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ABSTRACT

A computer program called HOPI was developed to predict reorientation
flow dynamics, wherein liquid moves from one end of a closed, partially
filled, rigid container to the other end under the influence of container
acceleration. The program uses the Simplified Marker and Cell (SMAC)
numerical technique and, using explicit finite-differencing, solves the
Navier-Stokes equations for an incompressible viscous fluid. The effects
of turbulence are also simulated in the program. HOPI can consider
curved as well as straight walled boundaries. Both free-surface and
confined flows can be calculated. The program was used to simulate
five liquid reorientation cases. Three of these cases simulated actual
NASA LeRC drop tower test conditions while two cases simulated full-
scale Centaur tank conditions.

It was concluded that while HOPI can be used to analytically determine the
fluid motion in a typical settling problem, there is a current need to
optimize HOPI. This includes both reducing the computer usage time
and also reducing the core storage required for a given size problem.
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SUMMARY

This report covers the work performed under NASA/LeRC Contract NAS3-14361 by
the Convair Aerospace division of General Dynamics during the period from February
1971 thru April 1972.

The objective of this contract was the development of a numerical method to predict
reorientation or settling flow dynamics, wherein liquid moves from one end of a
closed, partially filled, rigid container to the other end under the influence of con-
tainer acceleration.

Convair used the Navier-Stokes and the continuity equations for incompressible,
viscous fluid as the basic equations governing the reorientation flow dynamics. The
equations were programmed using explicit finite differencing for two-dimensional
planer and three-dimensional axisymmetric problems. The Simplified Marker and
Cell (SMAC) numerical technique was used to determine liquid-vapor interface
positions.

Convair uses a turbulent kinematic viscosity relationship to analytically approximate
the effects of turbulence

where TURB is an empirical factor which is used to correlate the data. A value of
0.05 was found to best correlate the LeRC drop tower results.

DZif I 2i |> i S L L i1 oz ' 'dr '

where DR and DZ are the grid dimensions and u and v are the velocity components in
the radial (r) and axial (z) directions, respectively.

The viscosity of a fluid was treated as the sum of the molecular viscosity and turbulent
viscosity. For the reorientation flow cases run during the contract the magnitude of the
turbulent viscosity was generally at least an order of magnitude greater than the
molecular viscosity.

Convair developed a computer code called HOPI using the equations formulated in the
analytical studies. It is noted that while HOPI is restricted to two dimensional



problems the basic SMAC technique may be three dimensional. HOPI can handle
curved as well as straight-walled boundaries. It has the ability to calculate both
free-surface and confined flows. It can be used in either cylindrical or plane geometry.
The size of the computing mesh is easily changed from problem to problem. The grid
dimension in each direction must be constant through the grid mesh, although the grid
dimensions in the radial and axial direction may differ. Gravitational effects may be
included in any orientation however it is noted that HOPI can only compute axisymmetric
flow when a cylindrical geometry is used. For any given time interval the gravitational
acceleration must be constant. HOPI has a surface pressure interpolation scheme that
prevents unrealistic breakup of the surface.

Convair used the computer program HOPI to simulate five liquid reorientationcases.
Three of the cases simulated actual NASA LeRC drop tower test conditions and were
used to provide confidence in the results generated by HOPI. The additional two cases
simulated full-scale Centaur tank conditions. The cylindrical tanks had height to
diameter ratio of two, hemispherical forward and spherical segment bottom dome,
with a radius of 7 cm for drop tower cases and 150 cm for full scale cases. In all
cases the initial interface shape corresponded to a Bond number of 10. The
reorientation Bond numbers ranged from 100 to 450.

The experience gained in running these cases indicates that HOPI can be used to
analytically determine the fluid motion in a cryogen storage tank under a continuous
settling load. However, there is a current need to optimize HOPI. This includes
reducing the computer usage time and also reducing the core usage required for a
given size problem. To reduce the computer usage time it is recommended that
HOPI be modified to handle variable grid mesh and to change the subscripting from
double to single throughout the code. To reduce the core storage it is recommended
that overlaying be used.



1.0 INTRODUCTION

Auxiliary tiirustors are used to create reduced-gravity environments to control and
locate liquid surfaces in space vehicle systems. The continual use of even small
thrustors for long-term missions can result in undesirable weight penalties and,
thus, their operation may have to be intermittent. During the off-times,the liquid
surface may be destabilized and relocated due to disturbances acting on the vehicle.
Various passive retention devices such as capillary baffles might be used to control
the location of the liquid, but it appears that, at least for large cryogenic propellant
systems, reduced-gravity auxiliary thrustors will remain a primary method of
control. The auxiliary thrustors will be relied upon to settle or reorient the pro-
pellant back to its desired location prior to restart or venting operations. The thrust
and time required to settle efficiently and reliably are vital design factors. The
initial destabilization and ensuing flow dynamics have been studied analytically, but
reorientation time estimates are still derived almost entirely from empirical results
based on scale-model experiments. References 1 through 7 discuss aspects of this
reorientation problem.

During this contract,a computer program called HO PI was developed which can be
used to predict reorientation flow dynamics, wherein liquid moves from one end of
a closed partially filled, rigid container to the other end under the influence of
container acceleration. This computer program numerically solves the Navier-
Stokes equations for viscous incompressible fluids using the Simplified Marker-and-
Cell (SMAC) technique. The basic development of this technique is given in Reference
8. One limitation of the program described in Reference 8 is that it cannot consider
curved boundaries. Basic techniques to handle curved boundaries were developed by
Viecelli in Reference 9.

The objective of this study is to extend the scope of past analytic studies of
reorientation to the liquid-liquid impingement phase and to calculate during this phase
interface profiles and liquid volume collection rates. The region of particular interest
is reorientation Bond numbers of 100 to 500. Representative cases were calculated
to compare directly with drop tower experiments and to corroborate empirical results
for full-scale vehicle propellant tank configurations.



2.0 DISCUSSION

In the Simplified MAC (SMAC) technique, the procedure for a calculational cycle is as
follows:

1. A tentative field of advanced-time velocities is calculated by using an arbitrary
pressure field within the field, but with a pressure boundary condition at the free
surface satisfying the normal stress condition. Correct velocity boundary conditions
assure that this tentative velocity field contains the correct vorticity at every interior
point in the field. The tentative velocities do not satisfy continuity (i.e., V • V = 0).

2. The tentative velocities are modified to their final values so as to preserve the
vorticity at every point. A potential function is employed, determined by the
requirement that it convert the velocity field to one which satisfies the incompress-
bility condition everywhere.

The computer program developed during this contract is called HOPI, Reference 10.
It handles two-dimensional or axisymmetric three-dimensional problems involving
incompressible Newtonian fluids; In the following sections the basic equations and
techniques used in HOPI are presented.

2.1 EQUATIONS USED IN HOPI

The basic differential equations are

9u 1 ^rau2

i .1— T «^~— — i...I. '

at r" 9r az ar r 9z

1
+ ~7Z

at r^ 9 r az az z ra 9 r 9r

and

D = -77- ?—— + °-^ =0
9Z ... .

The velocity components, u and v, are respectively in the r and z directions, and the
pressure, 0, is normalized to unity density. The two components of gravitational



acceleration are gr and gz as indicated below. Plane (Cartesian) coordinates have
a = 0, and in cylindrical coordinates, cr- 1.0.

V (fv » 65

gr

In differential form, the equation for transport of vorticity, oj , is independent
of the pressure, so that any field of pressure inserted into the Navier-Stokes
equations will assure that the resulting velocity field carries the correct
vorticity. An arbitrary pressure field will not, however, assure the vanishing
of D, but if the velocity field is altered by the addition of the gradient of an
appropriate potential function, the resulting field will carry the same vorticity,
have vanishing D, and accordingly will be uniquely determined, hence correct.

