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EVALUATION OF A SELF-ASPIRATING LOCAL TOTAL ENTHALPY PROBE .

IN A LOW-DENSITY ARC-HEATED HYPERSONIC WIND TUNNEL

By Robert W. Guy and Andronicos G. Kantsios
Langley Research Center

SUMMARY

A shock-swallowing, self-aspirating, local total enthalpy probe has been evaluated
in a low-density nonequilibrium, hypervelocity airstream. The probe, which incorporated,
an air gap to separate the internal and external cooling passages, was tested in an electric
arc-heated wind tunnel at an average Mach number of 11.7 and an average Reynolds num-
ber per meter of 5.7 x 10 .̂ The free-stream enthalpy-probe data are compared with bulk
calorimeter measurements of total enthalpy at the beginning of the gas expansion and with
local total enthalpy inferred from a theoretical nonequilibrium gas expansion model by
using free-stream velocity measurements obtained from a mass flow probe. The three
techniques are in relative agreement at the lower enthalpies (<4 MJ/kg). However, at the
higher enthalpies (>4 MJ/kg), the enthalpy-probe data lie considerably below the other
data. This low data may be caused by the chemical and vibrational energy frozen in the
flow not being sensed by the probe. Other problems associated with the shock-swallowing
total enthalpy probe are discussed in the paper, and recommendations for improving the
probe performance are presented.

INTRODUCTION

The study of orbital and planetary reentry has required development of high-energy
wind tunnels which simulate hypervelocity flow conditions over reentry vehicles. One of
the major problems associated with such facilities is the measurement of the total enthalpy
of the test gas. The measurement techniques fall into two classes: bulk enthalpy mea-
surements and point enthalpy measurements.

Bulk enthalpy measurements are.normally used to determine the total energy con-
tent of the gas prior to the expansion through the wind-tunnel nozzle or at the test-section
entrance, but do not allow determination of local total enthalpy or flow core heat losses.
Some of the common bulk enthalpy measurement techniques are thermocouples in the



plenum chamber (ref. 1), energy balance on the facility heater (refs. 2 and 3), the sonic
throat technique (refs. 4 to 6), and bulk calorimeters capturing the total tunnel mass flow
exhausting from the nozzle throat (refs. 7 and 8).

Point enthalpy measurements are normally used to obtain local total enthalpy in the
wind-tunnel test section. Some of the common point enthalpy measurement techniques
are total temperature probes (ref. 1), pneumatic probes (ref. 9), stagnation-point heating
rate calorimeters (refs. 5 and 6), velocity measurements in highly expanded flows
(ref. 10), spectroscopic techniques (ref. 11), and local total enthalpy probes (refs. 12
to 18).

Evaluations of several of these bulk and point total enthalpy measurement techniques
may be found in references 3, 8, 19, and 20. Of course, the measurement techniques to be
used in a particular wind tunnel depend on the flow environment.

The flow environment of interest in the present investigation was a low-density air-
stream affected by chemical and vibrational nonequilibrium processes during the expan-
sion through the nozzle. The wind tunnel used was an electric arc-heated facility with a
magnetically rotated arc. In this arc tunnel, local test-section measurements of total
enthalpy are especially desirable because of the low-density nonequilibrium flow, low arc-
heater efficiency, and gas swirl induced by the rotating arc upstream of the tunnel throat.
Consequently,, a shock-swallowing local total enthalpy probe was designed and evaluated
for use in this environment.

In addition to swallowing the shock, the probe design had three other distinguishing
features. First, the enthalpy probe was self-aspirating in that the ingested flow was
exhausted directly back into the test stream, and thus the need for an external pumping
station was eliminated. Second, the coolant channels for the inner and outer probe sur-
faces were separated by an air gap. And third, the probe inlet design incorporated a bal-
ance between the size of the local "point" measurement and the inlet diameter required to
capture sufficient energy from the low-density stream to measure temperatures and probe
air and coolant flow rates accurately. This balance resulted in an enthalpy probe with an
inlet diameter of 1.48 cm, an outer diameter of 3.18 cm, and a length of 38.1 cm.

