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PREFACE

Task I. Development of Computer Program for the

Transient Analysis of Radioisotope Thermoelectric Generators

Objective

The

overall objective of this task is to modify the existing

generalized Space Generator Computer Program (GESPGN) to provide the
capability for predicting the output power and temperature profile of an
RTG in the presence of time-dependent operating conditions.

Scope of Work

The transient analysis of an arbitrary RTIG design has been
developed within the framework of the RTG weight optimization

computer program GESPGN, which had been developed previously under

NAS5-9160 and NAS5-10497, This major revision of the existing computer
program enables the analyst to predict the performance of an RTG in both

the transient and steady-state operating modes. A total of eight '"transients"
have been included in the revised computer program (renamed TRANRIG) since
they are generally accepted as the principal effects which influence the

long- and short-term performance characteristics of RTG's. The transients
accommodated by the TRANRIG computer program include:

1.

2.

3.

4.

5'

6.

7.

Cold start of RTG during insertion of radioisotope
heat source _ :

Changing boundary conditions during simulated launch
of RTG.

Solar flux and/or planetary albedo variations -
Thermopile degradation

Thermal insulation degradatioﬁ

Electrical load fluctuations

Surface emittance changes in the radiator heat sink
due to micrometeorite damage, etc.

Heat source power degradation as a result of
radioisotope decay



iv.

Conclusions

A comprehensive RTG computer program (TRANRTG) has been
successfully developed providing capabilities heretofore unavailable to
the RTG analyst. Specifically, the TRANRIG program enables the analyst
to optimize the design of an RTG with respect to weight as well as study
the effect of specified long- and short-term transients on the RTG's
thermal and electrical operating characteristics. This transient analysis
computer program is well suited to aid the analyst in either (1) the design
and evaluation of future RTG configurations or (2) evaluation of existing
RTG designs. For example, the TRANRTG computer program could be used
in performing simulation studies involving existing RTG designs such as
the SNAP-19. Consequently, with this program, hypothesized RTG degradation
mechanisms can be modeled and studied and finally compared with available
empirically derived degradation characteristics.

The 2-D TRANRTG computer program developed in this task provides a
comprehensive RTG analysis capability. The analyst need only specify materials
properties, RTG design requirements, and transient operating conditions.
Hence, the application of the TRANRTG program to RTG design and analysis will
(1) enhance the understanding of the relative importance various
transients on RTG performance, (2) permit RTGs to be optimized more compre-~
hensively than before with respect to both weight and performance stability
in the presence of the anticipated transients, and (3) enhance the value of
present RTG experimental data (both radioisotope fueled and electrically
heated) since these data can be used in conjunction with comprehen81ve
degradation models.

Summary of Recommendations

The results of preliminary checkout runs of the TRANRTG computer
program indicate that several analytical studies would be meaningful at
this point in the development and qualification of RTG's for present and
future missions. First, an analytical study involving presently existing
RTG designs (e.g., the SNAP-19 RTG) would permit presently proposed
degradation models to be studied and compared with available thermoelectric
generator experlmental data. For example, degradatlon phenomena such
as erosion of thermoelements with subsequent RTG "thermal runaway" could
be readily studied. Second, an analytical study involving future RIG
designs (e.g., the multi-hundred-watt RIG) would permit the final design
optimization to include factors such as the response of the RTG to the
anticipated transient operating conditions. Third, the present computer
program could ‘be effectively applied to study transient RTG behavior
during launch,



Task II, Fabrication and Performance Testing of
SiGe-PbTe Segmented Thermoelectric Generators

Objective

The overall objective of this task is to fabricate segmented
SiGe~PbTe segmented couples, perform extended life tests, and measure
conversion efficiency.

Scope of Work

The technology used in the fabrication of the SiGe-PbTe couples
was drawn from the NASA-Goddard contract, NAS5-21099, These segmented
couples were operated in vacuum and incorporate pressure contacted PbTe/W
intermediate junctions and SiGe/C hot junctions. The life testing and
efficiency measurements were a continuation of evaluative studies initiated
for this couple concept under NASA-Goddard contract NAS5-21099. The
experimental work performed under this task included:

1. Life testing of SiGe-PbTe segmented couples in the
"constant thermal input" test fixture developed previously,

2. Incorporation of selected segmented couple design changes

offering improved output power stability, e.g., the
utilization of hermetically sealed bellows enclosures.

Conclusions

A new approach to the design of SiGe-PbTe segmented thermoelectric
couples, involving hermetically sealed bellows enclosures and pressure-

contacted junctions, has been succéssfully demonstrated., The results of
these preliminary studies indicate the feasibility of eliminating the
use of conventional spring-lcading hardware normally required for thermo-
electric converters involving pressure-contacted junctions. The elimination
of this conventional approach to providing axial spring-loading pressure -

is significant as the "spring and follower' has been the source of significant
thermal impedances (30 to 50 C difference) between the thermoelectric

element and the radiator. In addition, the "spring and follower' design

has frequently failed due to seizing at the follower/radiator cold frame
interface with subsequent loss of the needed axial loading pressure.

In the present design, Inconel 718 bellows provide a hermetic
enclosure for the thermoelectric sleeves as well as the axial loading
required to effect low electrical-junction resistances. In addition, the
incorporation of pressure-contacted junctions eliminate the need for the
complicated transition materials usually required at the interface of
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materials possessing greatly differing thermal expansivities. The

present design involves pressure-contacted junctions at both the SiGe/PbTe
interface and the SiGe/C hot-strap interface. Although the use of pressure-
contacted junctions at the SiGe hot-strap interface simplify the overall
design of the segmented couple, they also are a potential source of high
junction resistance. '

- The results of preliminary evaluation studies indicate that the
"bellows-encapsulated" SiGe-PbTe segmented element concept provides (1) a
hermetically sealed enclosure which isolates the thermoelectric element
from its environment (typically involving fibrous insulations or metallic
foils operating in vacuum), (2) a scheme for providing adequate axial
spring=load pressure to effect low junction resistances, (3) a scheme
for the "cantilever support" of the thermoelectric elements from the
cold frame of the heat sink, and (4) a scheme for operating the thermo-
electric elements with internal® cover-gas pressures of up to 75 psia while
operating the thermopile in air, vacuum, or other typical RTG operating
environments.

, The results of theoretical analyses indicate that the present

"bellows=encapsulated' SiGe-PbTe segmented couple design offers a conver-
sion efficiency of 7.97 percent¥*. This calculation includesll percent
by-pass heat loss in the 4.5-mil-thick Inconel 718 bellows. The results
of preliminary conversion efficiency tests yielded a measured couple
efficiency of 7.65 percent., This value is 10-20 percent higher than that
reported*** for SiGe alone operating at the same temperatures, Hence,
these results support the predicted improvement in conversion efficiency
expected for ''segmented' SiGe-PbTe couples.,

The life testing of the 'bellows-encapsulated' SiGe-PbTe
segmented couples was limited by present inadequacies in the design of
the hot-strap/hot-shoe/SiGe junctions. Hence, in the absence of experimental
results, no conclusions can be formed regarding the stability of the output
power and efficiency of this segmented couple concept. However, the
present approach to thermoelectric couple design potentially offers an
ideal condition for operating thermoelectric elements. Specifically, the
hermetically sealed bellows enclosure allows the thermoelectric element
- to be operated independently of the thermopile environmment which is
generally the principal source for gaseous contamination (outgassing of
thermal insulation) and/or evaporative erosion (vacuum environments).

* ,
within the hermetically sealed bellows
ok ) ‘ '
j operating at cold and hot junction temperatures of 175 C and 900 C,
respectively
ke '
"Silicon Germanium Materials and Module Development Program'', Electronics
Components Division of RCA, AEC contract AT (29-2)-2510,
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Summary of Recommendations

The results of preliminary experimental studies involving the
bellows-encapsulated SiGe-PbTe segmented couple indicate a need for.
additional developmental efforts in the areas of the SiGe/hot-shoe/hot-strap
junctions. All other aspects of the present concept proved successful
during the preliminary proof-of-concept experiments. ’

A supplementary effort is recommended for the extension of the
bellows-encapsulated concept to thermopile designs involving a single
" stage thermoelement such as the oxygen-sensitive 2p PbTe and 3p PbSnTe
materials and the relatively volatile TAGS-85 thermoelectric alioy.

" Task III, Study of Sublimation Barriers for
Vacuum Operation of Thermoelectric Elements

Objective

The overall objective of this task is to study the relative
effectiveness of selected materials and techniques in suppressing
sublimation of thermoelectric materials in vacuum environment.

