< ~=x /Y m, m | wiy)
wly /x (s%)] \seB Ldy

\

where E , E m, m, E t denote expectations with respect to the random
~y ~e
m

vectors y, x given a fixed xm, and it (which due to the code ensemble
structure is independent of y). Let | IB I It denote the number of
sequences s of length t in the set . Then if Z(Dt) =t and 2(G 1:) = t-v,

18], <2*® 2R (1-2)

where R is the rate of the code, We now have two cases.
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CaseI: m >t

The righthand side of (I-l)'is equal to (x'tm denotes the sequence

Yt+l’ LR 4 Ym)

- - wiy /%) ree ) m, m "o

z wiy, ) z wiy, /%) .
m m w(ym)

X z Uk

' 5
o)
. (an(B)R zr(:,s,t) w(zf/acf) ) =

t
-
B 1-06
. W(x’tm/xm)
6n 4 (B ‘m
S PSP
1 m m -W(x,tm)
ot
£t 1-06 o 6
w(y /%) e [w/x)
Y wlg) | ) T : Y e | ——
t ¢ w(y) t w(y,)
X % X
=2 sn(B) R + (m-t)fl(cé) +t fz(c, §) (1-3)
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Case II: m < t

The righthand side of (I-1) is equal to

wiy /E) i)

-6 -0b
Z W(x,t) W(x,;) ( z wiy /x) )

m
X:c im w(y )

| | 5
(e
.(anz(B)R Z rity W(Xf/’ﬁt) ) )

ot
x
6
- W(Xrt,(xt) °
=2lSn;ﬁ(B)R z W(X.:A [z r(:rg;) (_____’:m___) ]
t
t t w(y )
: - 1-06 T |
m, m m, m o 6
w( /}rg ) w(y /x )
. Zw(xm) ':Z r(}r&m)(_ﬁ_a__) }[}: r(:fgm)(_f___:_) :, =
X‘m m w(y, ) Lm w(x‘m)
='25nz(B) R+ (t-m) £, (o, 6) + m £, (o, §) (I-4)

Relations (I-3) and (I~-4) substantiate the top and bottom bounds of (9),

respectively,
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Appendix’ IO

Relations Between Functmns £. < 1-:6’ 8)

Theorem II-1

1+y[ (+ , Y)+E (Y)]< E (y) -l-ixfl (‘1‘3_‘;{ (II-1)

with equality on either ‘side if and only if

1
T+y
Z(%) rx) = const forally (1I-2)
x _
Proof

Using Holder's inequality, 1 . l1+y

1
o 5+ (1 v ][] )

<

1 1
] o1+y ‘ I+y\ vy
5(2 wly) Z[ﬂvf(%l] () ) = exp, L6, (7ps V)
y .

with equality if and only if (II-2) holds., This establishes the righthand

side of (II-1). Similarly,
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R 1
1+
eXP, f3<1-ll-y’ Y)= (Z w(y) Z Ew%%z ! Tx) !
y x |
1 l1+y 1
y x

_ X 1
= eXP, Tiy L (1+y’ Y) (II-3)

with equality if and only if (1I-2) holds. As a consequence

l+y [ 1 ) ] Lty [ Y 1
v (o v)rEm] < Thy B+ E M ]= < E (v)
so that the lefthand inequality of (II-1) holds as well, Q.E.D,

1
Since Eo(y) = - f2 (—1+_y , y) the relation (II-1) establishes that for every

6 €(0, 1), G can be chosen so as to satisfy (35).
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Appendix IIT

Properties of fi (o, §) Functions

Theorem III-1

The function fl(x) is convex, fI(O) =0, fl(l) < 0 with equality if and
only if w(y/x) > 0 whenever r(x) > 0. Finally, f'1(0)= -I{X; Y), the mutual

i.nform.a.ti'.on between X and Y,

Proof
Let
W p.4 —
-1)
y= wiy) .
Then
— . x | ‘
£(1-0) = log E_ [g X) ] | | (11I-2)

\-= BXI + (1-0) xz with 0 ¢(0, 1), then

| ON] + (1-8)\
(1-1) = 2
£41-\) = log E [Ex ) ]<

N\, _© A, _1-0

seg g [2x '] [EX,°]

<o {52%, ) (B2, -

=0£(1-N)) + (1-8) £,(1-},) (1-3) |

(III-3) proves the convexity of fl(x).'



Since EX =1 then f_(0) = 0. Next,
~y 1

A

Cas w(y/x

£,(1) -)\lin:) log ) wiy) ) wly/x) w(y)) r(x) <0
X

with equality if and only if

N
lim <M> =1 whenever r(x) >0

" axdo VO
Finally,
X _—
E E[X 1ogx]
SR TR S Y doi-S y
ax 1 N
E E[x]
Ry sy
50
lim £!(\) = - lim £!(1-A\)=-E_E X_log X =
rdo ! I . YRy y

w(y) w(y)

:-z w(y) y r(x)w_(yﬁc_) log M = -I(X;Y)
y x

Q.E.D,

Theorem III-2

fz(c, 6) is convex in g. fZ(O, 8) < 0 with equality if and only if
w(y/x) > 0 whenever r(x) > 0. £,(1, 8) = f1(5). Thus for 6§ <1, fZ(l, §) < 0.
Proof

Using (III-1)

5
£(s,6) =1log E (E X °> X

1-06)
~ Yy

(OI-4)
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Let 6 ¢(0,1). Then

£,(00, + (1-0) gy, 6) =

0¢. + (1-8)o, & 6(l-0,8) + (1-6) (1-0,6)
1 _2) (EX 1 2 )
c,. 6

sieg,[(5x,) (B, ) EX) @Y, 7))

<0 f,(0), 8) + (1-8) £, (o), &) (II1-5)

- so that fz(o, §) is indeed convex. Since '}5 XY =1,

Ex )’ <0

y

fZ(O, 6) = lim logi 'E‘:‘Y

cto
with equality if and only if
lim Ex %=1 fora.lly‘
sdo ~ ¥
i.e., if and only if w(y/k) > 0 whenever r(x) >0,
The fact that fz(l, 8) = f1(6) follows directly from (III-2) and (III-4).
Q.E.D.

Theorem III-3

For p >0, fz(p/ﬁ, §) is a convex decreasing function of §.
Proof
We first prove convexity, Let & = 061 + (1-9) 62 where 0 ¢(0, 1),

Also, let
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i 961 o (1-9) 62 |
@="% B 5 - (I1-6)
so that
L ___P —al A : -
6_(161 +(10.)62 _ (11I-7)
Then
ap/8;+ (1-a)p/6, 6 1-p
] _ 1 2
f2((5 ' 6) = log Ey<g Xy ) (E xy ) =
ap/5, 08 ap/6, (1-8)8
1 1 1 2 1-p
sweg (e, ) e, ) e, )

<0 £(0/8;, 8)) +(1-8) £,(p/5,, 6,) (I1I-8)
which proves convexity.
Next, after some algebra,
4y (ﬂ 5): [exp £ (p/5 5)]
ds 2\s’ 2 T2'P/ ¥
)
EX P/
. E (;gx 1"’) (Ex "/5)5'1 (Ex p/6log—z—> <0
~y y ~ Ty ~Ty x o/8 =
y
where we made use of the log x <x-1 inequality. Q.E.D,

Theorem III-4

The function f3(cr, 6) is convex in ¢. f3(1, 6) = 0 and f3(0, 6) < 0 with

equality if and only if w(y/x) > 0 whenever r(x) > 0,
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Proof

Using (II-1)
- o\6
f3(0,8) = log E_ (E X >

Thus if © (0, 1) then
N o, 06 o, (1-98)6

£3(80, + (1-8) g,, 5) < log Ey(g XY ) (E Xy ) <

<6 f3(cl-, 8) + (1-9) f3(o , 6)

Next, f3(1, §) = 0 because E XY = 1, Finally,

lim £, (o, 5) = im £,(5, 8) <0
clo oV 0

with equality if and only if w(y/x) > 0 whenever r(x) > 0. Q.E.D,

Theorem IH-5

1+6

X\j 3 - nnn; 1 3 .
s 146’ °/] is a nc A negative function of & > 0.

Proof

Since by Holder's inequality

then

1
1 1+6) 5
L 5)- E X >
f3(1+6’ 6) log Ey(N y =
. 1 '
Teoy 146 . (_1 ) )
2 log Ey<§ Xy ) BREACATREEAC)

Therefore the function is indeed non-negative for all § > 0. Q.E.D.
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Appendix IV

Properties of gi(o, §) Functions

Lemma IV-1

For all p >0, gz(o, p) is minimized by the choice ¢ = 1/2.
Proof
Consider any input 1e;ter x' # 0, By definition of channels symmetrical
from the input [see Jelinek [1], p. 201], there exists a permutation w of
outputs y such that
w(y/0) = w(n(y) |x') forally B | (Iv-1)
and a permutation m* of inputs x such that
w(y[x) = w(n'(y)|m*(x)) for allx (Iv-2)

Therefore,

/
), Q. wir/or W(YIX>1'°)1/p =) () wrtn 1x)° w<w(y)ln*<x>)1'°)l -

X Yy S 4

/
=Y () wiyl=°® w(ylel“’)1 ,, (1v-3)

x Yy

and IV-3 holds for all x', Thus we can write

£,(0, p) = p log a—% Y (Ywty/e® wiy/a' )P (1v-4)

X, X' y
It is well known that the righthand side of (IV-4) is minimized by the
choice ¢ = 1/2 (see Jelinek [1], p. 246, problem 7.28). Q.E.D,

Define an equidistant symmetrical channel (c.f. Jelinek [1], p. 230)

as a channel symmetrical from the input that also satisfies



2 v w(y/0) w(y/x) = a for allx £ 0

y 4
2 w(y/O) «/3;%)—_1 for allx £ 0
Y.

" Theorem IV-1

For equidistant symmetrical channels and all p > 1,

g5(1/2, o) + g,(1/2) < g,(1/2, p)
Proof

Instead of (IV—6) we will prove that
1 1
exp [831/2, 0+ 8,(1/2)] < exp 8, 1/2, 0]

Let

¢ (a) = axl/ p

Then ¢ is an increasing, concave function fur p > 1. If we let
P2

<L Z ) (280)” ][Z w) (S (5

and

a'-[z (Y)(W(Y)> (w(y)) ]

then our task is to prove that

)l ) <) ¢ @Yy
p.< XxX.

(IV-5)

(IV-6)

(Iv-7)

(IvV-8)

1/2

) ]

(IV-9)

(IV-10)

(IV-11)
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or, utilizing condition (IV-5), that

¢(a ) + (a-1) ¢(a P Se@) + (a-1) (@) _ (IV-12)

It follows from a trivial modification of Theorem 108 on p. 89 of Hardy,

Littlewood, and Pola [11] that (IV-12) holds if

(IV-13)

1 - ! -
aozao, ao+ (a 1)a1_<_a.o+ (a l)a'1

We must therefore prove that (IV-13) is indeed satisfied, Now, by

Holder's inequality,

1/2

v=Lwin () )

IA

y 3/2 2/3 o 32 1/3
[ 2wt ( w(av(y(;)) ] [he»(t) ] -
y b2

, R
z wly) (—‘(”%%)-)3 : (IV-14)
Yy .

where the last step is due to the symmetricity conditions (IV-1) and (IV-2),

(IV-14) proves a, > a.l. Next,

1/2 w 1/2 w(y/0) 1/2
aj=) v (42(6()&) ( w(y) ’) [Z‘”‘V’ v(rmo ]
y
' [Z wl(y) (W‘:,}(:Y{)2>] 1/2 a; (IV-15)

and
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1/4

‘ w(y/0) 3/4 w(y/0)
a = Z'w(y) ( w()(')) ) ( 'w(y(; ) -

y
1/2

| rwiy/0) 1/2 wiy/0)\ /27 1/2
|7 wm<w(,,,> ] (v (H5) ] -
y

-However, a = 1 so that aj =a < ac; . Finally, we must substantiate the

last inequality in (IV-13). But because of the symmetricity‘of the channel,

| -
5wt (200) (22075 o5 etafen [ ‘éf:iéy»‘ﬂ
=zzw<y>%%;”r"%m"‘ e
X

where the permutations w and -rr* are those referred to in the proof of

Lemma IV-1l, Since (IV-16) holds for all x', we get

a_+ (a-1)a, -Za ‘{ Z ZW(Y)F_,M}—Q] 2}

w(y)

w(y/x! wily/X 1/2
AZL YT w2 () )

X'x vy

LT wony (et }{zwmzm(;ﬁ T

On the other hand,
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| 1/2 1/2
as t (@-1)a =Z B =Z Z‘”‘V’ ( w(y) ) ( w(y) ) } =
x X y

wly/x! 1/zw b 1/2
T2 Lo ()T )
x'x y
0122
7w ] (1)) v
y b 4

Since (IV-17) has the form—(E Z)° and (IV-18) has the form 1 E (2%), the

last relation of (IV-13) holds, and the theorem is proven,
Q. E. D.

Lemma IV-2

For any p > 0, the functions gl(o), gz(o, p), and g3(o, p) are convex
with o. |

Proof

By Holder's inequality,

g,(80, + (1-8)0,) = logz W(Y/O) [—%L]

+ (1- 9)02

<log [gww (2 y ] [wa/w[w‘%%—] ]

=0g)(op) + (1-0) g (a,)

f-To) gl(o) is convex, Similarly,
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1 wiy/o)\ %1t (-0 Ve
8200y ¥ (1-0) 0y, p) = p log L[ G) )
S .Yo‘,,g | o, 12
GO e e Ner) T, . 2_0p
<p10g 2 T [Twty/a (R ) 1] [Tty (252 ]
X y y

<0 g,(0), p) + (1-0) g, {0y, p) |
80 gz(c, p) is convex as well. The convexity of g3(c, p) is proven in the

. same way., '
Q. E. D.

Lemma IV-3

For any .ﬁxed o €(0, 1),—:; gz(o, p) is an increasing function of p > 0.
Proof

1/p

1 |
2008 25 () wty/0° wiy/m)'"%) " o ne)

But

Sh =2 ) () wiy/o)° w(y/x)l“’)x log () wiy/0)° wiy/x)' ™)
x Yy y

and for o ¢(0, 1)

Y wy/0)° wiy/x)' =% < (Y wiy/0)) () wiy/m) )70 = 1
y y y

so that h'(\) < 0. Therefore



Lemma V-4

e /e
g 0/2,0) Zh"" log he<)

———7— + log a
Zh(z) :h( )

where

hix) = §My/0)w<y/x)

Proof

Involves simple algebra and is omitted,
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Figure Captions

A trellis for a rate R = 1/2 code,
Partial tree of a code of rate R = 2/n .

Graphical maximization of s* leading to an as ymptotically
optimal upper bound to Q(a),

Undetected error (top curves) and failure exponents
(bottom curves) for a binary output quantized Gaussian
channel with SNR equal to 1.5 dB per transmitted bit
when different bias values are used,

Undetected error (top curves) and. failure exponents
(bottom curves) for an octal output quantized Gaussian
channel with SNR equal to -0,3 dB per transmitted bit
when different bias values are used, '

Undetected error (top curves) and failure exponents
(bottom curves) for an octal output quantized Gaussian

channel with SNR equal to -2,0 dB per transmitted bit

when different bias values are used,

" Pareto e€xponent pairs for the binary and octal quantized

channels of Figures 4,5, and 6 when the bias G

optimizes the Pareto (better curve) or failure (worse curve)

exponents,
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II-E. Bootstrap Trellis Decoding

1, Description of the Rudimentary Decoder

Bootstrap trellis decoding is based on a convolutional code of

contraint length v, (in branches) and its truncated version that is

b

obtained by eliminating all but the first My < v, digits of each

b

generator defining the original code, The truncated code has therefore
B, -1
b

2 trellis states per level, We will assume v, to be so large that

b
at the SNR used, the probability of error of the corresponding maximum
likelihood (Viterbi) decoding would be negligible compared to the
probability of error resulting from the scheme described below
(see Section 3).

The rudimentary binary bootstrap trellis decoding algorithm
is as follows:

1) m-1 streams of binary data of length N are encoded using
the same vb—constraint length code, and an mth stream is created
using mod 2 position by position addition of the m-1 streams.

2) The m streams are transmitted through the channel, and
the receiver creates an appropriate state stream as in Bootstrap
Sequential Decoding (3].

3) A pb—truncated trellis decoder is used to decode the first

stream, its metrics at depth i,

Wm(Yi: Zi)
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being based on m, the number of sti’ea.m’s in a block, on the
tfav,nsmit't‘ed_ and réceivéd aigit' x, and Yi, and on the. state -svt_rea.nfx digij:s
z.. "’I‘he bia.s_vR corréspc;nds to the convolﬁtional rate, .l To 1e:}a.c:‘n depj:h
i of the N-branches long codeword there correspond 2*‘L likelihoods,
the ma.ximum of thgse at depth n being denoted by Ln. Let

Ln = max Li

1<i<n

so that LI\J/: is a monotone increasihg function of ne {1, eees N } (N is the
s’_tréam leﬁgth in branches). Lét 6 be some suité.bly chosen thfeshold.
If 'L'I: - Ln'< e for all n, the decoder accepts the decoded first étrea'rn '
. information sequence,b othefw_ise it rejects it (in fact, it will stop

- decoding whenever a.vdefwth n is reached for which LIZI- Ln‘ 2 0).