This is the essence of the procedure for the finite difference solutions. As a
starting point, the equations are written in the following form.
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The subscripts refer to position in the finite-difference mesh (see Fig. 1), and the
superscript n counts time cycles. The true.pj-essure, 0 , has been replaced by
the arbitrary field, $ , and accordingly the new-time velocities are marked with
tildes. ,

CELL (ij)

j-1/2 _„

l/2j

ij-1/2

1-1/2

u

l
i

i+1/2

Figure 1. The Location of the Cell Variables in a

SMAC Cell

The finite difference equations have been written with explicit (retarded-time) fluxes.
Cell-centered momentum convection terms have been written in the ZIP form, which,
although continuing to assure internal momentum conservation as in MAC, allows
SMAC to conserve momentum in the immediate vicinity of a rigid wall. This type
of differencing introduces the definition

<\f -V1/2.J ."1+1/2. J

An advantage of its usage is the removal of a destabilizing truncation error term
that occurs in the original form of MAC, (Reference 11).

A finite-difference approximation to the vorticity is

(4)

n
u>
i+1/2, j+ 1/2

n
_ i+1/2, j

6z

n n
Vl, j+1/2 "Vi , j+1/2

<5r (5)



with Centering at cell corners. Equations (1) and (2) can be combined to obtain
a transport expression for uo. . . " . which, like the differential equation, isi+l/^, j+l/<s,
independent of the i/> field. Accordingly, the explicit; calculations of the tilde
velocities assures that the vorticity at^every internal mesh corner point is correct,
independent of the choice of # . This is not true, however, for corner points that
lie on rigid walls, which are not correct until the tilde velocities have been corrected
to assure the vanishing of D. For purely explicit calculations, which are acceptable
for Reynolds numbers greater than about unity, SMAC vorticity diffusion from the
wall is nevertheless correct, because the tilde velocities are based entirely upon
the final velocities from the previous cycle, which do agree with the proper wall
vorticity.

A cell is flagged as a surface (SUR) cell when it contains fluid, marker particles
and it has at least one adjacent neighboring cell which is flagged empty. Marker
particles do not perform any function in HOPI calculations other than to indicate
the position of any free surface that may be present. On free surfaces the
tangential stress condition is

+-S =o
" 9 z. dr

so that u .is determined by the equation

<5r

This assures that the tangential viscous momentum flux vanishes when calculated
by Equation (1) for u.

(6)

. .
,, » J

In addition, the normal stress condition is

77

The applied part of the pressure is specified according to the requirement of the problem
while the viscous part assures that there is otherwise no net flux of normal momentum
through the surface. It is important that the normal stress condition be placed on the
free surface rather than at the center of the surface cell.

9



The viscosity coefficient v used in Equations 1 and 2 is the sum of the kinematic
molecular viscosity and the turbulent viscosity.

molecular turb . .

The molecular viscosity is an input quantity and is a fluid property. The turbulent
viscosity coefficient is calculated internally in the program as indicated below.

U
turb

where

DRif I— |> (^

and TURB is an input quantity.

This expression for turbulent viscosity is of the form predicted by both Prandtl's
mixing-length theory and Taylor's vorticity transport theory. While other expressions
for predicting the turbulent viscosity do exist, the above was selected due to its wide
acceptance and simplicity.

Basically a turbulent viscosity is calculated in a cell containing fluid when at least
two of its adjacent neighboring cells also contain fluid. The criteria of requiring
fluid in adjacent fluid cells is needed so that dv/dr and du/dz can be calculated.

For the reorientation flow cases run during this contract (Section 3) the magnitude
of the local turbulent viscosity coefficient was at least an order of magnitude greater
than the molecular viscosity coefficient for most of the duration of the problem. This
indicates that the viscosity coefficient used in Equations 1 and 2 is mainly a result
of the turbulent viscosity coefficient.

2.2 HOPI COMPUTER PROGRAM

This section describes in detail the SMAC calculational cycle in the framework of
HOPI. HOPI embodies a number of features that make it a useful tool. Among these
are

1. It is written in FORTRAN IV for the CDC-6400 computer.

2. It has the ability to calculate both free-surface and confined flows. :

3. It has the ability to calculate either in cylindrical or plane geometry.

10



4. The size of the computing mesh is easily changed from problem to problem.

5. It has a simple, straightforward setup, allowing different initial conditions and
particle resolution in different regions of the mesh.

6. Various boundary conditions are available, along with an obstacle.

7. Gravitational effects may be included in any orientation. However, it is noted that
HOPI can only compute axisymmetric flow when a cylindrical, geometry is used.

8. Both curved and straight wall boundaries can be used.

The underlying HOPI scheme is now discussed in detail. . . . . . / .,

2.2.1 COMPUTING MESH. The HOPI computing mesh will handle either cylindrical or
plane geometry calculations. The equations are all presented in cylindrical form, however,
it is shown in Section 2.2.6 that it is simple to transform them to plane form. The
computing mesh as used in cylindrical coordinates (Figure 2) is an infinitely thin radial

radial slice from a cylinder. The computing
• . . . . . § , cells become "toroids" of revolution about

this cylinder, and are of uniform size in
HOPI.

The radial coordinate is denoted by r, and
the radial cell size is denoted by 6r,
whereas the axial coordinate is denoted by
z, with 6z the cell size in the axial
direction. The origin is located at the -••»•
lower left corner of the mesh of cells,
the centers of which are labeled with the
indices i and j. These indices increase in
the r and z directions, respectively. The
mesh of cells isT (IBAR) cells wide and J
(JBAR) cells high.

CELLS

Figure 2. Computing Mesh in Cylindrical
Coordinates .

2.2.2 CELL VARIABLES. The primary
cell variables are .the two components of
velocity, u and v, the pseudo-pressure t,
and the velocity divergence, D. The
centering of these variables about a SMAC
cell is shown in Figure 1, where it is seen

that the velocities in the radial direction are centered at the left and right edges of the
cell, and axial velocities at the top and bottom edges. D, and i|r are defined at the cell
center. In the equations, .velocities appear that are not positioned at the cell edges. In
these instances, simple averages are calculated. For example

11



(uv)
i+1/2, j-1/2

2'-*'3 *Af ° TYPES OF CELLS AND THE INDEXING SCHEME. The basic types of
cells which may exist within the mesh are described in Figure 3. Use of these flaes
is demonstrated in Figures 4 and 6. ^

ARB

EOT

COR,

EMP

EOC

EXT

FUL .

LEF

OB

OK

RIG

SNC

SUR

TOP

An OB cell which has a fluid particle within e • DR of the arbitrary boundary, where e is the boundary
sensing parameter and is usually set equal to .25.

A COR cell containing a segment of an arbitrary boundary which has its midpoint and angle being stored in
the OB cell just below it. •

A cell which has a line segment of the arbitrary boundary passing through it, however fluid area to total cell
area fraction is less than .25. The fluid area is to the left of the line segment. Also, any cell just outside
an OB cell is a COR cell.

The cell is empty (contains no fluid particles).

A cell which is either EMP or COR. .

Any cell outside a COR cell.

A cell which contains fluid and has empty neighbor.

A COR cell containing a segment of •
an arbitrary boundary which has its
midpoint and angle being stored in
the OB cell just to the left of it.

A cell which has a line segment of
the arbitrary boundary associated
with it (see COR).

An ARB cell that does not contain
the intersection of a free surface
and the boundary.

A COR cell containing a segment of
an arbitrary boundary which has its
midpoint and angle being stored in
the OB cell just to the right of it;

A cell which is also flagged as FUL
or SUR and not COR.

A cell which contains fluid and has at
least one empty neighbor.

