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Abstract

f\ <\ A

Given a linear time Invariant mu Itlvarlable system x^ = Ax_ + Bû , y_ = Cx_

with m inputs and p outputs, Davison C63 has shown that p closed loop poles

of the system can be preasslgned arbitrarily using constant gain output feed-

back provided CA, B] Is controllable. This paper shows that If CA, B, C3 Is

controllable and observable, and Rank B = m, Rank C = p, then max (m,p) poles

of the system can be assigned arbitrarily using constant gain output feedback.

Further, it is shown that in some cases more than max (m,p) poles can be

arbitrarily assigned. A least square design technique Is outlined to approximate

the desired pole locations when It Is not possible to place all the poles.



Introduction

The design of linear muItlvariable control systems using output feedback

has attracted the attention of several authors. Cl-33- There are two ways of

approaching this problem. The first method consists of estimating the states

of the system using an observer and use these states In the subsequent design.

In the second approach, either static or dynamic feedback of the output Is

used directly In the control problem and this view Is adopted here.

Consider a linear time-Invariant multlvarlable. system
>\ A.

x_ = Ax^ + Bu_

(I)
y_ = Cx_

where x_ is an n vector of states, u_ Is an m vector of Inputs and y_ Is a vector

of outputs. It is well-known that the problem of pole assignment using state
/s A

feedback Is equivalent to the controllability of the pair (A,B) C43. Pole-

shifting techniques for multlvarlable systems using static feedback has been

studied by Retallak [5D, DavJson [6] and others. It has been shown by Davlson
A A A

that If (A, B) Is controllable, and If Rank C = p, then p poles of the system

can be arbttrarI ly'placed using output feedback. This paper shows that given
A / N ^ " A • " *

(A, B, C) controllable and observable, Rank B = m and Rank C = p, then at

least max (m,p) poles of the closed loop system can be arbitrarily placed using

output feedback.

The above result may be used In designing systems for high Integrity in

the event of failure of transducers and/or acuators C7D- Due to failure there

may be loss of inputs and/or outputs In the system. In such an event'this

design takes advantage of the unequal number of Inputs and outputs so as to
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assure no loss in pole asslgnabi I ity.

Theorem

Given the system (I) with Rank B = m <_ n and Rank C = p <_ n, then a

linear feedback of the output £ = Ky_, where K is a (mxp) constant gain matrix,

can always be found such that max(m,p) eigenvalues of the closed loop system

can be be made to take preasslgned (complex eigenvalues occurring in

conjugate pairs) values.

Proof ;

Let (X.,X2, — ,X ) and-(p.,p2, — ,P ) be the eigenvalues of the open-

loop and closed- loop system respectively.

We have
/%

open loop characteristic polynomial = |sI-A| = (s-X.)(s-X2) — (s-X )

(2)

and closed loop characteristic polynomial = |sl-A+BKC| = (s-p()(s-p2) — "̂Pp,5

(3)

Then

[sI-A+BKC| = def Cl + g^ (sl-A)'
1]. (4)

Choosing K = fd whe<pe f Is a mxl (column) vector and d is a Ixp (row) vector,

and using the Identity det Cl + MM] = det Ql + NM], equation (4) becomes

IsI-A+BKCl T

_ - _
= I + d'CT (sI-T 'AT) ' T Bf (5)

= I + dTC (SI-A)"1 Bf

-1 * -I *where C = CT, A = T AT, B=T B a n d T i s a nxn nonsingular matrix.
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For clarity, the theorem Is I n i t i a l l y proved for the case of distinct
A A

eigenvalues of A and the multiple eigenvalues of A are considered in the latter

half of the proof.

Distinct Eigenvalues

In this case equation (5) gives

The value of a. depends on the closed loop eigenvalues (p., — , p )

From (5) and (6),

dTC (SI-A)-' Bf -I <
1=1 i

Choosing T as a modal matrix equation (7) becomes

nT i
d C (sI-A) Bf = T "

where A= diag. (X.,A~, --- ,\ ).

