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Abstract

Given a linear time Invariant multivariable system X = A§_+ Bu, y = Cx
with m inputs and p outputs, Davison [6] has shown that p closed loop poles

of the system can be preassigned arbitrarily using constant gain output feed-

back provided [A, B] is confrollable. This paper shows that if [A, B, é] Is

controllable and observable, and Rank B = m, Rank C = p, then max (m,p) poles

of the system can be assigned arbitrarily using constant galn output feedback.
Further, it Is shown that in some cases more than max (m,p) poles can be
arbitrarily assigned. A least square design technlque Is outllined to approximate

the desired pole locations when it Is not possible to pjace all the poles.



Introduction

The design qf Ilnear multivariable control systems using output feedback
has attracted the attention of several authors. [1-3]. There are two ways of
approaching this problem. The first method consists of estimating the states
of the system using an observer and use these states In the subsequent design.
In the second apprcach, either static or dynamic feedback of the output tis
used directly in the control probiem and this view Is adopted here.

Consider a linear time-invariant multivariable system

X = Ax + Bu
(n)

y = Cx
where x is an n vector of states, u Is an m vector of Inputs and y Is a vector
of outputs. It is well-known that the problem of pole assignment using state
feedback Is equivalent tc the controllabillty of the pair (A,é) [4]. Pole-
shifting technliques for multivariable systems using static feedback has been
studied by Retallak [5], Davison [6] and others. |t has been shown by Davison
that if (A, é) Is controllable, and If Rank é = p, then p poles of the system
can be arblfrarlly placed using output feedback. Thls paper shows that gliven
(A, é, é) controllable and observabie, Rank é = m and Rank 6 = p, then at
least max (m,p) poles of the closed loop system can be arbltrarily placed using
output feedback.

Thé above result may be used in designing systems for high Integrity in
the event of fallure of transducers and/or acuators [7]. Due to failure there
may be loss of inputs aﬁd/or outputs In the system. |In such an event thls

design takes advantage of the unequal number of Inputs and outputs so as to
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assurg no loss in pole assignablitity.
Theorem

Given the system (1) with Rank é =m < n and Rank C = p<n, thena
inear feedback of the output u = Ky, where K Is a mxp) constant galn matrix,
can always be found such that mex(m,p) eigenvalues of the closed loop system
can be be made to take preassigned (complex elgenvalues occurring in

conjugate pairs) values.

Proof:

Let (Al,Az, ---,An) and~(p|,p2, -——- ,pn) be the eligenvalues of the open-

loop and closed=-loop system respectively.

We have
open loop characteristic polyncmial = |sI-A| = (s:2)(s-3,) === (s-} )
(2)
and closed loop characteristic polynomial = IsI-A+éK6( = (s-p,)(s=p,)-==(5-p )
(3)
Then
ISIABIC] _ ot [1 + BKE (s1-M)7'1. (4)

|sI-A|
Choosling K = de wheee f is a mx| (column) vector and dT Is a Ixp (row) vector,

and using the Identity det [I + MN] = det [I + NM], equation (4) becomes

SI-ATBKC] 4 4G (s1-m) ! Bf
}s1-A| . T
=1+ d'CT (s1-T~'AT)

=1 +d¢c (s1-0)"" Bf

17" '8¢ (5)

where C = 6T, A=T l

AT, B=T 'Band T Is a2 nxn nonsingular matrix.
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For clarity, the theorem is Initially proved for the case of distinct
eigenvalues of A and the multiple eigenvalues of A are considered In the latter
halft of the proof.

Distinct Eigenvalues

In this case equation (5) gives

~ A A

n o
lsI-AtBKCl =]+ Z ( iA ) 6)
fs1-A| =107
The value of oy depends on the closed loop elgenvalues (pl, -, pn).
From (5) and (6),
T -1 ¢ %
d C (sI-A) Bf =]Z| E_-T;T | _ (7
Choosling T as a modal matrix equation (7) becomes
n
dc st-m M er = 79 @)
i=1 (s-A')
where A= dlag. (AI,AZ,-—-,An).
Let c' be the iTh column of C and b, be the lfh row of B, Then,
a, = ch'bif - 1=1,2, -——, n. (9)

Case (1)
Let p>m i.e. more outputs than Inputs. Choose fi such that b'f = Gl #0

I =1,2,--~, n. This can always be done since bl # 0, for controtiabiiity.