4) If the lst stream was accepted, it is replaced by the estirhafed

transmitted stream, the state stream is accordingly recalculated, and '

the decoder proceeds to decode the 2nd stream as in step 3, using a
metric table appropriate to m-1 undecoded streams (the subscript m in

(1) is replaced by m-1),

5) If the 1st stream was rejected, 2nd stream decoding proceeds -

exactly as in (3) with no change to either metric or state strea.rh.

"6) Steps 3 through 5 establish a patte rn that is adhered to in.
general: after ev.ery acceptance the state stream and metrics are
recalculated, and decoding of the "round robin" next stream begins..

'7) Decoding terminates in either of 2 ways: |

(2) SUCCESS: all m streams get finally accepted.
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(p) FAILURE: when ¢ streams ( £ < m ) remain undecoded,
4 successive attempts at stream decoding end with
rejection,

2. | Bounds on _the Probability of Failure

In this section we will obtain upper and lower bounds on the
probability of failure or error. Let A.ku,) and Fk(z) denote the events
that when m-k streams have been correctly decoded, the 4th of k
remaining streams has been decoded in error and has failed the
threshold test, respectively, Let Ak(!,) and F, ( ) denote the
complements of these events when m-k streams have been correctly

decoded. Then the probability of failure or error is bounded by

P(FUE) < P[] F (1] Ul U Am(i)f‘:n(i) +
i i=1

8

velu ol [ r_ ol u
i=1 j=1 m-

U A
MEal
+P{U U Am(i)F;n(i)“Am_lmfm_lﬁ)( [ o2 (zi\ U

.[U Am_z(jmm_z(j)} +

L@F L 6) ) +

S L#i Sati
| £#] 2t ]
f P AU R GO T G Byl pIFsl, ) [Fz(im_lmzum)]
J_ |
Ua,  DF,6 ) UAG F,G ) )

where the union with the subscript ij is over all permutations of m-1



digits ta,ken'fromvthe set {1,2, .o es m} . Realizing that every term

: i.n each union is equally probable, we can upper bound P(FU E) furthe: by

m-1

P(FUE) < P { T— (1), + (D P{ fm_lm}

m-2 ‘ ' :
+ () »{ TL Fm_z(i)} oot (r:‘n_z)P{qu)FZ(z)} ¥

— ( —
+ mP{Am(l)Fm(I)} + (m-) (PPLA__ OF ]+

| ( _ | _ 1
+ (m-z)(‘;‘)PIAm'_Z(l)Fm_Z(n} bt 2(2_2)P{A2(1)F2(1) .o

Since not using the state information increases the probability of not

beihg able to decode , then
2
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P{WF o= l[T ¢ (J) = P mm}z Rt

j=1
where F&(j) denotes the event of failing the threshold test on the jth.

of a block of m = = streams (in such a case state information is
worthless), The last equality in (3) follows frem the fact that if
state information is not used, decoding of any set of streams is
independent and identically distributed, Another valid upper bound is
, .
(1T \ ] f } : _
Plﬂ_ F ()] < PlF (1)) . (4)

Collecting the results (2) through (4) we get
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: m-2 ‘
‘ | | .
PFEUE)S ) () [min{P e} ™, piF_ 2(1)}} Hm-)P{A_ (OF, 0.
£=0

(5)
To lower bound P(F), let sze the event that some set of § < m streams
have been correctly decoded and passed the threshold test, and let
Cm . be the event that after g streams have been decoded, none of the.

remaining m-¢ streams can be correctly decoded, Then

}. (6)

However, since the probability of decoding at least oné of remaining

ceum wells o Jus)arlo,

m-¢ streams is smaller than or equal to the probability of decoding at
least one of a given set of m-4 streams that satisfy the parity constraint
(because the first ¢ streams to be decoded will in general be the least

noisy ones), we have
. ( m-J4, ‘r
P{Cm_z} 2 Pl L Am_z(J){ .

Since certainly

PlAL (1), A (2),..., A (k-1)/A (0} 2 PIA (1,A @2),..., A (-D/A K],

then
Yy m-4

P{cm_ z} 2 P{Am_ ) (7)

{
where PIAm-z(l)} denotes the probability that the first of a given set
of m-¢ streams cannot be correctly decoded, F\J.rthermqre, because of

the parity constraint, if two streams remain, then either both or neither
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will be correctly decoded, Hence -

- plc,t 2P{a,0 - Az(z)} = P{a, )} . S 2

We therefore get from (6), (7), and (8) that

P(FUE) 2maX{P{A2(1)} , max P{A )} } S ()

mz=kz3

3. Estimates on Exponents

.Ir‘1 this section vs;e use the bounds (5) and (9_) to estimate the

:'limiting behavior of(lf1)log P(FUE)., We get -

PIFk(l)}S P{Ak(l)} + ‘.P{Fk(l)Ak(l)} ‘o | ' g (10)_ '
Now ©o : . ‘ .
} ~ "'P'Ek(R) ) ,
P{Ak(l) SN L, (N,p)2 | Can
where p = p'b)\ is the truncated constraint length in bits (\ is thé

number of transmitted digits per branch) Lk(n,p) is a slowly varir}g‘
function of its parameters whose va,lué does not exceed l,and Ek(R_) is
the undetected error exponent that corresponds to ma.x:.mum likelihood
decoding of the first of k parity constrained streams (see step (1) of
Section 1) that utilizes fhe ieceivéd as well as state stream digii:s
when the convolutiéna.l transmission rate is R (the net rate that takes
into account parity as well as stream tail degradations is-

m-1 N

m ) N+vb

R).
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The probability P{Fk(nKk(l)} is upper bounded by the probability
that the likelihood on the correct path ever drops by 6 . It has been

shown in [1] that the bound

..hke

P{F (l)Ak(l) < K/ N2 _ (12)

holds where Kle (0, 1]. For channels symmetric from the input

hk is the solution of

1
= }"1" '-hk) (13)
where
(v,2/0) 7 7© »
kK, . A W
fl (¢) = log Z wk(y,z) m] - (14)
Y2

Finally, P{Ak(l)Fk(l)} is the probability that some incorrect path passes
the threshold test at all depths, It is upper bounded by the probability
that the likelihoods of all initially incorrect paths exceed - § at the
earliest point at which they rejoin the correct path (all paths are

joined with correct path at depth N + y), It is then easy to show that

k
- 0 8-v o - £, - o )]
g 3
P{Ak(l)Fk(l)J <K, N2 (15)

where v = vb)\ is the constraint length in transmitted digits, and

K2 is a finite constant provided

k
R <o R- f -0y

" ] 20 (16)

%%

. k .
Since f1 (C) is a convex function of {, and
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d k -
lim = f (g) — £ () | = L (X5Y) ,
(4 0 g d5 1 Ik

then relétions {(13) and (‘16). can be satisfied simultaneously provided

w. (v,2/0) A
R <1 (%Y) = Z w, (y,2/0) log’ w (y,2) (17)
| Y, 2
Plugging (10), (11), (12), and (15) into (5) we get
B m-
- ‘ wE(R)  -h_87) m-s
P(FUE) < Z (r;l)n_ain{(N[K32 ® + K2 ]) ,
£=0
wE__ (R) 81y
N[K32 meby K,2 m-4 } }+ |
m k
o 6-\)[ R-f (1-g)] :
+ Z( k) k K, N2 q< 1% . - (18)
k=2 ’ ' ' -
Let
8 = py
where
1
2<k<m 11'k k , ,

and note that (m-yg) Em(R) and Em-z(R) decrease and increase with g,
respectively. Also, let g¢(2, m) be the index maximizing
k ' " .
cke.--\, [ckR - fl 1 - gk)], let ¢ = o, and define
" .
=cR-f1(1 - a) e (20)

Then



where

and

S 'I‘LBU(R) oY -~ va

P(FUE)5K4Nk” 2 t K 2

\
. * ; >
BU(R) = min {k EQ(R), E,k*-l(\R),

%

k = min{k tk Em(R) p3 Ek(R).} .

We see from (21) that

provided

lim -+ log P(FUE) = ﬁU(R)
b

vz p[ByR) + oY)

Finally, using (9) and (11) we get that

Let k+ be the integer minimizing k Ek(R) over k = 3,4,..., mand

define

.Then

and

We will summarize our results in the following theorem,

+E_(R) -nkE, (R)
P(FUE)Zma.x{NK42 27, max  (NK )" S

2
mzk=3 2

. + '
B, (R) = min {.Ez(m, k Ek+(R)} :

-uﬁL(R)
P(FUE) 2 K N2

lim -& log P(FUE) < BL(R) .

}.L—Oco
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(21)

(24)

(25)

(26)

(27)

(28)
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Theorem 1

Let Ek(R) be the exponent of the probability of undgtected error
cofresponding to Viterbi decoding of the first of a block of k received
streams when .the tra,nsmitfed codewords satisfy the parity constraint,
Let hk’ k =1,..., m be the solutions of (13), let Oy maximize the
rlghtha.nd sides of (16), and let y and a and o be as defined in (19)-and
(20). Let the bootstrap trellis decoder be based on the p-truncated
prefix of a convolutional code of constraint length v. If the stopping
threshold has value 6 = py then thére are codes whose probability

of failure or error satisfies

ﬂﬁ(R) < - lim & log P(FUE) <B, (R) | | (30)

e
provided v 2 [ﬁU(R) + oy] . The bounds [SU(R) and [SL(R) are given '

by (22) and (27), respectively.

4., Exponent Evaluation

The preceding theorem gives bounds on the error exponent for
Bootstré,p Trellis Decoding in terms of the undetected error exponent
Ek(R) In this section we show how the bounds can be evaluated.

First note that the exponent E (R) is known only for RE(R »C),

comp’

but that upper and lower bounds to it exist for RE(O,Rcomp). Since what
is wanted in practice is an estimate of the behavior of P(FUE), we will

take the point of view that for RC'(.O, Rcomp)’ Ek(R) is given by its

expurgated lower bound 2]



Let wk(y, z/x) be the probability that when x is transmitted y
is received and z is the state digit, when the block of k transmitted
streams satisfies the parity constraint (see Jelinek and Cocke [3]).

Assuming a symmetric binary input channel,define the exponent functions

1 1
16 1+a]1 * 8

oy - e [ ‘
E2(0) = (1+o) - log ) Lw (y,2/0)"*® 4 w (3, 2/1) (31)
Y, Z
. b2 )]
E (o) =0 -log U + '\/_v%< (v, 2/0)w(y,z/1) . (32)
Y, 2
It can be shown that Ez (1) = E;: (1) . Define further
E, (o) ce(0,1)
1
x
E, (o) o>1
Then having assumed the expurgated exponent as the true one, we
get for 0 < R < Ck [Ck is the capacity of the channel wk(y, z/x)]
Ek(R) = Rg
where g is the solution of
1 .1
R==E (o) . (34)
o)

{34) thus allows us to evaluate both [3U(R) and ﬁL(R) provided we
solve the equations R = EI]; (6)/oc . This is impractical if the
B-exponents are wanted for all R. In that case it is best to proceed

parametrically with the help of the following theorem,
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Theorem 2 -
~ Lety = 0 be arbitrary,
I. The ratio ﬁﬁ(‘R)/R attains the value y at the rate
+
S N O g oty
R _ma;;{y E_(y), min {YE . 0, 5 Ea 5 )}} |
;N k-1 K
where

+ 1 X
k' = mm{( 2, El(y) <
k = Y ( ) < ( )}
II. The ratio ﬁ-L(R)/R atfa.ins the value y at the rate .

'a:@n{—l-izlm Lot )}
-, y 2' vy .!,+ z_+.

where

o+ ' _‘L <4t g

The p_r'oof.is_ similar to that of Theorems 3 and 4 of [3j and is
omitted, Figﬁres 1 through 4 evaluate B (R) and pL(R).‘. vs R.:for: ,
m. = o and compare these ‘t‘o-the- exponent Em(R) appropriate to
straight Viterbi ‘decoding. The four figures appl}f to the iB'SC with. o
crossover probabilities p = 0,045, 0, 056, 0.07, and 0.09, .
respectivel*j. It should again be stressed tha.t'R is the cdi:_ivélutvio‘nalv .
rate and not the net rate, For every corﬁbinétion "ofu ih, N,_ and vy N
thé lattef curves can be obta.ined by féplotting the preseﬁt ‘onesb,
taking into account the relé.ﬁonship

.m-1 N
- m N +

RNE'I‘ R

Yb
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5. Simulation

The simulated bootstrap decoding algorithm(BTDA) operates as
- follows, First, the truncated trellis algorithm ié vemployed‘to decode
each of the streams. While decoding a stream, if Ln does not exceed
its previous maximum within some number of time intervals THRSH,
the decoded path will be computed by tracing back fromthe position
of the maximum, The digits on the decoded path will be declared
reliable up to the position which is located KB‘ACK intervals earlier
than the position of the previous maximum,

Once a portion in a stream is declared relia.ble, the channel.
state modificatiéns will be made over that portion, and the algorithm
will go on to decode the next stream, When the m-th stream is
encountered, first the parity relationship will be used to decode
digits above which all the (m-1) streams are declared reliable, and
then the truncated Viterbi decoder will be operated over the undecoded
digits of the m-th stream.

After decoding the m-th stream, the parity rela.tionéhip will be
used again to decode the portions where (m-1) streams are decoded
and declared reliable, These procedures constitute the first iaass
of the algorithm, For the second pass, the last stream decoded in
the first pass will be the first stream to be tried, and, in addition,
the decoder will operate backwards sta.fting from th e opposite end of

the stream,



After decoding of a stream gtops;' the channel state s'ymb‘ols are
modified over the 'relia.b‘le.,pézftion‘ according to the ciefihifely -dei:ddé;i
digits-in‘ that stream. The encoder will .go on to decode the next to”
'la.st stream of the previous pass, and so on, Passes will continue
until no further improvement in the length of the reliable stream
po’rtioin can be achieved.

: ﬁsing optimization methods des?ribed in his Ph.D, thesisl[4] .
H. S. Park selected THRSH=40 and KBACK=50 for m = 10. He
simulated f;he algorithm Qn.a BSC with crossover p = 0.056 whose -
= 0; 45, which is the net value of the tra.ns‘missio.n.,_ra.té .

comp
(RNET = 9/10 R) of the convolutional code of rate 1/2. This allows 3
comparison with the straight maximum likelihood decoding (MLDA)
performance of R = 1/'2 codes over a BSC with p = 0,045, The

following results are obta.inéd:

Hybrid , Straight |  MLDA
BTDA o  MLDA Huivalent
P, THRSH KBACK . p, P,
. 056 40 50 .00018 .0034 v ~ 11.5
- Table 1, .

The above table lists the constraint length v necessary for the MLDA -

algorithm to achieve the error performa.ncé Pg = o 00018, - -

For meaningful statistical data on P, for the BTDA, the running

time of the simulation program should be large so . that the simulated

value of P, be reliable, Due to limited computer time, only 1200 ‘
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blocks of 10 streams were run to count decoding errors, The BTDA has
achieved the error probability 0, 00018 for those 1200 blocks. In all,

240 bit errors wefe responsible for this figure, and these were

spread over 40 of the 1200 blocks, As many as 45 of the 240 bit errors
occurred in a single block, To achieve more firm support for the

value of Pg» additional computer time is needed to view more of

these occasional "large error" blocks,

6, Co;nputatiqna.ll Complexity of the BTDA

We shall assume that the computational complexity of the MLDA
is determined by

E = (N+p - 12" | (35)

where N is the length of the information séq_uence and (. - 1) is the number
of digits defining the binary trellis states in the trellis diagram,

In the BTDA, ifweletT denote the a.vérage number of trials
to decode m streams of the hybrid scheme, then the average number
of trials M per decoded information stream is given by

M= 51‘1 | (36)

where (m-1) takes account of the rate reduction due to thevextra
parity stream of the hybrid scheme,

If we assume that whenever the BTDA retu-rns to decode a stream

that has already been tried, decoding starts at the beginning of that

stream, then the average number of éomputations Ech per decoded
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inférma;tion stfeérh of the h&br‘id écherne is upper-bounded by'

l" _ p .
E S MN+p 1)2' . (37)

From the simulation program of the BTDA (v = 10, p = 5),

_ the ‘number M is shown in Table 2 below, Thus

E, < M*(N +p-1)"° oM =1.5. (104) ° 2% <104 - 2%
o | w5 o (38)

Hc.gwever‘, as shown in thé pre’vious section, the performance

achieved by thé BTDA (v = 10, p = 5)is 31ﬁ§st equivalent‘ t§ the

- performance for the straight MLDA with v ~ 11, whose E is given by

1

ch .
N=100
p=11

From Eqs. (38) and (39), the computational complexity of the BTDA

compared to the sfra.ight MLDA is smaller by almost a factor of -

25 = 32,
. MLDA
Pe v K THRSH KBACK M Pe Equivalent
.056 10 5 40 50 1.5 .00018 v > 11,5

Table 2,

E, =(N+p -1 2" - 104 - 2} o (39)
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Figure 1:

Figure Captions

Comparison of BL(R)’ ﬁU(R), and E _(R) expdnents

- for the BSC with crossover probability P, = 0.045,

Figure 2:

Figure 3>:

Figure 4:

Comparison of ﬁL(R), BU(R), and Ew(Rv) exponents

for the BSC with crossover probability P, = 0.056.