This paper will discuss the performance of this local total enthalpy probe in a low-
density nonequilibrium flow. The probe was tested in a hypervelocity airstream at an
average Mach number of 11.7 and an average Reynolds number of 5.7 x 10^ per meter
over a total enthalpy range (based on bulk calorimeter measurements) of 1.48 to
8.75 MJ/kg. The enthalpy-probe data are compared with bulk calorimeter measurements
obtained at the beginning of the nozzle expansion and with point total enthalpy measure-
ments inferred by using free-stream velocity measurements from a mass flow probe
together with a nonequilibrium gas expansion model.



SYMBOLS

A area

B constant in equation (3)

CD discharge coefficient

Cp specific heat at constant pressure

c constant in equation (3)

d inner diameter

H enthalpy

K constant in equation (6)

M Mach number

m mass flow rate

Npe unit Reynolds number,

p pressure

R specific gas constant

T temperature

AT coolant temperature rise

t time

V velocity

•y ratio of specific heats

X mean free path length



H dynamic viscosity

p mass density

Subscripts:

a airflow

actual actual (measured) flow

cal bulk calorimeter

e exhaust

f frozen

i inlet

ideal ideal (calculated) flow

p probe

t stagnation condition anywhere in gas expansion

th wind-tunnel throat

t,l stagnation condition at beginning of gas expansion

t,2 stagnation condition behind a normal shock in free stream

w coolant

1 static condition upstream of enthalpy-probe orifice

00 free-stream static condition; in the case of temperature, the reference is to
translatibnal and rotational temperature

Superscript:

* enthalpy-probe rounded-orifice throat



APPARATUS AND TESTS

Tunnel and Test Conditions

The facility used in the evaluation of the enthalpy probe was the Langley 30.5-cm
hypersonic arc tunnel (fig. 1) with air as the test gas. The tunnel is described in refer-
ence 8. Briefly, the air is heated by a magnetically rotated electric arc and expanded
through a 5.38-mm-diameter circular-arc throat and a 5° half-angle conical nozzle to a
30.5-cm-diameter closed-jet test section. A five-stage steam ejector provides vacuum
for continuous tunnel operation. A range of enthalpies is obtained by varying the elec-
trode arc gap with different diameter outer electrodes and by injecting selected flow rates
of room-temperature air downstream of the plenum chamber.

Arc
Inner electrode

Test gas Inlet
Outer electrode

Magnet coil

Contamination trap
Gas injection ring

Throat
Plenum chamber

Arc heater

Arc heater Test section

To
5 - stage
steam
efector

Figure 1.- Schematic drawing of the Langley 30.5-cm hypersonic arc tunnel.

The measured and calculated test parameters for the enthalpy-probe evaluation tests
are presented in table I. The total enthalpies listed in this table are bulk calorimeter .
measurements representing the enthalpy at the entrance to the tunnel throat region. Free-
stream properties were calculated by use of the Cornell chemical nonequilibrium gas
expansion computer program (ref. 21) which had been modified to account approximately



for vibrational nonequilibrium (ref. 8). The free-stream properties were obtained from
this program at measured values of stream pitot pressure.

TABLE I.- ARC-TUNNEL TEST CONDITIONS

Test

1
»

2
3

•4
5
6
7
8
9

10

Pt,l>
N/m2

4.07 x 105
4.68
5.41
6.34
6.31
7.04
7.49
9.05
8.49
8.75

Ht,l,
MJ/kg

1.48
2.14
2.89
3.16
3.26
3.72
5.26
7.45
7.77
8.75

Tt,l'
K

1450
1880
2430
2630
2650
2930
3640
4370
4450
4700

MOO

11.6
11.6
11.8
11.6
11.5
11.7
11.5
11.9
11.9
11.9

POO'
N/m2

3.54
4.11
4.34
4.96
5.23
5.11
6.47
6.96
6.88
7.24

Pco'

kg/m3

2.35 x ID"4

2.01
1.73
1.68
1.73
1.56
1.44
1.29
1.24
1.23

TOO,

K

53
71
87

103
106
113
151
172
175
182

Voo,

m/sec

1690
1960
2200
2360
2370
2520
2900
3310
3350
3460

NRe,«/m

11.62 x 104

8.16
6.35
5.58
5.61
4.98
4.05
3.65
3.51
3.49

*co>

cm

0.015
.021
.028
.031
.031
.035
.043
.049
.051
.052

Pt,2'
N/m2

618
709
774
864
896
909

1110
1290
1270
1360

Enthalpy Probe

The local total enthalpy probe (fig. 2) was a water-cooled copper calorimeter with
separate cooling passages for the external and internal (calorimeter) parts of the probe.
A 0.75-mm air gap separated the external and internal coolant passages to minimize heat
transfer from one to the other. The air gap extended to the probe tip and thus allowed
minimum external heat transfer to the calorimeter surface in this high external heat-
transfer region.