Hence, d'c' = a /6, [ =1, ===, n. (10)
This gives C'd = o ()
where a = col [a‘/dl, az/dz, -— an/dn].

Now, let Cp be the matrix made of the p independent rows of CT and e, the

corresponding subset of a. Then,

-1 '
d=¢C (12)
p p -
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Thus (dl, d2, —-— dp) can be chosen corresponding to the p desired pole |
locations. Once this Is done the remalning (n-p) poles are fixed automatically,
Case (ii)

Letm > p i.e. more inputs than outputs.
Choose dI such that chi =Y # 0 =1, 2, ===, n.

This can always be done since cI # 0, for observabllity.

Hence, b.f = al/Yl i=1, ---, n. (13)
This gives Bf = a (14)
where a = col [al/sl, az/yz, -, an/yn].

Since the rank of B is m, there are m independent rows of B, B,» such that
Bmf=gm
where % is the corresponding subset of a.
-1

¢ =5 o (15)
m —-m

Thus (fl’ f2, — fm) can be chosen corresponding to the m desired pole
locations and the remaining (n-m) poles are located automatically. From case
(i) and case (il) it is evident that at least max (m,p) poles of the system

can be assigned arbitrarity.

Multiple Eigenvalues

Let the elgenvalues of matrix A be Aps Agy ==, A, with multiplicity

w

ny» n2, —-—, nw respecflvely; Choose T such that A = T 'AT has the Jordan
canonlcal form with w blocks of respective sizes s Ny, ===, N, and AI, Az,-—-,
Aw the corresponding elgenvalues.

Now, we have

A A A

|si-AsBrc| _ (S )(s7ep) —-- (spp) (16)

~ ny Ny N
|sI-A| (s=x)) "(s=2,) =-=(s-2 )




w
where ) ny
i={

[}
3

Equation (16) can be re-written as

PN " al "y af -
IszamBre] g ! ) L (18)
|s1-A| f=t (s=x)) =l (s-a)
. w
The value of a% ( 1=1, ---nJ, j=1,---w) depends on the closed loop poles

(p‘; 92: "pn)o

From equations (5) and (18), we get
ny | n w

d'ctsz-m) "' B = ) ,._fl_T_.+ ¥ ._fﬂ___r (19)
i=1 (S-Al) (s=A )
w
(s1-A)~" has the quasi-diagonal form diag [J', Jyr ===, ij where J, Is a
Ny x n matrix of the form
C | L | 7
2 n
(s-AI) (s—Al) (s-A') I
0 | o |
(s-2,) (s4Al)nI-|
| I
- (s-2) (s=2)? :
. (20)
0 |
O -
(s—Ai)
Let C = [CI, c? -—-, C"] and B = B', 82, -— Bw]T where CY is a pxn; matrix
and BJ Is a anm matrix. Then it can be easily seen that
n, J
. . J a
dTCJJjBJf = L j=1,2, = (21)

1= (s=1.)
J



Further it can be shown that

J o dTeced + olad + e+ ol g
o d [C'Bl + C282 + + anenj]f
I NS N
ay = d[Cy8) + ——- +C; B If
) J
o = dlcded f.
n‘j | ™ n.

i I

c

1.1
IBI + C282 + - - + CnllBn1
clelsclgl + - - -+¢! B
|72 23 nl-l nI
cle!  +clp
| nI-I 2 nI
cls
I7n
S R
WoHW WRw - W QW
CiBy +C By + - -~ ¢ Ch By
w
W W Wpw 4 _ _ o w w
CIBZ + CZBB + M Cn —an
w W
W W W
CIBn -1 CZBn
w )]
CTB“
w
L

J=1,2,-=-0

Where Cj Is the ifh column of CJ and BJ Is the l+h

in the matrix form equation (22) can be written as

0‘l
i
al
2

row of BJ.

(22)

(23)



Case (i)

Let p>m i.e. more outputs than inputs and Blf = &J i =

For controllability, every row of B corresponding to the last row of each

i I’

l,---,nj and j=I,---uw,

Jordan block of A Is linearly Independent [8] i.e., Bi #0, j=I1,2,---w, are

J

flnearly independent.