Comparison of BL(R), [3U(R), and Em(R) exponents

for the BSC with crossover probability'pc = 0.07,

Comparison of BL(R), BU(R), and E_(R) exponents

for the BSC with crossover prbbability P, = 0.09.

139



140

P=0.045




10

141

| P=0.056
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II-F. Three Group Bootstrap Decoding

1, Description of Code and Its Use in Boptstrapping

It is desirable to generalize bootstrap decoding to encode
transmitted streams by use of an algebraic code that has more than
one parity check, The three-goup code has two parity check digits
2T ‘VZ and k information digits my, ..., m, . Every information

digit is checked by at least one parity check digit., Without loss of

generality let

g-1
= < - <
\8) mi 1<g-1<k
i=1
(1)
k
= <h <
v, ZJ m, 1 <h <k
izh

For the code to be non-trivial, 1 <h < £-1 <k and at least one of the

outside inequalities is strict, It is convenient to define the codeword

digits, xl, .o ,xk+2 as follows:
1 Y
X, = m, i=2,...,k+l 2)
i i-1 .
iz T 2

The codeword digits may then be divided into three groups

’31 = bpeeox ‘82 = brgpeeax ), "33 = ] (3)

where n-k+2, Let y = yl, ey Yn be the received digits, and define



h - A’h -
'Y Y
=LY o= /%
i=1 | i=1
L £
A u £ T‘ X
i=h+l i=h+l
n
n
. LAY
t Q? ¥i Y35 0%

y are

-~

Then the syndrome digits of
5=t ®t, end s, =t, @t

' Let g = (u'l,uz',uB), t = ('tl,ta,tj), n, =h, 0, = £-h,

"3
that the information digits m,,...,m are i.i.d. with P(mi = 0) = P{mi =1}
1/2, then
P{u = 0,0,0} = P{u = 1, 1,1} = 1/2
Now for n, >1,
an even number of ngi
. A o _ p _ J digits were receive
,qni(O) - P{ti =Y ui} =P = incorrectly through
the channel

vhere p is

ny
1 - (1-2p)

u b
2

q“i(l) 2 P{t, $u, -

It will prove convenient to &lso define

qo(O)é 1 . ‘qo(l)g 0

From the above, we get the relation
P{t )ty t,) = 5 anl(tl) qn2(t2) %3(“3) +

BN qr;;(tt ®1)

()

5y

= n-£u Assuming

6)

. ni
1+(1-2p)

2

the channel crossover probability. As a consequence,

(o)

8

%, (t,®1) o, (45 @ H |
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where (¥)denotes - mod 2 sumdation, and n. > 1.

We will be able tc show below that for the three group éode,

Pl %) PLyjotyotpty [x;) -
— = : if n, > (10)
Pl g} Ply;s 1ty t5)

Since the left-hend ratio is the one that enters into the likelihood
calculation for bootstrap decoding, the receiver will be interested in

probabilities P{yi,tl,tQ,t3 lxi]. Suppose ie[l,...,nlj- Then

ﬁ{yi: £t/ %= ZP{Yi’E"i/ xi} = ZP{&i’E« /B’ %] Pl / %]
) /% .
. u ~ '
= ) Plygsty /oxw Y Plty fupd plts /ug) Ly / x;) (11)

u

~

But
P{u / xi1 = P{u1 / xi] P{ua,u3 / uil = P{ul-/ xi} 6(u2,u1) 6(u3,u1) (12)

[where 8( , ) is the Kronecker delta function}, and
1 >1
P{ul / xi3 = . (13)
a(ul)xi) nl =1

[ 1 ) :
Furthermore, for n, >1 (tl and u, are the sums over the first group excluding
.th :
the i variable),

) ! -
Plygoty / 2w Y = wiyy / x;) Plt, =t @y, [y = u @xt=
1 ' . |
Thus it follows from (11) through (1k4) that as long as ny > 1, n,>1,

n3 > 1, then



147

“.P{yi:E,/ x V= X[% qnl-i (t, Bu, By; &%) %n, (k2 ®vp) an(tBQ ")
}&' .
w(y;/x;) 8(upruy) 5(“3"11)] N

= % w(y; /x;) [qnl-l (¢, ®y; ©x,) qng(t2) qn3(t3) *

4 qnl_l (tl@ yi® xi@.l) qnz(t-,2 ®1) qn3(t3® 1) ] (15)  _

As a consequence,
: 1
Py, 8} =% [Ply,5/0+ Ply,8/11] =

1l; ( [ w(y, /0) In, -1 (t) +y;) + w(y,; /1) I, -1 (., ®y; @ 1)] .
qnz(te) qn3(t3) - |
+ [w(yi/O) In,-1 (¢, @ y; ®1) + wly;/1) In,-1 (t, @ yi)] %2(t2® 1)

)

<} Lo (02) 9, (520 5y (89) + 8 (8, O 5 (5 O %3(t3@})] (16)

s.o that for n1 > 1, n2

P{yi,—\/xi) -

P{Yi)E}

>1, n > 1,

3

qnl_l(tleyi&i) qn2(t2) qns(t3) + qnl_l(tleyiﬁ)ii@l) %2(t2®1) qn3(t3@1)
2w(y, /x,) ‘

I, (#1) 9y (tp) qnq(t3) + qnq(tl@l) qnp(tg@il) In, (4581) (17)
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Since for lfl.l = 1,

w(yi/xi) if y; = ¢
P{yl’tl/ xi,ul} =
0 1f yi # 31
then N )
w(yl/xl) qng(télﬁ xi) an(tB @ xi) if yi = tl
Ply,,t/x, 1 = (18)
0 if ' ¥ tl

Assuming the ¢age tl @ y; =0, then

ql(tl @ xi) = w(yl/xl)

and t, @)yi<$)xi = X, . Thus (17) is vaiid if n. > 1, provided definitica

(8) is used.

Relation (15) was obtained under the assumption that ie[l,...,ri].
It nl+ 1<i< n1+n2, we need only interchange nl and tl with N, and t, in
(15). The interchange of ny and tl with n3 and t3 preserves the validity
of (15) fo- n.+n.+ 1 <i<n.

172

It follows from (9), (10), and (15) that if n; > 1. the likelihood
used in bootstrap decoding with a three group algebraic code is a function
of y.»%;, and the state variables (tl,tg,t3,n1,n2,n3). We will see that
these variables will also be sufficient if all the digits of one or two
of the three groups have been decoded. The needed adjustment of the
state variable values as the decoding proceeds is as follows:

At the beginning, when no digit in a column has yet been decoded,

(15) and (16) are used directly. Suppose, w.l.o.g., that Yy is decoded
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)
as X,. Then a new t, =t ():x1€§ ¥y is obtained and used in (15) and
(16) with ny replaced by n -1. This process continues until all digits
of scme set4¥ have been decoded.. W.l.0.g. assume that such a set is

,3 Y that the new t-values are tl,t21t3 and that n, and n3 digits remain

undecoded in,jg and,J?B. Assvming that no error was committed, t2 = Uy,

and when decoding ¥ for 1 <1< ny the value of t, becomes irrelevant

3
and only those of tl and t2 count. Thus the numerator in (10) is replaced by

P{yi,E / xi,ug} = P{yi’tl / XU, = te} = - (18a)

= P{yl’tl / xi’ul = tel = W(yl /xl) qnl__l (tﬁtl@{l@yi)

for n, > 1. Similarly, the denominator of (10) is replaced by

: , 1 .
Plyy; [ up =t} =Plty, /v =t,) =3 q“l(t2® t,) (18b)

When n1 1, the remaining y; can be decoded algebraically frdm the relation
X =t @t Dy, =t, | - (19)

We now observe from formulas (15) and (18a)that if in the former

we set n, = 0 and use definition (8), we get the relation
1
P{yi,in} = 5 w(y;/x,) qnl_l(tl®t2®r@xi) qn3(t3@t2)‘

L (20)

Similarly, setting n, = 0 ¢n formula (16), we obtain
1
1
=5 qn3(t3 ®t,) Pyt uy = t,) (21)
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The ratio of probabilities (20) to (21) is thus equal to the ratio (17) and
the latter formula thus remeins valjd even if one of the groups is completely

decoded. In fact, if n, = 1 and n, = 0, (17) becomes [note that t, =y, if

1 2
nl = l]
- 2 if x, = t,
P{yi,z/xi3 - 2uly./x.) qo(thtEQWfixi) B A (22)
' 1 1
Ply;,t] q, (t,@k,) 0 if x, #t,

so that straight-forward sequential decoding using the likelihood function
based on (17) will force the décoder to select the path on which (19) is
satisfied at each depth.

As seen from above, the value of t3 is irrelevant once all digits of
.:gg were decoded and those of,éi_ are being decoded. Of course when the
latter task is complete, decoding of.zgg starts that will depend on t3
and t2 [note that since uf@ue = 0 then tl = t2 when',sl andulgg have been
decoded] in the same way that the just described decoding was dependernt -an

tl and t2'

. Proof of Formula (10)

Because of the symmetry of the situation, it is obviously sufficient

to prove formula (10) for i = n. Let us define the set

nl n2 n-1
7 /s / R— —
Y/ (ul,ug,ua) = {xl,...,xn_l. 2: X, =, 2»xi= Uy, 2‘ X, = uB} (23)
i=] i=n1+1 i=n1+n2+l
Then
n-1

Plfxgd = wlaf) 27070 [}

3550\/( 0,0, xn) J

w(yy/xg) +
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n-1
+) IT Wy /xg) ] (24)
xe (1,1, x@) =1 |

Using formula (9) of Jelinek and Cocke [1] and defining

CF (y) = w(y/0) + w(y/1) = 1

) 1-2p ify=0 (25)
£ (y) = w(y/o) -w(y/1) =
2p - 1 ify=1
we get that
n nl

. _ 1
o '82 : —Eﬁl— w(yJ./xJ.) ; ,Ef+(yj) + IT f_(yj)

.' J=1
')gs_°\/(0, O,xn) j=1

( ng4n, 0 ongtng n-1
T e T ey - T iy -
1 J=n,+1 ' J=n +1 j=nl+n2+1
X n-1 E
+ (-1 " TTT’f'(yJ) =
J=n.+n.+1

172

t , ot ' t+ -1
= {1(-1) * (1'-2p)nl}{1+(~1) 2 (1-2p)n2}{1+('-1) 375 () )™ )

= 8a, (t) q, (t) qn3<§;@v;sxn) | 26y

where 1‘.1,1}2,1;3 are given by (4). Similarly, ‘

n-1

Z [T v, /x) =aq, (£,61) a (£81) a (t 43y, x @1)
33 n L n n non
xe)/(L,1L,x @) §=1 1 2 3-1 27)
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It follcws therefore from (24) , (26), (27), and (15) that

Ply / x Y =wly, /%) 2 ~(n-1) [qnl(tl) qng(te) qn3_l(t3® vy, ®t,)
+ 4y (680) o (601) In, @y, O, O1)
. p~(n-2) Ply ot / x_) (28)
Averaging (28) over x_ results in
Pyt =27"B) iy 4 (29)

Formula (10) then follows from (28) and (29).
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Description of Likelihood Table

Obviously, the likelihood

g Pl /xpxd o (30)

Ply / x )

(where x' is the vector of digits already decoded) would not actually be
computed from scratch during the process of bootstrap decoding based on the
three group code. Rather, the values of (30) would be stored in a table

whose arguments would be the parameters
xl®yi) tl)te)t3nl)n2n3)h (31)

wher: h denotes the group membership of x.(i.e., X, ,Y ), nJ denotes the
number of digits in the Jt group still left to be decoded, and t denotes
the adjusted mod 2 sum of the Jth received group (i.e., if the dlglts

X, ""’Xi{ of‘g? have been decoded and Y seeey, are yet to be decoded
1 my r

then tj E @ i
| s=1 s=1

The table would be computed with the help of formula (17). Obviously, it
would contain a lot of symmetries which could be eliminated if storage was
a factor. For instance, the parameter h of (31) is not needed if by con-
vention ¥ and x; are always members of the first group. The likelihood

would then be of the form
Mx @y, ,tt,, t5 1y,n,.n0;) | (32)

with the first four parameters binary. A further reduction in storage

size is attainable by noting that (32) is invariant to an interchange of

(t2;n2) with (t3,n3).
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4. Decoding Strategy of the Bootstrap Algorithm

The convolutionally encoded streams belong to three grdups. By
convention n, < n, < n3. There is a parameter KRANK (J) which ranks the
groups in "desirability".of deccding. At the start KRANK. (J) = J. The
generdl idea is to work on all streams of KRANK(1) until they have either been
all successfully decoded or until everyone of those streams of KRANK(1) that
have not been decoded has been attempted (in sequence) without success.

In the latter case streams of KRANK(2) are tried, and if this fails then
streams of KRANK(3). 1In case of such a "complete" failure, another decoding
attempt i: made with increased values of the ISTOP and KSTACK parameters.

As soon as any stream of some group LNOW is decoded, KRANK(1) is set

equal to LNOW, and KRANK(2) is set equal to that remaining group that has
the smallest number of undecoded streams. The last group is then labeled
KRANK(3) -

Originally, the parameter KPHASE is set equal to 1. When a group has
been completely decocded, KPHASE is set equal to 2, KRANK(3) = LNOW, and
KRANK(1) is settiequal to that remaining group that has the smallest number
of undecoded streams. When two groups have been completely decoded, KPHASE
is set equal to 3, KRANK(1) = KRANK(2), KRANK(2) = KRANK(3), KRANK(3) = LNOW.

A decoding attempt on a.stream is "successful" if depth LTRACK was
reached by the decoder. 1In this case all digits of that stream are considered
definitely decoded. Otherwise the attempt is "unsuccessful" and digits up
to depth IMAX - LBACK are considered definitely decoded. If a decoding error
takes place. the algorithm halts and an UNSUCCESSFUL CONCLUSION is declared.

To aid in the understanding of the Fortran listing of the algorithm
we give a glossary of some key parameters that are peeuliar to the three-group

bootstrap scheme.
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LNOW - current group being decoded.
LNOW 2, LNOW 3 - the other two groups
KPHASE = 1 + number of completely decoded groups
KRANK(J) - - The Jty most "desirable" group. Originally LNOW =
KRANK(1). Also if a stream is completely decoded, the
group to which it belbngs, LNOW, becomes the most
desirable one, i.e., KRANK(1) = LNOW. The remaining
order is that of group size if kPHASE = 1. If KPHASE = 2,
then KRANK(2) is equal to the other undecoded group.
KLEFT(I) - number of undecoded streams within the yads group.
KNEXT - the order of the stream within the group LNOW which is tc bé
decoded next.
LGRP - is the order of the group currently decoded, i.e., INOW =
KRANK(LGRP) (1 < LGRP < 4-KPHASE)
KROUND - number of streams within the group that the decoder.attempted
to decode without success since the last change of LGRP.
LROUND - number of times LGRP attained its maximal value without the
decoding of any of the attempted streams advancing by more

than LBACK + 4O branches.
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5. An Upper Bound on the Moments of the Decoding

Effort for Three Group Bootstrap Decoding

The analysis of this section was developed by D. Costello

while he was a research associate employed by the contract.

Jelinek and Cockel

have developed an upper bound on the
moments of the decoding effort for bootstrap decoding using a
single parity stream. We will extend that analysis to the case
of three group bootstrap decoding. Emphasis will be placed on
those portions of the argument which differ from the original
argument. In addition, for simplicity's sake we will restrict
attention to the BSC.

First of all, assume there are ny streams left to be de-
coded in group i, 1 =1, 2, 3. Then let Ni(g) be the number of
steps necessary to decode any glven stream in gooup 1 when the step

allocation 1s M =1and n = (nl, Ny, n3). Applying well known

results about ordinary sequential decoding, we can conclude that
< "%
P Ni(g) > L) 2 K(R,v)(I' + t)4 (1)

where ' + t is the length of the informatlion sequence and K(R,v)
is a function of rate R and constraint length v which is finite
if v is finite and oy satisfies

E_(o0,) B_(2)
R < -_—.?i—' for R 2 —.:?——
or (2)
- B (2) ‘ E (2)
R < o7 for R = 5 .