EXT

B0T

ARB,
0K

FUL

SUR

EMP

EMP

EMP

j 0B

C0R

EXT

EXT

B0T
tUiUAtit

ARB,
0K

FUL

SUR

EMP

EMP

EMP

0B

T0P

EXT

EXT

B0T

ARB,
0K

FUL

FUL

"•*• — -
SUR

EMP

EMP

EMP

'giT777

C0R

EXT

C0R

ARB,
0K

FUL

FUL

~\^
SUR

EMP

EMP

EMP

rrrrrrrr

0B

C0R

EXT

C0R

•"itiuiy

FUL

FUL

SUR

EMP

EMP

0B

T0P

EXT

EXT

C0R

AR^"*
T/VRT '

FUL

FUL

FUL

SUR

EMP

0B
rrr~~rr

T0P

EXT

EXT

C0R

ARB,
•^'"i-i.
0K

FUL

FUL

FUL

SUR y

EMP

-rrrrrrri

C0R

EXT

•Arbitrary
Boundary

Region
Containing
Liquid

^Liquid-
Vapor
Interface

Region
Containing
Vapor

Arbitrary
Boundary

A COR cell containing a segment of NOTE:
.an arbitrary boundary which has its 1. All ARB cells are also flagged as 0B.
midpoint and angle being stored in , 2. All TOfi?,Bf5T,RIG and LEF cells are also flagged as C0R cells,
the OB cell just above it. 3. All the above SUR and FUL cells are also flagged SNC.

Figure 3. Grid Network With Typical Cell Flags
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In Eulerian programs of the MAC-SMAC type, experience has shown that it is
helpful to surround the above-described mesh with a belt of cells lying outside
the boundaries. Cells in this belt are called boundary (END) cells, and they
simplify the task of handling boundary conditions, particularly those relating
to velocities. *> , : • • • .

In the FORTRAN code HOPI involving the SMAC equations, we reference "^ j"
simply as "PSI (I, J). " But "ui+i/2, j" cannot be referenced by a.Vhalf-?mteger"
index in FORTRAN, so the convention has evolved that "U(I, J)" refers to this
velocity, "V(I,J)" in the code actually refers to vi}j+1/2-

Giveri this referencing scheme, the reason becomes apparent for creating a column
of END cells on the left for storing the u's (normal velocities) for the left boundary,
and a row of END cells along the bottom for storing the v's (normal velocities)
pertaining to the bottom boundary. In addition, tangential velocities are logically
arranged in END cells on all four sides; their values are based on neighboring u's and v's
lying inside, modified through the existing wall boundary condition. With appropriate
"outside" velocities thus distributed over the END cells, the computer code can solve
the SMAC equations over the interior cells, picking up velocities on all sides as
needed, Without having to test for adjacency of a mesh boundary. Variables in END
cells must, however, be updated as the corresponding variables inside change in value.

It is clear that it is possible for a cell to contain a number of flags. For example,
a cell could be OB, ARE, FUL, OK, and SNC all at once. In HOPI an NBIT function
is used to determine if a flag is set for a given cell. To speed up the computation
time certain cell flags such as EOC and SNC were developed, which represent two or more
flags. To further speed up the computatibn time "G" flags were developed as indicated
below:

G = 2 implies a COR cell

G = 3 implies an OK cell '

G = 4 implies EMP and not COR or EXT cell

G = 5 implies a END cell

An optimization study indicated that each computation of the form

IF (NBIT (10, F(N)) . EQ. 1) GO TO 100

13



takes . 386/10, 000 seconds while a computation of the form

IF (G(N) . EQ . 1) GO TO 100

takes .141/10,000 seconds.

This shows that it is 2. 75 times faster if a G cell flag is used instead of the NBIT
function. A given cell can contain only one G flag.

2.2.4 MARKER PARTICLES. In addition to the mesh of Eulerian cells, SMAC
employs a set of massless marker particles, which are helpful for allowing a visual
representation of the fluid, but whose essential purpose is to define the position of
the free surface so that the configuration of SUR cells can be sensed. Beyond this,
the marker particles do not enter into the calculation, but are merely embedded in
the fluid and are carried along by it. Each cycle the marker particles are moved
with a weighted average of the four nearest u's and of the four nearest v's.

2.2.5 BOUNDARY CONDITIONS. In HOPI both straight line and curved wall
boundaries can be used. A curved wall is approximated by a series of straight line
segments within the grid mesh, where each cell that has part of the curved boundary
passing through it contains a straight line segment. Each line segment is formed by
joining the two points formed where the curved boundary crossed the rectilinear
Eulerian boundary of the cell.

Straight Wall Adjacent to a END Cell

With reference to Figure 4, the indices i, j refer to the cell inside the system, and
i-1, j refer to the END cell lying just outside.

OUTSIDE FLUID SIDE

Vl,i+1/2WALLV-
9

ui-l
• <

1 1
1

i-1 i-3

i •

*|

L/2 i

u
,,-!

2
1
l

i+1/2

j+1/2

Figure 4. Variable Positions at a SMAC Left Wall
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1. FREESLIP: A freeslip boundary represents an axial center line or a plane
of symmetry or a non-adhering surface that exerts no drag upon the fluid.
The normal velocity component vanishes at the wall, and there:is no gradient
in either tangential velocity or in the potential function i/i

u
1-1/2, j =0

# . , . = * . . .

2. NOSLIP; A noslip boundary represents a viscous boundary that exerts a drag
upon the fluid. This is accomplished by forcing the tangential velocity to go to
zero at the wall

•Vi/2,r°

i-l.j

The no slip option is not available for curved wall boundaries. Also, it is noted that
often more accurate results might be obtained by imposing the free slip condition on a
boundary even when in reality a no slip condition exists. This is true when the grid
mesh is too coarse to accurately resolve the detailed motion of the boundary layer
resulting from a no slip condition. This was true during the cases run during this
contract. Therefore, for the cases reported in this report the free slip boundary
condition was always imposed on every boundary.

Curved Wall Boundaries

The basic technique for handling curved-wall boundaries was developed by Viecelli in
Reference 9. Only the case of free-slip boundary conditions exist for curved-wall
boundaries. The motion of an interface between a liquid and a curved wall
is equivalent to that of a free surface with an applied pressure distribution. Given
any interfacial shape or motion-one can produce" that same shape or motion with some
unique pressure distribution applied to a free surface. This is the basis for arbi-
trary boundary calculations.
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A curved wall is specified by a locus of points. These points might be the edge
intersection points of a mesh covering the wall or body; however, in general the
points will not lie on any of the Eulerian mesh lines used in the finite difference
solution of the hydrodynamic equations. The first step is to connect successive
points with straight lines and find all of the intersections of these segments with the
underlying Eulerian mesh. One can then represent the boundary section lying inside
an Eulerian cell by a single straight line connecting the points of intersection of the
boundary with the sides of the cell. It is possible to conceive of situations where the
boundary winds in and out of a single cell creating some ambiguity. However, this
occurs only when there are an insufficient number of zones to accurately calculate
details of the flow. Therefore it is assumed that the Eulerian zoning is always fine
enough so that the boundary has only two intersections with each cell. Having broken
the boundary into a set of straight line segments, each associated with a unique
Eulerian cell, one can specify the position of each segment by a unit vector normal to
the boundary segment positioned at the midpoint of the segment. HO PI uses the
convention that me normal points towards the liquid and to the left as one advances
from the ith to i + 1th boundary point.

The second step is to define and flag Eulerian boundary cells as those along the inside
edges of the contour approximated by the boundary segments. The liquid area of the
boundary cells are then calculated again using the convention that the liquid is to the
left as one advances from the itii to i + 1th boundary point. Then, if the liquid
fraction of the total cell area is greater than 1/4, the boundary cell flag, OB, is
turned on. If the liquid area fraction is too small the cell is flagged COR. It is then
determined to which of the four neighboring cells the boundary segment normal points
nearest and then set the boundary flag, OB, for that cell. When that cell also contains
a boundary segment the two segments can be replaced with one by removing the

boundary intersection point between the two adjoin-
ing cells. This new segment, spanning two cells,
is also defined by velocity and position vectors at
its midpoint. This case is illustrated in Figure 5.
Note that as a result of this selection process the
midpoint of a boundary segment may not physically
lie in the Eulerian boundary cell with which it is
associated. Thus, it is sometimes necessary to
assign a pointer to a boundary cell indicating which
neighboring cell contains the midpoint of the
associated boundary segment. Once the boundary
cell flags have been set it is necessary to go
through them and turn off the boundary (OB) flag
in any cell in the corner of a right angle cell
pattern, since such cells are bounded on two
adjacent sides by either a pair of interior or
exterior cells and on the other two by boundary

Figure 5. Replacing Two Boundary cells. Figure 6 shows a closed boundary curve, the
Segments With One Segment approximate Eulerian boundary, and the cell pattern.
Spanning Two Cells It illustrates the various cases mentioned above,
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This process of defining a set of Eulerian boundary cells is analogous to the defining of
a set of free surface cells in the MAG method but with the additional constraint that the
resulting cell pattern avoids overdetermining the boundary condition on the pressure.
Cells just outside the Eulerian boundary are flagged as COR cells while the remaining
cells outside the Eulerian boundary are flagged as external (EXT) cells. This is so that
one can tell when velocity components lie on the exterior sides of boundary cells.
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mated by a series of
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within the grid mesh, where
each cell that has part of
the curved boundary passing
through it contains a
straight line segment.
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formed by joining the two
points formed where the
curved boundary crossed
the rectilinear Eulerian
boundary of the cell.