Now, we can choose

J J
Substituting this In equation (23) we get

]
Where o = col [al,a

(fl,fz,---,fm) such that
8l s =6l 0, joi,---u.
-
N LN L g L
Y ®n
T T T
AR Lol
80y + 83Cy + * 6n|Cn|-|
T
s! ¢!
n, |
|
) d
T T
%Y 4 - - - - -+ O ?
|I W w
T W AW
gogw t - 8, G
271 w
T
§¥ c¥
n n
[PV 1]
| | 2
277 T % &y %n,’ ’

i

(24)



Define a quasi-diagonal matrix M,

M4 diaglM, ,M,,==-M ]

where Mj Is given by

PR b
N GI 62 <sn.
J
J gl J
62 63 6n 0
J
M.= L]
J
6% 0----0
J
L - i
. _
we have MC d= o (25)
n.
M Is a nxn non-singular matrix since det M = ﬁ (6' y ' # 0 by (24). Hence,

I=1 n

i

Rank M=n and Rank MCT= p. Let Cp be the p Independent rows of MCT and let
Ep be the corresponding subset of a. This gives

Cd=a

p -
or ¢ =c 1y . (26)
p—p

Equation (26) Is similar to equation (12) and the rest of the proof follows

as in the Case (1) cof distinct eigenvalues.

Case (11): m>p 1.e. more Inputs than outputs.

LeT dTC“, = 6‘{ ‘=I’2'_--,nj’ J = Ilz’—-‘w'

For observability, every column of C corresponding to the first column of
each Jordan block of A Is linearly independent [8] i.e. C{ #0, j=I1,2,~--~u.
are linearly independent.

Now, we can choose (d,,d

»dg»===d.) such that d'cd = ol #0, = 1,2,--u. @D

i
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Substituting thls In equation (23) and defining a quasi-diagonal matrix N,

8 4ian —
Ne dlag[N|; Nz: Nw]
where Nj is glven by
[ J b ]
& % .
J
0 & 5
I n.-|
J
0 0 5{

{t is seen that
NBf = a.
‘ W H nj .
N is a nxn non-singular matrix since det N= igl(é‘l’) #0 by (277.
Hence Rank NB=m and let Bm be the m independent rows of NB and let % be the

corresponding subset of a. Thls gives

Bf =a
m —M
or f=8la . (28)
m —m

- Equation (28) is similar to equation (15) and the rest of the proof follows
as in the case (1) of distinct elgenvalues.

This completes the proof in the case of multiple eigenvalues.

Nature of The Design Equation (23):

In general, the output feedback gain matrix K = de Is obtained by
solving the set of n non-llnear simultaneous equations In (m+p) variables

(d,,d -,d ,f ,f

1’ 2)'- p {2

$|,cz,—--dp) or (fl,fz,——-fm) are sclected arbitrarily and (23) is reduced

-—-fm). However, In the precef of the thecrem either

~to v set of lineer equations and this assurcs at least max{m,p) poles

can be placed arbitrarily.
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In certaln cases the non-linear nature of (23) can be explolited to assign more
than max(m,p) poles of the closed loop system.
Complex elgenvalues of the matrix A present an interesting situation.
The Jordan canonical form A = T 'AT and the matrices B=T '8 and C = CT will
then be complex matrices. However, K will be real since the complex columns

of T-l and elements of a occur in conjugate pairs.

n designing the control system using the theorem of thls paper, max
(m,p) poles of the system can be assigned as desired and this fixes the
lccation of the remalning [n-max (m,p)] poles of the system. Let us call

these pcles the "dependent poles"”, 8, where B = (pmax(m,p)+l’_-_’ Poei? Pp)-
In some cases, by taking advantage of the non-linear nature of (23) more than
max{m,p) poles can be arblitrartly asslgned and this reduces the number of
dependent poles. However, nothing can be saida priorl about the location of
these dependent poles. Now, the o would be a function of B. By minimizing
a least square error criterlon of the form
n
J = 'ZI q, [ch'BIf - a'(g)jz
subject to the constralnts g(g) > 0 an approximate set of the desired closed
loop poles can be realized. The welghting coefficients q; can be used to
control the error between a pole In the deslired set and Its corresponding pole
in the approximate set. A somewhat similar approach has been suggested by
Jameson [9] and fallslde Ci1o0].
If no satisfactory set of poles results from the least square error
approach, e.g., closed loop poles unstable, then a dynamlic ccmpensafor [3]
would be necessary for pole-blacemenf. It should be noted that some systems

which need a dynamic compensator for pole placement using [3] can be made to

attaln any desired closed loop poles using only constant output feedback



wlith the above deslgn methed.