In (2), En(03) is the concave, positive, increasing function of
O defined as follows:
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Let k = n, + n, + ny and label the k received digits left to be

decoded as y,, ¥ cees ¥ y y oo
1 J2° * 7n,’ n1+1 *? “n +n2 +n2+l’ ?
ynl+r12+n3 = Yk- Define x = (yl) seey yk) and x = (yl: sey yk_l)

and assume that the kth stream is in group 3 to be decoded. Then

=1 | 1/1+0] 1+o
1+ 0- log \:b < P(x'xk)

]

E (o
( 3) Y X.=0

k-3 5 1 1/1+0)1+0
1+o0-log 2 < & <P(yk,s|xk)P(x| kyk,s)}
Yy 8 |%=0 3)

since P(y_l ) depends only on y, and the pa.ir of syndrome (state)
digits 5 = (s, 8,). Noting that P(y_lxk, yk,s) = P(y_lyk,s) =

2 '(k 3), and substituting for P(yk, slxk) ‘from the analysis of :
the three group code, we obtain- “the rather 1ong but straight-

forward expression

Ep(05)=0 -log[({ (2- p)[“—n (O)qn2(o)qn 1(0);q (1)qn2(1)q 1(1)]>1/1+03
+<p[ qnl(o)qnz(o)qn3-1(1)+qnl(1)qn2(1)%3_1(0%} aveg10c
+(<(l"p)[qnl(o)qng(O)qn3-1(1)+qnl(1)qn2(l)qn -1(0)] }1/14,03

{( (o)qnz(o)q _1(0)+a, (1)qn2(1)q _1(1)}>1/1+03)1+03
|

1/1+o
+ {“’P)[qnl(l)qng(0)%3-1(0)”%1(0)%2(1)%3-1(1)]} 2

1+ 03

+

1/1+0.
+{ [qn (0, OV, 1 (243, 015, (0, 1(0)]} 3)

1/1+<73
(1-1»)[01n ()3, 015,y ()43, ()3 (1 >q,,3,1(0)]}

1+ 03

l/l+cx3
+{p[qnl(l)qn?(O)qn3-1(0)+qnl(0)qn'2(l)an-l(l)}} )

YATERY
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where p is the channel crossover probability and

ny ny
a,. (0) = 22(1-2p) a, (1) =2=Q=2p) . (5

ny 1

Clearly, En(ol) and En(cé) are defined in a similar way.
Next let oi(g) be the least upper bound on the numbers oy

satisfying (2), i.e., oi(n) is the solution of

£, (03 (n)) 5
R =-——a;G§Y—- for 5 =R CC
E_(2) E_(2) (6)
9, (n) = —x for 0 <R < —5 .

Now choose k(R) to be the largest positive integer such that
k(R) of=) < n:gn{ max [crl(g), 9, (n), o3<g>] (7)

where ‘g== n = (nl,ne,nB) |n1+n2+n3 = k(R)} and o () is the
Pareto expdnent which would be obtained with ordinary sequential

decoding, i.e., o(w) is the solution of

L Ea(o(=) ror B2 @) g
B o(w) : 2 N
E_(2) E_(2) (8)
o(w) = for 0 < R < =

where

1
E (o) = 0 - log [(l_p)1/1+o- N pl/l+0] to

If there are originally m streams of digits to decode, we
wish to modify the three group bootstrap decoding algorithm as

follows:
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(1) Decode m-k(R) streams by ordinary sequential decoding
without the help of the two parity streams and with the
step allocation M = l |

" (2) Decode the remaining k(R) streams with the help of
the parity streams using the three group bootstrap
decoding algorithm

We now briefly highllght the arguments leading to the

~desired bound. The details will not be pursued since they
.closely followpthe deve10pment in Jelinek and Cockel. In part
(1) of the godifiéd algorithm, the easiest m-k(R) streams are
decoded by ordinary sequential decoding. If L#* is the number
of steps needed to decode’ the hardest of the decoded streams,
‘then P(L* > 4) is upper bounded by the probability that there |

| is a set of k(R) + 1 streams that need more ‘than £ steps each
to decode by ordinary sequential decoding. Since the decoding
of the first m-k(R) streams is independent the yth computational
moment of the decoding effort in part (1) is bounded if (k(R)+l)
o(=) > 7.

In part (2) of the modified algorithm, we compute the three
-Pareto exponents ol(n), (n), and oB(n) given that decoding
starts in group 1, group 2, or group 3. We then begin decoding

in7the groéﬁ ith the largest exponenti After decoding each

ure is repeated, thereby assuring that each
successive stream iijeasier to decode than the previous one. If
(k(R)) is the numbe%loftsteps needed. to decode at least one of
the k(R) remaining streams:then JP[L(k(R)) > z] is upper bounded
by"the probability that therejis a,set of k(R) streams that need

more than £ steps each to decode\bygthe three group bootstrap
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decoding algorithm. Since the decoding of the last k(R) streams
is not independent, the yth computational moment of the decoding
effort im part (2) is bounded if max ol(g),oé(g),GB(g)} > Y.

In bounding the decoding effort for the complete modified
algorithm, we must consider the fact that after the first m-k(R)
streams have been decoded any of the situations in the setQ}>may
describe the distribution of the remaining k(R) streams. Since
in part (1), we decode the m-k(R) easiest streams, we are not
free to choose the situation which would give us the best Pareto
exponent for part (2). Hence the worst case must be assumed,
and the bounding condition in part (2) minimized over all
situations in/f.

Finally, since the decoding effort must be bounded for both
part (1) and part (2), the +vyth computational moment of the
decoding effort is bounded if min {(k(R)+l)o(m), 2}n[max(cl(g),
02(2), 03(3)%}} > Y. Ve can now summarize as follows:

Theorem: The modified three group bootstrap decoding algorithm
leads to a firite <Yth moment of computation per decoded digit
if ‘

min[(k(R)+l)c(oo), mjn[max(cl(p_), o, (n), 03(3))]} > v (10)
where k(R) 1s the unique integer satisfying (7), o(x) 1is the
unique solution of (8), and ci(g) is the unique solution of
(6), + =1, 2, 3.

It 1s necessary to derive the above bound in terms of a
modified decoding algorithm due to the difficulties involved in
taking the dependencies of the bootstrap algorithm into account.
It should also be noted that this is the essential difference

between the bounding technique in part (2) of the modified
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algorithm and that used in part (1). In the latter case the.
: decoding is independent and we were able to obtain a tight bound
on the decoding effort. However in part (2), the decoding is
dependent, and we were forced to upper bound the probability that
there is a-set of k(R) streams that need more than £ steps to
decode. | '

Now define R%oot(y) as the supremem of rates for which (10)
is satlsfied Since the average computation will be bounded for

‘the three ‘group bootstrap decoding algorithm if R < R%oot (1),

R

boot(l) is a lower bound on the R, comp of this decoding scheme.‘

We can evaluate Rboot(y) by computing the differences
1

= 2}n[max(EE‘cl)lUl:y,En(OQ) ,EE‘UB)

2

o) ] - kEm(%);. (11)

0'2 =Y

+

for k 3,4, ... until their value becomes negative, where
‘8 ={g_ = (ny, ny, n3-)§ ny +ny+n, = k}'. If this takes place -

for k = kT, then

| Rtl;oot(y)@in %n?[max(Ea(ol) ‘ofy,En(oe)‘ ,EE(03)‘ 03w)]"_

+ . ’
k Y
£ E.,,(—-k+) (12)

Wheregy {n = (nl, Ny, 3)‘ + n2 + 0y = xt »

: It remains to specify the elements of the setg! Assume
that m is a multiple of 3 and that the original distribution of
" the streams 1s n, = n, = n3 = m/3. The problem 1s to specify
the number of ways of arranging k(R) streams into 3 groups of
size ny, n,, and n, respectively such that n, + n, + ny = k(R)

and Nys Ny and n3 are always less than or equal to m/3 We'
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will not consider a relabeling of the groups to constitute an
additional member of 3, since the labelling of the groups in
the bootstrap decoding algorithm is immaterilal.

First consider the number of ways,g'* of ai;;‘ariging 3 Nqs Do,

and n., such that n, + n

3 1 ot ng = k(R) without any restrictions
on the size of the groups. We can easily deduce that
k(R)+1 B
% le 3—3'1{5]-1 k(R) + 2 '
Ny = — +[ - ] 1f;{k(R)
k(R)+1 (13)

N

SRR} Y |
‘! * _ j=1 +[k(R2) + 2] 1f 3 [k(R)

6

where 3 | k(R) means "3 divides k(R)", 3 |'k(R) means "3 does not
divided k(R)", and [I] is the largest integer less than or equal
to I.

Now consider the limits placed on Ny, Ny, and n3, viz.,

that they cannot exceed m/3. Letting #'8 be the size of the set

,X , we arrive at the following formulas:

Case 1. For 1 < k(R) < m/3,

3=
case 2. For m/3 < k(R) £ |m/2y,
18=3" 20 +...+'E§Bl-2‘-‘l‘ﬁs ) 1f k(R)-m/3 is

even
| (15)
#)X =j* -2 (142 +...+| k(R Em/BE) - k(R)gm/}"l if k(R)-m/3 1s odd

where |I°" is the least integer greater than or equal to I.

case 3. For [m/2] < k(R) S m, we can use the fact that#[g is

symmetric about m/2 since specifying the distribution of the
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streams left to be decoded 1s equivalent to specifying the distribution

of the streams already decoded.
_' We will now illustrate the use of these formulas by con-
sidering an example with m = 21 and n = (7,7,7) as the original

distribution of groups.

k(R) #X j

16

1 1 {(0,0,l)}
2 2 {(0:0:2)5(0:1:1)}
3 3 '{(003) (0,1,2); (1,1,1)J
4 it {(oou)(013)(022)(112)
5 5 l{(oos)(014)(023)(113)(122)}
6 1 1(0,0,6)5(0,1,5)5(0,2,5)3(0,3,3); (1,1,4)5 (1,2,3); (2,22F
18 {0.0m50.06:0:2,5: 000 (L L e
oo leaneasseamspipa i)
> (0,2,713(0,3,6)s 0ok 333 (11,1 (1:26): (12,23
0 a0 leomer o sl
no eanessganim e et
SR S H o H L
13 9 {(0:6:7):(115:7),(1:6:6):§§:ﬂ’:g;§é%:g:g;;gg:g:ggfw} |
14 8 {(0:7:7)3(1:6:7)5(2:5:7):(2’6:6);éz:ﬁsggézﬁ:g:g;‘}
15 7 {(1:7,7)5(2,5,7)3(3,5,7);(3,6:6),(4,4,7)5%,2,2;;}
s e mi6.6m,005.15046,6);(5.5.6) |
17 b "&3:7:7)5("":6:7)3(5:5:7)3(5’6,6)}
18 3 {7.73(5.6.1:06,6,6))
19 2 £5,7.7):(6,6,7)}
20 1 {6.7.10}



Clearly, if m 1s not a multiple of 3 or if the original group

distribution is not symmetric, these formulas get more

complicated.

It is also helpful to have an algorithm for generating

the members of the setﬁgftm a given k(R). Such an algorithm

follows:
(1)
(2)
(3)
(#)
(5)
(6)
(7)
(8)
(9)
(10)

(11)

n, = max [O, k(R) - 2m/3]
n, = max [nl, k(R) - m/3 - nl]
n, = k(R) - n; - n,

WRITE (nl, n,, n3)

IF n, < n, + 1, GO TO (9)

n, = n, + 1
n3 = n3 - 1
GO TO (4)

n, = n, + 1

IF n, S k(R)/3, GO TO (2)

STOP

As an aside to the above discussion, let us consider an

alternate way of deriving a lower bound on R

group bootstrap decoding.

boo

+(v) for three

We will proceed as follows:

164

(1) Compute the best Pareto exponent max(cl(g), a,(n), 03(3))

that can be obtained using the three group bootstrap decoding
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algorithm starting from all possible situatiohs n, i.e.,

all n et7'~ n = (ny, Ny, 3)-n‘ + ny, +ng =-k(R), 1 S k(R) < m}.
(Note that,dfis the set of all n with a fixed k(R) whereas %j

is the set of all n with any k(R)) . -

(2) Let ﬂ =[n e max(ol(n) o, (n), 03(1_1)) > 'y}

(Note that if n' = (nl, n2, 6:1 then any n'" = (nl, n2, )
which can be obtained from g., i.e., n{ gzni, ng 2 né, and

n; < né; also belongs to:j*. This saves us the task of‘computing
max (oy(n), 0y(n), og(n)) for all n €% . Also note that an n!
with a large k(R) will in general have a smaller Pareto exponent
than an n" with a smaller k(R) which cannot be obtained from n'
since we would expect -the parity information to speed. up decoding
more in the latter case.) ‘

(3) Compute the exponent'f(R)o(w) for ordinary sequential
decoding which leaves the decoder in a situation n €3 ~. (Note
that'i(R) need not be an integer.)

(%) Rgoot(v) is then defined as the supremum of rates for

which
min{k(R) a(o), ;}n [max(ol(n), oQ(n), o (n))i}> Y (16)

is satisfied. .

‘The main difficulty in computing this bound is in finding
thevekponent for the ordinéry sequential decoding poftion of the
algorithm. Let k___(R) be the largest value of k(R) for any

max

¢ ™ and let k (R) be the smallest value of k(R) for any

B

min _
%] * which cannot be obtained from another member ofg* with

o]

a larger value of k(R). Then it may appear that by suitable
coﬁbinatorial arguments,'E(R) could be shown to be in the range
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k s (R) <K(R) < k. (R). However in the limit of large f#, terms
with smaller values of k(R) dominate terms with larger values of
k(R), and hence'ﬁ(R) = k4,(R). Therefore the bound obtained
using this method is the same as the original bound.

Finally, we will say a few words about extending the results
of this bound to other parity-check schemes. In particular,

consider the following (n-1) x n array (n 2 3):

1 1 6 o0...0 0] O-T
o) 1 1 O...0 O 0]

l.O o) 0 O.. .0 1 1 ;

ot

We can then form a parity-check matrix H for an n-group code
by repeating each column of the above array m/n times, resulting

in an R = m-n+1/m block code. For example, the H matrix for the

R = 25/28 4-group code is
7111111111111100000000000000
H=]00000001111112111111110000000

cooo000000000O0011111221111111
(17)
Columns 1-7 constitute group 1, columns 8-14 conétitute group 2,
etc. Note that for any given codeword, the parity of each group
must be the same. Hence once one group is decoded correctly the
parity of each of the other groups is known, which 1s a signifi-
cant aid to finishing the decoding of the other groups. Also
note that the row space of H(the set of all parity checks) is
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.completely symmetric with reSpect to the 1abeling of the groups.
Therefore the labeling of the groups is immaterial, as was
mentioned before in specifying the members of the set .

It should be evident that the arguments used in finding an
upper bound on the moments of decoding effort for the 3- group
code can be extended directly to group codes of higher order,

The formulas for specifying the size of the setJand the
.algorithm for generating the members aftf however, must be

. restated for each partidular,case. This willl be carried out upon
- successful completion of the computer calculations'necessary to

~ plot the bounds for the 3-group code.

Reference

‘1. F. Jelinek and J. Cocke, "Bootstrap Hybrid Decoding for

Symmetrical Binary Input Channels," Information and Control,
April 1971.



The results of this section were ohtailned by D. Costello

while he was a research associate of the project.

1. Extending the Upper Bound on the Moments

The characteristic feature of all n-group codes is that
once the parity of any one groﬁp is decoded, the parity of
all the other groups is immediately known to be the same.
An n-group code contains n-1 parity checks, i.e., the H
matrix has n-1 rows. The columns of H consist of the
following set of n vectors of length n-1, each of which may

appear more than once:

1 1 0 0 0 O
0 1 1 0O 0 O
0 0 1 0O 0 O
0O 0 O 0 0 O
0O 0 O 0 0 O
0 0 0 1 0 O
0O 0 0 1 1 0
0 0 O 0 1 1

The number of columns in which each of these vectors appears
determines the size of each of the n groups. For convenience

we will assume that all groups are of the same size.

168
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171 1°1 1 1 o 0.0 0.0 0
solo oo 11111 00000

'Lo_ o0 0 0 0 1 1 1 1 1 1

is the parity check matrix.for an R = 9/12 U-group code.

Note that the first row of the H matrix forces the barity
of the first group to be the same as the parlty of the second
:group, the second row of H forces_the parity of the seéond'
~group to be the same as the parity of the.third group, and
’_so on. Thus we get the propertybof group codes mentioned
previously. Also note that all p,-group codes are very high
rate codes with minimum distance 2, i.e., they only detect
single errors in an algebraic sense. However, this dbes not-
militate against their use as algebraic codes-iﬁ the bootstrap
hybrid decoding scheme. In fact, theif simple structure
makes themvespecially attractive for calculating the error
exponent function. (NOTE: The word."group" here should not
be confused with the usual notion of a group (linear) code.)