Scope of Work

The effect of a mechanical barrier, e.g., a mica sleeve

surrounding a thermoelement in reducing the rate of sublimation at the
hot junction was disclosed in a preliminary study by J. W. Killian of
NSRDC.* A more comprehensive study has been undertaken in this task in
order to determine the effectiveness of selected ''packing'’ materials and
"barrier" techniques in the suppression of sublimation of thermoelectric

—-- —————-materials—operating-in-vacuum,—The-experiments—involved-ingradient . - _ _._____ —_
operation of the thermoelectric element in small-volume systems with
selected packing materials and barrier techniques applied. The effectiveness
of the sublimation barrier technique was experimentally evaluated by
(1) weight-loss measurements, (2) observation of dimensional changes of
thermoelectric elements, and (3) posttest Seebeck coefficient traverse
measurements. |

Both thermal insulating materials (e.g., microquartz fibers)

and mica sleeving were evaluated in this study in order to assess their
barrier effectiveness.

* .

cKillian, J. W., '"Method to Arrest Weight Loss of PbTe at Elevated
Temperatures in Vacuum', 3rd Intersociety Energy Conversion Engineering
Conference Proceedings, August, 1968, p. 272,



viii
Conclusions

An effective sublimation barrier scheme has been identified
which permits stable operation of materials such as 2p PbTe in vacuum at
hot-junction temperatures of up to ~ 535 C for extended periods. The
most effective sublimation barrier scheme studied involves a shroud of
close~packed oxide fibers wrapped around a mica sleeve enclosing the
thermoelectric element. The results of ingradient operation of 2p PbTe
in vacuum indicate a weight loss of 0,01 to 0.04 percent after ~ 450 hrs at
a hot-junction temperature of 530 C. This rate of weight loss is a .
factor of 10 to 40 times lower than that observed for identical experiments
involving a close-fitting mica sleeve., Hence, on the basis of a percent
weight loss, the oxide-fiber shroud over mica sleeve barrier scheme is
far superior to the other barrier schemes investigated for 2p PbTe. A
more meaningful interpretation of these results is afforded by trans-
lating the observed rate of evaporative erosion of thermoelectric
material (weight loss) to a rate of electrical resistance increase (due .
to decreased cross-sectional area in the vicinity of the hot junction).
For the present experimental conditions, the 0.04 percent weight loss in
~ 450 hrs corresponds to a total element resistance increase of less than
0.2 percent in ~ 450 hrs. Hence, the present studies have identified a
potential approach for operating 'volatile' thermoelectric materials such
as 2p PbTe for extended periods (1-3 years) with tolerably low
evaporative erosion, i.e.,, resistance increase. Furthermore, the present
sublimation barrier scheme would significantly reduce the rate of
evaporative erosion of thermoelectric materials operated in inert
atmospheres, e.g., the TAGS-85 materials operating in Ar/He atmospheres.

Summary of Recommendations

The encouraging results obtained in short-term (- 450 hr), in-
gradient sublimation tests suggest the need for longer test periods.
This need arises from the fact that the rate of evaporative erosion is not
necessarily linear with time. For example, as evaporative erosion.proceeds,
the total peripheral surface area of the thermoelectric element in the
hot-junction region decreases, the subsequent rate of evaporation tends
to decrease. However, in an actual generator (neglecting the effect of
radioisotope decay), the evaporative erosion causes an increase in the
thermal impedance in the hot~junction region of the thermoelectric element,
hence increasing the hot-junction temperature and the rate of evaporative
erosion, with time. Furthermore, in the case of the oxide-fiber shroud ‘
barrier scheme, the evaporative erosion may be progressively self-inhibiting
since the fiber interstices may accumulate sub11mat1on deposits which may
impede further sublimation.

Thus, the significant reductions in evaporative erosion rates
observed for short test periads (~ 450 hr) should be extended to ~ 1000~
‘and ~ 5000-hr test periods. These extended test peridds will not only
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evaluate the present schemes for long-duration operation but will provide
empirical information regarding the rate of change of the evaporate rate
over extended periods. Hence, the next series of sublimation experiments

would provide the data necessary to predict the adequacy of the selected
barrier design for substantially greater periods of operation (20,000 hrs

or more).
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DISCUSSION

Task I, Development of Computer Program for the
Transient Analysis of Radioisotope Thermoelectric Generators

Introduction

The application of radioisotope thermoelectric generators
(RTG's) to space electrical power requirements has been successfully
demonstrated during the past 5 years. During this period, the knowledge
of thermopile-degradation mechanisms has increased significantly and
afforded insight into the ultimate stability of the thermoelectric
components, Most of the extra-terrestrial applications (usually < l-year
missions) of RTG's to date have involved relatively stable operating
conditions with only a limited number of imposed transient operating
conditions., For example, the NIMBUS RTG's in earth orbit experience
transients due principally to modest changes in planetary albedo and
incident solar flux. However, future missions will subject RTG's to
multiple transient conditions due to (1) length of the mission (3-12 years),
hence, significant changes in the thermal inventory due to radioisotope
decay as well as thermopile degradation, (2) -increased distance from the
sun, hence incident flux decrease with time, and (3) change in radiator
emittance/reflectance due to micrometeorite damage.

The present computer program® has been developed to meet the growing
need for predicting the thermal and electrical operating characteristics
of given RTG designs in the presence of one or several transient conditions.
The following discussion discloses the complex nature of the present RTG
transient analysis program. The complexities derive from the interdepen-
dencies of the thermopile performance, RTG temperature profile, thermal
conductance of the thermopile, thermal inventory, and radiator boundary
conditions,

Development of Analytical Model

The first step in the development of the transient RTG computer
program (so called TRANRTG) involved an examination of the principal
transient effects to be studied together with the affected independent
and dependent variables. The results of this examination are summarized
in Table 1 and reveal two significant characteristics of the selected tran-
sient effects. First, the transient effects can be subdivided into two
general classes of transients, viz, the "equilibrium" and '"nonequilibrium'’
classifications, according to the time characteristic of their source. -
For example, the thermal decay of typical radioisotopes used in RTG's
occurs at a sufficiently low rate to assume that the RTG operates under
equilibrium conditions. In this case, the analysis of the RTG can be
effected by performing steady-state thermal analyses at selected time
intervals using the properly adjusted thermal inventory. However, the

%
Copies of this computer program are available from the

NASA-Goddard Space Flight Center.
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duration of solar incident flux (or planetary albedo) may be sufficiently
small that the RTG operates under nonequilibrium conditions. In this
case, the analysis of the RTG can be effected only by performing transient
thermal analysis during the initial period (or, the entire duration) of
the incident thermal flux. 4

Secondly, one of the transient effects, viz, the solar incident
flux (or planetary albedo), has an asymmetric effect on the operation of
the RTG, For example, a solar flux imposed on one side of the RTG may
result in significantly higher operating temperatures. Hence, the
performance of the RTG, viz, the output power of the thermopile, may vary
with position relative to the region of incident flux. In order to assess
the importance of asymmetric effects, an initial analysis of RTG performance
was effected by modeling the entire RTIG to include circumferential as well
as vadial and longitudinal heat transfer. Although the generator casing
or shell is often thick enough to effectively distribute the localized
incident heat flux over the entire shell surface, the radiator fins must
dissipate essentially all incident heat flux. The above considerations
have become the preliminary basis for the development of the RTIG analytical
model,

The next step in the model development involved the integration
of the various analysis routines needed for the transient analysis. The
principal analysis routines included in TRANRTG are (1) GESPGN RTG
weight optimization program, (2) OFFOPT thermoelectric performance analysis
program, and (3) TRUMP numerical differencing heat-transfer program,

The interaction of these analysis routines is shown schematically in
Figure 1, Functionally speaking, the OFFOPT computer program will
initially compute the thermopile operating characteristics based on the
initial operating temperatures, thermoelectric properties, external load,
junction resistances, and thermoelement length and cross-sectional area,
The results of the initial thermoelectric analysis together with user input
design constraints are next transferred to the GESPGN program. The GESPGN
program initially designs a partially or fully weight-optimized RTG.
At this point, the collective results from OFFOPT and GESPGN are transferred
-— -— - —--to-a—model-generation--program—(DATAGEN)-which~translates—these-above-— - — —— _
results into a network thermal model and in a format compatible with the
input requirements of the TRUMP heat-transfer program, A sequence of
initializing refinements to the thermal model follow (see Figure 1)
which affords congruency between the RTG 'designed" by OFFOPT and GESPGN,
and the thermal model created and analyzed by DATAGEN and TRUMP. After
"initialization" has been completed, the user's supplied transient data
sets are sequentially processed in OFFOPT (see flow chart shown in
Figure 1), In this final phase of the tramsient analysis, the OFFOPT
thermoelectric analysis program is coupled to the TRUMP heat-transfer
analysis program in order to initially provide (and adjust with subsequent
transients) the "effective'"* thermal conductivity of the thermopile

The "effective' thermal conductivity of thermoelectric elements under
conditions of finite current flow differs from the conventional material
thermal conductivity since Peltier, Thomson, and Joulean thermal transport
terms (or sources) need be considered, as well as heat transfer by
conventional thermal-conduction process.
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FIGURE 1., TRANSIENT RTG (TRANRTG)‘MAIN PROGRAM FLOW CHART