Figure 6. Permanent Cell Flags for Arbitrary Boundary
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Once the boundary cells {flagged - OK) have been determined, the following
relaxation equation is used to compute the pressure in these cells:

k+1 k_ RELAX

ij Mj * (C1)1 (8)

In this equation n is the normal defining the boundary segment associated with cell
(ij) and (VJj) *) is the liquid velocity at the midpoint of the sgement computed with the
MAC area weighted interpolation formula as shown in Figure 7.

Clearly (V ).. is one of the iterates and must be recomputed each time the
pressures and velocities are adjusted. The relaxation parameter and minimum
mesh dimension are RELAX and X respectively. The formula shows that instead
of adjusting the pressure proportional to the divergence or net flux out of a cell
one adjusts it proportional to the flux across the boundary measured relative
to coordinates fixed in the boundary. If liquid is flowing across the boundary the
pressure will be increased until the outflow stops. Conversely, if liquid is tending
to separate from the boundary the pressure will decrease until the liquid flows
tangent to the boundary.

Velocities at the exterior sides of the Eulerian boundary cells and other exterior
points are necessary in the area weighting formula, and must be recomputed during
each iteration sweep. These velocity components are determined in the same way
as those on the open sides of free surface cells in the MAC method. In Figure 8
representative sections of boundary are shown in more detail. The original Lagrangian
boundaries are indicated by dotted lines, and the resulting boundary segments and normals
are shown. Heavy dark lines outline the outer edges of the boundary cells. The
values of the velocity components at the edges and outside the Eulerian boundary,
where necessary, are given in terms of their interior neighbors for the 2-dimensional
plane case. In 3-dimensions with axial symmetry radius factors would be necessary
to preserve continuity.

In addition to calculating new cell pressures during each cycle of iteration one must
also recalculate the velocity components. During each iteration the sum of the old
velocity component at time nAt, the advection and the viscous terms are stored in
vii+1/2 : and vj j+i/2 which Qeed to be computed only once. Changes in the new cell
velocity iterates then depend only on changes in the gradient of the pressure iterates. .

In HOPI the pressures of arbitrary boundary cells are located at the boundary.
This requires that one interpolate to find the cell centered pressure to use in the
momentum equation. Figure 9 illustrates the method of linear interpolation. A
real advantage of the simultaneous iteration method and Equation 8 is that it gives
a simple automatic way of including complicated boundary conditions.
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Figure 8. Determination of Mesh Velocities on the Exterior Sides of Eulerian
Boundary Cells and Assignment of Boundary Segment Normals
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The marker particles, which are typically input at a density of at,least four per cell,
specify the fluid configuration with an uncertainty much less than the Eulerian mesh
width. Because of this some finer criteria other than just the knowledge that a boundary
cell contains particles is necessary. We require in addition that

Xn) • n < e \

where Xp is the particle position, Xfl is the position of the midpoint of the boundary
normal, ft is the boundary normal, and e is some fraction of the cell width X typically
1/4. Thus, we do not begin computing a pressure in boundary cells until the particles
come within e X • of the boundary segment. .

When free, surfaces are present we also need to know how to treat cells containing
the intersection of curved wall boundaries and free surfaces. The pressure at the
intersection point should be equal to the ambient pressure, but because the pressure
is defined only on the Eulerian net, it is sometimes not possible to zero the flux at
the boundary consistent with vanishing divergence without introducing a pressure.
This happens when the angle between the free surface and the boundary is small and. ;
the liquid is colliding with a wall, producing a liquid layer on a scale too fine to be
resolved by the Eulerian mesh. We define an intersection cell to be one that contains
liquid and has one or more empty interior or pressure surface neighbors, and one or
more exterior neighbors; When this definition is satisfied, the pressure is set equal
to ambient pressure and the velocities are adjusted directly. In most circumstances
the liquid in the cell will be part of a much larger mass. When there are one or two
liquid neighbors, the velocity components at the sides in contact with the liquid are
preserved, and those at the open and boundary sides adjusted to make the velocity '
tangent at the boundary consistent with vanishing divergence. In the case of one liquid
neighbor, the velocities at the opposite cell sides are assumed equal, and the compo-
nent with both sides open or boundary is adjusted. In either case the flux at the boun-
dary is a linear function of a single variable, and the zero is easily found. If the
velocity at the boundary is initially directed away from the boundary, nothing need be
done. The remaining possibility is that there are no liquid neighbors, as happens
when a small isolated element strikes the boundary. In this case we set the component
of the particle velocity normal to the boundary equal to zero, and preserve the tangen-
tial component. If a gravitational force is present we accelerate the particle velocities
by the component of the gravitational vector tangent to the boundary. This is a free
slip condition.
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2.2.6 CALCULATIONS TO PLANE COORDINATES. The equations in HO PI are all
written in cylindrical coordinates, but the program is arranged so that the calculations
can be performed in plane coordinates with a minimal loss in computing efficiency.

The geometry type is specified by the user through the input quantity PC, which equals
0.0 for calculations in cylindrical coordinates, or 1.0 for calculations in plane coordi-
nates. For plane coordinates, 6x is input in place of 6r and 6y in place of 6z.
From this point on, HOPI performs the transformation automatically in the following
manner.

The equations contain coefficients involving the use of r^, the radius to the center of
cell i, and rj±-, /% the radius of right and left edges of cell i. To avoid recalculating
these radii each time they are encountered, HOPI generates a number of tables which
are entered with the index i for the quantities ri+1/2, ri> 1/ri+i/2» 1/ri» (4ri ~ <5r)/
(4r. + 6r), and (4r. + 6r)/(4r. - 6r). If plane geometry is specified by PC, however,
every entry in all six tables is generated as unity, causing all radial effects to
disappear. Further, PC itself directly appears in some of the equations. For
example, an expression applicable only to cylindrical coordinates is multiplied by
(1. 0-PC), forcing its cancellation in plane coordinates.

2.2.7 PROBLEM SETUP. Data punched on input cards provide the setup routine
with the information required to generate the flow field at initial_time. Basic require-
ments are the number of interior cells in both directions (I and J), the geometry
(cylindrical or plane), the size of each cell (6r by 6z or fix by fi y), the initial layout
of marker particles specifying the number of particles for each cell, and the initial
u's and v's for those cells containing particles. Other necessary information is
included that specifies the boundary types on the four sides of the mesh, the location
of an obstacle if one is present, the fluid viscosity, the amount of gravitational accel-
eration, the time step (fit), and the intervals at which plots or prints are to be made.

In the HOPI set up, the mesh is initially flagged as all EMP cells, surrounded by
END cells. If an obstacle is present, its cells are permanently flagged OB. Cells
outside OB cells are permanently flagged either COR or EXT. Subsequently, any
cells containing particles are flagged FUL. At this point, a set up containing a free
surface has no SUR cells, but this is remedied immediately in the first calculational
cycle when the cell flags are adjusted.

Finally, the setup routine must calculate scaling parameters for the microfilm plots
that will be made of the marker particles, and calculate various coefficients and
tabular data that will be used repeatedly in the calculational cycle.