When using group codes, once we have decoded a single
group, the parity of the other groups is known and they can
be decoded independently as in the single parity,check case.
Hence if we desire high rates, it is also advantagneous to
keep the”gfoup sizes as small as possible.
EXAMPLE

Assume that we wish to use an algebraic code of rate

about 9/10. With a single parity check the group size is 10.
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With two parity checks, a three group ccde with R = 19/21
has group size 7. However, we cannot continue to decrease
the group size by increasing the number of groups. With three
parity checks, a four group code with R = 29/32 has group
size 8; In general, we requiré that R = gn-(n-1)/gn = 9/10,
where g is the group size and n is the number of groups, This
imples that gn = (n-1)10 or 1im g = 10, the same group size
required by a single parity cg;:k. Clearly, for a given
rate R, there is an optimum group number n which yields the
smallest possible group size g.

The derivation of the upper bound on the moments of the
decoding effort given for.the three group code can be
extended to higher order group codes. ‘The only difference
is that a new algorithm is needed to generate the set S of
possible situations in each case and the.formula for the

error exponent function Ek(o) must be generalized.

2. A Lower Bound on the Moments of the Decoding

Effort for Group Codes

Proceeding analogously to the derivation of the iower
bound on the moments of the decoding effort for the single
parity check case, we can derive a similar lower bound for
all group codes. 1In particular, for the three group code,
Rbgot(Y) 1s the infimum (greatest lower bound) of rates

for which min {min [max (51(2), a,(n), 03(2))],

kmin [max (oy@)7 opn), ag@N]} s v , where

%
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.sk = {E’n1+n2+n3-= k}., S3 = {g:nl+n2+n3.%.3} s

o;(n) is the solution of R = E;(o)/o , and E (o) 1s the
error exponent function for a given situation when decoding

begins in group i.- In order to compute R (y), we must

U
boot

compute the differences

K . [ 1y L2 3,
T gln [max (Ek(%), Ek(%), Ek(%))] -
“k
k+1 .. 2 3 :
2 min [max (e (D), B ) B3, | () ]
k+1 : '

.for k = 4,5,,.., until their value becomes negative, It
- this takes‘piace at k ='k+, then
: .

Uy . [l k"
.RbOOt(Y) = min [YE3(Y)’ Y Ek+(:l§-;)] 2

~ where E +(Y/ k+) ie

k
min |max (ET (—X£), B2 (1), g3 (—=IN |
5, [ T P P ]
k .

Aﬁd ES(Y) is

emég [max =300, B50n, o]

Agaln the extension of the lower bound to all group codes

depends only on the generallzation of the functlon E, (o)

and on a new algorithm to generate the set S.
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3. Proof That Knowledge of the Syndrome is Equivalent

to Knowledge of the Group Parity

We wish to show that the ratlo that enters into the
calculation of the likelihood function, viz.P(y,xi)/P(y),
is equivalent to the ratio P(f,yi/ki)/P(f,yi), where s is
the syndrome sequence and the ith digit is being decoded.

First we compute

n
P(y) = ) P(y,x) = ) B(y/x) P(x) = 2% ) -T]_P<yj/xj>
- C - C - N C j=1

where the rate of the algebraic code being used is k/n

and C 1s the set of all codewords. Similarly,

P(g/xi)=P(yi/xi)P(yl,...,yi+l;...,yn/xi)
n

=P(yi/xi)§z o~ (k=1) i | P(yj/xj)
C j=1
1 j#1

where C, is the set of all codewords whose ith component
is Xi (half of the codewords in C for a linear code);

Hence we obtain the ratio

2: EI; P(yj/xj)
1

_ i j#i
—“?TET— = 2P(yi/xi) .

) an Plyy/x4)
C 3=1

Now the ratio P(s,yi/xi)/P(s,yi) must be determined.

P(y/x.)

Beginning with the denominator, we find that P(spyi) =

-~

3 P(y) where Yi(s) is the set of all possible received

/.
Yi(s) °
s&qliences y which have syndome s and whose ith component is

Ve Since there are 2k equally likely received sequences

corresponding to each syndrome and half of these have
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an 1th component equal to Yy

P(ssyi) = 2(k_l) P(y: y H=1s) ,

where H 1is the'parity check matrix. (Note that in general
P(y) depends upon y, but that those particular received
sequences which result in a given syndrome are all equally_

likely. For example, the set of all codewords result in the

0, and they are clearly equally likely.) But

~

P(y: y H=s) = E: *(T P(yy/%5)5

where the evaluation is the same for all y that result in

~

. syndrome s

a given syndrome. Hence,
: n
| 3= 1 Ej “ |
P(s,y4) = 5 P(yj/xj),
C j=1 ,

where the products are taken for any y such that yH = s,

Since
P(s,y,) -z
P(S/y ) _—FT§—7 -IFP(YJ/XJ),
| =1
n
= Pyry/x) ) || Ply/xg)s
¢, =1
J#1

where the products are taken for any y such that'yH = S.

~ ~ " -~

Hence we obtain the ratio



&

o
1]
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o
. E: ng P(yj/xj) .
= 2P(y./x.) = = .
o P(y./xj) ~

In the case of three group bootstrap decoding, this
result states that knowledge of the two syndrome digits
is equivalent to knowledge of the three group parity
digits. However, the simplest way to calculate
P(y,xi)/P(y) is to use the formulas based on the three
group parity digits, since these formulas take advantage

of the independence among the three groups.
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II-H. Optimal Decoding of Convolutional Codes for Finite

- State Channels and its Application to Bootstrap Decoding

1. 'Introduétion

In this section we describe a method of decoding of
éonvolutional codes which minimizes the per bit probability
of error (Viterbi decoding minimizes the probability of
érroﬁeous codeWord decoding); This method applies to all
linear codes (see Sections 5 and 6) and can be used in
conjunction with arbitrary discrete finite state channels.
The complexity of the method grows as K2 where y 1s either
the constraint iength of the convolutional code or the
syndrome size of the linear code. This work was done
Jointly with L. Bahl, J. Cocke, and J. Raviv of IBM.

While it is doubtful that one.would actually wish to
build decoders operating according to these methods, they
can be effectively used to allow computation of optimal

likelihood functions for the sequential decoding phase of a

- . bootstrap scheme whose algebraic component is based on an

arbitrary convolutional or linear code (see Section 7).
Moreover, we believe that our method will make possible the
application of bootstrapping methods to finite state channels

such as the Gilbert burst noise channel.
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The per-bit prdba.bility of error will be minimized by
finding the probabilities that the encoder was in a particular state at
any time i, As a consequence, a posteriori probabilities that a
particular digit was sent through the channel at some given time i will
also be obtainable,

Our method will apply to finite state channels whose transmission

probabilities are

Qyp vy vy %) (1)

- g th
where Yieg xie/are the i— received and transmitted digits

«

( and dZ/( are finite alphabets), and Vs V. v are the iﬂl and
s -

i-1¢
th
(i - 1y~ channel states and is a finite state alphabet), The channel

operates by the rule:

n

Pfy,...,y,v eV [V oLx . x1z= H Q*(y., v, |v x.).

71 n’ 1’ ’'n o’ 71’ ’nJ i? il i-1774
i=1

(2)
Obviously, discrete memoryless channels are special cases of finite
state channels, as is, for instance, the well-known Gilbért Channel which
has a "good" and a "bad" state with transitions that are independent of

channel inputs.

Since the natural transmission units of convolutional codes
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are branches (i.e. blocks of n digits), it will be convenient to define

special notation for these. 'Wé will let capitals refer to branches, i.e.,

Xt = Xena1? Xen+2? "2 X (t4+1)n

(3)
t = Yen+1’ Yene2? 2V (t41)n

Also, we will define a new branch transmission probability

T

2
3

Q*<y(t+1)n’vt| Vn-1’ x(t+1)n'> Q*<y£n+1’v1 \ Vt-l’xtn+1>"

n-1

Il q» (yfn*i: vy ‘ Vi-l’xtn+i> ¥y
i=2 :

where 28 is the set of all vectors (vl,vz,...,v ). As a result,

n-1
ox

X
P{Yl""’ RASTRARREAIN Vo’xl""’xk) =

i’Vi|'vi-1’Xi) (5)

1=1

2. Optimal Determination of Message Digits.

Let the information blocks determining the coder output branches
be Il’ I2,... (e.g. for a binary convolutional code of rate R = k/n,
Ii corresponds to a block of k bits), and let the iEE state of the

encoder, Si’ be given by the vector

S; = (L poeees I yp) (6)
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where v is the constraint lcngth of the code. Suppose a codeword is
determined by T true information digits, and thus consists of T+u-1
branches (the usual termination by u-1 durmy informationigqblocks is

assumed). The encoder state sequence of interest the is

SO = _0., Sl’ ooy ST, co ey ST+U—1 = 9 (7)
If f is the code output function, then
Xt = £(I,8, 1) (8)
Let
1 . . . .th
Qp - if the decoder determines the i— message
;=

bit incorrectiy

0 otherwise

Then the per-input block probability of error is

] _ Tn ?P
reer el) Qul-5 ) =y, (20)
i=]1

i=1
and 50 we wish to minimize E{, for all i. But for 1< j<t,

EBPtn+j] = Ej P{St+1 =t ‘ Yi""’¥§+u_1} (11)
by

where a%’j denotes the set of states Sy41 With first block Il (see

(6)) whose jEE digit agrees with the one actually sent. It follows

that to minimize Pe we ought to minimize the sums on the righthand side

of (11) over all the possible sets G% 3 To be able to do so, we will
, .

find the probability terms of the sum of (11)..



3. Determination of A Posteriori Encoder State Probabilities
' Let us define super-states

and the probability functions

a't(i)-/?/) = P{Ut = ‘(i}f’)y_ Y1: eo ey t} - ) (13)
Byt = {Y£+1""’Yb+u-1 | U = (i’£)} | (14)
A (1,4) = P{Ut =(i,1), Yl,...,YT+U;1}- (15)

Now for te[1,T+v-2]

Xt(i)/&) = P{Ut =(i’/?’)’ Yl’...’Yt } -
R LARTREIN A \ Uy = (1,4), Ylf""Yf} )
=a, (1,2) P (1,0) (16)
t t ,
and
Mooy (D) = e (4,4) (17)
(If Uy is known, events after time t do not depend on Y,, ""Yt)°
We will show below that it is easy to compute at and Bt recursively..

In any case, it follows from (15) and (17) that

} £
Y., ..,Y = -
1 T+u-1 1 Ld T+U_l(i)/&)

i,

(18)

P{St =1

179
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and so our task is to find xt(i,£).

Then

and for t

where the

t-1 are independent of Yl""’Y once the superstate U -

and for t

Let the initial distribution of the channel state v, be given by

p{v, 2 af= w(@) (19)

o (1,4) = ) P{Ul =(1,2), ¥, | U= (0 Af(a)  (20)
q

=2, 3,..., T + v-1,

. s . .
at(l),a’q) = i.) P{Ut-l =(J,m)) Ut = (l’{)’ Yl"") .b}
Jr,m,q
< . [ .
:_ P{Ut =(l’{)’)) Ytl Ut-l = (J,m)} P{Ut_l = (j’m), Y],"')Yt_l}
Jrm,

Ry, =L, v, | Uy = Gm) e Gm) (2)

Jsm

middle equality follows from the fact that all events after time

t-1 £-1 .is known. Similarly,

6T+u-2(l’&) = ﬁ P{UT+U-1 =(0,m), -2

Unpu-2 =(i’£)}

(22)

L, 2,000, T+ v -3,

Cooy LN _ PP I
Bt 1) = P{Utﬂ. =(Eom)y Yy ioeees Yo |Ut = (1,%); =

J,m
« 5 pd _smy) (1 :
=L P Uy =(m)) PUg,, =(5m), Yo | U = (1,0}
Jym
-

i}

.'_{.Bt-}'l (j;m) P{Ut-!-l = (j,RI), Yt+l | Ut = (i’/t)} (23)
J,m



Relations (21) and (22) bear out our earlier contention that

%

babilities P{Ut+l=(3:m),

an& Bé are recursively obtainable. It remains to specify the pro-

Y1

| Uy =(if£)} that appear on the righthand
sides of (20) through (23).

Let
q . . if a one step transition
from state i to state j is possibis
p(i §) =
(24)

-0 _ otherwise

and let g(j) be the initial information block of the state J. Then

P{Ut+1 =(3sm), Y,y | Ug ?(i’ﬁ)} =
= B3 Wy m| 4 R, 1) Plr,, - e} (29)

In the usual situation in which all sequences are equally likely,
P{;t+1 = g(j)} =27k 14 will, however, be useful later on to have the
generai'expression (25).

We conclude this section by outlining the algorithm that will

minimize the probability of bit error:

1) While the sequence Yl";"YT+u-l is being received, the
decoder computes fecursively the probabilities a%(i,{) [see (13)]); using
the relatibns (21) and (25). The obtained vaiues are stored for all t = 1,
..., T™u-1 and i, €. The amount of work involved is roughly that for
forward Viterbi deéoding. ‘

2) The decoder then starts computing recursively the probabilities
BIWU-E(i’KJ’ BT@U-B(i’{J""’ Bl(i,{d, using relations (23) and (25). :

When BT+U_2(if%) are:computed, they and the stored a@+u_2(i,{) are used

181
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to obtain XT+U_2(i,%) [see (16)]. The latter then replace o, 2(1,%)
in storage. This is done in general, xt(i,{J replacing 0%(1:{' for t =
T+ v-3, T+ v -4,..., 1. The work involved in this stage of the algorithm

is roughly equivalent to that of backward Viterbi decoding.

3) Finally, the stored ) (1 1) are used to calculate P{S i/
LEERRETD L 1} (see (18)] and the quantltles
d/( t,i(z) =/ = &/ Y .o T+U 1\: (26)
%ea,i(z)

where d%(z) is the set of states whose initial block It has its LEE digit

(i =1,...,k) equal to z. If

max

Pi,1(z%) = 2 yt,i(z) (27)

the decoder decides that the [(t-1) n + i}EE infcrmation digit was z*.

Unfortunately, this algorithm requires quite a large storage.
Its size grows linearly with block length T. It is not clear with what
accuracy it is necessary to store the values ai(i,{J and xt(i,{J.

In conclusion, let us observe that the computation of the
probabilitiesd (. »4-) [see {20) and {21)] was based on the initial channel
state distribution w(q). At the beginning of the communication process, w( )
would normally be the stationary distribution 6f the states. However, it
follows from (13) that

T+u-1(o’{J

P{VT+U-1 =t Yl""’ T+u-l} f revo1 (05 (28)

£
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and thus the w-function for the decoding of the second block would

naturally be given by the relation

w(q) = P{V'm-u-l =£| Ypseees :iT_w_l} ' (29)

where the conditioning random variables are those received in the first
block. The definition of the w( ) -function for the third and following
blocks is similar. The important point is that no information about the

starting state of any block gained through the decoding of previous hlocks

is ever lost.
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4. Probabilities of Transmitted Digits.

Sometimes it is of interest to determine the probabilities

1 th '
Pixt' Yl"' 5 Y U~ 1} that the t— transmitted branch was Xt, givenAthat

the branches Y Y,

T4u-1 were received (an application is given in the

l"’ 2

next secticn). We now proceed to do so.

X, is fully determined by S

. and S, (see (81)), so that

t-1

Let EF(xt) be the set of all pairs S¢.y» Sy for which (30) holds. Then

P{Xt l Yl""’YT+U-1} = Z P{St-l =1, 8 = J‘ Yl""’YT+u-1} =

(1,3) € F(x,)
) Y,

(1, J)e‘?(x ) 4,m

0y 00| )

(31)

Therefore, it is desirable to determine the probability terms

on the righthand side of (31). But

P{Ut 1 =(1,2), U, = (§.m), Y Yyseres¥n,,,. l}
P{Yul,.. S A | U, = (J,m)} P{U =(3,m), Y tl Ugay = (45 £)}

¥ P{Ut-l = (LY, v, Yt-l} =

1]

B (3m) Pl = (m), 1, | vy = WDy, (1Y) (32)
and from (15) and (17),

P{Yl"”’ Yﬁu-l} = Z A ey (8D (33)
i,£
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Combining (31) through (33) we thus get the formula

P{xtl fyoee T+u-1} -[ Zd‘ mu-1 (1o f')J ) _
z Z B (J’m) P{U —(J:m): l Ugy = (i:f’)}’l £-1 (1,2)

(i,a)e“a“(x ) (4,m)
(34)
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5. Generallzation to All Linear Codes

The preceding results depend on the existence of the super- -
states Ut whose knowledge allows the separation of past (events before

time t) from the future (events after t). As seen from (12), U, pre-

t
supposes the existence of St, the encoder state. Our results would thus
be generalizecble to all codes for which a state could be defined, and
therefore a coding trellis drawn.