OVERLAY NAME
0 TRANRTG
1 GESPGN
2 DATAGEN
3 OFFOPT
4 TRUMP

FIGURE 1. (Continued)

DESCRIPTION/REFERENCE

Main control program; sequentially calls
each of the overlays in order to initialize
the problem and finally perform transient
analyses. (This program was developed
under present study)

RIG design optimigzation program for either
(1) detailed weight optimization of RTG or

"(2) generation of required input data for

specified (e.g., previously optimized) RTG.
(See Eggers, P. E.,, "An Advanced Thermoelectric
Life Test and Evaluation Study', NASA-GSFC
Contract No. NAS 5-10497, Final Report,
September, 1968; also ''The Analysis and Design
of a High-Temperature Thermoelectric Conversion
Device', BAT-5-6397-2, Final Report for
Contract NAS 5-36971, 1965)

Converts thermoelectric performance
parameters/dimensions computed in OFFOPT and
RT& dimensions computed in GESPGN to input
format compatible with TRUMP heat-~transfer
computer program, Also, DATAGEN computes

‘radiation view factors for radiator system

including shell/fin interactions. (This
program was developed under present study)

Performs detailed thermopile thermoelectric
analysis using finite-staging energy-
balance techniques. (See Best, R. E.,
"Development of an Analysis Technique for
Predicting the Operating Characteristics of

_Thermoelectric Heat Engines', Thesis,
Department of Electrical Engineering, Ohio

State University, 1970); ''Progress on the
Development of Segmented PbTe-Bi,Te
Thermoelectric Modules', AEC Contract
W-7405-eng-92, BMI Report No. BMI-1794
(January, 1967). _ (

Performs heat transfer of the RTG thermal
model constructed in DATAGEN. (See Edwards,
A. L., "TRUMP Computer Program'', Lawrence
Radiation Laboratory Report Number UCRL-14754
Revision II, 1969)



and the electrical output power, i.e., the amount of thermal energy
converted to electrical energy. The effective thermal conductivity of
the thermopile is a significant parameter in the thermal analysis since
(1) 80 to 90 percent of the thermal inventory is transferred through

the thermopile and (2) the effective thermal conductivity of the thermo-
pile can vary substantially with changes in the external load, changes
in the thermal and electrical properties of the thermoelectric materials,
or changes in the operating temperatures.

The design of the RTG thermal model for purposes of heat-
transfer analysis is critical since (1) too coarse a nodal network struc-
ture will render the model unresponsive to ‘real transient effects and
(2) too fine a nodal network structure will make the computer costs (for
a comprehensive RIG transient analysis) prohibitively high. One step
taken to reduce the overall number of nodes (hence, computational costs)
in the model involved the replacement of a three-dimensional model of the
actual system by a two-dimensional model. A review of previous studies*
of typical axial temperature profiles of an RTG indicated that the axial
temperature gradient in the region of interest, viz, the region including
the thermoelectric modules or elements, could be neglected by using
average temperatures for the cross-sectional temperature profile. Hence,
the present heat-transfer analysis model for the RTG was reduced from a
3-D geometry (see Figure 2) to a 2-D geometry (see Figure 3).

The analysis model shown in Figure 3 includes the major components
present in a typical RTG. Although not shown, the nodal network of this
model includes the entire cross section of the RTG. This 27 geometry was
initially required in order for the analysis to accommodate the asymmetric
temperature profile that will be indiced when solar flux or planetary
albedo is incident on one side of the RTG.

As discussed above, steps were taken in the design of the RTG

. heat-transfer model to insure that the nodal network be fine enough, i.e.,
sufficiently detailed to permit meaningful transient heat-transfer
analyses while not requiring prohibitively long (i.e., expensive) computer
running times. . However, in addition to the above computer-running-time
(cost) considerations, it was also necessary to rationally select** the
energy-balance criteria that must be specified within the TRUMP heat-
transfer computer program. These criteria are critical in that they
represent the tradeoff between the '"accuracy" of the computed temperature
profiles (for the RTG model) and the computer '"running time" consumed in
the course of the heat-transfer analysis. The computer running time required

Eggers, P, E., "An Advanced Thermoelectric Life Test and Evaluation
Study', NASA-Goddard Contract NAS5-10497, September, 1968,

This process involves using the TRUMP program to perform a series of
heat-transfer analyses on typical RTG designs.
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38 LEGEND

Node RTG

= Numbers Component

1-3 Heat Source
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13-34 Thermoplle
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FIGURE 3, 2-D MODEL FOR THERMAL ANALYSIS OF RTG'S



for the heat-transfer analyses is particularly acute in the present
case since they will be repeatedly performed at each stage of the
transient analysis of a given RTG.

Modeling the Radiator. The thermal modeling of the RTIG
radiator component” involves the computation of radiation interchange factors
or '"view factors'" for a given number, height of radiator fins and generator
shell diameter. These view factors allow the thermal model to accurately
represent the radiation interchange between radiator fins. However, the
computer makes an adjustment to the effective radiator surface available
during the "initialization" phase., This adjustment is necessary since the
two-dimensional '"slice' out of the RTG (see Figure 2) does not include the
heat-dissipation area normally available at the end regions of the RTG.
This adjustment in no way interferes with obtaining realistic responses
of the radiator component to changes in boundary conditions or surface
emittance/reflectance conditions.

A series of 2T geometry heat-transfer analyses was performed in
the present study to assess the effects of asymmetric solar flux on the
circumferential temperature distribution of typical RTG's. The results of
this study indicated that, at distances of one astronomical unit
(9.287 x 107 mi) or greater from the sun, and for radiator reflectances of
> 0.75, asymmetric effects on the temperature profile of the RIG were on the
order of a fraction of a percent and can therefore be neglected. The ability
to neglect asymmetric effects is an important simplification in the present
computer program since it permits the analyst to construct a thermal model
involving a "sector" of the total RTG cross section (see Figure 3) as
opposed to the complete 21 geometry of the thermal model. In terms of
computer running time, this simplification.of the transient RTG analysis
will result in a five- to ten-fold reduction in running time.

» Modeling the Thermopile. In the process of adapting the OFFOPT
thermoelectric analysis subprogram**'to the present RTG transient-analysis

e —___program,.major_refinements_in_the treatment_of certain_degradation phenomena

were made., The first refinement was adding the capability for accommodating
sublimation of thermoelectric materials, This capability permits the
analyst to study the effects of sublimation (e.g., the loss of thermal and
electrical contact area as well as increased electrical resistance in the
eroded region) by specifying only the temperature-dependent evaporation rate.
The OFFOPT computer program automatically adjusts for induced changes in

the temperature distribution along the thermoelectric element as well as the
changes in the peripheral surface area available for evaporation. This
particular refinement will permit the analyst to evaluate the effect of
thermoelement sublimation on RTG performance.

o
"

See reference for GESPGN in Figure 1,

See reference for OFFOPT in Figure 1,
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Another refinement to the OFFOPT thermoelectric analysis subprogram
introduces the capability to input empirically derived thermoelectric property
changes, with time. These changes may include the Seebeck coefficient,
electrical resistivity, electrical contact resistivity, and/or thermal
conductivity as determined by various diagnostic techniques such as laser- -
pulse thermal-diffusivity techniques, traversing thermocouple thermal-
conductivity measurement techniques, van der Pauw electrical resistivity
measurement techniques, and "miniature-specimen” Seebeck coefficient measure-
ment techniques.* In order to make this aspect of the RTG transient analysis
more realistic while not placing unreasonable demands on previously measured
thermoelectric-property measurements, the normalized*™ property changes are
introduced in four regions of the element. For example, posttest thermo-
electric-property measurements may reveal that the p-type leg decreases in
Seebeck coefficient and electrical resistivity by 10, 4, 1, and O percent
in the hot, medium-hot, medium-cold, and cold regions of the element,
respectively. By introducing these measured and normalized property changes
(probably with an attendant change in thermal conductivity) to the TRANRTG
code, the analyst is able to study the effect(s) of thermoelectric degradation.
on RTG performance with or without the presence of other transient effects.