At this point, the setup ends and control passes to the first calculational cycle. Omis-
sion of any variables, such as SUR cell flags, tangential velocities in END cells and on
the free surface, is rectified in the first cycle, because their calculation is a standard
part of every cycle.
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3. 0 RESULTS AND DISCUSSION OF RESULTS

During this contract five liquid reorientation cases were run using the computer
program discussed in Section 2. Three of the cases simulated actual NASA LeRC
drop tower test conditions and were used to give confidence in the results generated
by HO PI. The additional two cases simulated full-scale Centaur tank conditions.

3.1 CORRELATION OF ANALYTICAL RESULTS WITH TEST DATA AND THEORY

Three analytical runs were made which corresponded to actual LeRC drop tower test.
These runs were used to help establish the accuracy and limitations of the existing
code to solve typical liquid reorientation problems. All three problems had the
following characteristics:

Height to diameter ratio of 2
Cylindrical tank with a radius of 7 cm
Fluid (FC-78) had a kinematic viscosity v = 4.74xlp~3 cmVsec (Ref. 12)
Initial interface shape corresponding to an initial bond number of 10
Hemispherical forward dome
Initially the fluid was at rest (all velocities = 0)
Grid mesh of DR = DZ = 1 as indicated in Figure 10
All boundaries were input with the free slip condition (Section 2.2.5)

In all plots shown in this section just half of a tank is shown due to symmetry. The
left side of each plot corresponds to the center of the tank.

CASE 1. Case 1 had the following additional characteristics:

20% liquid (by volume)
Spherical segment bottom dome
Settling acceleration (GZ) of 31.4 cm/sec2

Turbulent viscosity coefficient = 0.0
Initial Marker particle density = 4 x 4 per cell (580 particles)

Figures 11A through 11C give computer generated SC 4020 plots of the Marker particles.
Figures 12A through 12C give computer generated SC 4020 plots of the velocity vectors
at selected times. Initially the fluid was at rest (all velocities = 0). It is noted that
in Figure 12A certain regions which contain fluid do not have a velocity vector indi-
cated. This results since the velocities must be larger than a certain minimum value
to be printed as a SC4020 velocity vector.

The results agree closely to those of actual test data supplied by NASA LeRC. The
liquid flows down along the side of the cylinder with a velocity V = . 87 x ,g x t
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A. Time = .1 Sec B. Time = .5 Sec C. Time = 1.0 Sec

Figure 11. SC 4020 Marker Particles Plot for Case 1
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Figure 12. SC 4020 Velocity Vector Plots for Case 1
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(Reference 2) where t is the time duration that the settling g-load is applied. The
liquid in the center of the tank moves up toward the top bulkhead and the fluid adjacent
to the top bulkhead moves parallel to the bulkhead as indicated by the velocity vectors
in Figure 12C.

CASE 2. Case 2 had the following additional characteristics:

70% liquid
One cell truncated spherical segment bottom dome
Settling acceleration of 31.4 cm/sec2

Turbulent viscosity coefficient = . 05
Initial Marker particle density = 6 x 6 per cell (4285 particles)

This problem was run for approximately 2.4 seconds of settling time. Some problems
which did not occur in the first run appeared. The first problem was at the corner
where the fluid coming down the wall impinged on the bottom dome. It was found
necessary to truncate the dome by at least one cell since, for the present grid size,
the program could not resolve the fluid motion. This is illustrated schematically
in Figure 13. Figures ISA and 13B are the corner without and with one cell trun-
cation respectively.

The vector arrows indicate the motion of the fluid. In Figure 13A it is seen in cells
8, 4 and 8, 3 that the fluid moves in two different directions. Since for a given cell
there is only one set of velocity for all the particles in the cell, the two velocities
cannot be resolved.

This problem can be corrected by using a smaller grid mesh. However, since the
present coding does not allow for variable grid sizes, the finer grid size needed
would greatly increase the running time of the problem.

A second problem also developed when the test case was run past the point of initial
impact with the bottom dome. The problem was in the surface definition as defined
by a subroutine called SURP. SURP has two main functions: one is to evaluate
surface tension forces, the second is to extrapolate the pressures as calculated at the
surface to find the appropriate pressure for the center of the surface cell. Figures
14A and 14B illustrate how the surface becomes defined along the arbitrary boundary.
This results since the particles that initially hit the bottom stagnate while the
particles that follow move across the boundary. Because of this phenomena it is an
inherent limitation of the program that subroutine SURP cannot be used once a
condition like this exists.

The first approach to solving this second problem was to delete all surface marker
particles. However, as shown on Figure ISA this resulted in an instability in the
surface. The second approach consists of deleting surface marker particles as they
entered cells containing segments of an arbitrary boundary. As indicated in Figure
15B the instability is gone. It is therefore recommended that this second approach be
used. •. . ,
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A. TIME t = .8SEC B.TIME t= 1.1 SEC

Figure 14. Surface Definition After Impact of Fluid on Arbitrary Boundary
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A. WITHOUTSURFACE MARKER B. WITH SURFACE MARKER

Figure 15. Effects of Surface Marker Particles in Ullage Section for Test
Model With 30% Ullage at1.05 Seconds
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An examination of the geyser that has formed on Figure 15B illustrates another
problem: a condition of rarified particles. This problem results when the particles
are accelerating along the bottom boundary. This acceleration results when fluid is
moving in toward the center of a cylinder under its momentum. As the radius of the
cell containing fluid decreases, the radial component of velocity in that cell increases
inversely with the radius.

The condition of rarified particles becomes a problem when a cell that should contain
particles does not. This is the case in the geyser seen in Figure 15B. A subroutine
(called ADPART) was written to remedy this problem. Figure 16 shows a typical
geyser with the additional particles as added by subroutine ADPART.

Also while running Case 2 the turbulent viscosity coefficient (TURB) was varied to
determine its effect on the fluid motion (Section 2.1). Figure 17 shows the basic fluid
motion at approximately 1.1 sec for three different values of TURB. It is clear that
the lower the value of TURB the faster is the velocity of the fluid and hence the sooner
the geyser begins to form. It is emphasized that the turbulent viscosity is calculated in
a cell containing fluid when at least two of its adjacent neighboring cells also contain
fluid. This criteria is needed so mat Bu/dz and ?>v/9r can both be computed. Unfort-
unately due to the coarse grid mesh this condition is not always satisfied when in reality
it should be. This is true when the fluid is sliding down the wall and is moving across
the bottom boundary as a layer of fluid with a thickness less than the grid dimension.
While this condition exists for a relatively short duration during Case 2, this problem
will become more severe during the remaining cases.

Since the lack of a surface pressure interpolation scheme has been shown to result in
surface instability (Figure 15), it was concluded that it is necessary to
maintain the surface pressure interpolation scheme during geyser formation. Also,
to minimize surface breakup in the geyser itself it is necessary to add surface marker
particles over the entire surface to include the geyser. Therefore, a subroutine was
written to internally add the necessary surface marker particles at selected times.
Figure 18 shows a case where the subroutine was used to add particles.

Figures 19A through 19L give computer generated SC4020 plots of the Marker particles
for Case 1. The surface pressure interpolation scheme was discontinued at 1.566
seconds. This is the reason that plots 19G through 19L have no solid line outlining
the surface as is the case in plots 19A through 19F. Figures 20A through 20C give
computer generated SC4020 plots of the velocity vectors at selected times.