Let c' be the i column of C and b. be the i row of B. Then,

a, = dVb.f - , 1 * 1 , 2, — , n. (9)

Case (i)

Let p>m i.e. more outputs than Inputs. Choose f . such that b.f = 6. t 0

i = 1,2, — , n. This can always be done since b. j* 0, for controllability.

Hence, dTc' = a,/6. 1 = 1 , — , n. (10)

This gives CTd = o (M)

where a = col [a./6,, a«/6», --- , a /6 1."" i i *.. £. n n

Now, let C be the matrix made of the p independent rows of C and a the

corresponding subset of ou Then,

d = C"' a (12)
P -P
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Thus (dj, d2, — -, d ) can be chosen corresponding to the p desired pole

locations. Once this is dene the remaining (n-p) poles are fixed automatically.

Case (ii)

Let m > p i.e. more inputs than outputs.

-
Choose d such that d c = y- ̂  0 1 = 1 , 2 , --- , n.

This can always be done since c f 0, for observability.

Hence, b.f = OJ/YJ I = I, — , n. (13)

This gives Bf = £ (14)

where a = col [a,/*,, â ŷ  --- , an/YnD.

Since the rank of B ism, there are m independent rows of B, B , such that

Bmf = ̂

where a is the corresponding subset of a.

Thus (fj, f , —, f ) can be chosen corresponding to the m desired pole

locations and the remaining (n-m) poles are located automatically. From case

(i) and case (II) it is evident that at least max (m,p) poles of the system

can be assigned arbitrarily.

Multiple Eigenvalues

Let the eigenvalues of matrix A be X , X2, , Xw with multiplicity

-I*n., n2> —, n respectively. Choose T such that A = T AT has the Jordan

canonical form with 01 blocks of respective sizes n., n«, —, n and X., \~,—,

X the corresponding eigenvalues.

Now, we have
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CO

where £ n. = n.

Equation (16) can be re-written as

~ * * n.
I c T A4-RKT I|SI-A+BKC|
|SI-A|

°

n to
(i) a .

1 = 1 (s-x.\
(18)

1=1 (s-xto

The value of a^. ( 1 = 1, n., j=l, to) depends on the closed loop poles

From equations (5) and (18), we get
ni 1

T I a!
d CCsI-A)'1 Bf = I -• ^-+ +

n coto a.

(s-X )co

(19)

(sI-A) has the quasl-dlagonaI form dlag [J., J2, , J 3 where J. Is a

n. x n. matrix of the form

(S-Xj)

I

(s-X,)'

(s-X,) / , . n, -1(s-X.) 1

(20)

Let C = [C1, C , C^D and B = B1, BT, Ba)Dr where CJ Is a pxn. matrix
J

and BJ Is a n.xm matrix. Then It can be easily seen that

dTCJ'j .BJ'f = I —-—
J 1 = 1 (s-X.)

,—co (21)
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Fur+her It can be shown that

JB-j + cM + --- + CJ BJ 3f

CJ' .BJ'n .- I n .
J J

n . n .
J

(22)

Where C>j Is the Ith column of C^ and B^j Is the Ith row of BJ'

In the matrix form equation (22) can be written as

C Q A p Q _i_ 4. p Q. D - T U — Drt T — — — T O D

C!B' + C'B! + + c' ,B1 £. 23 n .-1 n .

•

*

PR 4- P RLl n,-l L2 n,

'IB,

•

1 1 2 2 n n
CO 0)

12 23 n -1 n
0) 0)

C|Bn -1 + C2Bn
LO 0)

U)

f |[L

""

""I

°2

•

•

a _.

a
_nl _

•

a(|

CO
a2

•

0)

0)an
0)

(23)
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Case (i)

Let p>m i.e. more outputs than inputs and B^f = 6^, i = I, — ,n. and j=l,—ID.

For controllability, every row of B corresponding to the last row of each

Jordan block of A Is linearly Independent [8] I.e.,

linearly Independent.