The section of the probe containing the rounded orifice for the measurement of mass
flow rate was an integral part of the calorimetric section of the enthalpy probe. This
mass flow measuring section was exposed to the external stream at the rear of the probe
for a distance of 3.18 cm. An approximate analysis indicated that the extraneous heat
gained by this exposure to the external flow was less than 3 percent of that flowing through
the calorimetric section of the probe. This extraneous heat input would be offset to some
extent by conduction along the stainless-steel pressure tubing and thermocouple sheath
which were connected to this section. In addition, the air-out and calorimeter water-out
temperatures were measured just upstream of the orifice. Therefore, the small amounts
of heat transfer to or from the orifice section were neglected.

The sharp conical inlet (30° exterior angle) was designed to swallow the shock;
thereby, the maximum gas mass flow intake from the low-density airstream was allowed.

6
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Inlet and outlet water channels
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Cross section of probe Inlet

(a) Schematic of probe.

(b) Front view of probe.

Figure 2.- Shock-swallowing self-aspirating enthalpy probe.
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(c) Rear view of probe.

Figure 2.- Concluded.
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Figure 3-- Calibration of enthalpy-probe rounded orifice. d]_ = 1.36 cm; d* = 1.02 cm;
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The mass flow rate was measured with the orifice installed in the exit of the calorimetric
section of the probe. The gas flowing through the probe was exhausted back into the test
stream; this self-aspirating design feature used the pumping capacity of the facility and
eliminated the need for an external pumping station. Gas mass flow rates through the
probe ranged from 0.074 to 0.093 g/sec.

The enthalpy-probe rounded-orifice calibration is shown in figure 3, where the dis-
charge coefficient is presented as a function of probe Reynolds number. The discharge
coefficient is defined as

factual (1)
mideal

where

(2)

(ref. 22) and where mactual was determined by calibration. During the calibration the
probe was mounted in the facility. The mass flow rate of the room-temperature calibra-
tion air was measured with a rotameter. The air entered the probe inlet, /flowed through
the orifice, and exhausted to the evacuated test chamber. The probe air-out thermocou-
ple indicated that the air temperature approaching the orifice was 290 1C' The highest
average temperature across the probe calorimeter exit during the actual enthalpy tests
was 360 K; this difference from the calibration temperature is corrected for by the tem-
perature term in equation (2).

The flow across the rounded orifice was not sonic since the pressure ratio p*/pj
was greater than the value for a choked orifice; thus, it was necessary to measure both
the upstream pressure and the orifice throat pressure. Probe mass flow rate was deter-
mined from the measured values of PJ, p*, Tj, and A* by an iteration process
involving equations (1) and (2) and figure 3. /

A 30-gage swaged copper-constantan thermocouple was located at the entrance and
exit of each cooling channel to measure the temperature rise of the cooling water. A '
3 6-gage swaged copper-constantan thermocouple was located on the probe center line at
the rear of the calorimeter tube to measure the temperature of the exhaust gas. The
thermocouple calibrations were referenceable to 'the National Bureau of Standards
calibrations.

' • ' . 9



The probe coolant was helium-pressurized distilled water. Coolant flow rates were
measured with turbine flowmeters and ranged from 1.76 to 4.13 g/sec.

Because of the low density of the flow, the inner diameter of the enthalpy probe was
made sufficiently large (1.36 cm) to insure the collection of an adequate gas mass flow to
provide a cooling water temperature rise of 10 K or greater. The probe was made rela-
tively long (38.1 cm) so that the gas temperature at the orifice would not be significantly
greater than the temperature at which the orifice was calibrated.

The times required for the probe measurements to reach steady-state levels were
very long, especially at the lower enthalpies. Evidently, the large mass of the probe cal-
orimeter surface and the orifice section combined with the low flow density caused the
poor response.