Figure 21 gives photographs of the drop tower test results simulated by Case 2.
Initially the interface shape corresponds to a Bond number of 15. The test model was
a scaled model of the current Centaur tank. Except for the deviation in the initial
interface shape and the fact that the model had minor differences in tank end shapes,
the remaining characteristics of settling acceleration, fluid properties, and percent
liquid are the same as outlined for Case 2. All the times associated with each photo-
graph in Figure 21 are rounded off to the nearest tenth of a second.
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Time = 1.025

Figure 16. Test Model With 30% Ullage
With Particle Addition by Subroutine
ADPART

\

A. TURB =• 0 B. TURB = .1

Figure 17. Test Model at Approximately 1.1
Second for Various Values of TURB

A. Without Added Surface
Marker Particles

B. With Added Surface
Marker Particles

Figure 18. Test Model at Approximately 1.375 Seconds With
and Without Added Surface Marker Particles
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A. TIME-0 SEC. B. TIME • 0.5 SEC. C. TIME • 0.7 SEC. DIP DUE TO COARSE
GRID MESH •

F. TIME • 1.4.6 SEC.

G. TIME • 1.616 SEC. H. TIME • 1.791 SEC. I. TIME = 1.997 SEC. J. TIME = 2.147 SEC. K. TIME - 2.297 SEC. L. TIME • 2.397 SEC.

Figure 19. SC4020 Marker Particle Plots for Case 2
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Figure 20. SC4020 Velocity Vectors Plots for Case 2
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A. Time = 0 B. Time «. 7 sec.

C. Time * .9 sec D. Time « 1.2 sec

Figure 21. Photographs of Drop Tower Test Results Simulated by Case 2
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Figure 21. Continued
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The analytically calculated motion was compared with actual drop tower test data
supplied by NASA/LeRC. The following indicates the close degree of correlation.

• In both cases the liquid initially moves down the wall of the container with no
Taylor instability appearing in the center of the tank. The liquid hits the bottom
of the container at approximately 0. 7 sec (compare Figure 19C with 21B).

• In both cases the liquid then moved along the bottom surface toward the
center of the tank. The liquid does not separate from the bottom boundary.

• When the liquid reached the center of the tank a geyser formed as indi-
cated in plot 19D. In both cases geyser formation began in less than one
second (in . 99 second for the analytical case and approximately . 95
seconds in the test results).

• The geyser continued to rise and impinged on the fluid remaining in the
upper portion of the tank. In both cases this impingement occurred in
approximately 1.25 seconds (see Figure 19E). * . In both cases the width
halfway up the geyser is approximately 3. 0 cm when it impinges the fluid
in the upper region (see Figure 19E). , . ;

• In both cases the distance from the top of the tank to the free surface of
the liquid in the top of the tank is approximately 10 cm when the geyser
impinges the fluid in the upper region (see Figure 19E).

The correlation in the detailed fluid motion following geyser impingement;.
on the fluid is not so. accurate as above. In the test results the geyser
actually pushes through the fluid in the upper region and hits the top of
the tank at approximately 1.45 seconds. As can be seen in plots 19G
through 19L the geyser does not push through the fluid to reach the top of
the tank.

While the detailed motion after 1.25 second cannot be resolved by the program for
the present grid mesh size it is felt that the lumped motion of the fluid is still accurate
enough to give a good estimate of the "collected volume" for the duration of this prob-
lem; Also some other trends are noted.

• Beginning at about 2 seconds the geyser begins to collapse. This can be
seen in velocity plot 20C. This collapsing of the geyser causes the liquid
in the geyser to move as indicated by the arrows in Figure 19J. This
same type of the geyser breakup is seen in the test results.

As can be seen in Figure 19E there is a space between the geyser and the fluid
in the upper region of the tank. However, as far as the program is concerned
impingement has occurred since some of the geyser marker particles are in
the same cell as the particles defining the surface of the fluid in the upper
region.
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• After approximately 1.7 seconds (Figure 19H) it becomes increasingly
difficult to determine the true "collected volume." By the end of the
problem at approximately 2.4 seconds there are a number of regions
which appear to lack Marker particles (see Figure 19L). Does this
actually imply entrained vapor as can be seen in the test results or is
it a result of the course grid mesh causing inaccuracies in the fluid
motion? Recall that once one marker particle gets into a cell the cell
may be considered full of liquid for purpose of simulation. Also, the
coarseness of the grid mesh causes the velocity vectors between two
adjacent cells to deviate by over 90° in some cases. This is particularly
true when the fluid coming down the tank wall hits the bottom boundary or
the fluid on the bottom and is forced to change directions (see Figure 20C).
The result is a dip in the fluid as indicated in Figures 19F and 19K.
These dips should be neglected when determining the true "collected
liquid volume. " The lines to the right of some of the SC4020 Marker
particle plot indicate the height of the liquid in the "collected volume.
A basic criteria for estimating this height is given in Appendix A.

Up to approximately 1.416 second (Figure 19F) there is only one line indicating the
"collected liquid" height. After that there are as many as three lines (if there are
three the top implies maximum collected volume height while the lower implies the
minimum collected volume height and the middle one implies the mean or estimated
actual collected volume height). After seeing the LeRC test results, it is estimated
that the true "collected liquid" height is between the minimum and the mean height
while the region between this true height and the maximum height is a region which is
filled with liquid and entrained vapor. Based on this assumption Figure 22 compares
the analytical and experimental collected liquid height. It is noticed that the largest
deviations occur during the initial part of the problem while after 2. 0 seconds the
analytical and test data agree almost exactly. Due to the ambiguity in any exact
value for the true height (experimental as well as analytical) it is felt that the program
does predict the "collected liquid" in this typical settling problem.

Figure 23 is the collected liquid volume corresponding to the collected liquid height
in Case 22.

CASE 3. Case 3 had the following additional characteristics

20% liquid
One cell truncated spherical segment bottom dome
Settling acceleration of 70 cm/sec2

Turbulent viscosity coefficient = 0.05
Initial Marker particle density 7x7 per cell

Figures 24A through 24F give computer generated SC4020 plots of the Marker particles
The surface pressure interpolation scheme was discontinued at 0.90 sec (Figure 24E).
It was found necessary to discontinue this interpolation scheme when the geyser
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impinges on fluid remaining at the top of the tank. Figures 25A and 25G give computer
generated SC4020 plots of the velocity vectors at selected times. Initially the fluid was
at rest (all velocities = 0). The scale of the velocity vectors was changed after the
initial geyser formation because the large velocities in the geyser would go off the plot
at the initial scale. This is the reason why the velocity vectors of the fluid going down
the wall are longer in Figure 25A than in 25B.

The results of this run correlated with actual drop tower test data and existing theory to
the point of geyser formation. Figure 26 indicates how the leading edge velocity corre-
lates to existing data (Ref. 2). The reason for the leading edge exhibiting a downward
acceleration 13% less than freefall is basically because of the noslip condition which
exists in real fluid flow problems (Ref. 7). However, during all the cases run during
this contract the freeslip boundary condition exists on all boundaries. It is therefore
concluded that the fact that the analytical leading edge velocity departs from the settling
velocity and results in a close agreement with actual leading edge velocity is fortunate.
The freeslip condition was used instead of me noslip condition since the grid mesh was
too coarse to resolve the detailed motion of an actual boundary layer. However, the
coarse grid mesh caused inaccuracies in the numerical computation which resulted in
the deceleration of the leading edge. It is expected that with more accuracy, resulting
from a finer grid mesh along the boundary, the leading edge acceleration would approach
the settling acceleration if the noslip boundary condition continued to be imposed. The
result would be that the leading edge velocity would be too high. If this occurs in future
runs it is suggested that the HOPI code be modified so that a partial slip condition can
be input for cases where the grid mesh is not fine enough for the noslip condition.

It was noted after running Case 2 that the leading edge velocity was slower than theoreti-
cally predicted. An examination of this code indicated that some velocities in empty
cells were being prematurely deleted. This error was corrected before running Case 3.
It is emphasized that the error was minor for Case 2 and that the basic conclusions
developed from Case 2 still apply for Case 2.

The geyser forms initially at .840 sec. However, the geyser velocity was faster than
in the drop tower experiments and once the geyser did hit the top of the tank the fluid
motion could not be accurately resolved. The reason the fluid motion in the 20% liquid
case cannot be accurately resolved can be seen by comparing Figure 24E with Figure 10.
At this point the fluid is within thin sheets along the top bulkhead, the side wall, the
bottom bulkhead and in the geyser. In fact the sheets are thinner than the cell width
thereby causing almost all the fluid to be within surface cells. This means that the grid
mesh is not fine enough to resolve the motion. To obtain the necessary resolution to
accurately solve this problem, with the constant grid mesh restriction that now exists
in the code, would require at least reducing by half the grid size in both the radial and
axial direction. This would push the core size of the computer to the limit and would
more than double the computer time needed to sclve the problem.