Changes in the external load of the RTG can be simulated by
specifying a normalized change in the external load in the degradation data
set., OFFOPT is designed to compute the appropriate thermoelectrice
performance parameters based on an external load ranging from open-circuit
conditions to short-circuit conditions. The TRUMP heat-transfer program can
accommodate this transient operating condition and, by interacting with
OFFOPT (which supplies the appropriate effective thermopile thermal conductivity)
provides the analyst with time/temperature profiles and time/thermopile
performance profiles during the transient period. :

Input/Output

v The input data for the TRANRTG computer program can be divided
into four groups as follows: (1) a set of permanent data containing radiator
design parameters for GESPGN; (2) a set of thermoelectric data including
thermoelectric property data, initial external load, initial operating
temperatures, junction resistances, coefficients and exponents for evaporative
erosion, and radioisotope halflife; (3) a set of data to specify the constraints’
for the RTG design optimization, or simply a specific RTG design if no design
optimization is desired; and (4) one or more degradation data sets specifying
accumulative elapsed time, normalized changes in thermoelectric properties,
emittance changes, multiplying factors for evaporative erosion rates,
temperature exponents of contact resistivity, normalized thermal insulation:
thermal conductivity changes, normalized external load changes, and incident
solar flux, . ' ' B

These diagnostic methods have been developed at Battelle's Columbus

Laboratories under previous thermoelectric contracts.
*% ‘ -
Normalized property changes determined by dividing property value at time

t, by property value at time -ty, corresponding to beginning of life of RTG.
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The output data from TRANRTG include principally (1) the initial
thermopile performance parameters, (2) the results of RTIG design optimization,
characteristics corresponding to various transient conditions or degraded
conditions for the RTG. The results of sample transient analysis calculations
that appear in Appendix B illustrate the detailed output data display pro-
vided by the TRANRTG computer program. Specifically the transient output
data include the (1) elapsed time, (2) thermoelectric couple and overall RIG
output power and energy conversion efficiency, (3) normalized RTG output
power, (4) specific power, internal resistance, and electrical current of
RTG, (5) thermoelectric properties and element cross-sectional dimensions
as a function of temperature and axial position, and (6) temperature profile
of the RTG sector analyzed (corresponding to the thermal model shown in
Figure 3). Hence, the present computer program provides a prediction of
the RTG operating characteristics and thermopile condition (thermophysical
properties and dimensions) at selected interVals of time.

Sample Transient Analyses

The results of a sample set of transient analyses of a 250-watt(e)
RTG involving radioisotope decay and sublimation of the thermoelements are
in Appendix A. The RTG selected for these analyses is characterized by
(1) 2p - and 2n - PbTe thermoelements, (2) nominal cold- and hot-junction
temperatures of 500 and 800 K, respectively, and (3) sublimation rates
over the range 0 to 3 percent of the free-sublimation rate for PbTe. The
results of sample calculations such as shown in Figure 5 could be compared
with observed RTG operative characteristics in order to verify or refute
a given set of hypothesized degradation mechanism(s). Once the degradation
mechanism(s) havé been confirmed, the hypothesis may be applied to RTG '
designs of differing configurations in order to predict expected RTG
performance under anticipated transient conditions (as summarized in Table 1).

No comparison of the predicted RTG performance with observed RTG

performance profiles can be made at the present writing since a meaningful
""""""" comparison—requires-a-thorough -knowledge-of-all -of -the- mechanisms-contri- . . . _ . _ __

buting to the overall change in RTG performance. Specifically, a thorough
comparative analysis would require (1) RTG operating characteristics (open-
circuit voltage, internal resistance, output power, and possibly thermopile
temperatures) as a function of time and (2) posttest measurements of element
cross-sectional dimensions as a function of axial position, (3) posttest
measurements of thermal-insulation thermal conductivity, and (4) assessment
of changes in thermoelectric properties and junction resistances (based on
posttest measurements). It is noteworthy, however, that the principal
analysis subroutines used inthe TRANRTG computer program, i.e., the OFFOPT
thermoelectric ‘analysis subroutine and the TRUMP thermal-analysis subroutine,
have been qualified by independent comparative analysis studies,**

%
Bates, H. E. and Weinstein, M., "Evaporation Rates of PbTe and PbSnTe

Pressed and Sintered Thermoelements', Proceedings of IEEE/A1AA
Thermoelectric Specialists Conference, Washington, D.C. (May, 1966).

Sol

“See references (10) and (11) on page 34.
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.Task II. Fabrication and Performance Testing of
SiGe-PbTe Segmented Thermoelectric Generators

Introduction

Theoretical analyses have shown that SiGe and PbTe thermoelectric

materials, when used in segmented-element form, offer a significantly
higher energy-conversion efficiency than is obtainable with either material
used separately. Such analyses, however, presuppose the existence of a
segmented-couple configuration with low contact resistance. A thorough
evaluation of the requirements for segmenting SiGe and PbTe has revealed
the following associated problems: (1) SiGe and PbTe differ in thermal
expansivity by a factor of four which, therefore, complicates the direct
bonding of each material to a common intermediate transition member,
(2) the processing temperatures associated with the bonding of metal shoes
to SiGe and PbTe are not in general, compatible, and (3) the selection of
candidate shoe materials for PbTe, particularly p-type PbTe, ig limited by
its tendency to be poisoned by most metals.

Previous efforts to effect low-contact-resistance bonds at the
SiGe/PbTe interface have met with only limited success, with mechanical
failure frequently occurring in handling or the thermal cycling experienced
during subsequent evaluative testing. However, a totally new concept in
the design of segmented couples has been developed which incorporates
pressure-contacted junctions at the SiGe/PbTe and SiGe/hot-strap interfaces.
Thus, the complicated transition members, which are otherwise required to
join materials of greatly differing thermal expansivities, have been
eliminated. In the present concept, the W/SiGe bonded composite is pressure
contacted to PbTe and exhibits and electrical contact resistivity of only
100 to 200 pohm-cm? at 800 K--which is equivalent to a loss of 20 to 40
milliwatts of output power for thermoelectric couples operating at a
current flux of ~ 10 _amps /cm?,

In the present study, hermetically sealing bellows enclosures,
i.e., "modules', have been introduced to implement the SiGe-PbTe segmented-
couple concept involving pressure-contacted junctions. The bellows
enclosures provide (1) the spring-loading pressure required to effect low-
resistance, pressure-contacted junctions, (2) a means for isolating the
individual thermoelectric elements from the potential sources of contamina-
tion within the thermoelectric generator, and (3) a means for operating
the thermoelectric elements at inert-gas overpressures of 75 to 150 psia,

The advantages of operating thermoelectric elements at an
overpressure of an inert gas have already been demonstrated by research
conducted by Sandia Laboratories.* Specifically, it has been shown that
the rate of evaporative erosion of thermoelectric materials is approximately
inversely proportional to the inert-gas pressure. For example, by
increasing the internal pressure of the thermoelectric-element environment
from 15 psia to 60 psia, the evaporation rate would decrease by 75 percent.

* References are listed on page 34
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Present generator designs limit the internal pressure to usually 30 psia
or less. However, as mentioned above, the miniature bellows which
encapsulate the thermoelectric elements are designed to withstand internal
pressures of up to 150 psia while maintaining the desired amount of spring-
loading pressure. ‘

An additional advantage of the hermetically sealed bellows
module concept is that of minimizing the possibility of gaseous contamina-
tion, e,g., from oxygen-contaminated thermal insulation materials, Studies
performed by the author (2) have revealed that the preferential Te sublimation
rate in p-type PbTe thermoelectric materials is as much as several orders of
magnitude higher in an oxygen-containing argon atmosphgre than in a pure
inert or reducing atmosphere. Based on our findings(2 , this preferential
sublimation of Te from the p-type PbTe has been found to be the principal
contribution to degradation during thermoelectric life tests. On the other
hand, the operation of PbTe thermoelectric couples at a hot-junction tempera-
ture of 750 K in a reducing hydrogen atmosphere permitted stable operation
(<10 percent degradation in output power) for periods in §§cess of 18,000 hr,
According to the author's hypothesized degradation model( , the hermetically
sealed module concept will afford a comparable or better level of performance
stability.

The availability of materials suitable for use in fabricating the
bellows is one of the most critical factors in demonstrating the reasibility
. of this enclosure concept. Studies performed under NASA Contract NAS3-0421 (3)
have indicated that Inconel 718 shows adequately low relaxation and good
performance in vacuum at temperatures of 1000 F for periods exceeding 2000 hr.
Hence, the key component in this concept, viz, the bellows, was fabricated
using Inconel 718. The convoluted section of the bellows was used only up to
1000 F; straight tubing was used between that point and the hot platen (see
Figure 4). The increased heat-path length afforded by the bellows convolu-
tions together with the low thermal conductivity of Inconel 718 (~ 0.20 watts/
cm C at 500 C) results in moderate bypass heat losses (~ 10 to 15 percent).
The remaining components are presently accepted materials for use in a
thermoelectric SiGe-PbTe segmented couple draw on previously developed
-~ -~—-- ~-~ -technology... —The—principal-exception..is. the SiGe/hot=strap design which_was._
designed with a graphite hot shoe; the use of MoSig hot-strap technology
associated with RCA air-vac thermocouple technology would be expected to
result in improved hot-junction performance.

In the following discussion, attention is focussed on the design,
fabrication, and evaluation of the SiGe-PbTe segmented couples involving
hermetically sealing bellows enclosures.