Mass Flow Probe

The water-cooled mass flow probe is described in reference 8 and is shown sche-
matically in figure 4. Based on results from reference 23, the probe inlet was designed
with equal interior and exterior angles of 30° so that the capture area would be equal to
the geometric inlet area. The remainder of the probe was designed to minimize pressure
losses so that the shock would be swallowed. The 6.12-mm-diameter inlet was followed
by a 6.35-mm-long constant-area section with a length-diameter ratio of 1.22, an expan-
sion region to a 1.092-cm constant-area section 50 cm long, a 50-cm length of plastic
vacuum tubing, a 4.75-mm-diameter calibrated corner-tap orifice, and a quarter-turn
ball valve.

Inlet1 diameter = 0.612 cm Mass flow probe Test section

1.092 cm

Cross - sectional view of
cone -cylinder mass
flow probe tip

Hand - operated
valve

Corner - tap
orifice

Flexible vacuum
tubing

*~ Thermocouples

Figure 1)..- Schematic drawing of shock-swallowing mass flow probe.
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Copper-constantan thermocouples located upstream of the orifice indicated that the test
gas had cooled to room temperature prior to flowing through the orifice. Flow through
the probe was exhausted back into the test stream slightly ahead of the probe tip, and thus
the need for an external pumping station was eliminated.

Measurements of pressure drop through the probe during the orifice calibration
indicated that the shock should be swallowed during the tests. Shock swallowing was
confirmed from photographs (fig. 5) showing that the hot gas cap on the probe tip disap-
peared when flow was allowed to pass through the mass flow probe.

With flow through the probe, mass flow rate was measured; with no flow through the
probe, pitot pressure was measured. These two measurements were used to calculate
local velocity.

Bulk Calorimeter

A schematic of the bulk calorimeter is presented in figure 6 and a discussion of this
device may be found in reference 8. The outer wall of the calorimeter was coiled copper
tubing sealed with soft solder. The calorimeter inlet adjoining the wind-tunnel throat had
a 7.6-cm inner diameter and was 12.7 cm long. A converging section 7.6 cm long was
followed by the calorimeter exit section which had a 3.8-cm inner diameter and was
30.5 cm long. A calorimeter insert (fig. 6) was used to absorb more heat from the air.
This insert consisted of 3.75-cm-diameter copper disks mounted along a 30.5-cm length
of 1.9-cm-diameter copper tube. Holes with diameters of 6.35 mm were drilled in the
disks, and the disks were mounted on the copper tube so that the flow could not pass
straight through the calorimeter.

Measurements were made with the following instrumentation: iron-constantan ther-
mocouples for the inlet and outlet water temperatures, a lateral series of chromel-alumel
thermocouples for the exhaust gas temperature, a turbine flowmeter for calorimeter cool-
ing water flow rate, and the facility corner-tap orifice for measuring air mass flow rate
through the bulk calorimeter.

DATA REDUCTION

Enthalpy Probe

At the lower enthalpies, the time required for the probe water and air-out tempera-
ture measurements to reach steady-state levels exceeded the available tunnel test time,
which was controlled by the temperature limit on the arc-heater magnetic coil (fig. 1).
Therefore, to determine the steady-state total enthalpy, an exponential equation,

Htjp = H(t)p + Be-ct (3)

11



(a) Valve open.

(b) Valve closed.

Figure 5.- Mass flow probe tip showing swallowing of shock when flow is pumped through
probe and stagnation region gas cap when there is no flow through probe.
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Tunnel
throat

Flow

7.6 cm Diameter —' 3.8 cm Diameter

Figure 6.- Schematic drawing of bulk calorimeter attached to tunnel throat.

was fitted to each set of transient data which did not reach a steady-state level. The test
times were sufficiently long (at least 180 seconds) to obtain enough data for this extrapo-
lation. The transient enthalpy, H(t)p in equation (3), indicated by the probe was calcu-
lated at various times from the following heat balance equation:

H(t)p =
_ [ w p , wm c

ma,p
+ Hf,P,e (4)

The term Hf p e represents any energy (chemical or vibrational) that may have

remained frozen during the passage of the gas through the enthalpy probe. Evaluation of
this term would require extensive chemical kinetic calculations involving the low-density,
p = O(l()3 N/m2), internal flow. The term Hf p e was neglected in the extrapolations of

the transient data since it is a constant for a particular test. The possible effects of
frozen chemical and vibrational energy on the enthalpy-probe results are discussed in the
section "Results and Discussion."