Now, we can choose (fi,f«,—,f ) such that

0, j=l,2,~-co, are

Substituting this

B;J f = 6;} * 0, j=l, — u>.
j j

In equation (23) we get

- , ,T , ,T , ,T
6ICI + 62C2 + + 6n,Cn,

T T ,T
6 0 j . j c o j. .L ft r*

O*^ 1 * ^1"O • * V W

*
•

a ' c | T

*

•

0) 0)T J
fi C + + 6n Cn

(0 (0

. T . + *u p^
6_C, n n -1

21 oj a)

•

•

n n
10 (D

d = a

(24)

Where a col Ca,,a2 - ~an.' al
0)
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Deflne a quasi-diagonaI matrix M,

M A dIagCMj,M2f M 3

where M. Is given by
<J

V

6J X J f J1 2 nj
6^ 6^ 6J' 0

/c j n .

* t

• * •

•

*"j ° °

we have MC d= a (25)

0 by (24). Hence,
ui | j

M Is a nxn non-singular matrix since det M = n (6 )
1^1 t

T TRank M=n and Rank MC = p. Let C be the p Independent rows of MC and let

a be the corresponding subset of cu This gives

or d = (26)

'i | = l,2, ,iy j = 1,2, co.

Equation (26) Is similar to equation (12) and the rest of the proof follows

as in the Case (i) of distinct eigenvalues.

Case (11): m>p i.e. more inputs than outputs.

Let

For observability, every column of C corresponding to the first column of

each Jordan block of A Is linearly Independent C83 I.e. C^ 7* 0, j=l,2,—o>.

are linearly Independent.

Now, we can choose (d.,d2,—d ) such that d C^ = 6^ ? 0, j = 1,2,—u>. (27)
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Substttutlng this In equation (23) and defining a quasl-diagonaI matrix N,

^ diagCNj, N2, NQ

where N. is given by

n.
J

,
V

0 0

ft Is seen that

NBf = a.
to t n.

N is a nxn non-singular matrix since det N= .n,(<S, ) J/0 by (27).

Hence Rank NB=m and let B be the m independent rows of NB and let a be them -m

corresponding subset of cu This gives

B f = am -m

or f = B^UM' (28)

Equation (28) is similar to equation (15) and the rest of the proof follows

as in the case (Ii) of distinct eigenvalues.

This completes the proof In the case of multiple eigenvalues.

Nature of The Design Equation (23);

In general, the output feedback gain matrix K = fd Is obtained by

solving the set of n non-linear simultaneous equations In (m+p) variables

(d.,d9, ,d ,f.,f~, f )• However, In the proof'of the theoren either

is .,cU, r! ) or (f.,f2, f ) are selected arbitrarily and (23) is reduced

• to c set of linear equations snd this assures at least ro3x(m,p) poles

can be placed arbitrarily.
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In certain cases the non-linear nature of (23) can be exploited to assign more

than max(m,p) poles of the closed loop system.

Complex eigenvalues of the matrix A present an interesting situation.

-1" -1"The Jordan canonical form A = T AT and the matrices B=T B and C = CT w i 1 1

then be complex matrices. However, K w i l l be real since the complex columns

of T~ and elements of o^occur in conjugate pairs.

In designing the control system using the theorem of thTs paper, max

(m,p) poles of the system can be assigned as desired and this fixes the

location of the remaining Cn-max (m,p)3 poles of the system. Let us call

these poles the "dependent poles", £, where g_= (p , ,+,, , p _., p ).

In some cases, by taking advantage of the non-linear nature of (23) more than

max(m,p) poles can be arbitrarily assigned and this reduces the number of

dependent poles. However, nothing can be said a priori about the location of

these dependent poles. Now, the a. would be a function of £. By minimizing

a least square error criterion of the form

r r- T I .2J = I q Cd c'B.f - a mr
1=1 ' ' ' ~

subject to the constraints g(£) >_ 0 an approximate set of the desired closed

loop poles can be realized. The weighting coefficients q. can be used to

control the error between a pole In the desired set and Its corresponding pole

In the approximate set. A somewhat similar approach has been suggested by

Jameson C93 and Fallslde ClOU-

If no satisfactory set of poles results from the least square error

approach, e.g., closed loop poles unstable, then a dynamic compensator L"3]

would be necessary for pole-placement. It should be noted that some systems

which need a dynamic compensator for pole placement using L~33 can be made to

attain any desired closed loop poles using only constant output feedback



with the above design method.