Design of Segmented Couple

The design of the SiGe-PbTe segmented couple presented below has
evolved based on technology developed over the course of several NASA-Goddard
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(4-7)

sponsored res?gsch programs + One encapsulated element of this segmented
couple design (see Figure 4) features pressure-contacted junctions (1)
between the PbTe segments and the tungsten shoe (which is bonded to the cold end
of the SiGe segments) and (2) between the SiGe segments and the high-purity
graphite hot strap. The use of a pressure-contacted junction eliminates

the problem of mismatched thermal expansivities encountered in previous
SiGe-PbTe segmented~couple development. In addition, this design

simplifies the couple~fabrication schedule since the SiGe and PbTe

segments can be processed separately and assembled upon installation of

the couple(s) into either a generator or test fixture. In addition, an
axial, compressive-loading pressure 125 to 150 psi is required during the
operation of the segmented couple and is effected through the use of
specially designed bellows enclosures. This level of axial loading

pressure is necessary to effect low resistance at the pressure-contacted
junctions.

Specifically, a theoretical analysis was performed using the
OFFOPT computer program in order to identify the dimensions of the SiGe
and PbTe segments yielding maximum energy-conversion efficiency for a given
overall element length., The input data used for the PbTe (2p- and 2n-PbTe)
segments were based on Seebeck coefficient, electrical resistivity, thermal
conductivity, and electrical contact resistivity measured at Battelle's
Columbus Laboratories. The input data for the SiGe (containing 80 percent
Si) segments was based on RCA-published data. The results of the calculations
are summarized in Table 2 in terms of operating temperatures, couple
dimensions, output power, and conversion efficiency. These elements were
sized for insertion into the bellows assemblies described in detail below.

Design of Bellows Enclosure

The next step in the development of a bellows-encapsulated segmented

couple involved the optimization of the design of the bellows enclosure,
———-——Firsty-a—literature-search-was--conducted-in-order-to..identify candidate __ _______ _____ _

materials for use in construction of the bellows., It was found that, in

studies performed under NASA Contract NA33-9421(8) involving 6-8 metals

and alloys, Inconel 718 exhibited the lowest relaxation.when operated in

vacuum at temperatures of 1000 F for periods in excess of 2000 hr, Based

on these results, and its other desired mechanical properties, Inconel 718

was selected for use in the fabrication of the bellows enclosures,

Having identified the material to be used in fabrication of the
bellows, the next step involved optimizing the wall thickness of the
bellows. The principal considerations in optimizing the wall thickness
included (1) the by-pass heat losses should be minimized, hence, the
wall thickness should be minimized, (2) the spring-loading capability of
the bellows requires certain minimum wall thickness, and (3) the resistance
to creep and creep rupture should be maximized, hence the wall thickness
should be maximized (to minimize applied force per unit area).’

A heat-transfer analysis was performed based on the model shown
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TABLE 2. COMPUTED DIMENSIONS AND PERFORMANCE PARAMETERS FOR
SiGe-PbTe SEGMENTED COUPLES

TC = 450 K
TINT = 800 K

TH = 1175 K

AP | . = 0.535 cm2
Ay | = 0.535 cm®
Ly I(S’iGe) = 1,25 cm
LN (PbTe) | = 0.45 cm
ILP (SiGe). ; 1.30 cm
LP (PbTe) : =  0.40 cm
Thickness (hot strap) = 0.234 cm
I . | = 7.0 amps

P | = 1.30 watts
ni/E - = 7.97 percent¥®

" Accounts for heat losses through bellows.

Note:
T = temperatures
A = cross sectional areas
L = lengths
I = operating current
P = output power (electricai)
ﬂT/E = conversion efficiency
N,Pv = n~type and p-type thermoelements
C,INT,H = cold-, intermediate-, and hot-junctio

temperatures., respectively
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in Figure 4* for SiGe-PbTe segmented elements. The purpose of this
analysis was to estimate the ''bypass' heat losses through the bellows
wall for various bellows wall thicknesses, thermoelectric element lengths,
and heat-sink extension lengths., It is noteworthy that the heat-sink
extension length, X', is that length which extends above the base of the
bellows and is adjacent to the bellows (see Figure 4). The purpose of the
heat-sink extension is to increase the effective heat-transfer-path length
through the bellows. The results of these heat-trangfer analyses are
summarized in Figure 5 and illustrate the expected influence of bellows
wall thickness and heat-sink extension length, X. The influence of
thermoelectric element length on the heat loss through the bellows is the
combined result of (1) the decreasing thermal flux through the thermo-
electric element with increasing length, hence, the bypass losses become
a greater fraction of the total heat transferred and (2) the increasing
heat-transfer path length with increasing element length. As can be seen
- from Figure 5 the heat-transfer path-length effect is dominated by the
thermal flux effect. The net result is an increasing fractional heat loss
through the bellows with increasing element length.

The selection of a typical thermoelectric element length of
1.7 ecm, a heat-sink extension length** of 1.2 cm, and a bellows wall
thickness*** of 0.0109 cm (~ 4.4 mil) yields a bypass heat loss through
the bellows of ~10 percent. This calculated heat loss is not as sub-
stantial as would appear at first glance. First, the bellows may permit
the thermoelectric material to be operated at a temperature substantially
higher (in terms of increased energy-conversion efficiency) than attain-
able otherwise. TFor example, consider the Transit RTG concept, which, due
to its designed operation in wvacuum, is limited to hot-junction tempera-
tures of ~ 400 C. Second, the generator may now be able to utilize vacuum
foil "super' insulations in the spaces between the bellows-encapsulated
thermoelectric elements in place of higher-thermal-conductivity (and often
contaminated) fibrous, thermal insulations. Third, the bellows-encapsulated
thermoelectric elements may be used to attach '"unitized" heat sources with
"'shaped' hot shoes which cover a higher percentage of the heat-source volume
and thus further reduce the heat-loss paths encountered in a conventional
- -generator-design.-. The.-latter-concept-discussed—in-more-detail.-below,.— o~
Finally, the inherently high thermal conductance of this heat-sink design
(no sliding contact as required for conventional spring-loaded generators)
allows the thermoelectric elements to operate typically 25 to 50 C lower
in cold-junction temperature than in conventional spring-loaded generators,
and, hence, affords higher energy-conversion efficiency.

Note that the convolutions (required for spring loading) in this design
only extend up to 1000 F temperature and that a cylindrical container

is used in the higher-temperature regimes.
ok
This length includes 0.13-cm-thick cold shoe and intermediate shoe, and

a 0,234-cm-thick hot shoe.

This thickness is commercially available and is adequate to achieve the
desired spring-loading pressure (150 psi) and internal 'over pressures'
of inert gas,
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The above dimensions, viz, an element length of 1.7 cm, a total
heat-sink extension length of 1.2 cm, and a bellows wall thickness of
0.0109 cm were selected for the 'proof-of-concept' experimental studies
described below.

Fabrication of Bellows-Encapsulated Segmented Elements

A total of four bellowseencapsulated segmented couples were
fabricated for performance testing. The bellows enclosures (see Figure 4)
were fabricated by TIG-welding nickel hot platens to the as-fabricated
bellows subassemblies.®

The thermoelectric elements were fabricated using (1) the 80
percent Si alloy of SiGe and (2) 2p- and 2n-PbTe. The SiGe segments were
machined and ground from SiGe ingots purchased from RCA. The PbTe
segments were fabricated from PbTe powder purchased from 3M Co. The iron cold
shoes were joined to the PbTe segments using powder-metallurgical methods.
The SiGe thermoelectric legs and tungsten intermediate shoes were bonded
into a composite through the use of gold as a brazing agent. The brazing
was accomplished using technology developed in earlier SiGe-PbTe segmenting
studies. Specifically, the gold was incorporated in the junctions in the
form of a foil. The assembled components were maintained in close contact
in a differential-thermal-expansion bonding fixture and were brazed in
vacuum for 1/2 hr at 1066 C (1950 F).

Several techniques for joining the graphite hot shoe to the
SiGe were studied. Highstemperature, high-vacuum ¢ 10-6 Torr) bonding
trials involving only graphite and SiGe were unsuccessful. The introduction
of a thin film of Ge between the graphite and the SiGe did provide a degree
of bonding between the SiGe and graphite. The graphite was subsequently

~brazed to the nickel hot platen using an aluminum-silicon brazing alloy.

PbTe_segment_with _bonded. Fe._shoe_at __the_cold._junction, _(2) the_tungsten _ _

A composite view of the thermoelectric segments is shown in Figure
6. The components shown in Figure 6 include (from left to right) (1) the

intermediate junction shoe (prior to braze bonding to the SiGe), (3) the

SiGe segment, and (4) the graphite disc hot shoe. The thermoelectric

elements were next enclosed in a mica sleeve and positioned on the copper
heatesink extension (see Figure 4). This subassembly was next inserted

in the bellows enclosure. A specially designed holding fixture allowed the
bellows enclosure to be '"stretched" the desired amount during which time

a high-temperature epoxy seal was effected. (see Figures 4 and 7)., In this
"proof-of-concept" study, an epoxy seal was employed in lieu of the glass/metal
seal, e.g., Covar/glass seal, ultimately required for this module concept.,

.