Three typical time histories of the enthalpy-probe response are shown in figure 7.'
The curves through each set of data represent equation (3) with B and c calculated for
that set of data. The accuracy of this equation was confirmed by its successful applica-'
tion to data where the probe did reach steady-state levels during the available test time.

13



Curve fit to data ( eq. (3))

Predicted enthalpy at infinite time

30 60 90 120 150 180

Time, sec

Figure 7.- Probe response at various enthalpy levels.

The mass flow rate through the enthalpy probe was compared with predictions of
this flow rate using the enthalpy-probe inlet area together with P^V^ from mass flow
probe results and from the theoretical nonequilibrium gas expansion. The prediction
techniques were in relative agreement; however, the measured mass flow rates through
the enthalpy probe were greater than the predictions by an average of 28 percent. This
difference indicated that the shock was swallowed and that the probe capture area was
larger than the geometric inlet area, that is, supercapture (ref. 23). The enthalpy probe
was not used as a mass flow probe; therefore, the supercapture was beneficial since the
larger capture area caused a greater cooling water temperature rise.

The same inlet design that was used on the mass flow probe (designed to capture a
streamtube area equal to the geometric inlet area) was attempted on the enthalpy probe
(see fig. 2); however, the air gap at the tip apparently did not act to form the 30° internal
angle, and thereby allowed supercapture. This result indicates that errors may be expe-
rienced in using the present type of enthalpy probe as a mass flow probe (that is, to deter-
mine px, V^, or PooV^J; however, supercapture introduces no error when the probe is
used as an enthalpy probe.

14



A random-error analysis (ref. 24) was made of the enthalpy-probe data. The anal-
ysis showed a standard deviation of 8 percent and a maximum uncertainty of 19 percent on
the measured enthalpies.

Mass Flow Probe

Probe mass flow rate and pitot pressure data were obtained with the mass flow
probe. The probe was designed, by following the criteria of reference 23, to swallow the
shock and capture a streamtube area equal to the geometric inlet area so that

»a,p = PooVooAp,! (5) .

In hypersonic flow, the pitot pressure is closely approximated by the product of free-
stream density and free-stream velocity squared, that is,

Pt>2 = KPooVj2 (6)

Since the free-stream flow was in a nonequilibrium state, a value of 0.925 was used for
K (ref. 8); however, K would vary no more than 3 percent even if equilibrium flow were
assumed. Equations (5) and (6) may be combined to give the local free-stream velocity.
Thus,

VOQ = 1.082 ? (7)
ma,p

In frozen or nonequilibrium hypersonic flow, a significant amount of energy may not
be converted to kinetic energy during the gas expansion through the arc-tunnel nozzle. If,
in such cases, velocity measurements are to be used to infer local total enthalpy, a model
for the gas expansion (frozen or nonequilibrium) must be assumed. In the present study,
the Cornell chemical nonequilibrium gas expansion program (ref. 21) was modified to
account approximately for vibrational nonequilibrium (ref. 8) and was used to generate a
curve of free-stream velocity against total (stagnation) enthalpy at the beginning of the
nozzle expansion (fig. 8). The experimental values of velocity were then used to deter-
mine total enthalpy from this curve.

A random-error analysis of the velocity data (ref. 24) indicated a standard deviation'
of 4 percent and a maximum uncertainty of 12 percent. The error in the inferred total
enthalpy is not quoted since it is dependent upon the assumed gas expansion model.

15



4000

3000

V , — 2000
o> sec

1000

Chemical and vibrational nonequilibrtum gas
expansion theory

(Refs. Sand 21 )

0 2 4 6 8 10

u MJHt, r kg

Figure 8.- Nonequilibrium free-stream velocity as a function of total enthalpy at
beginning of gas expansion. Other stream properties are given in table I.