Example |I:
1 0 0 o} 1 0 O]
0 2 0 0 0 1 o0
X = x + u
0 0 -3 0 0 o |
0 0 0 -4] T

The system Is controllable and observable with two unstable poles at | and 2,
Also, m = 3 and p = 2. According to Davison two poles can be placed arbitrarily.
However, according to the theorem stated In this paper three poles can be placed
arbitrarily. Pearson would need a flrst order compensator to control all the
poles. Here, it will be shown that by solvlng.fhe equation (23) In Its non-

fInear form all the four poles of the system can be placed arbitrarily. We have

dTC'BIf = q, 1 =1,2,4,4.
so,
fldI =al
f2dl = e,
f3dy = ag
(f|+f2+f3)d2 = u4.
solving these equations wt*h‘dl = 1, we get
o, =0 o, (o, +a,)
d, = u4+a3 , f, =a,, f, = a,oand = ‘é‘:ﬁr"j; :
1 72 4 73
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- —

a, (a4-a3)/(a|+a2)
K =de = o ( Y/ (a +a,)
- 2 R AR S )
-é3(al+a2)/(a4-a3) oy

with this choice of K all the closed loop poles can be placed at the desired

tocations.

If the closed loop poles are desired at -1,-2,-3 and -5, then u’=—7.2,

oy = 14, a; =0 and a, = 0.2. This glves f, = =7.2, f, = 14, f; =0, d; =1,
d, = 1/34. -7.2 -7.2/34
and K= |14 14/34
0 0
Example 2:
0o 1 0 0
x=10 0 1 |x+ [I|u
I 0 0 0

[0

This problem [!llustrates the nature of (23) when A has complex open loop poles.
The open loop poles are at | and - %-t j ¥3/2. 1f the modal matrix T and Its

inverse are chosen to be .

] . [ | |
| | | 3 3 3
2/3 2/3
P A S O | L I A
i 2 2 2 Z] 3 273 6 o3 6
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Then A, B and C are given by

| 0 0 |
) P L, 3 -t R
A TAT"" O -2—+J-—3-—' 0 ‘/- ,B T B._._ —7~J_2_
| 3
° 0 --2—-‘}_2— _I_+J../§
- ~ 2 2
~ | ! |

and C =CT = 2L+-_‘/_3_ l--.‘/—s-
2 37 27372

If the closed Ibop pofes are chosen to be at Ij and I, then we have the set of

equations
l -
g-tdl + 2d2]f = a (29)
| .
=[-d +d,J-j—10[d, +d =0 (30)
6 I 2 2/3 I 2 2
| C .
=[-d, +d, 1+ j—— [d, +d.] =0 31
6 I 2 23 I 2 3

where @, = 0, a, =~ %-- J__ and a; = - 1 —i:- for the desired pole assignment.

- 2/3 2v3

Equation (30) and (3]) are complex conjugates and give the same set of equatlons

in (dl’dZ’f)‘ From equation (29) and the real and Imaginary parts of (30), we
get
(dl + 2d2)f =0
(dr - dz)f =3 (32)
(d| + dz)f= b,
Solving (32) with f = |, gives d, = 2, dy, = -l and K = [2 -1]. This choice of

K glves the desired pole-placement.
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Conclusions:

It Is shown that for a controllable, observable system at least max (m,p)
poles of the system can be arbitrarily assigned if Rank é=m and Rank 6=p. Further,
it is shown that in some cases more than max (m,p) poles can be arbitrarily
assigned. A least square design technlque Is outiined to get an approximate
set for the desired pole placement when It Is not possible to place all the
poles. The application of this technique for high Integrity design of Sikorsky

SH-3D Sea King helicopter [I!, 12] Is under study.
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