; Supplied by Standard-Thomson Corporation.
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p-TYPE PbTe SEGMENT SHOWING Fe SHOE
AND SnTe LAYER

FIGURE 6. VIEW OF SEGMENTED SiGe-PbTe ELEMENT INCLUDING
PbTe SEGMENT, W INTERMEDIATE SHOE, SiGe SEGMENT
AND GRAPHITE HOT SHOE
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FIGURE 7. BELLOWS-ENCAPSULATED SiGe-PbTe SEGMENTED ELEMENTS
SHOWING Ni HOT STRAP AND EVACUATION/FILL TUBES
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The bellowszencapsulated SiGe-PbTe segmented elements were next
evacuated down to 10 = Torr (at ~ 150 C) and backfilled with research-
grade argon (99.9995 percent argon). Following the evacuation and backfill
with argon, the bellows-encapsulated elements were sealed by pinching off
the evacuation/fill tubes (see Figure 8). The couple was next instrumented
with thermocouples and attached to the heat-sink hardware of the life-
test efficiency-measurement apparatus shown in' the sequence of photographs
(Figures 9 to 11) and the shcematic drawing in Figure 12.

Experimental Results

The results of the preliminary 'proof-of-concept' experimental
studies are summarized in Table 3, The couple designs selected for these
evaluation staudes were described in the preceding discussions. The
experimental evaluation of two of the SiGe-PbTe segmented couples (Couple
Numbers BPG-71-1 and BPG-71-2) was terminated at an early stage of the
tests due to excessively high electrical resistance at the hot-shoe/SiGe
and hot-shoe/hot-platen interfaces. Subsequent bonding studies revealed
that the junction resistance could be reduced substantially by (1) intro-
ducing a Ge 'bonding agent" at the SiGe/graphite interface and (2) brazing
the graphite to the nickel hot platen using an aluminum-silicon brazing
alloy.

The above modifications to the segmented-couple design provided
junction resistances which were low enough initially to permit meaningful
conversion-efficiency measurements. The results of this efficiency measure-
ment are summarized in Table 3 (Couple Number BPG-71-3). An energy-con-
version efficiency of 7.6 percent was measured after this SiGe-PbTe segmented
couple had been operating for 65 hours. This measured conversion efficiency
was approximately 6 percent below the calculated value (i.e., M = 7.97
percent), .This couple remained stable for the next 120 hr, aftéf Which time
the output power and conversion efficiency began to decrease, The results
of these preliminary tests indicate that additional hot-shoe development
will have to be undertaken before long-term tests can be considered. Post-

" test visual examination of the segmented couple (BPG-71-3) revealed that

the difference between the calculated and measured conversion efficiency is
probably the result of high junction resistances at the SiGe/graphite
interface and/or the graphite/nickel hot-platen interface. As previously
indicated, it is expected that use of available MoSi hot-shoe technology
would permit long-term operation with low resistance at the SiGe hot junction.
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FIGURE 8.

FIGURE 9.

FIGURE 10.

BELLOWS-ENCAPSULATED SiGe-
PbTe SEGMENTED ELEMENTS
FOLLOWING EVACUATION,
BACKFILL WITH ARGON, AND
CLOSURE

LIFE-TEST AND EFFICIENCY-
MEASUREMENT APPARATUS WITH
SiGe-PbTe SEGMENTED
ELEMENTS ATTACHED TO HEAT-
FLUX TRANSDUCER/HEAT-SINK
ASSEMBLY

LIFE-TEST AND EFFICIENCY-
MEASUREMENT APPARATUS
SHOWING THERMAL INSULATION
AND HEAT-SOURCE/SPECIMEN/
HEAT-SINK CAVITY
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FIGURE 11. LIFE-TEST AND EFFICIENCY-MEASUREMENT APPARATUS
WITH SPECIMEN IN PLACE (SPECIMEN INSIDE THERMAL
INSULATION CAVITY IS NOT VISIBLE IN THIS PHOTOGRAPH)
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TABLE 3. COMPUTED AND MEASURED PERFORMANCE PARAMETERS
FOR BELLOWS-ENCAPSULATED SiGe-PbTe SEGMENTED

COUPLES :
, Measured Results for -~

Parameter : Calculated _ BPG-71-3 *°
Cold-junction ﬁemperature 450 X 441 k
-Intermediafe-junc;ion éemp. 800 K _ (not measured)
Hot- junction températu;e | 1175 K 1208 K
Total heat flow* 16.3 watts (th) 14.5 + 1.0 watts (th)
Couple output power _ 1.3 watts (e) 1.1 watts (e)
Operating current 7.0 amps | 5.6 amps
Couple conversion efficiency 7.97 percent 7.6 + .5 pérceﬁt**

*includesAby-pass beat losses in bellows

Fok '
As compared with measured SiGe couple efficiencies of 6 - 6.5 percent

operating at same cold- and hot-junction temperatures (see "Thermo-
electric Materials and Module Development Program', 6th Quarterly
Report, ALD(2510)-6 (1969)).

Note: The bellows-encapsulated module concept adds approximately 2 to
2.4 grams to the total weight of each element in RTG. However,
this module concept eliminates the need and the weight for the
hot frame and the spring-load follower at the cold frame. Hence,
the bellows concept should permit a higher specific power.

(See Eggers, P. E., "A Unitized Thermoelectric Module Concept",
ASME Technical Paper No. 71-WA/Ener-1, (December, 1971))
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Task IIT. Study of Sublimation Barriers for
Vacuum Operation of Thermoelectric Elements

Introduction

X The evaporative erosion of the thermoelectric materials,
particularly the lead-tellurium family of materials, has long been
regarded as one of the principal causes of degradation. The high vapor
pressure of PbTe has limited its use in vacuum to temperatures of ~ 675 K.
In the past, efforts to minimize or eliminate the evaporative erosion of
thermoelectric materials have included the use of mica sleeves, quartz
"washers', the zero-void, Westinghouse tubular generator concept, and the
hermetically sealed SNAP-27 concept.

In the present study, several types of mechancial-barrier
schemes are evaluated as a means for suppressing the sublimation of
thermoelectric materials in vacuum. The mica-sleeve scheme included in
this study is a '"reference" condition along with a reference bare element
(no mechanical barrier). The effectiveness of the candidate sublimation-
barrier techniques is experimentally evaluated by (1) weight-loss measure-
ments, (2) observation of dimensional changes of thermoelectric elements,
and (3) posttest Seebeck coefficient traverse measurements. A description
of the experimental procedures and the results are presented below,

Development of Sublimation-Barrier Schemes

A total of four sublimation-barrier schemes were included in
this experimental study. All of the sublimation-barrier studies involved
in-gradient operation of p-type PbTe (sodium doped, with excess tellurium
over solid solubility) in vacuum at nominal operating hot- and cold-junction
temperatures of 800 K (980 F) and 320 K (113 F), respectively. The p-type

PbTe was selected for this présent study beécduse of its relatively high———-———-———
vapor pressure and relatively high figure of merit. The thermoelectric

elements were fabricated by pressing and sintering p-type PbTe powder

(see Figure 13). The "as fabricated" thermoelectric elements were next

enclosed in the selected barrier scheme and placed on test.

A study of candidate barrier schemes revealed that the following
schemes might afford a significant decrease in the sublimation rate of
p-type PbTe: (1) a close-fitting mica sleeve, (2) a close-fitting mica
‘sleeve with Al1,0. cement at the mica/W hot-shoe interface, and (3) an
oxide-fiber shroud wrapped on a mica-sleeve-enclosed thermoelectric
element. A bare element (without any type of sublimation barrier) was
also included in this study to provide a reference condition for the
thermoelectric element. A detailed description of each of the above three
barrier schemes is presented below. All of the barrier schemes involve
0.76-cm-diameter x 1.5-cm-long 2p PbTe specimens with iron cold shoes and
tungsten hot shoes (see Figure 13). '



28

FIGURE 13. BASIC SPECIMEN CONFIGURATION FOR
SUBLIMATION-BARRIER STUDIES
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Reference Specimens y

Two reference specimen configurations have been included in
this study, viz, a bare element (no sublimation barrier) and the
conventional close-fitting mica sleeve (see Figure 14). The "mica
sleeve'" barrier scheme involved a close-fitting mica sleeve (10 mil
thick) press fit over tapered shoes at either end of the element.

Mica Sleeve with A1203 Barrier

This barrier scheme is similar to the mica-sleeve configuration
described above. However, an additional barrier to sublimation was pro-
vided by applying a band of alumina cement at the mica-sleeve/tungsten
hot-shoe interface (see Figure 14).