Let H be the parity check matrix of a given linear (n,n-r)
code, and let Ei’ i =1,...,n be the column vectors of H. Let ¢ be

a codeword. We will then define the states St’ t =0,1,...,n pertaining

to ¢ as follows:

5,=8 t
§'t = §t-l +Ct "llt = z ci}}‘i t = l,-..,n (35)
i=1

Obviously, §n = 0 and the current state §t is a function of the prgceding
state §t-1 and the current input digit ct(the relationship is time varying!).
Relation (35) can thus be used to draw a trellis with at most 2° states

§t per level. The appearance of the trellis will be similar to that for
convolutional codes provided the vector set {hn*hn-l""*bn-r+l} has

rank r (which can always be arranged), For binary codes, there will exist
two transitions out of every state St, t= 0,1,...,k-1, and one transition

out of every state st’ t =k, ktl,...,n-1. If it turns out that {hl,...,ha}

are linearly independent, then there will be one transition leading into

every state St’ t =1, 2,...,{4 An example of the trellis for the Haﬁming‘

code
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1011100
H = 0101110

0010111

is-givén in Figurebl. Unfortunatel y, the irregularity of,the trellis is
typical for the general case of block codes. Obvioﬁsly, every transition
corresponds to a single channel input digit only. Horizontal transitiéns
(those to an idénfigally indexed State) correspohd to 0's, the remaining
transitions to 1's. |

| Viterbi decoding, as well as the methods of the preceding
_seétions are clearly applicable to the trellises'of linear bloék codes
(it .is even_conceiv#ble that sequeﬁtiél decoding can also be used). Since -
,high-rate codes have relatively_fewer states, the methods might even

prove attractive in practice.
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6. A "Time-Invariant" Trellis Diagram for Cyclic'Codes

The trellis diagram of Figure 1 is time dependent.
This unfortunate feature can be eliminated when the code is
cyclic by defining the state in terms of the shift register
realization of the encoder rather than in terms of the
parity check matrix. This leads to a piecewise time-
invariant trellis diagram, as illustrated by the following
example,
EXAMPLE

Consider the 3-stage shift register encoder Shown in
Figure 2 for the (7,4) Hamming code. The switches are in
positions A for four time units and then switch to positions
B for three time units. Taking the state to be the outputs
of the three register stages, we can draw the trellls diagrams
as in Figure 3.

In part A of the diagram, for the states (000,110,010,
100) up branches correspond to input 0's and down branches
to input 1's, whereas for the states (011,101,001,111) up
branches correspond to input 1's and down branches to input
O's. 1In part B all branches correspond to input O0's,
Note that part A and part B of the diagram, when consildered
separately, are both time-invariant, i.e., each state has
exactly the same successors independent of.time. This
trellis diagram can be reduced to a state diagram whose
transitions are labeled either A/B (where A is the input
when the transition occurs in part B) or Just A (where A is

the input when the transition occurs in part A and the
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;tfansition does ndt occur in bart B). For the.(7,4) Hamming “
code under.consideration, the state diagram 1s in Figure'U.'
When all the information digits have been réad into the encoder
(at the end of part A), the path back to the ail-zero state

can be determined directly from the-state diagram fof part A

| by.merely following the path indicated by the digits of the
present state read in reverse order. For example, if we are

in state 100 at the end of part A, then following the path
indicated by the digits 001 returns us to ﬁhe state 000.

This form of the encoder results in relatively simble
state diagrams for high rate codes and relatively complek
state diagrams for low rate codes (sinqe the number of
states is 2¥, where r is the number of redundant digits

in the code).
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7. Application to Bootstrap Decoding

In this section we will state a particular application of the
decoding methods of this paper to bootstrap decoding, but others are
equally possible. Our example will be restricted to symmetrical, binary

input channels. Consider two convolutional codes Cl and Ch- Use C

1
to encode T, blocks of Kl = lel information digits into T, blocks of
B - v At el . -
N, = (Tl + Uy 1) n, channel digiss (the rate of ¢, is Ry ki/ni and

its constraint length is Yis i =1,2), and lay the resulting code words
next to each other (as indicated in Figure 5), obtaining a binary array
of Nl rows and Ty columns. Next, take each row in the array of Figure 5
and use C, to encode it into a codeword of W, = (T2 + 02-1) n, channel
digits, and lay the resulting codewords below each other, as indicated_l
in Figure 6. The obtained binary array has N, rows and N, columns.
Because of linearity, every column in this array is a codeword of the
code Cl.

If the digits of Figure 6 are transmitted, the received digité
can be used to form another Nl X Né array whose appearance is that of‘
Figure 3. It is then possible to decode the array either row-wise
(using code 02) or column-wise (using code Cl) on both, and to do so, any

convenient decoder may be used. If both constraint lengths v, and Uy

1
are relatively short, the methods of this paper may be used in both

directions (see below), if v, is short and U, long, horizontal decodling

1
may be carried out with the help of a sequential decoder.
In either casza, bthe following interactive approach is suggested.

The array of Tigure 6 is transmitted by columns, i.e., first the digits

Of the first column in sequence, then those of the second column, ete.
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We»will'agsﬁme that the étate process is irreducible, and that N1 is

| large enough relative to the memory of the state process so that the
channel ié virtually memoryless alongvthe horizontal directioh of the
ar:ay of'Figure 6 (in case this assﬁmptibn is not satisfied; it is in.

'-principle easy to modify the following approach appropriately).

" The receivef works on the columns first, using the relations (29) to
determine initial state distributions. The aim is to obtain the‘

distributions (see Section L)

. » P{Xt| Yl, e .,YT+Ul-l} t = 1’2, ceey T1+U1-l . (36)

and

‘ .,P{v . l YoseeesY, . } | - (3N
: Tl+ul 1 1 Il+ul 1” |

the latter in order to decode the next column. The probabilities (36)
may be used to find the probabilities of transmission of individual digits

in the various rows of the columns,

Y,-o-’Y -} = ZP{XIY""’Y.‘ _}(38)
1 T4V, -1 / 6] e

A | , th . ... -
where the sum is over all Xt-WhOSe J= digit is x(y 1yn.sc

When the work on the columns is completed, row decoding starts.

“ P{ X(4-1)n+j

The decoding of the rth row will utilize the probabilities P{xrl Yl,...,

Y

: } obtained for each of the N, columns. First, consider the case
Tl+ul-l : 2 "

where row decoding utiliees the methods of this paper. let ql(r),...,'
qné( ) be the distributions (38) applicable to the n, digits on the

t

branch at depth (t+1) of the r b yow. Because of our virtual independence

assumptions, superstates Ut can be replaced by encoder states St’

the probabilities xt(i) (the second variable is eliminated] will be based

so that
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on the transition probabilities (compare with (25))
P{St+l = J"‘Y1;+1| s, =1} =
= WL v (T |1 0D 1) T, = 80)/ 5, =1} (9)

where w'( / ) is the transmission probability of the virtually memory-

less row channel. The probability P{It+1 = g(3) / St = i} is obtained

with the help of the probabilities ql( )s++.5q_ () determined by column

2

decoding. - In fact, let the branch digits corresponding to the transition ‘

g(j) out of state j be x{,...,xﬁa. Then
o>
*
[ il ALY |
Pllyy, = 8(3) /8y = i} - (ko).
y 72
’ *
ll ay (xp)
21 £ \Xg
where the sum in the denominator is over the sequences xl,.;.,xn2

associated with the 2k branches leaving state i.

The aim of row decoding is to obtain probabilities P xr' Yl

’..0,
\' ‘v
YT £y ¥ = 1,...,N, to be used next in column decoding based again -
2+u2-1J 2 . N

on the transition probabilities P{Ut+l = (j,m), Yin , Uy = (i,2); (see
(25)] where formula (40) enables utilization of information gained in row
decoding. The prccess may be iterated any number of times. The last
iteration performs the final decoding according to the three-step algorithm
described in Section 3.

Let us next consider the case where the row constraint length

Vs is large so that sequential decoding must be used. When the first

column decoding cycle is completed, the row decoder is in possession
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of probabilitles Pix ' Yl""’YT o lJ obtained by formula (38)

Since row-memory is assumed to be practically non—existent, the usual
sequential algorlthm is carrled out The difference is that the 1ikelihood

functions used on the 1EE branch digit are given by the formmla

tog MO ) oo @)
w, (v;) |
where
) =) x| x g ) | (42)
” |

It is, of course, through fofﬁula (42) that the sequential decoder
utilizes information gained in column decoding. Sequential deéoding_"‘
on a given row continues until that row is decoded, or until the likelihood
drops by so much that further advance is "hopeless" (this is simiiar to
the original Bootstrap Decoding Algorithm). If the decoder edvanced to
depth J, it is aesumed that all digits from depth 1 thiough J-t [for
some judiciously chosen t] have been definitely decoded. This means.
that for the purpbse of future column. decoding, the probabilities'
P{ I 8(3)' i}are changed, some becoming zero [we assume that B
the sequential decoding involved row tkl + T, re{l,2,...,k1}]. After
row decoding has been completed, column decoding whose aim is tOIObtain 1
~new probabilities (38) is performed on those columns where change in some
probabilities P{It+l = g(j)‘ Sy = i} took place. This prbcess is iterdted
until all rows have been completely sequentially decoded.

Obviously, the above two applications to bobtstrapping are

very tentative. The precise algorithms must be determined by experimentation.

193
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In conclusion we wish to point out, that the column code
need not be & convolutional one. As shown in Section 5, any linear
code is amenable to the methods of Sections 3 and U, provided its rate

is high enough so that the number of trellis states is not excessive.

Figure Captions:

Fig. 1: Trellis diagram for the (7, 4) Hamming code,

Fig., 2: Shift register encoder for the (7, 4) Hamming code,

Fig. 3: Time-invariant trellis diagram for the (7, 4) Hamming code.
Fig. 4: State diagram for the (7, 4) Hamming code.

Fig. 5: Initial convolutional encoding of T2 information digit sequences,
Fig, 6: The final code block resulting from convolutional encoding

of N1 sequences of binary code digits.
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ITI-T An Algorithm Determining Free Distance of Convolutional.c¢des

The algorithm to be described here works for convolutional codes
of all rates R = —%—— . However, for simplicity of exposition we will
- confine ourselves to rate 1/n binary codes. |
It will be useful to take the' old-fashioned point of view thab the

state S(t) of a convolutional encoder at time t is defined by v

immediately preceeding information digits
S(t) = th, 1tél"""lt-u+l] 1)

and that the encoder output block 5? = XypeooXy at time t is a
function of S(t) only.
If the code is non-catastrophic then the free distance df is equal

to the minimal weight of a cbdeword that corresponds to some information

sequence of the form

(Liigsigseeyi -,1,0,0,...) (2)
2°73 m-1 ,

where m = 1, 2, 3,... . We will, of course, réstrict our atténtion
to non-catastrophic codes only (tests for possible catastrophic character
of.codes are simple).

It follows for (2) that free distance will be achieved on a path

defined by a state succession S(1), s(2),..., S(mtu-1), S(m+v),... where
s(1) = (1,0,...,0)

S(m+u-1) = (0,.. -:0)1) (3) .

S(m+v) = S(m+v+l) = ...= (0,0,...,0)
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Furthermore,S(t+1) is obtainable from S(t) by a right-shift followed

by insertion of i into the leftmost state position (t=1,2,...,m+u~2)

t+1
and S(k-1) is obtainable from S(k) by a left-shift followed by insertion
of i, ., into the rightmost state position (k=m+u-1,m+v-2,...,2).
Assume for the time being that we have the following two machines:
a) A right-shifting machine whose starting state is (1,0,...,0) which
searches the trellis in the forward direction: computing outputs,
recording their weight, adding the latter to the cumulative welght
that corresponds to the path from the root code (1,0,...,0) to the
state in question, and keeping track of the states (regardless of depth)
already visited.
b) A left-shifting machine whose starting state is (0,...,0,1)
which searches the trellis in the backward direction (again recording
the states visited).
If one of the machines ever reaches a state already reached by the
other machine, then a path connection is established whose information
digit form is that of (2) and which therefore possibly achieves free
distance. This is the main idea of the bi-directional search for df
being proposed here.
For obvious reasons of economy, both machines should extend low
weight paths first. As a consequence, for a rate R = l/n code, the
memory of each machine will contain at any given time onl& extendible
paths whose weights are w, wtl, ..., wtn,
Both O and 1 extensions, no and nl,of a path 1 ending in state
8(t) =(iy,3y 15.+.s1; L4q) Will be generated simultaneously. Let
5°(641) = (0,1,,.

) and sl(t+1) = (l,it,.. ) be the

SRR IY "it-u+2
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last states of i and 1 respecti&ely, and suppoée (w.£.0.g.) that the
»right-shifting machine already génefétéd some 6ther path ﬂ* whose end.
state was So(t+l). If that path was previouély extended, then its
cumulative weight at that time could not.have exceeded the wéight of
path 1. Hence the path no can be eliminated from consideration. If,
on‘the other hand;ﬂ* was nét extended by the time ﬂo is generated, then
éither ﬁQ or n* can be eliminated‘depending on which has'thé larger
.¢umulative weight. 1In fact; suppose WH(HO) < WH(ﬂ*), and the lefﬂ
shifting machine generates a path 1'1'~l~ whose last state is So(t+l). Thén,
obviously, the concatenétion nQ,ﬂ+ may correspond to a sequence (2)
of least ﬁeight, but ﬂ*,ﬂ+ cannot. We therefore conclude that atiany
‘ given time the memory of the riéht-shifting maqhine need contain only
paths ending in (live paths) or leading through (dead paths) disti_nc£
states.. Same femarks,.of course, apply to the left-shifting machine.

As a matter of fact, when the search for df is carried out by a
:digital computer, no left or right—shiftiﬁg machines need be simulated.
A1l that is necessary is tq attach a three-valued flag to each state'evér
reached from léft‘or right. .The flag's valu; is 'D; if tﬁe state waé
already extended, and it is 'R' if the state is t§ be éxtended'by a
right-shift and it is 'L' otherwise (e.g., the flag value of S(t) when
it was generated was 'R'. When the extensions So(t+l) and-Sl(t+l)'ﬁere
generated, their‘flag values became iR', and the flag value of S(t)
changed from 'R! to 'D').

We are now ready to describe the algorithm. The storage cohsists'
of three arrays: The first, S, gives the state, the second; F, fhe
flag value, ahd‘the third W, gives the cumulative weight of the path

- X% X
leading to the state S: W will denote the current upper bound on df .



It will originally be set equal to nv. If T is a state, ATW will denote

the weight of the output branch corresponding to T,

1. Place (1,0,...,0) into the first S-location, 'R' into the first

F-location, and the weight of the output of (1,0,...,0) into the

first W-location.

2. Place (0,...,0,1) into the second S-location, 'L' into the

second F-location, and the weight of the output of (0,...,0,1) into the

second W-location.

3. Search through memory for a non-'D' location whose W-value is

*
least. ILet it be found at location J. If 2W(J) >W , go to 19.

L, Set T = 8(J) and K = O (K is an indication whose values are C

and 1). If F(J) =

‘L', go to 6.

5. Shift T right and place a O into the leftmost position of T.

Go to 7.

6. Shift T left and place a O into the rightmost position of T.

7. Search through memory for some location I such that S(I) = T.

If such I exists,

8. Find M, the first non-occupied location.

wM) = w(J) + B,
9. IfK-=1,

10. If F(J)

11, Place a 1
12, Place a 1
13, If F(I) %
1k, Go to 9.

15. If F(I) #

6. If w(J) +

17. Purge location I, and make it available.

go to 13.

F(M) = F(J)
set F(J) = 'D' and go to 3,

'L'y go to 12,

into the leftmost position of T.

into rightmost position of T.

'D' go to 15,

F(J) go to 18.

bW > W(I), go to 9.

Then set S(M) = T,

Iet K=1. Go to 7.
Iet K=1. Go to 7.
Go to 8.

202
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18. 120 > W) + byt + W(D), set W = W(a) + A+ W(I). Go to 9.
19. The free distarce is W . Stop. | Figure
1 shows the number éf séarch steps as a function of constraint>length
- U, and compares them with the number of steps involvea in the ébnventional-'
stack-type search. It ié seen tgat on a semi-log plot, the élope

‘Of the latter is approximately twice that of the former.
| This is just as one wéuld expect: each direction Qf search
need an‘be Carried out only to about half of the depth as formerly,
and an exponentially growing tree arrangement exists in both directions,
There is,iof course, one @bvious difficulty connected with this
algorithm: ‘the size of the storage and the search through it., To
reduce the former would mean to change the élgorithm, but an efficient
storage organization to minimize the search is essential., If therekare
EUstorage locatipns available, then there is no problem: each possibler
state is assigned a definite address, and the algorithm simply checké
at the appropriate address if the state in_question_has already been
generated, etc, " If the available storage-islsmailer (its minimal order
of maghitude is a direct function of the number of search steps) a
more efficient organization is necessary. We have tried soﬁe simple
- hashing schemes which seem to work excelleﬁtly as long as the occupaney "
stays below 60%,3and we will experiment with tree arrangements involving‘
' pointers. |
The algorithm applies to rate R = %_ codes as well. .There are
now 2(2k-1) initial states, (10...00...0) through (11...10...0) and
(0...00...01) through (0...01...11), and every path is extended into
k

2" paths, one for each possible outgoing branch. Otherwise the algorithm

stays the same.
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III. REPORT ON PHASE 2

III-A. The Two-Cycle Algorithm

1. 'Intrbduction

In this section we will describe the two-cycle algorithm
andvsummarize our analytical results for it. A long paper by
J.B. Anderson and F. Jelinek entitled "A Two Cyclé Algorithm
for Source Coding with a Fidelity Criterion" going into.the
details was presented at the 1972 International Symposium on
Information Thebry and will be published in the IEEE
Transactions on Information Theory.