It is therefore concluded that the code in its present form should not be used to solve
this type of problem. It is recommended that a variable grid mesh option be added to
the program so that smaller grids can be used where needed (such as around corners).
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o Theory: V = EL x t, where aL = .87 x gz = 61.18 cm/sec'
SMAC Model Assuming Free Slip Along Wall
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Conversely, large grids would be available in the same problem where detailed
resolution of the motion is not so critical.

3.2 FULL SCALE TEST RESULTS

Two analytical runs were made to simulate full-scale Centaur fuel tank conditions.
Both problems had the following identical characteristics.

Height to diameter ratio of 2
Cylindrical tank with a radius of 150 cm

O O

Fluid (LHg) had a kinematic viscosity v = 1.92 x 10 cm /sec
Initial interface shape corresponding to an initial Bond number, Bo of 10
Hemispherical forward dome
One cell truncated spherical segment bottom dome
Initially the fluid was at rest (all velocities = 0)
A grid mesh of DR = DZ = 21.425714 cm similar to that shown in Figure 10
All boundaries were input with the free slip boundary condition (Section 2.2. 5)

In all plots presented in this section just half of a tank is shown due to symmetry. The
left side of each plot corresponds to the centerline of the tank. •

CASE 4. The first full scale run (called Case 4) had the following additional
characteristics.

• 70% liquid
• Settling acceleration of . 27 cm/sec
• Initial Marker particle density 6x6 per cell (4285 particles)

Figures 27A through 27O give computer generated SC4020 plots of the Marker particles.
The surface pressure interpolation scheme was discontinued at 50 sec. It has been
found necessary to discontinue this interpolation scheme when the geyser impinges on
fluid remaining at the top of the tank. Figures 28A through 28F give computer
generated SC4020 plots of the velocity vectors at selected times. The scale of the
velocity vectors was changed after the initial geyser formation because the large
velocities in the geyser would go off the plot at the initial scale. This explains the
longer velocity vectors of fluid going down the wall in Figure 28A compared with 28B.

CASE 5. The second full scale run (called Case 5) had the following additional
characteristics.

• 85% liquid
• Settling acceleration of . 135 cm/sec
• Initial Marker particle density of 5 x 5 per cell (3652 particles)

Figures 29A through 29N give computer generated SC4020 plots of the Marker
particles. The surface pressure interpolation scheme was discontinued at 55
seconds. Figures 30A through 30F give computer generated SC4020 plots of the
velocity vectors at selected times.
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3.2.1 DISCUSSION OF RESULTS OF CASE 4.

• Initially the liquid moves down the wall of the container with a leading edge
velocity that correlates with existing data (Reference 2). The fluid hits the
truncated spherical bottom of the tank at 30.5 seconds with a leading edge
velocity of 7.2 cm/sec.

• The liquid then travels along the bottom boundary as a thin film. The liquid
is accelerated as it moves toward the center of the tank so that the velocity
increases inversely wLthJhe tank radius. It is noted that turbulent viscosity
does not yet have any affectjat the lower right hand corner. This is because
the turbulent viscosity (Section 2.1) is not considered in a corner which is
surrounded only by surface cells. It is felt that the grid mesh should be finer
at the lower right hand corner (and all corners) so that the turbulent viscosity
can take affect. It is suspected that in this analytical run the fluid velocity
across the bottom boundary is faster than would actually occur if turbulent
viscosity were presented in the corner.

• The geyser forms at 45.3 seconds. Again turbulent effects are lacking because
of the coarse grid mesh.

• The geyser forces its way through the fluid in the upper section of the tank as
indicated in Figures 27C and 27D. The liquid continues to move down the walls
of the tank and across the bottom boundary. While there is a lack of Marker
particles next to the bottom tank wall in Figure 27D this region is considered
to be full of fluid. This is noted in the velocity vectors in Figure 28C. It is
noted that velocity vectors appear only in cells flagged either FUL or SUR.

• With increased time all the liquid initially in contact with the upper tank
boundary is forced down the wall by the up coming geyser (Figures 27E and
27F). The amount of liquid collected is steadily increasing as indicated by
Figure 31.

• The liquid becomes extremely turbulent in the upper region of the tank making
it unclear if a region should actually be containing entrained vapor or not.
This is the reason the collected liquid volume is not given after 100 seconds
in Figure 31. By about 200 seconds (Figure 27M and 27N) the upper center
region of the tank is clear. However, by 225 seconds (Figure 27O) the entire
tank is considered by the program as full of fluid. This includes even the
top of the tank. This is because of the coarse grid mesh which causes the
entrained vapor to be lost in the liquid. This point is discussed in Section
3.2.3.
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It is suggested that after approximately 100 seconds the loss in the calculation
mesh of entrained bubbles begins to distort the results, since regions that
should contain vapor are considered to be full of fluid. This distortion in the
results becomes increasingly worse as more and more of the vapor gets lost
in tiie fluid. By 200 seconds the tank is almost completely filled with fluid. At
this time only me top most point is considered empty. However, there is still
a sloshing motion of the fluid in the tank. In time (by about 225 seconds), this
sloshing motion causes the entire tank region to be considered as full of fluid.
It is noted that after 90 seconds the magnitude of the velocities of the fluid are
continually decreasing with time. This can be seen by comparing Figures
28D, E, and F. The magnitude of the velocity vector is directly proportional
to the length of the velocity vector lines in each plot. At 200 seconds, Figure
28E, the maximum velocity component in either direction (r or z) is less
than 4 cm/sec.

In conclusion, after approximately 150 seconds the results for Case 3 have become
so distorted by the lack of true empty cells that the results have only marginal
significance.

3.2.2 DISCUSSION OF RESULTS FOR CASE 5.
v ' - ,

• Initially the motion is the same as for Case 4. The liquid moves down the tank
wall then accelerates across the bottom boundary. As the liquid converges at
the center of the tank a geyser forms which impinges on the fluid in the upper .
region of the tank and then forces its way through the fluid.

• The collected volume (Figure 32) continues to increase as the gas in the tank
appears to move up in a simple bubble (actually two bubbles since the SC4020
plots represent only half of a tank). It appears that as the bubble approaches
the top of tank (until approximately 130 sec) there is not a significant amount of
break up in the bubble. This implies no entrained vapor in the lower region of
the tank.

• By 140 seconds, while it is still felt that the bubble is reasonably intact, the
shape of the vapor region has been distorted so that actual resolution of the
gaseous region is not possible because of the coarse grid mesh. This point is
discussed in the following Section 3.2.3 and in Section 3.2.1.

3.2.3 GENERAL DISCUSSION OF RESULTS. While running Case 3 it was concluded
that the grid mesh used was not fine enough to resolve the fluid motion. This was
because the cell size was large relative to the liquid available. This resulted in
nearly all the liquid appearing in cells flagged as SUR cells. While running Cases 4
and 5 the same type of problem developed; only in these cases the cell size was large
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relative to the gas available. After a given length of time the condition developed
where there was no empty (G = 4) cells. Figure 33 illustrates how a region containing
a bubble which should be indicated as partly empty is indicated as a completely full
section since no single cell is completely empty.

This is a serious problem since once the entire grid mesh contains no more G = 4
cells it is impossible to create G = 4 cells. This is because in SMAC a FUL cell
must be a SUR cell before being empty (flagged G=4) and for a cell to be flagged
SUR it must have an empty neighbor. In an attempt to remedy this problem the
condition was added that a FUL cell could be transformed directly into an EMP cell
if the full cell lost all its marker particles. While this appears to give more
meaningful results the abrupt change from FUL to EMP causes significant changes
in the pressures which greatly increases the number of cycles required for con-
vergence. Also, the fact remains that a region is at least temporarily flagged as
full when it is at least partially empty.