Bulk Calorimeter

Total enthalpy at the beginning of the gas expansion was determined (from measure-
ments) by adding the energy absorbed by the throat, that absorbed by the bulk calorimeter,
and the residual energy exhausting from the calorimeter; that is,

H
ATw)

t,cal
th ATW) cal

(cp,a,eTa,e)
cal

(8)

No term is included in this equation for frozen energy since the pressure level at which
the bulk calorimeter was operated, pcal = O(105 N/m2), was high enough to allow most
dissociated species to recombine in the calorimeter. A random-error analysis of the bulk
calorimeter data (ref. 24) indicated a standard deviation of 6 percent and a maximum
uncertainty of 15 percent.

RESULTS AND DISCUSSION

Figure 9 is a comparison of total enthalpy as determined from the enthalpy probe,
the bulk calorimeter, and the velocity measurements. The abscissa is total enthalpy

16
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10

MJ 6
kg

Symbol Total enthalpy measurement technique

Bulk colorimeter ( adiabatic throat )

_ _ _ Bulk calorimeter ( nonodiobatic throat )

W Enthalpy probe

o Enthalpy probe with assumption of
frozen flow through probe

Velocity - inferred
( Mass flow probe )

Flags denote extrapolated data ( eq. 3 )
Symbols represent center-line values of
enthalpy in the test section.

1.27 cm Electrode arc gap

4 6

H

10c
Figure 9.- Comparison of total enthalpy measurements.

12

t, cal,

measured by the bulk calorimeter, adiabatic flow from the entrance to the throat section
of the arc tunnel being assumed (eq. (8)). This total enthalpy at the beginning of the expan-
sion is used as a reference because it is more reliable (nonequilibrium effects are elimi-
nated) than test-section local enthalpy and because the two will be equal if the gas expan-
sion through the nozzle is adiabatic. The ordinate of figure 9 is total enthalpy determined
by the techniques mentioned. The solid line represents perfect agreement with the bulk
calorimeter measurements of enthalpy prior to the expansion of the gas. The dashed curve
represents the total enthalpy in the test section if the gas expansion through the tunnel
throat is nonadiabatic, that is, no inviscid core exists in the throat region and any energy
lost to the throat cooling water is assumed to be lost from the downstream inviscid core.
(See ref. 5.)

The velocity-inferred local total enthalpy data on the tunnel center line are high com-
pared with the bulk calorimeter data at the highest enthalpy level (=7.7 MJ/kg). Generally,
however, the velocity-inferred data support the bulk calorimeter data with the assumption
of adiabatic flow from the plenum chamber.

17



The enthalpy-probe data measured on the tunnel center line are shown in figure 9 by
the shaded circular symbols. The flagged symbols indicate tests where equation (3) was
used to obtain the steady-state total enthalpy. Data below an enthalpy of 4 MJ/kg were
taken with a 0.82-cm electrode arc gap whereas data above 4 MJ/kg were taken with a
1.27-cm electrode arc gap.

The enthalpy-probe data agree well with the bulk calorimeter data (adiabatic flow
from the beginning of the gas expansion being assumed) below an enthalpy of 4 MJ/kg.
However, above this enthalpy, the probe data fall below the line of perfect agreement and,
in fact, agree very closely with the dashed curve for nonadiabatic flow through the throat
region. The possibility of nonadiabatic flow through the nozzle throat must be considered
(ref. 5) since flow swirl increased significantly (ref. 8) with the outer electrode which was
used to obtain the data above 4 MJ/kg. This difference between the enthalpy-probe data
and the total enthalpy at the beginning of the gas expansion is more likely to be caused by
nonequilibrium processes in the low-density airstream, since the amounts of dissociated
species increase significantly at the higher enthalpies. Approximate calculations of
chemical recombination (ref. 25) and vibrational relaxation times (ref. 8) indicate that the
chemical energy may remain frozen during the passage through the probe whereas the
vibrational energy may be released. For example, at 8.75 MJ/kg, the residence time of
a gas particle in the probe (a normal shock standing just inside the inlet being assumed)
is on the order of 1 millisecond whereas the time required for the recombination of atomic
oxygen is on the order of seconds and the vibration relaxation time for diatomic nitrogen
is less than a millisecond. These results may also be obtained from the vibrational
relaxation times and oxygen recombination times shown graphically in reference 5.