Oxide-Fiber Shroud Over Mica Sleeve

This barrier scheme involved the use of an oxide-fiber shroud
over a mica sleeve in order to suppress sublimation of the p-type PbTe
specimen. The application of the shroud was accomplished in a two-step
process. First, the 2p-PbTe element was enclosed in a close~fitting mica
sleeve (10 mil thick) press fit over tapered shoes at either end of the
element. Second, the enclosed element was manually wrapped with a shroud
of 6 to 7 layers of si0, fibers (containing approximately 18 filaments of
nominal 5-pm diameter) %see Figure 14). This approach offers the advantages
of minimizing the gap at the openings between the barrier and specimen
and provides a '"tortuous path" for the transport of the thermoelectric
material from the surface of the specimen.. For example, in the case of
the mica sleeve only, the principal path for sublimation appears to be at
the ends of the mica sleeve, particularly in the region of the mica-sleeve/
“tungsten hot-shoe (see Figure 14). HowevVer, thé application of —an oxides-"~ - - -~ -——
fiber shroud significantly reduces the conductance at the ends of the
sleeve by virtue of the tortuous path afforded by the 6 to 7 layers of
fibers.

g,
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mica sleeve

A1203 cement

mica sleeve

SiO2 fibers

mica sleeve

Fe

FIGURE 14. BARRIER SCHEMES F(R SUPPRESSING SUBLIMATION
OF THERMOELEGTRIC MATERIALS
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of approximately 450 hr. At the completion of the in-gradient tests,
the sublimation barrier is removed and the specimen is weighed again in
order to determine the weight loss. The results of these in gradient
tests are discussed below.

Experimental Results

The results of the above in-gradient tests are summarized in
Table 4. The experimental results indicate that a three-fold reduction
in the sublimation rate (relative to a mica barrier alone) can be
realized by applying an Al,0, shroud at the mica-sleeve/tungsten hot-
shoe interface (see specimén numbers SB-71-1 and -4). Even more signifi-
cant, a 12- to 50-fold reduction in the sublimation rate (relative to
a mica barrier alone) can be realized by applying a shroud of 6-7 layers
of oxide fibers (see specimen numbers SB-71-1, -3, -5). The outstanding
barrier effectiveness for the oxide-fiber barrier scheme was confirmed
by repeating the experiment (see Specimen Number SB-71-5).

The above results indicate that, based on percent weight loss,
the oxide-fiber-shroud-over-mica-sleeve barrier scheme is far superior to
the other barrier schemes investigated. An analysis was also performed to
translate "percent weight loss'" to "increase in electrical resistance' of
‘the thermoelectric couple. For the present experimental conditions (0.76-
cm-diameter x 1.5-cm-long thermoelements operating between 527 C and 25 to
35 C), the 0,04 percent weight loss in specimen number SB-71-~5 corresponds
to a total element resistance increase of less than 0.2 percent. Hence,
one could expect less than 0.2 percent decrease in output power* of the
p-type PbTe leg after operating for approximately 450 hours in vacuum,
This rate of resistance increase due to sublimation would, of course, be
further reduced if the same oxide-fiber enclosed p~type PbTe element were
operated in an inert atmosphere in place of vacuum, '

Posttest examination of the above §pecimens was performed using
Seebeck coefficient traverse measurements. (2 These measurements provide
longitudinal Seebeck coeffcient profiles both at the surface of the
specimen and at ‘the centerline of the specimen. The results of these
traverse measurements revealed that there was no apparent preferential
sublimation of Te from the 2p PbTe. Hence, it can be inferred that
observed weight losses can be interpreted as being bulk PbTe loss in con-
trast to preferential loss of the property-controlling dopants (excess Te
in the present case). :

ot
w

Due to erosion of thermoelectric element by sublimation.
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TABLE 4, SUMMARY OF WEIGHT LOSS FOR 2p-PbTe ELEMENTS
OPERATED IN VACUUM AND INVOLVING SELECTED
SUBLIMATION BARRIER SCHEMES

Specimen Barrier Hours on  Hot-Junction Weight
Number " Scheme Test Temperature, C Loss, percent
SB-71-1 Mica sleeve 445 520-527 0.48
S$B-71-2 No barrier 25 520-524 2.75
SB-71-3 Oxide-fiber shroud 455 - 522-529 0.01

over mica sleeve

SB-71-4 Mica sleeve with 454 . 526-531 0.18
Al1203 cement at
mica/W interface

SB-71-5 Oxide-fiber shroud 454 528-533 0.04
over mica sleeve
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APPENDIX A

USERS MANUAL FOR TRANRTG RTG TRANSIENT ANALYSIS
COMPUTER PROGRAM

Note: The input data forms contained in this appendix organize the input

data into functional groups. These forms also provide a convenient
format for data compilation since each input parameter is briefly
described in the adjacent column titled ''Description'. Note that
a number of the control data values have been specified previously
on pages A-4 and A-8 and should not be altered. The specified
data values together with the user-supplied data should be key-
punched according to the format specified in these data forms.



ANALYTICAL EQUATIONS FOR TRANRTG

1. RTG Design-Optimization Equations  (GESPGN)

The equations for the RTG design optimization are contained in the
NASA-Goddard final report, '"The Analysis and Design of a High-Temperature
Thermoelectric Conversion Device', BAT~5-6397-2, classified Confidential-,
Defense Information, NAS 5-3697 (1965); also Eggers, P. E., "An Advanced
Thermoelectric Life Test and Evaluation Study'', NASA Contract No.

NAS 5-10497, Final Report, September, 1968.

2., Thermoelectric-Analysis Equations (OFFOPT)

The equations for the thermoelectric analyses are described in the
report "Progress on the Development of Segmented PbTe-Bi Te Thermoelectric
Modules'', AEC Contract W-7405-eng-92, BMI Report No. BMIZ1794 (January, 1967).
A more detailed discussion can be found in "Development of an Analysis
Technique for Predicting the Operating Characteristics of Thermoelectric
Heat Engines', R. E. Best, The Ohio State University, 1970 (thesis).

3, Heat-Transfer Equations (TRUMP)

The equations for the steady-state and transient heat-transfer analyses
are reported in "TRUMP Computer Program'' by A. L. Edwards, Lawrence Radiation
Laboratory Report Number UCRL-14754 Revision II (1969).

4. Supplementary Equations

Additional equations used in the TRANRTG computer program but not
described in the above references include:

(a) Sublimation Rate Equation. The postulated equation, described on
page A-4, permits the user to supply empirically derived

sublimation rates for the thermoelements in terms of
coefficients and exponents for an exponential model of the form:

AeBT.

This model, in general, provides a good fit to empirically derived
evaporation rates for thermoelectric materials.



_(b) Radioisotope Decay. This equation is based on the relationship

Q =Qo et
where Qo = initial thermal power 693
A = disintegration constant = Talf 1ife
t = time (same units as half life) .
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FORTRAN FIXED 10 DIGIT Omo_z_>__.. DATA

DECK NO. PROGRAMMER : DATE PAGE_.16___of JOB NO.

NUMBER IDENTIFICATION DESCRIPTION DO NOT KEY PUNCH

Case number (index) for transient m:mwwmmm .,3., etc.)

|
Elapsed time since last data set (hr)

Sublimation factor; if 0.0, sublimation, if 1.0, no sublimation

i
!
|

i
T

Minimum te
Coefficients for nrmnaomwmnnmwn Sect. I: p-leg resistivity

properties; used to simulate n-leg resistivity

change- in thermoelectric p-leg th. cond.

n-leg th. cond.

properties accordipng tg

four sections of legs of p-leg Seebeck coefficient

(2] 3 [5](7] [2)[%) ()5 G} )

i
i
|
|
equal temperature a»mmmamﬂmm n-leg Seebeck coefficient

49 - L

ﬁMI Section I -~ hot sectjon _Sect, I1: p-leg registivity
WH Section II - medium-hot section n-leg resistivity
ﬁﬁ Section IIT - medium-cold section p-leg th. cond.

n-leg th. cond.

Section IV - cold section

[2][2]

(unitless coefficients) p-leg Seebeck coefficient

i
i
]
h
|
i
!
T
!

[

on. enter 1.0 in Sect, III: p-leg resistivity

-If no thermoelectric material n-leg Seebeck coefficient
|

all fields of Sections H|H< n-leg resistivity

These coefficients are vmmmm_ p—-leg th. cond.

on either estimated or n-leg th. cond.

measured normalized property p-leg Seebeck coefficient

changes. n~leg Seebeck coefficient

i
M
!
1
|
1
_
,

Sect. IV: p-leg resistivity

(213 (R (R] 51 [-] (=] (8

[}
BL O C K 8- 4 _ n-leg resistivity




_ DECK NO._

_FORTRAN

FIXED

PROGRAMMER

10 O_o_._. omo_z_b_.. c>._.>

DATE v>om$ .o.

._OO NO. _

S1-v

"mEEes mneEEn s EE e e R

'NUMBER IDENTIFICATION Ommom:uﬂ_oz OO..ZO._-.‘_Am*.,.‘—uCZOI
R . N o . wmw.am.:m.nn..,uwmw, mmn N . -A. T
S o .ijwuawm.m..ﬂw“nm noBccnmnEm.E I
- BL OC K 7 S .,
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Explanatory Notes on Input Data

(1) Radiator-Material Designation

The following radiator-material numbering code may be used to
extract the radiator fin parameters from the input-data library:

Radiator Material
I. D, Number Radiator Material

Magnesium
Beryllium
Magnesium MI1A
Magnesium HM21-T8
Aluminum A356-T6

(G IS OV L )

(2) Fin Parameters

*
I1f materials other than the above are desired, see reference

. for details of parameter calculation.