In the 2-cycle algorithm, the encoder will work in two
fundamental ﬁodes, called cycles, one embeaded within the
other. In the first mode a search 1s made among tree paths
to find feasible candidates for encoding of the generated
information. In the second mode, the candidates are
concatenated with the help of a push-down stack.
The operation is, in a way, not too different from that:suggésted
in Jelinek!s original proof of the three coding theorem. What
makes analytical evaluation possible and the algorithm de- |
sirable (from an encoding effort standpoint) are the.
_kinds of Stopping rules introduced to limit the amountldf]
‘work in each mode.

Assume that code words for encoding of a_binary digit

IID source
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have been arranged in a tree structure. The tree has rate R = 1og2d/n,
with d branches stemming from each node and n source approximating
binary digits on each branch. The object of an encoder is to find a
path of branches through the tree, the digits of which approximate the
source sufficiently closely. To measure distance between the source

output and various paths, we use the Hamming measure

. : .
a2 =) [1- ey, 5] (1)
i=1

where z' is a source sequence, 2 is an hypothesized path, (both of length

2) and § is the Kronecker delta function. It should be stressed that
our encoder works for other measures and sources as well.
Goodness of individual paths depends on path length as well as

distortion and is compared by the algorithm with the help of a path

metric,
u(%z) = {D¥ - d(gz ) %2) (2)

Since a path involves an integral multiple of branches to be of interest,

£ is assumed to be a multiple of n. D* is the target distortion per
encoded source digit desired at the end of encoding, and D* > A(R),

the inverse rate distortion function relative to (1) and the source.

With this path metric in mind, we define two freezing,bq;piers
(in the terminology of Gallager), one at metric a > 0, the other at
b < 0, Further extension of paths whose metrics rise above a will be
frozen temporarily and the paths removed to the push-down stack, (these

are the live links) while paths falling below b will be dropped entirely.

A precise description of the algorithm follows:

206
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Step (1) o Starting at the code tree root node (which is

! |

assigned the metric zero), a freezing cycle is

performed.: vPathé are extended in an exhaustive»search
until all root node descendants crash a freezing barrier
and are frozen. Those paths that rise above the a barrier
are placed at the top ofva push-dowr. stack.

Step (2} When a freezing cycle terminates, attention turns to
the push-down stack. The final node of the path at the
top of the stéck now becomes a root node'(metric.value 0 |
assigned) for a new freezing cycle, and the encoder exe-
cutes again Step (1). As described in Step (3), the top
stack path may occasionally be saved. If the stack is
either empty, or its top contains a path made up.bf a con-
catenation of L links from Step (i), the encoder passés

toistep (3). *

* The push-down stack requires no sorting effort, since paths are
inserted as they come and are removed at the top. The resulting
stack of paths is thus naturally ordered by the number of live
links each path consists of, the longest (in terms of links, but
nét necessarily branches) being on top. To order paths accdrding'
to branch lengths is another possibility that may involve'exfra sorting
work. We do not know how to take proper analytical advanfage of such
an improvemeht. The fastest way to carry out the freezing cycle would
seem td be a Fano-type search that would take the O-branch extension
first.until freezing is achieved, and then backstack. 1In this way
the ordering of live links within each freezing cycle would be lexical.
If, on the other hand, all extensions were to be carried out by depth,
then the links would be inserted into the stack in the desirable
branch-length order.
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Step (3) When the push-down cycle defined by Steps (1) and (2)

terminates, the encoder releases the output to the user,
If an L-concatenation has appeared, it is released directly,

and an L-termination is said to have occurred. TIn the

event of an empty stack, the push-down cycle has terminated
by extinction. To defend against this, the encoder keeps
track of the longest concatenation found by the push-down
cycle and returns to it if extinction occurs. Step (1)

is performed for the second time beginning on the last node
of this path. The first frozen path encountered (it must
be at barrier bl!!!) is then concatenated with'the saved.
path and released as the codeword to the user.

Step (4) When an encoding takes place, the push-down stack is
purged and the last node of the obtained codeword is
inserted into the stack. The latter then constitutes
a new root node for'further operation of the encoding
algorithm, N

Step (1) constitutes the freezing cycle, and Steps (l).and (2)
together are the push-down cycle. Step (3) implies release of accumulated
output, and the time between successive executions of this step is the
delay in encoding. The analysis of our algorithm is’an interesting one

in itself, but the scheme has several practical advantages. The freezing

cycle need not be extensive, and far less time ié spent scrutinizing

codewords than with the Jelinek stack algorithm. 1In general, efficiency
and simplicity are well combined.

Béfore proceeding with an analysis, we pause to develop further

terminology and identify quantities of interest. The language of tree
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structures is well suited to our discussion, except that the tﬁo-cycle
algorithm contains two ﬁree.strucﬁures,.one "within" the other; which
are easily confused, Accordingly, let the code tree paths be made up
. of branches, of which d stem from each node, but let the tree structure
diagramming the push-down stack development consist of links. In this
“tree, éons of a node are formed by a.freezing cycle, their number being
va random variéble, and paths of links represent concatenations: of the
"good paths" alluded to above. Corresponding to each link is a link
dength in branches of the code tree, and a stack tree node has sons
>équal in nﬁmber to the code tree paths frozén atlg during some freezing.
.‘ cycle. The subject of code trees is well known, and thé growth of the staék

tree, a process we call a push-down stack searched branching proéess,'

‘will be estimated in Sectionz_B. The process terminates either by

extinetion, or by I-terminatien.

2. Quantities of Interest in the Two-Cycle Algorithm

Wé'ndw discuss quantities of interest in the operation of the
twb-cycle-algorithm: Computation per source digit encodéd; computation
pér.freezing cycle, freezing cycles per push-down cycle, probabilify
of termination by extinction, concentration of work in one or fhe'other
. cycles, and of course, the distortion attained. All of these eventually
- must depend on the three parameters of the algbrithm,_a,b, and L. .

| Lef fhe tefm live link refer to an a-frozen link; and dead link{-
to thévoccasibnal b-frozen link'(recall the push-down process involves

‘a-frozen links only). ILet the path that constitutes the codeword

" - released to the user be referred to as the chosen link path. ZILet the °
~ latter be of length £, and let-Xi be the branch length of the ith link,

Let Y be the branch length of the last (and only!) dead link, if any,
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of the chosen path. Then the chosen path branch length M is given by

(2 is a random variable not exceeding L)
2
= + -
M /% v [1-6(2,1)] (3)
i=1

and the total distortion incurred in encoding is
Dpoy = DM - fa - [1-8(4,L)]6 , b<oO (&)

Let Wi be the computation performed in the code tree during the ith
freezing cycle, and let V be the number of freezing cycles necessary

to complete a push-down cycle. Then U, the total computation expended

in a push-down cycle, is
Uu = /, Wi (5)

Among our interests is the relation between the average distortion

D
per encoded source digit E L Tot ] » and the average work per
M

encoded source digit E i—%%-J . Under suitable conditions, satisfied

in this case,

. D - Elp. ]

Lu E[M)

U | E] |
) - B ™

Let a4 be the probability that the push-down cycle terminates by
extinction before any link on tree level i has been generated. Clearly

qa = lim

i



It can be shown that a ﬁroper choice of a > 0 and b < 0O results in

q <1. Assuming that to be the case, let us choose I, to satisfy

. 4 vl
L l-g 73

Then from (h)'and (6)

But

E [1-8(,1)] = ar,

and
-1

Ble) = ) (g4 - q)) 2+ (1-q)L > (1-q)T

=1

Hence, using (8), (10), and (11)

;aE[Z] - bE[l-é(f:L)] =

< -a (L-q)L + alL (1('1 q
aL(qL'q ) <0
q

i

Tt follows that L chosen as in (8) causes

s

Next, the computation in successive freezing cycles is independent

- Dot ] -oe o LD+ bE (10601
E[M]

(8)

(9)

- (10)

(11)

(12)

(13)
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under our assumptions, so by Wald's Lemma,

E[u] = ELv] E[W]
and

ElM] = E[2] E[X] + o ElY]
>(1 -q) L E[x]
where we have made use of (11).

Hence

ELV] BLW])
L(1-q) E[x]

A characteristic of push-down stack searched branching processes
is that the underbound of (11) is quite tight, so that the bounds

(13) and (16) are also tight. Thus, (16) gives the computation

required to produce distortion D*,

Since q is a function of a and b only, then a, b, and L are all
implicitly present in (16). Tt turns out that certain choices of
a, b, and L decrease the computation in one cycle at the expense of
the other (e.g., smaller freezing cycles, but more of them, or vice
versa). Obvioudly, some combination minimizes the bound (16) while

preserving the validity of (13). To complete our analysis, we must

study

(1k)

(15)

(16)

i) E[W], the expected number of computations in a freezing cycle

212



ii) E[V], the expected number of freezing cycles in a push-down cycle

iii) g, the probability of extinction in a push-down cycle that
has L = «w
iv) E[X], the expected branch length of a live link

v) Choices of a, b, and L

3. Summary of Analytical Results for the Two-Cycle Algorithm

For this progress report, we summarize briefly the analytical
results that have been obtained to this date. Only the simplest equations
and no proofs will be given. A full length report on the two-cycle

algorithm will be forthcoming.

i) Expected freezing cycle computations

In the code tree, let

Na = Nunber of paths frozen at a-barrier (i.e., live links)
N, = Number of paths frozen at b-barrier (i.e., dead links)
Nqo = Number of paths remaining forever uhfrozen

Then the following theorem is true:

Theorem 1 For a tree with rate R = loged/n used to encode binary

IID sources with respect to the Hamming distortion measure,
EN e ///// ( coswa coswb \
& = sinwa \ sinwa = sinwb / (17a)

b : . '
coswa coswb &
ENb — —sinwb ///// (sinwa sinwb ) (17b)

?
]

2
>}
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whenever b - a < ﬂ/w. 5 =7 elW is the possibly complex'
solution to

- *u *
QLR _ D*1 D (18)

w and r are functions of D¥ and R only.

wN 0 as D* N\ A(R) and r is typically near (1-D¥)/D*. A careful
look at (17) reveals that as [ b-a l tends to T/w, both EN_ and EN,_
tend to infinity. In fact, given an & one may choose b to make the
right hand side of (17a) precisely unity. In this way, R, D¥*, and a
specify a minimal b necessary to achieve ENé > 1. We can state this
as a
Corollary 1 For any given a < ﬂ/w, there exists b¥ such that if lb—ai

< N/w and b < b¥*, then EN_ > 1

As a rule, b¥ is very near ﬂ/W. A second corollary will give us
the desired result for E[W]. As is customary, let one computation
include the generation and scrutiny of d branches stemming from their
common parens nodz2. Then an exercise in tree branch topology yields

Corollary 2 ELW] e T (18)

B .

d-1
The significance of ENa > 1 1s given by‘Theorem 2, which amounts
to a coding theorem proved by the devize of a two~cycle algorithm:‘
Theorem 2 Under the hypotheses of Theorem 1, whenever.ENa > 1 and
D* > A(R), the two-cycle algorithm along with some source code

will perform arbitrarily close to D* for some I..

ii) Expected freezing cycles per push~-down cycle

An efrfective means of analysis has been found for the push-down
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stack, that shows, among other things, the surpirising theorem to follow.

Let the distribution § v, ] be.defined by

p, = Pr {N_ =k} = probability of k sons of a stack
tree node

Theorem 3 For any distribution épkg such that Ek > 1 (i.e.,
EN, > 1), the expected number of son formations, E[V], necessary

to terminate a push-down cycle is overbounded by

Elvl] < L (19)

(Recall that I is the termination depth of the cycle when extinction does
not occur, but the expectation is over either termination).

We conjecture that (19) is a tight overbound.

iii) Probablility of push-down cycle extinction

In the event of extinction, the push-down cycle behaves identically
to an ordinary branching process. Exploiting this relationship gives q.
In particular, whenever ENa < 1, the monotone increasing sequence {qi}
has limit 1, so that rfor large L, =xtinction occurs with probability

1. When El\TE > 1, q is the solution of the polynomial equation

k
q = Z P d (20)

Tt remains only to find the distribution {pk} , and it turns out that

each pk(a,b) is the solution of a linear difference equation with non-

constant coefficients. These equations are easy to solve numerically,

although much more complicated analytical methods are available also.
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iv)  Expected length of live links

Recursions are now available to find the expected length of a live
path searched out by the freezing cycle. These recursions allow also
the study of freezing cycles with a length restriction on searching
in the code tree. Such a feature is important as a practical matter
to insure the steady operation of the encoder. For lack of time,

nmimerical analysis of these recursions has not as yet been undertaken.

v) Choices of a, b, L

Intensive work on this problem is awaiting further numerical
analysis. Increasing a will increase gq and increasing ,b' will have
the opposite effect., Simultaneous increase in a and (b ,will increase
ELW] but might conceivably decrease L (see (8)). The pcint is that the
amount of work in the push-down cycle might be traded for work in the
freezing cycle, and there will exist some optimal balance that ﬁe shall

seek to discover,



III-B. The Stack Algorithm for Source Coding

The stack algorithm is a scheme that uses tree codes to
encode source data with respect to a fidelity eriterion. It
stems directly from the Jelinek stack algorithm [1] for sequen-
tial channel decoding, but differs radically in its analysis.

In terms of code tree branches searched per digit output, it is
the most efficient algorithm known to the authors (see [2],[3],
[9]) . The algorithm suffers, however, from clumsy data handling
and large storage.

The stack algorithm is simple to describe and consists'of

one repeated baslc operation, the stack augmentation. Hypothet-

ical code tree paths 2K of varying lengths k, ordered by the

usual metric
L(25) £ xp* - a(£X,25) ()

reside in a stack. From the top path in the stack, the d bran-
ches stemming from its final node are extended to form d new
paths. Stacking these in order of metric, the algorithm com-
pletes an augmentation. Repetition continues until a stepping
rule intervenes.

Suppose the algorithm stops and releases output when a
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path exceeds metric A>0 for the first time, that is, when
the "top" of the ordered stack exceeds A. We can imagine a
bottom limit B<O0 bhelow which all péths are dropped from the
stack, and a limit t on the length of tree paths stored in the
stack. Our analysls 1s sufficient for this generality, but for
simplicity consider a stack of infinite capacity to store nodes,
with B = -* and t = , With these assumptions, the average
stack storage in branches is identical to the expected number of
nodes serutinized by the algorithm, since no paths are ever
dropped. Furthermore, if this expectation is EN(A,B) -- with B
= - o -~ then the number of nodes searched per branch released

as output, over many stack searches, is
E[Nodes per branch] = EN(A,-=)/EL . (2)

where EL is the expected length of a released path. The expected

distortion of this path will depend on A as well as D¥, and is
- - A
@[Dist. ver brancbj = nD# - - (3)

Similar, but more complicated, equations hold if 3 and t are
not iIndefinitely large.

Our analytical method is to identify the tree search with
linear and non-linear differencs equations, and then approximate
these. The non-linear equations predominate, unfortunately,\and
the stack sorting will require a careful mathematical model.
Quantities needed will be the averaze nodes searched EN(A,B),

the average length releases EL, and the probability distribution

of the top-of-stack minimum (TSM). The latter describes how low
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the metfic of the best satack path drops before some path 1is
finally released. |
Define the function G(y) by means of its dath power to be
Gd(y) = P{Forward of some node ng lp(no) =y (4)
TSM € B ~
Besy< A
n, can be any node encountered during the stack search, and

&(no) represents the value of (1) at that node. Then one can

show that G( ) satisfies the non-linear difference equation with

constant coefficilents,
6ly) = 2 olwy) 6ly+uy) , Bey<a (5)
: m
{Pm§ is the set of (IID) metric incfements that can appear in
the tree code, and p( ) 1is their distribution. G( ) glves the
distribution of the stack top, but turns out to be far more

1mpoftant than that. As we :shall now see, every stack quantity

is directly related to G( ), and the study of the algorithm con-

s8ists almost entirely of manipulating this function.
After a careful derivatlion. taking lnto account the stack

sorting, one gets that
B
EN(A,B) = JZIM(J/MJ) (6)

where the family of functions {M('/i)} are solutions of linear

difference ecuations with non-constant coefficients of the form

M(y/1) = de'l(y/i)Zp(pm) M(y+ pp/1) + C(y/1)
& |

(7)
An equation (7) exists for each i, i=1,...,I(A,B). I(A,B) is a

219



finite integer function of A and B. All I(A,B) solutions are
needed to compute (6). C(:/1) is calculated from G( ) functions ;
G(°/1) 1s the solution of (5) for eertain boundaries specified
by 1.