With only the approximate calculations and without a knowledge of lateral diffusion
rates or probe and thermocouple catalytic efficiencies, only the limits of the effects of
frozen energy on the enthalpy-probe data can be determined. Figure 10 shows, as a func-
tion of total energy at the beginning of the arc-tunnel expansion, the amount of energy
(chemical and vibrational) that the nonequilibrium gas expansion program (ref. 8) indicates
is frozen in the free stream. The open circular symbols in figure 9 were calculated by
assuming that Hf D in equation (4) was equal to the total frozen energy entering the
enthalpy probe; that is, no frozen energy was released as the gas passed through the probe.
With this assumption, ma D and Cp,a,e (eq. (4)) also had to be adjusted since the chem-
ical composition of the frozen gas was different from that of room-temperature air. The
assumption of frozen flow through the probe has an increasingly large effect on the
enthalpy-probe data at the higher enthalpies (fig. 9), and the data with the assumed Hf p

added to the probe measurements now lie above the line of perfect agreement. One would
expect this result if some of the frozen energy entering the enthalpy probe did recombine
(or relax).
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Figure 10.- Calculated frozen energy in test stream of the Langley 30.5-cm
hypersonic arc tunnel.

The relatively good agreement of the enthalpy-probe data with the other two methods
(fig. 9) at the lower enthalpies tends to prove the probe performance and lends confidence
to the enthalpy-probe mass flow rate measurements (where evidence of supercapture was
noted). However, several recommendations can be made concerning the probe, some of
which will improve its performance. First, this type of probe (with the air gap extending
to the tip) does not perform well as a mass flow probe in low-density flow. Second, the
diameter and length of the probe could be reduced somewhat without affecting the probe
accuracy significantly; this reduction should improve probe time response. Third, the
orifice section should be isolated as much as possible from the calorimeter section of the
probe in order to improve probe time response and remove any extraneous heat sources
or sinks (although these are believed to be small even with the present design). Fourth,
mass flow rate calibrations using heated air (to temperatures expected during the tests)
would lend still more confidence to the probe measurements of enthalpy. And fifth, a
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knowledge of the chemistry of the exiting flow is needed and, in this regard, determination
of the catalytic efficiency of the air-out thermocouple surface would be helpful.

CONCLUDING REMARKS

A shock-swallowing, self-aspirating, local total enthalpy probe has been evaluated
and compared with two other measurement techniques in a low-density nonequilibrium,
hypervelocity airstream at an average Mach number of 11.7 and an average Reynolds num-
ber per meter of 5.7 x 10 .̂ Generally, total enthalpies inferred from a nonequilibrium
gas expansion model using free-stream velocity measurements from a mass flow probe
agreed with bulk calorimeter total enthalpy when an adiabatic expansion through the arc-
turinel nozzle was assumed. At the lower enthalpy levels (<4 MJ/kg), the enthalpy-probe
data also agreed well with the bulk calorimeter values. These results indicate that the gas
flow down the tunnel center line was adiabatic. However, the enthalpy-probe data were
less than the bulk calorimeter data at the higher enthalpies (>4 MJ/kg). Thus it appears,
flow kinetics only being considered, that all the energy frozen in the low-density flow
entering the probe may not have been sensed. The conclusions regarding the perform-
ance of the local total enthalpy probe are weakened somewhat by the lack of a direct com-
parison standard in the free stream; however, the need for further research on the inter-
nal fluid mechanics and chemical kinetics of the flow in such probes in low-density
nonequilibrium environments is evident.

The following recommendations are pertinent to the improved performance of this
shock-swallowing, self-aspirating enthalpy probe in a low-density nonequilibrium air-
stream: (1) This design, with the air gap extending to the tip, should not be used as a
mass flow probe; (2) probe diameter and length should be made as small as possible to
decrease probe response time while maintaining probe accuracy; (3) the mass flow meter-
ing section should be isolated from the calorimetric portion of the probe to reduce time
response and to exclude extraneous heat sources and/or sinks; (4) mass flow rate calibra-
tions using air heated to temperatures expected during the tests would lend still more
confidence to the probe measurements of enthalpy; and (5) a knowledge of the chemistry of
the exiting flow is needed and, in this regard, determination of the catalytic efficiency of
the air-out thermocouple surface would be helpful.

Langley Research Center,
National Aeronautics and Space Administration,

Hampton, Va., June 27, 1972.
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