It. is concluded that not only should the cell size be small compared to the fluid
available but should also be small compared with the gas available. This was not

Figure 33. Vapor Bubble Located on a Coarse Grid Mesh
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true for Case 4 which initially had only 13 cells flagged as empty (G = 4) and 7 of
these G - 4 cells were along the arbitrary boundary which is not even a whole cell.

Since the problems encountered in Case 2 and Cases 3 and 4 result from the grid
mesh being too coarse it is concluded that the complex problem of liquid reorientation
in a tank requires a finer mesh than what has been used during this contract. This
problem will be even more severe for simulations with internal baffles which are
characterized by extreme turbulence. It is therefore suggested that HOPI be modified
to reduce the computer core required to run a problem and that every iteration loop
be optimized. The core required for problems 1 through 5 was approximately 131, 000
for the initial setup (with ARBND) and 123,000 for successive runs (without ARBND
and VOLUME). It is felt that by using "overlay" the core could be reduced to below
100,000. This would not only reduce computer cost but would also make available
the additional core required when a finer grid mesh is needed.
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4.0 CONCLUSIONS AND RECOMMENDATIONS

During this contract a computer program called HOPI was developed. This program
uses the Simplified Marker and Cell, SMAC, numerical technique. HOPI has shown
that it can analytically determine the fluid motion in a cryogen storage tank under a
continuous settling load. The equations programmed in HOPI are applicable to
Newtonian incompressible fluid. HOPI can be used with curved boundaries. While
the grid dimension can differ in the radial, DR, and axial, DZ, direction; HOPI can
presently handle only a constant-size grid mesh. Experience has indicated that this
is a serious limitation since a finer grid mesh is usually needed at corners and along
the boundaries than is needed in the middle region of the tank. It would be extremely
inefficient to use the smallest needed cell throughout the grid mesh. Currently HOPI
and the related subroutines are loaded into the computer core at the same time. This
causes an unnecessarily high demand for core. In fact, the grid size used for a
typical problem loads the core to near capacity. It is estimated that if the radial
and grid dimension were both reduced by half, thereby multiplying by a factor of four
the grid size, the core of the computer would be exceeded. However, experience
indicated that a reduction of the grid dimensions by at least half is needed to accurately
resolve the fluid motion under a number of conditions. This is especially true if
there is less than 25% liquid or gas or if the liquid becomes extremely turbulent.

HOPI has a surface pressure interpolation scheme which is required to avoid
unrealistic surface breakup. This scheme sets the pressure in the middle of a
surface cell so that the pressure at the actual surface of the liquid is correct.

HOPI uses the equation

. u , = TURB x jj max
turb

to simulate a turbulent viscosity, uturb, where

and

v is the radial component of velocity

u is the axial component of velocity
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TURB is an empirical input quality. It has been found that the use of a proper
value of TURB does aid in correlating the analytical results with the test results.
Experience has also indicated that the determination of the "collected liquid
volume" is best determined from an examination of the SC4020 Marker particle
plots. Lastly, the subroutine written to determine "collected liquid volume" has
not proven very useful, especially where turbulence causes vapor entrainment in
the liquid.

For the future work, the following changes in HOP I are recommended.

1. The subscripting should be changed from a double to a single throughout the
code. This will reduce the computer running time for a given problem.

2. Use overlay to reduce the core needed for a given size problem.

3. Delete subroutine VOLUME. Because of its limited usefulness, it appears that
it can be deleted. Furthermore this will reduce the core required for a given
problem.

4. For a half tank simulation,set-up the case with finer grid than the 288 cells used
to define the tank during this contract.

5. Introduce a variable grid mesh. This will allow more efficient use of the
computer by using smaller grid sizes where needed but allowing larger size
grids where possible.

6. Develop a surface pressure interpolation scheme which can be used even after
the geyser impinges on the liquid in the upper region of the tank.
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APPENDIX A

SELECTION CRITERIA FOR THE MINIMUM, MEAN AND
MAXIMUM COLLECTED LIQUID HEIGHT

The definition of the "collected liquid " height is the height below which liquid and
no vapor exist. As can be seen in the Marker particle plots this height is often
difficult to define. This is because a cell is considered full once it contains a single
marker particle. Therefore, the fact that the region looks nearly free of particles
or at least the particles are rarified when compared to other regions does not in
itself indicate that vapor exists in this region. Secondly, the coarse grid mesh,
while needed to avoid excessive time steps during computation, results in inaccur-
acies in the fluid motion. When the velocity vectors of adjacent cells deviate by
more than 90° (see Figure 20C) the result is an unrealistic dip in the fluid as indi-
cated in Figure 19H.

A basic criteria used to estimate the collected liquid height is presented in the following
paragraphs. It is used only as a guide and is not an absolute criteria.

Up to 1.416 seconds (Figure 19F) there is only one height. Initially this height was
computed using the assumption that the height equalled the actual minimum level of
the particles. Then as the dip in the surface became more pronounced as in Figure
19F, the dip portion was considered as actually containing particles.

Starting with Figure 19G more than one height is indicated because of ambiguity in
what is the true "collected liquid" height. Starting with Figure 19H three heights are
usually indicated. These heights were estimated as follows.

Minimum Height. Assumes that the dominant lowest dip in the surface is actually
filled with particles to the point where there is an abrupt change in direction in the
particles outlining the surface of the geyser. In Figure 19H this point is noted by
(1).

Mean Height. Assumes that particles actually fill up the void to the point where the
particles nearest the bottom yet in the fluid coming down the wall start to move to-
ward the center of the tank instead of directly toward the bottom. In Figure 19H this
point is noted by (2). Or, as is the case in Figure 19L, the mean height is estimated
as existing at the highest point of the fluid initially from the side fluid and which was
not part of the geyser fluid. :/
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Maximum Height. There are two methods for estimating the maximum height. One
assumes that the "collected liquid" is to the point where the particles in the fluid
coming down the wall first start to move toward the center of me tank instead of
directly down. In Figure 19H this point is noted by (3). The other assumes that
the height exists where the geyser has collapsed and flowed toward the liquid on
the side of the tank and is in contact with the fluid coming down the side of the tank
waH. Contact exists when particles of the geyser side and particles in the wall
side occupy part of the same cell. This criteria is illustrated in Figure 19J.
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APPENDIX B

NOMENCLATURE

A area

Bo Bond number, gR^/^g

D velocity divergence = (l/ra) (dr u/ar) +

DR grid dimension in the radial direction

DZ grid dimension in the axial direction

G cell flag

gr radial acceleration

gz axial acceleration

i radial spatial coordinate index

j axial spatial coordinate index

m boundary slope

n time index number of cycles

n unit normal defining a boundary segment

P pressure

PJJ pressure of cell ij

r radial coordinate

R tank radius

RE LAX relaxation parameter

S Poisson source term

TURB empirical factor for turbulence

t time

u radial component of velocity

u radial storage variable, radial component of the tilde velocity

v axial component of velocity

v axial storage variable, axial component of the tilde velocity

V velocity
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VD liquid velocity at midpoint of boundary segment computed with
the MAC area weighing interpolation scheme .

X position of midpoint of a boundary segment
—»
Xp position of particle

2 axial coordinate

a geometric parameter, a = 1.0 in cylindrical coordinates and
equals 0.0 in plane (cartesian) coordinates

)3 specific surface tension

6r incremental step in the r direction

6z incremental step in the z direction

At time step

Ar radial mesh width

Az axial mesh width

€ boundary sensing parameter

X minimum mesh dimension, minimum of DR or DZ

u kinematic viscosity

p density

0 true pressure normalized to unit density

a At/p

i|f arbitrary pressure normalized to unit density (pseudopressure)

cu vorticity

v gradient operator

Superscripts

k iteration index

n counts time cycles

Subscripts

1 position in me finite-difference mesh

j position in the finite-difference mesh

p located at midpoint of boundary segment
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