Example I;

X =

"I

0

0

p

"I
y =

_0

0

2

0

0

1

0

0 0"

0 0

-3 0

0 -4_

x +

o d"

1

"1 0

0 1

0 0

1 1

X

0"

0

1
1

The system Is controllable and observable with two unstable poles at I and 2.

Also, m = 3 and p = 2. According to Davlson two poles can be placed arbitrarily.

However, according to the theorem stated In this paper three poles can be placed

arbitrarily. Pearson would need a first order compensator to control all the

poles. Here, It w i l l be shown that by solving the equation (23) In Its non-

linear form all the four poles of the system can be placed arbitrarily. We have

dVBjf = a. I = 1,2,4,4.

so,

f,d, -a,

f d, = a02 I 2

=
solving these equations with d. = I, we get

d0 =2
, f. = a., f0 = a0 and f, =' 1 2 2 3
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K =fdT =

I

12

a

with this choice of K a i l the closed loop poles can be placed at the desired

locations.

If the closed loop poles are desired at -I,-2,-3 and -5, then a.=-7.2,

a2 = 14, a3 = 0 and «4 = 0.2. This gives f( = -7.2, *2 = 14, f3 = 0, dj = I

d2 = 1/34.

and K =

-7.2

14

0

-7.2/34 "

14/34

0

Example 2:

x =

0 1 0 '

0 0 1

1 0 0 _

X +

0"

1

_0

I 0 0

I I 0

This problem Illustrates the nature of (23) when A has complex open loop poles,

The open loop poles are at I and - -^ ± j /3/2. If the modal matrix T and Its

inverse are chosen to be .

T =

*l

, 11 2

, 1
. "2

1

./3
+ J 2

- J—

1 "1

1 ,/3
2 J 2

~ -i« |

A T - ' -

1
3

1
3

1
3

1
3

} ' '
" 2/3 6

j — - I
2/3 6

; 1
J

_, 1
S/3-

1
3

1
6

1
~ 6
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Then A, B and C are given by

A = T~'AT =

i

0

0

0

1 . ./3
- 2 + J—

0

0

0

1
" 2 " 2~

-, B = T B=

and C = CT =
2

2
1 -Yl
2 - J 2

. - ,
2 J 2

-2 +

If the closed loop poles are chosen to be at tj and I, then we have the set of

equations

(29)

i-C-d. + d 3 - j — Cd. + d?3 = o6 I / I 2 2

. + d ] + j— — Cd. + d7] = aI ^ ^ K I /:

(30)

(3D

where a. =0, a,, = •» ^ — and a, = - -^ + -*— for the desired pole assignment.
1 2 2 2/~ 3 2 2/3

Equation (30) and (31) are complex conjugates and give the same set of equations

in (d.,d7,f). From equation (29) and the real and imaginary parts of (30), we

get

+ 2d2)f = 0

- d2)f = 3

+ d2)f= I.

(32)

Solving (32) with f = I, gives d( = 2, d2 = -I and K = [2 -l]. This choice of

K gives the desired pole-placement.
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Conclusions:

It Is shown that for a controllable, observable system at least max (m,p)
A W

poles of the system can be arbitrarily assigned If Rank B=m and Rank C=p. Further,

it is shown that in some cases more than max (m,p) poles can be arbitrarily

assigned. A least square design technique is outlined to get an approximate

set for the desired pole placement when It is not possible to place all the

poles. The application of this technique for high Integrity design of Sikorsky

SH-3D Sea King helicopter [II, 12] Is under study.
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