A final derivation ylelds that

8L = 2 ¢%0) (8)
z=o

assuming the stack search begins at a root node with metric 0.

The {Gz( )} are obtained from iterations of the recursion

il

Gy (y) Zp(um) Gf_l(ywm) » B<y<aA (9)
m

G

o 1 {Boundaries as in (5))

which provides incidentally a numerical means to solve (5),
since it can be shown Gy(y) * G(y) .

Using these equations (4)-(9), extensive numerical studies
have been conducted for a stack algorithm using a randomly
chosen tree code to encode the binary IID source with Hamming
fidelity criterion d(z,2) =1 - &§(z,2) . In addition, a FORTRAN
stack encoder has simulated the same situation. To summarize
these results, observe that distortion is a function of both D#
and A. If one optimizes A and D* for smallest storage, A will
be as small as possible, with D¥ as a consequence very near the
distortion desired from the algorithm. On the other hand, opti-
mizing with respect to branch computation requires a larger A
and a D* somewhat above the final distortion.

It turns out that the stack search involves by far fewsr
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tree branches per digit released as output than any other scheme
'studied by the authors [2],[3]. But this strong advantage 1s
balanced by several disadvantages. Both computation and length
released vary widely from search to sdarch, and storage is large.
A difficulty of another sort, encountered during simulation,vis
sorting effort. After each augmentation, d new paths must be |
sorted into the stack in order of metric, and among paths of the
same metric, in order of length. In general; this 1s not easily
done. New paths typically are inserted far down into the stack,
‘particularly if some of the branch increments are reasonably
negative, since many other paths usually haje metrics nearer the
best.

Overall, it appears that the efflciency in branches
studied is overbalanced by this clumsy sorting. Algorithms such
as the M-algorithm [2] and the 2-cycle algorithm [3] have proved
faster in simﬁlation thus far, and simpler to implement. But
improvements in all the algorithms are alwayé a possibility,

and the subject is not closed.
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IOI-C. Development of a Stack Algorithm for Tree Encoding of a

Gaussian Source with a Mean Square Fidelity Criterion -

1. Introduction

The most general theoretical formulation of the data compression
problem was provided by Shannon in 1959 in his paper "Coding Theorems
for a Discrete Source with a Fidelity Criterion" [1]. He enlarged there
on his 1949 source coding ideas [2] referred to in the literature as
variable length source coding and block source coding, Concisely
stated, Shannon's results are as follows: let a memoryless source
of alphabet A = (0,1,...,a-1) governed by the probability distribution
Q(z), zeA be given, Let an approximation of the source outputs in the
reproducer alphabet B = (0,1,...,b-1) be desired ( in practice b< a )
with an attached additive per letter distortion criterion d(z, Z) defined for

all pairs zgA, é\gB. (i.e., the distortion between sequences
n

2 =%,...,2 and z" = g see.,2% 1is defined to be d(zn;ﬁn) = Z d(z., z.)).
~ 1 n ~ 1 n ~ '~ io1 i1

n
Let ‘i’n(z ) be an encoding function that assigns some reproducer

sequence %n to each possible source sequence in. The rate of the
resultant code is defined to be R = log Yn/n where Yn denotes the
number of sequences in the range of \yn( ). Shannon shows the
existence of a rate distortion function R(D) [whose shape depends on
Q()and d( , ) only] that has the following properties:

a) for all n and all codes \{In, if R<R(D) then the expected

distortion E[;ll- a(z"; ¥ (z)]> D.
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b) for R2 R(D) there exists a sequence of codes

‘1’;’; of rate log \1!;1 / n < R(D) such that

E[id(gn; v (gn)) ]+ D.
In recer}1t» years much work has been done generalizing the above _
results to a broader class of sources, evaluating the performance of existing
systems relative to the achievable optimum, and developing methoas
for evaluation of the R(D) function. The first consideration of the
actual coding problem was undertaken by-Jelinek [3] who showed tha.;c
the sequence of coding functions Y;l can possess the above desirable
properties even if it is restricted to generate tree codes (instead of -
block codes to which Shannon's theorem applies). It was hoped that a
tree code structure would facilitate the development of computationally
feasible encoding algorithms,

‘The present report concerns the performg.nce of two such algorithms

as applied to the restricted case of the time discrete Gaussian memoryless

source [with probability density 2
-3 -
2
Q(x) = L e , xreal ]
v ZTI'
and the squared error criterion [d(z,%) = (z - 2)2] .

For this case the R(D) functionis R = - —;-log D. Furthermore,
for this case it can be shown that any sequence of codes }"r'; with rates

log ¥* /n + R(D) and distortions E[d(z", ‘1”;‘1 (Zn))/n] + D nmust have the

average conditional distortions
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n
\ 2 2
% Z E[d(zk, vx (z™)) |zk = x] +D(1 -D) + D'x

k=1

almost everywhere in x where z, is the kth element of 'zvn and

k
* (zn) is the kth element of Y*“(zn)
Yn,k ~ 8 n~ °°
An example of a tree code with 4 branches per node and two initial
states is given in Figure 1 . The various codewords are the sequences
2
associated with the 2 x 4 = 32 different paths of the tree, For a tree

with b0 initial states and b branches per node a path of length 4 is

specified by a map sequence s'c = (s

0,51, .o .,sz) where the si's are

non-negative integers, sosbo -1, sis b-1 fori=1,2,...,4.

This map sequence determines which initial state was taken and at each

node level determines if the first (0), second (1),,.., or bth (b-1)

branch was taken. Thus for the tree of Figure 1 the map sequence

2

s
~

= 112 corresponds to the codeword z2 = (-0.87, 0,60), The rate

of the code of Figure 1 is R = = log 32 = 2,5 bits,

1
2
A convenient method of filling the tree is by means of a finite

state tree encoder . In this method each branch in the tree is

j

~

associated with a state as follows: branch sj of path = (so, Sl’ ooy sj)

is assigned state (4(j), t(iJ)), where time state g (j) = j (modulo r)

and branch state j
t(s)) = (s b’ + Z sib‘]-l)(modulo m)
i=1

and the period r and nunber of branch states m are positive integers,
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Then each state is given an element of the reproducer alphabet and
each branch is given the element assigned to ifs state, An example of
a finite state tree encoder with r = 2 and m = 8 is shown in Table 1, This
code gives the tree of Figure 1 when used to fill a tree with b0 =2
and b = 4, For example, path 112 has states

(1 (modulo 2), (1x 4 + 1) (modulo 8)) = (1,5) and

(2 (modulo 2), ( 1x 42 + 1x 4 + 2) (modulo 8)) = (0,6)

and therefore has the codeword (-0,87, 0.60),

It is not known how to find the best code given R, D, r,m., However,

it can be shown that for a tree with b = R(D) branches per node, if the

states are assigned real numbers independently at random with
2

‘s . _ 1 2 "
probability density P(z) = /—7_5}—2;—1_—- expc- ——-—2/1__5 ], then with
probability one in the limit of large r, m and large tree depth the
resulting code is optimal in the following sense: the expectation over
all source output sequences of the average distortion along the best

path for each source sequence is arbitrariljr close to D,

A question still remaining is how to search the tree efficiently to
find good paths, Two algorithrﬁs for doing this will now be described,

Since t(ij) = (’c(ij -1) xb + sj) (modulo m), the state of a branch -
determines the states of all branches deriving from it, Consequently,
branches at thé same level with the same state are identical for

coding purposes, Thus for example in the tree code of Figure 1,



State Representation State Representation
(0,0) -0.72 (1,0) 0.38
(0, 1) 0.30 (1,1) -0.69
(0,2) 1.38 (1,2) -0.97
(0, 3) -0.32 (1,3) 0.76
(0, 4) 1.32 (1, 4) 1,32
(0,5) -0.92 (1,5) -0.87
(0, 6) 0.60 (1,6) 0.37
(0,7) -1.28 (1.7) 0.10
Table 1,

An example of a finite state tree code

with period r = 2 and number of

branch states m = 8.
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paths 012,‘-032l, 112, and 132 all have sta;t.e-(0,6)"at level 2 and are
therefore equivaleﬁt there. Tbhus for a memoryless source a choice
frorﬁ any set of paths in encoding a given source output should depend
only on their distortions up until the time they reach the same state,

This property is used by an exhaustive search algorithm
known as the Viterbi algorithm:l encoder states are grouped into
equivalence classes T. defined by T. = {t:bt = i (modulo m)} i=20 1, cesymm-1,
The algorlthm proceeds by successive elimination and operates w1th all
‘paths of the same length,

All one branch extensions of all paths still being considered are
found and their distortions are computed. For each i, all paths
epding in states in class Ti are compared and all but the one with tiqe ’
smallest total distortion are eliminated fr om further consideration,
This process is repeated for each level until a given stopping level is
reached, Then all remaining paths are compared and the one with the
smallest total distortion is chosen to be the encoder output,

Another search algorithm, known as f.he stack encoding algorithm [4],
operates as follows:

Let D* be th e per letter distortion desired by the user, To be
realistic (see the previously quoted results) we must have R > R(lj*<).
Define a metric distortion function d*(z, z) = d(z,2) - (A + Bzz) wh ere
A + B = D* are parameters to be adjusted, For example, a choicé

of metric matched to the limit of the performance of the best possible



2 .
codes would be R = R(D¥*), A =D*(1 - D¥*), B = (D*)" , Then 2"
will be an acceptable approximation of a source sequence z" if and

only if
i
Z d*(z,, 2.) <0
J ]
j=1

(we assume that the code is indefinitely extensible, i. e., that the

number of levels in the tree is practically infinite). Suppose the

sequence En (n large) was generated by the éource, let d*(ij) denote the
metric relative to in corresponding to the last branch of the path

'sj le.g., d*(112) = d%‘(zz, 0,.60) and d*(113) = d*f'f(zz, - 1,.28) for the code
of Figure 1 7, and let D(ij) be the cumulative metric along the path ’svj.
D(EJ) = i d?‘f(ii) where ii are the initial subsequences of length i of

. i=1
ff(i < j). The stack will contain different paths s

~

J and their cumulative

metrics D(ij), and will be arranged in ascending order of the latter
(i.e., at the top of the stack there will be that path ij whose D(,Svj) is least).
l. At the beginning of the encoding process, the paths 0,1,... ’bo -1
are assigned zero cumulative distortion and arranged in the stack in any
order (e.g., numerical order).
2. The encoder checks whether the path ij on top of the stack is
such that j is greater than some stopping value. If so, go to step 4, if
not, go to step 3.

3. The top entry [‘E‘], D(E'J)] is eliminated fr om the stack, the

branch metrics d*(EJO), d?‘x‘(ng), . ,d‘k(sJ(b - 1)) are computed, and b
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new entries [s‘]k, D(sJk) = D('sJ) + d"\‘(sJk)], k=0,1,..., b - 1are
inserted in the proper locations in the stack, Go to 2,
J J

4. The sequence z’ is encaled into the codeword z” that corresponds

~ tasd

to the path s7. | Stop.

~

'2. Results

The basic algorithms were modified in several ways in the
cofnputer programs to simulate the encoding., A modification applying
to both the Viterbi and stack algorithms was that data (source outputs) of
magnitude greater than a certain cutoff ¢ we.re encoded separately, using
one quantization region for each tail of the Gaussian distriﬁution.

Thg additiona.l coding needed to code extreme data separately
requires on the average rate Rc = H{Q(c) - %(~c), 1 - &(c), 1 - Q(c)}

where H is the entropy function defined by

Overall rate R is then

R = R_+ [8(c) - 8(-c)IR,

where Rt is thetree coding rate,

For Dc the expected disj:ortion of the extreme source values ‘a.nd Dt the
average diétortion of tree coded source values, overall distortion D is
given by

D = 21 - &(c)] Dc + [8(c) - Q(-c)]Dt .
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It was determined experimentally that for both Viterbi and stack algorithms
the cutoff ¢ should be in the region of 3.5 to 4 source standard deviations.

The Viterbi algorithm with data cutoff 3,5 was simulated in IBM
System 360 assembler language. It was run on 60 blocks of length 250
source outputs each, with period r = 250, that is, with branches of the
code tree at different depths being assigned numbers independently. m
was 16,384, b0 and b were 32, Overall rate R was thus about 5 bits per
source output,

As given above, the lower limit of possible rate R versus distortion
D performance is given by

1 2R

= D = .
R > log2 or D 2

The Viterbi algorithm simulation just described was found to operate
at an overall distortion D = 1,31 (2 -ZR). Because doing this required a
search of about 16 thousand branches per datum encoded, the simulation
could process only about 2 data per second.
Stack algorithm modifications were as follows:
(a) The branches coming out of a node were grouped together and
put -as a group into the stack according to the best cumulative
distortion metric of the group. When the group arrives at the top
of the stack its best branch is removed and extended and the group

is re-entered in the stack according to the best cumulative distortion

metric of the paths remaining in it,
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(b) Whenever the stack cdhtair;ed more than 3, 00'0 path groui)s,

the group at the bottom of the stack (i.e., the group with the largest
distortion metric) was eliminated from further consideration. 'i‘his :
r‘nodificé.tion was required byb the finiteness of the memory of the
computer,

(c) Whenever step 3 of the stack algorithm was executed any
multiple of 100, 000 times, 5,11 path groups except the 32 deepest

into the tree were eliminated from further consideration. This
modification speeds search thfough the tree in the event that the

encoding is taking too long.

The stack algorithm simulation was found to give performance of
the same order of magnitude as did the Viterbi algorithm simﬁlation,
It was run on the same 60 blocks of data of length 250 each which the

Viterbi algorithm used., Parameters were b = 32 branches per node,

periodr =1, m = 229 branch states, and bO 32 initial states, Thus
overall rate was again about 5 bits per source output. Distortion metric
parameters A, B given by the limit of performance of the best poséible
coding were found to givé the most efficient results, That is, a D* ig
chosen and A, B are setat A = D¥(1-D*), B = (D*)2 . Varying D*
varies the distortion obtained and also the.amount of search performed,

The stack algorithm simulation just described was found to give

overall distortions of D = 1,28 (2 -ZR) and D =1.25 (2 -ZR) with searches



232

of about 14 thousand and 23 thousand branches per datum respectively. It
required about 7% longer to search each branch than required in the

Viterbi algorithm,
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Figure Caption

Fig, 1: Example of a partial coding tree of rate R = 2 for a

Gaussian source with a square error fidelity criterion,
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ITII-D Variable Length-to-Block Coding of

Fixed Rate Sources

There are two practical problems associated with noise-
less source coding: (a) optimal codes require a codebook
table look-up, (b) real-time variable length coding and real-

time decoding data retrieval are both subject to buffer over-

flow. A partial answer to problem (a) is Elias source coding

as described in Appendix A of Jelinek: Probabilistic

Information Theory. Problem (b) for block-to-~variable

length coding has also been analyzed there. It is, however,
of interest to analyze the buffer over-flow problem of
vafiable length-to-block coding that assigns constant length
codewords to variable length source output sequences. (It
is thus a generalization of run length coding.) The reason
is the word-like character of computer storage that makes
retrieval.of constant length codewords much easier. In a
paper to be published in IEEE Transactions on Information

Theory (the abstract can be found below) Schneider znd Jelinek
derive tight bounds on buffer overflow probabilities. For binary
sources that are more skew than (0,8, 0.2), variable length-to- -
block coding leads to lower probabilities éf buffer overflow than

does the usual block-to-variable length coding,
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ON VARIABLE LE_NGTH-TO-BLOCK CODING*
by
1 .
K. Schneider, Member IEEE

F. Jelinek, 2. Senior Member IEEE

ABSTRACT

Vg.riable leng;ch-to-block codes are a generaliza.tipn of run
length cbdes. A coding the:orem is first préven. When the codes
afe used to transmit information ffom fixed rate sources through
. fixed ;ate noiseless channels, buffer overflc;w results, _Thg
latter ﬁﬁenomenon is an irn'portantv consideration in the retrieval
of compressed data from ‘s.torage. Thé probability of buffer
overflow decreases exponentially with bu.ffer'length and we
determine the relation between rate and exponent size for memoryl_ess
sources. We obtain codes that maximize _the ovefﬂow exponént
for anf given transmission rate exceeding entropy, and present
asymptotically optimal coding algorithms whose complexity
grows linearly vs'/ith c,ode’wo?d length. We compare error exponents
corresponding to variable length-to-block, block-to-variable

length, and block coding,
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