(3) Selection of Module Number

The selection of the number of modules is a tradeoff between
module peripheral losses and desired number of fins. For maximum utiliza-
tion of radiator fins, the number of modules should match the number and
position of the fins, Therefore, this selection will be subject to the
selection of the number of fins discussed.

(4) Thermoelectric-Array Option

The choice of module-width array is affected by the requirements
imposed by equipment used in the vicinity of the generator. For example,
for magnetometers, extraneous fields produced by current-carrying wires
must be arranged so that they are self cancelling. This is achieved by
an array with equal numbers of n- and p-elements across the width of the
module, and this can be introduced into the program by means of the input
value set equal to 1,0.

* Burian, R. J., et al, "A Design Procedure for the Weight Optimization
of Straight Finned Radiators', NASA Technical Note TN D-3489
(August, 1966).
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(5) Toughness Parameter and Impact Velocity

This parameter is used in the cladding~analyses subroutine of
the program., The selection of this term is discussed in the final -report
of NASA Contract NAS5-3697, page 25. Also in this reference appears a
discussion of the impact velocity and how the cladding analyses establish
a cladding thickness sufficient for intact impact with an unyielding
surface, ‘ '

6) Fuel-Form Power Density

This power density is usually found in the properties table of
a candidate fuel form. However, when radioisotope gas must be accommodated
by void space, the fuel-form power density is reduced to an effective
power density. This power density is used to determine the volume the
fuel form will occupy, including the void volume.

(7) Fuel-Pin Packing Density

This parameter defines the packing density of the fuel pins in
the fuel-block matrix. The maximum packing fraction is about 70 percent
and will have to be determined prior to the computer run. This number,
when divided into the total cross-sectional area of the fuel pins, will
give the total cross-sectional area of the fuel-form cross section. The
value is used when an undefined array is specified,

¢
[

(8) Separation Between the Fuel Pin-Fuel Tube and Between Fuel Piné

This input permits the operator to choose the fuel-block thickness -
between a fuel pin and the fuel tube which supports the fuel block plus
fuel pins. This only applies to the symmetric fuel-pin array which is
selected by the input value for FPA, the fuel-pin-array option.

The separation between fuel pins along a line connecting the
fuel-pin centers allows the packing. density to be controlled. Note that
the fuel block is optional in the case of radiation heat transfer. In
this case, the fuel pins would be supported by a frame whose weight would
be included under the heading of the fuel block,

(9) Heat-Source-Surface Power Density

A The heat-source-surface power density is selected on the basis
of maximum-power-density capability. This value is found from two-dimensional
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heat-flow considerations of the fuel form, fuel block, cladding, and fuel-
tube composite. The term is then used in the computer to determine whether
the designed thermoelectric module requires a surface power density
greater than that practical for a particular heat-source design. A
surface~power-density deficiency will result in an escalation of the heat-
source surface temperature which will increase parasitic heat losses
through the insulation and heat-source support.

(10) Fuel-Form Density

The fuel-form density may be expressed as an effective value if
void volumes are incorporated into the fuel form., For example, if a fuel
requires an additional 100 percent void volume due to fission radioisotope-
decay gas release, then the effective fuel-form density, RHOFF, would be
one-half the actual fuel-form density for the weight calculation.

(11) Modulus of Elasticity for Heat-Source Support

The compressive- and shear-modulus inputs are necessary for
the determination of heat-source support required for a maximum allowed
deflection., The values will often be supplied with homogeneous materials,
However, for more complex support structures, such as honeycomb, special
data reports must be consulted. Since heat-source support is a basic
necessity, the support medium may have to be designed for a required modulus.

12) Neglecgwgf Heat-Source-Support End Deflection

) This option permits the code to consider or ignore longer
“ééﬁé?ﬁfﬁ?§“ﬁﬁéﬁ‘a‘déftciency‘ofﬂend-support-bearing—area—exists@*mLongen__‘_4,_____;__
generators are attended by decreasing end areas, which serves to increase
the bearing-area deficiency.

(13) Maximum Tolerable Deflections

- The module, heat source, or support may be limited in deflection
because of preservation of electrical or thermal contacts of the thermo-
electrics, excessive shear forces on thermoelectrics or heat-source
support, or increase in heat transfer through heat-source support, or
insulation due to reduction in heat path,
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(14) Heat Dissipation by Generator Ends

The particular mission of a generator may allow all, part, or
none of the end area of the generator shell to dissipate heat., This may
be introduced into the program by specifying the percentage of the total
dissipative capability available for heat dump.

(15) Output Options

_The print option for output data controls the frequency of
the display of output data, e.g., the user may choose to (1) print the
calculated data after a change in each component (superdetailed mode),
(2) print the calculated data after each component has been optimized _
(detailed), and (3) print only the optimum generator-design case (abstract).

The output-format operation permits the user to specify (1) an
output format containing all dimensions, weights, etc. (detailed) or (2)
an output format containing only the principal parameters (abstract).
A description of both types of output format is given in Appendix B...

(16) Generator Profile Temperatures

The temperatures of the cold junction of the thermoelectrics,
cold junction of the insulation, and the radiator surface may all be
specified independently .to accommodate the temperature differentials
present in the heat path for the thermoelectric cold junction to the
radiator surface. The same procedure is used at the hot junction,

(17) Generator Profile Temperatures

This program is designed to construct mathematically a generator
based on assumed thermoelectric and engineering efficiencies, Therefore,
the operator must select a practical value of engineering efficiency
for the program. The program will analyze and iterate on engineering
efficiency until a heat balance is achieved. Thus, the proper selection
of this parameter will greatly reduce the computer run time.

(18) Element-Length Limits

These limits are imposed to avoid impractical. element shapes
and sizes due to the element-length iterations taking place in the program.
The limits may be based on fabricability or insulation capability, since
insulation thickness and heat-source-support thickness follows the
element length.
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(19) RTG Analysis Computation Options

(a) Thermoelectric-array computation sequence
1 - Limited by heat-source diameter
2 - Limited by heat-source length
3 - Investigates Cases 1 and 2
Geometry of module based on geometry of heat sources

(b) Generator length computation sequence

0 - Iterate using normal increments
1 - Iterate using large increments and then small increments

(c) Thermoelectric~element-length computation sequence

0 - Element length is fixed
1 - Element length is varied in order to trade off

e thermoelectric weight versus other generator
= components (viz, heat source, insulation, shell,
etc.)

(d) Fuel-form geometry option

0 - Right-cylindrical geometry for single fuel form

1 - Right-cylindrical geometry for subfuel form or
fuel pins and overall right-cylindrical for fuel
block

(e) Heat-~source-support computation option

—— e e _=1. = Maximum-_support.by_.ends___ ________ ____ o _ . ___
0 - Support by both end and radial portion
1 - Maximum support by radial portion

(f) End-insulation computation option

1 - Tradeoff end-insulation thickness against other
generator components , '
0 - End-insulation thickness is fixed

(g) Insulation and heat-source-support option

0 - Solid-type insulation and support
1 - Foil- and honeycomb-type insulation and support

(h) Insulation and heat-source-support material option

0 - Treat insulation and heat-source support as
independent components

1 - Assume insulation and heat source are same and

calculate deflection of support material on the

basis of total bearing area available.



A-24

(20) Transient Data Set

This block is repeated as many times as the user requires to
simulate the transient operating profile of the RTG, The data sets must
be sequenced in chronological order.

(21) Print Out Interval

Specification of this time interval controls the frequency of
print-out of RTG data during a ''dynamic'" transient, e.g., start-up of
RTG after fueling, transient operatlon during launch, This should not be
less than 120 sec, '

(22) Absolute Transient Factor

This factor specifies whether the present tran51ent data set
describes the "dynamlc" tran51ent condition (e.g., transient operation
during launch) or a "static" condition (e.g., simple decay of radioisotope).
If "dynamic', set equal to 1, if '"static", set equal to O.

(23) RTG Boundary Conditions

The RTG boundary temperature and radiator heat-transfer
coefficient (convection and conduction) can be specified in order to,
permit simulation of changing RTG boundary conditions. An important
transient condition requiring this option is the simulation of the RTG
operation during launch., For example, the RTG may be exposed to the
following launch profile: (1) RTG cooled by forced air flow with an
ambient temperature Ty, (2) RTG dissipates heat to shroud by natural
convection and radiation heat transfer with a boundary temperature T, and
(3) shroud is removed and RTIG dissipates heat solely by radiation heat
transfer to an effective boundary.temperature of T3. In describing the
above launch profile, the analyst may subdivide each of the above three
phases of the launch into smaller time intervals by simply specifying the
boundary. temperature and the convection and conduction heat-transfer
coefficient corresponding to each subinterval.

(24) Start-up Option

This option permits the analyst to study the transient performance
of a given RIG design during start-up from a specified initial temperature,
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